--- /srv/rebuilderd/tmp/rebuilderdJb5hWi/inputs/erlang-doc_27.3.4.1+dfsg-1_all.deb +++ /srv/rebuilderd/tmp/rebuilderdJb5hWi/out/erlang-doc_27.3.4.1+dfsg-1_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-07-08 07:27:28.000000 debian-binary │ --rw-r--r-- 0 0 0 39584 2025-07-08 07:27:28.000000 control.tar.xz │ --rw-r--r-- 0 0 0 16774188 2025-07-08 07:27:28.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 39628 2025-07-08 07:27:28.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 16776460 2025-07-08 07:27:28.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: erlang-doc │ │ │ Source: erlang │ │ │ Version: 1:27.3.4.1+dfsg-1 │ │ │ Architecture: all │ │ │ Maintainer: Debian Erlang Packagers │ │ │ -Installed-Size: 95996 │ │ │ +Installed-Size: 95997 │ │ │ Depends: libjs-jquery, libjs-jquery-ui │ │ │ Suggests: erlang:any │ │ │ Conflicts: erlang-base:any (<< 1:13.b.4), erlang-base-hipe:any, erlang-doc-html │ │ │ Replaces: erlang-doc-html │ │ │ Provides: erlang-doc-html │ │ │ Section: doc │ │ │ Priority: optional │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ │ │ │ ├── line order │ │ │ │ @@ -247,15 +247,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/search_data-2EF91EE2.js │ │ │ │ +usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/search_data-A22E82DE.js │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/sidebar_items-EAF8F760.js │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/driver.html │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/driver_entry.html │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/epmd_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_dist_protocol.html │ │ │ │ usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_driver.html │ │ │ │ @@ -370,15 +370,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-47E11C0C.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-7ECECF0A.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/sidebar_items-020EA270.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/event_handler_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/example_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/getting_started_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/install_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/introduction.html │ │ │ │ @@ -484,15 +484,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/search_data-B265D67F.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/search_data-B8379476.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/sidebar_items-2E1AB7CA.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/i.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/int.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/introduction.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/search.html │ │ │ │ @@ -673,15 +673,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-D82831C4.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-1F14090C.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/sidebar_items-8A5CCEF3.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_connect.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_global.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_users_guide.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_call_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ │ @@ -811,15 +811,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/search_data-11662227.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/search_data-F2AB287C.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/sidebar_items-2623356F.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_client.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_server.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_uri.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpc.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd_custom_api.html │ │ │ │ @@ -1684,15 +1684,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/search_data-4186676F.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/search_data-D423CF30.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/sidebar_items-0D795EAC.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/epp_dodger.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_comment_scan.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_prettypr.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_recomment.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_syntax.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_syntax_lib.html │ │ │ │ @@ -1719,15 +1719,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-BA5DB564.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-7B342769.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/sidebar_items-3CBBBF05.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/getting_started.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/introduction.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/search.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub │ │ │ │ @@ -1756,15 +1756,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/search_data-6515C1E6.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/search_data-074D3797.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/sidebar_items-11035E81.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/eprof.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/erlang-el.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/erlang_mode_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/fprof.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/fprof_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/index.html │ │ │ │ @@ -2072,15 +2072,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/search_data-EF647235.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/search_data-2C01025C.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/sidebar_items-7ADBDE09.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/search.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl_eventp.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl_examples.html ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -137,15 +137,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 292 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/ssh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 293 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/ssl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/stdlib.html │ │ │ -rw-r--r-- 0 root (0) root (0) 298 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/syntax_tools.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2286 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 5648 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/404.html │ │ │ --rw-r--r-- 0 root (0) root (0) 654613 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 654598 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 53540 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/applications.html │ │ │ -rw-r--r-- 0 root (0) root (0) 97489 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/appup_cookbook.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7982 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/ballpoint-pen.svg │ │ │ -rw-r--r-- 0 root (0) root (0) 2284 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist1.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5214 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist2.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5007 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist3.gif │ │ │ @@ -304,15 +304,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 2376764 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/search_data-2EF91EE2.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 2376764 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/search_data-A22E82DE.js │ │ │ -rw-r--r-- 0 root (0) root (0) 99839 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/dist/sidebar_items-EAF8F760.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67715 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/driver.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34514 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/driver_entry.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20636 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/epmd_cmd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 124663 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_cmd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 93996 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_dist_protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 159604 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_driver.html │ │ │ @@ -351,15 +351,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6010 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6692 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/api-reference.html │ │ │ --rw-r--r-- 0 root (0) root (0) 96826 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 96821 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 140490 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1_getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9328 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1_introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7454 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1_overview.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78800 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1_spec.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35427 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/asn1ct.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1340 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.1/doc/html/assets/exclusive_Win_But.gif │ │ │ @@ -397,15 +397,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10672 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4963 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/config.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 10726 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/html_logs.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 9561 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/tc_execution.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 21795 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/basics_chapter.html │ │ │ --rw-r--r-- 0 root (0) root (0) 399348 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 399372 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 7502 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 59626 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/config_file_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25541 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/cover_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 182222 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12294 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_cover.html │ │ │ -rw-r--r-- 0 root (0) root (0) 30006 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_ftp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 77102 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_hooks.html │ │ │ @@ -438,15 +438,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 585051 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-47E11C0C.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 585051 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-7ECECF0A.js │ │ │ -rw-r--r-- 0 root (0) root (0) 58564 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/sidebar_items-020EA270.js │ │ │ -rw-r--r-- 0 root (0) root (0) 31482 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/event_handler_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 62593 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/example_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26738 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/getting_started_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8025 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/install_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8890 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/introduction.html │ │ │ @@ -466,15 +466,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 24220 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/beam_ssa.html │ │ │ -rw-r--r-- 0 root (0) root (0) 450427 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/cerl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28687 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/cerl_clauses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28945 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/cerl_trees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 84316 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/compile.html │ │ │ --rw-r--r-- 0 root (0) root (0) 182069 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/compiler.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 182053 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/compiler.epub │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ -rw-r--r-- 0 root (0) root (0) 17732 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/inconsolata-latin-400-normal-OXLHDACS.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 17976 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1/doc/html/dist/inconsolata-latin-700-normal-S55P5GAG.woff2 │ │ │ @@ -500,15 +500,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 992 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6016 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35139 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/algorithm_details.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6670 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 127046 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 127048 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 294565 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10016 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto_app.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -546,15 +546,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 21770 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/cond_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 13532 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/function_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 28924 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/interpret.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 14414 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/line_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 40742 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/monitor.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 34504 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/assets/view.jpg │ │ │ --rw-r--r-- 0 root (0) root (0) 219253 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/debugger.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 219254 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/debugger.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 13097 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/debugger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 52026 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/debugger_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -567,15 +567,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 80677 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/search_data-B265D67F.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 80677 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/search_data-B8379476.js │ │ │ -rw-r--r-- 0 root (0) root (0) 9411 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/dist/sidebar_items-2E1AB7CA.js │ │ │ -rw-r--r-- 0 root (0) root (0) 48088 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/i.html │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 61541 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/int.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7626 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 55320 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5/doc/html/search.html │ │ │ @@ -583,15 +583,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 921 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6794 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 66389 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 66387 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 53628 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25902 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -618,15 +618,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1143 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8214 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 143789 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 143787 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 253726 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57052 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29004 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_codec.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32268 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_dict.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6778 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9526 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21940 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_make.html │ │ │ @@ -752,15 +752,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 24651 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/search_data-7A421979.js │ │ │ -rw-r--r-- 0 root (0) root (0) 6047 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/sidebar_items-5C2028D5.js │ │ │ --rw-r--r-- 0 root (0) root (0) 33173 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 33168 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 94635 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.html │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25611 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5935 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ │ │ │ @@ -782,22 +782,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 193099 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-D82831C4.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 193099 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-1F14090C.js │ │ │ -rw-r--r-- 0 root (0) root (0) 15936 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/sidebar_items-8A5CCEF3.js │ │ │ -rw-r--r-- 0 root (0) root (0) 73732 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei.html │ │ │ -rw-r--r-- 0 root (0) root (0) 72789 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_connect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11739 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_global.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26980 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_users_guide.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22676 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_call_cmd.html │ │ │ --rw-r--r-- 0 root (0) root (0) 84946 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 84948 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 110945 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5565 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/.build │ │ │ @@ -832,15 +832,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 80722 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/search_data-07FF68FB.js │ │ │ -rw-r--r-- 0 root (0) root (0) 9243 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/dist/sidebar_items-639C3385.js │ │ │ --rw-r--r-- 0 root (0) root (0) 302544 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 302545 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 22825 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et.html │ │ │ -rw-r--r-- 0 root (0) root (0) 56992 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_collector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 52410 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_desc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 100532 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9912 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20357 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_selector.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45778 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/et_tutorial.html │ │ │ @@ -940,26 +940,26 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 218779 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/search_data-11662227.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 218779 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/search_data-F2AB287C.js │ │ │ -rw-r--r-- 0 root (0) root (0) 22927 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/dist/sidebar_items-2623356F.js │ │ │ -rw-r--r-- 0 root (0) root (0) 27789 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_client.html │ │ │ -rw-r--r-- 0 root (0) root (0) 56374 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_server.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11413 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/http_uri.html │ │ │ -rw-r--r-- 0 root (0) root (0) 91474 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 117582 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12106 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd_custom_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13434 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd_socket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45032 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/httpd_util.html │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/index.html │ │ │ --rw-r--r-- 0 root (0) root (0) 152769 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/inets.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 152774 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/inets.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 25673 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/inets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8653 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/inets_services.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7460 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21254 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/mod_alias.html │ │ │ -rw-r--r-- 0 root (0) root (0) 82904 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/mod_auth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19769 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/mod_esi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37142 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2/doc/html/mod_security.html │ │ │ @@ -1138,15 +1138,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 57176 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/global.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37220 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/global_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24971 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/heart.html │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 184465 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/inet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 86796 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/inet_res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7733 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/introduction_chapter.html │ │ │ --rw-r--r-- 0 root (0) root (0) 784895 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/kernel.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 784918 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/kernel.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 42763 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/kernel_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 188241 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 108807 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 70518 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger_cookbook.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15653 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger_disk_log_h.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25584 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger_filters.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34179 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.1/doc/html/logger_formatter.html │ │ │ @@ -1253,15 +1253,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 375315 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/search_data-48CBC29D.js │ │ │ -rw-r--r-- 0 root (0) root (0) 24530 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/sidebar_items-845AA6F8.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/index.html │ │ │ --rw-r--r-- 0 root (0) root (0) 221921 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 221927 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 320562 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45468 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_a.html │ │ │ -rw-r--r-- 0 root (0) root (0) 87795 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_b.html │ │ │ -rw-r--r-- 0 root (0) root (0) 46060 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_c.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9869 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 109095 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51394 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap3.html │ │ │ @@ -1308,15 +1308,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 146200 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/dist/search_data-FFC02264.js │ │ │ -rw-r--r-- 0 root (0) root (0) 12765 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/dist/sidebar_items-6D9D41B7.js │ │ │ -rw-r--r-- 0 root (0) root (0) 17946 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/etop.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15744 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/etop_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7350 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/introduction_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 71138 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 116860 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 116861 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 13893 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7238 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23482 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5941 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 111751 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/ttb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 165001 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/ttb_ug.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/ │ │ │ @@ -1350,15 +1350,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 76343 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/dist/search_data-D78563F6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 7406 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/dist/sidebar_items-19ECDBA9.js │ │ │ -rw-r--r-- 0 root (0) root (0) 13859 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/error_handling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51373 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8466 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57071 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 67282 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 67291 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 76564 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5917 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 952 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6019 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/404.html │ │ │ @@ -1387,15 +1387,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 69231 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/search_data-D20C2403.js │ │ │ -rw-r--r-- 0 root (0) root (0) 7923 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/sidebar_items-CB1A13C5.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31330 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/memsup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57039 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14776 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/nteventlog.html │ │ │ --rw-r--r-- 0 root (0) root (0) 50284 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 50285 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 9983 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22932 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_sup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5935 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/.build │ │ │ @@ -1422,15 +1422,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 55131 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/search_data-5B3B164D.js │ │ │ -rw-r--r-- 0 root (0) root (0) 5679 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/sidebar_items-E70C9F62.js │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 55754 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/leex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37748 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 44442 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/parsetools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 44441 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/parsetools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 5950 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 67862 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/yecc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 952 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6043 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/404.html │ │ │ @@ -1455,15 +1455,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 144559 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/dist/search_data-4A71936A.js │ │ │ -rw-r--r-- 0 root (0) root (0) 16406 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/dist/sidebar_items-9345D29F.js │ │ │ -rw-r--r-- 0 root (0) root (0) 269 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 89854 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 99827 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/public_key.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 99824 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/public_key.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 206598 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/public_key.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10275 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/public_key_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 70646 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/public_key_records.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5959 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 131327 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1/doc/html/using_public_key.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/ │ │ │ @@ -1491,15 +1491,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 90283 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/search_data-8726EDEC.js │ │ │ -rw-r--r-- 0 root (0) root (0) 8840 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/sidebar_items-DF937488.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 46277 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 62895 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 62884 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 100579 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.html │ │ │ -rw-r--r-- 0 root (0) root (0) 199744 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23138 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_usage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/ │ │ │ @@ -1533,15 +1533,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9774 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/dtrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 47750 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/dyntrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 271 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50812 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/instrument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 64775 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/lttng.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50033 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/msacc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78739 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 118760 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 118758 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 7584 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29065 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/scheduler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5974 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12907 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/system_information.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9992 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/systemtap.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/ │ │ │ @@ -1576,15 +1576,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 34663 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/error_logging.html │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 70063 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 42474 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/rb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12220 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/rel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 80329 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/release_handler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/relup.html │ │ │ --rw-r--r-- 0 root (0) root (0) 92277 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 92283 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 17193 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7699 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17259 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5920 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40619 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/systools.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/ │ │ │ @@ -1623,15 +1623,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 549455 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/search_data-18B48D27.js │ │ │ -rw-r--r-- 0 root (0) root (0) 90029 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/sidebar_items-E4326166.js │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 61210 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 443705 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 443710 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 147953 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39983 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_advanced_agent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 62881 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_config_files.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51341 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_funct_descr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18123 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_netif.html │ │ │ -rw-r--r-- 0 root (0) root (0) 66609 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8609 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_app_a.html │ │ │ @@ -1714,15 +1714,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 365130 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/dist/search_data-377AF1D8.js │ │ │ -rw-r--r-- 0 root (0) root (0) 45844 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/dist/sidebar_items-60D78207.js │ │ │ -rw-r--r-- 0 root (0) root (0) 23928 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/hardening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14206 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 228322 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 271337 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 271326 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 250146 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24827 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_agent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25478 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 44222 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_client_channel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23289 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_client_key_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78311 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 48955 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.1/doc/html/ssh_file.html │ │ │ @@ -1759,15 +1759,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 483694 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/dist/search_data-A8FEFDA9.js │ │ │ -rw-r--r-- 0 root (0) root (0) 27146 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/dist/sidebar_items-29A63FCF.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 251345 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 209643 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 209651 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 316483 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17362 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12888 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_crl_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21769 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_crl_cache_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39360 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_distribution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14213 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25871 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.1/doc/html/ssl_session_cache_api.html │ │ │ @@ -1865,15 +1865,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 47224 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/sets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 106054 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/shell.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10144 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/shell_default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 49726 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/shell_docs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33154 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/slave.html │ │ │ -rw-r--r-- 0 root (0) root (0) 354702 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/sofs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 1410002 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/stdlib.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 1409971 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/stdlib.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 15680 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/stdlib_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 191274 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/string.html │ │ │ -rw-r--r-- 0 root (0) root (0) 92962 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/supervisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20583 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/supervisor_bridge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 107054 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/sys.html │ │ │ -rw-r--r-- 0 root (0) root (0) 81440 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/timer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 74914 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.1/doc/html/unicode.html │ │ │ @@ -1906,15 +1906,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 211628 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/search_data-4186676F.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 211628 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/search_data-D423CF30.js │ │ │ -rw-r--r-- 0 root (0) root (0) 52558 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/dist/sidebar_items-0D795EAC.js │ │ │ -rw-r--r-- 0 root (0) root (0) 37804 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/epp_dodger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17425 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_comment_scan.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39766 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_prettypr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17396 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_recomment.html │ │ │ -rw-r--r-- 0 root (0) root (0) 509335 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_syntax.html │ │ │ -rw-r--r-- 0 root (0) root (0) 111930 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/syntax_tools-3.2.2/doc/html/erl_syntax_lib.html │ │ │ @@ -1946,22 +1946,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 22267 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-BA5DB564.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 22267 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-7B342769.js │ │ │ -rw-r--r-- 0 root (0) root (0) 3043 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/sidebar_items-3CBBBF05.js │ │ │ -rw-r--r-- 0 root (0) root (0) 9543 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7929 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14762 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5920 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 28828 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 28826 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 44611 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11771 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp_logger.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1139 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6010 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/404.html │ │ │ @@ -1988,29 +1988,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 305159 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/search_data-6515C1E6.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 305159 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/search_data-074D3797.js │ │ │ -rw-r--r-- 0 root (0) root (0) 36457 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/dist/sidebar_items-11035E81.js │ │ │ -rw-r--r-- 0 root (0) root (0) 42648 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/eprof.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28459 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/erlang-el.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18986 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/erlang_mode_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 131865 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/fprof.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12996 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/fprof_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 67284 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/lcnt.html │ │ │ -rw-r--r-- 0 root (0) root (0) 53417 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/lcnt_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18406 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/make.html │ │ │ -rw-r--r-- 0 root (0) root (0) 106911 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28575 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tags.html │ │ │ --rw-r--r-- 0 root (0) root (0) 239556 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 239545 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 173561 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tprof.html │ │ │ -rw-r--r-- 0 root (0) root (0) 184227 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/xref.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39616 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/xref_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1612 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/html/.build.gz │ │ │ @@ -2314,15 +2314,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 133453 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/search_data-EF647235.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 133453 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/search_data-2C01025C.js │ │ │ -rw-r--r-- 0 root (0) root (0) 14478 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/dist/sidebar_items-7ADBDE09.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 86197 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5823 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 44740 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24438 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl_eventp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40755 2025-07-08 07:27:28.000000 ./usr/share/doc/erlang-doc/html/lib/xmerl-2.1.3.1/doc/html/xmerl_examples.html │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ ├── zipinfo {} │ │ │ │ @@ -1,93 +1,93 @@ │ │ │ │ -Zip file size: 654613 bytes, number of entries: 91 │ │ │ │ -?rw-r--r-- 6.1 unx 20 bx stor 25-Jul-08 08:11 mimetype │ │ │ │ -?rw-r--r-- 6.1 unx 17922 bx defN 25-Jul-08 08:11 OEBPS/versions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 4673 bx defN 25-Jul-08 08:11 OEBPS/upgrade.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 53439 bx defN 25-Jul-08 08:11 OEBPS/typespec.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2166 bx defN 25-Jul-08 08:11 OEBPS/tutorial.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 764 bx defN 25-Jul-08 08:11 OEBPS/title.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 46256 bx defN 25-Jul-08 08:11 OEBPS/tablesdatabases.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 12466 bx defN 25-Jul-08 08:11 OEBPS/system_principles.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7346 bx defN 25-Jul-08 08:11 OEBPS/system_limits.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 63476 bx defN 25-Jul-08 08:11 OEBPS/sup_princ.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 253918 bx defN 25-Jul-08 08:11 OEBPS/statem.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 111264 bx defN 25-Jul-08 08:11 OEBPS/spec_proc.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 249951 bx defN 25-Jul-08 08:11 OEBPS/seq_prog.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 70943 bx defN 25-Jul-08 08:11 OEBPS/robustness.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 20854 bx defN 25-Jul-08 08:11 OEBPS/release_structure.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 59888 bx defN 25-Jul-08 08:11 OEBPS/release_handling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 4596 bx defN 25-Jul-08 08:11 OEBPS/reference_manual.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 19455 bx defN 25-Jul-08 08:11 OEBPS/ref_man_records.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 48276 bx defN 25-Jul-08 08:11 OEBPS/ref_man_processes.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14454 bx defN 25-Jul-08 08:11 OEBPS/ref_man_functions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 49542 bx defN 25-Jul-08 08:11 OEBPS/records_macros.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2190 bx defN 25-Jul-08 08:11 OEBPS/readme.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 785 bx defN 25-Jul-08 08:11 OEBPS/programming_examples.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 40147 bx defN 25-Jul-08 08:11 OEBPS/prog_ex_records.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 15206 bx defN 25-Jul-08 08:11 OEBPS/profiling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8501 bx defN 25-Jul-08 08:11 OEBPS/ports.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 3737 bx defN 25-Jul-08 08:11 OEBPS/patterns.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13417 bx defN 25-Jul-08 08:11 OEBPS/overview.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8959 bx defN 25-Jul-08 08:11 OEBPS/otp-patch-apply.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 9082 bx defN 25-Jul-08 08:11 OEBPS/opaques.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14065 bx defN 25-Jul-08 08:11 OEBPS/nif.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 6367 bx defN 25-Jul-08 08:11 OEBPS/nav.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 25842 bx defN 25-Jul-08 08:11 OEBPS/modules.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7012 bx defN 25-Jul-08 08:11 OEBPS/misc.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5477 bx defN 25-Jul-08 08:11 OEBPS/memory.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 45509 bx defN 25-Jul-08 08:11 OEBPS/maps.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 39594 bx defN 25-Jul-08 08:11 OEBPS/macros.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 31439 bx defN 25-Jul-08 08:11 OEBPS/listhandling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 42996 bx defN 25-Jul-08 08:11 OEBPS/list_comprehensions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2211 bx defN 25-Jul-08 08:11 OEBPS/installation_guide.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 55516 bx defN 25-Jul-08 08:11 OEBPS/install.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 28229 bx defN 25-Jul-08 08:11 OEBPS/install-win32.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 35715 bx defN 25-Jul-08 08:11 OEBPS/install-cross.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 20858 bx defN 25-Jul-08 08:11 OEBPS/included_applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2353 bx defN 25-Jul-08 08:11 OEBPS/getting_started.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 31341 bx defN 25-Jul-08 08:11 OEBPS/gen_server_concepts.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 118675 bx defN 25-Jul-08 08:11 OEBPS/funs.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8453 bx defN 25-Jul-08 08:11 OEBPS/features.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 255000 bx defN 25-Jul-08 08:11 OEBPS/expressions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2365 bx defN 25-Jul-08 08:11 OEBPS/example.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 26747 bx defN 25-Jul-08 08:11 OEBPS/events.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 16629 bx defN 25-Jul-08 08:11 OEBPS/errors.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13609 bx defN 25-Jul-08 08:11 OEBPS/error_logging.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 42501 bx defN 25-Jul-08 08:11 OEBPS/erl_interface.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 18220 bx defN 25-Jul-08 08:11 OEBPS/embedded.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2085 bx defN 25-Jul-08 08:11 OEBPS/efficiency_guide.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 46447 bx defN 25-Jul-08 08:11 OEBPS/eff_guide_processes.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 21209 bx defN 25-Jul-08 08:11 OEBPS/eff_guide_functions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 9338 bx defN 25-Jul-08 08:11 OEBPS/drivers.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 47180 bx defN 25-Jul-08 08:11 OEBPS/documentation.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14892 bx defN 25-Jul-08 08:11 OEBPS/distributed_applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 24284 bx defN 25-Jul-08 08:11 OEBPS/distributed.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14562 bx defN 25-Jul-08 08:11 OEBPS/dist/epub-erlang-ESPT6BQV.css │ │ │ │ -?rw-r--r-- 6.1 unx 499 bx defN 25-Jul-08 08:11 OEBPS/dist/epub-LSJCIYTM.js │ │ │ │ -?rw-r--r-- 6.1 unx 36780 bx defN 25-Jul-08 08:11 OEBPS/design_principles.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 15003 bx defN 25-Jul-08 08:11 OEBPS/debugging.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 71771 bx defN 25-Jul-08 08:11 OEBPS/data_types.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 115067 bx defN 25-Jul-08 08:11 OEBPS/create_target.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13187 bx defN 25-Jul-08 08:11 OEBPS/content.opf │ │ │ │ -?rw-r--r-- 6.1 unx 129900 bx defN 25-Jul-08 08:11 OEBPS/conc_prog.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 33231 bx defN 25-Jul-08 08:11 OEBPS/commoncaveats.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 11935 bx defN 25-Jul-08 08:11 OEBPS/code_loading.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 803 bx defN 25-Jul-08 08:11 OEBPS/cnode.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5177 bx defN 25-Jul-08 08:11 OEBPS/character_set.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 40707 bx defN 25-Jul-08 08:11 OEBPS/c_portdriver.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 35510 bx defN 25-Jul-08 08:11 OEBPS/c_port.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 34819 bx defN 25-Jul-08 08:11 OEBPS/bit_syntax.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 53327 bx defN 25-Jul-08 08:11 OEBPS/binaryhandling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7606 bx defN 25-Jul-08 08:11 OEBPS/benchmarking.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5837 bx defN 25-Jul-08 08:11 OEBPS/assets/logo.png │ │ │ │ -?rw-r--r-- 6.1 unx 5837 bx defN 25-Jul-08 08:11 OEBPS/assets/erlang-logo.png │ │ │ │ -?rw-r--r-- 6.1 unx 7044 bx stor 25-Jul-08 08:11 OEBPS/assets/dist5.gif │ │ │ │ -?rw-r--r-- 6.1 unx 2939 bx stor 25-Jul-08 08:11 OEBPS/assets/dist4.gif │ │ │ │ -?rw-r--r-- 6.1 unx 5007 bx stor 25-Jul-08 08:11 OEBPS/assets/dist3.gif │ │ │ │ -?rw-r--r-- 6.1 unx 5214 bx stor 25-Jul-08 08:11 OEBPS/assets/dist2.gif │ │ │ │ -?rw-r--r-- 6.1 unx 2284 bx stor 25-Jul-08 08:11 OEBPS/assets/dist1.gif │ │ │ │ -?rw-r--r-- 6.1 unx 7982 bx stor 25-Jul-08 08:11 OEBPS/assets/ballpoint-pen.svg │ │ │ │ -?rw-r--r-- 6.1 unx 91721 bx defN 25-Jul-08 08:11 OEBPS/appup_cookbook.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 47722 bx defN 25-Jul-08 08:11 OEBPS/applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 252 bx defN 25-Jul-08 08:11 META-INF/container.xml │ │ │ │ -?rw-r--r-- 6.1 unx 162 bx defN 25-Jul-08 08:11 META-INF/com.apple.ibooks.display-options.xml │ │ │ │ -91 files, 3077736 bytes uncompressed, 638681 bytes compressed: 79.3% │ │ │ │ +Zip file size: 654598 bytes, number of entries: 91 │ │ │ │ +?rw-r--r-- 6.1 unx 20 bx stor 25-Jul-26 21:28 mimetype │ │ │ │ +?rw-r--r-- 6.1 unx 17922 bx defN 25-Jul-26 21:28 OEBPS/versions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 4673 bx defN 25-Jul-26 21:28 OEBPS/upgrade.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 53439 bx defN 25-Jul-26 21:28 OEBPS/typespec.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2166 bx defN 25-Jul-26 21:28 OEBPS/tutorial.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 764 bx defN 25-Jul-26 21:28 OEBPS/title.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 46256 bx defN 25-Jul-26 21:28 OEBPS/tablesdatabases.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 12466 bx defN 25-Jul-26 21:28 OEBPS/system_principles.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7346 bx defN 25-Jul-26 21:28 OEBPS/system_limits.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 63476 bx defN 25-Jul-26 21:28 OEBPS/sup_princ.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 253918 bx defN 25-Jul-26 21:28 OEBPS/statem.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 111264 bx defN 25-Jul-26 21:28 OEBPS/spec_proc.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 249951 bx defN 25-Jul-26 21:28 OEBPS/seq_prog.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 70943 bx defN 25-Jul-26 21:28 OEBPS/robustness.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 20854 bx defN 25-Jul-26 21:28 OEBPS/release_structure.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 59888 bx defN 25-Jul-26 21:28 OEBPS/release_handling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 4596 bx defN 25-Jul-26 21:28 OEBPS/reference_manual.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 19455 bx defN 25-Jul-26 21:28 OEBPS/ref_man_records.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 48276 bx defN 25-Jul-26 21:28 OEBPS/ref_man_processes.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14454 bx defN 25-Jul-26 21:28 OEBPS/ref_man_functions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 49542 bx defN 25-Jul-26 21:28 OEBPS/records_macros.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2190 bx defN 25-Jul-26 21:28 OEBPS/readme.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 785 bx defN 25-Jul-26 21:28 OEBPS/programming_examples.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 40147 bx defN 25-Jul-26 21:28 OEBPS/prog_ex_records.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 15206 bx defN 25-Jul-26 21:28 OEBPS/profiling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8501 bx defN 25-Jul-26 21:28 OEBPS/ports.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 3737 bx defN 25-Jul-26 21:28 OEBPS/patterns.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13417 bx defN 25-Jul-26 21:28 OEBPS/overview.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8959 bx defN 25-Jul-26 21:28 OEBPS/otp-patch-apply.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 9082 bx defN 25-Jul-26 21:28 OEBPS/opaques.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14065 bx defN 25-Jul-26 21:28 OEBPS/nif.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 6367 bx defN 25-Jul-26 21:28 OEBPS/nav.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 25842 bx defN 25-Jul-26 21:28 OEBPS/modules.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7012 bx defN 25-Jul-26 21:28 OEBPS/misc.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5477 bx defN 25-Jul-26 21:28 OEBPS/memory.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 45509 bx defN 25-Jul-26 21:28 OEBPS/maps.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 39594 bx defN 25-Jul-26 21:28 OEBPS/macros.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 31439 bx defN 25-Jul-26 21:28 OEBPS/listhandling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 42996 bx defN 25-Jul-26 21:28 OEBPS/list_comprehensions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2211 bx defN 25-Jul-26 21:28 OEBPS/installation_guide.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 55516 bx defN 25-Jul-26 21:28 OEBPS/install.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 28229 bx defN 25-Jul-26 21:28 OEBPS/install-win32.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 35715 bx defN 25-Jul-26 21:28 OEBPS/install-cross.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 20858 bx defN 25-Jul-26 21:28 OEBPS/included_applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2353 bx defN 25-Jul-26 21:28 OEBPS/getting_started.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 31341 bx defN 25-Jul-26 21:28 OEBPS/gen_server_concepts.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 118675 bx defN 25-Jul-26 21:28 OEBPS/funs.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8453 bx defN 25-Jul-26 21:28 OEBPS/features.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 255000 bx defN 25-Jul-26 21:28 OEBPS/expressions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2365 bx defN 25-Jul-26 21:28 OEBPS/example.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 26747 bx defN 25-Jul-26 21:28 OEBPS/events.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 16629 bx defN 25-Jul-26 21:28 OEBPS/errors.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13609 bx defN 25-Jul-26 21:28 OEBPS/error_logging.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 42501 bx defN 25-Jul-26 21:28 OEBPS/erl_interface.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 18220 bx defN 25-Jul-26 21:28 OEBPS/embedded.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2085 bx defN 25-Jul-26 21:28 OEBPS/efficiency_guide.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 46447 bx defN 25-Jul-26 21:28 OEBPS/eff_guide_processes.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 21209 bx defN 25-Jul-26 21:28 OEBPS/eff_guide_functions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 9338 bx defN 25-Jul-26 21:28 OEBPS/drivers.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 47180 bx defN 25-Jul-26 21:28 OEBPS/documentation.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14892 bx defN 25-Jul-26 21:28 OEBPS/distributed_applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 24284 bx defN 25-Jul-26 21:28 OEBPS/distributed.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14562 bx defN 25-Jul-26 21:28 OEBPS/dist/epub-erlang-ESPT6BQV.css │ │ │ │ +?rw-r--r-- 6.1 unx 499 bx defN 25-Jul-26 21:28 OEBPS/dist/epub-LSJCIYTM.js │ │ │ │ +?rw-r--r-- 6.1 unx 36780 bx defN 25-Jul-26 21:28 OEBPS/design_principles.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 15003 bx defN 25-Jul-26 21:28 OEBPS/debugging.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 71771 bx defN 25-Jul-26 21:28 OEBPS/data_types.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 115067 bx defN 25-Jul-26 21:28 OEBPS/create_target.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13187 bx defN 25-Jul-26 21:28 OEBPS/content.opf │ │ │ │ +?rw-r--r-- 6.1 unx 129900 bx defN 25-Jul-26 21:28 OEBPS/conc_prog.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 33231 bx defN 25-Jul-26 21:28 OEBPS/commoncaveats.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 11935 bx defN 25-Jul-26 21:28 OEBPS/code_loading.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 803 bx defN 25-Jul-26 21:28 OEBPS/cnode.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5177 bx defN 25-Jul-26 21:28 OEBPS/character_set.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 40707 bx defN 25-Jul-26 21:28 OEBPS/c_portdriver.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 35510 bx defN 25-Jul-26 21:28 OEBPS/c_port.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 34819 bx defN 25-Jul-26 21:28 OEBPS/bit_syntax.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 53327 bx defN 25-Jul-26 21:28 OEBPS/binaryhandling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7606 bx defN 25-Jul-26 21:28 OEBPS/benchmarking.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5837 bx defN 25-Jul-26 21:28 OEBPS/assets/logo.png │ │ │ │ +?rw-r--r-- 6.1 unx 5837 bx defN 25-Jul-26 21:28 OEBPS/assets/erlang-logo.png │ │ │ │ +?rw-r--r-- 6.1 unx 7044 bx stor 25-Jul-26 21:28 OEBPS/assets/dist5.gif │ │ │ │ +?rw-r--r-- 6.1 unx 2939 bx stor 25-Jul-26 21:28 OEBPS/assets/dist4.gif │ │ │ │ +?rw-r--r-- 6.1 unx 5007 bx stor 25-Jul-26 21:28 OEBPS/assets/dist3.gif │ │ │ │ +?rw-r--r-- 6.1 unx 5214 bx stor 25-Jul-26 21:28 OEBPS/assets/dist2.gif │ │ │ │ +?rw-r--r-- 6.1 unx 2284 bx stor 25-Jul-26 21:28 OEBPS/assets/dist1.gif │ │ │ │ +?rw-r--r-- 6.1 unx 7982 bx stor 25-Jul-26 21:28 OEBPS/assets/ballpoint-pen.svg │ │ │ │ +?rw-r--r-- 6.1 unx 91721 bx defN 25-Jul-26 21:28 OEBPS/appup_cookbook.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 47722 bx defN 25-Jul-26 21:28 OEBPS/applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 252 bx defN 25-Jul-26 21:28 META-INF/container.xml │ │ │ │ +?rw-r--r-- 6.1 unx 162 bx defN 25-Jul-26 21:28 META-INF/com.apple.ibooks.display-options.xml │ │ │ │ +91 files, 3077736 bytes uncompressed, 638666 bytes compressed: 79.3% │ │ │ ├── zipdetails --redact --walk --utc {} │ │ │ │ @@ -1,29 +1,29 @@ │ │ │ │ │ │ │ │ 00000 LOCAL HEADER #1 04034B50 (67324752) │ │ │ │ 00004 Extract Zip Spec 0A (10) '1.0' │ │ │ │ 00005 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 00006 General Purpose Flag 0000 (0) │ │ │ │ 00008 Compression Method 0000 (0) 'Stored' │ │ │ │ -0000A Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ +0000A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ 0000E CRC 2CAB616F (749429103) │ │ │ │ 00012 Compressed Size 00000014 (20) │ │ │ │ 00016 Uncompressed Size 00000014 (20) │ │ │ │ 0001A Filename Length 0008 (8) │ │ │ │ 0001C Extra Length 001C (28) │ │ │ │ 0001E Filename 'XXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x1E: Filename 'XXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 00026 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 00028 Length 0009 (9) │ │ │ │ 0002A Flags 03 (3) 'Modification Access' │ │ │ │ -0002B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -0002F Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ +0002B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +0002F Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ 00033 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 00035 Length 000B (11) │ │ │ │ 00037 Version 01 (1) │ │ │ │ 00038 UID Size 04 (4) │ │ │ │ 00039 UID 00000000 (0) │ │ │ │ 0003D GID Size 04 (4) │ │ │ │ 0003E GID 00000000 (0) │ │ │ │ @@ -31,30 +31,30 @@ │ │ │ │ │ │ │ │ 00056 LOCAL HEADER #2 04034B50 (67324752) │ │ │ │ 0005A Extract Zip Spec 14 (20) '2.0' │ │ │ │ 0005B Extract OS 00 (0) 'MS-DOS' │ │ │ │ 0005C General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 0005E Compression Method 0008 (8) 'Deflated' │ │ │ │ -00060 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ +00060 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ 00064 CRC D1CBDA94 (3519797908) │ │ │ │ 00068 Compressed Size 000015AD (5549) │ │ │ │ 0006C Uncompressed Size 00004602 (17922) │ │ │ │ 00070 Filename Length 0014 (20) │ │ │ │ 00072 Extra Length 001C (28) │ │ │ │ 00074 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x74: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 00088 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 0008A Length 0009 (9) │ │ │ │ 0008C Flags 03 (3) 'Modification Access' │ │ │ │ -0008D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -00091 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ +0008D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +00091 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ 00095 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 00097 Length 000B (11) │ │ │ │ 00099 Version 01 (1) │ │ │ │ 0009A UID Size 04 (4) │ │ │ │ 0009B UID 00000000 (0) │ │ │ │ 0009F GID Size 04 (4) │ │ │ │ 000A0 GID 00000000 (0) │ │ │ │ @@ -62,30 +62,30 @@ │ │ │ │ │ │ │ │ 01651 LOCAL HEADER #3 04034B50 (67324752) │ │ │ │ 01655 Extract Zip Spec 14 (20) '2.0' │ │ │ │ 01656 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 01657 General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 01659 Compression Method 0008 (8) 'Deflated' │ │ │ │ -0165B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ +0165B Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ 0165F CRC AB09C204 (2869543428) │ │ │ │ 01663 Compressed Size 000006D5 (1749) │ │ │ │ 01667 Uncompressed Size 00001241 (4673) │ │ │ │ 0166B Filename Length 0013 (19) │ │ │ │ 0166D Extra Length 001C (28) │ │ │ │ 0166F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x166F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 01682 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 01684 Length 0009 (9) │ │ │ │ 01686 Flags 03 (3) 'Modification Access' │ │ │ │ -01687 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -0168B Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ +01687 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +0168B Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ 0168F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 01691 Length 000B (11) │ │ │ │ 01693 Version 01 (1) │ │ │ │ 01694 UID Size 04 (4) │ │ │ │ 01695 UID 00000000 (0) │ │ │ │ 01699 GID Size 04 (4) │ │ │ │ 0169A GID 00000000 (0) │ │ │ │ @@ -93,6187 +93,6187 @@ │ │ │ │ │ │ │ │ 01D73 LOCAL HEADER #4 04034B50 (67324752) │ │ │ │ 01D77 Extract Zip Spec 14 (20) '2.0' │ │ │ │ 01D78 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 01D79 General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 01D7B Compression Method 0008 (8) 'Deflated' │ │ │ │ -01D7D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -01D81 CRC 47F54438 (1207256120) │ │ │ │ -01D85 Compressed Size 00002DA3 (11683) │ │ │ │ +01D7D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +01D81 CRC 219C495D (563890525) │ │ │ │ +01D85 Compressed Size 00002DA2 (11682) │ │ │ │ 01D89 Uncompressed Size 0000D0BF (53439) │ │ │ │ 01D8D Filename Length 0014 (20) │ │ │ │ 01D8F Extra Length 001C (28) │ │ │ │ 01D91 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x1D91: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 01DA5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 01DA7 Length 0009 (9) │ │ │ │ 01DA9 Flags 03 (3) 'Modification Access' │ │ │ │ -01DAA Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -01DAE Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ +01DAA Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +01DAE Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ 01DB2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 01DB4 Length 000B (11) │ │ │ │ 01DB6 Version 01 (1) │ │ │ │ 01DB7 UID Size 04 (4) │ │ │ │ 01DB8 UID 00000000 (0) │ │ │ │ 01DBC GID Size 04 (4) │ │ │ │ 01DBD GID 00000000 (0) │ │ │ │ 01DC1 PAYLOAD │ │ │ │ │ │ │ │ -04B64 LOCAL HEADER #5 04034B50 (67324752) │ │ │ │ -04B68 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -04B69 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -04B6A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -04B6C Compression Method 0008 (8) 'Deflated' │ │ │ │ -04B6E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -04B72 CRC 67C49326 (1740935974) │ │ │ │ -04B76 Compressed Size 000003F0 (1008) │ │ │ │ -04B7A Uncompressed Size 00000876 (2166) │ │ │ │ -04B7E Filename Length 0014 (20) │ │ │ │ -04B80 Extra Length 001C (28) │ │ │ │ -04B82 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4B82: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -04B96 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -04B98 Length 0009 (9) │ │ │ │ -04B9A Flags 03 (3) 'Modification Access' │ │ │ │ -04B9B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -04B9F Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -04BA3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -04BA5 Length 000B (11) │ │ │ │ -04BA7 Version 01 (1) │ │ │ │ -04BA8 UID Size 04 (4) │ │ │ │ -04BA9 UID 00000000 (0) │ │ │ │ -04BAD GID Size 04 (4) │ │ │ │ -04BAE GID 00000000 (0) │ │ │ │ -04BB2 PAYLOAD │ │ │ │ - │ │ │ │ -04FA2 LOCAL HEADER #6 04034B50 (67324752) │ │ │ │ -04FA6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -04FA7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -04FA8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -04FAA Compression Method 0008 (8) 'Deflated' │ │ │ │ -04FAC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -04FB0 CRC EC6C7C96 (3966532758) │ │ │ │ -04FB4 Compressed Size 000001AE (430) │ │ │ │ -04FB8 Uncompressed Size 000002FC (764) │ │ │ │ -04FBC Filename Length 0011 (17) │ │ │ │ -04FBE Extra Length 001C (28) │ │ │ │ -04FC0 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4FC0: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -04FD1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -04FD3 Length 0009 (9) │ │ │ │ -04FD5 Flags 03 (3) 'Modification Access' │ │ │ │ -04FD6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -04FDA Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -04FDE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -04FE0 Length 000B (11) │ │ │ │ -04FE2 Version 01 (1) │ │ │ │ -04FE3 UID Size 04 (4) │ │ │ │ -04FE4 UID 00000000 (0) │ │ │ │ -04FE8 GID Size 04 (4) │ │ │ │ -04FE9 GID 00000000 (0) │ │ │ │ -04FED PAYLOAD │ │ │ │ - │ │ │ │ -0519B LOCAL HEADER #7 04034B50 (67324752) │ │ │ │ -0519F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -051A0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -051A1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -051A3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -051A5 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -051A9 CRC 39BDC93C (968739132) │ │ │ │ -051AD Compressed Size 000020C6 (8390) │ │ │ │ -051B1 Uncompressed Size 0000B4B0 (46256) │ │ │ │ -051B5 Filename Length 001B (27) │ │ │ │ -051B7 Extra Length 001C (28) │ │ │ │ -051B9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x51B9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -051D4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -051D6 Length 0009 (9) │ │ │ │ -051D8 Flags 03 (3) 'Modification Access' │ │ │ │ -051D9 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -051DD Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -051E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -051E3 Length 000B (11) │ │ │ │ -051E5 Version 01 (1) │ │ │ │ -051E6 UID Size 04 (4) │ │ │ │ -051E7 UID 00000000 (0) │ │ │ │ -051EB GID Size 04 (4) │ │ │ │ -051EC GID 00000000 (0) │ │ │ │ -051F0 PAYLOAD │ │ │ │ - │ │ │ │ -072B6 LOCAL HEADER #8 04034B50 (67324752) │ │ │ │ -072BA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -072BB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -072BC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -072BE Compression Method 0008 (8) 'Deflated' │ │ │ │ -072C0 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -072C4 CRC 23989D4C (597204300) │ │ │ │ -072C8 Compressed Size 00000E6F (3695) │ │ │ │ -072CC Uncompressed Size 000030B2 (12466) │ │ │ │ -072D0 Filename Length 001D (29) │ │ │ │ -072D2 Extra Length 001C (28) │ │ │ │ -072D4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x72D4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -072F1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -072F3 Length 0009 (9) │ │ │ │ -072F5 Flags 03 (3) 'Modification Access' │ │ │ │ -072F6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -072FA Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -072FE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -07300 Length 000B (11) │ │ │ │ -07302 Version 01 (1) │ │ │ │ -07303 UID Size 04 (4) │ │ │ │ -07304 UID 00000000 (0) │ │ │ │ -07308 GID Size 04 (4) │ │ │ │ -07309 GID 00000000 (0) │ │ │ │ -0730D PAYLOAD │ │ │ │ - │ │ │ │ -0817C LOCAL HEADER #9 04034B50 (67324752) │ │ │ │ -08180 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -08181 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -08182 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -08184 Compression Method 0008 (8) 'Deflated' │ │ │ │ -08186 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -0818A CRC E1B38941 (3786639681) │ │ │ │ -0818E Compressed Size 00000972 (2418) │ │ │ │ -08192 Uncompressed Size 00001CB2 (7346) │ │ │ │ -08196 Filename Length 0019 (25) │ │ │ │ -08198 Extra Length 001C (28) │ │ │ │ -0819A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x819A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -081B3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -081B5 Length 0009 (9) │ │ │ │ -081B7 Flags 03 (3) 'Modification Access' │ │ │ │ -081B8 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -081BC Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -081C0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -081C2 Length 000B (11) │ │ │ │ -081C4 Version 01 (1) │ │ │ │ -081C5 UID Size 04 (4) │ │ │ │ -081C6 UID 00000000 (0) │ │ │ │ -081CA GID Size 04 (4) │ │ │ │ -081CB GID 00000000 (0) │ │ │ │ -081CF PAYLOAD │ │ │ │ - │ │ │ │ -08B41 LOCAL HEADER #10 04034B50 (67324752) │ │ │ │ -08B45 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -08B46 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -08B47 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -08B49 Compression Method 0008 (8) 'Deflated' │ │ │ │ -08B4B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -08B4F CRC 2A71CBBF (712100799) │ │ │ │ -08B53 Compressed Size 00003880 (14464) │ │ │ │ -08B57 Uncompressed Size 0000F7F4 (63476) │ │ │ │ -08B5B Filename Length 0015 (21) │ │ │ │ -08B5D Extra Length 001C (28) │ │ │ │ -08B5F Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8B5F: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -08B74 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -08B76 Length 0009 (9) │ │ │ │ -08B78 Flags 03 (3) 'Modification Access' │ │ │ │ -08B79 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -08B7D Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -08B81 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -08B83 Length 000B (11) │ │ │ │ -08B85 Version 01 (1) │ │ │ │ -08B86 UID Size 04 (4) │ │ │ │ -08B87 UID 00000000 (0) │ │ │ │ -08B8B GID Size 04 (4) │ │ │ │ -08B8C GID 00000000 (0) │ │ │ │ -08B90 PAYLOAD │ │ │ │ - │ │ │ │ -0C410 LOCAL HEADER #11 04034B50 (67324752) │ │ │ │ -0C414 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -0C415 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -0C416 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -0C418 Compression Method 0008 (8) 'Deflated' │ │ │ │ -0C41A Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -0C41E CRC F9745AFD (4185152253) │ │ │ │ -0C422 Compressed Size 0000AADF (43743) │ │ │ │ -0C426 Uncompressed Size 0003DFDE (253918) │ │ │ │ -0C42A Filename Length 0012 (18) │ │ │ │ -0C42C Extra Length 001C (28) │ │ │ │ -0C42E Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0xC42E: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -0C440 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -0C442 Length 0009 (9) │ │ │ │ -0C444 Flags 03 (3) 'Modification Access' │ │ │ │ -0C445 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -0C449 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -0C44D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -0C44F Length 000B (11) │ │ │ │ -0C451 Version 01 (1) │ │ │ │ -0C452 UID Size 04 (4) │ │ │ │ -0C453 UID 00000000 (0) │ │ │ │ -0C457 GID Size 04 (4) │ │ │ │ -0C458 GID 00000000 (0) │ │ │ │ -0C45C PAYLOAD │ │ │ │ - │ │ │ │ -16F3B LOCAL HEADER #12 04034B50 (67324752) │ │ │ │ -16F3F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -16F40 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -16F41 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -16F43 Compression Method 0008 (8) 'Deflated' │ │ │ │ -16F45 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -16F49 CRC C29A5D7D (3264896381) │ │ │ │ -16F4D Compressed Size 00003B20 (15136) │ │ │ │ -16F51 Uncompressed Size 0001B2A0 (111264) │ │ │ │ -16F55 Filename Length 0015 (21) │ │ │ │ -16F57 Extra Length 001C (28) │ │ │ │ -16F59 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x16F59: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -16F6E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -16F70 Length 0009 (9) │ │ │ │ -16F72 Flags 03 (3) 'Modification Access' │ │ │ │ -16F73 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -16F77 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -16F7B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -16F7D Length 000B (11) │ │ │ │ -16F7F Version 01 (1) │ │ │ │ -16F80 UID Size 04 (4) │ │ │ │ -16F81 UID 00000000 (0) │ │ │ │ -16F85 GID Size 04 (4) │ │ │ │ -16F86 GID 00000000 (0) │ │ │ │ -16F8A PAYLOAD │ │ │ │ - │ │ │ │ -1AAAA LOCAL HEADER #13 04034B50 (67324752) │ │ │ │ -1AAAE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -1AAAF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -1AAB0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -1AAB2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -1AAB4 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -1AAB8 CRC 5B4833BB (1531458491) │ │ │ │ -1AABC Compressed Size 00009085 (36997) │ │ │ │ -1AAC0 Uncompressed Size 0003D05F (249951) │ │ │ │ -1AAC4 Filename Length 0014 (20) │ │ │ │ -1AAC6 Extra Length 001C (28) │ │ │ │ -1AAC8 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x1AAC8: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -1AADC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -1AADE Length 0009 (9) │ │ │ │ -1AAE0 Flags 03 (3) 'Modification Access' │ │ │ │ -1AAE1 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -1AAE5 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -1AAE9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -1AAEB Length 000B (11) │ │ │ │ -1AAED Version 01 (1) │ │ │ │ -1AAEE UID Size 04 (4) │ │ │ │ -1AAEF UID 00000000 (0) │ │ │ │ -1AAF3 GID Size 04 (4) │ │ │ │ -1AAF4 GID 00000000 (0) │ │ │ │ -1AAF8 PAYLOAD │ │ │ │ - │ │ │ │ -23B7D LOCAL HEADER #14 04034B50 (67324752) │ │ │ │ -23B81 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -23B82 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -23B83 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -23B85 Compression Method 0008 (8) 'Deflated' │ │ │ │ -23B87 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -23B8B CRC 166FC7BA (376424378) │ │ │ │ -23B8F Compressed Size 00002A67 (10855) │ │ │ │ -23B93 Uncompressed Size 0001151F (70943) │ │ │ │ -23B97 Filename Length 0016 (22) │ │ │ │ -23B99 Extra Length 001C (28) │ │ │ │ -23B9B Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x23B9B: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -23BB1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -23BB3 Length 0009 (9) │ │ │ │ -23BB5 Flags 03 (3) 'Modification Access' │ │ │ │ -23BB6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -23BBA Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -23BBE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -23BC0 Length 000B (11) │ │ │ │ -23BC2 Version 01 (1) │ │ │ │ -23BC3 UID Size 04 (4) │ │ │ │ -23BC4 UID 00000000 (0) │ │ │ │ -23BC8 GID Size 04 (4) │ │ │ │ -23BC9 GID 00000000 (0) │ │ │ │ -23BCD PAYLOAD │ │ │ │ - │ │ │ │ -26634 LOCAL HEADER #15 04034B50 (67324752) │ │ │ │ -26638 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -26639 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2663A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2663C Compression Method 0008 (8) 'Deflated' │ │ │ │ -2663E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -26642 CRC 7F8EA835 (2140055605) │ │ │ │ -26646 Compressed Size 000014DA (5338) │ │ │ │ -2664A Uncompressed Size 00005176 (20854) │ │ │ │ -2664E Filename Length 001D (29) │ │ │ │ -26650 Extra Length 001C (28) │ │ │ │ -26652 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x26652: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2666F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -26671 Length 0009 (9) │ │ │ │ -26673 Flags 03 (3) 'Modification Access' │ │ │ │ -26674 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -26678 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2667C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2667E Length 000B (11) │ │ │ │ -26680 Version 01 (1) │ │ │ │ -26681 UID Size 04 (4) │ │ │ │ -26682 UID 00000000 (0) │ │ │ │ -26686 GID Size 04 (4) │ │ │ │ -26687 GID 00000000 (0) │ │ │ │ -2668B PAYLOAD │ │ │ │ - │ │ │ │ -27B65 LOCAL HEADER #16 04034B50 (67324752) │ │ │ │ -27B69 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -27B6A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -27B6B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -27B6D Compression Method 0008 (8) 'Deflated' │ │ │ │ -27B6F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -27B73 CRC D4CAE8E4 (3570067684) │ │ │ │ -27B77 Compressed Size 000037FB (14331) │ │ │ │ -27B7B Uncompressed Size 0000E9F0 (59888) │ │ │ │ -27B7F Filename Length 001C (28) │ │ │ │ -27B81 Extra Length 001C (28) │ │ │ │ -27B83 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x27B83: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -27B9F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -27BA1 Length 0009 (9) │ │ │ │ -27BA3 Flags 03 (3) 'Modification Access' │ │ │ │ -27BA4 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -27BA8 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -27BAC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -27BAE Length 000B (11) │ │ │ │ -27BB0 Version 01 (1) │ │ │ │ -27BB1 UID Size 04 (4) │ │ │ │ -27BB2 UID 00000000 (0) │ │ │ │ -27BB6 GID Size 04 (4) │ │ │ │ -27BB7 GID 00000000 (0) │ │ │ │ -27BBB PAYLOAD │ │ │ │ - │ │ │ │ -2B3B6 LOCAL HEADER #17 04034B50 (67324752) │ │ │ │ -2B3BA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2B3BB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2B3BC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2B3BE Compression Method 0008 (8) 'Deflated' │ │ │ │ -2B3C0 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -2B3C4 CRC B106FD76 (2970025334) │ │ │ │ -2B3C8 Compressed Size 000006A0 (1696) │ │ │ │ -2B3CC Uncompressed Size 000011F4 (4596) │ │ │ │ -2B3D0 Filename Length 001C (28) │ │ │ │ -2B3D2 Extra Length 001C (28) │ │ │ │ -2B3D4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2B3D4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2B3F0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2B3F2 Length 0009 (9) │ │ │ │ -2B3F4 Flags 03 (3) 'Modification Access' │ │ │ │ -2B3F5 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2B3F9 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2B3FD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2B3FF Length 000B (11) │ │ │ │ -2B401 Version 01 (1) │ │ │ │ -2B402 UID Size 04 (4) │ │ │ │ -2B403 UID 00000000 (0) │ │ │ │ -2B407 GID Size 04 (4) │ │ │ │ -2B408 GID 00000000 (0) │ │ │ │ -2B40C PAYLOAD │ │ │ │ - │ │ │ │ -2BAAC LOCAL HEADER #18 04034B50 (67324752) │ │ │ │ -2BAB0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2BAB1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2BAB2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2BAB4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -2BAB6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -2BABA CRC 6290960D (1653642765) │ │ │ │ -2BABE Compressed Size 00001081 (4225) │ │ │ │ -2BAC2 Uncompressed Size 00004BFF (19455) │ │ │ │ -2BAC6 Filename Length 001B (27) │ │ │ │ -2BAC8 Extra Length 001C (28) │ │ │ │ -2BACA Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2BACA: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2BAE5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2BAE7 Length 0009 (9) │ │ │ │ -2BAE9 Flags 03 (3) 'Modification Access' │ │ │ │ -2BAEA Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2BAEE Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2BAF2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2BAF4 Length 000B (11) │ │ │ │ -2BAF6 Version 01 (1) │ │ │ │ -2BAF7 UID Size 04 (4) │ │ │ │ -2BAF8 UID 00000000 (0) │ │ │ │ -2BAFC GID Size 04 (4) │ │ │ │ -2BAFD GID 00000000 (0) │ │ │ │ -2BB01 PAYLOAD │ │ │ │ - │ │ │ │ -2CB82 LOCAL HEADER #19 04034B50 (67324752) │ │ │ │ -2CB86 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2CB87 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2CB88 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2CB8A Compression Method 0008 (8) 'Deflated' │ │ │ │ -2CB8C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -2CB90 CRC ED4F3856 (3981391958) │ │ │ │ -2CB94 Compressed Size 000033AA (13226) │ │ │ │ -2CB98 Uncompressed Size 0000BC94 (48276) │ │ │ │ -2CB9C Filename Length 001D (29) │ │ │ │ -2CB9E Extra Length 001C (28) │ │ │ │ -2CBA0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2CBA0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2CBBD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2CBBF Length 0009 (9) │ │ │ │ -2CBC1 Flags 03 (3) 'Modification Access' │ │ │ │ -2CBC2 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2CBC6 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2CBCA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2CBCC Length 000B (11) │ │ │ │ -2CBCE Version 01 (1) │ │ │ │ -2CBCF UID Size 04 (4) │ │ │ │ -2CBD0 UID 00000000 (0) │ │ │ │ -2CBD4 GID Size 04 (4) │ │ │ │ -2CBD5 GID 00000000 (0) │ │ │ │ -2CBD9 PAYLOAD │ │ │ │ - │ │ │ │ -2FF83 LOCAL HEADER #20 04034B50 (67324752) │ │ │ │ -2FF87 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2FF88 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2FF89 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2FF8B Compression Method 0008 (8) 'Deflated' │ │ │ │ -2FF8D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -2FF91 CRC C64C8DB7 (3326905783) │ │ │ │ -2FF95 Compressed Size 00000D6A (3434) │ │ │ │ -2FF99 Uncompressed Size 00003876 (14454) │ │ │ │ -2FF9D Filename Length 001D (29) │ │ │ │ -2FF9F Extra Length 001C (28) │ │ │ │ -2FFA1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2FFA1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2FFBE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2FFC0 Length 0009 (9) │ │ │ │ -2FFC2 Flags 03 (3) 'Modification Access' │ │ │ │ -2FFC3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2FFC7 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -2FFCB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2FFCD Length 000B (11) │ │ │ │ -2FFCF Version 01 (1) │ │ │ │ -2FFD0 UID Size 04 (4) │ │ │ │ -2FFD1 UID 00000000 (0) │ │ │ │ -2FFD5 GID Size 04 (4) │ │ │ │ -2FFD6 GID 00000000 (0) │ │ │ │ -2FFDA PAYLOAD │ │ │ │ - │ │ │ │ -30D44 LOCAL HEADER #21 04034B50 (67324752) │ │ │ │ -30D48 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -30D49 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -30D4A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -30D4C Compression Method 0008 (8) 'Deflated' │ │ │ │ -30D4E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -30D52 CRC 92045684 (2449757828) │ │ │ │ -30D56 Compressed Size 00001C69 (7273) │ │ │ │ -30D5A Uncompressed Size 0000C186 (49542) │ │ │ │ -30D5E Filename Length 001A (26) │ │ │ │ -30D60 Extra Length 001C (28) │ │ │ │ -30D62 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x30D62: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -30D7C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -30D7E Length 0009 (9) │ │ │ │ -30D80 Flags 03 (3) 'Modification Access' │ │ │ │ -30D81 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -30D85 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -30D89 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -30D8B Length 000B (11) │ │ │ │ -30D8D Version 01 (1) │ │ │ │ -30D8E UID Size 04 (4) │ │ │ │ -30D8F UID 00000000 (0) │ │ │ │ -30D93 GID Size 04 (4) │ │ │ │ -30D94 GID 00000000 (0) │ │ │ │ -30D98 PAYLOAD │ │ │ │ - │ │ │ │ -32A01 LOCAL HEADER #22 04034B50 (67324752) │ │ │ │ -32A05 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -32A06 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -32A07 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -32A09 Compression Method 0008 (8) 'Deflated' │ │ │ │ -32A0B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -32A0F CRC 2632F341 (640873281) │ │ │ │ -32A13 Compressed Size 000003A3 (931) │ │ │ │ -32A17 Uncompressed Size 0000088E (2190) │ │ │ │ -32A1B Filename Length 0012 (18) │ │ │ │ -32A1D Extra Length 001C (28) │ │ │ │ -32A1F Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x32A1F: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -32A31 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -32A33 Length 0009 (9) │ │ │ │ -32A35 Flags 03 (3) 'Modification Access' │ │ │ │ -32A36 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -32A3A Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -32A3E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -32A40 Length 000B (11) │ │ │ │ -32A42 Version 01 (1) │ │ │ │ -32A43 UID Size 04 (4) │ │ │ │ -32A44 UID 00000000 (0) │ │ │ │ -32A48 GID Size 04 (4) │ │ │ │ -32A49 GID 00000000 (0) │ │ │ │ -32A4D PAYLOAD │ │ │ │ - │ │ │ │ -32DF0 LOCAL HEADER #23 04034B50 (67324752) │ │ │ │ -32DF4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -32DF5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -32DF6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -32DF8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -32DFA Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -32DFE CRC 24939ACA (613653194) │ │ │ │ -32E02 Compressed Size 000001D4 (468) │ │ │ │ -32E06 Uncompressed Size 00000311 (785) │ │ │ │ -32E0A Filename Length 0020 (32) │ │ │ │ -32E0C Extra Length 001C (28) │ │ │ │ -32E0E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x32E0E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -32E2E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -32E30 Length 0009 (9) │ │ │ │ -32E32 Flags 03 (3) 'Modification Access' │ │ │ │ -32E33 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -32E37 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -32E3B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -32E3D Length 000B (11) │ │ │ │ -32E3F Version 01 (1) │ │ │ │ -32E40 UID Size 04 (4) │ │ │ │ -32E41 UID 00000000 (0) │ │ │ │ -32E45 GID Size 04 (4) │ │ │ │ -32E46 GID 00000000 (0) │ │ │ │ -32E4A PAYLOAD │ │ │ │ - │ │ │ │ -3301E LOCAL HEADER #24 04034B50 (67324752) │ │ │ │ -33022 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -33023 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -33024 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -33026 Compression Method 0008 (8) 'Deflated' │ │ │ │ -33028 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3302C CRC BA4C527E (3125564030) │ │ │ │ -33030 Compressed Size 000017AB (6059) │ │ │ │ -33034 Uncompressed Size 00009CD3 (40147) │ │ │ │ -33038 Filename Length 001B (27) │ │ │ │ -3303A Extra Length 001C (28) │ │ │ │ -3303C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3303C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -33057 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -33059 Length 0009 (9) │ │ │ │ -3305B Flags 03 (3) 'Modification Access' │ │ │ │ -3305C Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -33060 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -33064 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -33066 Length 000B (11) │ │ │ │ -33068 Version 01 (1) │ │ │ │ -33069 UID Size 04 (4) │ │ │ │ -3306A UID 00000000 (0) │ │ │ │ -3306E GID Size 04 (4) │ │ │ │ -3306F GID 00000000 (0) │ │ │ │ -33073 PAYLOAD │ │ │ │ - │ │ │ │ -3481E LOCAL HEADER #25 04034B50 (67324752) │ │ │ │ -34822 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -34823 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -34824 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -34826 Compression Method 0008 (8) 'Deflated' │ │ │ │ -34828 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3482C CRC 454623A7 (1162224551) │ │ │ │ -34830 Compressed Size 00001371 (4977) │ │ │ │ -34834 Uncompressed Size 00003B66 (15206) │ │ │ │ -34838 Filename Length 0015 (21) │ │ │ │ -3483A Extra Length 001C (28) │ │ │ │ -3483C Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3483C: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -34851 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -34853 Length 0009 (9) │ │ │ │ -34855 Flags 03 (3) 'Modification Access' │ │ │ │ -34856 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3485A Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3485E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -34860 Length 000B (11) │ │ │ │ -34862 Version 01 (1) │ │ │ │ -34863 UID Size 04 (4) │ │ │ │ -34864 UID 00000000 (0) │ │ │ │ -34868 GID Size 04 (4) │ │ │ │ -34869 GID 00000000 (0) │ │ │ │ -3486D PAYLOAD │ │ │ │ - │ │ │ │ -35BDE LOCAL HEADER #26 04034B50 (67324752) │ │ │ │ -35BE2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -35BE3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -35BE4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -35BE6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -35BE8 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -35BEC CRC 081E11CF (136188367) │ │ │ │ -35BF0 Compressed Size 00000AD1 (2769) │ │ │ │ -35BF4 Uncompressed Size 00002135 (8501) │ │ │ │ -35BF8 Filename Length 0011 (17) │ │ │ │ -35BFA Extra Length 001C (28) │ │ │ │ -35BFC Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x35BFC: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -35C0D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -35C0F Length 0009 (9) │ │ │ │ -35C11 Flags 03 (3) 'Modification Access' │ │ │ │ -35C12 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -35C16 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -35C1A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -35C1C Length 000B (11) │ │ │ │ -35C1E Version 01 (1) │ │ │ │ -35C1F UID Size 04 (4) │ │ │ │ -35C20 UID 00000000 (0) │ │ │ │ -35C24 GID Size 04 (4) │ │ │ │ -35C25 GID 00000000 (0) │ │ │ │ -35C29 PAYLOAD │ │ │ │ - │ │ │ │ -366FA LOCAL HEADER #27 04034B50 (67324752) │ │ │ │ -366FE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -366FF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -36700 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -36702 Compression Method 0008 (8) 'Deflated' │ │ │ │ -36704 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -36708 CRC 3A63D38A (979620746) │ │ │ │ -3670C Compressed Size 000003FE (1022) │ │ │ │ -36710 Uncompressed Size 00000E99 (3737) │ │ │ │ -36714 Filename Length 0014 (20) │ │ │ │ -36716 Extra Length 001C (28) │ │ │ │ -36718 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x36718: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3672C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3672E Length 0009 (9) │ │ │ │ -36730 Flags 03 (3) 'Modification Access' │ │ │ │ -36731 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -36735 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -36739 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3673B Length 000B (11) │ │ │ │ -3673D Version 01 (1) │ │ │ │ -3673E UID Size 04 (4) │ │ │ │ -3673F UID 00000000 (0) │ │ │ │ -36743 GID Size 04 (4) │ │ │ │ -36744 GID 00000000 (0) │ │ │ │ -36748 PAYLOAD │ │ │ │ - │ │ │ │ -36B46 LOCAL HEADER #28 04034B50 (67324752) │ │ │ │ -36B4A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -36B4B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -36B4C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -36B4E Compression Method 0008 (8) 'Deflated' │ │ │ │ -36B50 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -36B54 CRC 009A6A7C (10119804) │ │ │ │ -36B58 Compressed Size 00001261 (4705) │ │ │ │ -36B5C Uncompressed Size 00003469 (13417) │ │ │ │ -36B60 Filename Length 0014 (20) │ │ │ │ -36B62 Extra Length 001C (28) │ │ │ │ -36B64 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x36B64: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -36B78 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -36B7A Length 0009 (9) │ │ │ │ -36B7C Flags 03 (3) 'Modification Access' │ │ │ │ -36B7D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -36B81 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -36B85 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -36B87 Length 000B (11) │ │ │ │ -36B89 Version 01 (1) │ │ │ │ -36B8A UID Size 04 (4) │ │ │ │ -36B8B UID 00000000 (0) │ │ │ │ -36B8F GID Size 04 (4) │ │ │ │ -36B90 GID 00000000 (0) │ │ │ │ -36B94 PAYLOAD │ │ │ │ - │ │ │ │ -37DF5 LOCAL HEADER #29 04034B50 (67324752) │ │ │ │ -37DF9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -37DFA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -37DFB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -37DFD Compression Method 0008 (8) 'Deflated' │ │ │ │ -37DFF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -37E03 CRC 8C678CDB (2355596507) │ │ │ │ -37E07 Compressed Size 00000ACF (2767) │ │ │ │ -37E0B Uncompressed Size 000022FF (8959) │ │ │ │ -37E0F Filename Length 001B (27) │ │ │ │ -37E11 Extra Length 001C (28) │ │ │ │ -37E13 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x37E13: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -37E2E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -37E30 Length 0009 (9) │ │ │ │ -37E32 Flags 03 (3) 'Modification Access' │ │ │ │ -37E33 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -37E37 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -37E3B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -37E3D Length 000B (11) │ │ │ │ -37E3F Version 01 (1) │ │ │ │ -37E40 UID Size 04 (4) │ │ │ │ -37E41 UID 00000000 (0) │ │ │ │ -37E45 GID Size 04 (4) │ │ │ │ -37E46 GID 00000000 (0) │ │ │ │ -37E4A PAYLOAD │ │ │ │ - │ │ │ │ -38919 LOCAL HEADER #30 04034B50 (67324752) │ │ │ │ -3891D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3891E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3891F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -38921 Compression Method 0008 (8) 'Deflated' │ │ │ │ -38923 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -38927 CRC 32905960 (848320864) │ │ │ │ -3892B Compressed Size 00000A8F (2703) │ │ │ │ -3892F Uncompressed Size 0000237A (9082) │ │ │ │ -38933 Filename Length 0013 (19) │ │ │ │ -38935 Extra Length 001C (28) │ │ │ │ -38937 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x38937: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3894A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3894C Length 0009 (9) │ │ │ │ -3894E Flags 03 (3) 'Modification Access' │ │ │ │ -3894F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -38953 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -38957 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -38959 Length 000B (11) │ │ │ │ -3895B Version 01 (1) │ │ │ │ -3895C UID Size 04 (4) │ │ │ │ -3895D UID 00000000 (0) │ │ │ │ -38961 GID Size 04 (4) │ │ │ │ -38962 GID 00000000 (0) │ │ │ │ -38966 PAYLOAD │ │ │ │ - │ │ │ │ -393F5 LOCAL HEADER #31 04034B50 (67324752) │ │ │ │ -393F9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -393FA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -393FB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -393FD Compression Method 0008 (8) 'Deflated' │ │ │ │ -393FF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -39403 CRC 5A75F568 (1517679976) │ │ │ │ -39407 Compressed Size 00000F49 (3913) │ │ │ │ -3940B Uncompressed Size 000036F1 (14065) │ │ │ │ -3940F Filename Length 000F (15) │ │ │ │ -39411 Extra Length 001C (28) │ │ │ │ -39413 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x39413: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -39422 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -39424 Length 0009 (9) │ │ │ │ -39426 Flags 03 (3) 'Modification Access' │ │ │ │ -39427 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3942B Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3942F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -39431 Length 000B (11) │ │ │ │ -39433 Version 01 (1) │ │ │ │ -39434 UID Size 04 (4) │ │ │ │ -39435 UID 00000000 (0) │ │ │ │ -39439 GID Size 04 (4) │ │ │ │ -3943A GID 00000000 (0) │ │ │ │ -3943E PAYLOAD │ │ │ │ - │ │ │ │ -3A387 LOCAL HEADER #32 04034B50 (67324752) │ │ │ │ -3A38B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3A38C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3A38D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3A38F Compression Method 0008 (8) 'Deflated' │ │ │ │ -3A391 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3A395 CRC 262FB9B0 (640661936) │ │ │ │ -3A399 Compressed Size 0000066A (1642) │ │ │ │ -3A39D Uncompressed Size 000018DF (6367) │ │ │ │ -3A3A1 Filename Length 000F (15) │ │ │ │ -3A3A3 Extra Length 001C (28) │ │ │ │ -3A3A5 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3A3A5: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3A3B4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3A3B6 Length 0009 (9) │ │ │ │ -3A3B8 Flags 03 (3) 'Modification Access' │ │ │ │ -3A3B9 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3A3BD Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3A3C1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3A3C3 Length 000B (11) │ │ │ │ -3A3C5 Version 01 (1) │ │ │ │ -3A3C6 UID Size 04 (4) │ │ │ │ -3A3C7 UID 00000000 (0) │ │ │ │ -3A3CB GID Size 04 (4) │ │ │ │ -3A3CC GID 00000000 (0) │ │ │ │ -3A3D0 PAYLOAD │ │ │ │ - │ │ │ │ -3AA3A LOCAL HEADER #33 04034B50 (67324752) │ │ │ │ -3AA3E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3AA3F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3AA40 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3AA42 Compression Method 0008 (8) 'Deflated' │ │ │ │ -3AA44 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3AA48 CRC 753BC529 (1966851369) │ │ │ │ -3AA4C Compressed Size 00001A4B (6731) │ │ │ │ -3AA50 Uncompressed Size 000064F2 (25842) │ │ │ │ -3AA54 Filename Length 0013 (19) │ │ │ │ -3AA56 Extra Length 001C (28) │ │ │ │ -3AA58 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3AA58: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3AA6B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3AA6D Length 0009 (9) │ │ │ │ -3AA6F Flags 03 (3) 'Modification Access' │ │ │ │ -3AA70 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3AA74 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3AA78 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3AA7A Length 000B (11) │ │ │ │ -3AA7C Version 01 (1) │ │ │ │ -3AA7D UID Size 04 (4) │ │ │ │ -3AA7E UID 00000000 (0) │ │ │ │ -3AA82 GID Size 04 (4) │ │ │ │ -3AA83 GID 00000000 (0) │ │ │ │ -3AA87 PAYLOAD │ │ │ │ - │ │ │ │ -3C4D2 LOCAL HEADER #34 04034B50 (67324752) │ │ │ │ -3C4D6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3C4D7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3C4D8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3C4DA Compression Method 0008 (8) 'Deflated' │ │ │ │ -3C4DC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3C4E0 CRC 936899C3 (2473105859) │ │ │ │ -3C4E4 Compressed Size 000009A6 (2470) │ │ │ │ -3C4E8 Uncompressed Size 00001B64 (7012) │ │ │ │ -3C4EC Filename Length 0010 (16) │ │ │ │ -3C4EE Extra Length 001C (28) │ │ │ │ -3C4F0 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3C4F0: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3C500 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3C502 Length 0009 (9) │ │ │ │ -3C504 Flags 03 (3) 'Modification Access' │ │ │ │ -3C505 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3C509 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3C50D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3C50F Length 000B (11) │ │ │ │ -3C511 Version 01 (1) │ │ │ │ -3C512 UID Size 04 (4) │ │ │ │ -3C513 UID 00000000 (0) │ │ │ │ -3C517 GID Size 04 (4) │ │ │ │ -3C518 GID 00000000 (0) │ │ │ │ -3C51C PAYLOAD │ │ │ │ - │ │ │ │ -3CEC2 LOCAL HEADER #35 04034B50 (67324752) │ │ │ │ -3CEC6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3CEC7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3CEC8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3CECA Compression Method 0008 (8) 'Deflated' │ │ │ │ -3CECC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3CED0 CRC E9E04E21 (3923791393) │ │ │ │ -3CED4 Compressed Size 000006B7 (1719) │ │ │ │ -3CED8 Uncompressed Size 00001565 (5477) │ │ │ │ -3CEDC Filename Length 0012 (18) │ │ │ │ -3CEDE Extra Length 001C (28) │ │ │ │ -3CEE0 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3CEE0: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3CEF2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3CEF4 Length 0009 (9) │ │ │ │ -3CEF6 Flags 03 (3) 'Modification Access' │ │ │ │ -3CEF7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3CEFB Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3CEFF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3CF01 Length 000B (11) │ │ │ │ -3CF03 Version 01 (1) │ │ │ │ -3CF04 UID Size 04 (4) │ │ │ │ -3CF05 UID 00000000 (0) │ │ │ │ -3CF09 GID Size 04 (4) │ │ │ │ -3CF0A GID 00000000 (0) │ │ │ │ -3CF0E PAYLOAD │ │ │ │ - │ │ │ │ -3D5C5 LOCAL HEADER #36 04034B50 (67324752) │ │ │ │ -3D5C9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3D5CA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3D5CB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3D5CD Compression Method 0008 (8) 'Deflated' │ │ │ │ -3D5CF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -3D5D3 CRC 97DFF56C (2548036972) │ │ │ │ -3D5D7 Compressed Size 00002A16 (10774) │ │ │ │ -3D5DB Uncompressed Size 0000B1C5 (45509) │ │ │ │ -3D5DF Filename Length 0010 (16) │ │ │ │ -3D5E1 Extra Length 001C (28) │ │ │ │ -3D5E3 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3D5E3: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3D5F3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3D5F5 Length 0009 (9) │ │ │ │ -3D5F7 Flags 03 (3) 'Modification Access' │ │ │ │ -3D5F8 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3D5FC Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -3D600 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3D602 Length 000B (11) │ │ │ │ -3D604 Version 01 (1) │ │ │ │ -3D605 UID Size 04 (4) │ │ │ │ -3D606 UID 00000000 (0) │ │ │ │ -3D60A GID Size 04 (4) │ │ │ │ -3D60B GID 00000000 (0) │ │ │ │ -3D60F PAYLOAD │ │ │ │ - │ │ │ │ -40025 LOCAL HEADER #37 04034B50 (67324752) │ │ │ │ -40029 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4002A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4002B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4002D Compression Method 0008 (8) 'Deflated' │ │ │ │ -4002F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -40033 CRC 62EDD7EF (1659754479) │ │ │ │ -40037 Compressed Size 00001E82 (7810) │ │ │ │ -4003B Uncompressed Size 00009AAA (39594) │ │ │ │ -4003F Filename Length 0012 (18) │ │ │ │ -40041 Extra Length 001C (28) │ │ │ │ -40043 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x40043: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -40055 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -40057 Length 0009 (9) │ │ │ │ -40059 Flags 03 (3) 'Modification Access' │ │ │ │ -4005A Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4005E Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -40062 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -40064 Length 000B (11) │ │ │ │ -40066 Version 01 (1) │ │ │ │ -40067 UID Size 04 (4) │ │ │ │ -40068 UID 00000000 (0) │ │ │ │ -4006C GID Size 04 (4) │ │ │ │ -4006D GID 00000000 (0) │ │ │ │ -40071 PAYLOAD │ │ │ │ - │ │ │ │ -41EF3 LOCAL HEADER #38 04034B50 (67324752) │ │ │ │ -41EF7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -41EF8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -41EF9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -41EFB Compression Method 0008 (8) 'Deflated' │ │ │ │ -41EFD Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -41F01 CRC 9414FC7D (2484403325) │ │ │ │ -41F05 Compressed Size 00001477 (5239) │ │ │ │ -41F09 Uncompressed Size 00007ACF (31439) │ │ │ │ -41F0D Filename Length 0018 (24) │ │ │ │ -41F0F Extra Length 001C (28) │ │ │ │ -41F11 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x41F11: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -41F29 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -41F2B Length 0009 (9) │ │ │ │ -41F2D Flags 03 (3) 'Modification Access' │ │ │ │ -41F2E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -41F32 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -41F36 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -41F38 Length 000B (11) │ │ │ │ -41F3A Version 01 (1) │ │ │ │ -41F3B UID Size 04 (4) │ │ │ │ -41F3C UID 00000000 (0) │ │ │ │ -41F40 GID Size 04 (4) │ │ │ │ -41F41 GID 00000000 (0) │ │ │ │ -41F45 PAYLOAD │ │ │ │ - │ │ │ │ -433BC LOCAL HEADER #39 04034B50 (67324752) │ │ │ │ -433C0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -433C1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -433C2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -433C4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -433C6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -433CA CRC 0C216798 (203515800) │ │ │ │ -433CE Compressed Size 000018D1 (6353) │ │ │ │ -433D2 Uncompressed Size 0000A7F4 (42996) │ │ │ │ -433D6 Filename Length 001F (31) │ │ │ │ -433D8 Extra Length 001C (28) │ │ │ │ -433DA Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x433DA: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -433F9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -433FB Length 0009 (9) │ │ │ │ -433FD Flags 03 (3) 'Modification Access' │ │ │ │ -433FE Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -43402 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -43406 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -43408 Length 000B (11) │ │ │ │ -4340A Version 01 (1) │ │ │ │ -4340B UID Size 04 (4) │ │ │ │ -4340C UID 00000000 (0) │ │ │ │ -43410 GID Size 04 (4) │ │ │ │ -43411 GID 00000000 (0) │ │ │ │ -43415 PAYLOAD │ │ │ │ - │ │ │ │ -44CE6 LOCAL HEADER #40 04034B50 (67324752) │ │ │ │ -44CEA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -44CEB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -44CEC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -44CEE Compression Method 0008 (8) 'Deflated' │ │ │ │ -44CF0 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -44CF4 CRC D64849DE (3595061726) │ │ │ │ -44CF8 Compressed Size 000003F7 (1015) │ │ │ │ -44CFC Uncompressed Size 000008A3 (2211) │ │ │ │ -44D00 Filename Length 001E (30) │ │ │ │ -44D02 Extra Length 001C (28) │ │ │ │ -44D04 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x44D04: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -44D22 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -44D24 Length 0009 (9) │ │ │ │ -44D26 Flags 03 (3) 'Modification Access' │ │ │ │ -44D27 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -44D2B Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -44D2F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -44D31 Length 000B (11) │ │ │ │ -44D33 Version 01 (1) │ │ │ │ -44D34 UID Size 04 (4) │ │ │ │ -44D35 UID 00000000 (0) │ │ │ │ -44D39 GID Size 04 (4) │ │ │ │ -44D3A GID 00000000 (0) │ │ │ │ -44D3E PAYLOAD │ │ │ │ - │ │ │ │ -45135 LOCAL HEADER #41 04034B50 (67324752) │ │ │ │ -45139 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4513A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4513B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4513D Compression Method 0008 (8) 'Deflated' │ │ │ │ -4513F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -45143 CRC 9488B892 (2491988114) │ │ │ │ -45147 Compressed Size 00004293 (17043) │ │ │ │ -4514B Uncompressed Size 0000D8DC (55516) │ │ │ │ -4514F Filename Length 0013 (19) │ │ │ │ -45151 Extra Length 001C (28) │ │ │ │ -45153 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x45153: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -45166 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -45168 Length 0009 (9) │ │ │ │ -4516A Flags 03 (3) 'Modification Access' │ │ │ │ -4516B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4516F Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -45173 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -45175 Length 000B (11) │ │ │ │ -45177 Version 01 (1) │ │ │ │ -45178 UID Size 04 (4) │ │ │ │ -45179 UID 00000000 (0) │ │ │ │ -4517D GID Size 04 (4) │ │ │ │ -4517E GID 00000000 (0) │ │ │ │ -45182 PAYLOAD │ │ │ │ - │ │ │ │ -49415 LOCAL HEADER #42 04034B50 (67324752) │ │ │ │ -49419 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4941A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4941B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4941D Compression Method 0008 (8) 'Deflated' │ │ │ │ -4941F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -49423 CRC D1484C40 (3511176256) │ │ │ │ -49427 Compressed Size 000026C5 (9925) │ │ │ │ -4942B Uncompressed Size 00006E45 (28229) │ │ │ │ -4942F Filename Length 0019 (25) │ │ │ │ -49431 Extra Length 001C (28) │ │ │ │ -49433 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x49433: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4944C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4944E Length 0009 (9) │ │ │ │ -49450 Flags 03 (3) 'Modification Access' │ │ │ │ -49451 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -49455 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -49459 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4945B Length 000B (11) │ │ │ │ -4945D Version 01 (1) │ │ │ │ -4945E UID Size 04 (4) │ │ │ │ -4945F UID 00000000 (0) │ │ │ │ -49463 GID Size 04 (4) │ │ │ │ -49464 GID 00000000 (0) │ │ │ │ -49468 PAYLOAD │ │ │ │ - │ │ │ │ -4BB2D LOCAL HEADER #43 04034B50 (67324752) │ │ │ │ -4BB31 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4BB32 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4BB33 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4BB35 Compression Method 0008 (8) 'Deflated' │ │ │ │ -4BB37 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -4BB3B CRC 8F94BE1C (2408889884) │ │ │ │ -4BB3F Compressed Size 00002739 (10041) │ │ │ │ -4BB43 Uncompressed Size 00008B83 (35715) │ │ │ │ -4BB47 Filename Length 0019 (25) │ │ │ │ -4BB49 Extra Length 001C (28) │ │ │ │ -4BB4B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4BB4B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4BB64 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4BB66 Length 0009 (9) │ │ │ │ -4BB68 Flags 03 (3) 'Modification Access' │ │ │ │ -4BB69 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4BB6D Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4BB71 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4BB73 Length 000B (11) │ │ │ │ -4BB75 Version 01 (1) │ │ │ │ -4BB76 UID Size 04 (4) │ │ │ │ -4BB77 UID 00000000 (0) │ │ │ │ -4BB7B GID Size 04 (4) │ │ │ │ -4BB7C GID 00000000 (0) │ │ │ │ -4BB80 PAYLOAD │ │ │ │ - │ │ │ │ -4E2B9 LOCAL HEADER #44 04034B50 (67324752) │ │ │ │ -4E2BD Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4E2BE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4E2BF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4E2C1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -4E2C3 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -4E2C7 CRC FA6C2ECC (4201393868) │ │ │ │ -4E2CB Compressed Size 00000CF1 (3313) │ │ │ │ -4E2CF Uncompressed Size 0000517A (20858) │ │ │ │ -4E2D3 Filename Length 0021 (33) │ │ │ │ -4E2D5 Extra Length 001C (28) │ │ │ │ -4E2D7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4E2D7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4E2F8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4E2FA Length 0009 (9) │ │ │ │ -4E2FC Flags 03 (3) 'Modification Access' │ │ │ │ -4E2FD Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4E301 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4E305 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4E307 Length 000B (11) │ │ │ │ -4E309 Version 01 (1) │ │ │ │ -4E30A UID Size 04 (4) │ │ │ │ -4E30B UID 00000000 (0) │ │ │ │ -4E30F GID Size 04 (4) │ │ │ │ -4E310 GID 00000000 (0) │ │ │ │ -4E314 PAYLOAD │ │ │ │ - │ │ │ │ -4F005 LOCAL HEADER #45 04034B50 (67324752) │ │ │ │ -4F009 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4F00A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4F00B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4F00D Compression Method 0008 (8) 'Deflated' │ │ │ │ -4F00F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -4F013 CRC 07042E48 (117714504) │ │ │ │ -4F017 Compressed Size 00000468 (1128) │ │ │ │ -4F01B Uncompressed Size 00000931 (2353) │ │ │ │ -4F01F Filename Length 001B (27) │ │ │ │ -4F021 Extra Length 001C (28) │ │ │ │ -4F023 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4F023: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4F03E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4F040 Length 0009 (9) │ │ │ │ -4F042 Flags 03 (3) 'Modification Access' │ │ │ │ -4F043 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4F047 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4F04B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4F04D Length 000B (11) │ │ │ │ -4F04F Version 01 (1) │ │ │ │ -4F050 UID Size 04 (4) │ │ │ │ -4F051 UID 00000000 (0) │ │ │ │ -4F055 GID Size 04 (4) │ │ │ │ -4F056 GID 00000000 (0) │ │ │ │ -4F05A PAYLOAD │ │ │ │ - │ │ │ │ -4F4C2 LOCAL HEADER #46 04034B50 (67324752) │ │ │ │ -4F4C6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4F4C7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4F4C8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4F4CA Compression Method 0008 (8) 'Deflated' │ │ │ │ -4F4CC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -4F4D0 CRC 5C46A04F (1548132431) │ │ │ │ -4F4D4 Compressed Size 000016F2 (5874) │ │ │ │ -4F4D8 Uncompressed Size 00007A6D (31341) │ │ │ │ -4F4DC Filename Length 001F (31) │ │ │ │ -4F4DE Extra Length 001C (28) │ │ │ │ -4F4E0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4F4E0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4F4FF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4F501 Length 0009 (9) │ │ │ │ -4F503 Flags 03 (3) 'Modification Access' │ │ │ │ -4F504 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4F508 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -4F50C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4F50E Length 000B (11) │ │ │ │ -4F510 Version 01 (1) │ │ │ │ -4F511 UID Size 04 (4) │ │ │ │ -4F512 UID 00000000 (0) │ │ │ │ -4F516 GID Size 04 (4) │ │ │ │ -4F517 GID 00000000 (0) │ │ │ │ -4F51B PAYLOAD │ │ │ │ - │ │ │ │ -50C0D LOCAL HEADER #47 04034B50 (67324752) │ │ │ │ -50C11 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -50C12 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -50C13 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -50C15 Compression Method 0008 (8) 'Deflated' │ │ │ │ -50C17 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -50C1B CRC 5B663FF6 (1533427702) │ │ │ │ -50C1F Compressed Size 00004170 (16752) │ │ │ │ -50C23 Uncompressed Size 0001CF93 (118675) │ │ │ │ -50C27 Filename Length 0010 (16) │ │ │ │ -50C29 Extra Length 001C (28) │ │ │ │ -50C2B Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x50C2B: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -50C3B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -50C3D Length 0009 (9) │ │ │ │ -50C3F Flags 03 (3) 'Modification Access' │ │ │ │ -50C40 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -50C44 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -50C48 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -50C4A Length 000B (11) │ │ │ │ -50C4C Version 01 (1) │ │ │ │ -50C4D UID Size 04 (4) │ │ │ │ -50C4E UID 00000000 (0) │ │ │ │ -50C52 GID Size 04 (4) │ │ │ │ -50C53 GID 00000000 (0) │ │ │ │ -50C57 PAYLOAD │ │ │ │ - │ │ │ │ -54DC7 LOCAL HEADER #48 04034B50 (67324752) │ │ │ │ -54DCB Extract Zip Spec 14 (20) '2.0' │ │ │ │ -54DCC Extract OS 00 (0) 'MS-DOS' │ │ │ │ -54DCD General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -54DCF Compression Method 0008 (8) 'Deflated' │ │ │ │ -54DD1 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -54DD5 CRC 4474668F (1148479119) │ │ │ │ -54DD9 Compressed Size 00000A94 (2708) │ │ │ │ -54DDD Uncompressed Size 00002105 (8453) │ │ │ │ -54DE1 Filename Length 0014 (20) │ │ │ │ -54DE3 Extra Length 001C (28) │ │ │ │ -54DE5 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x54DE5: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -54DF9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -54DFB Length 0009 (9) │ │ │ │ -54DFD Flags 03 (3) 'Modification Access' │ │ │ │ -54DFE Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -54E02 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -54E06 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -54E08 Length 000B (11) │ │ │ │ -54E0A Version 01 (1) │ │ │ │ -54E0B UID Size 04 (4) │ │ │ │ -54E0C UID 00000000 (0) │ │ │ │ -54E10 GID Size 04 (4) │ │ │ │ -54E11 GID 00000000 (0) │ │ │ │ -54E15 PAYLOAD │ │ │ │ - │ │ │ │ -558A9 LOCAL HEADER #49 04034B50 (67324752) │ │ │ │ -558AD Extract Zip Spec 14 (20) '2.0' │ │ │ │ -558AE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -558AF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -558B1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -558B3 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -558B7 CRC E750F924 (3880843556) │ │ │ │ -558BB Compressed Size 0000AC97 (44183) │ │ │ │ -558BF Uncompressed Size 0003E418 (255000) │ │ │ │ -558C3 Filename Length 0017 (23) │ │ │ │ -558C5 Extra Length 001C (28) │ │ │ │ -558C7 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x558C7: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -558DE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -558E0 Length 0009 (9) │ │ │ │ -558E2 Flags 03 (3) 'Modification Access' │ │ │ │ -558E3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -558E7 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -558EB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -558ED Length 000B (11) │ │ │ │ -558EF Version 01 (1) │ │ │ │ -558F0 UID Size 04 (4) │ │ │ │ -558F1 UID 00000000 (0) │ │ │ │ -558F5 GID Size 04 (4) │ │ │ │ -558F6 GID 00000000 (0) │ │ │ │ -558FA PAYLOAD │ │ │ │ - │ │ │ │ -60591 LOCAL HEADER #50 04034B50 (67324752) │ │ │ │ -60595 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -60596 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -60597 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -60599 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6059B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6059F CRC 1D15B8EB (487962859) │ │ │ │ -605A3 Compressed Size 00000401 (1025) │ │ │ │ -605A7 Uncompressed Size 0000093D (2365) │ │ │ │ -605AB Filename Length 0013 (19) │ │ │ │ -605AD Extra Length 001C (28) │ │ │ │ -605AF Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x605AF: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -605C2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -605C4 Length 0009 (9) │ │ │ │ -605C6 Flags 03 (3) 'Modification Access' │ │ │ │ -605C7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -605CB Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -605CF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -605D1 Length 000B (11) │ │ │ │ -605D3 Version 01 (1) │ │ │ │ -605D4 UID Size 04 (4) │ │ │ │ -605D5 UID 00000000 (0) │ │ │ │ -605D9 GID Size 04 (4) │ │ │ │ -605DA GID 00000000 (0) │ │ │ │ -605DE PAYLOAD │ │ │ │ - │ │ │ │ -609DF LOCAL HEADER #51 04034B50 (67324752) │ │ │ │ -609E3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -609E4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -609E5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -609E7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -609E9 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -609ED CRC 7A12CC58 (2048052312) │ │ │ │ -609F1 Compressed Size 000014E4 (5348) │ │ │ │ -609F5 Uncompressed Size 0000687B (26747) │ │ │ │ -609F9 Filename Length 0012 (18) │ │ │ │ -609FB Extra Length 001C (28) │ │ │ │ -609FD Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x609FD: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -60A0F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -60A11 Length 0009 (9) │ │ │ │ -60A13 Flags 03 (3) 'Modification Access' │ │ │ │ -60A14 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -60A18 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -60A1C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -60A1E Length 000B (11) │ │ │ │ -60A20 Version 01 (1) │ │ │ │ -60A21 UID Size 04 (4) │ │ │ │ -60A22 UID 00000000 (0) │ │ │ │ -60A26 GID Size 04 (4) │ │ │ │ -60A27 GID 00000000 (0) │ │ │ │ -60A2B PAYLOAD │ │ │ │ - │ │ │ │ -61F0F LOCAL HEADER #52 04034B50 (67324752) │ │ │ │ -61F13 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -61F14 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -61F15 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -61F17 Compression Method 0008 (8) 'Deflated' │ │ │ │ -61F19 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -61F1D CRC 80F035B2 (2163226034) │ │ │ │ -61F21 Compressed Size 000011EC (4588) │ │ │ │ -61F25 Uncompressed Size 000040F5 (16629) │ │ │ │ -61F29 Filename Length 0012 (18) │ │ │ │ -61F2B Extra Length 001C (28) │ │ │ │ -61F2D Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x61F2D: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -61F3F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -61F41 Length 0009 (9) │ │ │ │ -61F43 Flags 03 (3) 'Modification Access' │ │ │ │ -61F44 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -61F48 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -61F4C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -61F4E Length 000B (11) │ │ │ │ -61F50 Version 01 (1) │ │ │ │ -61F51 UID Size 04 (4) │ │ │ │ -61F52 UID 00000000 (0) │ │ │ │ -61F56 GID Size 04 (4) │ │ │ │ -61F57 GID 00000000 (0) │ │ │ │ -61F5B PAYLOAD │ │ │ │ - │ │ │ │ -63147 LOCAL HEADER #53 04034B50 (67324752) │ │ │ │ -6314B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6314C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6314D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6314F Compression Method 0008 (8) 'Deflated' │ │ │ │ -63151 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -63155 CRC F8DD639B (4175258523) │ │ │ │ -63159 Compressed Size 000009D9 (2521) │ │ │ │ -6315D Uncompressed Size 00003529 (13609) │ │ │ │ -63161 Filename Length 0019 (25) │ │ │ │ -63163 Extra Length 001C (28) │ │ │ │ -63165 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x63165: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6317E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -63180 Length 0009 (9) │ │ │ │ -63182 Flags 03 (3) 'Modification Access' │ │ │ │ -63183 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -63187 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6318B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6318D Length 000B (11) │ │ │ │ -6318F Version 01 (1) │ │ │ │ -63190 UID Size 04 (4) │ │ │ │ -63191 UID 00000000 (0) │ │ │ │ -63195 GID Size 04 (4) │ │ │ │ -63196 GID 00000000 (0) │ │ │ │ -6319A PAYLOAD │ │ │ │ - │ │ │ │ -63B73 LOCAL HEADER #54 04034B50 (67324752) │ │ │ │ -63B77 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -63B78 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -63B79 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -63B7B Compression Method 0008 (8) 'Deflated' │ │ │ │ -63B7D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -63B81 CRC A1689AA9 (2707987113) │ │ │ │ -63B85 Compressed Size 000018B4 (6324) │ │ │ │ -63B89 Uncompressed Size 0000A605 (42501) │ │ │ │ -63B8D Filename Length 0019 (25) │ │ │ │ -63B8F Extra Length 001C (28) │ │ │ │ -63B91 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x63B91: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -63BAA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -63BAC Length 0009 (9) │ │ │ │ -63BAE Flags 03 (3) 'Modification Access' │ │ │ │ -63BAF Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -63BB3 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -63BB7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -63BB9 Length 000B (11) │ │ │ │ -63BBB Version 01 (1) │ │ │ │ -63BBC UID Size 04 (4) │ │ │ │ -63BBD UID 00000000 (0) │ │ │ │ -63BC1 GID Size 04 (4) │ │ │ │ -63BC2 GID 00000000 (0) │ │ │ │ -63BC6 PAYLOAD │ │ │ │ - │ │ │ │ -6547A LOCAL HEADER #55 04034B50 (67324752) │ │ │ │ -6547E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6547F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -65480 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -65482 Compression Method 0008 (8) 'Deflated' │ │ │ │ -65484 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -65488 CRC 16F6295E (385231198) │ │ │ │ -6548C Compressed Size 0000177D (6013) │ │ │ │ -65490 Uncompressed Size 0000472C (18220) │ │ │ │ -65494 Filename Length 0014 (20) │ │ │ │ -65496 Extra Length 001C (28) │ │ │ │ -65498 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x65498: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -654AC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -654AE Length 0009 (9) │ │ │ │ -654B0 Flags 03 (3) 'Modification Access' │ │ │ │ -654B1 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -654B5 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -654B9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -654BB Length 000B (11) │ │ │ │ -654BD Version 01 (1) │ │ │ │ -654BE UID Size 04 (4) │ │ │ │ -654BF UID 00000000 (0) │ │ │ │ -654C3 GID Size 04 (4) │ │ │ │ -654C4 GID 00000000 (0) │ │ │ │ -654C8 PAYLOAD │ │ │ │ - │ │ │ │ -66C45 LOCAL HEADER #56 04034B50 (67324752) │ │ │ │ -66C49 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -66C4A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -66C4B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -66C4D Compression Method 0008 (8) 'Deflated' │ │ │ │ -66C4F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -66C53 CRC E49D33FF (3835507711) │ │ │ │ -66C57 Compressed Size 0000040A (1034) │ │ │ │ -66C5B Uncompressed Size 00000825 (2085) │ │ │ │ -66C5F Filename Length 001C (28) │ │ │ │ -66C61 Extra Length 001C (28) │ │ │ │ -66C63 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x66C63: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -66C7F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -66C81 Length 0009 (9) │ │ │ │ -66C83 Flags 03 (3) 'Modification Access' │ │ │ │ -66C84 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -66C88 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -66C8C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -66C8E Length 000B (11) │ │ │ │ -66C90 Version 01 (1) │ │ │ │ -66C91 UID Size 04 (4) │ │ │ │ -66C92 UID 00000000 (0) │ │ │ │ -66C96 GID Size 04 (4) │ │ │ │ -66C97 GID 00000000 (0) │ │ │ │ -66C9B PAYLOAD │ │ │ │ - │ │ │ │ -670A5 LOCAL HEADER #57 04034B50 (67324752) │ │ │ │ -670A9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -670AA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -670AB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -670AD Compression Method 0008 (8) 'Deflated' │ │ │ │ -670AF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -670B3 CRC 280BFB81 (671873921) │ │ │ │ -670B7 Compressed Size 00002483 (9347) │ │ │ │ -670BB Uncompressed Size 0000B56F (46447) │ │ │ │ -670BF Filename Length 001F (31) │ │ │ │ -670C1 Extra Length 001C (28) │ │ │ │ -670C3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x670C3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -670E2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -670E4 Length 0009 (9) │ │ │ │ -670E6 Flags 03 (3) 'Modification Access' │ │ │ │ -670E7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -670EB Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -670EF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -670F1 Length 000B (11) │ │ │ │ -670F3 Version 01 (1) │ │ │ │ -670F4 UID Size 04 (4) │ │ │ │ -670F5 UID 00000000 (0) │ │ │ │ -670F9 GID Size 04 (4) │ │ │ │ -670FA GID 00000000 (0) │ │ │ │ -670FE PAYLOAD │ │ │ │ - │ │ │ │ -69581 LOCAL HEADER #58 04034B50 (67324752) │ │ │ │ -69585 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -69586 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -69587 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -69589 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6958B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6958F CRC CCAE3E9A (3433971354) │ │ │ │ -69593 Compressed Size 00000E7F (3711) │ │ │ │ -69597 Uncompressed Size 000052D9 (21209) │ │ │ │ -6959B Filename Length 001F (31) │ │ │ │ -6959D Extra Length 001C (28) │ │ │ │ -6959F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6959F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -695BE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -695C0 Length 0009 (9) │ │ │ │ -695C2 Flags 03 (3) 'Modification Access' │ │ │ │ -695C3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -695C7 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -695CB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -695CD Length 000B (11) │ │ │ │ -695CF Version 01 (1) │ │ │ │ -695D0 UID Size 04 (4) │ │ │ │ -695D1 UID 00000000 (0) │ │ │ │ -695D5 GID Size 04 (4) │ │ │ │ -695D6 GID 00000000 (0) │ │ │ │ -695DA PAYLOAD │ │ │ │ - │ │ │ │ -6A459 LOCAL HEADER #59 04034B50 (67324752) │ │ │ │ -6A45D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6A45E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6A45F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6A461 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6A463 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6A467 CRC 26C2BC4D (650296397) │ │ │ │ -6A46B Compressed Size 00000A44 (2628) │ │ │ │ -6A46F Uncompressed Size 0000247A (9338) │ │ │ │ -6A473 Filename Length 0013 (19) │ │ │ │ -6A475 Extra Length 001C (28) │ │ │ │ -6A477 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6A477: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6A48A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6A48C Length 0009 (9) │ │ │ │ -6A48E Flags 03 (3) 'Modification Access' │ │ │ │ -6A48F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6A493 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6A497 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6A499 Length 000B (11) │ │ │ │ -6A49B Version 01 (1) │ │ │ │ -6A49C UID Size 04 (4) │ │ │ │ -6A49D UID 00000000 (0) │ │ │ │ -6A4A1 GID Size 04 (4) │ │ │ │ -6A4A2 GID 00000000 (0) │ │ │ │ -6A4A6 PAYLOAD │ │ │ │ - │ │ │ │ -6AEEA LOCAL HEADER #60 04034B50 (67324752) │ │ │ │ -6AEEE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6AEEF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6AEF0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6AEF2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6AEF4 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6AEF8 CRC E0E40597 (3773040023) │ │ │ │ -6AEFC Compressed Size 00002488 (9352) │ │ │ │ -6AF00 Uncompressed Size 0000B84C (47180) │ │ │ │ -6AF04 Filename Length 0019 (25) │ │ │ │ -6AF06 Extra Length 001C (28) │ │ │ │ -6AF08 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6AF08: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6AF21 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6AF23 Length 0009 (9) │ │ │ │ -6AF25 Flags 03 (3) 'Modification Access' │ │ │ │ -6AF26 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6AF2A Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6AF2E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6AF30 Length 000B (11) │ │ │ │ -6AF32 Version 01 (1) │ │ │ │ -6AF33 UID Size 04 (4) │ │ │ │ -6AF34 UID 00000000 (0) │ │ │ │ -6AF38 GID Size 04 (4) │ │ │ │ -6AF39 GID 00000000 (0) │ │ │ │ -6AF3D PAYLOAD │ │ │ │ - │ │ │ │ -6D3C5 LOCAL HEADER #61 04034B50 (67324752) │ │ │ │ -6D3C9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6D3CA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6D3CB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6D3CD Compression Method 0008 (8) 'Deflated' │ │ │ │ -6D3CF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6D3D3 CRC 19609D49 (425762121) │ │ │ │ -6D3D7 Compressed Size 00000EF8 (3832) │ │ │ │ -6D3DB Uncompressed Size 00003A2C (14892) │ │ │ │ -6D3DF Filename Length 0024 (36) │ │ │ │ -6D3E1 Extra Length 001C (28) │ │ │ │ -6D3E3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6D3E3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6D407 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6D409 Length 0009 (9) │ │ │ │ -6D40B Flags 03 (3) 'Modification Access' │ │ │ │ -6D40C Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6D410 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6D414 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6D416 Length 000B (11) │ │ │ │ -6D418 Version 01 (1) │ │ │ │ -6D419 UID Size 04 (4) │ │ │ │ -6D41A UID 00000000 (0) │ │ │ │ -6D41E GID Size 04 (4) │ │ │ │ -6D41F GID 00000000 (0) │ │ │ │ -6D423 PAYLOAD │ │ │ │ - │ │ │ │ -6E31B LOCAL HEADER #62 04034B50 (67324752) │ │ │ │ -6E31F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6E320 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6E321 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6E323 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6E325 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6E329 CRC 0FBF3481 (264189057) │ │ │ │ -6E32D Compressed Size 00001AC1 (6849) │ │ │ │ -6E331 Uncompressed Size 00005EDC (24284) │ │ │ │ -6E335 Filename Length 0017 (23) │ │ │ │ -6E337 Extra Length 001C (28) │ │ │ │ -6E339 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6E339: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6E350 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6E352 Length 0009 (9) │ │ │ │ -6E354 Flags 03 (3) 'Modification Access' │ │ │ │ -6E355 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6E359 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6E35D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6E35F Length 000B (11) │ │ │ │ -6E361 Version 01 (1) │ │ │ │ -6E362 UID Size 04 (4) │ │ │ │ -6E363 UID 00000000 (0) │ │ │ │ -6E367 GID Size 04 (4) │ │ │ │ -6E368 GID 00000000 (0) │ │ │ │ -6E36C PAYLOAD │ │ │ │ - │ │ │ │ -6FE2D LOCAL HEADER #63 04034B50 (67324752) │ │ │ │ -6FE31 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6FE32 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6FE33 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6FE35 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6FE37 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -6FE3B CRC 11E32AF1 (300100337) │ │ │ │ -6FE3F Compressed Size 00000ED3 (3795) │ │ │ │ -6FE43 Uncompressed Size 000038E2 (14562) │ │ │ │ -6FE47 Filename Length 0023 (35) │ │ │ │ -6FE49 Extra Length 001C (28) │ │ │ │ -6FE4B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6FE4B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6FE6E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6FE70 Length 0009 (9) │ │ │ │ -6FE72 Flags 03 (3) 'Modification Access' │ │ │ │ -6FE73 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6FE77 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -6FE7B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6FE7D Length 000B (11) │ │ │ │ -6FE7F Version 01 (1) │ │ │ │ -6FE80 UID Size 04 (4) │ │ │ │ -6FE81 UID 00000000 (0) │ │ │ │ -6FE85 GID Size 04 (4) │ │ │ │ -6FE86 GID 00000000 (0) │ │ │ │ -6FE8A PAYLOAD │ │ │ │ - │ │ │ │ -70D5D LOCAL HEADER #64 04034B50 (67324752) │ │ │ │ -70D61 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -70D62 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -70D63 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -70D65 Compression Method 0008 (8) 'Deflated' │ │ │ │ -70D67 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -70D6B CRC 2DB7929F (767005343) │ │ │ │ -70D6F Compressed Size 00000113 (275) │ │ │ │ -70D73 Uncompressed Size 000001F3 (499) │ │ │ │ -70D77 Filename Length 001B (27) │ │ │ │ -70D79 Extra Length 001C (28) │ │ │ │ -70D7B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x70D7B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -70D96 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -70D98 Length 0009 (9) │ │ │ │ -70D9A Flags 03 (3) 'Modification Access' │ │ │ │ -70D9B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -70D9F Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -70DA3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -70DA5 Length 000B (11) │ │ │ │ -70DA7 Version 01 (1) │ │ │ │ -70DA8 UID Size 04 (4) │ │ │ │ -70DA9 UID 00000000 (0) │ │ │ │ -70DAD GID Size 04 (4) │ │ │ │ -70DAE GID 00000000 (0) │ │ │ │ -70DB2 PAYLOAD │ │ │ │ - │ │ │ │ -70EC5 LOCAL HEADER #65 04034B50 (67324752) │ │ │ │ -70EC9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -70ECA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -70ECB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -70ECD Compression Method 0008 (8) 'Deflated' │ │ │ │ -70ECF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -70ED3 CRC CE2A6869 (3458885737) │ │ │ │ -70ED7 Compressed Size 0000188F (6287) │ │ │ │ -70EDB Uncompressed Size 00008FAC (36780) │ │ │ │ -70EDF Filename Length 001D (29) │ │ │ │ -70EE1 Extra Length 001C (28) │ │ │ │ -70EE3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x70EE3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -70F00 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -70F02 Length 0009 (9) │ │ │ │ -70F04 Flags 03 (3) 'Modification Access' │ │ │ │ -70F05 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -70F09 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -70F0D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -70F0F Length 000B (11) │ │ │ │ -70F11 Version 01 (1) │ │ │ │ -70F12 UID Size 04 (4) │ │ │ │ -70F13 UID 00000000 (0) │ │ │ │ -70F17 GID Size 04 (4) │ │ │ │ -70F18 GID 00000000 (0) │ │ │ │ -70F1C PAYLOAD │ │ │ │ - │ │ │ │ -727AB LOCAL HEADER #66 04034B50 (67324752) │ │ │ │ -727AF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -727B0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -727B1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -727B3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -727B5 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -727B9 CRC 835FA0AD (2204082349) │ │ │ │ -727BD Compressed Size 0000164C (5708) │ │ │ │ -727C1 Uncompressed Size 00003A9B (15003) │ │ │ │ -727C5 Filename Length 0015 (21) │ │ │ │ -727C7 Extra Length 001C (28) │ │ │ │ -727C9 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x727C9: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -727DE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -727E0 Length 0009 (9) │ │ │ │ -727E2 Flags 03 (3) 'Modification Access' │ │ │ │ -727E3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -727E7 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -727EB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -727ED Length 000B (11) │ │ │ │ -727EF Version 01 (1) │ │ │ │ -727F0 UID Size 04 (4) │ │ │ │ -727F1 UID 00000000 (0) │ │ │ │ -727F5 GID Size 04 (4) │ │ │ │ -727F6 GID 00000000 (0) │ │ │ │ -727FA PAYLOAD │ │ │ │ - │ │ │ │ -73E46 LOCAL HEADER #67 04034B50 (67324752) │ │ │ │ -73E4A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -73E4B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -73E4C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -73E4E Compression Method 0008 (8) 'Deflated' │ │ │ │ -73E50 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -73E54 CRC CC48B127 (3427316007) │ │ │ │ -73E58 Compressed Size 00003B4B (15179) │ │ │ │ -73E5C Uncompressed Size 0001185B (71771) │ │ │ │ -73E60 Filename Length 0016 (22) │ │ │ │ -73E62 Extra Length 001C (28) │ │ │ │ -73E64 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x73E64: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -73E7A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -73E7C Length 0009 (9) │ │ │ │ -73E7E Flags 03 (3) 'Modification Access' │ │ │ │ -73E7F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -73E83 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -73E87 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -73E89 Length 000B (11) │ │ │ │ -73E8B Version 01 (1) │ │ │ │ -73E8C UID Size 04 (4) │ │ │ │ -73E8D UID 00000000 (0) │ │ │ │ -73E91 GID Size 04 (4) │ │ │ │ -73E92 GID 00000000 (0) │ │ │ │ -73E96 PAYLOAD │ │ │ │ - │ │ │ │ -779E1 LOCAL HEADER #68 04034B50 (67324752) │ │ │ │ -779E5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -779E6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -779E7 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -779E9 Compression Method 0008 (8) 'Deflated' │ │ │ │ -779EB Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -779EF CRC 6B03DA8B (1795414667) │ │ │ │ -779F3 Compressed Size 00003E86 (16006) │ │ │ │ -779F7 Uncompressed Size 0001C17B (115067) │ │ │ │ -779FB Filename Length 0019 (25) │ │ │ │ -779FD Extra Length 001C (28) │ │ │ │ -779FF Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x779FF: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -77A18 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -77A1A Length 0009 (9) │ │ │ │ -77A1C Flags 03 (3) 'Modification Access' │ │ │ │ -77A1D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -77A21 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -77A25 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -77A27 Length 000B (11) │ │ │ │ -77A29 Version 01 (1) │ │ │ │ -77A2A UID Size 04 (4) │ │ │ │ -77A2B UID 00000000 (0) │ │ │ │ -77A2F GID Size 04 (4) │ │ │ │ -77A30 GID 00000000 (0) │ │ │ │ -77A34 PAYLOAD │ │ │ │ - │ │ │ │ -7B8BA LOCAL HEADER #69 04034B50 (67324752) │ │ │ │ -7B8BE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -7B8BF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -7B8C0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -7B8C2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -7B8C4 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -7B8C8 CRC F547F549 (4115133769) │ │ │ │ -7B8CC Compressed Size 00000833 (2099) │ │ │ │ -7B8D0 Uncompressed Size 00003383 (13187) │ │ │ │ -7B8D4 Filename Length 0011 (17) │ │ │ │ -7B8D6 Extra Length 001C (28) │ │ │ │ -7B8D8 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x7B8D8: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -7B8E9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -7B8EB Length 0009 (9) │ │ │ │ -7B8ED Flags 03 (3) 'Modification Access' │ │ │ │ -7B8EE Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -7B8F2 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -7B8F6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -7B8F8 Length 000B (11) │ │ │ │ -7B8FA Version 01 (1) │ │ │ │ -7B8FB UID Size 04 (4) │ │ │ │ -7B8FC UID 00000000 (0) │ │ │ │ -7B900 GID Size 04 (4) │ │ │ │ -7B901 GID 00000000 (0) │ │ │ │ -7B905 PAYLOAD │ │ │ │ - │ │ │ │ -7C138 LOCAL HEADER #70 04034B50 (67324752) │ │ │ │ -7C13C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -7C13D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -7C13E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -7C140 Compression Method 0008 (8) 'Deflated' │ │ │ │ -7C142 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -7C146 CRC 8FB16754 (2410768212) │ │ │ │ -7C14A Compressed Size 0000518E (20878) │ │ │ │ -7C14E Uncompressed Size 0001FB6C (129900) │ │ │ │ -7C152 Filename Length 0015 (21) │ │ │ │ -7C154 Extra Length 001C (28) │ │ │ │ -7C156 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x7C156: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -7C16B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -7C16D Length 0009 (9) │ │ │ │ -7C16F Flags 03 (3) 'Modification Access' │ │ │ │ -7C170 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -7C174 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -7C178 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -7C17A Length 000B (11) │ │ │ │ -7C17C Version 01 (1) │ │ │ │ -7C17D UID Size 04 (4) │ │ │ │ -7C17E UID 00000000 (0) │ │ │ │ -7C182 GID Size 04 (4) │ │ │ │ -7C183 GID 00000000 (0) │ │ │ │ -7C187 PAYLOAD │ │ │ │ - │ │ │ │ -81315 LOCAL HEADER #71 04034B50 (67324752) │ │ │ │ -81319 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8131A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8131B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8131D Compression Method 0008 (8) 'Deflated' │ │ │ │ -8131F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -81323 CRC E5A05A87 (3852491399) │ │ │ │ -81327 Compressed Size 00001B07 (6919) │ │ │ │ -8132B Uncompressed Size 000081CF (33231) │ │ │ │ -8132F Filename Length 0019 (25) │ │ │ │ -81331 Extra Length 001C (28) │ │ │ │ -81333 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x81333: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8134C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8134E Length 0009 (9) │ │ │ │ -81350 Flags 03 (3) 'Modification Access' │ │ │ │ -81351 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -81355 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -81359 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8135B Length 000B (11) │ │ │ │ -8135D Version 01 (1) │ │ │ │ -8135E UID Size 04 (4) │ │ │ │ -8135F UID 00000000 (0) │ │ │ │ -81363 GID Size 04 (4) │ │ │ │ -81364 GID 00000000 (0) │ │ │ │ -81368 PAYLOAD │ │ │ │ - │ │ │ │ -82E6F LOCAL HEADER #72 04034B50 (67324752) │ │ │ │ -82E73 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -82E74 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -82E75 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -82E77 Compression Method 0008 (8) 'Deflated' │ │ │ │ -82E79 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -82E7D CRC 3F4E6540 (1062102336) │ │ │ │ -82E81 Compressed Size 00000D96 (3478) │ │ │ │ -82E85 Uncompressed Size 00002E9F (11935) │ │ │ │ -82E89 Filename Length 0018 (24) │ │ │ │ -82E8B Extra Length 001C (28) │ │ │ │ -82E8D Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x82E8D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -82EA5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -82EA7 Length 0009 (9) │ │ │ │ -82EA9 Flags 03 (3) 'Modification Access' │ │ │ │ -82EAA Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -82EAE Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -82EB2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -82EB4 Length 000B (11) │ │ │ │ -82EB6 Version 01 (1) │ │ │ │ -82EB7 UID Size 04 (4) │ │ │ │ -82EB8 UID 00000000 (0) │ │ │ │ -82EBC GID Size 04 (4) │ │ │ │ -82EBD GID 00000000 (0) │ │ │ │ -82EC1 PAYLOAD │ │ │ │ - │ │ │ │ -83C57 LOCAL HEADER #73 04034B50 (67324752) │ │ │ │ -83C5B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -83C5C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -83C5D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -83C5F Compression Method 0008 (8) 'Deflated' │ │ │ │ -83C61 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -83C65 CRC B52BB549 (3039540553) │ │ │ │ -83C69 Compressed Size 000001E0 (480) │ │ │ │ -83C6D Uncompressed Size 00000323 (803) │ │ │ │ -83C71 Filename Length 0011 (17) │ │ │ │ -83C73 Extra Length 001C (28) │ │ │ │ -83C75 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x83C75: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -83C86 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -83C88 Length 0009 (9) │ │ │ │ -83C8A Flags 03 (3) 'Modification Access' │ │ │ │ -83C8B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -83C8F Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -83C93 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -83C95 Length 000B (11) │ │ │ │ -83C97 Version 01 (1) │ │ │ │ -83C98 UID Size 04 (4) │ │ │ │ -83C99 UID 00000000 (0) │ │ │ │ -83C9D GID Size 04 (4) │ │ │ │ -83C9E GID 00000000 (0) │ │ │ │ -83CA2 PAYLOAD │ │ │ │ - │ │ │ │ -83E82 LOCAL HEADER #74 04034B50 (67324752) │ │ │ │ -83E86 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -83E87 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -83E88 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -83E8A Compression Method 0008 (8) 'Deflated' │ │ │ │ -83E8C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -83E90 CRC 2404DB02 (604297986) │ │ │ │ -83E94 Compressed Size 000006C2 (1730) │ │ │ │ -83E98 Uncompressed Size 00001439 (5177) │ │ │ │ -83E9C Filename Length 0019 (25) │ │ │ │ -83E9E Extra Length 001C (28) │ │ │ │ -83EA0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x83EA0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -83EB9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -83EBB Length 0009 (9) │ │ │ │ -83EBD Flags 03 (3) 'Modification Access' │ │ │ │ -83EBE Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -83EC2 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -83EC6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -83EC8 Length 000B (11) │ │ │ │ -83ECA Version 01 (1) │ │ │ │ -83ECB UID Size 04 (4) │ │ │ │ -83ECC UID 00000000 (0) │ │ │ │ -83ED0 GID Size 04 (4) │ │ │ │ -83ED1 GID 00000000 (0) │ │ │ │ -83ED5 PAYLOAD │ │ │ │ - │ │ │ │ -84597 LOCAL HEADER #75 04034B50 (67324752) │ │ │ │ -8459B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8459C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8459D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8459F Compression Method 0008 (8) 'Deflated' │ │ │ │ -845A1 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -845A5 CRC 53B37456 (1404269654) │ │ │ │ -845A9 Compressed Size 00001B87 (7047) │ │ │ │ -845AD Uncompressed Size 00009F03 (40707) │ │ │ │ -845B1 Filename Length 0018 (24) │ │ │ │ -845B3 Extra Length 001C (28) │ │ │ │ -845B5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x845B5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -845CD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -845CF Length 0009 (9) │ │ │ │ -845D1 Flags 03 (3) 'Modification Access' │ │ │ │ -845D2 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -845D6 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -845DA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -845DC Length 000B (11) │ │ │ │ -845DE Version 01 (1) │ │ │ │ -845DF UID Size 04 (4) │ │ │ │ -845E0 UID 00000000 (0) │ │ │ │ -845E4 GID Size 04 (4) │ │ │ │ -845E5 GID 00000000 (0) │ │ │ │ -845E9 PAYLOAD │ │ │ │ - │ │ │ │ -86170 LOCAL HEADER #76 04034B50 (67324752) │ │ │ │ -86174 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -86175 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -86176 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -86178 Compression Method 0008 (8) 'Deflated' │ │ │ │ -8617A Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -8617E CRC 747C5D76 (1954307446) │ │ │ │ -86182 Compressed Size 000016F7 (5879) │ │ │ │ -86186 Uncompressed Size 00008AB6 (35510) │ │ │ │ -8618A Filename Length 0012 (18) │ │ │ │ -8618C Extra Length 001C (28) │ │ │ │ -8618E Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8618E: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -861A0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -861A2 Length 0009 (9) │ │ │ │ -861A4 Flags 03 (3) 'Modification Access' │ │ │ │ -861A5 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -861A9 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -861AD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -861AF Length 000B (11) │ │ │ │ -861B1 Version 01 (1) │ │ │ │ -861B2 UID Size 04 (4) │ │ │ │ -861B3 UID 00000000 (0) │ │ │ │ -861B7 GID Size 04 (4) │ │ │ │ -861B8 GID 00000000 (0) │ │ │ │ -861BC PAYLOAD │ │ │ │ - │ │ │ │ -878B3 LOCAL HEADER #77 04034B50 (67324752) │ │ │ │ -878B7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -878B8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -878B9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -878BB Compression Method 0008 (8) 'Deflated' │ │ │ │ -878BD Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -878C1 CRC E33FD622 (3812611618) │ │ │ │ -878C5 Compressed Size 00001E14 (7700) │ │ │ │ -878C9 Uncompressed Size 00008803 (34819) │ │ │ │ -878CD Filename Length 0016 (22) │ │ │ │ -878CF Extra Length 001C (28) │ │ │ │ -878D1 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x878D1: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -878E7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -878E9 Length 0009 (9) │ │ │ │ -878EB Flags 03 (3) 'Modification Access' │ │ │ │ -878EC Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -878F0 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -878F4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -878F6 Length 000B (11) │ │ │ │ -878F8 Version 01 (1) │ │ │ │ -878F9 UID Size 04 (4) │ │ │ │ -878FA UID 00000000 (0) │ │ │ │ -878FE GID Size 04 (4) │ │ │ │ -878FF GID 00000000 (0) │ │ │ │ -87903 PAYLOAD │ │ │ │ - │ │ │ │ -89717 LOCAL HEADER #78 04034B50 (67324752) │ │ │ │ -8971B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8971C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8971D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8971F Compression Method 0008 (8) 'Deflated' │ │ │ │ -89721 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -89725 CRC 93A5D815 (2477119509) │ │ │ │ -89729 Compressed Size 000029A7 (10663) │ │ │ │ -8972D Uncompressed Size 0000D04F (53327) │ │ │ │ -89731 Filename Length 001A (26) │ │ │ │ -89733 Extra Length 001C (28) │ │ │ │ -89735 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x89735: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8974F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -89751 Length 0009 (9) │ │ │ │ -89753 Flags 03 (3) 'Modification Access' │ │ │ │ -89754 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -89758 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8975C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8975E Length 000B (11) │ │ │ │ -89760 Version 01 (1) │ │ │ │ -89761 UID Size 04 (4) │ │ │ │ -89762 UID 00000000 (0) │ │ │ │ -89766 GID Size 04 (4) │ │ │ │ -89767 GID 00000000 (0) │ │ │ │ -8976B PAYLOAD │ │ │ │ - │ │ │ │ -8C112 LOCAL HEADER #79 04034B50 (67324752) │ │ │ │ -8C116 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8C117 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8C118 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8C11A Compression Method 0008 (8) 'Deflated' │ │ │ │ -8C11C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -8C120 CRC D99C18FD (3650885885) │ │ │ │ -8C124 Compressed Size 000009AC (2476) │ │ │ │ -8C128 Uncompressed Size 00001DB6 (7606) │ │ │ │ -8C12C Filename Length 0018 (24) │ │ │ │ -8C12E Extra Length 001C (28) │ │ │ │ -8C130 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8C130: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8C148 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8C14A Length 0009 (9) │ │ │ │ -8C14C Flags 03 (3) 'Modification Access' │ │ │ │ -8C14D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8C151 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8C155 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8C157 Length 000B (11) │ │ │ │ -8C159 Version 01 (1) │ │ │ │ -8C15A UID Size 04 (4) │ │ │ │ -8C15B UID 00000000 (0) │ │ │ │ -8C15F GID Size 04 (4) │ │ │ │ -8C160 GID 00000000 (0) │ │ │ │ -8C164 PAYLOAD │ │ │ │ - │ │ │ │ -8CB10 LOCAL HEADER #80 04034B50 (67324752) │ │ │ │ -8CB14 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8CB15 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8CB16 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8CB18 Compression Method 0008 (8) 'Deflated' │ │ │ │ -8CB1A Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -8CB1E CRC F5E2129F (4125233823) │ │ │ │ -8CB22 Compressed Size 000016BC (5820) │ │ │ │ -8CB26 Uncompressed Size 000016CD (5837) │ │ │ │ -8CB2A Filename Length 0015 (21) │ │ │ │ -8CB2C Extra Length 001C (28) │ │ │ │ -8CB2E Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8CB2E: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8CB43 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8CB45 Length 0009 (9) │ │ │ │ -8CB47 Flags 03 (3) 'Modification Access' │ │ │ │ -8CB48 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8CB4C Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8CB50 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8CB52 Length 000B (11) │ │ │ │ -8CB54 Version 01 (1) │ │ │ │ -8CB55 UID Size 04 (4) │ │ │ │ -8CB56 UID 00000000 (0) │ │ │ │ -8CB5A GID Size 04 (4) │ │ │ │ -8CB5B GID 00000000 (0) │ │ │ │ -8CB5F PAYLOAD │ │ │ │ - │ │ │ │ -8E21B LOCAL HEADER #81 04034B50 (67324752) │ │ │ │ -8E21F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8E220 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8E221 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8E223 Compression Method 0008 (8) 'Deflated' │ │ │ │ -8E225 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -8E229 CRC F5E2129F (4125233823) │ │ │ │ -8E22D Compressed Size 000016BC (5820) │ │ │ │ -8E231 Uncompressed Size 000016CD (5837) │ │ │ │ -8E235 Filename Length 001C (28) │ │ │ │ -8E237 Extra Length 001C (28) │ │ │ │ -8E239 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8E239: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8E255 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8E257 Length 0009 (9) │ │ │ │ -8E259 Flags 03 (3) 'Modification Access' │ │ │ │ -8E25A Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8E25E Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8E262 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8E264 Length 000B (11) │ │ │ │ -8E266 Version 01 (1) │ │ │ │ -8E267 UID Size 04 (4) │ │ │ │ -8E268 UID 00000000 (0) │ │ │ │ -8E26C GID Size 04 (4) │ │ │ │ -8E26D GID 00000000 (0) │ │ │ │ -8E271 PAYLOAD │ │ │ │ - │ │ │ │ -8F92D LOCAL HEADER #82 04034B50 (67324752) │ │ │ │ -8F931 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -8F932 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8F933 General Purpose Flag 0000 (0) │ │ │ │ -8F935 Compression Method 0000 (0) 'Stored' │ │ │ │ -8F937 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -8F93B CRC FC95F24B (4237685323) │ │ │ │ -8F93F Compressed Size 00001B84 (7044) │ │ │ │ -8F943 Uncompressed Size 00001B84 (7044) │ │ │ │ -8F947 Filename Length 0016 (22) │ │ │ │ -8F949 Extra Length 001C (28) │ │ │ │ -8F94B Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8F94B: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8F961 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8F963 Length 0009 (9) │ │ │ │ -8F965 Flags 03 (3) 'Modification Access' │ │ │ │ -8F966 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8F96A Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -8F96E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8F970 Length 000B (11) │ │ │ │ -8F972 Version 01 (1) │ │ │ │ -8F973 UID Size 04 (4) │ │ │ │ -8F974 UID 00000000 (0) │ │ │ │ -8F978 GID Size 04 (4) │ │ │ │ -8F979 GID 00000000 (0) │ │ │ │ -8F97D PAYLOAD │ │ │ │ - │ │ │ │ -91501 LOCAL HEADER #83 04034B50 (67324752) │ │ │ │ -91505 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -91506 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -91507 General Purpose Flag 0000 (0) │ │ │ │ -91509 Compression Method 0000 (0) 'Stored' │ │ │ │ -9150B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9150F CRC D0D71F86 (3503759238) │ │ │ │ -91513 Compressed Size 00000B7B (2939) │ │ │ │ -91517 Uncompressed Size 00000B7B (2939) │ │ │ │ -9151B Filename Length 0016 (22) │ │ │ │ -9151D Extra Length 001C (28) │ │ │ │ -9151F Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9151F: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -91535 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -91537 Length 0009 (9) │ │ │ │ -91539 Flags 03 (3) 'Modification Access' │ │ │ │ -9153A Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9153E Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -91542 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -91544 Length 000B (11) │ │ │ │ -91546 Version 01 (1) │ │ │ │ -91547 UID Size 04 (4) │ │ │ │ -91548 UID 00000000 (0) │ │ │ │ -9154C GID Size 04 (4) │ │ │ │ -9154D GID 00000000 (0) │ │ │ │ -91551 PAYLOAD │ │ │ │ - │ │ │ │ -920CC LOCAL HEADER #84 04034B50 (67324752) │ │ │ │ -920D0 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -920D1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -920D2 General Purpose Flag 0000 (0) │ │ │ │ -920D4 Compression Method 0000 (0) 'Stored' │ │ │ │ -920D6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -920DA CRC FFF9C4D2 (4294558930) │ │ │ │ -920DE Compressed Size 0000138F (5007) │ │ │ │ -920E2 Uncompressed Size 0000138F (5007) │ │ │ │ -920E6 Filename Length 0016 (22) │ │ │ │ -920E8 Extra Length 001C (28) │ │ │ │ -920EA Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x920EA: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -92100 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -92102 Length 0009 (9) │ │ │ │ -92104 Flags 03 (3) 'Modification Access' │ │ │ │ -92105 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -92109 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9210D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9210F Length 000B (11) │ │ │ │ -92111 Version 01 (1) │ │ │ │ -92112 UID Size 04 (4) │ │ │ │ -92113 UID 00000000 (0) │ │ │ │ -92117 GID Size 04 (4) │ │ │ │ -92118 GID 00000000 (0) │ │ │ │ -9211C PAYLOAD │ │ │ │ - │ │ │ │ -934AB LOCAL HEADER #85 04034B50 (67324752) │ │ │ │ -934AF Extract Zip Spec 0A (10) '1.0' │ │ │ │ -934B0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -934B1 General Purpose Flag 0000 (0) │ │ │ │ -934B3 Compression Method 0000 (0) 'Stored' │ │ │ │ -934B5 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -934B9 CRC A1037E8E (2701360782) │ │ │ │ -934BD Compressed Size 0000145E (5214) │ │ │ │ -934C1 Uncompressed Size 0000145E (5214) │ │ │ │ -934C5 Filename Length 0016 (22) │ │ │ │ -934C7 Extra Length 001C (28) │ │ │ │ -934C9 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x934C9: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -934DF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -934E1 Length 0009 (9) │ │ │ │ -934E3 Flags 03 (3) 'Modification Access' │ │ │ │ -934E4 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -934E8 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -934EC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -934EE Length 000B (11) │ │ │ │ -934F0 Version 01 (1) │ │ │ │ -934F1 UID Size 04 (4) │ │ │ │ -934F2 UID 00000000 (0) │ │ │ │ -934F6 GID Size 04 (4) │ │ │ │ -934F7 GID 00000000 (0) │ │ │ │ -934FB PAYLOAD │ │ │ │ - │ │ │ │ -94959 LOCAL HEADER #86 04034B50 (67324752) │ │ │ │ -9495D Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9495E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9495F General Purpose Flag 0000 (0) │ │ │ │ -94961 Compression Method 0000 (0) 'Stored' │ │ │ │ -94963 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -94967 CRC 5E9E64F1 (1587438833) │ │ │ │ -9496B Compressed Size 000008EC (2284) │ │ │ │ -9496F Uncompressed Size 000008EC (2284) │ │ │ │ -94973 Filename Length 0016 (22) │ │ │ │ -94975 Extra Length 001C (28) │ │ │ │ -94977 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x94977: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9498D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9498F Length 0009 (9) │ │ │ │ -94991 Flags 03 (3) 'Modification Access' │ │ │ │ -94992 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -94996 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9499A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9499C Length 000B (11) │ │ │ │ -9499E Version 01 (1) │ │ │ │ -9499F UID Size 04 (4) │ │ │ │ -949A0 UID 00000000 (0) │ │ │ │ -949A4 GID Size 04 (4) │ │ │ │ -949A5 GID 00000000 (0) │ │ │ │ -949A9 PAYLOAD │ │ │ │ - │ │ │ │ -95295 LOCAL HEADER #87 04034B50 (67324752) │ │ │ │ -95299 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9529A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9529B General Purpose Flag 0000 (0) │ │ │ │ -9529D Compression Method 0000 (0) 'Stored' │ │ │ │ -9529F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -952A3 CRC 42E340AB (1122189483) │ │ │ │ -952A7 Compressed Size 00001F2E (7982) │ │ │ │ -952AB Uncompressed Size 00001F2E (7982) │ │ │ │ -952AF Filename Length 001E (30) │ │ │ │ -952B1 Extra Length 001C (28) │ │ │ │ -952B3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x952B3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -952D1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -952D3 Length 0009 (9) │ │ │ │ -952D5 Flags 03 (3) 'Modification Access' │ │ │ │ -952D6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -952DA Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -952DE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -952E0 Length 000B (11) │ │ │ │ -952E2 Version 01 (1) │ │ │ │ -952E3 UID Size 04 (4) │ │ │ │ -952E4 UID 00000000 (0) │ │ │ │ -952E8 GID Size 04 (4) │ │ │ │ -952E9 GID 00000000 (0) │ │ │ │ -952ED PAYLOAD │ │ │ │ - │ │ │ │ -9721B LOCAL HEADER #88 04034B50 (67324752) │ │ │ │ -9721F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -97220 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -97221 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -97223 Compression Method 0008 (8) 'Deflated' │ │ │ │ -97225 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -97229 CRC FE097844 (4262033476) │ │ │ │ -9722D Compressed Size 00003D6D (15725) │ │ │ │ -97231 Uncompressed Size 00016649 (91721) │ │ │ │ -97235 Filename Length 001A (26) │ │ │ │ -97237 Extra Length 001C (28) │ │ │ │ -97239 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x97239: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -97253 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -97255 Length 0009 (9) │ │ │ │ -97257 Flags 03 (3) 'Modification Access' │ │ │ │ -97258 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9725C Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -97260 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -97262 Length 000B (11) │ │ │ │ -97264 Version 01 (1) │ │ │ │ -97265 UID Size 04 (4) │ │ │ │ -97266 UID 00000000 (0) │ │ │ │ -9726A GID Size 04 (4) │ │ │ │ -9726B GID 00000000 (0) │ │ │ │ -9726F PAYLOAD │ │ │ │ - │ │ │ │ -9AFDC LOCAL HEADER #89 04034B50 (67324752) │ │ │ │ -9AFE0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9AFE1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9AFE2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9AFE4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9AFE6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9AFEA CRC E0A63F39 (3768991545) │ │ │ │ -9AFEE Compressed Size 000029C0 (10688) │ │ │ │ -9AFF2 Uncompressed Size 0000BA6A (47722) │ │ │ │ -9AFF6 Filename Length 0018 (24) │ │ │ │ -9AFF8 Extra Length 001C (28) │ │ │ │ -9AFFA Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9AFFA: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9B012 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9B014 Length 0009 (9) │ │ │ │ -9B016 Flags 03 (3) 'Modification Access' │ │ │ │ -9B017 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9B01B Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9B01F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9B021 Length 000B (11) │ │ │ │ -9B023 Version 01 (1) │ │ │ │ -9B024 UID Size 04 (4) │ │ │ │ -9B025 UID 00000000 (0) │ │ │ │ -9B029 GID Size 04 (4) │ │ │ │ -9B02A GID 00000000 (0) │ │ │ │ -9B02E PAYLOAD │ │ │ │ - │ │ │ │ -9D9EE LOCAL HEADER #90 04034B50 (67324752) │ │ │ │ -9D9F2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9D9F3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9D9F4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9D9F6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9D9F8 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9D9FC CRC DCB3B516 (3702764822) │ │ │ │ -9DA00 Compressed Size 000000AE (174) │ │ │ │ -9DA04 Uncompressed Size 000000FC (252) │ │ │ │ -9DA08 Filename Length 0016 (22) │ │ │ │ -9DA0A Extra Length 001C (28) │ │ │ │ -9DA0C Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DA0C: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DA22 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DA24 Length 0009 (9) │ │ │ │ -9DA26 Flags 03 (3) 'Modification Access' │ │ │ │ -9DA27 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DA2B Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DA2F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DA31 Length 000B (11) │ │ │ │ -9DA33 Version 01 (1) │ │ │ │ -9DA34 UID Size 04 (4) │ │ │ │ -9DA35 UID 00000000 (0) │ │ │ │ -9DA39 GID Size 04 (4) │ │ │ │ -9DA3A GID 00000000 (0) │ │ │ │ -9DA3E PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ +04B63 LOCAL HEADER #5 04034B50 (67324752) │ │ │ │ +04B67 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +04B68 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +04B69 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +04B6B Compression Method 0008 (8) 'Deflated' │ │ │ │ +04B6D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +04B71 CRC 67C49326 (1740935974) │ │ │ │ +04B75 Compressed Size 000003F0 (1008) │ │ │ │ +04B79 Uncompressed Size 00000876 (2166) │ │ │ │ +04B7D Filename Length 0014 (20) │ │ │ │ +04B7F Extra Length 001C (28) │ │ │ │ +04B81 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4B81: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +04B95 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +04B97 Length 0009 (9) │ │ │ │ +04B99 Flags 03 (3) 'Modification Access' │ │ │ │ +04B9A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +04B9E Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +04BA2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +04BA4 Length 000B (11) │ │ │ │ +04BA6 Version 01 (1) │ │ │ │ +04BA7 UID Size 04 (4) │ │ │ │ +04BA8 UID 00000000 (0) │ │ │ │ +04BAC GID Size 04 (4) │ │ │ │ +04BAD GID 00000000 (0) │ │ │ │ +04BB1 PAYLOAD │ │ │ │ + │ │ │ │ +04FA1 LOCAL HEADER #6 04034B50 (67324752) │ │ │ │ +04FA5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +04FA6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +04FA7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +04FA9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +04FAB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +04FAF CRC EC6C7C96 (3966532758) │ │ │ │ +04FB3 Compressed Size 000001AE (430) │ │ │ │ +04FB7 Uncompressed Size 000002FC (764) │ │ │ │ +04FBB Filename Length 0011 (17) │ │ │ │ +04FBD Extra Length 001C (28) │ │ │ │ +04FBF Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4FBF: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +04FD0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +04FD2 Length 0009 (9) │ │ │ │ +04FD4 Flags 03 (3) 'Modification Access' │ │ │ │ +04FD5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +04FD9 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +04FDD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +04FDF Length 000B (11) │ │ │ │ +04FE1 Version 01 (1) │ │ │ │ +04FE2 UID Size 04 (4) │ │ │ │ +04FE3 UID 00000000 (0) │ │ │ │ +04FE7 GID Size 04 (4) │ │ │ │ +04FE8 GID 00000000 (0) │ │ │ │ +04FEC PAYLOAD │ │ │ │ + │ │ │ │ +0519A LOCAL HEADER #7 04034B50 (67324752) │ │ │ │ +0519E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +0519F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +051A0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +051A2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +051A4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +051A8 CRC D4B33A03 (3568515587) │ │ │ │ +051AC Compressed Size 000020C8 (8392) │ │ │ │ +051B0 Uncompressed Size 0000B4B0 (46256) │ │ │ │ +051B4 Filename Length 001B (27) │ │ │ │ +051B6 Extra Length 001C (28) │ │ │ │ +051B8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x51B8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +051D3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +051D5 Length 0009 (9) │ │ │ │ +051D7 Flags 03 (3) 'Modification Access' │ │ │ │ +051D8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +051DC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +051E0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +051E2 Length 000B (11) │ │ │ │ +051E4 Version 01 (1) │ │ │ │ +051E5 UID Size 04 (4) │ │ │ │ +051E6 UID 00000000 (0) │ │ │ │ +051EA GID Size 04 (4) │ │ │ │ +051EB GID 00000000 (0) │ │ │ │ +051EF PAYLOAD │ │ │ │ + │ │ │ │ +072B7 LOCAL HEADER #8 04034B50 (67324752) │ │ │ │ +072BB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +072BC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +072BD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +072BF Compression Method 0008 (8) 'Deflated' │ │ │ │ +072C1 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +072C5 CRC 23989D4C (597204300) │ │ │ │ +072C9 Compressed Size 00000E6F (3695) │ │ │ │ +072CD Uncompressed Size 000030B2 (12466) │ │ │ │ +072D1 Filename Length 001D (29) │ │ │ │ +072D3 Extra Length 001C (28) │ │ │ │ +072D5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x72D5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +072F2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +072F4 Length 0009 (9) │ │ │ │ +072F6 Flags 03 (3) 'Modification Access' │ │ │ │ +072F7 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +072FB Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +072FF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +07301 Length 000B (11) │ │ │ │ +07303 Version 01 (1) │ │ │ │ +07304 UID Size 04 (4) │ │ │ │ +07305 UID 00000000 (0) │ │ │ │ +07309 GID Size 04 (4) │ │ │ │ +0730A GID 00000000 (0) │ │ │ │ +0730E PAYLOAD │ │ │ │ + │ │ │ │ +0817D LOCAL HEADER #9 04034B50 (67324752) │ │ │ │ +08181 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +08182 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +08183 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +08185 Compression Method 0008 (8) 'Deflated' │ │ │ │ +08187 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +0818B CRC E1B38941 (3786639681) │ │ │ │ +0818F Compressed Size 00000972 (2418) │ │ │ │ +08193 Uncompressed Size 00001CB2 (7346) │ │ │ │ +08197 Filename Length 0019 (25) │ │ │ │ +08199 Extra Length 001C (28) │ │ │ │ +0819B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x819B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +081B4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +081B6 Length 0009 (9) │ │ │ │ +081B8 Flags 03 (3) 'Modification Access' │ │ │ │ +081B9 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +081BD Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +081C1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +081C3 Length 000B (11) │ │ │ │ +081C5 Version 01 (1) │ │ │ │ +081C6 UID Size 04 (4) │ │ │ │ +081C7 UID 00000000 (0) │ │ │ │ +081CB GID Size 04 (4) │ │ │ │ +081CC GID 00000000 (0) │ │ │ │ +081D0 PAYLOAD │ │ │ │ + │ │ │ │ +08B42 LOCAL HEADER #10 04034B50 (67324752) │ │ │ │ +08B46 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +08B47 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +08B48 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +08B4A Compression Method 0008 (8) 'Deflated' │ │ │ │ +08B4C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +08B50 CRC 9E2E7F50 (2653847376) │ │ │ │ +08B54 Compressed Size 00003881 (14465) │ │ │ │ +08B58 Uncompressed Size 0000F7F4 (63476) │ │ │ │ +08B5C Filename Length 0015 (21) │ │ │ │ +08B5E Extra Length 001C (28) │ │ │ │ +08B60 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8B60: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +08B75 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +08B77 Length 0009 (9) │ │ │ │ +08B79 Flags 03 (3) 'Modification Access' │ │ │ │ +08B7A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +08B7E Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +08B82 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +08B84 Length 000B (11) │ │ │ │ +08B86 Version 01 (1) │ │ │ │ +08B87 UID Size 04 (4) │ │ │ │ +08B88 UID 00000000 (0) │ │ │ │ +08B8C GID Size 04 (4) │ │ │ │ +08B8D GID 00000000 (0) │ │ │ │ +08B91 PAYLOAD │ │ │ │ + │ │ │ │ +0C412 LOCAL HEADER #11 04034B50 (67324752) │ │ │ │ +0C416 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +0C417 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +0C418 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +0C41A Compression Method 0008 (8) 'Deflated' │ │ │ │ +0C41C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +0C420 CRC 98276CA5 (2552720549) │ │ │ │ +0C424 Compressed Size 0000AAE5 (43749) │ │ │ │ +0C428 Uncompressed Size 0003DFDE (253918) │ │ │ │ +0C42C Filename Length 0012 (18) │ │ │ │ +0C42E Extra Length 001C (28) │ │ │ │ +0C430 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0xC430: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +0C442 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +0C444 Length 0009 (9) │ │ │ │ +0C446 Flags 03 (3) 'Modification Access' │ │ │ │ +0C447 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +0C44B Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +0C44F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +0C451 Length 000B (11) │ │ │ │ +0C453 Version 01 (1) │ │ │ │ +0C454 UID Size 04 (4) │ │ │ │ +0C455 UID 00000000 (0) │ │ │ │ +0C459 GID Size 04 (4) │ │ │ │ +0C45A GID 00000000 (0) │ │ │ │ +0C45E PAYLOAD │ │ │ │ + │ │ │ │ +16F43 LOCAL HEADER #12 04034B50 (67324752) │ │ │ │ +16F47 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +16F48 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +16F49 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +16F4B Compression Method 0008 (8) 'Deflated' │ │ │ │ +16F4D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +16F51 CRC 800CFC1F (2148334623) │ │ │ │ +16F55 Compressed Size 00003B1F (15135) │ │ │ │ +16F59 Uncompressed Size 0001B2A0 (111264) │ │ │ │ +16F5D Filename Length 0015 (21) │ │ │ │ +16F5F Extra Length 001C (28) │ │ │ │ +16F61 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x16F61: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +16F76 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +16F78 Length 0009 (9) │ │ │ │ +16F7A Flags 03 (3) 'Modification Access' │ │ │ │ +16F7B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +16F7F Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +16F83 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +16F85 Length 000B (11) │ │ │ │ +16F87 Version 01 (1) │ │ │ │ +16F88 UID Size 04 (4) │ │ │ │ +16F89 UID 00000000 (0) │ │ │ │ +16F8D GID Size 04 (4) │ │ │ │ +16F8E GID 00000000 (0) │ │ │ │ +16F92 PAYLOAD │ │ │ │ + │ │ │ │ +1AAB1 LOCAL HEADER #13 04034B50 (67324752) │ │ │ │ +1AAB5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +1AAB6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +1AAB7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +1AAB9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +1AABB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +1AABF CRC 015406C9 (22283977) │ │ │ │ +1AAC3 Compressed Size 00009080 (36992) │ │ │ │ +1AAC7 Uncompressed Size 0003D05F (249951) │ │ │ │ +1AACB Filename Length 0014 (20) │ │ │ │ +1AACD Extra Length 001C (28) │ │ │ │ +1AACF Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x1AACF: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +1AAE3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +1AAE5 Length 0009 (9) │ │ │ │ +1AAE7 Flags 03 (3) 'Modification Access' │ │ │ │ +1AAE8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +1AAEC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +1AAF0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +1AAF2 Length 000B (11) │ │ │ │ +1AAF4 Version 01 (1) │ │ │ │ +1AAF5 UID Size 04 (4) │ │ │ │ +1AAF6 UID 00000000 (0) │ │ │ │ +1AAFA GID Size 04 (4) │ │ │ │ +1AAFB GID 00000000 (0) │ │ │ │ +1AAFF PAYLOAD │ │ │ │ + │ │ │ │ +23B7F LOCAL HEADER #14 04034B50 (67324752) │ │ │ │ +23B83 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +23B84 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +23B85 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +23B87 Compression Method 0008 (8) 'Deflated' │ │ │ │ +23B89 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +23B8D CRC 3023368D (807614093) │ │ │ │ +23B91 Compressed Size 00002A6A (10858) │ │ │ │ +23B95 Uncompressed Size 0001151F (70943) │ │ │ │ +23B99 Filename Length 0016 (22) │ │ │ │ +23B9B Extra Length 001C (28) │ │ │ │ +23B9D Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x23B9D: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +23BB3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +23BB5 Length 0009 (9) │ │ │ │ +23BB7 Flags 03 (3) 'Modification Access' │ │ │ │ +23BB8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +23BBC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +23BC0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +23BC2 Length 000B (11) │ │ │ │ +23BC4 Version 01 (1) │ │ │ │ +23BC5 UID Size 04 (4) │ │ │ │ +23BC6 UID 00000000 (0) │ │ │ │ +23BCA GID Size 04 (4) │ │ │ │ +23BCB GID 00000000 (0) │ │ │ │ +23BCF PAYLOAD │ │ │ │ + │ │ │ │ +26639 LOCAL HEADER #15 04034B50 (67324752) │ │ │ │ +2663D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2663E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2663F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +26641 Compression Method 0008 (8) 'Deflated' │ │ │ │ +26643 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +26647 CRC 27CCE3E0 (667739104) │ │ │ │ +2664B Compressed Size 000014D7 (5335) │ │ │ │ +2664F Uncompressed Size 00005176 (20854) │ │ │ │ +26653 Filename Length 001D (29) │ │ │ │ +26655 Extra Length 001C (28) │ │ │ │ +26657 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x26657: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +26674 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +26676 Length 0009 (9) │ │ │ │ +26678 Flags 03 (3) 'Modification Access' │ │ │ │ +26679 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2667D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +26681 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +26683 Length 000B (11) │ │ │ │ +26685 Version 01 (1) │ │ │ │ +26686 UID Size 04 (4) │ │ │ │ +26687 UID 00000000 (0) │ │ │ │ +2668B GID Size 04 (4) │ │ │ │ +2668C GID 00000000 (0) │ │ │ │ +26690 PAYLOAD │ │ │ │ + │ │ │ │ +27B67 LOCAL HEADER #16 04034B50 (67324752) │ │ │ │ +27B6B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +27B6C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +27B6D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +27B6F Compression Method 0008 (8) 'Deflated' │ │ │ │ +27B71 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +27B75 CRC 708ABA9B (1888139931) │ │ │ │ +27B79 Compressed Size 000037F7 (14327) │ │ │ │ +27B7D Uncompressed Size 0000E9F0 (59888) │ │ │ │ +27B81 Filename Length 001C (28) │ │ │ │ +27B83 Extra Length 001C (28) │ │ │ │ +27B85 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x27B85: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +27BA1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +27BA3 Length 0009 (9) │ │ │ │ +27BA5 Flags 03 (3) 'Modification Access' │ │ │ │ +27BA6 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +27BAA Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +27BAE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +27BB0 Length 000B (11) │ │ │ │ +27BB2 Version 01 (1) │ │ │ │ +27BB3 UID Size 04 (4) │ │ │ │ +27BB4 UID 00000000 (0) │ │ │ │ +27BB8 GID Size 04 (4) │ │ │ │ +27BB9 GID 00000000 (0) │ │ │ │ +27BBD PAYLOAD │ │ │ │ + │ │ │ │ +2B3B4 LOCAL HEADER #17 04034B50 (67324752) │ │ │ │ +2B3B8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2B3B9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2B3BA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2B3BC Compression Method 0008 (8) 'Deflated' │ │ │ │ +2B3BE Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +2B3C2 CRC B106FD76 (2970025334) │ │ │ │ +2B3C6 Compressed Size 000006A0 (1696) │ │ │ │ +2B3CA Uncompressed Size 000011F4 (4596) │ │ │ │ +2B3CE Filename Length 001C (28) │ │ │ │ +2B3D0 Extra Length 001C (28) │ │ │ │ +2B3D2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2B3D2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2B3EE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2B3F0 Length 0009 (9) │ │ │ │ +2B3F2 Flags 03 (3) 'Modification Access' │ │ │ │ +2B3F3 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2B3F7 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2B3FB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2B3FD Length 000B (11) │ │ │ │ +2B3FF Version 01 (1) │ │ │ │ +2B400 UID Size 04 (4) │ │ │ │ +2B401 UID 00000000 (0) │ │ │ │ +2B405 GID Size 04 (4) │ │ │ │ +2B406 GID 00000000 (0) │ │ │ │ +2B40A PAYLOAD │ │ │ │ + │ │ │ │ +2BAAA LOCAL HEADER #18 04034B50 (67324752) │ │ │ │ +2BAAE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2BAAF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2BAB0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2BAB2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +2BAB4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +2BAB8 CRC 765E92C8 (1985909448) │ │ │ │ +2BABC Compressed Size 0000107D (4221) │ │ │ │ +2BAC0 Uncompressed Size 00004BFF (19455) │ │ │ │ +2BAC4 Filename Length 001B (27) │ │ │ │ +2BAC6 Extra Length 001C (28) │ │ │ │ +2BAC8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2BAC8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2BAE3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2BAE5 Length 0009 (9) │ │ │ │ +2BAE7 Flags 03 (3) 'Modification Access' │ │ │ │ +2BAE8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2BAEC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2BAF0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2BAF2 Length 000B (11) │ │ │ │ +2BAF4 Version 01 (1) │ │ │ │ +2BAF5 UID Size 04 (4) │ │ │ │ +2BAF6 UID 00000000 (0) │ │ │ │ +2BAFA GID Size 04 (4) │ │ │ │ +2BAFB GID 00000000 (0) │ │ │ │ +2BAFF PAYLOAD │ │ │ │ + │ │ │ │ +2CB7C LOCAL HEADER #19 04034B50 (67324752) │ │ │ │ +2CB80 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2CB81 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2CB82 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2CB84 Compression Method 0008 (8) 'Deflated' │ │ │ │ +2CB86 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +2CB8A CRC E303CABF (3808676543) │ │ │ │ +2CB8E Compressed Size 000033AB (13227) │ │ │ │ +2CB92 Uncompressed Size 0000BC94 (48276) │ │ │ │ +2CB96 Filename Length 001D (29) │ │ │ │ +2CB98 Extra Length 001C (28) │ │ │ │ +2CB9A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2CB9A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2CBB7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2CBB9 Length 0009 (9) │ │ │ │ +2CBBB Flags 03 (3) 'Modification Access' │ │ │ │ +2CBBC Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2CBC0 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2CBC4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2CBC6 Length 000B (11) │ │ │ │ +2CBC8 Version 01 (1) │ │ │ │ +2CBC9 UID Size 04 (4) │ │ │ │ +2CBCA UID 00000000 (0) │ │ │ │ +2CBCE GID Size 04 (4) │ │ │ │ +2CBCF GID 00000000 (0) │ │ │ │ +2CBD3 PAYLOAD │ │ │ │ + │ │ │ │ +2FF7E LOCAL HEADER #20 04034B50 (67324752) │ │ │ │ +2FF82 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2FF83 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2FF84 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2FF86 Compression Method 0008 (8) 'Deflated' │ │ │ │ +2FF88 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +2FF8C CRC 1F8C6C23 (529296419) │ │ │ │ +2FF90 Compressed Size 00000D6B (3435) │ │ │ │ +2FF94 Uncompressed Size 00003876 (14454) │ │ │ │ +2FF98 Filename Length 001D (29) │ │ │ │ +2FF9A Extra Length 001C (28) │ │ │ │ +2FF9C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2FF9C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2FFB9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2FFBB Length 0009 (9) │ │ │ │ +2FFBD Flags 03 (3) 'Modification Access' │ │ │ │ +2FFBE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2FFC2 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +2FFC6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2FFC8 Length 000B (11) │ │ │ │ +2FFCA Version 01 (1) │ │ │ │ +2FFCB UID Size 04 (4) │ │ │ │ +2FFCC UID 00000000 (0) │ │ │ │ +2FFD0 GID Size 04 (4) │ │ │ │ +2FFD1 GID 00000000 (0) │ │ │ │ +2FFD5 PAYLOAD │ │ │ │ + │ │ │ │ +30D40 LOCAL HEADER #21 04034B50 (67324752) │ │ │ │ +30D44 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +30D45 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +30D46 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +30D48 Compression Method 0008 (8) 'Deflated' │ │ │ │ +30D4A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +30D4E CRC 70397159 (1882812761) │ │ │ │ +30D52 Compressed Size 00001C6E (7278) │ │ │ │ +30D56 Uncompressed Size 0000C186 (49542) │ │ │ │ +30D5A Filename Length 001A (26) │ │ │ │ +30D5C Extra Length 001C (28) │ │ │ │ +30D5E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x30D5E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +30D78 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +30D7A Length 0009 (9) │ │ │ │ +30D7C Flags 03 (3) 'Modification Access' │ │ │ │ +30D7D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +30D81 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +30D85 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +30D87 Length 000B (11) │ │ │ │ +30D89 Version 01 (1) │ │ │ │ +30D8A UID Size 04 (4) │ │ │ │ +30D8B UID 00000000 (0) │ │ │ │ +30D8F GID Size 04 (4) │ │ │ │ +30D90 GID 00000000 (0) │ │ │ │ +30D94 PAYLOAD │ │ │ │ + │ │ │ │ +32A02 LOCAL HEADER #22 04034B50 (67324752) │ │ │ │ +32A06 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +32A07 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +32A08 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +32A0A Compression Method 0008 (8) 'Deflated' │ │ │ │ +32A0C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +32A10 CRC 2632F341 (640873281) │ │ │ │ +32A14 Compressed Size 000003A3 (931) │ │ │ │ +32A18 Uncompressed Size 0000088E (2190) │ │ │ │ +32A1C Filename Length 0012 (18) │ │ │ │ +32A1E Extra Length 001C (28) │ │ │ │ +32A20 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x32A20: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +32A32 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +32A34 Length 0009 (9) │ │ │ │ +32A36 Flags 03 (3) 'Modification Access' │ │ │ │ +32A37 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +32A3B Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +32A3F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +32A41 Length 000B (11) │ │ │ │ +32A43 Version 01 (1) │ │ │ │ +32A44 UID Size 04 (4) │ │ │ │ +32A45 UID 00000000 (0) │ │ │ │ +32A49 GID Size 04 (4) │ │ │ │ +32A4A GID 00000000 (0) │ │ │ │ +32A4E PAYLOAD │ │ │ │ + │ │ │ │ +32DF1 LOCAL HEADER #23 04034B50 (67324752) │ │ │ │ +32DF5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +32DF6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +32DF7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +32DF9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +32DFB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +32DFF CRC 24939ACA (613653194) │ │ │ │ +32E03 Compressed Size 000001D4 (468) │ │ │ │ +32E07 Uncompressed Size 00000311 (785) │ │ │ │ +32E0B Filename Length 0020 (32) │ │ │ │ +32E0D Extra Length 001C (28) │ │ │ │ +32E0F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x32E0F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +32E2F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +32E31 Length 0009 (9) │ │ │ │ +32E33 Flags 03 (3) 'Modification Access' │ │ │ │ +32E34 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +32E38 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +32E3C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +32E3E Length 000B (11) │ │ │ │ +32E40 Version 01 (1) │ │ │ │ +32E41 UID Size 04 (4) │ │ │ │ +32E42 UID 00000000 (0) │ │ │ │ +32E46 GID Size 04 (4) │ │ │ │ +32E47 GID 00000000 (0) │ │ │ │ +32E4B PAYLOAD │ │ │ │ + │ │ │ │ +3301F LOCAL HEADER #24 04034B50 (67324752) │ │ │ │ +33023 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +33024 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +33025 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +33027 Compression Method 0008 (8) 'Deflated' │ │ │ │ +33029 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3302D CRC B04B92DE (2957742814) │ │ │ │ +33031 Compressed Size 000017A6 (6054) │ │ │ │ +33035 Uncompressed Size 00009CD3 (40147) │ │ │ │ +33039 Filename Length 001B (27) │ │ │ │ +3303B Extra Length 001C (28) │ │ │ │ +3303D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3303D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +33058 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3305A Length 0009 (9) │ │ │ │ +3305C Flags 03 (3) 'Modification Access' │ │ │ │ +3305D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +33061 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +33065 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +33067 Length 000B (11) │ │ │ │ +33069 Version 01 (1) │ │ │ │ +3306A UID Size 04 (4) │ │ │ │ +3306B UID 00000000 (0) │ │ │ │ +3306F GID Size 04 (4) │ │ │ │ +33070 GID 00000000 (0) │ │ │ │ +33074 PAYLOAD │ │ │ │ + │ │ │ │ +3481A LOCAL HEADER #25 04034B50 (67324752) │ │ │ │ +3481E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3481F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +34820 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +34822 Compression Method 0008 (8) 'Deflated' │ │ │ │ +34824 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +34828 CRC 454623A7 (1162224551) │ │ │ │ +3482C Compressed Size 00001371 (4977) │ │ │ │ +34830 Uncompressed Size 00003B66 (15206) │ │ │ │ +34834 Filename Length 0015 (21) │ │ │ │ +34836 Extra Length 001C (28) │ │ │ │ +34838 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x34838: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3484D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3484F Length 0009 (9) │ │ │ │ +34851 Flags 03 (3) 'Modification Access' │ │ │ │ +34852 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +34856 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3485A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3485C Length 000B (11) │ │ │ │ +3485E Version 01 (1) │ │ │ │ +3485F UID Size 04 (4) │ │ │ │ +34860 UID 00000000 (0) │ │ │ │ +34864 GID Size 04 (4) │ │ │ │ +34865 GID 00000000 (0) │ │ │ │ +34869 PAYLOAD │ │ │ │ + │ │ │ │ +35BDA LOCAL HEADER #26 04034B50 (67324752) │ │ │ │ +35BDE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +35BDF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +35BE0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +35BE2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +35BE4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +35BE8 CRC 081E11CF (136188367) │ │ │ │ +35BEC Compressed Size 00000AD1 (2769) │ │ │ │ +35BF0 Uncompressed Size 00002135 (8501) │ │ │ │ +35BF4 Filename Length 0011 (17) │ │ │ │ +35BF6 Extra Length 001C (28) │ │ │ │ +35BF8 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x35BF8: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +35C09 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +35C0B Length 0009 (9) │ │ │ │ +35C0D Flags 03 (3) 'Modification Access' │ │ │ │ +35C0E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +35C12 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +35C16 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +35C18 Length 000B (11) │ │ │ │ +35C1A Version 01 (1) │ │ │ │ +35C1B UID Size 04 (4) │ │ │ │ +35C1C UID 00000000 (0) │ │ │ │ +35C20 GID Size 04 (4) │ │ │ │ +35C21 GID 00000000 (0) │ │ │ │ +35C25 PAYLOAD │ │ │ │ + │ │ │ │ +366F6 LOCAL HEADER #27 04034B50 (67324752) │ │ │ │ +366FA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +366FB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +366FC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +366FE Compression Method 0008 (8) 'Deflated' │ │ │ │ +36700 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +36704 CRC 060B699E (101411230) │ │ │ │ +36708 Compressed Size 000003FE (1022) │ │ │ │ +3670C Uncompressed Size 00000E99 (3737) │ │ │ │ +36710 Filename Length 0014 (20) │ │ │ │ +36712 Extra Length 001C (28) │ │ │ │ +36714 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x36714: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +36728 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3672A Length 0009 (9) │ │ │ │ +3672C Flags 03 (3) 'Modification Access' │ │ │ │ +3672D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +36731 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +36735 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +36737 Length 000B (11) │ │ │ │ +36739 Version 01 (1) │ │ │ │ +3673A UID Size 04 (4) │ │ │ │ +3673B UID 00000000 (0) │ │ │ │ +3673F GID Size 04 (4) │ │ │ │ +36740 GID 00000000 (0) │ │ │ │ +36744 PAYLOAD │ │ │ │ + │ │ │ │ +36B42 LOCAL HEADER #28 04034B50 (67324752) │ │ │ │ +36B46 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +36B47 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +36B48 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +36B4A Compression Method 0008 (8) 'Deflated' │ │ │ │ +36B4C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +36B50 CRC 009A6A7C (10119804) │ │ │ │ +36B54 Compressed Size 00001261 (4705) │ │ │ │ +36B58 Uncompressed Size 00003469 (13417) │ │ │ │ +36B5C Filename Length 0014 (20) │ │ │ │ +36B5E Extra Length 001C (28) │ │ │ │ +36B60 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x36B60: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +36B74 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +36B76 Length 0009 (9) │ │ │ │ +36B78 Flags 03 (3) 'Modification Access' │ │ │ │ +36B79 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +36B7D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +36B81 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +36B83 Length 000B (11) │ │ │ │ +36B85 Version 01 (1) │ │ │ │ +36B86 UID Size 04 (4) │ │ │ │ +36B87 UID 00000000 (0) │ │ │ │ +36B8B GID Size 04 (4) │ │ │ │ +36B8C GID 00000000 (0) │ │ │ │ +36B90 PAYLOAD │ │ │ │ + │ │ │ │ +37DF1 LOCAL HEADER #29 04034B50 (67324752) │ │ │ │ +37DF5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +37DF6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +37DF7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +37DF9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +37DFB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +37DFF CRC 524B62FF (1380672255) │ │ │ │ +37E03 Compressed Size 00000ACF (2767) │ │ │ │ +37E07 Uncompressed Size 000022FF (8959) │ │ │ │ +37E0B Filename Length 001B (27) │ │ │ │ +37E0D Extra Length 001C (28) │ │ │ │ +37E0F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x37E0F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +37E2A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +37E2C Length 0009 (9) │ │ │ │ +37E2E Flags 03 (3) 'Modification Access' │ │ │ │ +37E2F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +37E33 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +37E37 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +37E39 Length 000B (11) │ │ │ │ +37E3B Version 01 (1) │ │ │ │ +37E3C UID Size 04 (4) │ │ │ │ +37E3D UID 00000000 (0) │ │ │ │ +37E41 GID Size 04 (4) │ │ │ │ +37E42 GID 00000000 (0) │ │ │ │ +37E46 PAYLOAD │ │ │ │ + │ │ │ │ +38915 LOCAL HEADER #30 04034B50 (67324752) │ │ │ │ +38919 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3891A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3891B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3891D Compression Method 0008 (8) 'Deflated' │ │ │ │ +3891F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +38923 CRC A19C4C41 (2711374913) │ │ │ │ +38927 Compressed Size 00000A8D (2701) │ │ │ │ +3892B Uncompressed Size 0000237A (9082) │ │ │ │ +3892F Filename Length 0013 (19) │ │ │ │ +38931 Extra Length 001C (28) │ │ │ │ +38933 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x38933: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +38946 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +38948 Length 0009 (9) │ │ │ │ +3894A Flags 03 (3) 'Modification Access' │ │ │ │ +3894B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3894F Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +38953 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +38955 Length 000B (11) │ │ │ │ +38957 Version 01 (1) │ │ │ │ +38958 UID Size 04 (4) │ │ │ │ +38959 UID 00000000 (0) │ │ │ │ +3895D GID Size 04 (4) │ │ │ │ +3895E GID 00000000 (0) │ │ │ │ +38962 PAYLOAD │ │ │ │ + │ │ │ │ +393EF LOCAL HEADER #31 04034B50 (67324752) │ │ │ │ +393F3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +393F4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +393F5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +393F7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +393F9 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +393FD CRC 7611A41A (1980867610) │ │ │ │ +39401 Compressed Size 00000F48 (3912) │ │ │ │ +39405 Uncompressed Size 000036F1 (14065) │ │ │ │ +39409 Filename Length 000F (15) │ │ │ │ +3940B Extra Length 001C (28) │ │ │ │ +3940D Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3940D: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3941C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3941E Length 0009 (9) │ │ │ │ +39420 Flags 03 (3) 'Modification Access' │ │ │ │ +39421 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +39425 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +39429 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3942B Length 000B (11) │ │ │ │ +3942D Version 01 (1) │ │ │ │ +3942E UID Size 04 (4) │ │ │ │ +3942F UID 00000000 (0) │ │ │ │ +39433 GID Size 04 (4) │ │ │ │ +39434 GID 00000000 (0) │ │ │ │ +39438 PAYLOAD │ │ │ │ + │ │ │ │ +3A380 LOCAL HEADER #32 04034B50 (67324752) │ │ │ │ +3A384 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3A385 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3A386 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3A388 Compression Method 0008 (8) 'Deflated' │ │ │ │ +3A38A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3A38E CRC 262FB9B0 (640661936) │ │ │ │ +3A392 Compressed Size 0000066A (1642) │ │ │ │ +3A396 Uncompressed Size 000018DF (6367) │ │ │ │ +3A39A Filename Length 000F (15) │ │ │ │ +3A39C Extra Length 001C (28) │ │ │ │ +3A39E Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3A39E: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3A3AD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3A3AF Length 0009 (9) │ │ │ │ +3A3B1 Flags 03 (3) 'Modification Access' │ │ │ │ +3A3B2 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3A3B6 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3A3BA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3A3BC Length 000B (11) │ │ │ │ +3A3BE Version 01 (1) │ │ │ │ +3A3BF UID Size 04 (4) │ │ │ │ +3A3C0 UID 00000000 (0) │ │ │ │ +3A3C4 GID Size 04 (4) │ │ │ │ +3A3C5 GID 00000000 (0) │ │ │ │ +3A3C9 PAYLOAD │ │ │ │ + │ │ │ │ +3AA33 LOCAL HEADER #33 04034B50 (67324752) │ │ │ │ +3AA37 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3AA38 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3AA39 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3AA3B Compression Method 0008 (8) 'Deflated' │ │ │ │ +3AA3D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3AA41 CRC 9162E9C5 (2439178693) │ │ │ │ +3AA45 Compressed Size 00001A46 (6726) │ │ │ │ +3AA49 Uncompressed Size 000064F2 (25842) │ │ │ │ +3AA4D Filename Length 0013 (19) │ │ │ │ +3AA4F Extra Length 001C (28) │ │ │ │ +3AA51 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3AA51: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3AA64 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3AA66 Length 0009 (9) │ │ │ │ +3AA68 Flags 03 (3) 'Modification Access' │ │ │ │ +3AA69 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3AA6D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3AA71 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3AA73 Length 000B (11) │ │ │ │ +3AA75 Version 01 (1) │ │ │ │ +3AA76 UID Size 04 (4) │ │ │ │ +3AA77 UID 00000000 (0) │ │ │ │ +3AA7B GID Size 04 (4) │ │ │ │ +3AA7C GID 00000000 (0) │ │ │ │ +3AA80 PAYLOAD │ │ │ │ + │ │ │ │ +3C4C6 LOCAL HEADER #34 04034B50 (67324752) │ │ │ │ +3C4CA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3C4CB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3C4CC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3C4CE Compression Method 0008 (8) 'Deflated' │ │ │ │ +3C4D0 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3C4D4 CRC 936899C3 (2473105859) │ │ │ │ +3C4D8 Compressed Size 000009A6 (2470) │ │ │ │ +3C4DC Uncompressed Size 00001B64 (7012) │ │ │ │ +3C4E0 Filename Length 0010 (16) │ │ │ │ +3C4E2 Extra Length 001C (28) │ │ │ │ +3C4E4 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3C4E4: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3C4F4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3C4F6 Length 0009 (9) │ │ │ │ +3C4F8 Flags 03 (3) 'Modification Access' │ │ │ │ +3C4F9 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3C4FD Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3C501 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3C503 Length 000B (11) │ │ │ │ +3C505 Version 01 (1) │ │ │ │ +3C506 UID Size 04 (4) │ │ │ │ +3C507 UID 00000000 (0) │ │ │ │ +3C50B GID Size 04 (4) │ │ │ │ +3C50C GID 00000000 (0) │ │ │ │ +3C510 PAYLOAD │ │ │ │ + │ │ │ │ +3CEB6 LOCAL HEADER #35 04034B50 (67324752) │ │ │ │ +3CEBA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3CEBB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3CEBC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3CEBE Compression Method 0008 (8) 'Deflated' │ │ │ │ +3CEC0 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3CEC4 CRC E9E04E21 (3923791393) │ │ │ │ +3CEC8 Compressed Size 000006B7 (1719) │ │ │ │ +3CECC Uncompressed Size 00001565 (5477) │ │ │ │ +3CED0 Filename Length 0012 (18) │ │ │ │ +3CED2 Extra Length 001C (28) │ │ │ │ +3CED4 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3CED4: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3CEE6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3CEE8 Length 0009 (9) │ │ │ │ +3CEEA Flags 03 (3) 'Modification Access' │ │ │ │ +3CEEB Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3CEEF Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3CEF3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3CEF5 Length 000B (11) │ │ │ │ +3CEF7 Version 01 (1) │ │ │ │ +3CEF8 UID Size 04 (4) │ │ │ │ +3CEF9 UID 00000000 (0) │ │ │ │ +3CEFD GID Size 04 (4) │ │ │ │ +3CEFE GID 00000000 (0) │ │ │ │ +3CF02 PAYLOAD │ │ │ │ + │ │ │ │ +3D5B9 LOCAL HEADER #36 04034B50 (67324752) │ │ │ │ +3D5BD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3D5BE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3D5BF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3D5C1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +3D5C3 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +3D5C7 CRC B6412840 (3057723456) │ │ │ │ +3D5CB Compressed Size 00002A17 (10775) │ │ │ │ +3D5CF Uncompressed Size 0000B1C5 (45509) │ │ │ │ +3D5D3 Filename Length 0010 (16) │ │ │ │ +3D5D5 Extra Length 001C (28) │ │ │ │ +3D5D7 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3D5D7: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3D5E7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3D5E9 Length 0009 (9) │ │ │ │ +3D5EB Flags 03 (3) 'Modification Access' │ │ │ │ +3D5EC Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3D5F0 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +3D5F4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3D5F6 Length 000B (11) │ │ │ │ +3D5F8 Version 01 (1) │ │ │ │ +3D5F9 UID Size 04 (4) │ │ │ │ +3D5FA UID 00000000 (0) │ │ │ │ +3D5FE GID Size 04 (4) │ │ │ │ +3D5FF GID 00000000 (0) │ │ │ │ +3D603 PAYLOAD │ │ │ │ + │ │ │ │ +4001A LOCAL HEADER #37 04034B50 (67324752) │ │ │ │ +4001E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4001F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +40020 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +40022 Compression Method 0008 (8) 'Deflated' │ │ │ │ +40024 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +40028 CRC CDDACEB0 (3453669040) │ │ │ │ +4002C Compressed Size 00001E85 (7813) │ │ │ │ +40030 Uncompressed Size 00009AAA (39594) │ │ │ │ +40034 Filename Length 0012 (18) │ │ │ │ +40036 Extra Length 001C (28) │ │ │ │ +40038 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x40038: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4004A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4004C Length 0009 (9) │ │ │ │ +4004E Flags 03 (3) 'Modification Access' │ │ │ │ +4004F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +40053 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +40057 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +40059 Length 000B (11) │ │ │ │ +4005B Version 01 (1) │ │ │ │ +4005C UID Size 04 (4) │ │ │ │ +4005D UID 00000000 (0) │ │ │ │ +40061 GID Size 04 (4) │ │ │ │ +40062 GID 00000000 (0) │ │ │ │ +40066 PAYLOAD │ │ │ │ + │ │ │ │ +41EEB LOCAL HEADER #38 04034B50 (67324752) │ │ │ │ +41EEF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +41EF0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +41EF1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +41EF3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +41EF5 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +41EF9 CRC BBEBBCD8 (3152788696) │ │ │ │ +41EFD Compressed Size 0000147D (5245) │ │ │ │ +41F01 Uncompressed Size 00007ACF (31439) │ │ │ │ +41F05 Filename Length 0018 (24) │ │ │ │ +41F07 Extra Length 001C (28) │ │ │ │ +41F09 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x41F09: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +41F21 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +41F23 Length 0009 (9) │ │ │ │ +41F25 Flags 03 (3) 'Modification Access' │ │ │ │ +41F26 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +41F2A Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +41F2E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +41F30 Length 000B (11) │ │ │ │ +41F32 Version 01 (1) │ │ │ │ +41F33 UID Size 04 (4) │ │ │ │ +41F34 UID 00000000 (0) │ │ │ │ +41F38 GID Size 04 (4) │ │ │ │ +41F39 GID 00000000 (0) │ │ │ │ +41F3D PAYLOAD │ │ │ │ + │ │ │ │ +433BA LOCAL HEADER #39 04034B50 (67324752) │ │ │ │ +433BE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +433BF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +433C0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +433C2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +433C4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +433C8 CRC 6789049D (1737032861) │ │ │ │ +433CC Compressed Size 000018D5 (6357) │ │ │ │ +433D0 Uncompressed Size 0000A7F4 (42996) │ │ │ │ +433D4 Filename Length 001F (31) │ │ │ │ +433D6 Extra Length 001C (28) │ │ │ │ +433D8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x433D8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +433F7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +433F9 Length 0009 (9) │ │ │ │ +433FB Flags 03 (3) 'Modification Access' │ │ │ │ +433FC Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +43400 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +43404 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +43406 Length 000B (11) │ │ │ │ +43408 Version 01 (1) │ │ │ │ +43409 UID Size 04 (4) │ │ │ │ +4340A UID 00000000 (0) │ │ │ │ +4340E GID Size 04 (4) │ │ │ │ +4340F GID 00000000 (0) │ │ │ │ +43413 PAYLOAD │ │ │ │ + │ │ │ │ +44CE8 LOCAL HEADER #40 04034B50 (67324752) │ │ │ │ +44CEC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +44CED Extract OS 00 (0) 'MS-DOS' │ │ │ │ +44CEE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +44CF0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +44CF2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +44CF6 CRC D64849DE (3595061726) │ │ │ │ +44CFA Compressed Size 000003F7 (1015) │ │ │ │ +44CFE Uncompressed Size 000008A3 (2211) │ │ │ │ +44D02 Filename Length 001E (30) │ │ │ │ +44D04 Extra Length 001C (28) │ │ │ │ +44D06 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x44D06: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +44D24 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +44D26 Length 0009 (9) │ │ │ │ +44D28 Flags 03 (3) 'Modification Access' │ │ │ │ +44D29 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +44D2D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +44D31 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +44D33 Length 000B (11) │ │ │ │ +44D35 Version 01 (1) │ │ │ │ +44D36 UID Size 04 (4) │ │ │ │ +44D37 UID 00000000 (0) │ │ │ │ +44D3B GID Size 04 (4) │ │ │ │ +44D3C GID 00000000 (0) │ │ │ │ +44D40 PAYLOAD │ │ │ │ + │ │ │ │ +45137 LOCAL HEADER #41 04034B50 (67324752) │ │ │ │ +4513B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4513C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4513D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4513F Compression Method 0008 (8) 'Deflated' │ │ │ │ +45141 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +45145 CRC 9488B892 (2491988114) │ │ │ │ +45149 Compressed Size 00004293 (17043) │ │ │ │ +4514D Uncompressed Size 0000D8DC (55516) │ │ │ │ +45151 Filename Length 0013 (19) │ │ │ │ +45153 Extra Length 001C (28) │ │ │ │ +45155 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x45155: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +45168 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4516A Length 0009 (9) │ │ │ │ +4516C Flags 03 (3) 'Modification Access' │ │ │ │ +4516D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +45171 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +45175 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +45177 Length 000B (11) │ │ │ │ +45179 Version 01 (1) │ │ │ │ +4517A UID Size 04 (4) │ │ │ │ +4517B UID 00000000 (0) │ │ │ │ +4517F GID Size 04 (4) │ │ │ │ +45180 GID 00000000 (0) │ │ │ │ +45184 PAYLOAD │ │ │ │ + │ │ │ │ +49417 LOCAL HEADER #42 04034B50 (67324752) │ │ │ │ +4941B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4941C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4941D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4941F Compression Method 0008 (8) 'Deflated' │ │ │ │ +49421 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +49425 CRC 1C75F308 (477491976) │ │ │ │ +49429 Compressed Size 000026C4 (9924) │ │ │ │ +4942D Uncompressed Size 00006E45 (28229) │ │ │ │ +49431 Filename Length 0019 (25) │ │ │ │ +49433 Extra Length 001C (28) │ │ │ │ +49435 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x49435: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4944E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +49450 Length 0009 (9) │ │ │ │ +49452 Flags 03 (3) 'Modification Access' │ │ │ │ +49453 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +49457 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4945B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4945D Length 000B (11) │ │ │ │ +4945F Version 01 (1) │ │ │ │ +49460 UID Size 04 (4) │ │ │ │ +49461 UID 00000000 (0) │ │ │ │ +49465 GID Size 04 (4) │ │ │ │ +49466 GID 00000000 (0) │ │ │ │ +4946A PAYLOAD │ │ │ │ + │ │ │ │ +4BB2E LOCAL HEADER #43 04034B50 (67324752) │ │ │ │ +4BB32 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4BB33 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4BB34 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4BB36 Compression Method 0008 (8) 'Deflated' │ │ │ │ +4BB38 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +4BB3C CRC 8F94BE1C (2408889884) │ │ │ │ +4BB40 Compressed Size 00002739 (10041) │ │ │ │ +4BB44 Uncompressed Size 00008B83 (35715) │ │ │ │ +4BB48 Filename Length 0019 (25) │ │ │ │ +4BB4A Extra Length 001C (28) │ │ │ │ +4BB4C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4BB4C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4BB65 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4BB67 Length 0009 (9) │ │ │ │ +4BB69 Flags 03 (3) 'Modification Access' │ │ │ │ +4BB6A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4BB6E Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4BB72 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4BB74 Length 000B (11) │ │ │ │ +4BB76 Version 01 (1) │ │ │ │ +4BB77 UID Size 04 (4) │ │ │ │ +4BB78 UID 00000000 (0) │ │ │ │ +4BB7C GID Size 04 (4) │ │ │ │ +4BB7D GID 00000000 (0) │ │ │ │ +4BB81 PAYLOAD │ │ │ │ + │ │ │ │ +4E2BA LOCAL HEADER #44 04034B50 (67324752) │ │ │ │ +4E2BE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4E2BF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4E2C0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4E2C2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +4E2C4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +4E2C8 CRC 54874F5D (1418153821) │ │ │ │ +4E2CC Compressed Size 00000CEF (3311) │ │ │ │ +4E2D0 Uncompressed Size 0000517A (20858) │ │ │ │ +4E2D4 Filename Length 0021 (33) │ │ │ │ +4E2D6 Extra Length 001C (28) │ │ │ │ +4E2D8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4E2D8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4E2F9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4E2FB Length 0009 (9) │ │ │ │ +4E2FD Flags 03 (3) 'Modification Access' │ │ │ │ +4E2FE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4E302 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4E306 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4E308 Length 000B (11) │ │ │ │ +4E30A Version 01 (1) │ │ │ │ +4E30B UID Size 04 (4) │ │ │ │ +4E30C UID 00000000 (0) │ │ │ │ +4E310 GID Size 04 (4) │ │ │ │ +4E311 GID 00000000 (0) │ │ │ │ +4E315 PAYLOAD │ │ │ │ + │ │ │ │ +4F004 LOCAL HEADER #45 04034B50 (67324752) │ │ │ │ +4F008 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4F009 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4F00A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4F00C Compression Method 0008 (8) 'Deflated' │ │ │ │ +4F00E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +4F012 CRC 07042E48 (117714504) │ │ │ │ +4F016 Compressed Size 00000468 (1128) │ │ │ │ +4F01A Uncompressed Size 00000931 (2353) │ │ │ │ +4F01E Filename Length 001B (27) │ │ │ │ +4F020 Extra Length 001C (28) │ │ │ │ +4F022 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4F022: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4F03D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4F03F Length 0009 (9) │ │ │ │ +4F041 Flags 03 (3) 'Modification Access' │ │ │ │ +4F042 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4F046 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4F04A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4F04C Length 000B (11) │ │ │ │ +4F04E Version 01 (1) │ │ │ │ +4F04F UID Size 04 (4) │ │ │ │ +4F050 UID 00000000 (0) │ │ │ │ +4F054 GID Size 04 (4) │ │ │ │ +4F055 GID 00000000 (0) │ │ │ │ +4F059 PAYLOAD │ │ │ │ + │ │ │ │ +4F4C1 LOCAL HEADER #46 04034B50 (67324752) │ │ │ │ +4F4C5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4F4C6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4F4C7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4F4C9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +4F4CB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +4F4CF CRC 7EF1E920 (2129783072) │ │ │ │ +4F4D3 Compressed Size 000016F2 (5874) │ │ │ │ +4F4D7 Uncompressed Size 00007A6D (31341) │ │ │ │ +4F4DB Filename Length 001F (31) │ │ │ │ +4F4DD Extra Length 001C (28) │ │ │ │ +4F4DF Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4F4DF: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4F4FE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4F500 Length 0009 (9) │ │ │ │ +4F502 Flags 03 (3) 'Modification Access' │ │ │ │ +4F503 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4F507 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +4F50B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4F50D Length 000B (11) │ │ │ │ +4F50F Version 01 (1) │ │ │ │ +4F510 UID Size 04 (4) │ │ │ │ +4F511 UID 00000000 (0) │ │ │ │ +4F515 GID Size 04 (4) │ │ │ │ +4F516 GID 00000000 (0) │ │ │ │ +4F51A PAYLOAD │ │ │ │ + │ │ │ │ +50C0C LOCAL HEADER #47 04034B50 (67324752) │ │ │ │ +50C10 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +50C11 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +50C12 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +50C14 Compression Method 0008 (8) 'Deflated' │ │ │ │ +50C16 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +50C1A CRC F0A17B59 (4037114713) │ │ │ │ +50C1E Compressed Size 0000416B (16747) │ │ │ │ +50C22 Uncompressed Size 0001CF93 (118675) │ │ │ │ +50C26 Filename Length 0010 (16) │ │ │ │ +50C28 Extra Length 001C (28) │ │ │ │ +50C2A Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x50C2A: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +50C3A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +50C3C Length 0009 (9) │ │ │ │ +50C3E Flags 03 (3) 'Modification Access' │ │ │ │ +50C3F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +50C43 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +50C47 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +50C49 Length 000B (11) │ │ │ │ +50C4B Version 01 (1) │ │ │ │ +50C4C UID Size 04 (4) │ │ │ │ +50C4D UID 00000000 (0) │ │ │ │ +50C51 GID Size 04 (4) │ │ │ │ +50C52 GID 00000000 (0) │ │ │ │ +50C56 PAYLOAD │ │ │ │ + │ │ │ │ +54DC1 LOCAL HEADER #48 04034B50 (67324752) │ │ │ │ +54DC5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +54DC6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +54DC7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +54DC9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +54DCB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +54DCF CRC 4474668F (1148479119) │ │ │ │ +54DD3 Compressed Size 00000A94 (2708) │ │ │ │ +54DD7 Uncompressed Size 00002105 (8453) │ │ │ │ +54DDB Filename Length 0014 (20) │ │ │ │ +54DDD Extra Length 001C (28) │ │ │ │ +54DDF Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x54DDF: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +54DF3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +54DF5 Length 0009 (9) │ │ │ │ +54DF7 Flags 03 (3) 'Modification Access' │ │ │ │ +54DF8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +54DFC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +54E00 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +54E02 Length 000B (11) │ │ │ │ +54E04 Version 01 (1) │ │ │ │ +54E05 UID Size 04 (4) │ │ │ │ +54E06 UID 00000000 (0) │ │ │ │ +54E0A GID Size 04 (4) │ │ │ │ +54E0B GID 00000000 (0) │ │ │ │ +54E0F PAYLOAD │ │ │ │ + │ │ │ │ +558A3 LOCAL HEADER #49 04034B50 (67324752) │ │ │ │ +558A7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +558A8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +558A9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +558AB Compression Method 0008 (8) 'Deflated' │ │ │ │ +558AD Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +558B1 CRC B9C69472 (3116799090) │ │ │ │ +558B5 Compressed Size 0000AC9E (44190) │ │ │ │ +558B9 Uncompressed Size 0003E418 (255000) │ │ │ │ +558BD Filename Length 0017 (23) │ │ │ │ +558BF Extra Length 001C (28) │ │ │ │ +558C1 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x558C1: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +558D8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +558DA Length 0009 (9) │ │ │ │ +558DC Flags 03 (3) 'Modification Access' │ │ │ │ +558DD Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +558E1 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +558E5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +558E7 Length 000B (11) │ │ │ │ +558E9 Version 01 (1) │ │ │ │ +558EA UID Size 04 (4) │ │ │ │ +558EB UID 00000000 (0) │ │ │ │ +558EF GID Size 04 (4) │ │ │ │ +558F0 GID 00000000 (0) │ │ │ │ +558F4 PAYLOAD │ │ │ │ + │ │ │ │ +60592 LOCAL HEADER #50 04034B50 (67324752) │ │ │ │ +60596 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +60597 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +60598 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6059A Compression Method 0008 (8) 'Deflated' │ │ │ │ +6059C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +605A0 CRC F6DAC8B9 (4141533369) │ │ │ │ +605A4 Compressed Size 00000401 (1025) │ │ │ │ +605A8 Uncompressed Size 0000093D (2365) │ │ │ │ +605AC Filename Length 0013 (19) │ │ │ │ +605AE Extra Length 001C (28) │ │ │ │ +605B0 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x605B0: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +605C3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +605C5 Length 0009 (9) │ │ │ │ +605C7 Flags 03 (3) 'Modification Access' │ │ │ │ +605C8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +605CC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +605D0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +605D2 Length 000B (11) │ │ │ │ +605D4 Version 01 (1) │ │ │ │ +605D5 UID Size 04 (4) │ │ │ │ +605D6 UID 00000000 (0) │ │ │ │ +605DA GID Size 04 (4) │ │ │ │ +605DB GID 00000000 (0) │ │ │ │ +605DF PAYLOAD │ │ │ │ + │ │ │ │ +609E0 LOCAL HEADER #51 04034B50 (67324752) │ │ │ │ +609E4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +609E5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +609E6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +609E8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +609EA Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +609EE CRC B6EC7704 (3068950276) │ │ │ │ +609F2 Compressed Size 000014DB (5339) │ │ │ │ +609F6 Uncompressed Size 0000687B (26747) │ │ │ │ +609FA Filename Length 0012 (18) │ │ │ │ +609FC Extra Length 001C (28) │ │ │ │ +609FE Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x609FE: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +60A10 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +60A12 Length 0009 (9) │ │ │ │ +60A14 Flags 03 (3) 'Modification Access' │ │ │ │ +60A15 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +60A19 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +60A1D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +60A1F Length 000B (11) │ │ │ │ +60A21 Version 01 (1) │ │ │ │ +60A22 UID Size 04 (4) │ │ │ │ +60A23 UID 00000000 (0) │ │ │ │ +60A27 GID Size 04 (4) │ │ │ │ +60A28 GID 00000000 (0) │ │ │ │ +60A2C PAYLOAD │ │ │ │ + │ │ │ │ +61F07 LOCAL HEADER #52 04034B50 (67324752) │ │ │ │ +61F0B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +61F0C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +61F0D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +61F0F Compression Method 0008 (8) 'Deflated' │ │ │ │ +61F11 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +61F15 CRC F81DBD94 (4162698644) │ │ │ │ +61F19 Compressed Size 000011EA (4586) │ │ │ │ +61F1D Uncompressed Size 000040F5 (16629) │ │ │ │ +61F21 Filename Length 0012 (18) │ │ │ │ +61F23 Extra Length 001C (28) │ │ │ │ +61F25 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x61F25: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +61F37 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +61F39 Length 0009 (9) │ │ │ │ +61F3B Flags 03 (3) 'Modification Access' │ │ │ │ +61F3C Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +61F40 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +61F44 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +61F46 Length 000B (11) │ │ │ │ +61F48 Version 01 (1) │ │ │ │ +61F49 UID Size 04 (4) │ │ │ │ +61F4A UID 00000000 (0) │ │ │ │ +61F4E GID Size 04 (4) │ │ │ │ +61F4F GID 00000000 (0) │ │ │ │ +61F53 PAYLOAD │ │ │ │ + │ │ │ │ +6313D LOCAL HEADER #53 04034B50 (67324752) │ │ │ │ +63141 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +63142 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +63143 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +63145 Compression Method 0008 (8) 'Deflated' │ │ │ │ +63147 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6314B CRC CB1B6BB2 (3407571890) │ │ │ │ +6314F Compressed Size 000009DB (2523) │ │ │ │ +63153 Uncompressed Size 00003529 (13609) │ │ │ │ +63157 Filename Length 0019 (25) │ │ │ │ +63159 Extra Length 001C (28) │ │ │ │ +6315B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6315B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +63174 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +63176 Length 0009 (9) │ │ │ │ +63178 Flags 03 (3) 'Modification Access' │ │ │ │ +63179 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6317D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +63181 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +63183 Length 000B (11) │ │ │ │ +63185 Version 01 (1) │ │ │ │ +63186 UID Size 04 (4) │ │ │ │ +63187 UID 00000000 (0) │ │ │ │ +6318B GID Size 04 (4) │ │ │ │ +6318C GID 00000000 (0) │ │ │ │ +63190 PAYLOAD │ │ │ │ + │ │ │ │ +63B6B LOCAL HEADER #54 04034B50 (67324752) │ │ │ │ +63B6F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +63B70 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +63B71 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +63B73 Compression Method 0008 (8) 'Deflated' │ │ │ │ +63B75 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +63B79 CRC 66C58098 (1724219544) │ │ │ │ +63B7D Compressed Size 000018B5 (6325) │ │ │ │ +63B81 Uncompressed Size 0000A605 (42501) │ │ │ │ +63B85 Filename Length 0019 (25) │ │ │ │ +63B87 Extra Length 001C (28) │ │ │ │ +63B89 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x63B89: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +63BA2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +63BA4 Length 0009 (9) │ │ │ │ +63BA6 Flags 03 (3) 'Modification Access' │ │ │ │ +63BA7 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +63BAB Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +63BAF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +63BB1 Length 000B (11) │ │ │ │ +63BB3 Version 01 (1) │ │ │ │ +63BB4 UID Size 04 (4) │ │ │ │ +63BB5 UID 00000000 (0) │ │ │ │ +63BB9 GID Size 04 (4) │ │ │ │ +63BBA GID 00000000 (0) │ │ │ │ +63BBE PAYLOAD │ │ │ │ + │ │ │ │ +65473 LOCAL HEADER #55 04034B50 (67324752) │ │ │ │ +65477 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +65478 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +65479 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6547B Compression Method 0008 (8) 'Deflated' │ │ │ │ +6547D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +65481 CRC 16F6295E (385231198) │ │ │ │ +65485 Compressed Size 0000177D (6013) │ │ │ │ +65489 Uncompressed Size 0000472C (18220) │ │ │ │ +6548D Filename Length 0014 (20) │ │ │ │ +6548F Extra Length 001C (28) │ │ │ │ +65491 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x65491: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +654A5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +654A7 Length 0009 (9) │ │ │ │ +654A9 Flags 03 (3) 'Modification Access' │ │ │ │ +654AA Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +654AE Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +654B2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +654B4 Length 000B (11) │ │ │ │ +654B6 Version 01 (1) │ │ │ │ +654B7 UID Size 04 (4) │ │ │ │ +654B8 UID 00000000 (0) │ │ │ │ +654BC GID Size 04 (4) │ │ │ │ +654BD GID 00000000 (0) │ │ │ │ +654C1 PAYLOAD │ │ │ │ + │ │ │ │ +66C3E LOCAL HEADER #56 04034B50 (67324752) │ │ │ │ +66C42 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +66C43 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +66C44 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +66C46 Compression Method 0008 (8) 'Deflated' │ │ │ │ +66C48 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +66C4C CRC E49D33FF (3835507711) │ │ │ │ +66C50 Compressed Size 0000040A (1034) │ │ │ │ +66C54 Uncompressed Size 00000825 (2085) │ │ │ │ +66C58 Filename Length 001C (28) │ │ │ │ +66C5A Extra Length 001C (28) │ │ │ │ +66C5C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x66C5C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +66C78 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +66C7A Length 0009 (9) │ │ │ │ +66C7C Flags 03 (3) 'Modification Access' │ │ │ │ +66C7D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +66C81 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +66C85 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +66C87 Length 000B (11) │ │ │ │ +66C89 Version 01 (1) │ │ │ │ +66C8A UID Size 04 (4) │ │ │ │ +66C8B UID 00000000 (0) │ │ │ │ +66C8F GID Size 04 (4) │ │ │ │ +66C90 GID 00000000 (0) │ │ │ │ +66C94 PAYLOAD │ │ │ │ + │ │ │ │ +6709E LOCAL HEADER #57 04034B50 (67324752) │ │ │ │ +670A2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +670A3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +670A4 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +670A6 Compression Method 0008 (8) 'Deflated' │ │ │ │ +670A8 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +670AC CRC 5883CA59 (1485032025) │ │ │ │ +670B0 Compressed Size 00002480 (9344) │ │ │ │ +670B4 Uncompressed Size 0000B56F (46447) │ │ │ │ +670B8 Filename Length 001F (31) │ │ │ │ +670BA Extra Length 001C (28) │ │ │ │ +670BC Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x670BC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +670DB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +670DD Length 0009 (9) │ │ │ │ +670DF Flags 03 (3) 'Modification Access' │ │ │ │ +670E0 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +670E4 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +670E8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +670EA Length 000B (11) │ │ │ │ +670EC Version 01 (1) │ │ │ │ +670ED UID Size 04 (4) │ │ │ │ +670EE UID 00000000 (0) │ │ │ │ +670F2 GID Size 04 (4) │ │ │ │ +670F3 GID 00000000 (0) │ │ │ │ +670F7 PAYLOAD │ │ │ │ + │ │ │ │ +69577 LOCAL HEADER #58 04034B50 (67324752) │ │ │ │ +6957B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6957C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6957D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6957F Compression Method 0008 (8) 'Deflated' │ │ │ │ +69581 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +69585 CRC 557DA1E7 (1434296807) │ │ │ │ +69589 Compressed Size 00000E7E (3710) │ │ │ │ +6958D Uncompressed Size 000052D9 (21209) │ │ │ │ +69591 Filename Length 001F (31) │ │ │ │ +69593 Extra Length 001C (28) │ │ │ │ +69595 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x69595: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +695B4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +695B6 Length 0009 (9) │ │ │ │ +695B8 Flags 03 (3) 'Modification Access' │ │ │ │ +695B9 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +695BD Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +695C1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +695C3 Length 000B (11) │ │ │ │ +695C5 Version 01 (1) │ │ │ │ +695C6 UID Size 04 (4) │ │ │ │ +695C7 UID 00000000 (0) │ │ │ │ +695CB GID Size 04 (4) │ │ │ │ +695CC GID 00000000 (0) │ │ │ │ +695D0 PAYLOAD │ │ │ │ + │ │ │ │ +6A44E LOCAL HEADER #59 04034B50 (67324752) │ │ │ │ +6A452 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6A453 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6A454 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6A456 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6A458 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6A45C CRC E618077C (3860334460) │ │ │ │ +6A460 Compressed Size 00000A44 (2628) │ │ │ │ +6A464 Uncompressed Size 0000247A (9338) │ │ │ │ +6A468 Filename Length 0013 (19) │ │ │ │ +6A46A Extra Length 001C (28) │ │ │ │ +6A46C Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6A46C: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6A47F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6A481 Length 0009 (9) │ │ │ │ +6A483 Flags 03 (3) 'Modification Access' │ │ │ │ +6A484 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6A488 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6A48C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6A48E Length 000B (11) │ │ │ │ +6A490 Version 01 (1) │ │ │ │ +6A491 UID Size 04 (4) │ │ │ │ +6A492 UID 00000000 (0) │ │ │ │ +6A496 GID Size 04 (4) │ │ │ │ +6A497 GID 00000000 (0) │ │ │ │ +6A49B PAYLOAD │ │ │ │ + │ │ │ │ +6AEDF LOCAL HEADER #60 04034B50 (67324752) │ │ │ │ +6AEE3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6AEE4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6AEE5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6AEE7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6AEE9 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6AEED CRC 8576CF69 (2239156073) │ │ │ │ +6AEF1 Compressed Size 00002486 (9350) │ │ │ │ +6AEF5 Uncompressed Size 0000B84C (47180) │ │ │ │ +6AEF9 Filename Length 0019 (25) │ │ │ │ +6AEFB Extra Length 001C (28) │ │ │ │ +6AEFD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6AEFD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6AF16 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6AF18 Length 0009 (9) │ │ │ │ +6AF1A Flags 03 (3) 'Modification Access' │ │ │ │ +6AF1B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6AF1F Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6AF23 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6AF25 Length 000B (11) │ │ │ │ +6AF27 Version 01 (1) │ │ │ │ +6AF28 UID Size 04 (4) │ │ │ │ +6AF29 UID 00000000 (0) │ │ │ │ +6AF2D GID Size 04 (4) │ │ │ │ +6AF2E GID 00000000 (0) │ │ │ │ +6AF32 PAYLOAD │ │ │ │ + │ │ │ │ +6D3B8 LOCAL HEADER #61 04034B50 (67324752) │ │ │ │ +6D3BC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6D3BD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6D3BE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6D3C0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6D3C2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6D3C6 CRC 95738DAB (2507378091) │ │ │ │ +6D3CA Compressed Size 00000EF8 (3832) │ │ │ │ +6D3CE Uncompressed Size 00003A2C (14892) │ │ │ │ +6D3D2 Filename Length 0024 (36) │ │ │ │ +6D3D4 Extra Length 001C (28) │ │ │ │ +6D3D6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6D3D6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6D3FA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6D3FC Length 0009 (9) │ │ │ │ +6D3FE Flags 03 (3) 'Modification Access' │ │ │ │ +6D3FF Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6D403 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6D407 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6D409 Length 000B (11) │ │ │ │ +6D40B Version 01 (1) │ │ │ │ +6D40C UID Size 04 (4) │ │ │ │ +6D40D UID 00000000 (0) │ │ │ │ +6D411 GID Size 04 (4) │ │ │ │ +6D412 GID 00000000 (0) │ │ │ │ +6D416 PAYLOAD │ │ │ │ + │ │ │ │ +6E30E LOCAL HEADER #62 04034B50 (67324752) │ │ │ │ +6E312 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6E313 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6E314 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6E316 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6E318 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6E31C CRC FDDE6615 (4259210773) │ │ │ │ +6E320 Compressed Size 00001AC1 (6849) │ │ │ │ +6E324 Uncompressed Size 00005EDC (24284) │ │ │ │ +6E328 Filename Length 0017 (23) │ │ │ │ +6E32A Extra Length 001C (28) │ │ │ │ +6E32C Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6E32C: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6E343 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6E345 Length 0009 (9) │ │ │ │ +6E347 Flags 03 (3) 'Modification Access' │ │ │ │ +6E348 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6E34C Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6E350 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6E352 Length 000B (11) │ │ │ │ +6E354 Version 01 (1) │ │ │ │ +6E355 UID Size 04 (4) │ │ │ │ +6E356 UID 00000000 (0) │ │ │ │ +6E35A GID Size 04 (4) │ │ │ │ +6E35B GID 00000000 (0) │ │ │ │ +6E35F PAYLOAD │ │ │ │ + │ │ │ │ +6FE20 LOCAL HEADER #63 04034B50 (67324752) │ │ │ │ +6FE24 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6FE25 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6FE26 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6FE28 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6FE2A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +6FE2E CRC 11E32AF1 (300100337) │ │ │ │ +6FE32 Compressed Size 00000ED3 (3795) │ │ │ │ +6FE36 Uncompressed Size 000038E2 (14562) │ │ │ │ +6FE3A Filename Length 0023 (35) │ │ │ │ +6FE3C Extra Length 001C (28) │ │ │ │ +6FE3E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6FE3E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6FE61 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6FE63 Length 0009 (9) │ │ │ │ +6FE65 Flags 03 (3) 'Modification Access' │ │ │ │ +6FE66 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6FE6A Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +6FE6E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6FE70 Length 000B (11) │ │ │ │ +6FE72 Version 01 (1) │ │ │ │ +6FE73 UID Size 04 (4) │ │ │ │ +6FE74 UID 00000000 (0) │ │ │ │ +6FE78 GID Size 04 (4) │ │ │ │ +6FE79 GID 00000000 (0) │ │ │ │ +6FE7D PAYLOAD │ │ │ │ + │ │ │ │ +70D50 LOCAL HEADER #64 04034B50 (67324752) │ │ │ │ +70D54 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +70D55 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +70D56 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +70D58 Compression Method 0008 (8) 'Deflated' │ │ │ │ +70D5A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +70D5E CRC 2DB7929F (767005343) │ │ │ │ +70D62 Compressed Size 00000113 (275) │ │ │ │ +70D66 Uncompressed Size 000001F3 (499) │ │ │ │ +70D6A Filename Length 001B (27) │ │ │ │ +70D6C Extra Length 001C (28) │ │ │ │ +70D6E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x70D6E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +70D89 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +70D8B Length 0009 (9) │ │ │ │ +70D8D Flags 03 (3) 'Modification Access' │ │ │ │ +70D8E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +70D92 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +70D96 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +70D98 Length 000B (11) │ │ │ │ +70D9A Version 01 (1) │ │ │ │ +70D9B UID Size 04 (4) │ │ │ │ +70D9C UID 00000000 (0) │ │ │ │ +70DA0 GID Size 04 (4) │ │ │ │ +70DA1 GID 00000000 (0) │ │ │ │ +70DA5 PAYLOAD │ │ │ │ + │ │ │ │ +70EB8 LOCAL HEADER #65 04034B50 (67324752) │ │ │ │ +70EBC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +70EBD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +70EBE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +70EC0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +70EC2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +70EC6 CRC 23F0D64F (602986063) │ │ │ │ +70ECA Compressed Size 0000188D (6285) │ │ │ │ +70ECE Uncompressed Size 00008FAC (36780) │ │ │ │ +70ED2 Filename Length 001D (29) │ │ │ │ +70ED4 Extra Length 001C (28) │ │ │ │ +70ED6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x70ED6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +70EF3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +70EF5 Length 0009 (9) │ │ │ │ +70EF7 Flags 03 (3) 'Modification Access' │ │ │ │ +70EF8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +70EFC Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +70F00 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +70F02 Length 000B (11) │ │ │ │ +70F04 Version 01 (1) │ │ │ │ +70F05 UID Size 04 (4) │ │ │ │ +70F06 UID 00000000 (0) │ │ │ │ +70F0A GID Size 04 (4) │ │ │ │ +70F0B GID 00000000 (0) │ │ │ │ +70F0F PAYLOAD │ │ │ │ + │ │ │ │ +7279C LOCAL HEADER #66 04034B50 (67324752) │ │ │ │ +727A0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +727A1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +727A2 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +727A4 Compression Method 0008 (8) 'Deflated' │ │ │ │ +727A6 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +727AA CRC 835FA0AD (2204082349) │ │ │ │ +727AE Compressed Size 0000164C (5708) │ │ │ │ +727B2 Uncompressed Size 00003A9B (15003) │ │ │ │ +727B6 Filename Length 0015 (21) │ │ │ │ +727B8 Extra Length 001C (28) │ │ │ │ +727BA Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x727BA: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +727CF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +727D1 Length 0009 (9) │ │ │ │ +727D3 Flags 03 (3) 'Modification Access' │ │ │ │ +727D4 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +727D8 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +727DC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +727DE Length 000B (11) │ │ │ │ +727E0 Version 01 (1) │ │ │ │ +727E1 UID Size 04 (4) │ │ │ │ +727E2 UID 00000000 (0) │ │ │ │ +727E6 GID Size 04 (4) │ │ │ │ +727E7 GID 00000000 (0) │ │ │ │ +727EB PAYLOAD │ │ │ │ + │ │ │ │ +73E37 LOCAL HEADER #67 04034B50 (67324752) │ │ │ │ +73E3B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +73E3C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +73E3D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +73E3F Compression Method 0008 (8) 'Deflated' │ │ │ │ +73E41 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +73E45 CRC 7CE39B09 (2095291145) │ │ │ │ +73E49 Compressed Size 00003B4E (15182) │ │ │ │ +73E4D Uncompressed Size 0001185B (71771) │ │ │ │ +73E51 Filename Length 0016 (22) │ │ │ │ +73E53 Extra Length 001C (28) │ │ │ │ +73E55 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x73E55: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +73E6B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +73E6D Length 0009 (9) │ │ │ │ +73E6F Flags 03 (3) 'Modification Access' │ │ │ │ +73E70 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +73E74 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +73E78 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +73E7A Length 000B (11) │ │ │ │ +73E7C Version 01 (1) │ │ │ │ +73E7D UID Size 04 (4) │ │ │ │ +73E7E UID 00000000 (0) │ │ │ │ +73E82 GID Size 04 (4) │ │ │ │ +73E83 GID 00000000 (0) │ │ │ │ +73E87 PAYLOAD │ │ │ │ + │ │ │ │ +779D5 LOCAL HEADER #68 04034B50 (67324752) │ │ │ │ +779D9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +779DA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +779DB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +779DD Compression Method 0008 (8) 'Deflated' │ │ │ │ +779DF Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +779E3 CRC 069AF4F8 (110818552) │ │ │ │ +779E7 Compressed Size 00003E85 (16005) │ │ │ │ +779EB Uncompressed Size 0001C17B (115067) │ │ │ │ +779EF Filename Length 0019 (25) │ │ │ │ +779F1 Extra Length 001C (28) │ │ │ │ +779F3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x779F3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +77A0C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +77A0E Length 0009 (9) │ │ │ │ +77A10 Flags 03 (3) 'Modification Access' │ │ │ │ +77A11 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +77A15 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +77A19 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +77A1B Length 000B (11) │ │ │ │ +77A1D Version 01 (1) │ │ │ │ +77A1E UID Size 04 (4) │ │ │ │ +77A1F UID 00000000 (0) │ │ │ │ +77A23 GID Size 04 (4) │ │ │ │ +77A24 GID 00000000 (0) │ │ │ │ +77A28 PAYLOAD │ │ │ │ + │ │ │ │ +7B8AD LOCAL HEADER #69 04034B50 (67324752) │ │ │ │ +7B8B1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +7B8B2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +7B8B3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +7B8B5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +7B8B7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +7B8BB CRC AF0AF89B (2936731803) │ │ │ │ +7B8BF Compressed Size 00000834 (2100) │ │ │ │ +7B8C3 Uncompressed Size 00003383 (13187) │ │ │ │ +7B8C7 Filename Length 0011 (17) │ │ │ │ +7B8C9 Extra Length 001C (28) │ │ │ │ +7B8CB Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x7B8CB: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +7B8DC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +7B8DE Length 0009 (9) │ │ │ │ +7B8E0 Flags 03 (3) 'Modification Access' │ │ │ │ +7B8E1 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +7B8E5 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +7B8E9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +7B8EB Length 000B (11) │ │ │ │ +7B8ED Version 01 (1) │ │ │ │ +7B8EE UID Size 04 (4) │ │ │ │ +7B8EF UID 00000000 (0) │ │ │ │ +7B8F3 GID Size 04 (4) │ │ │ │ +7B8F4 GID 00000000 (0) │ │ │ │ +7B8F8 PAYLOAD │ │ │ │ + │ │ │ │ +7C12C LOCAL HEADER #70 04034B50 (67324752) │ │ │ │ +7C130 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +7C131 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +7C132 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +7C134 Compression Method 0008 (8) 'Deflated' │ │ │ │ +7C136 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +7C13A CRC 3D741CF8 (1031019768) │ │ │ │ +7C13E Compressed Size 00005187 (20871) │ │ │ │ +7C142 Uncompressed Size 0001FB6C (129900) │ │ │ │ +7C146 Filename Length 0015 (21) │ │ │ │ +7C148 Extra Length 001C (28) │ │ │ │ +7C14A Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x7C14A: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +7C15F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +7C161 Length 0009 (9) │ │ │ │ +7C163 Flags 03 (3) 'Modification Access' │ │ │ │ +7C164 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +7C168 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +7C16C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +7C16E Length 000B (11) │ │ │ │ +7C170 Version 01 (1) │ │ │ │ +7C171 UID Size 04 (4) │ │ │ │ +7C172 UID 00000000 (0) │ │ │ │ +7C176 GID Size 04 (4) │ │ │ │ +7C177 GID 00000000 (0) │ │ │ │ +7C17B PAYLOAD │ │ │ │ + │ │ │ │ +81302 LOCAL HEADER #71 04034B50 (67324752) │ │ │ │ +81306 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +81307 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +81308 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8130A Compression Method 0008 (8) 'Deflated' │ │ │ │ +8130C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +81310 CRC A67DB1F2 (2793255410) │ │ │ │ +81314 Compressed Size 00001B06 (6918) │ │ │ │ +81318 Uncompressed Size 000081CF (33231) │ │ │ │ +8131C Filename Length 0019 (25) │ │ │ │ +8131E Extra Length 001C (28) │ │ │ │ +81320 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x81320: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +81339 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8133B Length 0009 (9) │ │ │ │ +8133D Flags 03 (3) 'Modification Access' │ │ │ │ +8133E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +81342 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +81346 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +81348 Length 000B (11) │ │ │ │ +8134A Version 01 (1) │ │ │ │ +8134B UID Size 04 (4) │ │ │ │ +8134C UID 00000000 (0) │ │ │ │ +81350 GID Size 04 (4) │ │ │ │ +81351 GID 00000000 (0) │ │ │ │ +81355 PAYLOAD │ │ │ │ + │ │ │ │ +82E5B LOCAL HEADER #72 04034B50 (67324752) │ │ │ │ +82E5F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +82E60 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +82E61 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +82E63 Compression Method 0008 (8) 'Deflated' │ │ │ │ +82E65 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +82E69 CRC 1EDC4944 (517753156) │ │ │ │ +82E6D Compressed Size 00000D97 (3479) │ │ │ │ +82E71 Uncompressed Size 00002E9F (11935) │ │ │ │ +82E75 Filename Length 0018 (24) │ │ │ │ +82E77 Extra Length 001C (28) │ │ │ │ +82E79 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x82E79: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +82E91 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +82E93 Length 0009 (9) │ │ │ │ +82E95 Flags 03 (3) 'Modification Access' │ │ │ │ +82E96 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +82E9A Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +82E9E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +82EA0 Length 000B (11) │ │ │ │ +82EA2 Version 01 (1) │ │ │ │ +82EA3 UID Size 04 (4) │ │ │ │ +82EA4 UID 00000000 (0) │ │ │ │ +82EA8 GID Size 04 (4) │ │ │ │ +82EA9 GID 00000000 (0) │ │ │ │ +82EAD PAYLOAD │ │ │ │ + │ │ │ │ +83C44 LOCAL HEADER #73 04034B50 (67324752) │ │ │ │ +83C48 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +83C49 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +83C4A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +83C4C Compression Method 0008 (8) 'Deflated' │ │ │ │ +83C4E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +83C52 CRC B52BB549 (3039540553) │ │ │ │ +83C56 Compressed Size 000001E0 (480) │ │ │ │ +83C5A Uncompressed Size 00000323 (803) │ │ │ │ +83C5E Filename Length 0011 (17) │ │ │ │ +83C60 Extra Length 001C (28) │ │ │ │ +83C62 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x83C62: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +83C73 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +83C75 Length 0009 (9) │ │ │ │ +83C77 Flags 03 (3) 'Modification Access' │ │ │ │ +83C78 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +83C7C Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +83C80 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +83C82 Length 000B (11) │ │ │ │ +83C84 Version 01 (1) │ │ │ │ +83C85 UID Size 04 (4) │ │ │ │ +83C86 UID 00000000 (0) │ │ │ │ +83C8A GID Size 04 (4) │ │ │ │ +83C8B GID 00000000 (0) │ │ │ │ +83C8F PAYLOAD │ │ │ │ + │ │ │ │ +83E6F LOCAL HEADER #74 04034B50 (67324752) │ │ │ │ +83E73 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +83E74 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +83E75 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +83E77 Compression Method 0008 (8) 'Deflated' │ │ │ │ +83E79 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +83E7D CRC 2404DB02 (604297986) │ │ │ │ +83E81 Compressed Size 000006C2 (1730) │ │ │ │ +83E85 Uncompressed Size 00001439 (5177) │ │ │ │ +83E89 Filename Length 0019 (25) │ │ │ │ +83E8B Extra Length 001C (28) │ │ │ │ +83E8D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x83E8D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +83EA6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +83EA8 Length 0009 (9) │ │ │ │ +83EAA Flags 03 (3) 'Modification Access' │ │ │ │ +83EAB Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +83EAF Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +83EB3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +83EB5 Length 000B (11) │ │ │ │ +83EB7 Version 01 (1) │ │ │ │ +83EB8 UID Size 04 (4) │ │ │ │ +83EB9 UID 00000000 (0) │ │ │ │ +83EBD GID Size 04 (4) │ │ │ │ +83EBE GID 00000000 (0) │ │ │ │ +83EC2 PAYLOAD │ │ │ │ + │ │ │ │ +84584 LOCAL HEADER #75 04034B50 (67324752) │ │ │ │ +84588 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +84589 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8458A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8458C Compression Method 0008 (8) 'Deflated' │ │ │ │ +8458E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +84592 CRC F4E0C7ED (4108371949) │ │ │ │ +84596 Compressed Size 00001B8B (7051) │ │ │ │ +8459A Uncompressed Size 00009F03 (40707) │ │ │ │ +8459E Filename Length 0018 (24) │ │ │ │ +845A0 Extra Length 001C (28) │ │ │ │ +845A2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x845A2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +845BA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +845BC Length 0009 (9) │ │ │ │ +845BE Flags 03 (3) 'Modification Access' │ │ │ │ +845BF Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +845C3 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +845C7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +845C9 Length 000B (11) │ │ │ │ +845CB Version 01 (1) │ │ │ │ +845CC UID Size 04 (4) │ │ │ │ +845CD UID 00000000 (0) │ │ │ │ +845D1 GID Size 04 (4) │ │ │ │ +845D2 GID 00000000 (0) │ │ │ │ +845D6 PAYLOAD │ │ │ │ + │ │ │ │ +86161 LOCAL HEADER #76 04034B50 (67324752) │ │ │ │ +86165 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +86166 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +86167 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +86169 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8616B Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +8616F CRC CC3A73BF (3426382783) │ │ │ │ +86173 Compressed Size 000016FA (5882) │ │ │ │ +86177 Uncompressed Size 00008AB6 (35510) │ │ │ │ +8617B Filename Length 0012 (18) │ │ │ │ +8617D Extra Length 001C (28) │ │ │ │ +8617F Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8617F: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +86191 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +86193 Length 0009 (9) │ │ │ │ +86195 Flags 03 (3) 'Modification Access' │ │ │ │ +86196 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8619A Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8619E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +861A0 Length 000B (11) │ │ │ │ +861A2 Version 01 (1) │ │ │ │ +861A3 UID Size 04 (4) │ │ │ │ +861A4 UID 00000000 (0) │ │ │ │ +861A8 GID Size 04 (4) │ │ │ │ +861A9 GID 00000000 (0) │ │ │ │ +861AD PAYLOAD │ │ │ │ + │ │ │ │ +878A7 LOCAL HEADER #77 04034B50 (67324752) │ │ │ │ +878AB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +878AC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +878AD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +878AF Compression Method 0008 (8) 'Deflated' │ │ │ │ +878B1 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +878B5 CRC 2F3E97D7 (792631255) │ │ │ │ +878B9 Compressed Size 00001E10 (7696) │ │ │ │ +878BD Uncompressed Size 00008803 (34819) │ │ │ │ +878C1 Filename Length 0016 (22) │ │ │ │ +878C3 Extra Length 001C (28) │ │ │ │ +878C5 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x878C5: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +878DB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +878DD Length 0009 (9) │ │ │ │ +878DF Flags 03 (3) 'Modification Access' │ │ │ │ +878E0 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +878E4 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +878E8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +878EA Length 000B (11) │ │ │ │ +878EC Version 01 (1) │ │ │ │ +878ED UID Size 04 (4) │ │ │ │ +878EE UID 00000000 (0) │ │ │ │ +878F2 GID Size 04 (4) │ │ │ │ +878F3 GID 00000000 (0) │ │ │ │ +878F7 PAYLOAD │ │ │ │ + │ │ │ │ +89707 LOCAL HEADER #78 04034B50 (67324752) │ │ │ │ +8970B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8970C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8970D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8970F Compression Method 0008 (8) 'Deflated' │ │ │ │ +89711 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +89715 CRC 8DB9B56F (2377758063) │ │ │ │ +89719 Compressed Size 000029A6 (10662) │ │ │ │ +8971D Uncompressed Size 0000D04F (53327) │ │ │ │ +89721 Filename Length 001A (26) │ │ │ │ +89723 Extra Length 001C (28) │ │ │ │ +89725 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x89725: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8973F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +89741 Length 0009 (9) │ │ │ │ +89743 Flags 03 (3) 'Modification Access' │ │ │ │ +89744 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +89748 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8974C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8974E Length 000B (11) │ │ │ │ +89750 Version 01 (1) │ │ │ │ +89751 UID Size 04 (4) │ │ │ │ +89752 UID 00000000 (0) │ │ │ │ +89756 GID Size 04 (4) │ │ │ │ +89757 GID 00000000 (0) │ │ │ │ +8975B PAYLOAD │ │ │ │ + │ │ │ │ +8C101 LOCAL HEADER #79 04034B50 (67324752) │ │ │ │ +8C105 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8C106 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8C107 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8C109 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8C10B Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +8C10F CRC 8DB18534 (2377221428) │ │ │ │ +8C113 Compressed Size 000009AC (2476) │ │ │ │ +8C117 Uncompressed Size 00001DB6 (7606) │ │ │ │ +8C11B Filename Length 0018 (24) │ │ │ │ +8C11D Extra Length 001C (28) │ │ │ │ +8C11F Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8C11F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8C137 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8C139 Length 0009 (9) │ │ │ │ +8C13B Flags 03 (3) 'Modification Access' │ │ │ │ +8C13C Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8C140 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8C144 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8C146 Length 000B (11) │ │ │ │ +8C148 Version 01 (1) │ │ │ │ +8C149 UID Size 04 (4) │ │ │ │ +8C14A UID 00000000 (0) │ │ │ │ +8C14E GID Size 04 (4) │ │ │ │ +8C14F GID 00000000 (0) │ │ │ │ +8C153 PAYLOAD │ │ │ │ + │ │ │ │ +8CAFF LOCAL HEADER #80 04034B50 (67324752) │ │ │ │ +8CB03 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8CB04 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8CB05 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8CB07 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8CB09 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +8CB0D CRC F5E2129F (4125233823) │ │ │ │ +8CB11 Compressed Size 000016BC (5820) │ │ │ │ +8CB15 Uncompressed Size 000016CD (5837) │ │ │ │ +8CB19 Filename Length 0015 (21) │ │ │ │ +8CB1B Extra Length 001C (28) │ │ │ │ +8CB1D Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8CB1D: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8CB32 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8CB34 Length 0009 (9) │ │ │ │ +8CB36 Flags 03 (3) 'Modification Access' │ │ │ │ +8CB37 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8CB3B Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8CB3F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8CB41 Length 000B (11) │ │ │ │ +8CB43 Version 01 (1) │ │ │ │ +8CB44 UID Size 04 (4) │ │ │ │ +8CB45 UID 00000000 (0) │ │ │ │ +8CB49 GID Size 04 (4) │ │ │ │ +8CB4A GID 00000000 (0) │ │ │ │ +8CB4E PAYLOAD │ │ │ │ + │ │ │ │ +8E20A LOCAL HEADER #81 04034B50 (67324752) │ │ │ │ +8E20E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8E20F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8E210 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8E212 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8E214 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +8E218 CRC F5E2129F (4125233823) │ │ │ │ +8E21C Compressed Size 000016BC (5820) │ │ │ │ +8E220 Uncompressed Size 000016CD (5837) │ │ │ │ +8E224 Filename Length 001C (28) │ │ │ │ +8E226 Extra Length 001C (28) │ │ │ │ +8E228 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8E228: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8E244 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8E246 Length 0009 (9) │ │ │ │ +8E248 Flags 03 (3) 'Modification Access' │ │ │ │ +8E249 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8E24D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8E251 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8E253 Length 000B (11) │ │ │ │ +8E255 Version 01 (1) │ │ │ │ +8E256 UID Size 04 (4) │ │ │ │ +8E257 UID 00000000 (0) │ │ │ │ +8E25B GID Size 04 (4) │ │ │ │ +8E25C GID 00000000 (0) │ │ │ │ +8E260 PAYLOAD │ │ │ │ + │ │ │ │ +8F91C LOCAL HEADER #82 04034B50 (67324752) │ │ │ │ +8F920 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +8F921 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8F922 General Purpose Flag 0000 (0) │ │ │ │ +8F924 Compression Method 0000 (0) 'Stored' │ │ │ │ +8F926 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +8F92A CRC FC95F24B (4237685323) │ │ │ │ +8F92E Compressed Size 00001B84 (7044) │ │ │ │ +8F932 Uncompressed Size 00001B84 (7044) │ │ │ │ +8F936 Filename Length 0016 (22) │ │ │ │ +8F938 Extra Length 001C (28) │ │ │ │ +8F93A Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8F93A: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8F950 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8F952 Length 0009 (9) │ │ │ │ +8F954 Flags 03 (3) 'Modification Access' │ │ │ │ +8F955 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8F959 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +8F95D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8F95F Length 000B (11) │ │ │ │ +8F961 Version 01 (1) │ │ │ │ +8F962 UID Size 04 (4) │ │ │ │ +8F963 UID 00000000 (0) │ │ │ │ +8F967 GID Size 04 (4) │ │ │ │ +8F968 GID 00000000 (0) │ │ │ │ +8F96C PAYLOAD │ │ │ │ + │ │ │ │ +914F0 LOCAL HEADER #83 04034B50 (67324752) │ │ │ │ +914F4 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +914F5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +914F6 General Purpose Flag 0000 (0) │ │ │ │ +914F8 Compression Method 0000 (0) 'Stored' │ │ │ │ +914FA Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +914FE CRC D0D71F86 (3503759238) │ │ │ │ +91502 Compressed Size 00000B7B (2939) │ │ │ │ +91506 Uncompressed Size 00000B7B (2939) │ │ │ │ +9150A Filename Length 0016 (22) │ │ │ │ +9150C Extra Length 001C (28) │ │ │ │ +9150E Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9150E: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +91524 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +91526 Length 0009 (9) │ │ │ │ +91528 Flags 03 (3) 'Modification Access' │ │ │ │ +91529 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9152D Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +91531 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +91533 Length 000B (11) │ │ │ │ +91535 Version 01 (1) │ │ │ │ +91536 UID Size 04 (4) │ │ │ │ +91537 UID 00000000 (0) │ │ │ │ +9153B GID Size 04 (4) │ │ │ │ +9153C GID 00000000 (0) │ │ │ │ +91540 PAYLOAD │ │ │ │ + │ │ │ │ +920BB LOCAL HEADER #84 04034B50 (67324752) │ │ │ │ +920BF Extract Zip Spec 0A (10) '1.0' │ │ │ │ +920C0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +920C1 General Purpose Flag 0000 (0) │ │ │ │ +920C3 Compression Method 0000 (0) 'Stored' │ │ │ │ +920C5 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +920C9 CRC FFF9C4D2 (4294558930) │ │ │ │ +920CD Compressed Size 0000138F (5007) │ │ │ │ +920D1 Uncompressed Size 0000138F (5007) │ │ │ │ +920D5 Filename Length 0016 (22) │ │ │ │ +920D7 Extra Length 001C (28) │ │ │ │ +920D9 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x920D9: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +920EF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +920F1 Length 0009 (9) │ │ │ │ +920F3 Flags 03 (3) 'Modification Access' │ │ │ │ +920F4 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +920F8 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +920FC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +920FE Length 000B (11) │ │ │ │ +92100 Version 01 (1) │ │ │ │ +92101 UID Size 04 (4) │ │ │ │ +92102 UID 00000000 (0) │ │ │ │ +92106 GID Size 04 (4) │ │ │ │ +92107 GID 00000000 (0) │ │ │ │ +9210B PAYLOAD │ │ │ │ + │ │ │ │ +9349A LOCAL HEADER #85 04034B50 (67324752) │ │ │ │ +9349E Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9349F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +934A0 General Purpose Flag 0000 (0) │ │ │ │ +934A2 Compression Method 0000 (0) 'Stored' │ │ │ │ +934A4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +934A8 CRC A1037E8E (2701360782) │ │ │ │ +934AC Compressed Size 0000145E (5214) │ │ │ │ +934B0 Uncompressed Size 0000145E (5214) │ │ │ │ +934B4 Filename Length 0016 (22) │ │ │ │ +934B6 Extra Length 001C (28) │ │ │ │ +934B8 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x934B8: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +934CE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +934D0 Length 0009 (9) │ │ │ │ +934D2 Flags 03 (3) 'Modification Access' │ │ │ │ +934D3 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +934D7 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +934DB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +934DD Length 000B (11) │ │ │ │ +934DF Version 01 (1) │ │ │ │ +934E0 UID Size 04 (4) │ │ │ │ +934E1 UID 00000000 (0) │ │ │ │ +934E5 GID Size 04 (4) │ │ │ │ +934E6 GID 00000000 (0) │ │ │ │ +934EA PAYLOAD │ │ │ │ + │ │ │ │ +94948 LOCAL HEADER #86 04034B50 (67324752) │ │ │ │ +9494C Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9494D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9494E General Purpose Flag 0000 (0) │ │ │ │ +94950 Compression Method 0000 (0) 'Stored' │ │ │ │ +94952 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +94956 CRC 5E9E64F1 (1587438833) │ │ │ │ +9495A Compressed Size 000008EC (2284) │ │ │ │ +9495E Uncompressed Size 000008EC (2284) │ │ │ │ +94962 Filename Length 0016 (22) │ │ │ │ +94964 Extra Length 001C (28) │ │ │ │ +94966 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x94966: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9497C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9497E Length 0009 (9) │ │ │ │ +94980 Flags 03 (3) 'Modification Access' │ │ │ │ +94981 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +94985 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +94989 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9498B Length 000B (11) │ │ │ │ +9498D Version 01 (1) │ │ │ │ +9498E UID Size 04 (4) │ │ │ │ +9498F UID 00000000 (0) │ │ │ │ +94993 GID Size 04 (4) │ │ │ │ +94994 GID 00000000 (0) │ │ │ │ +94998 PAYLOAD │ │ │ │ + │ │ │ │ +95284 LOCAL HEADER #87 04034B50 (67324752) │ │ │ │ +95288 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +95289 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9528A General Purpose Flag 0000 (0) │ │ │ │ +9528C Compression Method 0000 (0) 'Stored' │ │ │ │ +9528E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +95292 CRC 42E340AB (1122189483) │ │ │ │ +95296 Compressed Size 00001F2E (7982) │ │ │ │ +9529A Uncompressed Size 00001F2E (7982) │ │ │ │ +9529E Filename Length 001E (30) │ │ │ │ +952A0 Extra Length 001C (28) │ │ │ │ +952A2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x952A2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +952C0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +952C2 Length 0009 (9) │ │ │ │ +952C4 Flags 03 (3) 'Modification Access' │ │ │ │ +952C5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +952C9 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +952CD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +952CF Length 000B (11) │ │ │ │ +952D1 Version 01 (1) │ │ │ │ +952D2 UID Size 04 (4) │ │ │ │ +952D3 UID 00000000 (0) │ │ │ │ +952D7 GID Size 04 (4) │ │ │ │ +952D8 GID 00000000 (0) │ │ │ │ +952DC PAYLOAD │ │ │ │ + │ │ │ │ +9720A LOCAL HEADER #88 04034B50 (67324752) │ │ │ │ +9720E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9720F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +97210 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +97212 Compression Method 0008 (8) 'Deflated' │ │ │ │ +97214 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +97218 CRC 529CE27A (1386013306) │ │ │ │ +9721C Compressed Size 00003D6F (15727) │ │ │ │ +97220 Uncompressed Size 00016649 (91721) │ │ │ │ +97224 Filename Length 001A (26) │ │ │ │ +97226 Extra Length 001C (28) │ │ │ │ +97228 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x97228: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +97242 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +97244 Length 0009 (9) │ │ │ │ +97246 Flags 03 (3) 'Modification Access' │ │ │ │ +97247 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9724B Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9724F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +97251 Length 000B (11) │ │ │ │ +97253 Version 01 (1) │ │ │ │ +97254 UID Size 04 (4) │ │ │ │ +97255 UID 00000000 (0) │ │ │ │ +97259 GID Size 04 (4) │ │ │ │ +9725A GID 00000000 (0) │ │ │ │ +9725E PAYLOAD │ │ │ │ + │ │ │ │ +9AFCD LOCAL HEADER #89 04034B50 (67324752) │ │ │ │ +9AFD1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9AFD2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9AFD3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9AFD5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9AFD7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9AFDB CRC BD597FB3 (3176759219) │ │ │ │ +9AFDF Compressed Size 000029C0 (10688) │ │ │ │ +9AFE3 Uncompressed Size 0000BA6A (47722) │ │ │ │ +9AFE7 Filename Length 0018 (24) │ │ │ │ +9AFE9 Extra Length 001C (28) │ │ │ │ +9AFEB Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9AFEB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9B003 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9B005 Length 0009 (9) │ │ │ │ +9B007 Flags 03 (3) 'Modification Access' │ │ │ │ +9B008 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9B00C Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9B010 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9B012 Length 000B (11) │ │ │ │ +9B014 Version 01 (1) │ │ │ │ +9B015 UID Size 04 (4) │ │ │ │ +9B016 UID 00000000 (0) │ │ │ │ +9B01A GID Size 04 (4) │ │ │ │ +9B01B GID 00000000 (0) │ │ │ │ +9B01F PAYLOAD │ │ │ │ + │ │ │ │ +9D9DF LOCAL HEADER #90 04034B50 (67324752) │ │ │ │ +9D9E3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9D9E4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9D9E5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9D9E7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9D9E9 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9D9ED CRC DCB3B516 (3702764822) │ │ │ │ +9D9F1 Compressed Size 000000AE (174) │ │ │ │ +9D9F5 Uncompressed Size 000000FC (252) │ │ │ │ +9D9F9 Filename Length 0016 (22) │ │ │ │ +9D9FB Extra Length 001C (28) │ │ │ │ +9D9FD Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9D9FD: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DA13 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DA15 Length 0009 (9) │ │ │ │ +9DA17 Flags 03 (3) 'Modification Access' │ │ │ │ +9DA18 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DA1C Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DA20 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DA22 Length 000B (11) │ │ │ │ +9DA24 Version 01 (1) │ │ │ │ +9DA25 UID Size 04 (4) │ │ │ │ +9DA26 UID 00000000 (0) │ │ │ │ +9DA2A GID Size 04 (4) │ │ │ │ +9DA2B GID 00000000 (0) │ │ │ │ +9DA2F PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ │ │ │ │ -9DAEC LOCAL HEADER #91 04034B50 (67324752) │ │ │ │ -9DAF0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DAF1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DAF2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DAF4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DAF6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DAFA CRC 58439733 (1480824627) │ │ │ │ -9DAFE Compressed Size 00000077 (119) │ │ │ │ -9DB02 Uncompressed Size 000000A2 (162) │ │ │ │ -9DB06 Filename Length 002D (45) │ │ │ │ -9DB08 Extra Length 001C (28) │ │ │ │ -9DB0A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DB0A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DB37 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DB39 Length 0009 (9) │ │ │ │ -9DB3B Flags 03 (3) 'Modification Access' │ │ │ │ -9DB3C Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DB40 Access Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DB44 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DB46 Length 000B (11) │ │ │ │ -9DB48 Version 01 (1) │ │ │ │ -9DB49 UID Size 04 (4) │ │ │ │ -9DB4A UID 00000000 (0) │ │ │ │ -9DB4E GID Size 04 (4) │ │ │ │ -9DB4F GID 00000000 (0) │ │ │ │ -9DB53 PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ - │ │ │ │ -9DBCA CENTRAL HEADER #1 02014B50 (33639248) │ │ │ │ -9DBCE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DBCF Created OS 03 (3) 'Unix' │ │ │ │ -9DBD0 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9DBD1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DBD2 General Purpose Flag 0000 (0) │ │ │ │ -9DBD4 Compression Method 0000 (0) 'Stored' │ │ │ │ -9DBD6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DBDA CRC 2CAB616F (749429103) │ │ │ │ -9DBDE Compressed Size 00000014 (20) │ │ │ │ -9DBE2 Uncompressed Size 00000014 (20) │ │ │ │ -9DBE6 Filename Length 0008 (8) │ │ │ │ -9DBE8 Extra Length 0018 (24) │ │ │ │ -9DBEA Comment Length 0000 (0) │ │ │ │ -9DBEC Disk Start 0000 (0) │ │ │ │ -9DBEE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DBF0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DBF4 Local Header Offset 00000000 (0) │ │ │ │ -9DBF8 Filename 'XXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DBF8: Filename 'XXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DC00 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DC02 Length 0005 (5) │ │ │ │ -9DC04 Flags 01 (1) 'Modification' │ │ │ │ -9DC05 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DC09 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DC0B Length 000B (11) │ │ │ │ -9DC0D Version 01 (1) │ │ │ │ -9DC0E UID Size 04 (4) │ │ │ │ -9DC0F UID 00000000 (0) │ │ │ │ -9DC13 GID Size 04 (4) │ │ │ │ -9DC14 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DC18 CENTRAL HEADER #2 02014B50 (33639248) │ │ │ │ -9DC1C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DC1D Created OS 03 (3) 'Unix' │ │ │ │ -9DC1E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DC1F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DC20 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DC22 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DC24 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DC28 CRC D1CBDA94 (3519797908) │ │ │ │ -9DC2C Compressed Size 000015AD (5549) │ │ │ │ -9DC30 Uncompressed Size 00004602 (17922) │ │ │ │ -9DC34 Filename Length 0014 (20) │ │ │ │ -9DC36 Extra Length 0018 (24) │ │ │ │ -9DC38 Comment Length 0000 (0) │ │ │ │ -9DC3A Disk Start 0000 (0) │ │ │ │ -9DC3C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DC3E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DC42 Local Header Offset 00000056 (86) │ │ │ │ -9DC46 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DC46: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DC5A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DC5C Length 0005 (5) │ │ │ │ -9DC5E Flags 01 (1) 'Modification' │ │ │ │ -9DC5F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DC63 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DC65 Length 000B (11) │ │ │ │ -9DC67 Version 01 (1) │ │ │ │ -9DC68 UID Size 04 (4) │ │ │ │ -9DC69 UID 00000000 (0) │ │ │ │ -9DC6D GID Size 04 (4) │ │ │ │ -9DC6E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DC72 CENTRAL HEADER #3 02014B50 (33639248) │ │ │ │ -9DC76 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DC77 Created OS 03 (3) 'Unix' │ │ │ │ -9DC78 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DC79 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DC7A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DC7C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DC7E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DC82 CRC AB09C204 (2869543428) │ │ │ │ -9DC86 Compressed Size 000006D5 (1749) │ │ │ │ -9DC8A Uncompressed Size 00001241 (4673) │ │ │ │ -9DC8E Filename Length 0013 (19) │ │ │ │ -9DC90 Extra Length 0018 (24) │ │ │ │ -9DC92 Comment Length 0000 (0) │ │ │ │ -9DC94 Disk Start 0000 (0) │ │ │ │ -9DC96 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DC98 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DC9C Local Header Offset 00001651 (5713) │ │ │ │ -9DCA0 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DCA0: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DCB3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DCB5 Length 0005 (5) │ │ │ │ -9DCB7 Flags 01 (1) 'Modification' │ │ │ │ -9DCB8 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DCBC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DCBE Length 000B (11) │ │ │ │ -9DCC0 Version 01 (1) │ │ │ │ -9DCC1 UID Size 04 (4) │ │ │ │ -9DCC2 UID 00000000 (0) │ │ │ │ -9DCC6 GID Size 04 (4) │ │ │ │ -9DCC7 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DCCB CENTRAL HEADER #4 02014B50 (33639248) │ │ │ │ -9DCCF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DCD0 Created OS 03 (3) 'Unix' │ │ │ │ -9DCD1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DCD2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DCD3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DCD5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DCD7 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DCDB CRC 47F54438 (1207256120) │ │ │ │ -9DCDF Compressed Size 00002DA3 (11683) │ │ │ │ -9DCE3 Uncompressed Size 0000D0BF (53439) │ │ │ │ -9DCE7 Filename Length 0014 (20) │ │ │ │ -9DCE9 Extra Length 0018 (24) │ │ │ │ -9DCEB Comment Length 0000 (0) │ │ │ │ -9DCED Disk Start 0000 (0) │ │ │ │ -9DCEF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DCF1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DCF5 Local Header Offset 00001D73 (7539) │ │ │ │ -9DCF9 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DCF9: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DD0D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DD0F Length 0005 (5) │ │ │ │ -9DD11 Flags 01 (1) 'Modification' │ │ │ │ -9DD12 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DD16 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DD18 Length 000B (11) │ │ │ │ -9DD1A Version 01 (1) │ │ │ │ -9DD1B UID Size 04 (4) │ │ │ │ -9DD1C UID 00000000 (0) │ │ │ │ -9DD20 GID Size 04 (4) │ │ │ │ -9DD21 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DD25 CENTRAL HEADER #5 02014B50 (33639248) │ │ │ │ -9DD29 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DD2A Created OS 03 (3) 'Unix' │ │ │ │ -9DD2B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DD2C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DD2D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DD2F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DD31 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DD35 CRC 67C49326 (1740935974) │ │ │ │ -9DD39 Compressed Size 000003F0 (1008) │ │ │ │ -9DD3D Uncompressed Size 00000876 (2166) │ │ │ │ -9DD41 Filename Length 0014 (20) │ │ │ │ -9DD43 Extra Length 0018 (24) │ │ │ │ -9DD45 Comment Length 0000 (0) │ │ │ │ -9DD47 Disk Start 0000 (0) │ │ │ │ -9DD49 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DD4B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DD4F Local Header Offset 00004B64 (19300) │ │ │ │ -9DD53 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DD53: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DD67 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DD69 Length 0005 (5) │ │ │ │ -9DD6B Flags 01 (1) 'Modification' │ │ │ │ -9DD6C Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DD70 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DD72 Length 000B (11) │ │ │ │ -9DD74 Version 01 (1) │ │ │ │ -9DD75 UID Size 04 (4) │ │ │ │ -9DD76 UID 00000000 (0) │ │ │ │ -9DD7A GID Size 04 (4) │ │ │ │ -9DD7B GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DD7F CENTRAL HEADER #6 02014B50 (33639248) │ │ │ │ -9DD83 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DD84 Created OS 03 (3) 'Unix' │ │ │ │ -9DD85 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DD86 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DD87 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DD89 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DD8B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DD8F CRC EC6C7C96 (3966532758) │ │ │ │ -9DD93 Compressed Size 000001AE (430) │ │ │ │ -9DD97 Uncompressed Size 000002FC (764) │ │ │ │ -9DD9B Filename Length 0011 (17) │ │ │ │ -9DD9D Extra Length 0018 (24) │ │ │ │ -9DD9F Comment Length 0000 (0) │ │ │ │ -9DDA1 Disk Start 0000 (0) │ │ │ │ -9DDA3 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DDA5 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DDA9 Local Header Offset 00004FA2 (20386) │ │ │ │ -9DDAD Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DDAD: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DDBE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DDC0 Length 0005 (5) │ │ │ │ -9DDC2 Flags 01 (1) 'Modification' │ │ │ │ -9DDC3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DDC7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DDC9 Length 000B (11) │ │ │ │ -9DDCB Version 01 (1) │ │ │ │ -9DDCC UID Size 04 (4) │ │ │ │ -9DDCD UID 00000000 (0) │ │ │ │ -9DDD1 GID Size 04 (4) │ │ │ │ -9DDD2 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DDD6 CENTRAL HEADER #7 02014B50 (33639248) │ │ │ │ -9DDDA Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DDDB Created OS 03 (3) 'Unix' │ │ │ │ -9DDDC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DDDD Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DDDE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DDE0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DDE2 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DDE6 CRC 39BDC93C (968739132) │ │ │ │ -9DDEA Compressed Size 000020C6 (8390) │ │ │ │ -9DDEE Uncompressed Size 0000B4B0 (46256) │ │ │ │ -9DDF2 Filename Length 001B (27) │ │ │ │ -9DDF4 Extra Length 0018 (24) │ │ │ │ -9DDF6 Comment Length 0000 (0) │ │ │ │ -9DDF8 Disk Start 0000 (0) │ │ │ │ -9DDFA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DDFC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DE00 Local Header Offset 0000519B (20891) │ │ │ │ -9DE04 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DE04: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DE1F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DE21 Length 0005 (5) │ │ │ │ -9DE23 Flags 01 (1) 'Modification' │ │ │ │ -9DE24 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DE28 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DE2A Length 000B (11) │ │ │ │ -9DE2C Version 01 (1) │ │ │ │ -9DE2D UID Size 04 (4) │ │ │ │ -9DE2E UID 00000000 (0) │ │ │ │ -9DE32 GID Size 04 (4) │ │ │ │ -9DE33 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DE37 CENTRAL HEADER #8 02014B50 (33639248) │ │ │ │ -9DE3B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DE3C Created OS 03 (3) 'Unix' │ │ │ │ -9DE3D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DE3E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DE3F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DE41 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DE43 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DE47 CRC 23989D4C (597204300) │ │ │ │ -9DE4B Compressed Size 00000E6F (3695) │ │ │ │ -9DE4F Uncompressed Size 000030B2 (12466) │ │ │ │ -9DE53 Filename Length 001D (29) │ │ │ │ -9DE55 Extra Length 0018 (24) │ │ │ │ -9DE57 Comment Length 0000 (0) │ │ │ │ -9DE59 Disk Start 0000 (0) │ │ │ │ -9DE5B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DE5D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DE61 Local Header Offset 000072B6 (29366) │ │ │ │ -9DE65 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DE65: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DE82 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DE84 Length 0005 (5) │ │ │ │ -9DE86 Flags 01 (1) 'Modification' │ │ │ │ -9DE87 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DE8B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DE8D Length 000B (11) │ │ │ │ -9DE8F Version 01 (1) │ │ │ │ -9DE90 UID Size 04 (4) │ │ │ │ -9DE91 UID 00000000 (0) │ │ │ │ -9DE95 GID Size 04 (4) │ │ │ │ -9DE96 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DE9A CENTRAL HEADER #9 02014B50 (33639248) │ │ │ │ -9DE9E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DE9F Created OS 03 (3) 'Unix' │ │ │ │ -9DEA0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DEA1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DEA2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DEA4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DEA6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DEAA CRC E1B38941 (3786639681) │ │ │ │ -9DEAE Compressed Size 00000972 (2418) │ │ │ │ -9DEB2 Uncompressed Size 00001CB2 (7346) │ │ │ │ -9DEB6 Filename Length 0019 (25) │ │ │ │ -9DEB8 Extra Length 0018 (24) │ │ │ │ -9DEBA Comment Length 0000 (0) │ │ │ │ -9DEBC Disk Start 0000 (0) │ │ │ │ -9DEBE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DEC0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DEC4 Local Header Offset 0000817C (33148) │ │ │ │ -9DEC8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DEC8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DEE1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DEE3 Length 0005 (5) │ │ │ │ -9DEE5 Flags 01 (1) 'Modification' │ │ │ │ -9DEE6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DEEA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DEEC Length 000B (11) │ │ │ │ -9DEEE Version 01 (1) │ │ │ │ -9DEEF UID Size 04 (4) │ │ │ │ -9DEF0 UID 00000000 (0) │ │ │ │ -9DEF4 GID Size 04 (4) │ │ │ │ -9DEF5 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DEF9 CENTRAL HEADER #10 02014B50 (33639248) │ │ │ │ -9DEFD Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DEFE Created OS 03 (3) 'Unix' │ │ │ │ -9DEFF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DF00 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DF01 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DF03 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DF05 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DF09 CRC 2A71CBBF (712100799) │ │ │ │ -9DF0D Compressed Size 00003880 (14464) │ │ │ │ -9DF11 Uncompressed Size 0000F7F4 (63476) │ │ │ │ -9DF15 Filename Length 0015 (21) │ │ │ │ -9DF17 Extra Length 0018 (24) │ │ │ │ -9DF19 Comment Length 0000 (0) │ │ │ │ -9DF1B Disk Start 0000 (0) │ │ │ │ -9DF1D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DF1F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DF23 Local Header Offset 00008B41 (35649) │ │ │ │ -9DF27 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DF27: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DF3C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DF3E Length 0005 (5) │ │ │ │ -9DF40 Flags 01 (1) 'Modification' │ │ │ │ -9DF41 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DF45 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DF47 Length 000B (11) │ │ │ │ -9DF49 Version 01 (1) │ │ │ │ -9DF4A UID Size 04 (4) │ │ │ │ -9DF4B UID 00000000 (0) │ │ │ │ -9DF4F GID Size 04 (4) │ │ │ │ -9DF50 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DF54 CENTRAL HEADER #11 02014B50 (33639248) │ │ │ │ -9DF58 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DF59 Created OS 03 (3) 'Unix' │ │ │ │ -9DF5A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DF5B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DF5C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DF5E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DF60 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DF64 CRC F9745AFD (4185152253) │ │ │ │ -9DF68 Compressed Size 0000AADF (43743) │ │ │ │ -9DF6C Uncompressed Size 0003DFDE (253918) │ │ │ │ -9DF70 Filename Length 0012 (18) │ │ │ │ -9DF72 Extra Length 0018 (24) │ │ │ │ -9DF74 Comment Length 0000 (0) │ │ │ │ -9DF76 Disk Start 0000 (0) │ │ │ │ -9DF78 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DF7A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DF7E Local Header Offset 0000C410 (50192) │ │ │ │ -9DF82 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DF82: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DF94 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DF96 Length 0005 (5) │ │ │ │ -9DF98 Flags 01 (1) 'Modification' │ │ │ │ -9DF99 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DF9D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DF9F Length 000B (11) │ │ │ │ -9DFA1 Version 01 (1) │ │ │ │ -9DFA2 UID Size 04 (4) │ │ │ │ -9DFA3 UID 00000000 (0) │ │ │ │ -9DFA7 GID Size 04 (4) │ │ │ │ -9DFA8 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DFAC CENTRAL HEADER #12 02014B50 (33639248) │ │ │ │ -9DFB0 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DFB1 Created OS 03 (3) 'Unix' │ │ │ │ -9DFB2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DFB3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DFB4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DFB6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DFB8 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9DFBC CRC C29A5D7D (3264896381) │ │ │ │ -9DFC0 Compressed Size 00003B20 (15136) │ │ │ │ -9DFC4 Uncompressed Size 0001B2A0 (111264) │ │ │ │ -9DFC8 Filename Length 0015 (21) │ │ │ │ -9DFCA Extra Length 0018 (24) │ │ │ │ -9DFCC Comment Length 0000 (0) │ │ │ │ -9DFCE Disk Start 0000 (0) │ │ │ │ -9DFD0 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DFD2 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DFD6 Local Header Offset 00016F3B (94011) │ │ │ │ -9DFDA Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DFDA: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DFEF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DFF1 Length 0005 (5) │ │ │ │ -9DFF3 Flags 01 (1) 'Modification' │ │ │ │ -9DFF4 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9DFF8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DFFA Length 000B (11) │ │ │ │ -9DFFC Version 01 (1) │ │ │ │ -9DFFD UID Size 04 (4) │ │ │ │ -9DFFE UID 00000000 (0) │ │ │ │ -9E002 GID Size 04 (4) │ │ │ │ -9E003 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E007 CENTRAL HEADER #13 02014B50 (33639248) │ │ │ │ -9E00B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E00C Created OS 03 (3) 'Unix' │ │ │ │ -9E00D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E00E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E00F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E011 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E013 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E017 CRC 5B4833BB (1531458491) │ │ │ │ -9E01B Compressed Size 00009085 (36997) │ │ │ │ -9E01F Uncompressed Size 0003D05F (249951) │ │ │ │ -9E023 Filename Length 0014 (20) │ │ │ │ -9E025 Extra Length 0018 (24) │ │ │ │ -9E027 Comment Length 0000 (0) │ │ │ │ -9E029 Disk Start 0000 (0) │ │ │ │ -9E02B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E02D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E031 Local Header Offset 0001AAAA (109226) │ │ │ │ -9E035 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E035: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E049 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E04B Length 0005 (5) │ │ │ │ -9E04D Flags 01 (1) 'Modification' │ │ │ │ -9E04E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E052 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E054 Length 000B (11) │ │ │ │ -9E056 Version 01 (1) │ │ │ │ -9E057 UID Size 04 (4) │ │ │ │ -9E058 UID 00000000 (0) │ │ │ │ -9E05C GID Size 04 (4) │ │ │ │ -9E05D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E061 CENTRAL HEADER #14 02014B50 (33639248) │ │ │ │ -9E065 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E066 Created OS 03 (3) 'Unix' │ │ │ │ -9E067 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E068 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E069 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E06B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E06D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E071 CRC 166FC7BA (376424378) │ │ │ │ -9E075 Compressed Size 00002A67 (10855) │ │ │ │ -9E079 Uncompressed Size 0001151F (70943) │ │ │ │ -9E07D Filename Length 0016 (22) │ │ │ │ -9E07F Extra Length 0018 (24) │ │ │ │ -9E081 Comment Length 0000 (0) │ │ │ │ -9E083 Disk Start 0000 (0) │ │ │ │ -9E085 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E087 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E08B Local Header Offset 00023B7D (146301) │ │ │ │ -9E08F Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E08F: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E0A5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E0A7 Length 0005 (5) │ │ │ │ -9E0A9 Flags 01 (1) 'Modification' │ │ │ │ -9E0AA Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E0AE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E0B0 Length 000B (11) │ │ │ │ -9E0B2 Version 01 (1) │ │ │ │ -9E0B3 UID Size 04 (4) │ │ │ │ -9E0B4 UID 00000000 (0) │ │ │ │ -9E0B8 GID Size 04 (4) │ │ │ │ -9E0B9 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E0BD CENTRAL HEADER #15 02014B50 (33639248) │ │ │ │ -9E0C1 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E0C2 Created OS 03 (3) 'Unix' │ │ │ │ -9E0C3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E0C4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E0C5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E0C7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E0C9 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E0CD CRC 7F8EA835 (2140055605) │ │ │ │ -9E0D1 Compressed Size 000014DA (5338) │ │ │ │ -9E0D5 Uncompressed Size 00005176 (20854) │ │ │ │ -9E0D9 Filename Length 001D (29) │ │ │ │ -9E0DB Extra Length 0018 (24) │ │ │ │ -9E0DD Comment Length 0000 (0) │ │ │ │ -9E0DF Disk Start 0000 (0) │ │ │ │ -9E0E1 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E0E3 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E0E7 Local Header Offset 00026634 (157236) │ │ │ │ -9E0EB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E0EB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E108 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E10A Length 0005 (5) │ │ │ │ -9E10C Flags 01 (1) 'Modification' │ │ │ │ -9E10D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E111 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E113 Length 000B (11) │ │ │ │ -9E115 Version 01 (1) │ │ │ │ -9E116 UID Size 04 (4) │ │ │ │ -9E117 UID 00000000 (0) │ │ │ │ -9E11B GID Size 04 (4) │ │ │ │ -9E11C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E120 CENTRAL HEADER #16 02014B50 (33639248) │ │ │ │ -9E124 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E125 Created OS 03 (3) 'Unix' │ │ │ │ -9E126 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E127 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E128 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E12A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E12C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E130 CRC D4CAE8E4 (3570067684) │ │ │ │ -9E134 Compressed Size 000037FB (14331) │ │ │ │ -9E138 Uncompressed Size 0000E9F0 (59888) │ │ │ │ -9E13C Filename Length 001C (28) │ │ │ │ -9E13E Extra Length 0018 (24) │ │ │ │ -9E140 Comment Length 0000 (0) │ │ │ │ -9E142 Disk Start 0000 (0) │ │ │ │ -9E144 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E146 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E14A Local Header Offset 00027B65 (162661) │ │ │ │ -9E14E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E14E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E16A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E16C Length 0005 (5) │ │ │ │ -9E16E Flags 01 (1) 'Modification' │ │ │ │ -9E16F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E173 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E175 Length 000B (11) │ │ │ │ -9E177 Version 01 (1) │ │ │ │ -9E178 UID Size 04 (4) │ │ │ │ -9E179 UID 00000000 (0) │ │ │ │ -9E17D GID Size 04 (4) │ │ │ │ -9E17E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E182 CENTRAL HEADER #17 02014B50 (33639248) │ │ │ │ -9E186 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E187 Created OS 03 (3) 'Unix' │ │ │ │ -9E188 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E189 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E18A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E18C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E18E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E192 CRC B106FD76 (2970025334) │ │ │ │ -9E196 Compressed Size 000006A0 (1696) │ │ │ │ -9E19A Uncompressed Size 000011F4 (4596) │ │ │ │ -9E19E Filename Length 001C (28) │ │ │ │ -9E1A0 Extra Length 0018 (24) │ │ │ │ -9E1A2 Comment Length 0000 (0) │ │ │ │ -9E1A4 Disk Start 0000 (0) │ │ │ │ -9E1A6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E1A8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E1AC Local Header Offset 0002B3B6 (177078) │ │ │ │ -9E1B0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E1B0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E1CC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E1CE Length 0005 (5) │ │ │ │ -9E1D0 Flags 01 (1) 'Modification' │ │ │ │ -9E1D1 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E1D5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E1D7 Length 000B (11) │ │ │ │ -9E1D9 Version 01 (1) │ │ │ │ -9E1DA UID Size 04 (4) │ │ │ │ -9E1DB UID 00000000 (0) │ │ │ │ -9E1DF GID Size 04 (4) │ │ │ │ -9E1E0 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E1E4 CENTRAL HEADER #18 02014B50 (33639248) │ │ │ │ -9E1E8 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E1E9 Created OS 03 (3) 'Unix' │ │ │ │ -9E1EA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E1EB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E1EC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E1EE Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E1F0 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E1F4 CRC 6290960D (1653642765) │ │ │ │ -9E1F8 Compressed Size 00001081 (4225) │ │ │ │ -9E1FC Uncompressed Size 00004BFF (19455) │ │ │ │ -9E200 Filename Length 001B (27) │ │ │ │ -9E202 Extra Length 0018 (24) │ │ │ │ -9E204 Comment Length 0000 (0) │ │ │ │ -9E206 Disk Start 0000 (0) │ │ │ │ -9E208 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E20A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E20E Local Header Offset 0002BAAC (178860) │ │ │ │ -9E212 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E212: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E22D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E22F Length 0005 (5) │ │ │ │ -9E231 Flags 01 (1) 'Modification' │ │ │ │ -9E232 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E236 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E238 Length 000B (11) │ │ │ │ -9E23A Version 01 (1) │ │ │ │ -9E23B UID Size 04 (4) │ │ │ │ -9E23C UID 00000000 (0) │ │ │ │ -9E240 GID Size 04 (4) │ │ │ │ -9E241 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E245 CENTRAL HEADER #19 02014B50 (33639248) │ │ │ │ -9E249 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E24A Created OS 03 (3) 'Unix' │ │ │ │ -9E24B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E24C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E24D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E24F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E251 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E255 CRC ED4F3856 (3981391958) │ │ │ │ -9E259 Compressed Size 000033AA (13226) │ │ │ │ -9E25D Uncompressed Size 0000BC94 (48276) │ │ │ │ -9E261 Filename Length 001D (29) │ │ │ │ -9E263 Extra Length 0018 (24) │ │ │ │ -9E265 Comment Length 0000 (0) │ │ │ │ -9E267 Disk Start 0000 (0) │ │ │ │ -9E269 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E26B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E26F Local Header Offset 0002CB82 (183170) │ │ │ │ -9E273 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E273: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E290 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E292 Length 0005 (5) │ │ │ │ -9E294 Flags 01 (1) 'Modification' │ │ │ │ -9E295 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E299 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E29B Length 000B (11) │ │ │ │ -9E29D Version 01 (1) │ │ │ │ -9E29E UID Size 04 (4) │ │ │ │ -9E29F UID 00000000 (0) │ │ │ │ -9E2A3 GID Size 04 (4) │ │ │ │ -9E2A4 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E2A8 CENTRAL HEADER #20 02014B50 (33639248) │ │ │ │ -9E2AC Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E2AD Created OS 03 (3) 'Unix' │ │ │ │ -9E2AE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E2AF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E2B0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E2B2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E2B4 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E2B8 CRC C64C8DB7 (3326905783) │ │ │ │ -9E2BC Compressed Size 00000D6A (3434) │ │ │ │ -9E2C0 Uncompressed Size 00003876 (14454) │ │ │ │ -9E2C4 Filename Length 001D (29) │ │ │ │ -9E2C6 Extra Length 0018 (24) │ │ │ │ -9E2C8 Comment Length 0000 (0) │ │ │ │ -9E2CA Disk Start 0000 (0) │ │ │ │ -9E2CC Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E2CE Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E2D2 Local Header Offset 0002FF83 (196483) │ │ │ │ -9E2D6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E2D6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E2F3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E2F5 Length 0005 (5) │ │ │ │ -9E2F7 Flags 01 (1) 'Modification' │ │ │ │ -9E2F8 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E2FC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E2FE Length 000B (11) │ │ │ │ -9E300 Version 01 (1) │ │ │ │ -9E301 UID Size 04 (4) │ │ │ │ -9E302 UID 00000000 (0) │ │ │ │ -9E306 GID Size 04 (4) │ │ │ │ -9E307 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E30B CENTRAL HEADER #21 02014B50 (33639248) │ │ │ │ -9E30F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E310 Created OS 03 (3) 'Unix' │ │ │ │ -9E311 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E312 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E313 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E315 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E317 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E31B CRC 92045684 (2449757828) │ │ │ │ -9E31F Compressed Size 00001C69 (7273) │ │ │ │ -9E323 Uncompressed Size 0000C186 (49542) │ │ │ │ -9E327 Filename Length 001A (26) │ │ │ │ -9E329 Extra Length 0018 (24) │ │ │ │ -9E32B Comment Length 0000 (0) │ │ │ │ -9E32D Disk Start 0000 (0) │ │ │ │ -9E32F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E331 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E335 Local Header Offset 00030D44 (200004) │ │ │ │ -9E339 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E339: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E353 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E355 Length 0005 (5) │ │ │ │ -9E357 Flags 01 (1) 'Modification' │ │ │ │ -9E358 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E35C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E35E Length 000B (11) │ │ │ │ -9E360 Version 01 (1) │ │ │ │ -9E361 UID Size 04 (4) │ │ │ │ -9E362 UID 00000000 (0) │ │ │ │ -9E366 GID Size 04 (4) │ │ │ │ -9E367 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E36B CENTRAL HEADER #22 02014B50 (33639248) │ │ │ │ -9E36F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E370 Created OS 03 (3) 'Unix' │ │ │ │ -9E371 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E372 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E373 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E375 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E377 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E37B CRC 2632F341 (640873281) │ │ │ │ -9E37F Compressed Size 000003A3 (931) │ │ │ │ -9E383 Uncompressed Size 0000088E (2190) │ │ │ │ -9E387 Filename Length 0012 (18) │ │ │ │ -9E389 Extra Length 0018 (24) │ │ │ │ -9E38B Comment Length 0000 (0) │ │ │ │ -9E38D Disk Start 0000 (0) │ │ │ │ -9E38F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E391 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E395 Local Header Offset 00032A01 (207361) │ │ │ │ -9E399 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E399: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E3AB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E3AD Length 0005 (5) │ │ │ │ -9E3AF Flags 01 (1) 'Modification' │ │ │ │ -9E3B0 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E3B4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E3B6 Length 000B (11) │ │ │ │ -9E3B8 Version 01 (1) │ │ │ │ -9E3B9 UID Size 04 (4) │ │ │ │ -9E3BA UID 00000000 (0) │ │ │ │ -9E3BE GID Size 04 (4) │ │ │ │ -9E3BF GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E3C3 CENTRAL HEADER #23 02014B50 (33639248) │ │ │ │ -9E3C7 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E3C8 Created OS 03 (3) 'Unix' │ │ │ │ -9E3C9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E3CA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E3CB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E3CD Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E3CF Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E3D3 CRC 24939ACA (613653194) │ │ │ │ -9E3D7 Compressed Size 000001D4 (468) │ │ │ │ -9E3DB Uncompressed Size 00000311 (785) │ │ │ │ -9E3DF Filename Length 0020 (32) │ │ │ │ -9E3E1 Extra Length 0018 (24) │ │ │ │ -9E3E3 Comment Length 0000 (0) │ │ │ │ -9E3E5 Disk Start 0000 (0) │ │ │ │ -9E3E7 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E3E9 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E3ED Local Header Offset 00032DF0 (208368) │ │ │ │ -9E3F1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E3F1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E411 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E413 Length 0005 (5) │ │ │ │ -9E415 Flags 01 (1) 'Modification' │ │ │ │ -9E416 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E41A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E41C Length 000B (11) │ │ │ │ -9E41E Version 01 (1) │ │ │ │ -9E41F UID Size 04 (4) │ │ │ │ -9E420 UID 00000000 (0) │ │ │ │ -9E424 GID Size 04 (4) │ │ │ │ -9E425 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E429 CENTRAL HEADER #24 02014B50 (33639248) │ │ │ │ -9E42D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E42E Created OS 03 (3) 'Unix' │ │ │ │ -9E42F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E430 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E431 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E433 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E435 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E439 CRC BA4C527E (3125564030) │ │ │ │ -9E43D Compressed Size 000017AB (6059) │ │ │ │ -9E441 Uncompressed Size 00009CD3 (40147) │ │ │ │ -9E445 Filename Length 001B (27) │ │ │ │ -9E447 Extra Length 0018 (24) │ │ │ │ -9E449 Comment Length 0000 (0) │ │ │ │ -9E44B Disk Start 0000 (0) │ │ │ │ -9E44D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E44F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E453 Local Header Offset 0003301E (208926) │ │ │ │ -9E457 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E457: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E472 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E474 Length 0005 (5) │ │ │ │ -9E476 Flags 01 (1) 'Modification' │ │ │ │ -9E477 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E47B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E47D Length 000B (11) │ │ │ │ -9E47F Version 01 (1) │ │ │ │ -9E480 UID Size 04 (4) │ │ │ │ -9E481 UID 00000000 (0) │ │ │ │ -9E485 GID Size 04 (4) │ │ │ │ -9E486 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E48A CENTRAL HEADER #25 02014B50 (33639248) │ │ │ │ -9E48E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E48F Created OS 03 (3) 'Unix' │ │ │ │ -9E490 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E491 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E492 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E494 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E496 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E49A CRC 454623A7 (1162224551) │ │ │ │ -9E49E Compressed Size 00001371 (4977) │ │ │ │ -9E4A2 Uncompressed Size 00003B66 (15206) │ │ │ │ -9E4A6 Filename Length 0015 (21) │ │ │ │ -9E4A8 Extra Length 0018 (24) │ │ │ │ -9E4AA Comment Length 0000 (0) │ │ │ │ -9E4AC Disk Start 0000 (0) │ │ │ │ -9E4AE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E4B0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E4B4 Local Header Offset 0003481E (215070) │ │ │ │ -9E4B8 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E4B8: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E4CD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E4CF Length 0005 (5) │ │ │ │ -9E4D1 Flags 01 (1) 'Modification' │ │ │ │ -9E4D2 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E4D6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E4D8 Length 000B (11) │ │ │ │ -9E4DA Version 01 (1) │ │ │ │ -9E4DB UID Size 04 (4) │ │ │ │ -9E4DC UID 00000000 (0) │ │ │ │ -9E4E0 GID Size 04 (4) │ │ │ │ -9E4E1 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E4E5 CENTRAL HEADER #26 02014B50 (33639248) │ │ │ │ -9E4E9 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E4EA Created OS 03 (3) 'Unix' │ │ │ │ -9E4EB Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E4EC Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E4ED General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E4EF Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E4F1 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E4F5 CRC 081E11CF (136188367) │ │ │ │ -9E4F9 Compressed Size 00000AD1 (2769) │ │ │ │ -9E4FD Uncompressed Size 00002135 (8501) │ │ │ │ -9E501 Filename Length 0011 (17) │ │ │ │ -9E503 Extra Length 0018 (24) │ │ │ │ -9E505 Comment Length 0000 (0) │ │ │ │ -9E507 Disk Start 0000 (0) │ │ │ │ -9E509 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E50B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E50F Local Header Offset 00035BDE (220126) │ │ │ │ -9E513 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E513: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E524 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E526 Length 0005 (5) │ │ │ │ -9E528 Flags 01 (1) 'Modification' │ │ │ │ -9E529 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E52D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E52F Length 000B (11) │ │ │ │ -9E531 Version 01 (1) │ │ │ │ -9E532 UID Size 04 (4) │ │ │ │ -9E533 UID 00000000 (0) │ │ │ │ -9E537 GID Size 04 (4) │ │ │ │ -9E538 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E53C CENTRAL HEADER #27 02014B50 (33639248) │ │ │ │ -9E540 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E541 Created OS 03 (3) 'Unix' │ │ │ │ -9E542 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E543 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E544 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E546 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E548 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E54C CRC 3A63D38A (979620746) │ │ │ │ -9E550 Compressed Size 000003FE (1022) │ │ │ │ -9E554 Uncompressed Size 00000E99 (3737) │ │ │ │ -9E558 Filename Length 0014 (20) │ │ │ │ -9E55A Extra Length 0018 (24) │ │ │ │ -9E55C Comment Length 0000 (0) │ │ │ │ -9E55E Disk Start 0000 (0) │ │ │ │ -9E560 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E562 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E566 Local Header Offset 000366FA (222970) │ │ │ │ -9E56A Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E56A: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E57E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E580 Length 0005 (5) │ │ │ │ -9E582 Flags 01 (1) 'Modification' │ │ │ │ -9E583 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E587 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E589 Length 000B (11) │ │ │ │ -9E58B Version 01 (1) │ │ │ │ -9E58C UID Size 04 (4) │ │ │ │ -9E58D UID 00000000 (0) │ │ │ │ -9E591 GID Size 04 (4) │ │ │ │ -9E592 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E596 CENTRAL HEADER #28 02014B50 (33639248) │ │ │ │ -9E59A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E59B Created OS 03 (3) 'Unix' │ │ │ │ -9E59C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E59D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E59E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E5A0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E5A2 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E5A6 CRC 009A6A7C (10119804) │ │ │ │ -9E5AA Compressed Size 00001261 (4705) │ │ │ │ -9E5AE Uncompressed Size 00003469 (13417) │ │ │ │ -9E5B2 Filename Length 0014 (20) │ │ │ │ -9E5B4 Extra Length 0018 (24) │ │ │ │ -9E5B6 Comment Length 0000 (0) │ │ │ │ -9E5B8 Disk Start 0000 (0) │ │ │ │ -9E5BA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E5BC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E5C0 Local Header Offset 00036B46 (224070) │ │ │ │ -9E5C4 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E5C4: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E5D8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E5DA Length 0005 (5) │ │ │ │ -9E5DC Flags 01 (1) 'Modification' │ │ │ │ -9E5DD Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E5E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E5E3 Length 000B (11) │ │ │ │ -9E5E5 Version 01 (1) │ │ │ │ -9E5E6 UID Size 04 (4) │ │ │ │ -9E5E7 UID 00000000 (0) │ │ │ │ -9E5EB GID Size 04 (4) │ │ │ │ -9E5EC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E5F0 CENTRAL HEADER #29 02014B50 (33639248) │ │ │ │ -9E5F4 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E5F5 Created OS 03 (3) 'Unix' │ │ │ │ -9E5F6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E5F7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E5F8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E5FA Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E5FC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E600 CRC 8C678CDB (2355596507) │ │ │ │ -9E604 Compressed Size 00000ACF (2767) │ │ │ │ -9E608 Uncompressed Size 000022FF (8959) │ │ │ │ -9E60C Filename Length 001B (27) │ │ │ │ -9E60E Extra Length 0018 (24) │ │ │ │ -9E610 Comment Length 0000 (0) │ │ │ │ -9E612 Disk Start 0000 (0) │ │ │ │ -9E614 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E616 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E61A Local Header Offset 00037DF5 (228853) │ │ │ │ -9E61E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E61E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E639 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E63B Length 0005 (5) │ │ │ │ -9E63D Flags 01 (1) 'Modification' │ │ │ │ -9E63E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E642 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E644 Length 000B (11) │ │ │ │ -9E646 Version 01 (1) │ │ │ │ -9E647 UID Size 04 (4) │ │ │ │ -9E648 UID 00000000 (0) │ │ │ │ -9E64C GID Size 04 (4) │ │ │ │ -9E64D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E651 CENTRAL HEADER #30 02014B50 (33639248) │ │ │ │ -9E655 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E656 Created OS 03 (3) 'Unix' │ │ │ │ -9E657 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E658 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E659 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E65B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E65D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E661 CRC 32905960 (848320864) │ │ │ │ -9E665 Compressed Size 00000A8F (2703) │ │ │ │ -9E669 Uncompressed Size 0000237A (9082) │ │ │ │ -9E66D Filename Length 0013 (19) │ │ │ │ -9E66F Extra Length 0018 (24) │ │ │ │ -9E671 Comment Length 0000 (0) │ │ │ │ -9E673 Disk Start 0000 (0) │ │ │ │ -9E675 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E677 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E67B Local Header Offset 00038919 (231705) │ │ │ │ -9E67F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E67F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E692 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E694 Length 0005 (5) │ │ │ │ -9E696 Flags 01 (1) 'Modification' │ │ │ │ -9E697 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E69B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E69D Length 000B (11) │ │ │ │ -9E69F Version 01 (1) │ │ │ │ -9E6A0 UID Size 04 (4) │ │ │ │ -9E6A1 UID 00000000 (0) │ │ │ │ -9E6A5 GID Size 04 (4) │ │ │ │ -9E6A6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E6AA CENTRAL HEADER #31 02014B50 (33639248) │ │ │ │ -9E6AE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E6AF Created OS 03 (3) 'Unix' │ │ │ │ -9E6B0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E6B1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E6B2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E6B4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E6B6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E6BA CRC 5A75F568 (1517679976) │ │ │ │ -9E6BE Compressed Size 00000F49 (3913) │ │ │ │ -9E6C2 Uncompressed Size 000036F1 (14065) │ │ │ │ -9E6C6 Filename Length 000F (15) │ │ │ │ -9E6C8 Extra Length 0018 (24) │ │ │ │ -9E6CA Comment Length 0000 (0) │ │ │ │ -9E6CC Disk Start 0000 (0) │ │ │ │ -9E6CE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E6D0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E6D4 Local Header Offset 000393F5 (234485) │ │ │ │ -9E6D8 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E6D8: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E6E7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E6E9 Length 0005 (5) │ │ │ │ -9E6EB Flags 01 (1) 'Modification' │ │ │ │ -9E6EC Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E6F0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E6F2 Length 000B (11) │ │ │ │ -9E6F4 Version 01 (1) │ │ │ │ -9E6F5 UID Size 04 (4) │ │ │ │ -9E6F6 UID 00000000 (0) │ │ │ │ -9E6FA GID Size 04 (4) │ │ │ │ -9E6FB GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E6FF CENTRAL HEADER #32 02014B50 (33639248) │ │ │ │ -9E703 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E704 Created OS 03 (3) 'Unix' │ │ │ │ -9E705 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E706 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E707 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E709 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E70B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E70F CRC 262FB9B0 (640661936) │ │ │ │ -9E713 Compressed Size 0000066A (1642) │ │ │ │ -9E717 Uncompressed Size 000018DF (6367) │ │ │ │ -9E71B Filename Length 000F (15) │ │ │ │ -9E71D Extra Length 0018 (24) │ │ │ │ -9E71F Comment Length 0000 (0) │ │ │ │ -9E721 Disk Start 0000 (0) │ │ │ │ -9E723 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E725 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E729 Local Header Offset 0003A387 (238471) │ │ │ │ -9E72D Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E72D: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E73C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E73E Length 0005 (5) │ │ │ │ -9E740 Flags 01 (1) 'Modification' │ │ │ │ -9E741 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E745 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E747 Length 000B (11) │ │ │ │ -9E749 Version 01 (1) │ │ │ │ -9E74A UID Size 04 (4) │ │ │ │ -9E74B UID 00000000 (0) │ │ │ │ -9E74F GID Size 04 (4) │ │ │ │ -9E750 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E754 CENTRAL HEADER #33 02014B50 (33639248) │ │ │ │ -9E758 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E759 Created OS 03 (3) 'Unix' │ │ │ │ -9E75A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E75B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E75C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E75E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E760 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E764 CRC 753BC529 (1966851369) │ │ │ │ -9E768 Compressed Size 00001A4B (6731) │ │ │ │ -9E76C Uncompressed Size 000064F2 (25842) │ │ │ │ -9E770 Filename Length 0013 (19) │ │ │ │ -9E772 Extra Length 0018 (24) │ │ │ │ -9E774 Comment Length 0000 (0) │ │ │ │ -9E776 Disk Start 0000 (0) │ │ │ │ -9E778 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E77A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E77E Local Header Offset 0003AA3A (240186) │ │ │ │ -9E782 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E782: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E795 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E797 Length 0005 (5) │ │ │ │ -9E799 Flags 01 (1) 'Modification' │ │ │ │ -9E79A Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E79E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E7A0 Length 000B (11) │ │ │ │ -9E7A2 Version 01 (1) │ │ │ │ -9E7A3 UID Size 04 (4) │ │ │ │ -9E7A4 UID 00000000 (0) │ │ │ │ -9E7A8 GID Size 04 (4) │ │ │ │ -9E7A9 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E7AD CENTRAL HEADER #34 02014B50 (33639248) │ │ │ │ -9E7B1 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E7B2 Created OS 03 (3) 'Unix' │ │ │ │ -9E7B3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E7B4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E7B5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E7B7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E7B9 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E7BD CRC 936899C3 (2473105859) │ │ │ │ -9E7C1 Compressed Size 000009A6 (2470) │ │ │ │ -9E7C5 Uncompressed Size 00001B64 (7012) │ │ │ │ -9E7C9 Filename Length 0010 (16) │ │ │ │ -9E7CB Extra Length 0018 (24) │ │ │ │ -9E7CD Comment Length 0000 (0) │ │ │ │ -9E7CF Disk Start 0000 (0) │ │ │ │ -9E7D1 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E7D3 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E7D7 Local Header Offset 0003C4D2 (246994) │ │ │ │ -9E7DB Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E7DB: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E7EB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E7ED Length 0005 (5) │ │ │ │ -9E7EF Flags 01 (1) 'Modification' │ │ │ │ -9E7F0 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E7F4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E7F6 Length 000B (11) │ │ │ │ -9E7F8 Version 01 (1) │ │ │ │ -9E7F9 UID Size 04 (4) │ │ │ │ -9E7FA UID 00000000 (0) │ │ │ │ -9E7FE GID Size 04 (4) │ │ │ │ -9E7FF GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E803 CENTRAL HEADER #35 02014B50 (33639248) │ │ │ │ -9E807 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E808 Created OS 03 (3) 'Unix' │ │ │ │ -9E809 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E80A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E80B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E80D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E80F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E813 CRC E9E04E21 (3923791393) │ │ │ │ -9E817 Compressed Size 000006B7 (1719) │ │ │ │ -9E81B Uncompressed Size 00001565 (5477) │ │ │ │ -9E81F Filename Length 0012 (18) │ │ │ │ -9E821 Extra Length 0018 (24) │ │ │ │ -9E823 Comment Length 0000 (0) │ │ │ │ -9E825 Disk Start 0000 (0) │ │ │ │ -9E827 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E829 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E82D Local Header Offset 0003CEC2 (249538) │ │ │ │ -9E831 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E831: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E843 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E845 Length 0005 (5) │ │ │ │ -9E847 Flags 01 (1) 'Modification' │ │ │ │ -9E848 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E84C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E84E Length 000B (11) │ │ │ │ -9E850 Version 01 (1) │ │ │ │ -9E851 UID Size 04 (4) │ │ │ │ -9E852 UID 00000000 (0) │ │ │ │ -9E856 GID Size 04 (4) │ │ │ │ -9E857 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E85B CENTRAL HEADER #36 02014B50 (33639248) │ │ │ │ -9E85F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E860 Created OS 03 (3) 'Unix' │ │ │ │ -9E861 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E862 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E863 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E865 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E867 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E86B CRC 97DFF56C (2548036972) │ │ │ │ -9E86F Compressed Size 00002A16 (10774) │ │ │ │ -9E873 Uncompressed Size 0000B1C5 (45509) │ │ │ │ -9E877 Filename Length 0010 (16) │ │ │ │ -9E879 Extra Length 0018 (24) │ │ │ │ -9E87B Comment Length 0000 (0) │ │ │ │ -9E87D Disk Start 0000 (0) │ │ │ │ -9E87F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E881 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E885 Local Header Offset 0003D5C5 (251333) │ │ │ │ -9E889 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E889: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E899 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E89B Length 0005 (5) │ │ │ │ -9E89D Flags 01 (1) 'Modification' │ │ │ │ -9E89E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E8A2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E8A4 Length 000B (11) │ │ │ │ -9E8A6 Version 01 (1) │ │ │ │ -9E8A7 UID Size 04 (4) │ │ │ │ -9E8A8 UID 00000000 (0) │ │ │ │ -9E8AC GID Size 04 (4) │ │ │ │ -9E8AD GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E8B1 CENTRAL HEADER #37 02014B50 (33639248) │ │ │ │ -9E8B5 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E8B6 Created OS 03 (3) 'Unix' │ │ │ │ -9E8B7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E8B8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E8B9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E8BB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E8BD Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E8C1 CRC 62EDD7EF (1659754479) │ │ │ │ -9E8C5 Compressed Size 00001E82 (7810) │ │ │ │ -9E8C9 Uncompressed Size 00009AAA (39594) │ │ │ │ -9E8CD Filename Length 0012 (18) │ │ │ │ -9E8CF Extra Length 0018 (24) │ │ │ │ -9E8D1 Comment Length 0000 (0) │ │ │ │ -9E8D3 Disk Start 0000 (0) │ │ │ │ -9E8D5 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E8D7 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E8DB Local Header Offset 00040025 (262181) │ │ │ │ -9E8DF Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E8DF: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E8F1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E8F3 Length 0005 (5) │ │ │ │ -9E8F5 Flags 01 (1) 'Modification' │ │ │ │ -9E8F6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E8FA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E8FC Length 000B (11) │ │ │ │ -9E8FE Version 01 (1) │ │ │ │ -9E8FF UID Size 04 (4) │ │ │ │ -9E900 UID 00000000 (0) │ │ │ │ -9E904 GID Size 04 (4) │ │ │ │ -9E905 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E909 CENTRAL HEADER #38 02014B50 (33639248) │ │ │ │ -9E90D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E90E Created OS 03 (3) 'Unix' │ │ │ │ -9E90F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E910 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E911 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E913 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E915 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E919 CRC 9414FC7D (2484403325) │ │ │ │ -9E91D Compressed Size 00001477 (5239) │ │ │ │ -9E921 Uncompressed Size 00007ACF (31439) │ │ │ │ -9E925 Filename Length 0018 (24) │ │ │ │ -9E927 Extra Length 0018 (24) │ │ │ │ -9E929 Comment Length 0000 (0) │ │ │ │ -9E92B Disk Start 0000 (0) │ │ │ │ -9E92D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E92F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E933 Local Header Offset 00041EF3 (270067) │ │ │ │ -9E937 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E937: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E94F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E951 Length 0005 (5) │ │ │ │ -9E953 Flags 01 (1) 'Modification' │ │ │ │ -9E954 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E958 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E95A Length 000B (11) │ │ │ │ -9E95C Version 01 (1) │ │ │ │ -9E95D UID Size 04 (4) │ │ │ │ -9E95E UID 00000000 (0) │ │ │ │ -9E962 GID Size 04 (4) │ │ │ │ -9E963 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E967 CENTRAL HEADER #39 02014B50 (33639248) │ │ │ │ -9E96B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E96C Created OS 03 (3) 'Unix' │ │ │ │ -9E96D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E96E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E96F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E971 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E973 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E977 CRC 0C216798 (203515800) │ │ │ │ -9E97B Compressed Size 000018D1 (6353) │ │ │ │ -9E97F Uncompressed Size 0000A7F4 (42996) │ │ │ │ -9E983 Filename Length 001F (31) │ │ │ │ -9E985 Extra Length 0018 (24) │ │ │ │ -9E987 Comment Length 0000 (0) │ │ │ │ -9E989 Disk Start 0000 (0) │ │ │ │ -9E98B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E98D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E991 Local Header Offset 000433BC (275388) │ │ │ │ -9E995 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E995: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E9B4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E9B6 Length 0005 (5) │ │ │ │ -9E9B8 Flags 01 (1) 'Modification' │ │ │ │ -9E9B9 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9E9BD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E9BF Length 000B (11) │ │ │ │ -9E9C1 Version 01 (1) │ │ │ │ -9E9C2 UID Size 04 (4) │ │ │ │ -9E9C3 UID 00000000 (0) │ │ │ │ -9E9C7 GID Size 04 (4) │ │ │ │ -9E9C8 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E9CC CENTRAL HEADER #40 02014B50 (33639248) │ │ │ │ -9E9D0 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E9D1 Created OS 03 (3) 'Unix' │ │ │ │ -9E9D2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E9D3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E9D4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E9D6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E9D8 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9E9DC CRC D64849DE (3595061726) │ │ │ │ -9E9E0 Compressed Size 000003F7 (1015) │ │ │ │ -9E9E4 Uncompressed Size 000008A3 (2211) │ │ │ │ -9E9E8 Filename Length 001E (30) │ │ │ │ -9E9EA Extra Length 0018 (24) │ │ │ │ -9E9EC Comment Length 0000 (0) │ │ │ │ -9E9EE Disk Start 0000 (0) │ │ │ │ -9E9F0 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E9F2 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E9F6 Local Header Offset 00044CE6 (281830) │ │ │ │ -9E9FA Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E9FA: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EA18 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EA1A Length 0005 (5) │ │ │ │ -9EA1C Flags 01 (1) 'Modification' │ │ │ │ -9EA1D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EA21 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EA23 Length 000B (11) │ │ │ │ -9EA25 Version 01 (1) │ │ │ │ -9EA26 UID Size 04 (4) │ │ │ │ -9EA27 UID 00000000 (0) │ │ │ │ -9EA2B GID Size 04 (4) │ │ │ │ -9EA2C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EA30 CENTRAL HEADER #41 02014B50 (33639248) │ │ │ │ -9EA34 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EA35 Created OS 03 (3) 'Unix' │ │ │ │ -9EA36 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EA37 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EA38 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EA3A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EA3C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EA40 CRC 9488B892 (2491988114) │ │ │ │ -9EA44 Compressed Size 00004293 (17043) │ │ │ │ -9EA48 Uncompressed Size 0000D8DC (55516) │ │ │ │ -9EA4C Filename Length 0013 (19) │ │ │ │ -9EA4E Extra Length 0018 (24) │ │ │ │ -9EA50 Comment Length 0000 (0) │ │ │ │ -9EA52 Disk Start 0000 (0) │ │ │ │ -9EA54 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EA56 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EA5A Local Header Offset 00045135 (282933) │ │ │ │ -9EA5E Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EA5E: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EA71 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EA73 Length 0005 (5) │ │ │ │ -9EA75 Flags 01 (1) 'Modification' │ │ │ │ -9EA76 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EA7A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EA7C Length 000B (11) │ │ │ │ -9EA7E Version 01 (1) │ │ │ │ -9EA7F UID Size 04 (4) │ │ │ │ -9EA80 UID 00000000 (0) │ │ │ │ -9EA84 GID Size 04 (4) │ │ │ │ -9EA85 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EA89 CENTRAL HEADER #42 02014B50 (33639248) │ │ │ │ -9EA8D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EA8E Created OS 03 (3) 'Unix' │ │ │ │ -9EA8F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EA90 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EA91 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EA93 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EA95 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EA99 CRC D1484C40 (3511176256) │ │ │ │ -9EA9D Compressed Size 000026C5 (9925) │ │ │ │ -9EAA1 Uncompressed Size 00006E45 (28229) │ │ │ │ -9EAA5 Filename Length 0019 (25) │ │ │ │ -9EAA7 Extra Length 0018 (24) │ │ │ │ -9EAA9 Comment Length 0000 (0) │ │ │ │ -9EAAB Disk Start 0000 (0) │ │ │ │ -9EAAD Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EAAF Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EAB3 Local Header Offset 00049415 (300053) │ │ │ │ -9EAB7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EAB7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EAD0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EAD2 Length 0005 (5) │ │ │ │ -9EAD4 Flags 01 (1) 'Modification' │ │ │ │ -9EAD5 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EAD9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EADB Length 000B (11) │ │ │ │ -9EADD Version 01 (1) │ │ │ │ -9EADE UID Size 04 (4) │ │ │ │ -9EADF UID 00000000 (0) │ │ │ │ -9EAE3 GID Size 04 (4) │ │ │ │ -9EAE4 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EAE8 CENTRAL HEADER #43 02014B50 (33639248) │ │ │ │ -9EAEC Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EAED Created OS 03 (3) 'Unix' │ │ │ │ -9EAEE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EAEF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EAF0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EAF2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EAF4 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EAF8 CRC 8F94BE1C (2408889884) │ │ │ │ -9EAFC Compressed Size 00002739 (10041) │ │ │ │ -9EB00 Uncompressed Size 00008B83 (35715) │ │ │ │ -9EB04 Filename Length 0019 (25) │ │ │ │ -9EB06 Extra Length 0018 (24) │ │ │ │ -9EB08 Comment Length 0000 (0) │ │ │ │ -9EB0A Disk Start 0000 (0) │ │ │ │ -9EB0C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EB0E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EB12 Local Header Offset 0004BB2D (310061) │ │ │ │ -9EB16 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EB16: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EB2F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EB31 Length 0005 (5) │ │ │ │ -9EB33 Flags 01 (1) 'Modification' │ │ │ │ -9EB34 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EB38 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EB3A Length 000B (11) │ │ │ │ -9EB3C Version 01 (1) │ │ │ │ -9EB3D UID Size 04 (4) │ │ │ │ -9EB3E UID 00000000 (0) │ │ │ │ -9EB42 GID Size 04 (4) │ │ │ │ -9EB43 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EB47 CENTRAL HEADER #44 02014B50 (33639248) │ │ │ │ -9EB4B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EB4C Created OS 03 (3) 'Unix' │ │ │ │ -9EB4D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EB4E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EB4F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EB51 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EB53 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EB57 CRC FA6C2ECC (4201393868) │ │ │ │ -9EB5B Compressed Size 00000CF1 (3313) │ │ │ │ -9EB5F Uncompressed Size 0000517A (20858) │ │ │ │ -9EB63 Filename Length 0021 (33) │ │ │ │ -9EB65 Extra Length 0018 (24) │ │ │ │ -9EB67 Comment Length 0000 (0) │ │ │ │ -9EB69 Disk Start 0000 (0) │ │ │ │ -9EB6B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EB6D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EB71 Local Header Offset 0004E2B9 (320185) │ │ │ │ -9EB75 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EB75: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EB96 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EB98 Length 0005 (5) │ │ │ │ -9EB9A Flags 01 (1) 'Modification' │ │ │ │ -9EB9B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EB9F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EBA1 Length 000B (11) │ │ │ │ -9EBA3 Version 01 (1) │ │ │ │ -9EBA4 UID Size 04 (4) │ │ │ │ -9EBA5 UID 00000000 (0) │ │ │ │ -9EBA9 GID Size 04 (4) │ │ │ │ -9EBAA GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EBAE CENTRAL HEADER #45 02014B50 (33639248) │ │ │ │ -9EBB2 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EBB3 Created OS 03 (3) 'Unix' │ │ │ │ -9EBB4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EBB5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EBB6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EBB8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EBBA Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EBBE CRC 07042E48 (117714504) │ │ │ │ -9EBC2 Compressed Size 00000468 (1128) │ │ │ │ -9EBC6 Uncompressed Size 00000931 (2353) │ │ │ │ -9EBCA Filename Length 001B (27) │ │ │ │ -9EBCC Extra Length 0018 (24) │ │ │ │ -9EBCE Comment Length 0000 (0) │ │ │ │ -9EBD0 Disk Start 0000 (0) │ │ │ │ -9EBD2 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EBD4 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EBD8 Local Header Offset 0004F005 (323589) │ │ │ │ -9EBDC Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EBDC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EBF7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EBF9 Length 0005 (5) │ │ │ │ -9EBFB Flags 01 (1) 'Modification' │ │ │ │ -9EBFC Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EC00 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EC02 Length 000B (11) │ │ │ │ -9EC04 Version 01 (1) │ │ │ │ -9EC05 UID Size 04 (4) │ │ │ │ -9EC06 UID 00000000 (0) │ │ │ │ -9EC0A GID Size 04 (4) │ │ │ │ -9EC0B GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EC0F CENTRAL HEADER #46 02014B50 (33639248) │ │ │ │ -9EC13 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EC14 Created OS 03 (3) 'Unix' │ │ │ │ -9EC15 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EC16 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EC17 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EC19 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EC1B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EC1F CRC 5C46A04F (1548132431) │ │ │ │ -9EC23 Compressed Size 000016F2 (5874) │ │ │ │ -9EC27 Uncompressed Size 00007A6D (31341) │ │ │ │ -9EC2B Filename Length 001F (31) │ │ │ │ -9EC2D Extra Length 0018 (24) │ │ │ │ -9EC2F Comment Length 0000 (0) │ │ │ │ -9EC31 Disk Start 0000 (0) │ │ │ │ -9EC33 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EC35 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EC39 Local Header Offset 0004F4C2 (324802) │ │ │ │ -9EC3D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EC3D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EC5C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EC5E Length 0005 (5) │ │ │ │ -9EC60 Flags 01 (1) 'Modification' │ │ │ │ -9EC61 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EC65 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EC67 Length 000B (11) │ │ │ │ -9EC69 Version 01 (1) │ │ │ │ -9EC6A UID Size 04 (4) │ │ │ │ -9EC6B UID 00000000 (0) │ │ │ │ -9EC6F GID Size 04 (4) │ │ │ │ -9EC70 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EC74 CENTRAL HEADER #47 02014B50 (33639248) │ │ │ │ -9EC78 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EC79 Created OS 03 (3) 'Unix' │ │ │ │ -9EC7A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EC7B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EC7C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EC7E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EC80 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EC84 CRC 5B663FF6 (1533427702) │ │ │ │ -9EC88 Compressed Size 00004170 (16752) │ │ │ │ -9EC8C Uncompressed Size 0001CF93 (118675) │ │ │ │ -9EC90 Filename Length 0010 (16) │ │ │ │ -9EC92 Extra Length 0018 (24) │ │ │ │ -9EC94 Comment Length 0000 (0) │ │ │ │ -9EC96 Disk Start 0000 (0) │ │ │ │ -9EC98 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EC9A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EC9E Local Header Offset 00050C0D (330765) │ │ │ │ -9ECA2 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ECA2: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ECB2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ECB4 Length 0005 (5) │ │ │ │ -9ECB6 Flags 01 (1) 'Modification' │ │ │ │ -9ECB7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9ECBB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ECBD Length 000B (11) │ │ │ │ -9ECBF Version 01 (1) │ │ │ │ -9ECC0 UID Size 04 (4) │ │ │ │ -9ECC1 UID 00000000 (0) │ │ │ │ -9ECC5 GID Size 04 (4) │ │ │ │ -9ECC6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ECCA CENTRAL HEADER #48 02014B50 (33639248) │ │ │ │ -9ECCE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ECCF Created OS 03 (3) 'Unix' │ │ │ │ -9ECD0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ECD1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ECD2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ECD4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ECD6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9ECDA CRC 4474668F (1148479119) │ │ │ │ -9ECDE Compressed Size 00000A94 (2708) │ │ │ │ -9ECE2 Uncompressed Size 00002105 (8453) │ │ │ │ -9ECE6 Filename Length 0014 (20) │ │ │ │ -9ECE8 Extra Length 0018 (24) │ │ │ │ -9ECEA Comment Length 0000 (0) │ │ │ │ -9ECEC Disk Start 0000 (0) │ │ │ │ -9ECEE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9ECF0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9ECF4 Local Header Offset 00054DC7 (347591) │ │ │ │ -9ECF8 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ECF8: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ED0C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ED0E Length 0005 (5) │ │ │ │ -9ED10 Flags 01 (1) 'Modification' │ │ │ │ -9ED11 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9ED15 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ED17 Length 000B (11) │ │ │ │ -9ED19 Version 01 (1) │ │ │ │ -9ED1A UID Size 04 (4) │ │ │ │ -9ED1B UID 00000000 (0) │ │ │ │ -9ED1F GID Size 04 (4) │ │ │ │ -9ED20 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ED24 CENTRAL HEADER #49 02014B50 (33639248) │ │ │ │ -9ED28 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ED29 Created OS 03 (3) 'Unix' │ │ │ │ -9ED2A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ED2B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ED2C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ED2E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ED30 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9ED34 CRC E750F924 (3880843556) │ │ │ │ -9ED38 Compressed Size 0000AC97 (44183) │ │ │ │ -9ED3C Uncompressed Size 0003E418 (255000) │ │ │ │ -9ED40 Filename Length 0017 (23) │ │ │ │ -9ED42 Extra Length 0018 (24) │ │ │ │ -9ED44 Comment Length 0000 (0) │ │ │ │ -9ED46 Disk Start 0000 (0) │ │ │ │ -9ED48 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9ED4A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9ED4E Local Header Offset 000558A9 (350377) │ │ │ │ -9ED52 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ED52: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ED69 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ED6B Length 0005 (5) │ │ │ │ -9ED6D Flags 01 (1) 'Modification' │ │ │ │ -9ED6E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9ED72 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ED74 Length 000B (11) │ │ │ │ -9ED76 Version 01 (1) │ │ │ │ -9ED77 UID Size 04 (4) │ │ │ │ -9ED78 UID 00000000 (0) │ │ │ │ -9ED7C GID Size 04 (4) │ │ │ │ -9ED7D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ED81 CENTRAL HEADER #50 02014B50 (33639248) │ │ │ │ -9ED85 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ED86 Created OS 03 (3) 'Unix' │ │ │ │ -9ED87 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ED88 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ED89 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ED8B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ED8D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9ED91 CRC 1D15B8EB (487962859) │ │ │ │ -9ED95 Compressed Size 00000401 (1025) │ │ │ │ -9ED99 Uncompressed Size 0000093D (2365) │ │ │ │ -9ED9D Filename Length 0013 (19) │ │ │ │ -9ED9F Extra Length 0018 (24) │ │ │ │ -9EDA1 Comment Length 0000 (0) │ │ │ │ -9EDA3 Disk Start 0000 (0) │ │ │ │ -9EDA5 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EDA7 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EDAB Local Header Offset 00060591 (394641) │ │ │ │ -9EDAF Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EDAF: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EDC2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EDC4 Length 0005 (5) │ │ │ │ -9EDC6 Flags 01 (1) 'Modification' │ │ │ │ -9EDC7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EDCB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EDCD Length 000B (11) │ │ │ │ -9EDCF Version 01 (1) │ │ │ │ -9EDD0 UID Size 04 (4) │ │ │ │ -9EDD1 UID 00000000 (0) │ │ │ │ -9EDD5 GID Size 04 (4) │ │ │ │ -9EDD6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EDDA CENTRAL HEADER #51 02014B50 (33639248) │ │ │ │ -9EDDE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EDDF Created OS 03 (3) 'Unix' │ │ │ │ -9EDE0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EDE1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EDE2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EDE4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EDE6 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EDEA CRC 7A12CC58 (2048052312) │ │ │ │ -9EDEE Compressed Size 000014E4 (5348) │ │ │ │ -9EDF2 Uncompressed Size 0000687B (26747) │ │ │ │ -9EDF6 Filename Length 0012 (18) │ │ │ │ -9EDF8 Extra Length 0018 (24) │ │ │ │ -9EDFA Comment Length 0000 (0) │ │ │ │ -9EDFC Disk Start 0000 (0) │ │ │ │ -9EDFE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EE00 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EE04 Local Header Offset 000609DF (395743) │ │ │ │ -9EE08 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EE08: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EE1A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EE1C Length 0005 (5) │ │ │ │ -9EE1E Flags 01 (1) 'Modification' │ │ │ │ -9EE1F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EE23 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EE25 Length 000B (11) │ │ │ │ -9EE27 Version 01 (1) │ │ │ │ -9EE28 UID Size 04 (4) │ │ │ │ -9EE29 UID 00000000 (0) │ │ │ │ -9EE2D GID Size 04 (4) │ │ │ │ -9EE2E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EE32 CENTRAL HEADER #52 02014B50 (33639248) │ │ │ │ -9EE36 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EE37 Created OS 03 (3) 'Unix' │ │ │ │ -9EE38 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EE39 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EE3A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EE3C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EE3E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EE42 CRC 80F035B2 (2163226034) │ │ │ │ -9EE46 Compressed Size 000011EC (4588) │ │ │ │ -9EE4A Uncompressed Size 000040F5 (16629) │ │ │ │ -9EE4E Filename Length 0012 (18) │ │ │ │ -9EE50 Extra Length 0018 (24) │ │ │ │ -9EE52 Comment Length 0000 (0) │ │ │ │ -9EE54 Disk Start 0000 (0) │ │ │ │ -9EE56 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EE58 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EE5C Local Header Offset 00061F0F (401167) │ │ │ │ -9EE60 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EE60: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EE72 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EE74 Length 0005 (5) │ │ │ │ -9EE76 Flags 01 (1) 'Modification' │ │ │ │ -9EE77 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EE7B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EE7D Length 000B (11) │ │ │ │ -9EE7F Version 01 (1) │ │ │ │ -9EE80 UID Size 04 (4) │ │ │ │ -9EE81 UID 00000000 (0) │ │ │ │ -9EE85 GID Size 04 (4) │ │ │ │ -9EE86 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EE8A CENTRAL HEADER #53 02014B50 (33639248) │ │ │ │ -9EE8E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EE8F Created OS 03 (3) 'Unix' │ │ │ │ -9EE90 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EE91 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EE92 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EE94 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EE96 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EE9A CRC F8DD639B (4175258523) │ │ │ │ -9EE9E Compressed Size 000009D9 (2521) │ │ │ │ -9EEA2 Uncompressed Size 00003529 (13609) │ │ │ │ -9EEA6 Filename Length 0019 (25) │ │ │ │ -9EEA8 Extra Length 0018 (24) │ │ │ │ -9EEAA Comment Length 0000 (0) │ │ │ │ -9EEAC Disk Start 0000 (0) │ │ │ │ -9EEAE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EEB0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EEB4 Local Header Offset 00063147 (405831) │ │ │ │ -9EEB8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EEB8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EED1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EED3 Length 0005 (5) │ │ │ │ -9EED5 Flags 01 (1) 'Modification' │ │ │ │ -9EED6 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EEDA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EEDC Length 000B (11) │ │ │ │ -9EEDE Version 01 (1) │ │ │ │ -9EEDF UID Size 04 (4) │ │ │ │ -9EEE0 UID 00000000 (0) │ │ │ │ -9EEE4 GID Size 04 (4) │ │ │ │ -9EEE5 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EEE9 CENTRAL HEADER #54 02014B50 (33639248) │ │ │ │ -9EEED Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EEEE Created OS 03 (3) 'Unix' │ │ │ │ -9EEEF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EEF0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EEF1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EEF3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EEF5 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EEF9 CRC A1689AA9 (2707987113) │ │ │ │ -9EEFD Compressed Size 000018B4 (6324) │ │ │ │ -9EF01 Uncompressed Size 0000A605 (42501) │ │ │ │ -9EF05 Filename Length 0019 (25) │ │ │ │ -9EF07 Extra Length 0018 (24) │ │ │ │ -9EF09 Comment Length 0000 (0) │ │ │ │ -9EF0B Disk Start 0000 (0) │ │ │ │ -9EF0D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EF0F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EF13 Local Header Offset 00063B73 (408435) │ │ │ │ -9EF17 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EF17: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EF30 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EF32 Length 0005 (5) │ │ │ │ -9EF34 Flags 01 (1) 'Modification' │ │ │ │ -9EF35 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EF39 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EF3B Length 000B (11) │ │ │ │ -9EF3D Version 01 (1) │ │ │ │ -9EF3E UID Size 04 (4) │ │ │ │ -9EF3F UID 00000000 (0) │ │ │ │ -9EF43 GID Size 04 (4) │ │ │ │ -9EF44 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EF48 CENTRAL HEADER #55 02014B50 (33639248) │ │ │ │ -9EF4C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EF4D Created OS 03 (3) 'Unix' │ │ │ │ -9EF4E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EF4F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EF50 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EF52 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EF54 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EF58 CRC 16F6295E (385231198) │ │ │ │ -9EF5C Compressed Size 0000177D (6013) │ │ │ │ -9EF60 Uncompressed Size 0000472C (18220) │ │ │ │ -9EF64 Filename Length 0014 (20) │ │ │ │ -9EF66 Extra Length 0018 (24) │ │ │ │ -9EF68 Comment Length 0000 (0) │ │ │ │ -9EF6A Disk Start 0000 (0) │ │ │ │ -9EF6C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EF6E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EF72 Local Header Offset 0006547A (414842) │ │ │ │ -9EF76 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EF76: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EF8A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EF8C Length 0005 (5) │ │ │ │ -9EF8E Flags 01 (1) 'Modification' │ │ │ │ -9EF8F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EF93 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EF95 Length 000B (11) │ │ │ │ -9EF97 Version 01 (1) │ │ │ │ -9EF98 UID Size 04 (4) │ │ │ │ -9EF99 UID 00000000 (0) │ │ │ │ -9EF9D GID Size 04 (4) │ │ │ │ -9EF9E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EFA2 CENTRAL HEADER #56 02014B50 (33639248) │ │ │ │ -9EFA6 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EFA7 Created OS 03 (3) 'Unix' │ │ │ │ -9EFA8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EFA9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EFAA General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EFAC Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EFAE Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9EFB2 CRC E49D33FF (3835507711) │ │ │ │ -9EFB6 Compressed Size 0000040A (1034) │ │ │ │ -9EFBA Uncompressed Size 00000825 (2085) │ │ │ │ -9EFBE Filename Length 001C (28) │ │ │ │ -9EFC0 Extra Length 0018 (24) │ │ │ │ -9EFC2 Comment Length 0000 (0) │ │ │ │ -9EFC4 Disk Start 0000 (0) │ │ │ │ -9EFC6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EFC8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EFCC Local Header Offset 00066C45 (420933) │ │ │ │ -9EFD0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EFD0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EFEC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EFEE Length 0005 (5) │ │ │ │ -9EFF0 Flags 01 (1) 'Modification' │ │ │ │ -9EFF1 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9EFF5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EFF7 Length 000B (11) │ │ │ │ -9EFF9 Version 01 (1) │ │ │ │ -9EFFA UID Size 04 (4) │ │ │ │ -9EFFB UID 00000000 (0) │ │ │ │ -9EFFF GID Size 04 (4) │ │ │ │ -9F000 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F004 CENTRAL HEADER #57 02014B50 (33639248) │ │ │ │ -9F008 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F009 Created OS 03 (3) 'Unix' │ │ │ │ -9F00A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F00B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F00C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F00E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F010 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F014 CRC 280BFB81 (671873921) │ │ │ │ -9F018 Compressed Size 00002483 (9347) │ │ │ │ -9F01C Uncompressed Size 0000B56F (46447) │ │ │ │ -9F020 Filename Length 001F (31) │ │ │ │ -9F022 Extra Length 0018 (24) │ │ │ │ -9F024 Comment Length 0000 (0) │ │ │ │ -9F026 Disk Start 0000 (0) │ │ │ │ -9F028 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F02A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F02E Local Header Offset 000670A5 (422053) │ │ │ │ -9F032 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F032: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F051 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F053 Length 0005 (5) │ │ │ │ -9F055 Flags 01 (1) 'Modification' │ │ │ │ -9F056 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F05A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F05C Length 000B (11) │ │ │ │ -9F05E Version 01 (1) │ │ │ │ -9F05F UID Size 04 (4) │ │ │ │ -9F060 UID 00000000 (0) │ │ │ │ -9F064 GID Size 04 (4) │ │ │ │ -9F065 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F069 CENTRAL HEADER #58 02014B50 (33639248) │ │ │ │ -9F06D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F06E Created OS 03 (3) 'Unix' │ │ │ │ -9F06F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F070 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F071 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F073 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F075 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F079 CRC CCAE3E9A (3433971354) │ │ │ │ -9F07D Compressed Size 00000E7F (3711) │ │ │ │ -9F081 Uncompressed Size 000052D9 (21209) │ │ │ │ -9F085 Filename Length 001F (31) │ │ │ │ -9F087 Extra Length 0018 (24) │ │ │ │ -9F089 Comment Length 0000 (0) │ │ │ │ -9F08B Disk Start 0000 (0) │ │ │ │ -9F08D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F08F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F093 Local Header Offset 00069581 (431489) │ │ │ │ -9F097 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F097: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F0B6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F0B8 Length 0005 (5) │ │ │ │ -9F0BA Flags 01 (1) 'Modification' │ │ │ │ -9F0BB Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F0BF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F0C1 Length 000B (11) │ │ │ │ -9F0C3 Version 01 (1) │ │ │ │ -9F0C4 UID Size 04 (4) │ │ │ │ -9F0C5 UID 00000000 (0) │ │ │ │ -9F0C9 GID Size 04 (4) │ │ │ │ -9F0CA GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F0CE CENTRAL HEADER #59 02014B50 (33639248) │ │ │ │ -9F0D2 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F0D3 Created OS 03 (3) 'Unix' │ │ │ │ -9F0D4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F0D5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F0D6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F0D8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F0DA Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F0DE CRC 26C2BC4D (650296397) │ │ │ │ -9F0E2 Compressed Size 00000A44 (2628) │ │ │ │ -9F0E6 Uncompressed Size 0000247A (9338) │ │ │ │ -9F0EA Filename Length 0013 (19) │ │ │ │ -9F0EC Extra Length 0018 (24) │ │ │ │ -9F0EE Comment Length 0000 (0) │ │ │ │ -9F0F0 Disk Start 0000 (0) │ │ │ │ -9F0F2 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F0F4 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F0F8 Local Header Offset 0006A459 (435289) │ │ │ │ -9F0FC Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F0FC: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F10F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F111 Length 0005 (5) │ │ │ │ -9F113 Flags 01 (1) 'Modification' │ │ │ │ -9F114 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F118 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F11A Length 000B (11) │ │ │ │ -9F11C Version 01 (1) │ │ │ │ -9F11D UID Size 04 (4) │ │ │ │ -9F11E UID 00000000 (0) │ │ │ │ -9F122 GID Size 04 (4) │ │ │ │ -9F123 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F127 CENTRAL HEADER #60 02014B50 (33639248) │ │ │ │ -9F12B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F12C Created OS 03 (3) 'Unix' │ │ │ │ -9F12D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F12E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F12F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F131 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F133 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F137 CRC E0E40597 (3773040023) │ │ │ │ -9F13B Compressed Size 00002488 (9352) │ │ │ │ -9F13F Uncompressed Size 0000B84C (47180) │ │ │ │ -9F143 Filename Length 0019 (25) │ │ │ │ -9F145 Extra Length 0018 (24) │ │ │ │ -9F147 Comment Length 0000 (0) │ │ │ │ -9F149 Disk Start 0000 (0) │ │ │ │ -9F14B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F14D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F151 Local Header Offset 0006AEEA (437994) │ │ │ │ -9F155 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F155: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F16E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F170 Length 0005 (5) │ │ │ │ -9F172 Flags 01 (1) 'Modification' │ │ │ │ -9F173 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F177 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F179 Length 000B (11) │ │ │ │ -9F17B Version 01 (1) │ │ │ │ -9F17C UID Size 04 (4) │ │ │ │ -9F17D UID 00000000 (0) │ │ │ │ -9F181 GID Size 04 (4) │ │ │ │ -9F182 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F186 CENTRAL HEADER #61 02014B50 (33639248) │ │ │ │ -9F18A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F18B Created OS 03 (3) 'Unix' │ │ │ │ -9F18C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F18D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F18E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F190 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F192 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F196 CRC 19609D49 (425762121) │ │ │ │ -9F19A Compressed Size 00000EF8 (3832) │ │ │ │ -9F19E Uncompressed Size 00003A2C (14892) │ │ │ │ -9F1A2 Filename Length 0024 (36) │ │ │ │ -9F1A4 Extra Length 0018 (24) │ │ │ │ -9F1A6 Comment Length 0000 (0) │ │ │ │ -9F1A8 Disk Start 0000 (0) │ │ │ │ -9F1AA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F1AC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F1B0 Local Header Offset 0006D3C5 (447429) │ │ │ │ -9F1B4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F1B4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F1D8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F1DA Length 0005 (5) │ │ │ │ -9F1DC Flags 01 (1) 'Modification' │ │ │ │ -9F1DD Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F1E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F1E3 Length 000B (11) │ │ │ │ -9F1E5 Version 01 (1) │ │ │ │ -9F1E6 UID Size 04 (4) │ │ │ │ -9F1E7 UID 00000000 (0) │ │ │ │ -9F1EB GID Size 04 (4) │ │ │ │ -9F1EC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F1F0 CENTRAL HEADER #62 02014B50 (33639248) │ │ │ │ -9F1F4 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F1F5 Created OS 03 (3) 'Unix' │ │ │ │ -9F1F6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F1F7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F1F8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F1FA Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F1FC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F200 CRC 0FBF3481 (264189057) │ │ │ │ -9F204 Compressed Size 00001AC1 (6849) │ │ │ │ -9F208 Uncompressed Size 00005EDC (24284) │ │ │ │ -9F20C Filename Length 0017 (23) │ │ │ │ -9F20E Extra Length 0018 (24) │ │ │ │ -9F210 Comment Length 0000 (0) │ │ │ │ -9F212 Disk Start 0000 (0) │ │ │ │ -9F214 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F216 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F21A Local Header Offset 0006E31B (451355) │ │ │ │ -9F21E Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F21E: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F235 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F237 Length 0005 (5) │ │ │ │ -9F239 Flags 01 (1) 'Modification' │ │ │ │ -9F23A Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F23E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F240 Length 000B (11) │ │ │ │ -9F242 Version 01 (1) │ │ │ │ -9F243 UID Size 04 (4) │ │ │ │ -9F244 UID 00000000 (0) │ │ │ │ -9F248 GID Size 04 (4) │ │ │ │ -9F249 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F24D CENTRAL HEADER #63 02014B50 (33639248) │ │ │ │ -9F251 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F252 Created OS 03 (3) 'Unix' │ │ │ │ -9F253 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F254 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F255 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F257 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F259 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F25D CRC 11E32AF1 (300100337) │ │ │ │ -9F261 Compressed Size 00000ED3 (3795) │ │ │ │ -9F265 Uncompressed Size 000038E2 (14562) │ │ │ │ -9F269 Filename Length 0023 (35) │ │ │ │ -9F26B Extra Length 0018 (24) │ │ │ │ -9F26D Comment Length 0000 (0) │ │ │ │ -9F26F Disk Start 0000 (0) │ │ │ │ -9F271 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F273 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F277 Local Header Offset 0006FE2D (458285) │ │ │ │ -9F27B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F27B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F29E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F2A0 Length 0005 (5) │ │ │ │ -9F2A2 Flags 01 (1) 'Modification' │ │ │ │ -9F2A3 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F2A7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F2A9 Length 000B (11) │ │ │ │ -9F2AB Version 01 (1) │ │ │ │ -9F2AC UID Size 04 (4) │ │ │ │ -9F2AD UID 00000000 (0) │ │ │ │ -9F2B1 GID Size 04 (4) │ │ │ │ -9F2B2 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F2B6 CENTRAL HEADER #64 02014B50 (33639248) │ │ │ │ -9F2BA Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F2BB Created OS 03 (3) 'Unix' │ │ │ │ -9F2BC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F2BD Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F2BE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F2C0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F2C2 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F2C6 CRC 2DB7929F (767005343) │ │ │ │ -9F2CA Compressed Size 00000113 (275) │ │ │ │ -9F2CE Uncompressed Size 000001F3 (499) │ │ │ │ -9F2D2 Filename Length 001B (27) │ │ │ │ -9F2D4 Extra Length 0018 (24) │ │ │ │ -9F2D6 Comment Length 0000 (0) │ │ │ │ -9F2D8 Disk Start 0000 (0) │ │ │ │ -9F2DA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F2DC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F2E0 Local Header Offset 00070D5D (462173) │ │ │ │ -9F2E4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F2E4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F2FF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F301 Length 0005 (5) │ │ │ │ -9F303 Flags 01 (1) 'Modification' │ │ │ │ -9F304 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F308 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F30A Length 000B (11) │ │ │ │ -9F30C Version 01 (1) │ │ │ │ -9F30D UID Size 04 (4) │ │ │ │ -9F30E UID 00000000 (0) │ │ │ │ -9F312 GID Size 04 (4) │ │ │ │ -9F313 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F317 CENTRAL HEADER #65 02014B50 (33639248) │ │ │ │ -9F31B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F31C Created OS 03 (3) 'Unix' │ │ │ │ -9F31D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F31E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F31F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F321 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F323 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F327 CRC CE2A6869 (3458885737) │ │ │ │ -9F32B Compressed Size 0000188F (6287) │ │ │ │ -9F32F Uncompressed Size 00008FAC (36780) │ │ │ │ -9F333 Filename Length 001D (29) │ │ │ │ -9F335 Extra Length 0018 (24) │ │ │ │ -9F337 Comment Length 0000 (0) │ │ │ │ -9F339 Disk Start 0000 (0) │ │ │ │ -9F33B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F33D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F341 Local Header Offset 00070EC5 (462533) │ │ │ │ -9F345 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F345: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F362 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F364 Length 0005 (5) │ │ │ │ -9F366 Flags 01 (1) 'Modification' │ │ │ │ -9F367 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F36B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F36D Length 000B (11) │ │ │ │ -9F36F Version 01 (1) │ │ │ │ -9F370 UID Size 04 (4) │ │ │ │ -9F371 UID 00000000 (0) │ │ │ │ -9F375 GID Size 04 (4) │ │ │ │ -9F376 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F37A CENTRAL HEADER #66 02014B50 (33639248) │ │ │ │ -9F37E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F37F Created OS 03 (3) 'Unix' │ │ │ │ -9F380 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F381 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F382 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F384 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F386 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F38A CRC 835FA0AD (2204082349) │ │ │ │ -9F38E Compressed Size 0000164C (5708) │ │ │ │ -9F392 Uncompressed Size 00003A9B (15003) │ │ │ │ -9F396 Filename Length 0015 (21) │ │ │ │ -9F398 Extra Length 0018 (24) │ │ │ │ -9F39A Comment Length 0000 (0) │ │ │ │ -9F39C Disk Start 0000 (0) │ │ │ │ -9F39E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F3A0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F3A4 Local Header Offset 000727AB (468907) │ │ │ │ -9F3A8 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F3A8: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F3BD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F3BF Length 0005 (5) │ │ │ │ -9F3C1 Flags 01 (1) 'Modification' │ │ │ │ -9F3C2 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F3C6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F3C8 Length 000B (11) │ │ │ │ -9F3CA Version 01 (1) │ │ │ │ -9F3CB UID Size 04 (4) │ │ │ │ -9F3CC UID 00000000 (0) │ │ │ │ -9F3D0 GID Size 04 (4) │ │ │ │ -9F3D1 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F3D5 CENTRAL HEADER #67 02014B50 (33639248) │ │ │ │ -9F3D9 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F3DA Created OS 03 (3) 'Unix' │ │ │ │ -9F3DB Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F3DC Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F3DD General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F3DF Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F3E1 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F3E5 CRC CC48B127 (3427316007) │ │ │ │ -9F3E9 Compressed Size 00003B4B (15179) │ │ │ │ -9F3ED Uncompressed Size 0001185B (71771) │ │ │ │ -9F3F1 Filename Length 0016 (22) │ │ │ │ -9F3F3 Extra Length 0018 (24) │ │ │ │ -9F3F5 Comment Length 0000 (0) │ │ │ │ -9F3F7 Disk Start 0000 (0) │ │ │ │ -9F3F9 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F3FB Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F3FF Local Header Offset 00073E46 (474694) │ │ │ │ -9F403 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F403: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F419 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F41B Length 0005 (5) │ │ │ │ -9F41D Flags 01 (1) 'Modification' │ │ │ │ -9F41E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F422 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F424 Length 000B (11) │ │ │ │ -9F426 Version 01 (1) │ │ │ │ -9F427 UID Size 04 (4) │ │ │ │ -9F428 UID 00000000 (0) │ │ │ │ -9F42C GID Size 04 (4) │ │ │ │ -9F42D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F431 CENTRAL HEADER #68 02014B50 (33639248) │ │ │ │ -9F435 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F436 Created OS 03 (3) 'Unix' │ │ │ │ -9F437 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F438 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F439 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F43B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F43D Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F441 CRC 6B03DA8B (1795414667) │ │ │ │ -9F445 Compressed Size 00003E86 (16006) │ │ │ │ -9F449 Uncompressed Size 0001C17B (115067) │ │ │ │ -9F44D Filename Length 0019 (25) │ │ │ │ -9F44F Extra Length 0018 (24) │ │ │ │ -9F451 Comment Length 0000 (0) │ │ │ │ -9F453 Disk Start 0000 (0) │ │ │ │ -9F455 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F457 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F45B Local Header Offset 000779E1 (489953) │ │ │ │ -9F45F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F45F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F478 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F47A Length 0005 (5) │ │ │ │ -9F47C Flags 01 (1) 'Modification' │ │ │ │ -9F47D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F481 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F483 Length 000B (11) │ │ │ │ -9F485 Version 01 (1) │ │ │ │ -9F486 UID Size 04 (4) │ │ │ │ -9F487 UID 00000000 (0) │ │ │ │ -9F48B GID Size 04 (4) │ │ │ │ -9F48C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F490 CENTRAL HEADER #69 02014B50 (33639248) │ │ │ │ -9F494 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F495 Created OS 03 (3) 'Unix' │ │ │ │ -9F496 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F497 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F498 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F49A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F49C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F4A0 CRC F547F549 (4115133769) │ │ │ │ -9F4A4 Compressed Size 00000833 (2099) │ │ │ │ -9F4A8 Uncompressed Size 00003383 (13187) │ │ │ │ -9F4AC Filename Length 0011 (17) │ │ │ │ -9F4AE Extra Length 0018 (24) │ │ │ │ -9F4B0 Comment Length 0000 (0) │ │ │ │ -9F4B2 Disk Start 0000 (0) │ │ │ │ -9F4B4 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F4B6 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F4BA Local Header Offset 0007B8BA (506042) │ │ │ │ -9F4BE Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F4BE: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F4CF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F4D1 Length 0005 (5) │ │ │ │ -9F4D3 Flags 01 (1) 'Modification' │ │ │ │ -9F4D4 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F4D8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F4DA Length 000B (11) │ │ │ │ -9F4DC Version 01 (1) │ │ │ │ -9F4DD UID Size 04 (4) │ │ │ │ -9F4DE UID 00000000 (0) │ │ │ │ -9F4E2 GID Size 04 (4) │ │ │ │ -9F4E3 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F4E7 CENTRAL HEADER #70 02014B50 (33639248) │ │ │ │ -9F4EB Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F4EC Created OS 03 (3) 'Unix' │ │ │ │ -9F4ED Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F4EE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F4EF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F4F1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F4F3 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F4F7 CRC 8FB16754 (2410768212) │ │ │ │ -9F4FB Compressed Size 0000518E (20878) │ │ │ │ -9F4FF Uncompressed Size 0001FB6C (129900) │ │ │ │ -9F503 Filename Length 0015 (21) │ │ │ │ -9F505 Extra Length 0018 (24) │ │ │ │ -9F507 Comment Length 0000 (0) │ │ │ │ -9F509 Disk Start 0000 (0) │ │ │ │ -9F50B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F50D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F511 Local Header Offset 0007C138 (508216) │ │ │ │ -9F515 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F515: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F52A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F52C Length 0005 (5) │ │ │ │ -9F52E Flags 01 (1) 'Modification' │ │ │ │ -9F52F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F533 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F535 Length 000B (11) │ │ │ │ -9F537 Version 01 (1) │ │ │ │ -9F538 UID Size 04 (4) │ │ │ │ -9F539 UID 00000000 (0) │ │ │ │ -9F53D GID Size 04 (4) │ │ │ │ -9F53E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F542 CENTRAL HEADER #71 02014B50 (33639248) │ │ │ │ -9F546 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F547 Created OS 03 (3) 'Unix' │ │ │ │ -9F548 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F549 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F54A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F54C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F54E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F552 CRC E5A05A87 (3852491399) │ │ │ │ -9F556 Compressed Size 00001B07 (6919) │ │ │ │ -9F55A Uncompressed Size 000081CF (33231) │ │ │ │ -9F55E Filename Length 0019 (25) │ │ │ │ -9F560 Extra Length 0018 (24) │ │ │ │ -9F562 Comment Length 0000 (0) │ │ │ │ -9F564 Disk Start 0000 (0) │ │ │ │ -9F566 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F568 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F56C Local Header Offset 00081315 (529173) │ │ │ │ -9F570 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F570: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F589 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F58B Length 0005 (5) │ │ │ │ -9F58D Flags 01 (1) 'Modification' │ │ │ │ -9F58E Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F592 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F594 Length 000B (11) │ │ │ │ -9F596 Version 01 (1) │ │ │ │ -9F597 UID Size 04 (4) │ │ │ │ -9F598 UID 00000000 (0) │ │ │ │ -9F59C GID Size 04 (4) │ │ │ │ -9F59D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F5A1 CENTRAL HEADER #72 02014B50 (33639248) │ │ │ │ -9F5A5 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F5A6 Created OS 03 (3) 'Unix' │ │ │ │ -9F5A7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F5A8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F5A9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F5AB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F5AD Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F5B1 CRC 3F4E6540 (1062102336) │ │ │ │ -9F5B5 Compressed Size 00000D96 (3478) │ │ │ │ -9F5B9 Uncompressed Size 00002E9F (11935) │ │ │ │ -9F5BD Filename Length 0018 (24) │ │ │ │ -9F5BF Extra Length 0018 (24) │ │ │ │ -9F5C1 Comment Length 0000 (0) │ │ │ │ -9F5C3 Disk Start 0000 (0) │ │ │ │ -9F5C5 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F5C7 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F5CB Local Header Offset 00082E6F (536175) │ │ │ │ -9F5CF Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F5CF: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F5E7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F5E9 Length 0005 (5) │ │ │ │ -9F5EB Flags 01 (1) 'Modification' │ │ │ │ -9F5EC Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F5F0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F5F2 Length 000B (11) │ │ │ │ -9F5F4 Version 01 (1) │ │ │ │ -9F5F5 UID Size 04 (4) │ │ │ │ -9F5F6 UID 00000000 (0) │ │ │ │ -9F5FA GID Size 04 (4) │ │ │ │ -9F5FB GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F5FF CENTRAL HEADER #73 02014B50 (33639248) │ │ │ │ -9F603 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F604 Created OS 03 (3) 'Unix' │ │ │ │ -9F605 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F606 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F607 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F609 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F60B Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F60F CRC B52BB549 (3039540553) │ │ │ │ -9F613 Compressed Size 000001E0 (480) │ │ │ │ -9F617 Uncompressed Size 00000323 (803) │ │ │ │ -9F61B Filename Length 0011 (17) │ │ │ │ -9F61D Extra Length 0018 (24) │ │ │ │ -9F61F Comment Length 0000 (0) │ │ │ │ -9F621 Disk Start 0000 (0) │ │ │ │ -9F623 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F625 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F629 Local Header Offset 00083C57 (539735) │ │ │ │ -9F62D Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F62D: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F63E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F640 Length 0005 (5) │ │ │ │ -9F642 Flags 01 (1) 'Modification' │ │ │ │ -9F643 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F647 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F649 Length 000B (11) │ │ │ │ -9F64B Version 01 (1) │ │ │ │ -9F64C UID Size 04 (4) │ │ │ │ -9F64D UID 00000000 (0) │ │ │ │ -9F651 GID Size 04 (4) │ │ │ │ -9F652 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F656 CENTRAL HEADER #74 02014B50 (33639248) │ │ │ │ -9F65A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F65B Created OS 03 (3) 'Unix' │ │ │ │ -9F65C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F65D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F65E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F660 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F662 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F666 CRC 2404DB02 (604297986) │ │ │ │ -9F66A Compressed Size 000006C2 (1730) │ │ │ │ -9F66E Uncompressed Size 00001439 (5177) │ │ │ │ -9F672 Filename Length 0019 (25) │ │ │ │ -9F674 Extra Length 0018 (24) │ │ │ │ -9F676 Comment Length 0000 (0) │ │ │ │ -9F678 Disk Start 0000 (0) │ │ │ │ -9F67A Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F67C Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F680 Local Header Offset 00083E82 (540290) │ │ │ │ -9F684 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F684: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F69D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F69F Length 0005 (5) │ │ │ │ -9F6A1 Flags 01 (1) 'Modification' │ │ │ │ -9F6A2 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F6A6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F6A8 Length 000B (11) │ │ │ │ -9F6AA Version 01 (1) │ │ │ │ -9F6AB UID Size 04 (4) │ │ │ │ -9F6AC UID 00000000 (0) │ │ │ │ -9F6B0 GID Size 04 (4) │ │ │ │ -9F6B1 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F6B5 CENTRAL HEADER #75 02014B50 (33639248) │ │ │ │ -9F6B9 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F6BA Created OS 03 (3) 'Unix' │ │ │ │ -9F6BB Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F6BC Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F6BD General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F6BF Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F6C1 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F6C5 CRC 53B37456 (1404269654) │ │ │ │ -9F6C9 Compressed Size 00001B87 (7047) │ │ │ │ -9F6CD Uncompressed Size 00009F03 (40707) │ │ │ │ -9F6D1 Filename Length 0018 (24) │ │ │ │ -9F6D3 Extra Length 0018 (24) │ │ │ │ -9F6D5 Comment Length 0000 (0) │ │ │ │ -9F6D7 Disk Start 0000 (0) │ │ │ │ -9F6D9 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F6DB Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F6DF Local Header Offset 00084597 (542103) │ │ │ │ -9F6E3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F6E3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F6FB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F6FD Length 0005 (5) │ │ │ │ -9F6FF Flags 01 (1) 'Modification' │ │ │ │ -9F700 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F704 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F706 Length 000B (11) │ │ │ │ -9F708 Version 01 (1) │ │ │ │ -9F709 UID Size 04 (4) │ │ │ │ -9F70A UID 00000000 (0) │ │ │ │ -9F70E GID Size 04 (4) │ │ │ │ -9F70F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F713 CENTRAL HEADER #76 02014B50 (33639248) │ │ │ │ -9F717 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F718 Created OS 03 (3) 'Unix' │ │ │ │ -9F719 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F71A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F71B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F71D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F71F Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F723 CRC 747C5D76 (1954307446) │ │ │ │ -9F727 Compressed Size 000016F7 (5879) │ │ │ │ -9F72B Uncompressed Size 00008AB6 (35510) │ │ │ │ -9F72F Filename Length 0012 (18) │ │ │ │ -9F731 Extra Length 0018 (24) │ │ │ │ -9F733 Comment Length 0000 (0) │ │ │ │ -9F735 Disk Start 0000 (0) │ │ │ │ -9F737 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F739 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F73D Local Header Offset 00086170 (549232) │ │ │ │ -9F741 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F741: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F753 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F755 Length 0005 (5) │ │ │ │ -9F757 Flags 01 (1) 'Modification' │ │ │ │ -9F758 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F75C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F75E Length 000B (11) │ │ │ │ -9F760 Version 01 (1) │ │ │ │ -9F761 UID Size 04 (4) │ │ │ │ -9F762 UID 00000000 (0) │ │ │ │ -9F766 GID Size 04 (4) │ │ │ │ -9F767 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F76B CENTRAL HEADER #77 02014B50 (33639248) │ │ │ │ -9F76F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F770 Created OS 03 (3) 'Unix' │ │ │ │ -9F771 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F772 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F773 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F775 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F777 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F77B CRC E33FD622 (3812611618) │ │ │ │ -9F77F Compressed Size 00001E14 (7700) │ │ │ │ -9F783 Uncompressed Size 00008803 (34819) │ │ │ │ -9F787 Filename Length 0016 (22) │ │ │ │ -9F789 Extra Length 0018 (24) │ │ │ │ -9F78B Comment Length 0000 (0) │ │ │ │ -9F78D Disk Start 0000 (0) │ │ │ │ -9F78F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F791 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F795 Local Header Offset 000878B3 (555187) │ │ │ │ -9F799 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F799: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F7AF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F7B1 Length 0005 (5) │ │ │ │ -9F7B3 Flags 01 (1) 'Modification' │ │ │ │ -9F7B4 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F7B8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F7BA Length 000B (11) │ │ │ │ -9F7BC Version 01 (1) │ │ │ │ -9F7BD UID Size 04 (4) │ │ │ │ -9F7BE UID 00000000 (0) │ │ │ │ -9F7C2 GID Size 04 (4) │ │ │ │ -9F7C3 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F7C7 CENTRAL HEADER #78 02014B50 (33639248) │ │ │ │ -9F7CB Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F7CC Created OS 03 (3) 'Unix' │ │ │ │ -9F7CD Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F7CE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F7CF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F7D1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F7D3 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F7D7 CRC 93A5D815 (2477119509) │ │ │ │ -9F7DB Compressed Size 000029A7 (10663) │ │ │ │ -9F7DF Uncompressed Size 0000D04F (53327) │ │ │ │ -9F7E3 Filename Length 001A (26) │ │ │ │ -9F7E5 Extra Length 0018 (24) │ │ │ │ -9F7E7 Comment Length 0000 (0) │ │ │ │ -9F7E9 Disk Start 0000 (0) │ │ │ │ -9F7EB Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F7ED Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F7F1 Local Header Offset 00089717 (562967) │ │ │ │ -9F7F5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F7F5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F80F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F811 Length 0005 (5) │ │ │ │ -9F813 Flags 01 (1) 'Modification' │ │ │ │ -9F814 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F818 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F81A Length 000B (11) │ │ │ │ -9F81C Version 01 (1) │ │ │ │ -9F81D UID Size 04 (4) │ │ │ │ -9F81E UID 00000000 (0) │ │ │ │ -9F822 GID Size 04 (4) │ │ │ │ -9F823 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F827 CENTRAL HEADER #79 02014B50 (33639248) │ │ │ │ -9F82B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F82C Created OS 03 (3) 'Unix' │ │ │ │ -9F82D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F82E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F82F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F831 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F833 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F837 CRC D99C18FD (3650885885) │ │ │ │ -9F83B Compressed Size 000009AC (2476) │ │ │ │ -9F83F Uncompressed Size 00001DB6 (7606) │ │ │ │ -9F843 Filename Length 0018 (24) │ │ │ │ -9F845 Extra Length 0018 (24) │ │ │ │ -9F847 Comment Length 0000 (0) │ │ │ │ -9F849 Disk Start 0000 (0) │ │ │ │ -9F84B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F84D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F851 Local Header Offset 0008C112 (573714) │ │ │ │ -9F855 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F855: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F86D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F86F Length 0005 (5) │ │ │ │ -9F871 Flags 01 (1) 'Modification' │ │ │ │ -9F872 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F876 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F878 Length 000B (11) │ │ │ │ -9F87A Version 01 (1) │ │ │ │ -9F87B UID Size 04 (4) │ │ │ │ -9F87C UID 00000000 (0) │ │ │ │ -9F880 GID Size 04 (4) │ │ │ │ -9F881 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F885 CENTRAL HEADER #80 02014B50 (33639248) │ │ │ │ -9F889 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F88A Created OS 03 (3) 'Unix' │ │ │ │ -9F88B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F88C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F88D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F88F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F891 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F895 CRC F5E2129F (4125233823) │ │ │ │ -9F899 Compressed Size 000016BC (5820) │ │ │ │ -9F89D Uncompressed Size 000016CD (5837) │ │ │ │ -9F8A1 Filename Length 0015 (21) │ │ │ │ -9F8A3 Extra Length 0018 (24) │ │ │ │ -9F8A5 Comment Length 0000 (0) │ │ │ │ -9F8A7 Disk Start 0000 (0) │ │ │ │ -9F8A9 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F8AB Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F8AF Local Header Offset 0008CB10 (576272) │ │ │ │ -9F8B3 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F8B3: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F8C8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F8CA Length 0005 (5) │ │ │ │ -9F8CC Flags 01 (1) 'Modification' │ │ │ │ -9F8CD Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F8D1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F8D3 Length 000B (11) │ │ │ │ -9F8D5 Version 01 (1) │ │ │ │ -9F8D6 UID Size 04 (4) │ │ │ │ -9F8D7 UID 00000000 (0) │ │ │ │ -9F8DB GID Size 04 (4) │ │ │ │ -9F8DC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F8E0 CENTRAL HEADER #81 02014B50 (33639248) │ │ │ │ -9F8E4 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F8E5 Created OS 03 (3) 'Unix' │ │ │ │ -9F8E6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F8E7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F8E8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F8EA Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F8EC Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F8F0 CRC F5E2129F (4125233823) │ │ │ │ -9F8F4 Compressed Size 000016BC (5820) │ │ │ │ -9F8F8 Uncompressed Size 000016CD (5837) │ │ │ │ -9F8FC Filename Length 001C (28) │ │ │ │ -9F8FE Extra Length 0018 (24) │ │ │ │ -9F900 Comment Length 0000 (0) │ │ │ │ -9F902 Disk Start 0000 (0) │ │ │ │ -9F904 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F906 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F90A Local Header Offset 0008E21B (582171) │ │ │ │ -9F90E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F90E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F92A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F92C Length 0005 (5) │ │ │ │ -9F92E Flags 01 (1) 'Modification' │ │ │ │ -9F92F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F933 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F935 Length 000B (11) │ │ │ │ -9F937 Version 01 (1) │ │ │ │ -9F938 UID Size 04 (4) │ │ │ │ -9F939 UID 00000000 (0) │ │ │ │ -9F93D GID Size 04 (4) │ │ │ │ -9F93E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F942 CENTRAL HEADER #82 02014B50 (33639248) │ │ │ │ -9F946 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F947 Created OS 03 (3) 'Unix' │ │ │ │ -9F948 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9F949 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F94A General Purpose Flag 0000 (0) │ │ │ │ -9F94C Compression Method 0000 (0) 'Stored' │ │ │ │ -9F94E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F952 CRC FC95F24B (4237685323) │ │ │ │ -9F956 Compressed Size 00001B84 (7044) │ │ │ │ -9F95A Uncompressed Size 00001B84 (7044) │ │ │ │ -9F95E Filename Length 0016 (22) │ │ │ │ -9F960 Extra Length 0018 (24) │ │ │ │ -9F962 Comment Length 0000 (0) │ │ │ │ -9F964 Disk Start 0000 (0) │ │ │ │ -9F966 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F968 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F96C Local Header Offset 0008F92D (588077) │ │ │ │ -9F970 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F970: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F986 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F988 Length 0005 (5) │ │ │ │ -9F98A Flags 01 (1) 'Modification' │ │ │ │ -9F98B Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F98F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F991 Length 000B (11) │ │ │ │ -9F993 Version 01 (1) │ │ │ │ -9F994 UID Size 04 (4) │ │ │ │ -9F995 UID 00000000 (0) │ │ │ │ -9F999 GID Size 04 (4) │ │ │ │ -9F99A GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F99E CENTRAL HEADER #83 02014B50 (33639248) │ │ │ │ -9F9A2 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F9A3 Created OS 03 (3) 'Unix' │ │ │ │ -9F9A4 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9F9A5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F9A6 General Purpose Flag 0000 (0) │ │ │ │ -9F9A8 Compression Method 0000 (0) 'Stored' │ │ │ │ -9F9AA Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9F9AE CRC D0D71F86 (3503759238) │ │ │ │ -9F9B2 Compressed Size 00000B7B (2939) │ │ │ │ -9F9B6 Uncompressed Size 00000B7B (2939) │ │ │ │ -9F9BA Filename Length 0016 (22) │ │ │ │ -9F9BC Extra Length 0018 (24) │ │ │ │ -9F9BE Comment Length 0000 (0) │ │ │ │ -9F9C0 Disk Start 0000 (0) │ │ │ │ -9F9C2 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F9C4 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F9C8 Local Header Offset 00091501 (595201) │ │ │ │ -9F9CC Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F9CC: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F9E2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F9E4 Length 0005 (5) │ │ │ │ -9F9E6 Flags 01 (1) 'Modification' │ │ │ │ -9F9E7 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9F9EB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F9ED Length 000B (11) │ │ │ │ -9F9EF Version 01 (1) │ │ │ │ -9F9F0 UID Size 04 (4) │ │ │ │ -9F9F1 UID 00000000 (0) │ │ │ │ -9F9F5 GID Size 04 (4) │ │ │ │ -9F9F6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F9FA CENTRAL HEADER #84 02014B50 (33639248) │ │ │ │ -9F9FE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F9FF Created OS 03 (3) 'Unix' │ │ │ │ -9FA00 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FA01 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FA02 General Purpose Flag 0000 (0) │ │ │ │ -9FA04 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FA06 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FA0A CRC FFF9C4D2 (4294558930) │ │ │ │ -9FA0E Compressed Size 0000138F (5007) │ │ │ │ -9FA12 Uncompressed Size 0000138F (5007) │ │ │ │ -9FA16 Filename Length 0016 (22) │ │ │ │ -9FA18 Extra Length 0018 (24) │ │ │ │ -9FA1A Comment Length 0000 (0) │ │ │ │ -9FA1C Disk Start 0000 (0) │ │ │ │ -9FA1E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FA20 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FA24 Local Header Offset 000920CC (598220) │ │ │ │ -9FA28 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FA28: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FA3E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FA40 Length 0005 (5) │ │ │ │ -9FA42 Flags 01 (1) 'Modification' │ │ │ │ -9FA43 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FA47 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FA49 Length 000B (11) │ │ │ │ -9FA4B Version 01 (1) │ │ │ │ -9FA4C UID Size 04 (4) │ │ │ │ -9FA4D UID 00000000 (0) │ │ │ │ -9FA51 GID Size 04 (4) │ │ │ │ -9FA52 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FA56 CENTRAL HEADER #85 02014B50 (33639248) │ │ │ │ -9FA5A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FA5B Created OS 03 (3) 'Unix' │ │ │ │ -9FA5C Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FA5D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FA5E General Purpose Flag 0000 (0) │ │ │ │ -9FA60 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FA62 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FA66 CRC A1037E8E (2701360782) │ │ │ │ -9FA6A Compressed Size 0000145E (5214) │ │ │ │ -9FA6E Uncompressed Size 0000145E (5214) │ │ │ │ -9FA72 Filename Length 0016 (22) │ │ │ │ -9FA74 Extra Length 0018 (24) │ │ │ │ -9FA76 Comment Length 0000 (0) │ │ │ │ -9FA78 Disk Start 0000 (0) │ │ │ │ -9FA7A Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FA7C Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FA80 Local Header Offset 000934AB (603307) │ │ │ │ -9FA84 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FA84: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FA9A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FA9C Length 0005 (5) │ │ │ │ -9FA9E Flags 01 (1) 'Modification' │ │ │ │ -9FA9F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FAA3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FAA5 Length 000B (11) │ │ │ │ -9FAA7 Version 01 (1) │ │ │ │ -9FAA8 UID Size 04 (4) │ │ │ │ -9FAA9 UID 00000000 (0) │ │ │ │ -9FAAD GID Size 04 (4) │ │ │ │ -9FAAE GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FAB2 CENTRAL HEADER #86 02014B50 (33639248) │ │ │ │ -9FAB6 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FAB7 Created OS 03 (3) 'Unix' │ │ │ │ -9FAB8 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FAB9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FABA General Purpose Flag 0000 (0) │ │ │ │ -9FABC Compression Method 0000 (0) 'Stored' │ │ │ │ -9FABE Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FAC2 CRC 5E9E64F1 (1587438833) │ │ │ │ -9FAC6 Compressed Size 000008EC (2284) │ │ │ │ -9FACA Uncompressed Size 000008EC (2284) │ │ │ │ -9FACE Filename Length 0016 (22) │ │ │ │ -9FAD0 Extra Length 0018 (24) │ │ │ │ -9FAD2 Comment Length 0000 (0) │ │ │ │ -9FAD4 Disk Start 0000 (0) │ │ │ │ -9FAD6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FAD8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FADC Local Header Offset 00094959 (608601) │ │ │ │ -9FAE0 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FAE0: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FAF6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FAF8 Length 0005 (5) │ │ │ │ -9FAFA Flags 01 (1) 'Modification' │ │ │ │ -9FAFB Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FAFF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FB01 Length 000B (11) │ │ │ │ -9FB03 Version 01 (1) │ │ │ │ -9FB04 UID Size 04 (4) │ │ │ │ -9FB05 UID 00000000 (0) │ │ │ │ -9FB09 GID Size 04 (4) │ │ │ │ -9FB0A GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FB0E CENTRAL HEADER #87 02014B50 (33639248) │ │ │ │ -9FB12 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FB13 Created OS 03 (3) 'Unix' │ │ │ │ -9FB14 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FB15 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FB16 General Purpose Flag 0000 (0) │ │ │ │ -9FB18 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FB1A Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FB1E CRC 42E340AB (1122189483) │ │ │ │ -9FB22 Compressed Size 00001F2E (7982) │ │ │ │ -9FB26 Uncompressed Size 00001F2E (7982) │ │ │ │ -9FB2A Filename Length 001E (30) │ │ │ │ -9FB2C Extra Length 0018 (24) │ │ │ │ -9FB2E Comment Length 0000 (0) │ │ │ │ -9FB30 Disk Start 0000 (0) │ │ │ │ -9FB32 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FB34 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FB38 Local Header Offset 00095295 (610965) │ │ │ │ -9FB3C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FB3C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FB5A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FB5C Length 0005 (5) │ │ │ │ -9FB5E Flags 01 (1) 'Modification' │ │ │ │ -9FB5F Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FB63 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FB65 Length 000B (11) │ │ │ │ -9FB67 Version 01 (1) │ │ │ │ -9FB68 UID Size 04 (4) │ │ │ │ -9FB69 UID 00000000 (0) │ │ │ │ -9FB6D GID Size 04 (4) │ │ │ │ -9FB6E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FB72 CENTRAL HEADER #88 02014B50 (33639248) │ │ │ │ -9FB76 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FB77 Created OS 03 (3) 'Unix' │ │ │ │ -9FB78 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FB79 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FB7A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FB7C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FB7E Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FB82 CRC FE097844 (4262033476) │ │ │ │ -9FB86 Compressed Size 00003D6D (15725) │ │ │ │ -9FB8A Uncompressed Size 00016649 (91721) │ │ │ │ -9FB8E Filename Length 001A (26) │ │ │ │ -9FB90 Extra Length 0018 (24) │ │ │ │ -9FB92 Comment Length 0000 (0) │ │ │ │ -9FB94 Disk Start 0000 (0) │ │ │ │ -9FB96 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FB98 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FB9C Local Header Offset 0009721B (619035) │ │ │ │ -9FBA0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FBA0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FBBA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FBBC Length 0005 (5) │ │ │ │ -9FBBE Flags 01 (1) 'Modification' │ │ │ │ -9FBBF Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FBC3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FBC5 Length 000B (11) │ │ │ │ -9FBC7 Version 01 (1) │ │ │ │ -9FBC8 UID Size 04 (4) │ │ │ │ -9FBC9 UID 00000000 (0) │ │ │ │ -9FBCD GID Size 04 (4) │ │ │ │ -9FBCE GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FBD2 CENTRAL HEADER #89 02014B50 (33639248) │ │ │ │ -9FBD6 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FBD7 Created OS 03 (3) 'Unix' │ │ │ │ -9FBD8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FBD9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FBDA General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FBDC Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FBDE Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FBE2 CRC E0A63F39 (3768991545) │ │ │ │ -9FBE6 Compressed Size 000029C0 (10688) │ │ │ │ -9FBEA Uncompressed Size 0000BA6A (47722) │ │ │ │ -9FBEE Filename Length 0018 (24) │ │ │ │ -9FBF0 Extra Length 0018 (24) │ │ │ │ -9FBF2 Comment Length 0000 (0) │ │ │ │ -9FBF4 Disk Start 0000 (0) │ │ │ │ -9FBF6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FBF8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FBFC Local Header Offset 0009AFDC (634844) │ │ │ │ -9FC00 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FC00: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FC18 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FC1A Length 0005 (5) │ │ │ │ -9FC1C Flags 01 (1) 'Modification' │ │ │ │ -9FC1D Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FC21 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FC23 Length 000B (11) │ │ │ │ -9FC25 Version 01 (1) │ │ │ │ -9FC26 UID Size 04 (4) │ │ │ │ -9FC27 UID 00000000 (0) │ │ │ │ -9FC2B GID Size 04 (4) │ │ │ │ -9FC2C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FC30 CENTRAL HEADER #90 02014B50 (33639248) │ │ │ │ -9FC34 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FC35 Created OS 03 (3) 'Unix' │ │ │ │ -9FC36 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FC37 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FC38 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FC3A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FC3C Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FC40 CRC DCB3B516 (3702764822) │ │ │ │ -9FC44 Compressed Size 000000AE (174) │ │ │ │ -9FC48 Uncompressed Size 000000FC (252) │ │ │ │ -9FC4C Filename Length 0016 (22) │ │ │ │ -9FC4E Extra Length 0018 (24) │ │ │ │ -9FC50 Comment Length 0000 (0) │ │ │ │ -9FC52 Disk Start 0000 (0) │ │ │ │ -9FC54 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FC56 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FC5A Local Header Offset 0009D9EE (645614) │ │ │ │ -9FC5E Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FC5E: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FC74 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FC76 Length 0005 (5) │ │ │ │ -9FC78 Flags 01 (1) 'Modification' │ │ │ │ -9FC79 Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FC7D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FC7F Length 000B (11) │ │ │ │ -9FC81 Version 01 (1) │ │ │ │ -9FC82 UID Size 04 (4) │ │ │ │ -9FC83 UID 00000000 (0) │ │ │ │ -9FC87 GID Size 04 (4) │ │ │ │ -9FC88 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FC8C CENTRAL HEADER #91 02014B50 (33639248) │ │ │ │ -9FC90 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FC91 Created OS 03 (3) 'Unix' │ │ │ │ -9FC92 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FC93 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FC94 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FC96 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FC98 Modification Time 5AE84163 (1525170531) 'Tue Jul 8 08:11:06 2025' │ │ │ │ -9FC9C CRC 58439733 (1480824627) │ │ │ │ -9FCA0 Compressed Size 00000077 (119) │ │ │ │ -9FCA4 Uncompressed Size 000000A2 (162) │ │ │ │ -9FCA8 Filename Length 002D (45) │ │ │ │ -9FCAA Extra Length 0018 (24) │ │ │ │ -9FCAC Comment Length 0000 (0) │ │ │ │ -9FCAE Disk Start 0000 (0) │ │ │ │ -9FCB0 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FCB2 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FCB6 Local Header Offset 0009DAEC (645868) │ │ │ │ -9FCBA Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FCBA: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FCE7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FCE9 Length 0005 (5) │ │ │ │ -9FCEB Flags 01 (1) 'Modification' │ │ │ │ -9FCEC Modification Time 686CD29B (1751962267) 'Tue Jul 8 08:11:07 2025' │ │ │ │ -9FCF0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FCF2 Length 000B (11) │ │ │ │ -9FCF4 Version 01 (1) │ │ │ │ -9FCF5 UID Size 04 (4) │ │ │ │ -9FCF6 UID 00000000 (0) │ │ │ │ -9FCFA GID Size 04 (4) │ │ │ │ -9FCFB GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FCFF END CENTRAL HEADER 06054B50 (101010256) │ │ │ │ -9FD03 Number of this disk 0000 (0) │ │ │ │ -9FD05 Central Dir Disk no 0000 (0) │ │ │ │ -9FD07 Entries in this disk 005B (91) │ │ │ │ -9FD09 Total Entries 005B (91) │ │ │ │ -9FD0B Size of Central Dir 00002135 (8501) │ │ │ │ -9FD0F Offset to Central Dir 0009DBCA (646090) │ │ │ │ -9FD13 Comment Length 0000 (0) │ │ │ │ +9DADD LOCAL HEADER #91 04034B50 (67324752) │ │ │ │ +9DAE1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DAE2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DAE3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DAE5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DAE7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DAEB CRC 58439733 (1480824627) │ │ │ │ +9DAEF Compressed Size 00000077 (119) │ │ │ │ +9DAF3 Uncompressed Size 000000A2 (162) │ │ │ │ +9DAF7 Filename Length 002D (45) │ │ │ │ +9DAF9 Extra Length 001C (28) │ │ │ │ +9DAFB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DAFB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DB28 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DB2A Length 0009 (9) │ │ │ │ +9DB2C Flags 03 (3) 'Modification Access' │ │ │ │ +9DB2D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DB31 Access Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DB35 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DB37 Length 000B (11) │ │ │ │ +9DB39 Version 01 (1) │ │ │ │ +9DB3A UID Size 04 (4) │ │ │ │ +9DB3B UID 00000000 (0) │ │ │ │ +9DB3F GID Size 04 (4) │ │ │ │ +9DB40 GID 00000000 (0) │ │ │ │ +9DB44 PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ + │ │ │ │ +9DBBB CENTRAL HEADER #1 02014B50 (33639248) │ │ │ │ +9DBBF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DBC0 Created OS 03 (3) 'Unix' │ │ │ │ +9DBC1 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9DBC2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DBC3 General Purpose Flag 0000 (0) │ │ │ │ +9DBC5 Compression Method 0000 (0) 'Stored' │ │ │ │ +9DBC7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DBCB CRC 2CAB616F (749429103) │ │ │ │ +9DBCF Compressed Size 00000014 (20) │ │ │ │ +9DBD3 Uncompressed Size 00000014 (20) │ │ │ │ +9DBD7 Filename Length 0008 (8) │ │ │ │ +9DBD9 Extra Length 0018 (24) │ │ │ │ +9DBDB Comment Length 0000 (0) │ │ │ │ +9DBDD Disk Start 0000 (0) │ │ │ │ +9DBDF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DBE1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DBE5 Local Header Offset 00000000 (0) │ │ │ │ +9DBE9 Filename 'XXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DBE9: Filename 'XXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DBF1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DBF3 Length 0005 (5) │ │ │ │ +9DBF5 Flags 01 (1) 'Modification' │ │ │ │ +9DBF6 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DBFA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DBFC Length 000B (11) │ │ │ │ +9DBFE Version 01 (1) │ │ │ │ +9DBFF UID Size 04 (4) │ │ │ │ +9DC00 UID 00000000 (0) │ │ │ │ +9DC04 GID Size 04 (4) │ │ │ │ +9DC05 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DC09 CENTRAL HEADER #2 02014B50 (33639248) │ │ │ │ +9DC0D Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DC0E Created OS 03 (3) 'Unix' │ │ │ │ +9DC0F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DC10 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DC11 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DC13 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DC15 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DC19 CRC D1CBDA94 (3519797908) │ │ │ │ +9DC1D Compressed Size 000015AD (5549) │ │ │ │ +9DC21 Uncompressed Size 00004602 (17922) │ │ │ │ +9DC25 Filename Length 0014 (20) │ │ │ │ +9DC27 Extra Length 0018 (24) │ │ │ │ +9DC29 Comment Length 0000 (0) │ │ │ │ +9DC2B Disk Start 0000 (0) │ │ │ │ +9DC2D Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DC2F Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DC33 Local Header Offset 00000056 (86) │ │ │ │ +9DC37 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DC37: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DC4B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DC4D Length 0005 (5) │ │ │ │ +9DC4F Flags 01 (1) 'Modification' │ │ │ │ +9DC50 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DC54 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DC56 Length 000B (11) │ │ │ │ +9DC58 Version 01 (1) │ │ │ │ +9DC59 UID Size 04 (4) │ │ │ │ +9DC5A UID 00000000 (0) │ │ │ │ +9DC5E GID Size 04 (4) │ │ │ │ +9DC5F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DC63 CENTRAL HEADER #3 02014B50 (33639248) │ │ │ │ +9DC67 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DC68 Created OS 03 (3) 'Unix' │ │ │ │ +9DC69 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DC6A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DC6B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DC6D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DC6F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DC73 CRC AB09C204 (2869543428) │ │ │ │ +9DC77 Compressed Size 000006D5 (1749) │ │ │ │ +9DC7B Uncompressed Size 00001241 (4673) │ │ │ │ +9DC7F Filename Length 0013 (19) │ │ │ │ +9DC81 Extra Length 0018 (24) │ │ │ │ +9DC83 Comment Length 0000 (0) │ │ │ │ +9DC85 Disk Start 0000 (0) │ │ │ │ +9DC87 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DC89 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DC8D Local Header Offset 00001651 (5713) │ │ │ │ +9DC91 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DC91: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DCA4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DCA6 Length 0005 (5) │ │ │ │ +9DCA8 Flags 01 (1) 'Modification' │ │ │ │ +9DCA9 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DCAD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DCAF Length 000B (11) │ │ │ │ +9DCB1 Version 01 (1) │ │ │ │ +9DCB2 UID Size 04 (4) │ │ │ │ +9DCB3 UID 00000000 (0) │ │ │ │ +9DCB7 GID Size 04 (4) │ │ │ │ +9DCB8 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DCBC CENTRAL HEADER #4 02014B50 (33639248) │ │ │ │ +9DCC0 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DCC1 Created OS 03 (3) 'Unix' │ │ │ │ +9DCC2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DCC3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DCC4 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DCC6 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DCC8 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DCCC CRC 219C495D (563890525) │ │ │ │ +9DCD0 Compressed Size 00002DA2 (11682) │ │ │ │ +9DCD4 Uncompressed Size 0000D0BF (53439) │ │ │ │ +9DCD8 Filename Length 0014 (20) │ │ │ │ +9DCDA Extra Length 0018 (24) │ │ │ │ +9DCDC Comment Length 0000 (0) │ │ │ │ +9DCDE Disk Start 0000 (0) │ │ │ │ +9DCE0 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DCE2 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DCE6 Local Header Offset 00001D73 (7539) │ │ │ │ +9DCEA Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DCEA: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DCFE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DD00 Length 0005 (5) │ │ │ │ +9DD02 Flags 01 (1) 'Modification' │ │ │ │ +9DD03 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DD07 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DD09 Length 000B (11) │ │ │ │ +9DD0B Version 01 (1) │ │ │ │ +9DD0C UID Size 04 (4) │ │ │ │ +9DD0D UID 00000000 (0) │ │ │ │ +9DD11 GID Size 04 (4) │ │ │ │ +9DD12 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DD16 CENTRAL HEADER #5 02014B50 (33639248) │ │ │ │ +9DD1A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DD1B Created OS 03 (3) 'Unix' │ │ │ │ +9DD1C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DD1D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DD1E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DD20 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DD22 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DD26 CRC 67C49326 (1740935974) │ │ │ │ +9DD2A Compressed Size 000003F0 (1008) │ │ │ │ +9DD2E Uncompressed Size 00000876 (2166) │ │ │ │ +9DD32 Filename Length 0014 (20) │ │ │ │ +9DD34 Extra Length 0018 (24) │ │ │ │ +9DD36 Comment Length 0000 (0) │ │ │ │ +9DD38 Disk Start 0000 (0) │ │ │ │ +9DD3A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DD3C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DD40 Local Header Offset 00004B63 (19299) │ │ │ │ +9DD44 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DD44: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DD58 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DD5A Length 0005 (5) │ │ │ │ +9DD5C Flags 01 (1) 'Modification' │ │ │ │ +9DD5D Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DD61 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DD63 Length 000B (11) │ │ │ │ +9DD65 Version 01 (1) │ │ │ │ +9DD66 UID Size 04 (4) │ │ │ │ +9DD67 UID 00000000 (0) │ │ │ │ +9DD6B GID Size 04 (4) │ │ │ │ +9DD6C GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DD70 CENTRAL HEADER #6 02014B50 (33639248) │ │ │ │ +9DD74 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DD75 Created OS 03 (3) 'Unix' │ │ │ │ +9DD76 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DD77 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DD78 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DD7A Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DD7C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DD80 CRC EC6C7C96 (3966532758) │ │ │ │ +9DD84 Compressed Size 000001AE (430) │ │ │ │ +9DD88 Uncompressed Size 000002FC (764) │ │ │ │ +9DD8C Filename Length 0011 (17) │ │ │ │ +9DD8E Extra Length 0018 (24) │ │ │ │ +9DD90 Comment Length 0000 (0) │ │ │ │ +9DD92 Disk Start 0000 (0) │ │ │ │ +9DD94 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DD96 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DD9A Local Header Offset 00004FA1 (20385) │ │ │ │ +9DD9E Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DD9E: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DDAF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DDB1 Length 0005 (5) │ │ │ │ +9DDB3 Flags 01 (1) 'Modification' │ │ │ │ +9DDB4 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DDB8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DDBA Length 000B (11) │ │ │ │ +9DDBC Version 01 (1) │ │ │ │ +9DDBD UID Size 04 (4) │ │ │ │ +9DDBE UID 00000000 (0) │ │ │ │ +9DDC2 GID Size 04 (4) │ │ │ │ +9DDC3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DDC7 CENTRAL HEADER #7 02014B50 (33639248) │ │ │ │ +9DDCB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DDCC Created OS 03 (3) 'Unix' │ │ │ │ +9DDCD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DDCE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DDCF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DDD1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DDD3 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DDD7 CRC D4B33A03 (3568515587) │ │ │ │ +9DDDB Compressed Size 000020C8 (8392) │ │ │ │ +9DDDF Uncompressed Size 0000B4B0 (46256) │ │ │ │ +9DDE3 Filename Length 001B (27) │ │ │ │ +9DDE5 Extra Length 0018 (24) │ │ │ │ +9DDE7 Comment Length 0000 (0) │ │ │ │ +9DDE9 Disk Start 0000 (0) │ │ │ │ +9DDEB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DDED Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DDF1 Local Header Offset 0000519A (20890) │ │ │ │ +9DDF5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DDF5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DE10 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DE12 Length 0005 (5) │ │ │ │ +9DE14 Flags 01 (1) 'Modification' │ │ │ │ +9DE15 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DE19 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DE1B Length 000B (11) │ │ │ │ +9DE1D Version 01 (1) │ │ │ │ +9DE1E UID Size 04 (4) │ │ │ │ +9DE1F UID 00000000 (0) │ │ │ │ +9DE23 GID Size 04 (4) │ │ │ │ +9DE24 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DE28 CENTRAL HEADER #8 02014B50 (33639248) │ │ │ │ +9DE2C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DE2D Created OS 03 (3) 'Unix' │ │ │ │ +9DE2E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DE2F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DE30 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DE32 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DE34 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DE38 CRC 23989D4C (597204300) │ │ │ │ +9DE3C Compressed Size 00000E6F (3695) │ │ │ │ +9DE40 Uncompressed Size 000030B2 (12466) │ │ │ │ +9DE44 Filename Length 001D (29) │ │ │ │ +9DE46 Extra Length 0018 (24) │ │ │ │ +9DE48 Comment Length 0000 (0) │ │ │ │ +9DE4A Disk Start 0000 (0) │ │ │ │ +9DE4C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DE4E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DE52 Local Header Offset 000072B7 (29367) │ │ │ │ +9DE56 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DE56: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DE73 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DE75 Length 0005 (5) │ │ │ │ +9DE77 Flags 01 (1) 'Modification' │ │ │ │ +9DE78 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DE7C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DE7E Length 000B (11) │ │ │ │ +9DE80 Version 01 (1) │ │ │ │ +9DE81 UID Size 04 (4) │ │ │ │ +9DE82 UID 00000000 (0) │ │ │ │ +9DE86 GID Size 04 (4) │ │ │ │ +9DE87 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DE8B CENTRAL HEADER #9 02014B50 (33639248) │ │ │ │ +9DE8F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DE90 Created OS 03 (3) 'Unix' │ │ │ │ +9DE91 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DE92 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DE93 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DE95 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DE97 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DE9B CRC E1B38941 (3786639681) │ │ │ │ +9DE9F Compressed Size 00000972 (2418) │ │ │ │ +9DEA3 Uncompressed Size 00001CB2 (7346) │ │ │ │ +9DEA7 Filename Length 0019 (25) │ │ │ │ +9DEA9 Extra Length 0018 (24) │ │ │ │ +9DEAB Comment Length 0000 (0) │ │ │ │ +9DEAD Disk Start 0000 (0) │ │ │ │ +9DEAF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DEB1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DEB5 Local Header Offset 0000817D (33149) │ │ │ │ +9DEB9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DEB9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DED2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DED4 Length 0005 (5) │ │ │ │ +9DED6 Flags 01 (1) 'Modification' │ │ │ │ +9DED7 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DEDB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DEDD Length 000B (11) │ │ │ │ +9DEDF Version 01 (1) │ │ │ │ +9DEE0 UID Size 04 (4) │ │ │ │ +9DEE1 UID 00000000 (0) │ │ │ │ +9DEE5 GID Size 04 (4) │ │ │ │ +9DEE6 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DEEA CENTRAL HEADER #10 02014B50 (33639248) │ │ │ │ +9DEEE Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DEEF Created OS 03 (3) 'Unix' │ │ │ │ +9DEF0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DEF1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DEF2 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DEF4 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DEF6 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DEFA CRC 9E2E7F50 (2653847376) │ │ │ │ +9DEFE Compressed Size 00003881 (14465) │ │ │ │ +9DF02 Uncompressed Size 0000F7F4 (63476) │ │ │ │ +9DF06 Filename Length 0015 (21) │ │ │ │ +9DF08 Extra Length 0018 (24) │ │ │ │ +9DF0A Comment Length 0000 (0) │ │ │ │ +9DF0C Disk Start 0000 (0) │ │ │ │ +9DF0E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DF10 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DF14 Local Header Offset 00008B42 (35650) │ │ │ │ +9DF18 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DF18: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DF2D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DF2F Length 0005 (5) │ │ │ │ +9DF31 Flags 01 (1) 'Modification' │ │ │ │ +9DF32 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DF36 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DF38 Length 000B (11) │ │ │ │ +9DF3A Version 01 (1) │ │ │ │ +9DF3B UID Size 04 (4) │ │ │ │ +9DF3C UID 00000000 (0) │ │ │ │ +9DF40 GID Size 04 (4) │ │ │ │ +9DF41 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DF45 CENTRAL HEADER #11 02014B50 (33639248) │ │ │ │ +9DF49 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DF4A Created OS 03 (3) 'Unix' │ │ │ │ +9DF4B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DF4C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DF4D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DF4F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DF51 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DF55 CRC 98276CA5 (2552720549) │ │ │ │ +9DF59 Compressed Size 0000AAE5 (43749) │ │ │ │ +9DF5D Uncompressed Size 0003DFDE (253918) │ │ │ │ +9DF61 Filename Length 0012 (18) │ │ │ │ +9DF63 Extra Length 0018 (24) │ │ │ │ +9DF65 Comment Length 0000 (0) │ │ │ │ +9DF67 Disk Start 0000 (0) │ │ │ │ +9DF69 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DF6B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DF6F Local Header Offset 0000C412 (50194) │ │ │ │ +9DF73 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DF73: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DF85 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DF87 Length 0005 (5) │ │ │ │ +9DF89 Flags 01 (1) 'Modification' │ │ │ │ +9DF8A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DF8E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DF90 Length 000B (11) │ │ │ │ +9DF92 Version 01 (1) │ │ │ │ +9DF93 UID Size 04 (4) │ │ │ │ +9DF94 UID 00000000 (0) │ │ │ │ +9DF98 GID Size 04 (4) │ │ │ │ +9DF99 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DF9D CENTRAL HEADER #12 02014B50 (33639248) │ │ │ │ +9DFA1 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DFA2 Created OS 03 (3) 'Unix' │ │ │ │ +9DFA3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DFA4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DFA5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DFA7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DFA9 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9DFAD CRC 800CFC1F (2148334623) │ │ │ │ +9DFB1 Compressed Size 00003B1F (15135) │ │ │ │ +9DFB5 Uncompressed Size 0001B2A0 (111264) │ │ │ │ +9DFB9 Filename Length 0015 (21) │ │ │ │ +9DFBB Extra Length 0018 (24) │ │ │ │ +9DFBD Comment Length 0000 (0) │ │ │ │ +9DFBF Disk Start 0000 (0) │ │ │ │ +9DFC1 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DFC3 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DFC7 Local Header Offset 00016F43 (94019) │ │ │ │ +9DFCB Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DFCB: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DFE0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DFE2 Length 0005 (5) │ │ │ │ +9DFE4 Flags 01 (1) 'Modification' │ │ │ │ +9DFE5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9DFE9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DFEB Length 000B (11) │ │ │ │ +9DFED Version 01 (1) │ │ │ │ +9DFEE UID Size 04 (4) │ │ │ │ +9DFEF UID 00000000 (0) │ │ │ │ +9DFF3 GID Size 04 (4) │ │ │ │ +9DFF4 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DFF8 CENTRAL HEADER #13 02014B50 (33639248) │ │ │ │ +9DFFC Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DFFD Created OS 03 (3) 'Unix' │ │ │ │ +9DFFE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DFFF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E000 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E002 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E004 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E008 CRC 015406C9 (22283977) │ │ │ │ +9E00C Compressed Size 00009080 (36992) │ │ │ │ +9E010 Uncompressed Size 0003D05F (249951) │ │ │ │ +9E014 Filename Length 0014 (20) │ │ │ │ +9E016 Extra Length 0018 (24) │ │ │ │ +9E018 Comment Length 0000 (0) │ │ │ │ +9E01A Disk Start 0000 (0) │ │ │ │ +9E01C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E01E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E022 Local Header Offset 0001AAB1 (109233) │ │ │ │ +9E026 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E026: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E03A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E03C Length 0005 (5) │ │ │ │ +9E03E Flags 01 (1) 'Modification' │ │ │ │ +9E03F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E043 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E045 Length 000B (11) │ │ │ │ +9E047 Version 01 (1) │ │ │ │ +9E048 UID Size 04 (4) │ │ │ │ +9E049 UID 00000000 (0) │ │ │ │ +9E04D GID Size 04 (4) │ │ │ │ +9E04E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E052 CENTRAL HEADER #14 02014B50 (33639248) │ │ │ │ +9E056 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E057 Created OS 03 (3) 'Unix' │ │ │ │ +9E058 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E059 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E05A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E05C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E05E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E062 CRC 3023368D (807614093) │ │ │ │ +9E066 Compressed Size 00002A6A (10858) │ │ │ │ +9E06A Uncompressed Size 0001151F (70943) │ │ │ │ +9E06E Filename Length 0016 (22) │ │ │ │ +9E070 Extra Length 0018 (24) │ │ │ │ +9E072 Comment Length 0000 (0) │ │ │ │ +9E074 Disk Start 0000 (0) │ │ │ │ +9E076 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E078 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E07C Local Header Offset 00023B7F (146303) │ │ │ │ +9E080 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E080: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E096 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E098 Length 0005 (5) │ │ │ │ +9E09A Flags 01 (1) 'Modification' │ │ │ │ +9E09B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E09F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E0A1 Length 000B (11) │ │ │ │ +9E0A3 Version 01 (1) │ │ │ │ +9E0A4 UID Size 04 (4) │ │ │ │ +9E0A5 UID 00000000 (0) │ │ │ │ +9E0A9 GID Size 04 (4) │ │ │ │ +9E0AA GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E0AE CENTRAL HEADER #15 02014B50 (33639248) │ │ │ │ +9E0B2 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E0B3 Created OS 03 (3) 'Unix' │ │ │ │ +9E0B4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E0B5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E0B6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E0B8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E0BA Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E0BE CRC 27CCE3E0 (667739104) │ │ │ │ +9E0C2 Compressed Size 000014D7 (5335) │ │ │ │ +9E0C6 Uncompressed Size 00005176 (20854) │ │ │ │ +9E0CA Filename Length 001D (29) │ │ │ │ +9E0CC Extra Length 0018 (24) │ │ │ │ +9E0CE Comment Length 0000 (0) │ │ │ │ +9E0D0 Disk Start 0000 (0) │ │ │ │ +9E0D2 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E0D4 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E0D8 Local Header Offset 00026639 (157241) │ │ │ │ +9E0DC Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E0DC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E0F9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E0FB Length 0005 (5) │ │ │ │ +9E0FD Flags 01 (1) 'Modification' │ │ │ │ +9E0FE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E102 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E104 Length 000B (11) │ │ │ │ +9E106 Version 01 (1) │ │ │ │ +9E107 UID Size 04 (4) │ │ │ │ +9E108 UID 00000000 (0) │ │ │ │ +9E10C GID Size 04 (4) │ │ │ │ +9E10D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E111 CENTRAL HEADER #16 02014B50 (33639248) │ │ │ │ +9E115 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E116 Created OS 03 (3) 'Unix' │ │ │ │ +9E117 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E118 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E119 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E11B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E11D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E121 CRC 708ABA9B (1888139931) │ │ │ │ +9E125 Compressed Size 000037F7 (14327) │ │ │ │ +9E129 Uncompressed Size 0000E9F0 (59888) │ │ │ │ +9E12D Filename Length 001C (28) │ │ │ │ +9E12F Extra Length 0018 (24) │ │ │ │ +9E131 Comment Length 0000 (0) │ │ │ │ +9E133 Disk Start 0000 (0) │ │ │ │ +9E135 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E137 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E13B Local Header Offset 00027B67 (162663) │ │ │ │ +9E13F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E13F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E15B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E15D Length 0005 (5) │ │ │ │ +9E15F Flags 01 (1) 'Modification' │ │ │ │ +9E160 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E164 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E166 Length 000B (11) │ │ │ │ +9E168 Version 01 (1) │ │ │ │ +9E169 UID Size 04 (4) │ │ │ │ +9E16A UID 00000000 (0) │ │ │ │ +9E16E GID Size 04 (4) │ │ │ │ +9E16F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E173 CENTRAL HEADER #17 02014B50 (33639248) │ │ │ │ +9E177 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E178 Created OS 03 (3) 'Unix' │ │ │ │ +9E179 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E17A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E17B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E17D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E17F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E183 CRC B106FD76 (2970025334) │ │ │ │ +9E187 Compressed Size 000006A0 (1696) │ │ │ │ +9E18B Uncompressed Size 000011F4 (4596) │ │ │ │ +9E18F Filename Length 001C (28) │ │ │ │ +9E191 Extra Length 0018 (24) │ │ │ │ +9E193 Comment Length 0000 (0) │ │ │ │ +9E195 Disk Start 0000 (0) │ │ │ │ +9E197 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E199 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E19D Local Header Offset 0002B3B4 (177076) │ │ │ │ +9E1A1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E1A1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E1BD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E1BF Length 0005 (5) │ │ │ │ +9E1C1 Flags 01 (1) 'Modification' │ │ │ │ +9E1C2 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E1C6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E1C8 Length 000B (11) │ │ │ │ +9E1CA Version 01 (1) │ │ │ │ +9E1CB UID Size 04 (4) │ │ │ │ +9E1CC UID 00000000 (0) │ │ │ │ +9E1D0 GID Size 04 (4) │ │ │ │ +9E1D1 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E1D5 CENTRAL HEADER #18 02014B50 (33639248) │ │ │ │ +9E1D9 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E1DA Created OS 03 (3) 'Unix' │ │ │ │ +9E1DB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E1DC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E1DD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E1DF Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E1E1 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E1E5 CRC 765E92C8 (1985909448) │ │ │ │ +9E1E9 Compressed Size 0000107D (4221) │ │ │ │ +9E1ED Uncompressed Size 00004BFF (19455) │ │ │ │ +9E1F1 Filename Length 001B (27) │ │ │ │ +9E1F3 Extra Length 0018 (24) │ │ │ │ +9E1F5 Comment Length 0000 (0) │ │ │ │ +9E1F7 Disk Start 0000 (0) │ │ │ │ +9E1F9 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E1FB Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E1FF Local Header Offset 0002BAAA (178858) │ │ │ │ +9E203 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E203: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E21E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E220 Length 0005 (5) │ │ │ │ +9E222 Flags 01 (1) 'Modification' │ │ │ │ +9E223 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E227 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E229 Length 000B (11) │ │ │ │ +9E22B Version 01 (1) │ │ │ │ +9E22C UID Size 04 (4) │ │ │ │ +9E22D UID 00000000 (0) │ │ │ │ +9E231 GID Size 04 (4) │ │ │ │ +9E232 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E236 CENTRAL HEADER #19 02014B50 (33639248) │ │ │ │ +9E23A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E23B Created OS 03 (3) 'Unix' │ │ │ │ +9E23C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E23D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E23E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E240 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E242 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E246 CRC E303CABF (3808676543) │ │ │ │ +9E24A Compressed Size 000033AB (13227) │ │ │ │ +9E24E Uncompressed Size 0000BC94 (48276) │ │ │ │ +9E252 Filename Length 001D (29) │ │ │ │ +9E254 Extra Length 0018 (24) │ │ │ │ +9E256 Comment Length 0000 (0) │ │ │ │ +9E258 Disk Start 0000 (0) │ │ │ │ +9E25A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E25C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E260 Local Header Offset 0002CB7C (183164) │ │ │ │ +9E264 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E264: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E281 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E283 Length 0005 (5) │ │ │ │ +9E285 Flags 01 (1) 'Modification' │ │ │ │ +9E286 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E28A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E28C Length 000B (11) │ │ │ │ +9E28E Version 01 (1) │ │ │ │ +9E28F UID Size 04 (4) │ │ │ │ +9E290 UID 00000000 (0) │ │ │ │ +9E294 GID Size 04 (4) │ │ │ │ +9E295 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E299 CENTRAL HEADER #20 02014B50 (33639248) │ │ │ │ +9E29D Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E29E Created OS 03 (3) 'Unix' │ │ │ │ +9E29F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E2A0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E2A1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E2A3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E2A5 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E2A9 CRC 1F8C6C23 (529296419) │ │ │ │ +9E2AD Compressed Size 00000D6B (3435) │ │ │ │ +9E2B1 Uncompressed Size 00003876 (14454) │ │ │ │ +9E2B5 Filename Length 001D (29) │ │ │ │ +9E2B7 Extra Length 0018 (24) │ │ │ │ +9E2B9 Comment Length 0000 (0) │ │ │ │ +9E2BB Disk Start 0000 (0) │ │ │ │ +9E2BD Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E2BF Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E2C3 Local Header Offset 0002FF7E (196478) │ │ │ │ +9E2C7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E2C7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E2E4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E2E6 Length 0005 (5) │ │ │ │ +9E2E8 Flags 01 (1) 'Modification' │ │ │ │ +9E2E9 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E2ED Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E2EF Length 000B (11) │ │ │ │ +9E2F1 Version 01 (1) │ │ │ │ +9E2F2 UID Size 04 (4) │ │ │ │ +9E2F3 UID 00000000 (0) │ │ │ │ +9E2F7 GID Size 04 (4) │ │ │ │ +9E2F8 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E2FC CENTRAL HEADER #21 02014B50 (33639248) │ │ │ │ +9E300 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E301 Created OS 03 (3) 'Unix' │ │ │ │ +9E302 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E303 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E304 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E306 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E308 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E30C CRC 70397159 (1882812761) │ │ │ │ +9E310 Compressed Size 00001C6E (7278) │ │ │ │ +9E314 Uncompressed Size 0000C186 (49542) │ │ │ │ +9E318 Filename Length 001A (26) │ │ │ │ +9E31A Extra Length 0018 (24) │ │ │ │ +9E31C Comment Length 0000 (0) │ │ │ │ +9E31E Disk Start 0000 (0) │ │ │ │ +9E320 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E322 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E326 Local Header Offset 00030D40 (200000) │ │ │ │ +9E32A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E32A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E344 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E346 Length 0005 (5) │ │ │ │ +9E348 Flags 01 (1) 'Modification' │ │ │ │ +9E349 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E34D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E34F Length 000B (11) │ │ │ │ +9E351 Version 01 (1) │ │ │ │ +9E352 UID Size 04 (4) │ │ │ │ +9E353 UID 00000000 (0) │ │ │ │ +9E357 GID Size 04 (4) │ │ │ │ +9E358 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E35C CENTRAL HEADER #22 02014B50 (33639248) │ │ │ │ +9E360 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E361 Created OS 03 (3) 'Unix' │ │ │ │ +9E362 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E363 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E364 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E366 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E368 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E36C CRC 2632F341 (640873281) │ │ │ │ +9E370 Compressed Size 000003A3 (931) │ │ │ │ +9E374 Uncompressed Size 0000088E (2190) │ │ │ │ +9E378 Filename Length 0012 (18) │ │ │ │ +9E37A Extra Length 0018 (24) │ │ │ │ +9E37C Comment Length 0000 (0) │ │ │ │ +9E37E Disk Start 0000 (0) │ │ │ │ +9E380 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E382 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E386 Local Header Offset 00032A02 (207362) │ │ │ │ +9E38A Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E38A: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E39C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E39E Length 0005 (5) │ │ │ │ +9E3A0 Flags 01 (1) 'Modification' │ │ │ │ +9E3A1 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E3A5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E3A7 Length 000B (11) │ │ │ │ +9E3A9 Version 01 (1) │ │ │ │ +9E3AA UID Size 04 (4) │ │ │ │ +9E3AB UID 00000000 (0) │ │ │ │ +9E3AF GID Size 04 (4) │ │ │ │ +9E3B0 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E3B4 CENTRAL HEADER #23 02014B50 (33639248) │ │ │ │ +9E3B8 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E3B9 Created OS 03 (3) 'Unix' │ │ │ │ +9E3BA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E3BB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E3BC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E3BE Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E3C0 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E3C4 CRC 24939ACA (613653194) │ │ │ │ +9E3C8 Compressed Size 000001D4 (468) │ │ │ │ +9E3CC Uncompressed Size 00000311 (785) │ │ │ │ +9E3D0 Filename Length 0020 (32) │ │ │ │ +9E3D2 Extra Length 0018 (24) │ │ │ │ +9E3D4 Comment Length 0000 (0) │ │ │ │ +9E3D6 Disk Start 0000 (0) │ │ │ │ +9E3D8 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E3DA Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E3DE Local Header Offset 00032DF1 (208369) │ │ │ │ +9E3E2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E3E2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E402 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E404 Length 0005 (5) │ │ │ │ +9E406 Flags 01 (1) 'Modification' │ │ │ │ +9E407 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E40B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E40D Length 000B (11) │ │ │ │ +9E40F Version 01 (1) │ │ │ │ +9E410 UID Size 04 (4) │ │ │ │ +9E411 UID 00000000 (0) │ │ │ │ +9E415 GID Size 04 (4) │ │ │ │ +9E416 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E41A CENTRAL HEADER #24 02014B50 (33639248) │ │ │ │ +9E41E Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E41F Created OS 03 (3) 'Unix' │ │ │ │ +9E420 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E421 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E422 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E424 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E426 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E42A CRC B04B92DE (2957742814) │ │ │ │ +9E42E Compressed Size 000017A6 (6054) │ │ │ │ +9E432 Uncompressed Size 00009CD3 (40147) │ │ │ │ +9E436 Filename Length 001B (27) │ │ │ │ +9E438 Extra Length 0018 (24) │ │ │ │ +9E43A Comment Length 0000 (0) │ │ │ │ +9E43C Disk Start 0000 (0) │ │ │ │ +9E43E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E440 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E444 Local Header Offset 0003301F (208927) │ │ │ │ +9E448 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E448: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E463 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E465 Length 0005 (5) │ │ │ │ +9E467 Flags 01 (1) 'Modification' │ │ │ │ +9E468 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E46C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E46E Length 000B (11) │ │ │ │ +9E470 Version 01 (1) │ │ │ │ +9E471 UID Size 04 (4) │ │ │ │ +9E472 UID 00000000 (0) │ │ │ │ +9E476 GID Size 04 (4) │ │ │ │ +9E477 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E47B CENTRAL HEADER #25 02014B50 (33639248) │ │ │ │ +9E47F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E480 Created OS 03 (3) 'Unix' │ │ │ │ +9E481 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E482 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E483 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E485 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E487 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E48B CRC 454623A7 (1162224551) │ │ │ │ +9E48F Compressed Size 00001371 (4977) │ │ │ │ +9E493 Uncompressed Size 00003B66 (15206) │ │ │ │ +9E497 Filename Length 0015 (21) │ │ │ │ +9E499 Extra Length 0018 (24) │ │ │ │ +9E49B Comment Length 0000 (0) │ │ │ │ +9E49D Disk Start 0000 (0) │ │ │ │ +9E49F Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E4A1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E4A5 Local Header Offset 0003481A (215066) │ │ │ │ +9E4A9 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E4A9: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E4BE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E4C0 Length 0005 (5) │ │ │ │ +9E4C2 Flags 01 (1) 'Modification' │ │ │ │ +9E4C3 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E4C7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E4C9 Length 000B (11) │ │ │ │ +9E4CB Version 01 (1) │ │ │ │ +9E4CC UID Size 04 (4) │ │ │ │ +9E4CD UID 00000000 (0) │ │ │ │ +9E4D1 GID Size 04 (4) │ │ │ │ +9E4D2 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E4D6 CENTRAL HEADER #26 02014B50 (33639248) │ │ │ │ +9E4DA Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E4DB Created OS 03 (3) 'Unix' │ │ │ │ +9E4DC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E4DD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E4DE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E4E0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E4E2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E4E6 CRC 081E11CF (136188367) │ │ │ │ +9E4EA Compressed Size 00000AD1 (2769) │ │ │ │ +9E4EE Uncompressed Size 00002135 (8501) │ │ │ │ +9E4F2 Filename Length 0011 (17) │ │ │ │ +9E4F4 Extra Length 0018 (24) │ │ │ │ +9E4F6 Comment Length 0000 (0) │ │ │ │ +9E4F8 Disk Start 0000 (0) │ │ │ │ +9E4FA Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E4FC Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E500 Local Header Offset 00035BDA (220122) │ │ │ │ +9E504 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E504: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E515 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E517 Length 0005 (5) │ │ │ │ +9E519 Flags 01 (1) 'Modification' │ │ │ │ +9E51A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E51E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E520 Length 000B (11) │ │ │ │ +9E522 Version 01 (1) │ │ │ │ +9E523 UID Size 04 (4) │ │ │ │ +9E524 UID 00000000 (0) │ │ │ │ +9E528 GID Size 04 (4) │ │ │ │ +9E529 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E52D CENTRAL HEADER #27 02014B50 (33639248) │ │ │ │ +9E531 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E532 Created OS 03 (3) 'Unix' │ │ │ │ +9E533 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E534 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E535 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E537 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E539 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E53D CRC 060B699E (101411230) │ │ │ │ +9E541 Compressed Size 000003FE (1022) │ │ │ │ +9E545 Uncompressed Size 00000E99 (3737) │ │ │ │ +9E549 Filename Length 0014 (20) │ │ │ │ +9E54B Extra Length 0018 (24) │ │ │ │ +9E54D Comment Length 0000 (0) │ │ │ │ +9E54F Disk Start 0000 (0) │ │ │ │ +9E551 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E553 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E557 Local Header Offset 000366F6 (222966) │ │ │ │ +9E55B Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E55B: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E56F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E571 Length 0005 (5) │ │ │ │ +9E573 Flags 01 (1) 'Modification' │ │ │ │ +9E574 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E578 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E57A Length 000B (11) │ │ │ │ +9E57C Version 01 (1) │ │ │ │ +9E57D UID Size 04 (4) │ │ │ │ +9E57E UID 00000000 (0) │ │ │ │ +9E582 GID Size 04 (4) │ │ │ │ +9E583 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E587 CENTRAL HEADER #28 02014B50 (33639248) │ │ │ │ +9E58B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E58C Created OS 03 (3) 'Unix' │ │ │ │ +9E58D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E58E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E58F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E591 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E593 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E597 CRC 009A6A7C (10119804) │ │ │ │ +9E59B Compressed Size 00001261 (4705) │ │ │ │ +9E59F Uncompressed Size 00003469 (13417) │ │ │ │ +9E5A3 Filename Length 0014 (20) │ │ │ │ +9E5A5 Extra Length 0018 (24) │ │ │ │ +9E5A7 Comment Length 0000 (0) │ │ │ │ +9E5A9 Disk Start 0000 (0) │ │ │ │ +9E5AB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E5AD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E5B1 Local Header Offset 00036B42 (224066) │ │ │ │ +9E5B5 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E5B5: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E5C9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E5CB Length 0005 (5) │ │ │ │ +9E5CD Flags 01 (1) 'Modification' │ │ │ │ +9E5CE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E5D2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E5D4 Length 000B (11) │ │ │ │ +9E5D6 Version 01 (1) │ │ │ │ +9E5D7 UID Size 04 (4) │ │ │ │ +9E5D8 UID 00000000 (0) │ │ │ │ +9E5DC GID Size 04 (4) │ │ │ │ +9E5DD GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E5E1 CENTRAL HEADER #29 02014B50 (33639248) │ │ │ │ +9E5E5 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E5E6 Created OS 03 (3) 'Unix' │ │ │ │ +9E5E7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E5E8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E5E9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E5EB Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E5ED Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E5F1 CRC 524B62FF (1380672255) │ │ │ │ +9E5F5 Compressed Size 00000ACF (2767) │ │ │ │ +9E5F9 Uncompressed Size 000022FF (8959) │ │ │ │ +9E5FD Filename Length 001B (27) │ │ │ │ +9E5FF Extra Length 0018 (24) │ │ │ │ +9E601 Comment Length 0000 (0) │ │ │ │ +9E603 Disk Start 0000 (0) │ │ │ │ +9E605 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E607 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E60B Local Header Offset 00037DF1 (228849) │ │ │ │ +9E60F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E60F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E62A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E62C Length 0005 (5) │ │ │ │ +9E62E Flags 01 (1) 'Modification' │ │ │ │ +9E62F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E633 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E635 Length 000B (11) │ │ │ │ +9E637 Version 01 (1) │ │ │ │ +9E638 UID Size 04 (4) │ │ │ │ +9E639 UID 00000000 (0) │ │ │ │ +9E63D GID Size 04 (4) │ │ │ │ +9E63E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E642 CENTRAL HEADER #30 02014B50 (33639248) │ │ │ │ +9E646 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E647 Created OS 03 (3) 'Unix' │ │ │ │ +9E648 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E649 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E64A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E64C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E64E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E652 CRC A19C4C41 (2711374913) │ │ │ │ +9E656 Compressed Size 00000A8D (2701) │ │ │ │ +9E65A Uncompressed Size 0000237A (9082) │ │ │ │ +9E65E Filename Length 0013 (19) │ │ │ │ +9E660 Extra Length 0018 (24) │ │ │ │ +9E662 Comment Length 0000 (0) │ │ │ │ +9E664 Disk Start 0000 (0) │ │ │ │ +9E666 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E668 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E66C Local Header Offset 00038915 (231701) │ │ │ │ +9E670 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E670: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E683 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E685 Length 0005 (5) │ │ │ │ +9E687 Flags 01 (1) 'Modification' │ │ │ │ +9E688 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E68C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E68E Length 000B (11) │ │ │ │ +9E690 Version 01 (1) │ │ │ │ +9E691 UID Size 04 (4) │ │ │ │ +9E692 UID 00000000 (0) │ │ │ │ +9E696 GID Size 04 (4) │ │ │ │ +9E697 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E69B CENTRAL HEADER #31 02014B50 (33639248) │ │ │ │ +9E69F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E6A0 Created OS 03 (3) 'Unix' │ │ │ │ +9E6A1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E6A2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E6A3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E6A5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E6A7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E6AB CRC 7611A41A (1980867610) │ │ │ │ +9E6AF Compressed Size 00000F48 (3912) │ │ │ │ +9E6B3 Uncompressed Size 000036F1 (14065) │ │ │ │ +9E6B7 Filename Length 000F (15) │ │ │ │ +9E6B9 Extra Length 0018 (24) │ │ │ │ +9E6BB Comment Length 0000 (0) │ │ │ │ +9E6BD Disk Start 0000 (0) │ │ │ │ +9E6BF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E6C1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E6C5 Local Header Offset 000393EF (234479) │ │ │ │ +9E6C9 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E6C9: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E6D8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E6DA Length 0005 (5) │ │ │ │ +9E6DC Flags 01 (1) 'Modification' │ │ │ │ +9E6DD Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E6E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E6E3 Length 000B (11) │ │ │ │ +9E6E5 Version 01 (1) │ │ │ │ +9E6E6 UID Size 04 (4) │ │ │ │ +9E6E7 UID 00000000 (0) │ │ │ │ +9E6EB GID Size 04 (4) │ │ │ │ +9E6EC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E6F0 CENTRAL HEADER #32 02014B50 (33639248) │ │ │ │ +9E6F4 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E6F5 Created OS 03 (3) 'Unix' │ │ │ │ +9E6F6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E6F7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E6F8 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E6FA Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E6FC Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E700 CRC 262FB9B0 (640661936) │ │ │ │ +9E704 Compressed Size 0000066A (1642) │ │ │ │ +9E708 Uncompressed Size 000018DF (6367) │ │ │ │ +9E70C Filename Length 000F (15) │ │ │ │ +9E70E Extra Length 0018 (24) │ │ │ │ +9E710 Comment Length 0000 (0) │ │ │ │ +9E712 Disk Start 0000 (0) │ │ │ │ +9E714 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E716 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E71A Local Header Offset 0003A380 (238464) │ │ │ │ +9E71E Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E71E: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E72D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E72F Length 0005 (5) │ │ │ │ +9E731 Flags 01 (1) 'Modification' │ │ │ │ +9E732 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E736 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E738 Length 000B (11) │ │ │ │ +9E73A Version 01 (1) │ │ │ │ +9E73B UID Size 04 (4) │ │ │ │ +9E73C UID 00000000 (0) │ │ │ │ +9E740 GID Size 04 (4) │ │ │ │ +9E741 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E745 CENTRAL HEADER #33 02014B50 (33639248) │ │ │ │ +9E749 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E74A Created OS 03 (3) 'Unix' │ │ │ │ +9E74B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E74C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E74D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E74F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E751 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E755 CRC 9162E9C5 (2439178693) │ │ │ │ +9E759 Compressed Size 00001A46 (6726) │ │ │ │ +9E75D Uncompressed Size 000064F2 (25842) │ │ │ │ +9E761 Filename Length 0013 (19) │ │ │ │ +9E763 Extra Length 0018 (24) │ │ │ │ +9E765 Comment Length 0000 (0) │ │ │ │ +9E767 Disk Start 0000 (0) │ │ │ │ +9E769 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E76B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E76F Local Header Offset 0003AA33 (240179) │ │ │ │ +9E773 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E773: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E786 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E788 Length 0005 (5) │ │ │ │ +9E78A Flags 01 (1) 'Modification' │ │ │ │ +9E78B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E78F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E791 Length 000B (11) │ │ │ │ +9E793 Version 01 (1) │ │ │ │ +9E794 UID Size 04 (4) │ │ │ │ +9E795 UID 00000000 (0) │ │ │ │ +9E799 GID Size 04 (4) │ │ │ │ +9E79A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E79E CENTRAL HEADER #34 02014B50 (33639248) │ │ │ │ +9E7A2 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E7A3 Created OS 03 (3) 'Unix' │ │ │ │ +9E7A4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E7A5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E7A6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E7A8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E7AA Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E7AE CRC 936899C3 (2473105859) │ │ │ │ +9E7B2 Compressed Size 000009A6 (2470) │ │ │ │ +9E7B6 Uncompressed Size 00001B64 (7012) │ │ │ │ +9E7BA Filename Length 0010 (16) │ │ │ │ +9E7BC Extra Length 0018 (24) │ │ │ │ +9E7BE Comment Length 0000 (0) │ │ │ │ +9E7C0 Disk Start 0000 (0) │ │ │ │ +9E7C2 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E7C4 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E7C8 Local Header Offset 0003C4C6 (246982) │ │ │ │ +9E7CC Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E7CC: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E7DC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E7DE Length 0005 (5) │ │ │ │ +9E7E0 Flags 01 (1) 'Modification' │ │ │ │ +9E7E1 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E7E5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E7E7 Length 000B (11) │ │ │ │ +9E7E9 Version 01 (1) │ │ │ │ +9E7EA UID Size 04 (4) │ │ │ │ +9E7EB UID 00000000 (0) │ │ │ │ +9E7EF GID Size 04 (4) │ │ │ │ +9E7F0 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E7F4 CENTRAL HEADER #35 02014B50 (33639248) │ │ │ │ +9E7F8 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E7F9 Created OS 03 (3) 'Unix' │ │ │ │ +9E7FA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E7FB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E7FC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E7FE Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E800 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E804 CRC E9E04E21 (3923791393) │ │ │ │ +9E808 Compressed Size 000006B7 (1719) │ │ │ │ +9E80C Uncompressed Size 00001565 (5477) │ │ │ │ +9E810 Filename Length 0012 (18) │ │ │ │ +9E812 Extra Length 0018 (24) │ │ │ │ +9E814 Comment Length 0000 (0) │ │ │ │ +9E816 Disk Start 0000 (0) │ │ │ │ +9E818 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E81A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E81E Local Header Offset 0003CEB6 (249526) │ │ │ │ +9E822 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E822: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E834 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E836 Length 0005 (5) │ │ │ │ +9E838 Flags 01 (1) 'Modification' │ │ │ │ +9E839 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E83D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E83F Length 000B (11) │ │ │ │ +9E841 Version 01 (1) │ │ │ │ +9E842 UID Size 04 (4) │ │ │ │ +9E843 UID 00000000 (0) │ │ │ │ +9E847 GID Size 04 (4) │ │ │ │ +9E848 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E84C CENTRAL HEADER #36 02014B50 (33639248) │ │ │ │ +9E850 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E851 Created OS 03 (3) 'Unix' │ │ │ │ +9E852 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E853 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E854 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E856 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E858 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E85C CRC B6412840 (3057723456) │ │ │ │ +9E860 Compressed Size 00002A17 (10775) │ │ │ │ +9E864 Uncompressed Size 0000B1C5 (45509) │ │ │ │ +9E868 Filename Length 0010 (16) │ │ │ │ +9E86A Extra Length 0018 (24) │ │ │ │ +9E86C Comment Length 0000 (0) │ │ │ │ +9E86E Disk Start 0000 (0) │ │ │ │ +9E870 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E872 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E876 Local Header Offset 0003D5B9 (251321) │ │ │ │ +9E87A Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E87A: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E88A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E88C Length 0005 (5) │ │ │ │ +9E88E Flags 01 (1) 'Modification' │ │ │ │ +9E88F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E893 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E895 Length 000B (11) │ │ │ │ +9E897 Version 01 (1) │ │ │ │ +9E898 UID Size 04 (4) │ │ │ │ +9E899 UID 00000000 (0) │ │ │ │ +9E89D GID Size 04 (4) │ │ │ │ +9E89E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E8A2 CENTRAL HEADER #37 02014B50 (33639248) │ │ │ │ +9E8A6 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E8A7 Created OS 03 (3) 'Unix' │ │ │ │ +9E8A8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E8A9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E8AA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E8AC Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E8AE Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E8B2 CRC CDDACEB0 (3453669040) │ │ │ │ +9E8B6 Compressed Size 00001E85 (7813) │ │ │ │ +9E8BA Uncompressed Size 00009AAA (39594) │ │ │ │ +9E8BE Filename Length 0012 (18) │ │ │ │ +9E8C0 Extra Length 0018 (24) │ │ │ │ +9E8C2 Comment Length 0000 (0) │ │ │ │ +9E8C4 Disk Start 0000 (0) │ │ │ │ +9E8C6 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E8C8 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E8CC Local Header Offset 0004001A (262170) │ │ │ │ +9E8D0 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E8D0: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E8E2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E8E4 Length 0005 (5) │ │ │ │ +9E8E6 Flags 01 (1) 'Modification' │ │ │ │ +9E8E7 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E8EB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E8ED Length 000B (11) │ │ │ │ +9E8EF Version 01 (1) │ │ │ │ +9E8F0 UID Size 04 (4) │ │ │ │ +9E8F1 UID 00000000 (0) │ │ │ │ +9E8F5 GID Size 04 (4) │ │ │ │ +9E8F6 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E8FA CENTRAL HEADER #38 02014B50 (33639248) │ │ │ │ +9E8FE Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E8FF Created OS 03 (3) 'Unix' │ │ │ │ +9E900 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E901 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E902 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E904 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E906 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E90A CRC BBEBBCD8 (3152788696) │ │ │ │ +9E90E Compressed Size 0000147D (5245) │ │ │ │ +9E912 Uncompressed Size 00007ACF (31439) │ │ │ │ +9E916 Filename Length 0018 (24) │ │ │ │ +9E918 Extra Length 0018 (24) │ │ │ │ +9E91A Comment Length 0000 (0) │ │ │ │ +9E91C Disk Start 0000 (0) │ │ │ │ +9E91E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E920 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E924 Local Header Offset 00041EEB (270059) │ │ │ │ +9E928 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E928: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E940 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E942 Length 0005 (5) │ │ │ │ +9E944 Flags 01 (1) 'Modification' │ │ │ │ +9E945 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E949 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E94B Length 000B (11) │ │ │ │ +9E94D Version 01 (1) │ │ │ │ +9E94E UID Size 04 (4) │ │ │ │ +9E94F UID 00000000 (0) │ │ │ │ +9E953 GID Size 04 (4) │ │ │ │ +9E954 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E958 CENTRAL HEADER #39 02014B50 (33639248) │ │ │ │ +9E95C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E95D Created OS 03 (3) 'Unix' │ │ │ │ +9E95E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E95F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E960 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E962 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E964 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E968 CRC 6789049D (1737032861) │ │ │ │ +9E96C Compressed Size 000018D5 (6357) │ │ │ │ +9E970 Uncompressed Size 0000A7F4 (42996) │ │ │ │ +9E974 Filename Length 001F (31) │ │ │ │ +9E976 Extra Length 0018 (24) │ │ │ │ +9E978 Comment Length 0000 (0) │ │ │ │ +9E97A Disk Start 0000 (0) │ │ │ │ +9E97C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E97E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E982 Local Header Offset 000433BA (275386) │ │ │ │ +9E986 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E986: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E9A5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E9A7 Length 0005 (5) │ │ │ │ +9E9A9 Flags 01 (1) 'Modification' │ │ │ │ +9E9AA Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9E9AE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E9B0 Length 000B (11) │ │ │ │ +9E9B2 Version 01 (1) │ │ │ │ +9E9B3 UID Size 04 (4) │ │ │ │ +9E9B4 UID 00000000 (0) │ │ │ │ +9E9B8 GID Size 04 (4) │ │ │ │ +9E9B9 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E9BD CENTRAL HEADER #40 02014B50 (33639248) │ │ │ │ +9E9C1 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E9C2 Created OS 03 (3) 'Unix' │ │ │ │ +9E9C3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E9C4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E9C5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E9C7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E9C9 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9E9CD CRC D64849DE (3595061726) │ │ │ │ +9E9D1 Compressed Size 000003F7 (1015) │ │ │ │ +9E9D5 Uncompressed Size 000008A3 (2211) │ │ │ │ +9E9D9 Filename Length 001E (30) │ │ │ │ +9E9DB Extra Length 0018 (24) │ │ │ │ +9E9DD Comment Length 0000 (0) │ │ │ │ +9E9DF Disk Start 0000 (0) │ │ │ │ +9E9E1 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E9E3 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E9E7 Local Header Offset 00044CE8 (281832) │ │ │ │ +9E9EB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E9EB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EA09 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EA0B Length 0005 (5) │ │ │ │ +9EA0D Flags 01 (1) 'Modification' │ │ │ │ +9EA0E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EA12 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EA14 Length 000B (11) │ │ │ │ +9EA16 Version 01 (1) │ │ │ │ +9EA17 UID Size 04 (4) │ │ │ │ +9EA18 UID 00000000 (0) │ │ │ │ +9EA1C GID Size 04 (4) │ │ │ │ +9EA1D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EA21 CENTRAL HEADER #41 02014B50 (33639248) │ │ │ │ +9EA25 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EA26 Created OS 03 (3) 'Unix' │ │ │ │ +9EA27 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EA28 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EA29 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EA2B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EA2D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EA31 CRC 9488B892 (2491988114) │ │ │ │ +9EA35 Compressed Size 00004293 (17043) │ │ │ │ +9EA39 Uncompressed Size 0000D8DC (55516) │ │ │ │ +9EA3D Filename Length 0013 (19) │ │ │ │ +9EA3F Extra Length 0018 (24) │ │ │ │ +9EA41 Comment Length 0000 (0) │ │ │ │ +9EA43 Disk Start 0000 (0) │ │ │ │ +9EA45 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EA47 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EA4B Local Header Offset 00045137 (282935) │ │ │ │ +9EA4F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EA4F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EA62 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EA64 Length 0005 (5) │ │ │ │ +9EA66 Flags 01 (1) 'Modification' │ │ │ │ +9EA67 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EA6B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EA6D Length 000B (11) │ │ │ │ +9EA6F Version 01 (1) │ │ │ │ +9EA70 UID Size 04 (4) │ │ │ │ +9EA71 UID 00000000 (0) │ │ │ │ +9EA75 GID Size 04 (4) │ │ │ │ +9EA76 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EA7A CENTRAL HEADER #42 02014B50 (33639248) │ │ │ │ +9EA7E Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EA7F Created OS 03 (3) 'Unix' │ │ │ │ +9EA80 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EA81 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EA82 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EA84 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EA86 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EA8A CRC 1C75F308 (477491976) │ │ │ │ +9EA8E Compressed Size 000026C4 (9924) │ │ │ │ +9EA92 Uncompressed Size 00006E45 (28229) │ │ │ │ +9EA96 Filename Length 0019 (25) │ │ │ │ +9EA98 Extra Length 0018 (24) │ │ │ │ +9EA9A Comment Length 0000 (0) │ │ │ │ +9EA9C Disk Start 0000 (0) │ │ │ │ +9EA9E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EAA0 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EAA4 Local Header Offset 00049417 (300055) │ │ │ │ +9EAA8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EAA8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EAC1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EAC3 Length 0005 (5) │ │ │ │ +9EAC5 Flags 01 (1) 'Modification' │ │ │ │ +9EAC6 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EACA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EACC Length 000B (11) │ │ │ │ +9EACE Version 01 (1) │ │ │ │ +9EACF UID Size 04 (4) │ │ │ │ +9EAD0 UID 00000000 (0) │ │ │ │ +9EAD4 GID Size 04 (4) │ │ │ │ +9EAD5 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EAD9 CENTRAL HEADER #43 02014B50 (33639248) │ │ │ │ +9EADD Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EADE Created OS 03 (3) 'Unix' │ │ │ │ +9EADF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EAE0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EAE1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EAE3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EAE5 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EAE9 CRC 8F94BE1C (2408889884) │ │ │ │ +9EAED Compressed Size 00002739 (10041) │ │ │ │ +9EAF1 Uncompressed Size 00008B83 (35715) │ │ │ │ +9EAF5 Filename Length 0019 (25) │ │ │ │ +9EAF7 Extra Length 0018 (24) │ │ │ │ +9EAF9 Comment Length 0000 (0) │ │ │ │ +9EAFB Disk Start 0000 (0) │ │ │ │ +9EAFD Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EAFF Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EB03 Local Header Offset 0004BB2E (310062) │ │ │ │ +9EB07 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EB07: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EB20 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EB22 Length 0005 (5) │ │ │ │ +9EB24 Flags 01 (1) 'Modification' │ │ │ │ +9EB25 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EB29 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EB2B Length 000B (11) │ │ │ │ +9EB2D Version 01 (1) │ │ │ │ +9EB2E UID Size 04 (4) │ │ │ │ +9EB2F UID 00000000 (0) │ │ │ │ +9EB33 GID Size 04 (4) │ │ │ │ +9EB34 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EB38 CENTRAL HEADER #44 02014B50 (33639248) │ │ │ │ +9EB3C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EB3D Created OS 03 (3) 'Unix' │ │ │ │ +9EB3E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EB3F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EB40 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EB42 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EB44 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EB48 CRC 54874F5D (1418153821) │ │ │ │ +9EB4C Compressed Size 00000CEF (3311) │ │ │ │ +9EB50 Uncompressed Size 0000517A (20858) │ │ │ │ +9EB54 Filename Length 0021 (33) │ │ │ │ +9EB56 Extra Length 0018 (24) │ │ │ │ +9EB58 Comment Length 0000 (0) │ │ │ │ +9EB5A Disk Start 0000 (0) │ │ │ │ +9EB5C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EB5E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EB62 Local Header Offset 0004E2BA (320186) │ │ │ │ +9EB66 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EB66: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EB87 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EB89 Length 0005 (5) │ │ │ │ +9EB8B Flags 01 (1) 'Modification' │ │ │ │ +9EB8C Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EB90 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EB92 Length 000B (11) │ │ │ │ +9EB94 Version 01 (1) │ │ │ │ +9EB95 UID Size 04 (4) │ │ │ │ +9EB96 UID 00000000 (0) │ │ │ │ +9EB9A GID Size 04 (4) │ │ │ │ +9EB9B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EB9F CENTRAL HEADER #45 02014B50 (33639248) │ │ │ │ +9EBA3 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EBA4 Created OS 03 (3) 'Unix' │ │ │ │ +9EBA5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EBA6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EBA7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EBA9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EBAB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EBAF CRC 07042E48 (117714504) │ │ │ │ +9EBB3 Compressed Size 00000468 (1128) │ │ │ │ +9EBB7 Uncompressed Size 00000931 (2353) │ │ │ │ +9EBBB Filename Length 001B (27) │ │ │ │ +9EBBD Extra Length 0018 (24) │ │ │ │ +9EBBF Comment Length 0000 (0) │ │ │ │ +9EBC1 Disk Start 0000 (0) │ │ │ │ +9EBC3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EBC5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EBC9 Local Header Offset 0004F004 (323588) │ │ │ │ +9EBCD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EBCD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EBE8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EBEA Length 0005 (5) │ │ │ │ +9EBEC Flags 01 (1) 'Modification' │ │ │ │ +9EBED Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EBF1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EBF3 Length 000B (11) │ │ │ │ +9EBF5 Version 01 (1) │ │ │ │ +9EBF6 UID Size 04 (4) │ │ │ │ +9EBF7 UID 00000000 (0) │ │ │ │ +9EBFB GID Size 04 (4) │ │ │ │ +9EBFC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EC00 CENTRAL HEADER #46 02014B50 (33639248) │ │ │ │ +9EC04 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EC05 Created OS 03 (3) 'Unix' │ │ │ │ +9EC06 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EC07 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EC08 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EC0A Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EC0C Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EC10 CRC 7EF1E920 (2129783072) │ │ │ │ +9EC14 Compressed Size 000016F2 (5874) │ │ │ │ +9EC18 Uncompressed Size 00007A6D (31341) │ │ │ │ +9EC1C Filename Length 001F (31) │ │ │ │ +9EC1E Extra Length 0018 (24) │ │ │ │ +9EC20 Comment Length 0000 (0) │ │ │ │ +9EC22 Disk Start 0000 (0) │ │ │ │ +9EC24 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EC26 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EC2A Local Header Offset 0004F4C1 (324801) │ │ │ │ +9EC2E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EC2E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EC4D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EC4F Length 0005 (5) │ │ │ │ +9EC51 Flags 01 (1) 'Modification' │ │ │ │ +9EC52 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EC56 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EC58 Length 000B (11) │ │ │ │ +9EC5A Version 01 (1) │ │ │ │ +9EC5B UID Size 04 (4) │ │ │ │ +9EC5C UID 00000000 (0) │ │ │ │ +9EC60 GID Size 04 (4) │ │ │ │ +9EC61 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EC65 CENTRAL HEADER #47 02014B50 (33639248) │ │ │ │ +9EC69 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EC6A Created OS 03 (3) 'Unix' │ │ │ │ +9EC6B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EC6C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EC6D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EC6F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EC71 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EC75 CRC F0A17B59 (4037114713) │ │ │ │ +9EC79 Compressed Size 0000416B (16747) │ │ │ │ +9EC7D Uncompressed Size 0001CF93 (118675) │ │ │ │ +9EC81 Filename Length 0010 (16) │ │ │ │ +9EC83 Extra Length 0018 (24) │ │ │ │ +9EC85 Comment Length 0000 (0) │ │ │ │ +9EC87 Disk Start 0000 (0) │ │ │ │ +9EC89 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EC8B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EC8F Local Header Offset 00050C0C (330764) │ │ │ │ +9EC93 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EC93: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ECA3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ECA5 Length 0005 (5) │ │ │ │ +9ECA7 Flags 01 (1) 'Modification' │ │ │ │ +9ECA8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9ECAC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ECAE Length 000B (11) │ │ │ │ +9ECB0 Version 01 (1) │ │ │ │ +9ECB1 UID Size 04 (4) │ │ │ │ +9ECB2 UID 00000000 (0) │ │ │ │ +9ECB6 GID Size 04 (4) │ │ │ │ +9ECB7 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ECBB CENTRAL HEADER #48 02014B50 (33639248) │ │ │ │ +9ECBF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ECC0 Created OS 03 (3) 'Unix' │ │ │ │ +9ECC1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ECC2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ECC3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ECC5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ECC7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9ECCB CRC 4474668F (1148479119) │ │ │ │ +9ECCF Compressed Size 00000A94 (2708) │ │ │ │ +9ECD3 Uncompressed Size 00002105 (8453) │ │ │ │ +9ECD7 Filename Length 0014 (20) │ │ │ │ +9ECD9 Extra Length 0018 (24) │ │ │ │ +9ECDB Comment Length 0000 (0) │ │ │ │ +9ECDD Disk Start 0000 (0) │ │ │ │ +9ECDF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9ECE1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9ECE5 Local Header Offset 00054DC1 (347585) │ │ │ │ +9ECE9 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9ECE9: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ECFD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ECFF Length 0005 (5) │ │ │ │ +9ED01 Flags 01 (1) 'Modification' │ │ │ │ +9ED02 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9ED06 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ED08 Length 000B (11) │ │ │ │ +9ED0A Version 01 (1) │ │ │ │ +9ED0B UID Size 04 (4) │ │ │ │ +9ED0C UID 00000000 (0) │ │ │ │ +9ED10 GID Size 04 (4) │ │ │ │ +9ED11 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ED15 CENTRAL HEADER #49 02014B50 (33639248) │ │ │ │ +9ED19 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ED1A Created OS 03 (3) 'Unix' │ │ │ │ +9ED1B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ED1C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ED1D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ED1F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ED21 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9ED25 CRC B9C69472 (3116799090) │ │ │ │ +9ED29 Compressed Size 0000AC9E (44190) │ │ │ │ +9ED2D Uncompressed Size 0003E418 (255000) │ │ │ │ +9ED31 Filename Length 0017 (23) │ │ │ │ +9ED33 Extra Length 0018 (24) │ │ │ │ +9ED35 Comment Length 0000 (0) │ │ │ │ +9ED37 Disk Start 0000 (0) │ │ │ │ +9ED39 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9ED3B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9ED3F Local Header Offset 000558A3 (350371) │ │ │ │ +9ED43 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9ED43: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ED5A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ED5C Length 0005 (5) │ │ │ │ +9ED5E Flags 01 (1) 'Modification' │ │ │ │ +9ED5F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9ED63 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ED65 Length 000B (11) │ │ │ │ +9ED67 Version 01 (1) │ │ │ │ +9ED68 UID Size 04 (4) │ │ │ │ +9ED69 UID 00000000 (0) │ │ │ │ +9ED6D GID Size 04 (4) │ │ │ │ +9ED6E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ED72 CENTRAL HEADER #50 02014B50 (33639248) │ │ │ │ +9ED76 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ED77 Created OS 03 (3) 'Unix' │ │ │ │ +9ED78 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ED79 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ED7A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ED7C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ED7E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9ED82 CRC F6DAC8B9 (4141533369) │ │ │ │ +9ED86 Compressed Size 00000401 (1025) │ │ │ │ +9ED8A Uncompressed Size 0000093D (2365) │ │ │ │ +9ED8E Filename Length 0013 (19) │ │ │ │ +9ED90 Extra Length 0018 (24) │ │ │ │ +9ED92 Comment Length 0000 (0) │ │ │ │ +9ED94 Disk Start 0000 (0) │ │ │ │ +9ED96 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9ED98 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9ED9C Local Header Offset 00060592 (394642) │ │ │ │ +9EDA0 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EDA0: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EDB3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EDB5 Length 0005 (5) │ │ │ │ +9EDB7 Flags 01 (1) 'Modification' │ │ │ │ +9EDB8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EDBC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EDBE Length 000B (11) │ │ │ │ +9EDC0 Version 01 (1) │ │ │ │ +9EDC1 UID Size 04 (4) │ │ │ │ +9EDC2 UID 00000000 (0) │ │ │ │ +9EDC6 GID Size 04 (4) │ │ │ │ +9EDC7 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EDCB CENTRAL HEADER #51 02014B50 (33639248) │ │ │ │ +9EDCF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EDD0 Created OS 03 (3) 'Unix' │ │ │ │ +9EDD1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EDD2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EDD3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EDD5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EDD7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EDDB CRC B6EC7704 (3068950276) │ │ │ │ +9EDDF Compressed Size 000014DB (5339) │ │ │ │ +9EDE3 Uncompressed Size 0000687B (26747) │ │ │ │ +9EDE7 Filename Length 0012 (18) │ │ │ │ +9EDE9 Extra Length 0018 (24) │ │ │ │ +9EDEB Comment Length 0000 (0) │ │ │ │ +9EDED Disk Start 0000 (0) │ │ │ │ +9EDEF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EDF1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EDF5 Local Header Offset 000609E0 (395744) │ │ │ │ +9EDF9 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EDF9: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EE0B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EE0D Length 0005 (5) │ │ │ │ +9EE0F Flags 01 (1) 'Modification' │ │ │ │ +9EE10 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EE14 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EE16 Length 000B (11) │ │ │ │ +9EE18 Version 01 (1) │ │ │ │ +9EE19 UID Size 04 (4) │ │ │ │ +9EE1A UID 00000000 (0) │ │ │ │ +9EE1E GID Size 04 (4) │ │ │ │ +9EE1F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EE23 CENTRAL HEADER #52 02014B50 (33639248) │ │ │ │ +9EE27 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EE28 Created OS 03 (3) 'Unix' │ │ │ │ +9EE29 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EE2A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EE2B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EE2D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EE2F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EE33 CRC F81DBD94 (4162698644) │ │ │ │ +9EE37 Compressed Size 000011EA (4586) │ │ │ │ +9EE3B Uncompressed Size 000040F5 (16629) │ │ │ │ +9EE3F Filename Length 0012 (18) │ │ │ │ +9EE41 Extra Length 0018 (24) │ │ │ │ +9EE43 Comment Length 0000 (0) │ │ │ │ +9EE45 Disk Start 0000 (0) │ │ │ │ +9EE47 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EE49 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EE4D Local Header Offset 00061F07 (401159) │ │ │ │ +9EE51 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EE51: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EE63 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EE65 Length 0005 (5) │ │ │ │ +9EE67 Flags 01 (1) 'Modification' │ │ │ │ +9EE68 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EE6C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EE6E Length 000B (11) │ │ │ │ +9EE70 Version 01 (1) │ │ │ │ +9EE71 UID Size 04 (4) │ │ │ │ +9EE72 UID 00000000 (0) │ │ │ │ +9EE76 GID Size 04 (4) │ │ │ │ +9EE77 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EE7B CENTRAL HEADER #53 02014B50 (33639248) │ │ │ │ +9EE7F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EE80 Created OS 03 (3) 'Unix' │ │ │ │ +9EE81 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EE82 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EE83 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EE85 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EE87 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EE8B CRC CB1B6BB2 (3407571890) │ │ │ │ +9EE8F Compressed Size 000009DB (2523) │ │ │ │ +9EE93 Uncompressed Size 00003529 (13609) │ │ │ │ +9EE97 Filename Length 0019 (25) │ │ │ │ +9EE99 Extra Length 0018 (24) │ │ │ │ +9EE9B Comment Length 0000 (0) │ │ │ │ +9EE9D Disk Start 0000 (0) │ │ │ │ +9EE9F Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EEA1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EEA5 Local Header Offset 0006313D (405821) │ │ │ │ +9EEA9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EEA9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EEC2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EEC4 Length 0005 (5) │ │ │ │ +9EEC6 Flags 01 (1) 'Modification' │ │ │ │ +9EEC7 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EECB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EECD Length 000B (11) │ │ │ │ +9EECF Version 01 (1) │ │ │ │ +9EED0 UID Size 04 (4) │ │ │ │ +9EED1 UID 00000000 (0) │ │ │ │ +9EED5 GID Size 04 (4) │ │ │ │ +9EED6 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EEDA CENTRAL HEADER #54 02014B50 (33639248) │ │ │ │ +9EEDE Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EEDF Created OS 03 (3) 'Unix' │ │ │ │ +9EEE0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EEE1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EEE2 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EEE4 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EEE6 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EEEA CRC 66C58098 (1724219544) │ │ │ │ +9EEEE Compressed Size 000018B5 (6325) │ │ │ │ +9EEF2 Uncompressed Size 0000A605 (42501) │ │ │ │ +9EEF6 Filename Length 0019 (25) │ │ │ │ +9EEF8 Extra Length 0018 (24) │ │ │ │ +9EEFA Comment Length 0000 (0) │ │ │ │ +9EEFC Disk Start 0000 (0) │ │ │ │ +9EEFE Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EF00 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EF04 Local Header Offset 00063B6B (408427) │ │ │ │ +9EF08 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EF08: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EF21 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EF23 Length 0005 (5) │ │ │ │ +9EF25 Flags 01 (1) 'Modification' │ │ │ │ +9EF26 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EF2A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EF2C Length 000B (11) │ │ │ │ +9EF2E Version 01 (1) │ │ │ │ +9EF2F UID Size 04 (4) │ │ │ │ +9EF30 UID 00000000 (0) │ │ │ │ +9EF34 GID Size 04 (4) │ │ │ │ +9EF35 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EF39 CENTRAL HEADER #55 02014B50 (33639248) │ │ │ │ +9EF3D Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EF3E Created OS 03 (3) 'Unix' │ │ │ │ +9EF3F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EF40 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EF41 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EF43 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EF45 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EF49 CRC 16F6295E (385231198) │ │ │ │ +9EF4D Compressed Size 0000177D (6013) │ │ │ │ +9EF51 Uncompressed Size 0000472C (18220) │ │ │ │ +9EF55 Filename Length 0014 (20) │ │ │ │ +9EF57 Extra Length 0018 (24) │ │ │ │ +9EF59 Comment Length 0000 (0) │ │ │ │ +9EF5B Disk Start 0000 (0) │ │ │ │ +9EF5D Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EF5F Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EF63 Local Header Offset 00065473 (414835) │ │ │ │ +9EF67 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EF67: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EF7B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EF7D Length 0005 (5) │ │ │ │ +9EF7F Flags 01 (1) 'Modification' │ │ │ │ +9EF80 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EF84 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EF86 Length 000B (11) │ │ │ │ +9EF88 Version 01 (1) │ │ │ │ +9EF89 UID Size 04 (4) │ │ │ │ +9EF8A UID 00000000 (0) │ │ │ │ +9EF8E GID Size 04 (4) │ │ │ │ +9EF8F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EF93 CENTRAL HEADER #56 02014B50 (33639248) │ │ │ │ +9EF97 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EF98 Created OS 03 (3) 'Unix' │ │ │ │ +9EF99 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EF9A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EF9B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EF9D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EF9F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9EFA3 CRC E49D33FF (3835507711) │ │ │ │ +9EFA7 Compressed Size 0000040A (1034) │ │ │ │ +9EFAB Uncompressed Size 00000825 (2085) │ │ │ │ +9EFAF Filename Length 001C (28) │ │ │ │ +9EFB1 Extra Length 0018 (24) │ │ │ │ +9EFB3 Comment Length 0000 (0) │ │ │ │ +9EFB5 Disk Start 0000 (0) │ │ │ │ +9EFB7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EFB9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EFBD Local Header Offset 00066C3E (420926) │ │ │ │ +9EFC1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EFC1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EFDD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EFDF Length 0005 (5) │ │ │ │ +9EFE1 Flags 01 (1) 'Modification' │ │ │ │ +9EFE2 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9EFE6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EFE8 Length 000B (11) │ │ │ │ +9EFEA Version 01 (1) │ │ │ │ +9EFEB UID Size 04 (4) │ │ │ │ +9EFEC UID 00000000 (0) │ │ │ │ +9EFF0 GID Size 04 (4) │ │ │ │ +9EFF1 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EFF5 CENTRAL HEADER #57 02014B50 (33639248) │ │ │ │ +9EFF9 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EFFA Created OS 03 (3) 'Unix' │ │ │ │ +9EFFB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EFFC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EFFD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EFFF Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F001 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F005 CRC 5883CA59 (1485032025) │ │ │ │ +9F009 Compressed Size 00002480 (9344) │ │ │ │ +9F00D Uncompressed Size 0000B56F (46447) │ │ │ │ +9F011 Filename Length 001F (31) │ │ │ │ +9F013 Extra Length 0018 (24) │ │ │ │ +9F015 Comment Length 0000 (0) │ │ │ │ +9F017 Disk Start 0000 (0) │ │ │ │ +9F019 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F01B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F01F Local Header Offset 0006709E (422046) │ │ │ │ +9F023 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F023: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F042 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F044 Length 0005 (5) │ │ │ │ +9F046 Flags 01 (1) 'Modification' │ │ │ │ +9F047 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F04B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F04D Length 000B (11) │ │ │ │ +9F04F Version 01 (1) │ │ │ │ +9F050 UID Size 04 (4) │ │ │ │ +9F051 UID 00000000 (0) │ │ │ │ +9F055 GID Size 04 (4) │ │ │ │ +9F056 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F05A CENTRAL HEADER #58 02014B50 (33639248) │ │ │ │ +9F05E Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F05F Created OS 03 (3) 'Unix' │ │ │ │ +9F060 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F061 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F062 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F064 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F066 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F06A CRC 557DA1E7 (1434296807) │ │ │ │ +9F06E Compressed Size 00000E7E (3710) │ │ │ │ +9F072 Uncompressed Size 000052D9 (21209) │ │ │ │ +9F076 Filename Length 001F (31) │ │ │ │ +9F078 Extra Length 0018 (24) │ │ │ │ +9F07A Comment Length 0000 (0) │ │ │ │ +9F07C Disk Start 0000 (0) │ │ │ │ +9F07E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F080 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F084 Local Header Offset 00069577 (431479) │ │ │ │ +9F088 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F088: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F0A7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F0A9 Length 0005 (5) │ │ │ │ +9F0AB Flags 01 (1) 'Modification' │ │ │ │ +9F0AC Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F0B0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F0B2 Length 000B (11) │ │ │ │ +9F0B4 Version 01 (1) │ │ │ │ +9F0B5 UID Size 04 (4) │ │ │ │ +9F0B6 UID 00000000 (0) │ │ │ │ +9F0BA GID Size 04 (4) │ │ │ │ +9F0BB GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F0BF CENTRAL HEADER #59 02014B50 (33639248) │ │ │ │ +9F0C3 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F0C4 Created OS 03 (3) 'Unix' │ │ │ │ +9F0C5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F0C6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F0C7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F0C9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F0CB Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F0CF CRC E618077C (3860334460) │ │ │ │ +9F0D3 Compressed Size 00000A44 (2628) │ │ │ │ +9F0D7 Uncompressed Size 0000247A (9338) │ │ │ │ +9F0DB Filename Length 0013 (19) │ │ │ │ +9F0DD Extra Length 0018 (24) │ │ │ │ +9F0DF Comment Length 0000 (0) │ │ │ │ +9F0E1 Disk Start 0000 (0) │ │ │ │ +9F0E3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F0E5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F0E9 Local Header Offset 0006A44E (435278) │ │ │ │ +9F0ED Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F0ED: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F100 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F102 Length 0005 (5) │ │ │ │ +9F104 Flags 01 (1) 'Modification' │ │ │ │ +9F105 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F109 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F10B Length 000B (11) │ │ │ │ +9F10D Version 01 (1) │ │ │ │ +9F10E UID Size 04 (4) │ │ │ │ +9F10F UID 00000000 (0) │ │ │ │ +9F113 GID Size 04 (4) │ │ │ │ +9F114 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F118 CENTRAL HEADER #60 02014B50 (33639248) │ │ │ │ +9F11C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F11D Created OS 03 (3) 'Unix' │ │ │ │ +9F11E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F11F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F120 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F122 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F124 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F128 CRC 8576CF69 (2239156073) │ │ │ │ +9F12C Compressed Size 00002486 (9350) │ │ │ │ +9F130 Uncompressed Size 0000B84C (47180) │ │ │ │ +9F134 Filename Length 0019 (25) │ │ │ │ +9F136 Extra Length 0018 (24) │ │ │ │ +9F138 Comment Length 0000 (0) │ │ │ │ +9F13A Disk Start 0000 (0) │ │ │ │ +9F13C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F13E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F142 Local Header Offset 0006AEDF (437983) │ │ │ │ +9F146 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F146: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F15F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F161 Length 0005 (5) │ │ │ │ +9F163 Flags 01 (1) 'Modification' │ │ │ │ +9F164 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F168 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F16A Length 000B (11) │ │ │ │ +9F16C Version 01 (1) │ │ │ │ +9F16D UID Size 04 (4) │ │ │ │ +9F16E UID 00000000 (0) │ │ │ │ +9F172 GID Size 04 (4) │ │ │ │ +9F173 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F177 CENTRAL HEADER #61 02014B50 (33639248) │ │ │ │ +9F17B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F17C Created OS 03 (3) 'Unix' │ │ │ │ +9F17D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F17E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F17F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F181 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F183 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F187 CRC 95738DAB (2507378091) │ │ │ │ +9F18B Compressed Size 00000EF8 (3832) │ │ │ │ +9F18F Uncompressed Size 00003A2C (14892) │ │ │ │ +9F193 Filename Length 0024 (36) │ │ │ │ +9F195 Extra Length 0018 (24) │ │ │ │ +9F197 Comment Length 0000 (0) │ │ │ │ +9F199 Disk Start 0000 (0) │ │ │ │ +9F19B Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F19D Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F1A1 Local Header Offset 0006D3B8 (447416) │ │ │ │ +9F1A5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F1A5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F1C9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F1CB Length 0005 (5) │ │ │ │ +9F1CD Flags 01 (1) 'Modification' │ │ │ │ +9F1CE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F1D2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F1D4 Length 000B (11) │ │ │ │ +9F1D6 Version 01 (1) │ │ │ │ +9F1D7 UID Size 04 (4) │ │ │ │ +9F1D8 UID 00000000 (0) │ │ │ │ +9F1DC GID Size 04 (4) │ │ │ │ +9F1DD GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F1E1 CENTRAL HEADER #62 02014B50 (33639248) │ │ │ │ +9F1E5 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F1E6 Created OS 03 (3) 'Unix' │ │ │ │ +9F1E7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F1E8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F1E9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F1EB Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F1ED Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F1F1 CRC FDDE6615 (4259210773) │ │ │ │ +9F1F5 Compressed Size 00001AC1 (6849) │ │ │ │ +9F1F9 Uncompressed Size 00005EDC (24284) │ │ │ │ +9F1FD Filename Length 0017 (23) │ │ │ │ +9F1FF Extra Length 0018 (24) │ │ │ │ +9F201 Comment Length 0000 (0) │ │ │ │ +9F203 Disk Start 0000 (0) │ │ │ │ +9F205 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F207 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F20B Local Header Offset 0006E30E (451342) │ │ │ │ +9F20F Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F20F: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F226 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F228 Length 0005 (5) │ │ │ │ +9F22A Flags 01 (1) 'Modification' │ │ │ │ +9F22B Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F22F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F231 Length 000B (11) │ │ │ │ +9F233 Version 01 (1) │ │ │ │ +9F234 UID Size 04 (4) │ │ │ │ +9F235 UID 00000000 (0) │ │ │ │ +9F239 GID Size 04 (4) │ │ │ │ +9F23A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F23E CENTRAL HEADER #63 02014B50 (33639248) │ │ │ │ +9F242 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F243 Created OS 03 (3) 'Unix' │ │ │ │ +9F244 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F245 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F246 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F248 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F24A Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F24E CRC 11E32AF1 (300100337) │ │ │ │ +9F252 Compressed Size 00000ED3 (3795) │ │ │ │ +9F256 Uncompressed Size 000038E2 (14562) │ │ │ │ +9F25A Filename Length 0023 (35) │ │ │ │ +9F25C Extra Length 0018 (24) │ │ │ │ +9F25E Comment Length 0000 (0) │ │ │ │ +9F260 Disk Start 0000 (0) │ │ │ │ +9F262 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F264 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F268 Local Header Offset 0006FE20 (458272) │ │ │ │ +9F26C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F26C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F28F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F291 Length 0005 (5) │ │ │ │ +9F293 Flags 01 (1) 'Modification' │ │ │ │ +9F294 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F298 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F29A Length 000B (11) │ │ │ │ +9F29C Version 01 (1) │ │ │ │ +9F29D UID Size 04 (4) │ │ │ │ +9F29E UID 00000000 (0) │ │ │ │ +9F2A2 GID Size 04 (4) │ │ │ │ +9F2A3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F2A7 CENTRAL HEADER #64 02014B50 (33639248) │ │ │ │ +9F2AB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F2AC Created OS 03 (3) 'Unix' │ │ │ │ +9F2AD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F2AE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F2AF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F2B1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F2B3 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F2B7 CRC 2DB7929F (767005343) │ │ │ │ +9F2BB Compressed Size 00000113 (275) │ │ │ │ +9F2BF Uncompressed Size 000001F3 (499) │ │ │ │ +9F2C3 Filename Length 001B (27) │ │ │ │ +9F2C5 Extra Length 0018 (24) │ │ │ │ +9F2C7 Comment Length 0000 (0) │ │ │ │ +9F2C9 Disk Start 0000 (0) │ │ │ │ +9F2CB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F2CD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F2D1 Local Header Offset 00070D50 (462160) │ │ │ │ +9F2D5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F2D5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F2F0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F2F2 Length 0005 (5) │ │ │ │ +9F2F4 Flags 01 (1) 'Modification' │ │ │ │ +9F2F5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F2F9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F2FB Length 000B (11) │ │ │ │ +9F2FD Version 01 (1) │ │ │ │ +9F2FE UID Size 04 (4) │ │ │ │ +9F2FF UID 00000000 (0) │ │ │ │ +9F303 GID Size 04 (4) │ │ │ │ +9F304 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F308 CENTRAL HEADER #65 02014B50 (33639248) │ │ │ │ +9F30C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F30D Created OS 03 (3) 'Unix' │ │ │ │ +9F30E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F30F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F310 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F312 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F314 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F318 CRC 23F0D64F (602986063) │ │ │ │ +9F31C Compressed Size 0000188D (6285) │ │ │ │ +9F320 Uncompressed Size 00008FAC (36780) │ │ │ │ +9F324 Filename Length 001D (29) │ │ │ │ +9F326 Extra Length 0018 (24) │ │ │ │ +9F328 Comment Length 0000 (0) │ │ │ │ +9F32A Disk Start 0000 (0) │ │ │ │ +9F32C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F32E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F332 Local Header Offset 00070EB8 (462520) │ │ │ │ +9F336 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F336: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F353 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F355 Length 0005 (5) │ │ │ │ +9F357 Flags 01 (1) 'Modification' │ │ │ │ +9F358 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F35C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F35E Length 000B (11) │ │ │ │ +9F360 Version 01 (1) │ │ │ │ +9F361 UID Size 04 (4) │ │ │ │ +9F362 UID 00000000 (0) │ │ │ │ +9F366 GID Size 04 (4) │ │ │ │ +9F367 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F36B CENTRAL HEADER #66 02014B50 (33639248) │ │ │ │ +9F36F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F370 Created OS 03 (3) 'Unix' │ │ │ │ +9F371 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F372 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F373 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F375 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F377 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F37B CRC 835FA0AD (2204082349) │ │ │ │ +9F37F Compressed Size 0000164C (5708) │ │ │ │ +9F383 Uncompressed Size 00003A9B (15003) │ │ │ │ +9F387 Filename Length 0015 (21) │ │ │ │ +9F389 Extra Length 0018 (24) │ │ │ │ +9F38B Comment Length 0000 (0) │ │ │ │ +9F38D Disk Start 0000 (0) │ │ │ │ +9F38F Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F391 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F395 Local Header Offset 0007279C (468892) │ │ │ │ +9F399 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F399: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F3AE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F3B0 Length 0005 (5) │ │ │ │ +9F3B2 Flags 01 (1) 'Modification' │ │ │ │ +9F3B3 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F3B7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F3B9 Length 000B (11) │ │ │ │ +9F3BB Version 01 (1) │ │ │ │ +9F3BC UID Size 04 (4) │ │ │ │ +9F3BD UID 00000000 (0) │ │ │ │ +9F3C1 GID Size 04 (4) │ │ │ │ +9F3C2 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F3C6 CENTRAL HEADER #67 02014B50 (33639248) │ │ │ │ +9F3CA Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F3CB Created OS 03 (3) 'Unix' │ │ │ │ +9F3CC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F3CD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F3CE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F3D0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F3D2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F3D6 CRC 7CE39B09 (2095291145) │ │ │ │ +9F3DA Compressed Size 00003B4E (15182) │ │ │ │ +9F3DE Uncompressed Size 0001185B (71771) │ │ │ │ +9F3E2 Filename Length 0016 (22) │ │ │ │ +9F3E4 Extra Length 0018 (24) │ │ │ │ +9F3E6 Comment Length 0000 (0) │ │ │ │ +9F3E8 Disk Start 0000 (0) │ │ │ │ +9F3EA Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F3EC Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F3F0 Local Header Offset 00073E37 (474679) │ │ │ │ +9F3F4 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F3F4: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F40A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F40C Length 0005 (5) │ │ │ │ +9F40E Flags 01 (1) 'Modification' │ │ │ │ +9F40F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F413 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F415 Length 000B (11) │ │ │ │ +9F417 Version 01 (1) │ │ │ │ +9F418 UID Size 04 (4) │ │ │ │ +9F419 UID 00000000 (0) │ │ │ │ +9F41D GID Size 04 (4) │ │ │ │ +9F41E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F422 CENTRAL HEADER #68 02014B50 (33639248) │ │ │ │ +9F426 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F427 Created OS 03 (3) 'Unix' │ │ │ │ +9F428 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F429 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F42A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F42C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F42E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F432 CRC 069AF4F8 (110818552) │ │ │ │ +9F436 Compressed Size 00003E85 (16005) │ │ │ │ +9F43A Uncompressed Size 0001C17B (115067) │ │ │ │ +9F43E Filename Length 0019 (25) │ │ │ │ +9F440 Extra Length 0018 (24) │ │ │ │ +9F442 Comment Length 0000 (0) │ │ │ │ +9F444 Disk Start 0000 (0) │ │ │ │ +9F446 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F448 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F44C Local Header Offset 000779D5 (489941) │ │ │ │ +9F450 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F450: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F469 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F46B Length 0005 (5) │ │ │ │ +9F46D Flags 01 (1) 'Modification' │ │ │ │ +9F46E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F472 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F474 Length 000B (11) │ │ │ │ +9F476 Version 01 (1) │ │ │ │ +9F477 UID Size 04 (4) │ │ │ │ +9F478 UID 00000000 (0) │ │ │ │ +9F47C GID Size 04 (4) │ │ │ │ +9F47D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F481 CENTRAL HEADER #69 02014B50 (33639248) │ │ │ │ +9F485 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F486 Created OS 03 (3) 'Unix' │ │ │ │ +9F487 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F488 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F489 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F48B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F48D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F491 CRC AF0AF89B (2936731803) │ │ │ │ +9F495 Compressed Size 00000834 (2100) │ │ │ │ +9F499 Uncompressed Size 00003383 (13187) │ │ │ │ +9F49D Filename Length 0011 (17) │ │ │ │ +9F49F Extra Length 0018 (24) │ │ │ │ +9F4A1 Comment Length 0000 (0) │ │ │ │ +9F4A3 Disk Start 0000 (0) │ │ │ │ +9F4A5 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F4A7 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F4AB Local Header Offset 0007B8AD (506029) │ │ │ │ +9F4AF Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F4AF: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F4C0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F4C2 Length 0005 (5) │ │ │ │ +9F4C4 Flags 01 (1) 'Modification' │ │ │ │ +9F4C5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F4C9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F4CB Length 000B (11) │ │ │ │ +9F4CD Version 01 (1) │ │ │ │ +9F4CE UID Size 04 (4) │ │ │ │ +9F4CF UID 00000000 (0) │ │ │ │ +9F4D3 GID Size 04 (4) │ │ │ │ +9F4D4 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F4D8 CENTRAL HEADER #70 02014B50 (33639248) │ │ │ │ +9F4DC Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F4DD Created OS 03 (3) 'Unix' │ │ │ │ +9F4DE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F4DF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F4E0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F4E2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F4E4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F4E8 CRC 3D741CF8 (1031019768) │ │ │ │ +9F4EC Compressed Size 00005187 (20871) │ │ │ │ +9F4F0 Uncompressed Size 0001FB6C (129900) │ │ │ │ +9F4F4 Filename Length 0015 (21) │ │ │ │ +9F4F6 Extra Length 0018 (24) │ │ │ │ +9F4F8 Comment Length 0000 (0) │ │ │ │ +9F4FA Disk Start 0000 (0) │ │ │ │ +9F4FC Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F4FE Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F502 Local Header Offset 0007C12C (508204) │ │ │ │ +9F506 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F506: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F51B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F51D Length 0005 (5) │ │ │ │ +9F51F Flags 01 (1) 'Modification' │ │ │ │ +9F520 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F524 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F526 Length 000B (11) │ │ │ │ +9F528 Version 01 (1) │ │ │ │ +9F529 UID Size 04 (4) │ │ │ │ +9F52A UID 00000000 (0) │ │ │ │ +9F52E GID Size 04 (4) │ │ │ │ +9F52F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F533 CENTRAL HEADER #71 02014B50 (33639248) │ │ │ │ +9F537 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F538 Created OS 03 (3) 'Unix' │ │ │ │ +9F539 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F53A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F53B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F53D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F53F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F543 CRC A67DB1F2 (2793255410) │ │ │ │ +9F547 Compressed Size 00001B06 (6918) │ │ │ │ +9F54B Uncompressed Size 000081CF (33231) │ │ │ │ +9F54F Filename Length 0019 (25) │ │ │ │ +9F551 Extra Length 0018 (24) │ │ │ │ +9F553 Comment Length 0000 (0) │ │ │ │ +9F555 Disk Start 0000 (0) │ │ │ │ +9F557 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F559 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F55D Local Header Offset 00081302 (529154) │ │ │ │ +9F561 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F561: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F57A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F57C Length 0005 (5) │ │ │ │ +9F57E Flags 01 (1) 'Modification' │ │ │ │ +9F57F Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F583 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F585 Length 000B (11) │ │ │ │ +9F587 Version 01 (1) │ │ │ │ +9F588 UID Size 04 (4) │ │ │ │ +9F589 UID 00000000 (0) │ │ │ │ +9F58D GID Size 04 (4) │ │ │ │ +9F58E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F592 CENTRAL HEADER #72 02014B50 (33639248) │ │ │ │ +9F596 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F597 Created OS 03 (3) 'Unix' │ │ │ │ +9F598 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F599 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F59A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F59C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F59E Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F5A2 CRC 1EDC4944 (517753156) │ │ │ │ +9F5A6 Compressed Size 00000D97 (3479) │ │ │ │ +9F5AA Uncompressed Size 00002E9F (11935) │ │ │ │ +9F5AE Filename Length 0018 (24) │ │ │ │ +9F5B0 Extra Length 0018 (24) │ │ │ │ +9F5B2 Comment Length 0000 (0) │ │ │ │ +9F5B4 Disk Start 0000 (0) │ │ │ │ +9F5B6 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F5B8 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F5BC Local Header Offset 00082E5B (536155) │ │ │ │ +9F5C0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F5C0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F5D8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F5DA Length 0005 (5) │ │ │ │ +9F5DC Flags 01 (1) 'Modification' │ │ │ │ +9F5DD Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F5E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F5E3 Length 000B (11) │ │ │ │ +9F5E5 Version 01 (1) │ │ │ │ +9F5E6 UID Size 04 (4) │ │ │ │ +9F5E7 UID 00000000 (0) │ │ │ │ +9F5EB GID Size 04 (4) │ │ │ │ +9F5EC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F5F0 CENTRAL HEADER #73 02014B50 (33639248) │ │ │ │ +9F5F4 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F5F5 Created OS 03 (3) 'Unix' │ │ │ │ +9F5F6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F5F7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F5F8 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F5FA Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F5FC Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F600 CRC B52BB549 (3039540553) │ │ │ │ +9F604 Compressed Size 000001E0 (480) │ │ │ │ +9F608 Uncompressed Size 00000323 (803) │ │ │ │ +9F60C Filename Length 0011 (17) │ │ │ │ +9F60E Extra Length 0018 (24) │ │ │ │ +9F610 Comment Length 0000 (0) │ │ │ │ +9F612 Disk Start 0000 (0) │ │ │ │ +9F614 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F616 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F61A Local Header Offset 00083C44 (539716) │ │ │ │ +9F61E Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F61E: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F62F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F631 Length 0005 (5) │ │ │ │ +9F633 Flags 01 (1) 'Modification' │ │ │ │ +9F634 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F638 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F63A Length 000B (11) │ │ │ │ +9F63C Version 01 (1) │ │ │ │ +9F63D UID Size 04 (4) │ │ │ │ +9F63E UID 00000000 (0) │ │ │ │ +9F642 GID Size 04 (4) │ │ │ │ +9F643 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F647 CENTRAL HEADER #74 02014B50 (33639248) │ │ │ │ +9F64B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F64C Created OS 03 (3) 'Unix' │ │ │ │ +9F64D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F64E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F64F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F651 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F653 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F657 CRC 2404DB02 (604297986) │ │ │ │ +9F65B Compressed Size 000006C2 (1730) │ │ │ │ +9F65F Uncompressed Size 00001439 (5177) │ │ │ │ +9F663 Filename Length 0019 (25) │ │ │ │ +9F665 Extra Length 0018 (24) │ │ │ │ +9F667 Comment Length 0000 (0) │ │ │ │ +9F669 Disk Start 0000 (0) │ │ │ │ +9F66B Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F66D Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F671 Local Header Offset 00083E6F (540271) │ │ │ │ +9F675 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F675: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F68E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F690 Length 0005 (5) │ │ │ │ +9F692 Flags 01 (1) 'Modification' │ │ │ │ +9F693 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F697 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F699 Length 000B (11) │ │ │ │ +9F69B Version 01 (1) │ │ │ │ +9F69C UID Size 04 (4) │ │ │ │ +9F69D UID 00000000 (0) │ │ │ │ +9F6A1 GID Size 04 (4) │ │ │ │ +9F6A2 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F6A6 CENTRAL HEADER #75 02014B50 (33639248) │ │ │ │ +9F6AA Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F6AB Created OS 03 (3) 'Unix' │ │ │ │ +9F6AC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F6AD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F6AE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F6B0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F6B2 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F6B6 CRC F4E0C7ED (4108371949) │ │ │ │ +9F6BA Compressed Size 00001B8B (7051) │ │ │ │ +9F6BE Uncompressed Size 00009F03 (40707) │ │ │ │ +9F6C2 Filename Length 0018 (24) │ │ │ │ +9F6C4 Extra Length 0018 (24) │ │ │ │ +9F6C6 Comment Length 0000 (0) │ │ │ │ +9F6C8 Disk Start 0000 (0) │ │ │ │ +9F6CA Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F6CC Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F6D0 Local Header Offset 00084584 (542084) │ │ │ │ +9F6D4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F6D4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F6EC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F6EE Length 0005 (5) │ │ │ │ +9F6F0 Flags 01 (1) 'Modification' │ │ │ │ +9F6F1 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F6F5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F6F7 Length 000B (11) │ │ │ │ +9F6F9 Version 01 (1) │ │ │ │ +9F6FA UID Size 04 (4) │ │ │ │ +9F6FB UID 00000000 (0) │ │ │ │ +9F6FF GID Size 04 (4) │ │ │ │ +9F700 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F704 CENTRAL HEADER #76 02014B50 (33639248) │ │ │ │ +9F708 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F709 Created OS 03 (3) 'Unix' │ │ │ │ +9F70A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F70B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F70C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F70E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F710 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F714 CRC CC3A73BF (3426382783) │ │ │ │ +9F718 Compressed Size 000016FA (5882) │ │ │ │ +9F71C Uncompressed Size 00008AB6 (35510) │ │ │ │ +9F720 Filename Length 0012 (18) │ │ │ │ +9F722 Extra Length 0018 (24) │ │ │ │ +9F724 Comment Length 0000 (0) │ │ │ │ +9F726 Disk Start 0000 (0) │ │ │ │ +9F728 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F72A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F72E Local Header Offset 00086161 (549217) │ │ │ │ +9F732 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F732: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F744 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F746 Length 0005 (5) │ │ │ │ +9F748 Flags 01 (1) 'Modification' │ │ │ │ +9F749 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F74D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F74F Length 000B (11) │ │ │ │ +9F751 Version 01 (1) │ │ │ │ +9F752 UID Size 04 (4) │ │ │ │ +9F753 UID 00000000 (0) │ │ │ │ +9F757 GID Size 04 (4) │ │ │ │ +9F758 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F75C CENTRAL HEADER #77 02014B50 (33639248) │ │ │ │ +9F760 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F761 Created OS 03 (3) 'Unix' │ │ │ │ +9F762 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F763 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F764 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F766 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F768 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F76C CRC 2F3E97D7 (792631255) │ │ │ │ +9F770 Compressed Size 00001E10 (7696) │ │ │ │ +9F774 Uncompressed Size 00008803 (34819) │ │ │ │ +9F778 Filename Length 0016 (22) │ │ │ │ +9F77A Extra Length 0018 (24) │ │ │ │ +9F77C Comment Length 0000 (0) │ │ │ │ +9F77E Disk Start 0000 (0) │ │ │ │ +9F780 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F782 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F786 Local Header Offset 000878A7 (555175) │ │ │ │ +9F78A Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F78A: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F7A0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F7A2 Length 0005 (5) │ │ │ │ +9F7A4 Flags 01 (1) 'Modification' │ │ │ │ +9F7A5 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F7A9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F7AB Length 000B (11) │ │ │ │ +9F7AD Version 01 (1) │ │ │ │ +9F7AE UID Size 04 (4) │ │ │ │ +9F7AF UID 00000000 (0) │ │ │ │ +9F7B3 GID Size 04 (4) │ │ │ │ +9F7B4 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F7B8 CENTRAL HEADER #78 02014B50 (33639248) │ │ │ │ +9F7BC Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F7BD Created OS 03 (3) 'Unix' │ │ │ │ +9F7BE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F7BF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F7C0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F7C2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F7C4 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F7C8 CRC 8DB9B56F (2377758063) │ │ │ │ +9F7CC Compressed Size 000029A6 (10662) │ │ │ │ +9F7D0 Uncompressed Size 0000D04F (53327) │ │ │ │ +9F7D4 Filename Length 001A (26) │ │ │ │ +9F7D6 Extra Length 0018 (24) │ │ │ │ +9F7D8 Comment Length 0000 (0) │ │ │ │ +9F7DA Disk Start 0000 (0) │ │ │ │ +9F7DC Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F7DE Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F7E2 Local Header Offset 00089707 (562951) │ │ │ │ +9F7E6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F7E6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F800 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F802 Length 0005 (5) │ │ │ │ +9F804 Flags 01 (1) 'Modification' │ │ │ │ +9F805 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F809 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F80B Length 000B (11) │ │ │ │ +9F80D Version 01 (1) │ │ │ │ +9F80E UID Size 04 (4) │ │ │ │ +9F80F UID 00000000 (0) │ │ │ │ +9F813 GID Size 04 (4) │ │ │ │ +9F814 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F818 CENTRAL HEADER #79 02014B50 (33639248) │ │ │ │ +9F81C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F81D Created OS 03 (3) 'Unix' │ │ │ │ +9F81E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F81F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F820 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F822 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F824 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F828 CRC 8DB18534 (2377221428) │ │ │ │ +9F82C Compressed Size 000009AC (2476) │ │ │ │ +9F830 Uncompressed Size 00001DB6 (7606) │ │ │ │ +9F834 Filename Length 0018 (24) │ │ │ │ +9F836 Extra Length 0018 (24) │ │ │ │ +9F838 Comment Length 0000 (0) │ │ │ │ +9F83A Disk Start 0000 (0) │ │ │ │ +9F83C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F83E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F842 Local Header Offset 0008C101 (573697) │ │ │ │ +9F846 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F846: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F85E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F860 Length 0005 (5) │ │ │ │ +9F862 Flags 01 (1) 'Modification' │ │ │ │ +9F863 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F867 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F869 Length 000B (11) │ │ │ │ +9F86B Version 01 (1) │ │ │ │ +9F86C UID Size 04 (4) │ │ │ │ +9F86D UID 00000000 (0) │ │ │ │ +9F871 GID Size 04 (4) │ │ │ │ +9F872 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F876 CENTRAL HEADER #80 02014B50 (33639248) │ │ │ │ +9F87A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F87B Created OS 03 (3) 'Unix' │ │ │ │ +9F87C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F87D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F87E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F880 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F882 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F886 CRC F5E2129F (4125233823) │ │ │ │ +9F88A Compressed Size 000016BC (5820) │ │ │ │ +9F88E Uncompressed Size 000016CD (5837) │ │ │ │ +9F892 Filename Length 0015 (21) │ │ │ │ +9F894 Extra Length 0018 (24) │ │ │ │ +9F896 Comment Length 0000 (0) │ │ │ │ +9F898 Disk Start 0000 (0) │ │ │ │ +9F89A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F89C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F8A0 Local Header Offset 0008CAFF (576255) │ │ │ │ +9F8A4 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F8A4: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F8B9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F8BB Length 0005 (5) │ │ │ │ +9F8BD Flags 01 (1) 'Modification' │ │ │ │ +9F8BE Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F8C2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F8C4 Length 000B (11) │ │ │ │ +9F8C6 Version 01 (1) │ │ │ │ +9F8C7 UID Size 04 (4) │ │ │ │ +9F8C8 UID 00000000 (0) │ │ │ │ +9F8CC GID Size 04 (4) │ │ │ │ +9F8CD GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F8D1 CENTRAL HEADER #81 02014B50 (33639248) │ │ │ │ +9F8D5 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F8D6 Created OS 03 (3) 'Unix' │ │ │ │ +9F8D7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F8D8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F8D9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F8DB Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F8DD Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F8E1 CRC F5E2129F (4125233823) │ │ │ │ +9F8E5 Compressed Size 000016BC (5820) │ │ │ │ +9F8E9 Uncompressed Size 000016CD (5837) │ │ │ │ +9F8ED Filename Length 001C (28) │ │ │ │ +9F8EF Extra Length 0018 (24) │ │ │ │ +9F8F1 Comment Length 0000 (0) │ │ │ │ +9F8F3 Disk Start 0000 (0) │ │ │ │ +9F8F5 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F8F7 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F8FB Local Header Offset 0008E20A (582154) │ │ │ │ +9F8FF Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F8FF: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F91B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F91D Length 0005 (5) │ │ │ │ +9F91F Flags 01 (1) 'Modification' │ │ │ │ +9F920 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F924 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F926 Length 000B (11) │ │ │ │ +9F928 Version 01 (1) │ │ │ │ +9F929 UID Size 04 (4) │ │ │ │ +9F92A UID 00000000 (0) │ │ │ │ +9F92E GID Size 04 (4) │ │ │ │ +9F92F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F933 CENTRAL HEADER #82 02014B50 (33639248) │ │ │ │ +9F937 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F938 Created OS 03 (3) 'Unix' │ │ │ │ +9F939 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F93A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F93B General Purpose Flag 0000 (0) │ │ │ │ +9F93D Compression Method 0000 (0) 'Stored' │ │ │ │ +9F93F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F943 CRC FC95F24B (4237685323) │ │ │ │ +9F947 Compressed Size 00001B84 (7044) │ │ │ │ +9F94B Uncompressed Size 00001B84 (7044) │ │ │ │ +9F94F Filename Length 0016 (22) │ │ │ │ +9F951 Extra Length 0018 (24) │ │ │ │ +9F953 Comment Length 0000 (0) │ │ │ │ +9F955 Disk Start 0000 (0) │ │ │ │ +9F957 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F959 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F95D Local Header Offset 0008F91C (588060) │ │ │ │ +9F961 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F961: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F977 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F979 Length 0005 (5) │ │ │ │ +9F97B Flags 01 (1) 'Modification' │ │ │ │ +9F97C Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F980 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F982 Length 000B (11) │ │ │ │ +9F984 Version 01 (1) │ │ │ │ +9F985 UID Size 04 (4) │ │ │ │ +9F986 UID 00000000 (0) │ │ │ │ +9F98A GID Size 04 (4) │ │ │ │ +9F98B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F98F CENTRAL HEADER #83 02014B50 (33639248) │ │ │ │ +9F993 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F994 Created OS 03 (3) 'Unix' │ │ │ │ +9F995 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F996 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F997 General Purpose Flag 0000 (0) │ │ │ │ +9F999 Compression Method 0000 (0) 'Stored' │ │ │ │ +9F99B Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F99F CRC D0D71F86 (3503759238) │ │ │ │ +9F9A3 Compressed Size 00000B7B (2939) │ │ │ │ +9F9A7 Uncompressed Size 00000B7B (2939) │ │ │ │ +9F9AB Filename Length 0016 (22) │ │ │ │ +9F9AD Extra Length 0018 (24) │ │ │ │ +9F9AF Comment Length 0000 (0) │ │ │ │ +9F9B1 Disk Start 0000 (0) │ │ │ │ +9F9B3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F9B5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F9B9 Local Header Offset 000914F0 (595184) │ │ │ │ +9F9BD Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F9BD: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F9D3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F9D5 Length 0005 (5) │ │ │ │ +9F9D7 Flags 01 (1) 'Modification' │ │ │ │ +9F9D8 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9F9DC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F9DE Length 000B (11) │ │ │ │ +9F9E0 Version 01 (1) │ │ │ │ +9F9E1 UID Size 04 (4) │ │ │ │ +9F9E2 UID 00000000 (0) │ │ │ │ +9F9E6 GID Size 04 (4) │ │ │ │ +9F9E7 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F9EB CENTRAL HEADER #84 02014B50 (33639248) │ │ │ │ +9F9EF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F9F0 Created OS 03 (3) 'Unix' │ │ │ │ +9F9F1 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F9F2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F9F3 General Purpose Flag 0000 (0) │ │ │ │ +9F9F5 Compression Method 0000 (0) 'Stored' │ │ │ │ +9F9F7 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9F9FB CRC FFF9C4D2 (4294558930) │ │ │ │ +9F9FF Compressed Size 0000138F (5007) │ │ │ │ +9FA03 Uncompressed Size 0000138F (5007) │ │ │ │ +9FA07 Filename Length 0016 (22) │ │ │ │ +9FA09 Extra Length 0018 (24) │ │ │ │ +9FA0B Comment Length 0000 (0) │ │ │ │ +9FA0D Disk Start 0000 (0) │ │ │ │ +9FA0F Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FA11 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FA15 Local Header Offset 000920BB (598203) │ │ │ │ +9FA19 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FA19: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FA2F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FA31 Length 0005 (5) │ │ │ │ +9FA33 Flags 01 (1) 'Modification' │ │ │ │ +9FA34 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FA38 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FA3A Length 000B (11) │ │ │ │ +9FA3C Version 01 (1) │ │ │ │ +9FA3D UID Size 04 (4) │ │ │ │ +9FA3E UID 00000000 (0) │ │ │ │ +9FA42 GID Size 04 (4) │ │ │ │ +9FA43 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FA47 CENTRAL HEADER #85 02014B50 (33639248) │ │ │ │ +9FA4B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FA4C Created OS 03 (3) 'Unix' │ │ │ │ +9FA4D Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FA4E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FA4F General Purpose Flag 0000 (0) │ │ │ │ +9FA51 Compression Method 0000 (0) 'Stored' │ │ │ │ +9FA53 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FA57 CRC A1037E8E (2701360782) │ │ │ │ +9FA5B Compressed Size 0000145E (5214) │ │ │ │ +9FA5F Uncompressed Size 0000145E (5214) │ │ │ │ +9FA63 Filename Length 0016 (22) │ │ │ │ +9FA65 Extra Length 0018 (24) │ │ │ │ +9FA67 Comment Length 0000 (0) │ │ │ │ +9FA69 Disk Start 0000 (0) │ │ │ │ +9FA6B Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FA6D Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FA71 Local Header Offset 0009349A (603290) │ │ │ │ +9FA75 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FA75: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FA8B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FA8D Length 0005 (5) │ │ │ │ +9FA8F Flags 01 (1) 'Modification' │ │ │ │ +9FA90 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FA94 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FA96 Length 000B (11) │ │ │ │ +9FA98 Version 01 (1) │ │ │ │ +9FA99 UID Size 04 (4) │ │ │ │ +9FA9A UID 00000000 (0) │ │ │ │ +9FA9E GID Size 04 (4) │ │ │ │ +9FA9F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FAA3 CENTRAL HEADER #86 02014B50 (33639248) │ │ │ │ +9FAA7 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FAA8 Created OS 03 (3) 'Unix' │ │ │ │ +9FAA9 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FAAA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FAAB General Purpose Flag 0000 (0) │ │ │ │ +9FAAD Compression Method 0000 (0) 'Stored' │ │ │ │ +9FAAF Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FAB3 CRC 5E9E64F1 (1587438833) │ │ │ │ +9FAB7 Compressed Size 000008EC (2284) │ │ │ │ +9FABB Uncompressed Size 000008EC (2284) │ │ │ │ +9FABF Filename Length 0016 (22) │ │ │ │ +9FAC1 Extra Length 0018 (24) │ │ │ │ +9FAC3 Comment Length 0000 (0) │ │ │ │ +9FAC5 Disk Start 0000 (0) │ │ │ │ +9FAC7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FAC9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FACD Local Header Offset 00094948 (608584) │ │ │ │ +9FAD1 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FAD1: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FAE7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FAE9 Length 0005 (5) │ │ │ │ +9FAEB Flags 01 (1) 'Modification' │ │ │ │ +9FAEC Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FAF0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FAF2 Length 000B (11) │ │ │ │ +9FAF4 Version 01 (1) │ │ │ │ +9FAF5 UID Size 04 (4) │ │ │ │ +9FAF6 UID 00000000 (0) │ │ │ │ +9FAFA GID Size 04 (4) │ │ │ │ +9FAFB GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FAFF CENTRAL HEADER #87 02014B50 (33639248) │ │ │ │ +9FB03 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FB04 Created OS 03 (3) 'Unix' │ │ │ │ +9FB05 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FB06 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FB07 General Purpose Flag 0000 (0) │ │ │ │ +9FB09 Compression Method 0000 (0) 'Stored' │ │ │ │ +9FB0B Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FB0F CRC 42E340AB (1122189483) │ │ │ │ +9FB13 Compressed Size 00001F2E (7982) │ │ │ │ +9FB17 Uncompressed Size 00001F2E (7982) │ │ │ │ +9FB1B Filename Length 001E (30) │ │ │ │ +9FB1D Extra Length 0018 (24) │ │ │ │ +9FB1F Comment Length 0000 (0) │ │ │ │ +9FB21 Disk Start 0000 (0) │ │ │ │ +9FB23 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FB25 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FB29 Local Header Offset 00095284 (610948) │ │ │ │ +9FB2D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FB2D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FB4B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FB4D Length 0005 (5) │ │ │ │ +9FB4F Flags 01 (1) 'Modification' │ │ │ │ +9FB50 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FB54 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FB56 Length 000B (11) │ │ │ │ +9FB58 Version 01 (1) │ │ │ │ +9FB59 UID Size 04 (4) │ │ │ │ +9FB5A UID 00000000 (0) │ │ │ │ +9FB5E GID Size 04 (4) │ │ │ │ +9FB5F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FB63 CENTRAL HEADER #88 02014B50 (33639248) │ │ │ │ +9FB67 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FB68 Created OS 03 (3) 'Unix' │ │ │ │ +9FB69 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FB6A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FB6B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FB6D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FB6F Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FB73 CRC 529CE27A (1386013306) │ │ │ │ +9FB77 Compressed Size 00003D6F (15727) │ │ │ │ +9FB7B Uncompressed Size 00016649 (91721) │ │ │ │ +9FB7F Filename Length 001A (26) │ │ │ │ +9FB81 Extra Length 0018 (24) │ │ │ │ +9FB83 Comment Length 0000 (0) │ │ │ │ +9FB85 Disk Start 0000 (0) │ │ │ │ +9FB87 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FB89 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FB8D Local Header Offset 0009720A (619018) │ │ │ │ +9FB91 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FB91: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FBAB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FBAD Length 0005 (5) │ │ │ │ +9FBAF Flags 01 (1) 'Modification' │ │ │ │ +9FBB0 Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FBB4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FBB6 Length 000B (11) │ │ │ │ +9FBB8 Version 01 (1) │ │ │ │ +9FBB9 UID Size 04 (4) │ │ │ │ +9FBBA UID 00000000 (0) │ │ │ │ +9FBBE GID Size 04 (4) │ │ │ │ +9FBBF GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FBC3 CENTRAL HEADER #89 02014B50 (33639248) │ │ │ │ +9FBC7 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FBC8 Created OS 03 (3) 'Unix' │ │ │ │ +9FBC9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FBCA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FBCB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FBCD Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FBCF Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FBD3 CRC BD597FB3 (3176759219) │ │ │ │ +9FBD7 Compressed Size 000029C0 (10688) │ │ │ │ +9FBDB Uncompressed Size 0000BA6A (47722) │ │ │ │ +9FBDF Filename Length 0018 (24) │ │ │ │ +9FBE1 Extra Length 0018 (24) │ │ │ │ +9FBE3 Comment Length 0000 (0) │ │ │ │ +9FBE5 Disk Start 0000 (0) │ │ │ │ +9FBE7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FBE9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FBED Local Header Offset 0009AFCD (634829) │ │ │ │ +9FBF1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FBF1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FC09 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FC0B Length 0005 (5) │ │ │ │ +9FC0D Flags 01 (1) 'Modification' │ │ │ │ +9FC0E Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FC12 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FC14 Length 000B (11) │ │ │ │ +9FC16 Version 01 (1) │ │ │ │ +9FC17 UID Size 04 (4) │ │ │ │ +9FC18 UID 00000000 (0) │ │ │ │ +9FC1C GID Size 04 (4) │ │ │ │ +9FC1D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FC21 CENTRAL HEADER #90 02014B50 (33639248) │ │ │ │ +9FC25 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FC26 Created OS 03 (3) 'Unix' │ │ │ │ +9FC27 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FC28 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FC29 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FC2B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FC2D Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FC31 CRC DCB3B516 (3702764822) │ │ │ │ +9FC35 Compressed Size 000000AE (174) │ │ │ │ +9FC39 Uncompressed Size 000000FC (252) │ │ │ │ +9FC3D Filename Length 0016 (22) │ │ │ │ +9FC3F Extra Length 0018 (24) │ │ │ │ +9FC41 Comment Length 0000 (0) │ │ │ │ +9FC43 Disk Start 0000 (0) │ │ │ │ +9FC45 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FC47 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FC4B Local Header Offset 0009D9DF (645599) │ │ │ │ +9FC4F Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FC4F: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FC65 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FC67 Length 0005 (5) │ │ │ │ +9FC69 Flags 01 (1) 'Modification' │ │ │ │ +9FC6A Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FC6E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FC70 Length 000B (11) │ │ │ │ +9FC72 Version 01 (1) │ │ │ │ +9FC73 UID Size 04 (4) │ │ │ │ +9FC74 UID 00000000 (0) │ │ │ │ +9FC78 GID Size 04 (4) │ │ │ │ +9FC79 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FC7D CENTRAL HEADER #91 02014B50 (33639248) │ │ │ │ +9FC81 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FC82 Created OS 03 (3) 'Unix' │ │ │ │ +9FC83 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FC84 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FC85 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FC87 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FC89 Modification Time 5AFAAB94 (1526377364) 'Sat Jul 26 21:28:40 2025' │ │ │ │ +9FC8D CRC 58439733 (1480824627) │ │ │ │ +9FC91 Compressed Size 00000077 (119) │ │ │ │ +9FC95 Uncompressed Size 000000A2 (162) │ │ │ │ +9FC99 Filename Length 002D (45) │ │ │ │ +9FC9B Extra Length 0018 (24) │ │ │ │ +9FC9D Comment Length 0000 (0) │ │ │ │ +9FC9F Disk Start 0000 (0) │ │ │ │ +9FCA1 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FCA3 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FCA7 Local Header Offset 0009DADD (645853) │ │ │ │ +9FCAB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FCAB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FCD8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FCDA Length 0005 (5) │ │ │ │ +9FCDC Flags 01 (1) 'Modification' │ │ │ │ +9FCDD Modification Time 68854889 (1753565321) 'Sat Jul 26 21:28:41 2025' │ │ │ │ +9FCE1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FCE3 Length 000B (11) │ │ │ │ +9FCE5 Version 01 (1) │ │ │ │ +9FCE6 UID Size 04 (4) │ │ │ │ +9FCE7 UID 00000000 (0) │ │ │ │ +9FCEB GID Size 04 (4) │ │ │ │ +9FCEC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FCF0 END CENTRAL HEADER 06054B50 (101010256) │ │ │ │ +9FCF4 Number of this disk 0000 (0) │ │ │ │ +9FCF6 Central Dir Disk no 0000 (0) │ │ │ │ +9FCF8 Entries in this disk 005B (91) │ │ │ │ +9FCFA Total Entries 005B (91) │ │ │ │ +9FCFC Size of Central Dir 00002135 (8501) │ │ │ │ +9FD00 Offset to Central Dir 0009DBBB (646075) │ │ │ │ +9FD04 Comment Length 0000 (0) │ │ │ │ # │ │ │ │ # Warning Count: 182 │ │ │ │ # │ │ │ │ # Done │ │ │ ├── filetype from file(1) │ │ │ │ @@ -1 +1 @@ │ │ │ │ -Zip archive data, made by v6.1 UNIX, extract using at least v1.0, last modified Jul 08 2025 08:11:06, uncompressed size 20, method=store │ │ │ │ +Zip archive data, made by v6.1 UNIX, extract using at least v1.0, last modified Jul 26 2025 21:28:40, uncompressed size 20, method=store │ │ │ ├── OEBPS/typespec.xhtml │ │ │ │ @@ -143,122 +143,122 @@ │ │ │ │ and optional (=>) association types. If an association type is mandatory, an │ │ │ │ association with that type needs to be present. In the case of an optional │ │ │ │ association type it is not required for the key type to be present.

The notation #{} specifies the singleton type for the empty map. Note that │ │ │ │ this notation is not a shorthand for the map/0 type.

For convenience, the following types are also built-in. They can be thought as │ │ │ │ predefined aliases for the type unions also shown in the table.

Built-in typeDefined as
term/0any/0
binary/0<<_:_*8>>
nonempty_binary/0<<_:8, _:_*8>>
bitstring/0<<_:_*1>>
nonempty_bitstring/0<<_:1, _:_*1>>
boolean/0'false' | 'true'
byte/00..255
char/00..16#10ffff
nil/0[]
number/0integer/0 | float/0
list/0[any()]
maybe_improper_list/0maybe_improper_list(any(), any())
nonempty_list/0nonempty_list(any())
string/0[char()]
nonempty_string/0[char(),...]
iodata/0iolist() | binary()
iolist/0maybe_improper_list(byte() | binary() | iolist(), binary() | [])
map/0#{any() => any()}
function/0fun()
module/0atom/0
mfa/0{module(),atom(),arity()}
arity/00..255
identifier/0pid() | port() | reference()
node/0atom/0
timeout/0'infinity' | non_neg_integer()
no_return/0none/0

Table: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as │ │ │ │ defined below, though strictly their "type definition" is not valid syntax │ │ │ │ according to the type language defined above.

Built-in typeCan be thought defined by the syntax
non_neg_integer/00..
pos_integer/01..
neg_integer/0..-1

Table: Additional built-in types

Note

The following built-in list types also exist, but they are expected to be │ │ │ │ -rarely used. Hence, they have long names:

nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
│ │ │ │ -nonempty_improper_list(Type1, Type2)
│ │ │ │ -nonempty_maybe_improper_list(Type1, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, record notation is allowed to be used. Records are │ │ │ │ -shorthands for the corresponding tuples:

Record :: #Erlang_Atom{}
│ │ │ │ -        | #Erlang_Atom{Fields}

Records are extended to possibly contain type information. This is described in │ │ │ │ +rarely used. Hence, they have long names:

nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
│ │ │ │ +nonempty_improper_list(Type1, Type2)
│ │ │ │ +nonempty_maybe_improper_list(Type1, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, record notation is allowed to be used. Records are │ │ │ │ +shorthands for the corresponding tuples:

Record :: #Erlang_Atom{}
│ │ │ │ +        | #Erlang_Atom{Fields}

Records are extended to possibly contain type information. This is described in │ │ │ │ Type Information in Record Declarations.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Redefining built-in types │ │ │ │

│ │ │ │

Change

Starting from Erlang/OTP 26, it is permitted to define a type having the same │ │ │ │ name as a built-in type.

It is recommended to avoid deliberately reusing built-in names because it can be │ │ │ │ confusing. However, when an Erlang/OTP release introduces a new type, code that │ │ │ │ happened to define its own type having the same name will continue to work.

As an example, imagine that the Erlang/OTP 42 release introduces a new type │ │ │ │ -gadget() defined like this:

-type gadget() :: {'gadget', reference()}.

Further imagine that some code has its own (different) definition of gadget(), │ │ │ │ -for example:

-type gadget() :: #{}.

Since redefinitions are allowed, the code will still compile (but with a │ │ │ │ +gadget() defined like this:

-type gadget() :: {'gadget', reference()}.

Further imagine that some code has its own (different) definition of gadget(), │ │ │ │ +for example:

-type gadget() :: #{}.

Since redefinitions are allowed, the code will still compile (but with a │ │ │ │ warning), and Dialyzer will not emit any additional warnings.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Declarations of User-Defined Types │ │ │ │

│ │ │ │

As seen, the basic syntax of a type is an atom followed by closed parentheses. │ │ │ │ New types are declared using -type and -opaque attributes as in the │ │ │ │ -following:

-type my_struct_type() :: Type.
│ │ │ │ --opaque my_opaq_type() :: Type.

The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ │ +following:

-type my_struct_type() :: Type.
│ │ │ │ +-opaque my_opaq_type() :: Type.

The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ │ type as defined in the previous section. A current restriction is that Type │ │ │ │ can contain only predefined types, or user-defined types which are either of the │ │ │ │ following:

For module-local types, the restriction that their definition exists in the │ │ │ │ module is enforced by the compiler and results in a compilation error. (A │ │ │ │ similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between │ │ │ │ the parentheses. The syntax of type variables is the same as Erlang variables, │ │ │ │ that is, starts with an upper-case letter. These variables is to │ │ │ │ -appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types to declare that other modules are allowed to │ │ │ │ -refer to them as remote types. This declaration has the following form:

-export_type([T1/A1, ..., Tk/Ak]).

Here the Tis are atoms (the name of the type) and the Ais are their arguments.

Example:

-export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module 'mod', you can refer to │ │ │ │ -them from other modules using remote type expressions like the following:

mod:my_struct_type()
│ │ │ │ -mod:orddict(atom(), term())

It is not allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not │ │ │ │ +appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types to declare that other modules are allowed to │ │ │ │ +refer to them as remote types. This declaration has the following form:

-export_type([T1/A1, ..., Tk/Ak]).

Here the Tis are atoms (the name of the type) and the Ais are their arguments.

Example:

-export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module 'mod', you can refer to │ │ │ │ +them from other modules using remote type expressions like the following:

mod:my_struct_type()
│ │ │ │ +mod:orddict(atom(), term())

It is not allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not │ │ │ │ supposed to be visible from outside of their defining module. That is, only the │ │ │ │ module defining them is allowed to depend on their term structure. Consequently, │ │ │ │ such types do not make much sense as module local - module local types are not │ │ │ │ accessible by other modules anyway - and is always to be exported.

Read more on Opaques

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Information in Record Declarations │ │ │ │

│ │ │ │

The types of record fields can be specified in the declaration of the record. │ │ │ │ -The syntax for this is as follows:

-record(rec, {field1 :: Type1, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the │ │ │ │ -previous example is a shorthand for the following:

-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after │ │ │ │ -the initialization, as follows:

-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

The initial values for fields are to be compatible with (that is, a member of) │ │ │ │ +The syntax for this is as follows:

-record(rec, {field1 :: Type1, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the │ │ │ │ +previous example is a shorthand for the following:

-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after │ │ │ │ +the initialization, as follows:

-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

The initial values for fields are to be compatible with (that is, a member of) │ │ │ │ the corresponding types. This is checked by the compiler and results in a │ │ │ │ compilation error if a violation is detected.

Change

Before Erlang/OTP 19, for fields without initial values, the singleton type │ │ │ │ 'undefined' was added to all declared types. In other words, the following │ │ │ │ -two record declarations had identical effects:

-record(rec, {f1 = 42 :: integer(),
│ │ │ │ -             f2      :: float(),
│ │ │ │ -             f3      :: 'a' | 'b'}).
│ │ │ │ +two record declarations had identical effects:

-record(rec, {f1 = 42 :: integer(),
│ │ │ │ +             f2      :: float(),
│ │ │ │ +             f3      :: 'a' | 'b'}).
│ │ │ │  
│ │ │ │ --record(rec, {f1 = 42 :: integer(),
│ │ │ │ -              f2      :: 'undefined' | float(),
│ │ │ │ -              f3      :: 'undefined' | 'a' | 'b'}).

This is no longer the case. If you require 'undefined' in your record field │ │ │ │ +-record(rec, {f1 = 42 :: integer(), │ │ │ │ + f2 :: 'undefined' | float(), │ │ │ │ + f3 :: 'undefined' | 'a' | 'b'}).

This is no longer the case. If you require 'undefined' in your record field │ │ │ │ type, you must explicitly add it to the typespec, as in the 2nd example.

Any record, containing type information or not, once defined, can be used as a │ │ │ │ type using the following syntax:

#rec{}

In addition, the record fields can be further specified when using a record type │ │ │ │ by adding type information about the field as follows:

#rec{some_field :: Type}

Any unspecified fields are assumed to have the type in the original record │ │ │ │ declaration.

Note

When records are used to create patterns for ETS and Mnesia match functions, │ │ │ │ -Dialyzer may need some help not to emit bad warnings. For example:

-type height() :: pos_integer().
│ │ │ │ --record(person, {name :: string(), height :: height()}).
│ │ │ │ +Dialyzer may need some help not to emit bad warnings. For example:

-type height() :: pos_integer().
│ │ │ │ +-record(person, {name :: string(), height :: height()}).
│ │ │ │  
│ │ │ │ -lookup(Name, Tab) ->
│ │ │ │ -    ets:match_object(Tab, #person{name = Name, _ = '_'}).

Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ │ +lookup(Name, Tab) -> │ │ │ │ + ets:match_object(Tab, #person{name = Name, _ = '_'}).

Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ │ height.

The recommended way of dealing with this is to declare the smallest record │ │ │ │ field types to accommodate all your needs, and then create refinements as │ │ │ │ -needed. The modified example:

-record(person, {name :: string(), height :: height() | '_'}).
│ │ │ │ +needed. The modified example:

-record(person, {name :: string(), height :: height() | '_'}).
│ │ │ │  
│ │ │ │ --type person() :: #person{height :: height()}.

In specifications and type declarations the type person() is to be preferred │ │ │ │ +-type person() :: #person{height :: height()}.

In specifications and type declarations the type person() is to be preferred │ │ │ │ before #person{}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Specifications for Functions │ │ │ │

│ │ │ │

A specification (or contract) for a function is given using the -spec │ │ │ │ attribute. The general format is as follows:

-spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.

An implementation of the function with the same name Function must exist in │ │ │ │ the current module, and the arity of the function must match the number of │ │ │ │ arguments, otherwise the compilation fails.

The following longer format with module name is also valid as long as Module │ │ │ │ is the name of the current module. This can be useful for documentation │ │ │ │ purposes.

-spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.

A function specification can be overloaded. That is, it can have several types, │ │ │ │ -separated by a semicolon (;). For example:

-spec foo(T1, T2) -> T3;
│ │ │ │ -         (T4, T5) -> T6.

A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ │ +separated by a semicolon (;). For example:

-spec foo(T1, T2) -> T3;
│ │ │ │ +         (T4, T5) -> T6.

A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ │ the domains of the argument types cannot overlap. For example, the following │ │ │ │ -specification results in a warning:

-spec foo(pos_integer()) -> pos_integer();
│ │ │ │ -         (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input │ │ │ │ +specification results in a warning:

-spec foo(pos_integer()) -> pos_integer();
│ │ │ │ +         (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input │ │ │ │ and output arguments of a function. For example, the following specification │ │ │ │ defines the type of a polymorphic identity function:

-spec id(X) -> X.

Notice that the above specification does not restrict the input and output type │ │ │ │ in any way. These types can be constrained by guard-like subtype constraints and │ │ │ │ -provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ │ +provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ │ constraint that can be used in the when part of a -spec attribute.

Note

The above function specification uses multiple occurrences of the same type │ │ │ │ variable. That provides more type information than the following function │ │ │ │ -specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns │ │ │ │ +specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns │ │ │ │ some tuple. The specification with the X type variable specifies that the │ │ │ │ function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specifications to choose │ │ │ │ whether to take this extra information into account or not.

The scope of a :: constraint is the (...) -> RetType specification after │ │ │ │ which it appears. To avoid confusion, it is suggested that different variables │ │ │ │ are used in different constituents of an overloaded contract, as shown in the │ │ │ │ -following example:

-spec foo({X, integer()}) -> X when X :: atom();
│ │ │ │ -         ([Y]) -> Y when Y :: number().

Some functions in Erlang are not meant to return; either because they define │ │ │ │ +following example:

-spec foo({X, integer()}) -> X when X :: atom();
│ │ │ │ +         ([Y]) -> Y when Y :: number().

Some functions in Erlang are not meant to return; either because they define │ │ │ │ servers or because they are used to throw exceptions, as in the following │ │ │ │ -function:

my_error(Err) -> throw({error, Err}).

For such functions, it is recommended to use the special no_return/0 type │ │ │ │ +function:

my_error(Err) -> throw({error, Err}).

For such functions, it is recommended to use the special no_return/0 type │ │ │ │ for their "return", through a contract of the following form:

-spec my_error(term()) -> no_return().

Note

Erlang uses the shorthand version _ as an anonymous type variable equivalent │ │ │ │ to term/0 or any/0. For example, the following function

-spec Function(string(), _) -> string().

is equivalent to:

-spec Function(string(), any()) -> string().
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/tablesdatabases.xhtml │ │ │ │ @@ -51,73 +51,73 @@ │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Element │ │ │ │ │ │ │ │

The delete operation is considered successful if the element was not present │ │ │ │ in the table. Hence all attempts to check that the element is present in the │ │ │ │ Ets/Mnesia table before deletion are unnecessary. Here follows an example for │ │ │ │ -Ets tables:

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
│ │ │ │ -    [] ->
│ │ │ │ +Ets tables:

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
│ │ │ │ +    [] ->
│ │ │ │          ok;
│ │ │ │ -    [_|_] ->
│ │ │ │ -        ets:delete(Tab, Key)
│ │ │ │ +    [_|_] ->
│ │ │ │ +        ets:delete(Tab, Key)
│ │ │ │  end,

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fetching Data │ │ │ │

│ │ │ │

Do not fetch data that you already have.

Consider that you have a module that handles the abstract data type Person. │ │ │ │ You export the interface function print_person/1, which uses the internal │ │ │ │ functions print_name/1, print_age/1, and print_occupation/1.

Note

If the function print_name/1, and so on, had been interface functions, the │ │ │ │ situation would have been different, as you do not want the user of the │ │ │ │ interface to know about the internal data representation.

DO

%%% Interface function
│ │ │ │ -print_person(PersonId) ->
│ │ │ │ +print_person(PersonId) ->
│ │ │ │      %% Look up the person in the named table person,
│ │ │ │ -    case ets:lookup(person, PersonId) of
│ │ │ │ -        [Person] ->
│ │ │ │ -            print_name(Person),
│ │ │ │ -            print_age(Person),
│ │ │ │ -            print_occupation(Person);
│ │ │ │ -        [] ->
│ │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │ +    case ets:lookup(person, PersonId) of
│ │ │ │ +        [Person] ->
│ │ │ │ +            print_name(Person),
│ │ │ │ +            print_age(Person),
│ │ │ │ +            print_occupation(Person);
│ │ │ │ +        [] ->
│ │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %%% Internal functions
│ │ │ │ -print_name(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │ +print_name(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │  
│ │ │ │ -print_age(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │ +print_age(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │  
│ │ │ │ -print_occupation(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
│ │ │ │ -print_person(PersonId) ->
│ │ │ │ +print_occupation(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
│ │ │ │ +print_person(PersonId) ->
│ │ │ │      %% Look up the person in the named table person,
│ │ │ │ -    case ets:lookup(person, PersonId) of
│ │ │ │ -        [Person] ->
│ │ │ │ -            print_name(PersonID),
│ │ │ │ -            print_age(PersonID),
│ │ │ │ -            print_occupation(PersonID);
│ │ │ │ -        [] ->
│ │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │ +    case ets:lookup(person, PersonId) of
│ │ │ │ +        [Person] ->
│ │ │ │ +            print_name(PersonID),
│ │ │ │ +            print_age(PersonID),
│ │ │ │ +            print_occupation(PersonID);
│ │ │ │ +        [] ->
│ │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %%% Internal functions
│ │ │ │ -print_name(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │ -
│ │ │ │ -print_age(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │ -
│ │ │ │ -print_occupation(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

│ │ │ │ +print_name(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.name]). │ │ │ │ + │ │ │ │ +print_age(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.age]). │ │ │ │ + │ │ │ │ +print_occupation(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.occupation]).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Non-Persistent Database Storage │ │ │ │

│ │ │ │

For non-persistent database storage, prefer Ets tables over Mnesia │ │ │ │ local_content tables. Even the Mnesia dirty_write operations carry a fixed │ │ │ │ @@ -131,38 +131,38 @@ │ │ │ │ │ │ │ │

Assuming an Ets table that uses idno as key and contains the following:

[#person{idno = 1, name = "Adam",  age = 31, occupation = "mailman"},
│ │ │ │   #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
│ │ │ │   #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
│ │ │ │   #person{idno = 4, name = "Carl",  age = 25, occupation = "mailman"}]

If you must return all data stored in the Ets table, you can use │ │ │ │ ets:tab2list/1. However, usually you are only interested in a subset of the │ │ │ │ information in which case ets:tab2list/1 is expensive. If you only want to │ │ │ │ -extract one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +extract one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name='_',
│ │ │ │                            age='$1',
│ │ │ │ -                          occupation = '_'},
│ │ │ │ -                [],
│ │ │ │ -                ['$1']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan", then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +                          occupation = '_'},
│ │ │ │ +                [],
│ │ │ │ +                ['$1']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan", then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name="Bryan",
│ │ │ │                            age='$1',
│ │ │ │ -                          occupation = '_'},
│ │ │ │ -                [],
│ │ │ │ -                ['$1']}])

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:foldl(fun(X, Acc) -> case X#person.name of
│ │ │ │ +                          occupation = '_'},
│ │ │ │ +                [],
│ │ │ │ +                ['$1']}])

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:foldl(fun(X, Acc) -> case X#person.name of
│ │ │ │                                  "Bryan" ->
│ │ │ │ -                                    [X#person.age|Acc];
│ │ │ │ +                                    [X#person.age|Acc];
│ │ │ │                                   _ ->
│ │ │ │                                       Acc
│ │ │ │                             end
│ │ │ │ -             end, [], TabList)

If you need all information stored in the Ets table about persons named "Bryan", │ │ │ │ -then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +             end, [], TabList)

If you need all information stored in the Ets table about persons named "Bryan", │ │ │ │ +then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name="Bryan",
│ │ │ │                            age='_',
│ │ │ │ -                          occupation = '_'}, [], ['$_']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

│ │ │ │ + occupation = '_'}, [], ['$_']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ordered_set Tables │ │ │ │

│ │ │ │

If the data in the table is to be accessed so that the order of the keys in the │ │ │ │ table is significant, the table type ordered_set can be used instead of the │ │ │ │ @@ -198,20 +198,20 @@ │ │ │ │ Clearly, the second table would have to be kept consistent with the master │ │ │ │ table. Mnesia can do this for you, but a home-brew index table can be very │ │ │ │ efficient compared to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as │ │ │ │ keys would appear more than once) and can have the following contents:

[#index_entry{name="Adam", idno=1},
│ │ │ │   #index_entry{name="Bryan", idno=2},
│ │ │ │   #index_entry{name="Bryan", idno=3},
│ │ │ │   #index_entry{name="Carl", idno=4}]

Given this index table, a lookup of the age fields for all persons named │ │ │ │ -"Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
│ │ │ │ -lists:map(fun(#index_entry{idno = ID}) ->
│ │ │ │ -                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
│ │ │ │ +"Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
│ │ │ │ +lists:map(fun(#index_entry{idno = ID}) ->
│ │ │ │ +                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
│ │ │ │                   Age
│ │ │ │            end,
│ │ │ │ -          MatchingIDs),

Notice that this code does not use ets:match/2, but instead uses the │ │ │ │ + MatchingIDs),

Notice that this code does not use ets:match/2, but instead uses the │ │ │ │ ets:lookup/2 call. The lists:map/2 call is only used to traverse the idnos │ │ │ │ matching the name "Bryan" in the table; thus the number of lookups in the master │ │ │ │ table is minimized.

Keeping an index table introduces some overhead when inserting records in the │ │ │ │ table. The number of operations gained from the table must therefore be compared │ │ │ │ against the number of operations inserting objects in the table. However, notice │ │ │ │ that the gain is significant when the key can be used to lookup elements.

│ │ │ │ │ │ │ │ @@ -226,47 +226,47 @@ │ │ │ │ Secondary Index │ │ │ │

│ │ │ │

If you frequently do lookups on a field that is not the key of the table, you │ │ │ │ lose performance using mnesia:select() or │ │ │ │ mnesia:match_object() as these function traverse │ │ │ │ the whole table. Instead, you can create a secondary index and use │ │ │ │ mnesia:index_read/3 to get faster access at the expense of using more │ │ │ │ -memory.

Example:

-record(person, {idno, name, age, occupation}).
│ │ │ │ +memory.

Example:

-record(person, {idno, name, age, occupation}).
│ │ │ │          ...
│ │ │ │ -{atomic, ok} =
│ │ │ │ -mnesia:create_table(person, [{index,[#person.age]},
│ │ │ │ -                              {attributes,
│ │ │ │ -                                    record_info(fields, person)}]),
│ │ │ │ -{atomic, ok} = mnesia:add_table_index(person, age),
│ │ │ │ +{atomic, ok} =
│ │ │ │ +mnesia:create_table(person, [{index,[#person.age]},
│ │ │ │ +                              {attributes,
│ │ │ │ +                                    record_info(fields, person)}]),
│ │ │ │ +{atomic, ok} = mnesia:add_table_index(person, age),
│ │ │ │  ...
│ │ │ │  
│ │ │ │  PersonsAge42 =
│ │ │ │ -     mnesia:dirty_index_read(person, 42, #person.age),

│ │ │ │ + mnesia:dirty_index_read(person, 42, #person.age),

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Transactions │ │ │ │

│ │ │ │

Using transactions is a way to guarantee that the distributed Mnesia database │ │ │ │ remains consistent, even when many different processes update it in parallel. │ │ │ │ However, if you have real-time requirements it is recommended to use dirtry │ │ │ │ operations instead of transactions. When using dirty operations, you lose the │ │ │ │ consistency guarantee; this is usually solved by only letting one process update │ │ │ │ the table. Other processes must send update requests to that process.

Example:

...
│ │ │ │  %% Using transaction
│ │ │ │  
│ │ │ │ -Fun = fun() ->
│ │ │ │ -          [mnesia:read({Table, Key}),
│ │ │ │ -           mnesia:read({Table2, Key2})]
│ │ │ │ +Fun = fun() ->
│ │ │ │ +          [mnesia:read({Table, Key}),
│ │ │ │ +           mnesia:read({Table2, Key2})]
│ │ │ │        end,
│ │ │ │  
│ │ │ │ -{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
│ │ │ │ +{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
│ │ │ │  ...
│ │ │ │  
│ │ │ │  %% Same thing using dirty operations
│ │ │ │  ...
│ │ │ │  
│ │ │ │ -Result1 = mnesia:dirty_read({Table, Key}),
│ │ │ │ -Result2 = mnesia:dirty_read({Table2, Key2}),
│ │ │ │ +Result1 = mnesia:dirty_read({Table, Key}), │ │ │ │ +Result2 = mnesia:dirty_read({Table2, Key2}), │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/sup_princ.xhtml │ │ │ │ @@ -33,48 +33,48 @@ │ │ │ │ the order specified by this list, and are terminated in the reverse order.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │

│ │ │ │

The callback module for a supervisor starting the server from │ │ │ │ -gen_server Behaviour can look as follows:

-module(ch_sup).
│ │ │ │ --behaviour(supervisor).
│ │ │ │ +gen_server Behaviour can look as follows:

-module(ch_sup).
│ │ │ │ +-behaviour(supervisor).
│ │ │ │  
│ │ │ │ --export([start_link/0]).
│ │ │ │ --export([init/1]).
│ │ │ │ +-export([start_link/0]).
│ │ │ │ +-export([init/1]).
│ │ │ │  
│ │ │ │ -start_link() ->
│ │ │ │ -    supervisor:start_link(ch_sup, []).
│ │ │ │ +start_link() ->
│ │ │ │ +    supervisor:start_link(ch_sup, []).
│ │ │ │  
│ │ │ │ -init(_Args) ->
│ │ │ │ -    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
│ │ │ │ -    ChildSpecs = [#{id => ch3,
│ │ │ │ -                    start => {ch3, start_link, []},
│ │ │ │ +init(_Args) ->
│ │ │ │ +    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
│ │ │ │ +    ChildSpecs = [#{id => ch3,
│ │ │ │ +                    start => {ch3, start_link, []},
│ │ │ │                      restart => permanent,
│ │ │ │                      shutdown => brutal_kill,
│ │ │ │                      type => worker,
│ │ │ │ -                    modules => [ch3]}],
│ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

The SupFlags variable in the return value from init/1 represents the │ │ │ │ + modules => [ch3]}], │ │ │ │ + {ok, {SupFlags, ChildSpecs}}.

The SupFlags variable in the return value from init/1 represents the │ │ │ │ supervisor flags.

The ChildSpecs variable in the return value from init/1 is a list of │ │ │ │ child specifications.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Supervisor Flags │ │ │ │

│ │ │ │ -

This is the type definition for the supervisor flags:

sup_flags() = #{strategy => strategy(),           % optional
│ │ │ │ -                intensity => non_neg_integer(),   % optional
│ │ │ │ -                period => pos_integer(),          % optional
│ │ │ │ -                auto_shutdown => auto_shutdown()} % optional
│ │ │ │ -    strategy() = one_for_all
│ │ │ │ +

This is the type definition for the supervisor flags:

sup_flags() = #{strategy => strategy(),           % optional
│ │ │ │ +                intensity => non_neg_integer(),   % optional
│ │ │ │ +                period => pos_integer(),          % optional
│ │ │ │ +                auto_shutdown => auto_shutdown()} % optional
│ │ │ │ +    strategy() = one_for_all
│ │ │ │                 | one_for_one
│ │ │ │                 | rest_for_one
│ │ │ │                 | simple_one_for_one
│ │ │ │ -    auto_shutdown() = never
│ │ │ │ +    auto_shutdown() = never
│ │ │ │                      | any_significant
│ │ │ │                      | all_significant

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -313,28 +313,28 @@ │ │ │ │ exhaust the Maximum Restart Intensity of the │ │ │ │ parent supervisor.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Child Specification │ │ │ │

│ │ │ │ -

The type definition for a child specification is as follows:

child_spec() = #{id => child_id(),             % mandatory
│ │ │ │ -                 start => mfargs(),            % mandatory
│ │ │ │ -                 restart => restart(),         % optional
│ │ │ │ -                 significant => significant(), % optional
│ │ │ │ -                 shutdown => shutdown(),       % optional
│ │ │ │ -                 type => worker(),             % optional
│ │ │ │ -                 modules => modules()}         % optional
│ │ │ │ -    child_id() = term()
│ │ │ │ -    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
│ │ │ │ -    modules() = [module()] | dynamic
│ │ │ │ -    restart() = permanent | transient | temporary
│ │ │ │ -    significant() = boolean()
│ │ │ │ -    shutdown() = brutal_kill | timeout()
│ │ │ │ -    worker() = worker | supervisor
  • id is used to identify the child specification internally by the supervisor.

    The id key is mandatory.

    Note that this identifier occasionally has been called "name". As far as │ │ │ │ +

    The type definition for a child specification is as follows:

    child_spec() = #{id => child_id(),             % mandatory
    │ │ │ │ +                 start => mfargs(),            % mandatory
    │ │ │ │ +                 restart => restart(),         % optional
    │ │ │ │ +                 significant => significant(), % optional
    │ │ │ │ +                 shutdown => shutdown(),       % optional
    │ │ │ │ +                 type => worker(),             % optional
    │ │ │ │ +                 modules => modules()}         % optional
    │ │ │ │ +    child_id() = term()
    │ │ │ │ +    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
    │ │ │ │ +    modules() = [module()] | dynamic
    │ │ │ │ +    restart() = permanent | transient | temporary
    │ │ │ │ +    significant() = boolean()
    │ │ │ │ +    shutdown() = brutal_kill | timeout()
    │ │ │ │ +    worker() = worker | supervisor
    • id is used to identify the child specification internally by the supervisor.

      The id key is mandatory.

      Note that this identifier occasionally has been called "name". As far as │ │ │ │ possible, the terms "identifier" or "id" are now used but in order to keep │ │ │ │ backwards compatibility, some occurrences of "name" can still be found, for │ │ │ │ example in error messages.

    • start defines the function call used to start the child process. It is a │ │ │ │ module-function-arguments tuple used as apply(M, F, A).

      It is to be (or result in) a call to any of the following:

      The start key is mandatory.

    • restart defines when a terminated child process is to be │ │ │ │ restarted.

      • A permanent child process is always restarted.
      • A temporary child process is never restarted (not even when the supervisor │ │ │ │ restart strategy is rest_for_one or one_for_all and a sibling death │ │ │ │ @@ -362,53 +362,53 @@ │ │ │ │ supervisor, the default value infinity will be used.

      • type specifies whether the child process is a supervisor or a worker.

        The type key is optional. If it is not given, the default value worker │ │ │ │ will be used.

      • modules has to be a list consisting of a single element. The value │ │ │ │ of that element depends on the behaviour of the process:

        • If the child process is a gen_event, the element has to be the atom │ │ │ │ dynamic.
        • Otherwise, the element should be Module, where Module is the │ │ │ │ name of the callback module.

        This information is used by the release handler during upgrades and │ │ │ │ downgrades; see Release Handling.

        The modules key is optional. If it is not given, it defaults to [M], where │ │ │ │ M comes from the child's start {M,F,A}.

      Example: The child specification to start the server ch3 in the previous │ │ │ │ -example look as follows:

      #{id => ch3,
      │ │ │ │ -  start => {ch3, start_link, []},
      │ │ │ │ +example look as follows:

      #{id => ch3,
      │ │ │ │ +  start => {ch3, start_link, []},
      │ │ │ │    restart => permanent,
      │ │ │ │    shutdown => brutal_kill,
      │ │ │ │    type => worker,
      │ │ │ │ -  modules => [ch3]}

      or simplified, relying on the default values:

      #{id => ch3,
      │ │ │ │ +  modules => [ch3]}

      or simplified, relying on the default values:

      #{id => ch3,
      │ │ │ │    start => {ch3, start_link, []},
      │ │ │ │    shutdown => brutal_kill}

      Example: A child specification to start the event manager from the chapter about │ │ │ │ -gen_event:

      #{id => error_man,
      │ │ │ │ -  start => {gen_event, start_link, [{local, error_man}]},
      │ │ │ │ -  modules => dynamic}

      Both server and event manager are registered processes which can be expected to │ │ │ │ +gen_event:

      #{id => error_man,
      │ │ │ │ +  start => {gen_event, start_link, [{local, error_man}]},
      │ │ │ │ +  modules => dynamic}

      Both server and event manager are registered processes which can be expected to │ │ │ │ be always accessible. Thus they are specified to be permanent.

      ch3 does not need to do any cleaning up before termination. Thus, no shutdown │ │ │ │ time is needed, but brutal_kill is sufficient. error_man can need some time │ │ │ │ for the event handlers to clean up, thus the shutdown time is set to 5000 ms │ │ │ │ -(which is the default value).

      Example: A child specification to start another supervisor:

      #{id => sup,
      │ │ │ │ -  start => {sup, start_link, []},
      │ │ │ │ +(which is the default value).

      Example: A child specification to start another supervisor:

      #{id => sup,
      │ │ │ │ +  start => {sup, start_link, []},
      │ │ │ │    restart => transient,
      │ │ │ │ -  type => supervisor} % will cause default shutdown=>infinity

      │ │ │ │ + type => supervisor} % will cause default shutdown=>infinity

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting a Supervisor │ │ │ │

      │ │ │ │

      In the previous example, the supervisor is started by calling │ │ │ │ -ch_sup:start_link():

      start_link() ->
      │ │ │ │ -    supervisor:start_link(ch_sup, []).

      ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ │ +ch_sup:start_link():

      start_link() ->
      │ │ │ │ +    supervisor:start_link(ch_sup, []).

      ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ │ links to a new process, a supervisor.

      • The first argument, ch_sup, is the name of the callback module, that is, the │ │ │ │ module where the init callback function is located.
      • The second argument, [], is a term that is passed as is to the callback │ │ │ │ function init. Here, init does not need any data and ignores the argument.

      In this case, the supervisor is not registered. Instead its pid must be used. A │ │ │ │ name can be specified by calling │ │ │ │ supervisor:start_link({local, Name}, Module, Args) │ │ │ │ or │ │ │ │ supervisor:start_link({global, Name}, Module, Args).

      The new supervisor process calls the callback function ch_sup:init([]). init │ │ │ │ -has to return {ok, {SupFlags, ChildSpecs}}:

      init(_Args) ->
      │ │ │ │ -    SupFlags = #{},
      │ │ │ │ -    ChildSpecs = [#{id => ch3,
      │ │ │ │ -                    start => {ch3, start_link, []},
      │ │ │ │ -                    shutdown => brutal_kill}],
      │ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

      Subsequently, the supervisor starts its child processes according to the child │ │ │ │ +has to return {ok, {SupFlags, ChildSpecs}}:

      init(_Args) ->
      │ │ │ │ +    SupFlags = #{},
      │ │ │ │ +    ChildSpecs = [#{id => ch3,
      │ │ │ │ +                    start => {ch3, start_link, []},
      │ │ │ │ +                    shutdown => brutal_kill}],
      │ │ │ │ +    {ok, {SupFlags, ChildSpecs}}.

      Subsequently, the supervisor starts its child processes according to the child │ │ │ │ specifications in the start specification. In this case there is a single child │ │ │ │ process, called ch3.

      supervisor:start_link/3 is synchronous. It does not return until all child │ │ │ │ processes have been started.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding a Child Process │ │ │ │ @@ -437,31 +437,31 @@ │ │ │ │ │ │ │ │ │ │ │ │ Simplified one_for_one Supervisors │ │ │ │

      │ │ │ │

      A supervisor with restart strategy simple_one_for_one is a simplified │ │ │ │ one_for_one supervisor, where all child processes are dynamically added │ │ │ │ instances of the same process.

      The following is an example of a callback module for a simple_one_for_one │ │ │ │ -supervisor:

      -module(simple_sup).
      │ │ │ │ --behaviour(supervisor).
      │ │ │ │ +supervisor:

      -module(simple_sup).
      │ │ │ │ +-behaviour(supervisor).
      │ │ │ │  
      │ │ │ │ --export([start_link/0]).
      │ │ │ │ --export([init/1]).
      │ │ │ │ +-export([start_link/0]).
      │ │ │ │ +-export([init/1]).
      │ │ │ │  
      │ │ │ │ -start_link() ->
      │ │ │ │ -    supervisor:start_link(simple_sup, []).
      │ │ │ │ +start_link() ->
      │ │ │ │ +    supervisor:start_link(simple_sup, []).
      │ │ │ │  
      │ │ │ │ -init(_Args) ->
      │ │ │ │ -    SupFlags = #{strategy => simple_one_for_one,
      │ │ │ │ +init(_Args) ->
      │ │ │ │ +    SupFlags = #{strategy => simple_one_for_one,
      │ │ │ │                   intensity => 0,
      │ │ │ │ -                 period => 1},
      │ │ │ │ -    ChildSpecs = [#{id => call,
      │ │ │ │ -                    start => {call, start_link, []},
      │ │ │ │ -                    shutdown => brutal_kill}],
      │ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

      When started, the supervisor does not start any child │ │ │ │ + period => 1}, │ │ │ │ + ChildSpecs = [#{id => call, │ │ │ │ + start => {call, start_link, []}, │ │ │ │ + shutdown => brutal_kill}], │ │ │ │ + {ok, {SupFlags, ChildSpecs}}.

      When started, the supervisor does not start any child │ │ │ │ processes. Instead, all child processes need to be added dynamically by │ │ │ │ calling supervisor:start_child(Sup, List).

      Sup is the pid, or name, of the supervisor. List is an arbitrary list of │ │ │ │ terms, which are added to the list of arguments specified in the child │ │ │ │ specification. If the start function is specified as {M, F, A}, the child │ │ │ │ process is started by calling apply(M, F, A++List).

      For example, adding a child to simple_sup above:

      supervisor:start_child(Pid, [id1])

      The result is that the child process is started by calling │ │ │ │ apply(call, start_link, []++[id1]), or actually:

      call:start_link(id1)

      A child under a simple_one_for_one supervisor can be terminated with the │ │ │ │ following:

      supervisor:terminate_child(Sup, Pid)

      Sup is the pid, or name, of the supervisor and Pid is the pid of the child.

      Because a simple_one_for_one supervisor can have many children, it shuts them │ │ │ ├── OEBPS/statem.xhtml │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ │ │ │ │

      Established Automata Theory does not deal much with how a state transition │ │ │ │ is triggered, but assumes that the output is a function of the input │ │ │ │ (and the state) and that they are some kind of values.

      For an Event-Driven State Machine, the input is an event that triggers │ │ │ │ a state transition and the output is actions executed during │ │ │ │ the state transition. Analogously to the mathematical model │ │ │ │ of a Finite State Machine, it can be described as a set of relations │ │ │ │ -of the following form:

      State(S) x Event(E) -> Actions(A), State(S')

      These relations are interpreted as follows: if we are in state S, │ │ │ │ +of the following form:

      State(S) x Event(E) -> Actions(A), State(S')

      These relations are interpreted as follows: if we are in state S, │ │ │ │ and event E occurs, we are to perform actions A, and make a transition │ │ │ │ to state S'. Notice that S' can be equal to S, │ │ │ │ and that A can be empty.

      In gen_statem we define a state change as a state transition in which the │ │ │ │ new state S' is different from the current state S, where "different" means │ │ │ │ Erlang's strict inequality: =/= also known as "does not match". gen_statem │ │ │ │ does more things during state changes than during other state transitions.

      As A and S' depend only on S and E, the kind of state machine described │ │ │ │ here is a Mealy machine (see, for example, the Wikipedia article │ │ │ │ @@ -310,20 +310,20 @@ │ │ │ │ │ │ │ │ State Enter Calls │ │ │ │ │ │ │ │

      The gen_statem behaviour can, if this is enabled, regardless of callback │ │ │ │ mode, automatically call the state callback │ │ │ │ with special arguments whenever the state changes, so you can write │ │ │ │ state enter actions near the rest of the state transition rules. │ │ │ │ -It typically looks like this:

      StateName(enter, OldState, Data) ->
      │ │ │ │ +It typically looks like this:

      StateName(enter, OldState, Data) ->
      │ │ │ │      ... code for state enter actions here ...
      │ │ │ │ -    {keep_state, NewData};
      │ │ │ │ -StateName(EventType, EventContent, Data) ->
      │ │ │ │ +    {keep_state, NewData};
      │ │ │ │ +StateName(EventType, EventContent, Data) ->
      │ │ │ │      ... code for actions here ...
      │ │ │ │ -    {next_state, NewStateName, NewData}.

      Since the state enter call is not an event there are restrictions on the │ │ │ │ + {next_state, NewStateName, NewData}.

      Since the state enter call is not an event there are restrictions on the │ │ │ │ allowed return value and state transition actions. │ │ │ │ You must not change the state, postpone this non-event, │ │ │ │ insert any events, or change the │ │ │ │ callback module.

      The first state that is entered after gen_statem:init/1 will get │ │ │ │ a state enter call with OldState equal to the current state.

      You may repeat the state enter call using the {repeat_state,...} return │ │ │ │ value from the state callback. In this case │ │ │ │ OldState will also be equal to the current state.

      Depending on how your state machine is specified, this can be a very useful │ │ │ │ @@ -404,72 +404,72 @@ │ │ │ │ │ │ │ │ locked --> check_code : {button, Button}\n* Collect Buttons │ │ │ │ check_code --> locked : Incorrect code │ │ │ │ check_code --> open : Correct code\n* do_unlock()\n* Clear Buttons\n* Set state_timeout 10 s │ │ │ │ │ │ │ │ open --> open : {button, Digit} │ │ │ │ open --> locked : state_timeout\n* do_lock()

      This code lock state machine can be implemented using gen_statem with │ │ │ │ -the following callback module:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock).
      │ │ │ │ +the following callback module:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock).
      │ │ │ │  
      │ │ │ │ --export([start_link/1]).
      │ │ │ │ --export([button/1]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([locked/3,open/3]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ -
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ -
      │ │ │ │ -init(Code) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ -
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    state_functions.
      locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +-export([start_link/1]).
      │ │ │ │ +-export([button/1]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([locked/3,open/3]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ +
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ +
      │ │ │ │ +init(Code) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │ +
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    state_functions.
      locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ -    end.
      open(state_timeout, lock,  Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {next_state, open, Data}.
      do_lock() ->
      │ │ │ │ -    io:format("Lock~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Unlock~n", []).
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ +    end.
      open(state_timeout, lock,  Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {next_state, open, Data}.
      do_lock() ->
      │ │ │ │ +    io:format("Lock~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Unlock~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      The code is explained in the next sections.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting gen_statem │ │ │ │

      │ │ │ │

      In the example in the previous section, gen_statem is started by calling │ │ │ │ -code_lock:start_link(Code):

      start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

      start_link/1 calls function gen_statem:start_link/4, │ │ │ │ +code_lock:start_link(Code):

      start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

      start_link/1 calls function gen_statem:start_link/4, │ │ │ │ which spawns and links to a new process, a gen_statem.

      • The first argument, {local,?NAME}, specifies the name. In this case, the │ │ │ │ gen_statem is locally registered as code_lock through the macro ?NAME.

        If the name is omitted, the gen_statem is not registered. Instead its pid │ │ │ │ must be used. The name can also be specified as {global, Name}, then the │ │ │ │ gen_statem is registered using global:register_name/2 in Kernel.

      • The second argument, ?MODULE, is the name of the callback module, │ │ │ │ that is, the module where the callback functions are located, │ │ │ │ which is this module.

        The interface functions (start_link/1 and button/1) are located in the │ │ │ │ same module as the callback functions (init/1, locked/3, and open/3). │ │ │ │ @@ -479,184 +479,184 @@ │ │ │ │ see gen_statem:start_link/3.

      If name registration succeeds, the new gen_statem process calls callback │ │ │ │ function code_lock:init(Code). This function is expected to return │ │ │ │ {ok, State, Data}, where State is the initial state of the gen_statem, │ │ │ │ in this case locked; assuming that the door is locked to begin with. │ │ │ │ Data is the internal server data of the gen_statem. Here the server data │ │ │ │ is a map() with key code that stores the correct │ │ │ │ button sequence, key length store its length, and key buttons │ │ │ │ -that stores the collected buttons up to the same length.

      init(Code) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.

      Function gen_statem:start_link/3,4 │ │ │ │ +that stores the collected buttons up to the same length.

      init(Code) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.

      Function gen_statem:start_link/3,4 │ │ │ │ is synchronous. It does not return until the gen_statem is initialized │ │ │ │ and is ready to receive events.

      Function gen_statem:start_link/3,4 │ │ │ │ must be used if the gen_statem is part of a supervision tree, that is, │ │ │ │ started by a supervisor. Function, │ │ │ │ gen_statem:start/3,4 can be used to start │ │ │ │ a standalone gen_statem, meaning it is not part of a supervision tree.

      Function Module:callback_mode/0 selects │ │ │ │ the CallbackMode for the callback module, │ │ │ │ in this case state_functions. │ │ │ │ -That is, each state has its own handler function:

      callback_mode() ->
      │ │ │ │ +That is, each state has its own handler function:

      callback_mode() ->
      │ │ │ │      state_functions.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Events │ │ │ │

      │ │ │ │

      The function notifying the code lock about a button event is implemented using │ │ │ │ -gen_statem:cast/2:

      button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).

      The first argument is the name of the gen_statem and must agree with │ │ │ │ +gen_statem:cast/2:

      button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).

      The first argument is the name of the gen_statem and must agree with │ │ │ │ the name used to start it. So, we use the same macro ?NAME as when starting. │ │ │ │ {button, Button} is the event content.

      The event is sent to the gen_statem. When the event is received, the │ │ │ │ gen_statem calls StateName(cast, Event, Data), which is expected │ │ │ │ to return a tuple {next_state, NewStateName, NewData}, or │ │ │ │ {next_state, NewStateName, NewData, Actions}. StateName is the name │ │ │ │ of the current state and NewStateName is the name of the next state. │ │ │ │ NewData is a new value for the server data of the gen_statem, │ │ │ │ -and Actions is a list of actions to be performed by the gen_statem engine.

      locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +and Actions is a list of actions to be performed by the gen_statem engine.

      locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │      end.

      In state locked, when a button is pressed, it is collected with the │ │ │ │ previously pressed buttons up to the length of the correct code, then │ │ │ │ compared with the correct code. Depending on the result, the door is │ │ │ │ either unlocked and the gen_statem goes to state open, or the door │ │ │ │ remains in state locked.

      When changing to state open, the collected buttons are reset, the lock │ │ │ │ -unlocked, and a state time-out for 10 seconds is started.

      open(cast, {button,_}, Data) ->
      │ │ │ │ -    {next_state, open, Data}.

      In state open, a button event is ignored by staying in the same state. │ │ │ │ +unlocked, and a state time-out for 10 seconds is started.

      open(cast, {button,_}, Data) ->
      │ │ │ │ +    {next_state, open, Data}.

      In state open, a button event is ignored by staying in the same state. │ │ │ │ This can also be done by returning {keep_state, Data}, or in this case │ │ │ │ since Data is unchanged, by returning keep_state_and_data.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ State Time-Outs │ │ │ │

      │ │ │ │

      When a correct code has been given, the door is unlocked and the following │ │ │ │ -tuple is returned from locked/2:

      {next_state, open, Data#{buttons := []},
      │ │ │ │ - [{state_timeout,10_000,lock}]}; % Time in milliseconds

      10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ │ +tuple is returned from locked/2:

      {next_state, open, Data#{buttons := []},
      │ │ │ │ + [{state_timeout,10_000,lock}]}; % Time in milliseconds

      10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ │ a time-out occurs. Then, StateName(state_timeout, lock, Data) is called. │ │ │ │ The time-out occurs when the door has been in state open for 10 seconds. │ │ │ │ -After that the door is locked again:

      open(state_timeout, lock,  Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};

      The timer for a state time-out is automatically canceled when │ │ │ │ +After that the door is locked again:

      open(state_timeout, lock,  Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};

      The timer for a state time-out is automatically canceled when │ │ │ │ the state machine does a state change.

      You can restart, cancel, or update a state time-out. See section │ │ │ │ Time-Outs for details.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ All State Events │ │ │ │

      │ │ │ │

      Sometimes events can arrive in any state of the gen_statem. It is convenient │ │ │ │ to handle these in a common state handler function that all state functions │ │ │ │ call for events not specific to the state.

      Consider a code_length/0 function that returns the length │ │ │ │ of the correct code. We dispatch all events that are not state-specific │ │ │ │ to the common function handle_common/3:

      ...
      │ │ │ │ --export([button/1,code_length/0]).
      │ │ │ │ +-export([button/1,code_length/0]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -locked(...) -> ... ;
      │ │ │ │ -locked(EventType, EventContent, Data) ->
      │ │ │ │ -    handle_common(EventType, EventContent, Data).
      │ │ │ │ +locked(...) -> ... ;
      │ │ │ │ +locked(EventType, EventContent, Data) ->
      │ │ │ │ +    handle_common(EventType, EventContent, Data).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -open(...) -> ... ;
      │ │ │ │ -open(EventType, EventContent, Data) ->
      │ │ │ │ -    handle_common(EventType, EventContent, Data).
      │ │ │ │ -
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.

      Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

      ...
      │ │ │ │ --export([button/1,code_length/0]).
      │ │ │ │ +open(...) -> ... ;
      │ │ │ │ +open(EventType, EventContent, Data) ->
      │ │ │ │ +    handle_common(EventType, EventContent, Data).
      │ │ │ │ +
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.

      Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

      ...
      │ │ │ │ +-export([button/1,code_length/0]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      │ │ │ │  
      │ │ │ │ --define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │ +-define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │  %%
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -locked(...) -> ... ;
      │ │ │ │ +locked(...) -> ... ;
      │ │ │ │  ?HANDLE_COMMON.
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -open(...) -> ... ;
      │ │ │ │ +open(...) -> ... ;
      │ │ │ │  ?HANDLE_COMMON.

      This example uses gen_statem:call/2, which waits for a reply from the server. │ │ │ │ The reply is sent with a {reply, From, Reply} tuple in an action list in the │ │ │ │ {keep_state, ...} tuple that retains the current state. This return form is │ │ │ │ convenient when you want to stay in the current state but do not know or care │ │ │ │ about what it is.

      If the common state callback needs to know the current state a function │ │ │ │ -handle_common/4 can be used instead:

      -define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

      │ │ │ │ +handle_common/4 can be used instead:

      -define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ One State Callback │ │ │ │

      │ │ │ │

      If callback mode handle_event_function is used, │ │ │ │ all events are handled in │ │ │ │ Module:handle_event/4 and we can │ │ │ │ (but do not have to) use an event-centered approach where we first branch │ │ │ │ depending on event and then depending on state:

      ...
      │ │ │ │ --export([handle_event/4]).
      │ │ │ │ +-export([handle_event/4]).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -callback_mode() ->
      │ │ │ │ +callback_mode() ->
      │ │ │ │      handle_event_function.
      │ │ │ │  
      │ │ │ │ -handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
      │ │ │ │ +handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
      │ │ │ │      case State of
      │ │ │ │  	locked ->
      │ │ │ │ -            #{length := Length, buttons := Buttons} = Data,
      │ │ │ │ +            #{length := Length, buttons := Buttons} = Data,
      │ │ │ │              NewButtons =
      │ │ │ │                  if
      │ │ │ │ -                    length(Buttons) < Length ->
      │ │ │ │ +                    length(Buttons) < Length ->
      │ │ │ │                          Buttons;
      │ │ │ │                      true ->
      │ │ │ │ -                        tl(Buttons)
      │ │ │ │ -                end ++ [Button],
      │ │ │ │ +                        tl(Buttons)
      │ │ │ │ +                end ++ [Button],
      │ │ │ │              if
      │ │ │ │                  NewButtons =:= Code -> % Correct
      │ │ │ │ -                    do_unlock(),
      │ │ │ │ -                    {next_state, open, Data#{buttons := []},
      │ │ │ │ -                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +                    do_unlock(),
      │ │ │ │ +                    {next_state, open, Data#{buttons := []},
      │ │ │ │ +                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │                  true -> % Incomplete | Incorrect
      │ │ │ │ -                    {keep_state, Data#{buttons := NewButtons}}
      │ │ │ │ +                    {keep_state, Data#{buttons := NewButtons}}
      │ │ │ │              end;
      │ │ │ │  	open ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -handle_event(
      │ │ │ │ -  {call,From}, code_length, _State, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      │ │ │ │ +handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +handle_event(
      │ │ │ │ +  {call,From}, code_length, _State, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      │ │ │ │  
      │ │ │ │  ...

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

      │ │ │ │ @@ -668,59 +668,59 @@ │ │ │ │ │ │ │ │

      If the gen_statem is part of a supervision tree, no stop function is needed. │ │ │ │ The gen_statem is automatically terminated by its supervisor. Exactly how │ │ │ │ this is done is defined by a shutdown strategy │ │ │ │ set in the supervisor.

      If it is necessary to clean up before termination, the shutdown strategy │ │ │ │ must be a time-out value and the gen_statem must in function init/1 │ │ │ │ set itself to trap exit signals by calling │ │ │ │ -process_flag(trap_exit, true):

      init(Args) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    do_lock(),
      │ │ │ │ +process_flag(trap_exit, true):

      init(Args) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    do_lock(),
      │ │ │ │      ...

      When ordered to shut down, the gen_statem then calls callback function │ │ │ │ terminate(shutdown, State, Data).

      In this example, function terminate/3 locks the door if it is open, │ │ │ │ so we do not accidentally leave the door open │ │ │ │ -when the supervision tree terminates:

      terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +when the supervision tree terminates:

      terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone gen_statem │ │ │ │

      │ │ │ │

      If the gen_statem is not part of a supervision tree, it can be stopped │ │ │ │ using gen_statem:stop/1, preferably through │ │ │ │ an API function:

      ...
      │ │ │ │ --export([start_link/1,stop/0]).
      │ │ │ │ +-export([start_link/1,stop/0]).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).

      This makes the gen_statem call callback function terminate/3 just like │ │ │ │ +stop() -> │ │ │ │ + gen_statem:stop(?NAME).

      This makes the gen_statem call callback function terminate/3 just like │ │ │ │ for a supervised server and waits for the process to terminate.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Event Time-Outs │ │ │ │

      │ │ │ │

      A time-out feature inherited from gen_statem's predecessor gen_fsm, │ │ │ │ is an event time-out, that is, if an event arrives the timer is canceled. │ │ │ │ You get either an event or a time-out, but not both.

      It is ordered by the │ │ │ │ transition action {timeout, Time, EventContent}, │ │ │ │ or just an integer Time, even without the enclosing actions list (the latter │ │ │ │ is a form inherited from gen_fsm).

      This type of time-out is useful, for example, to act on inactivity. │ │ │ │ Let's restart the code sequence if no button is pressed for say 30 seconds:

      ...
      │ │ │ │  
      │ │ │ │ -locked(timeout, _, Data) ->
      │ │ │ │ -    {next_state, locked, Data#{buttons := []}};
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(timeout, _, Data) ->
      │ │ │ │ +    {next_state, locked, Data#{buttons := []}};
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons},
      │ │ │ │ -             30_000} % Time in milliseconds
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons},
      │ │ │ │ +             30_000} % Time in milliseconds
      │ │ │ │  ...

      Whenever we receive a button event we start an event time-out of 30 seconds, │ │ │ │ and if we get an event type of timeout we reset the remaining │ │ │ │ code sequence.

      An event time-out is canceled by any other event so you either get │ │ │ │ some other event or the time-out event. Therefore, canceling, │ │ │ │ restarting, or updating an event time-out is neither possible nor │ │ │ │ necessary. Whatever event you act on has already canceled │ │ │ │ the event time-out, so there is never a running event time-out │ │ │ │ @@ -739,30 +739,30 @@ │ │ │ │ another, maybe cancel the time-out without changing states, or perhaps run │ │ │ │ multiple time-outs in parallel. All this can be accomplished with │ │ │ │ generic time-outs. They may look a little │ │ │ │ bit like event time-outs but contain │ │ │ │ a name to allow for any number of them simultaneously and they are │ │ │ │ not automatically canceled.

      Here is how to accomplish the state time-out in the previous example │ │ │ │ by instead using a generic time-out named for example open:

      ...
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open({timeout,open}, lock, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state,locked,Data};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data};
      │ │ │ │ +open({timeout,open}, lock, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state,locked,Data};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data};
      │ │ │ │  ...

      Specific generic time-outs can just as state time-outs │ │ │ │ be restarted or canceled by setting it to a new time or infinity.

      In this particular case we do not need to cancel the time-out since │ │ │ │ the time-out event is the only possible reason to do a state change │ │ │ │ from open to locked.

      Instead of bothering with when to cancel a time-out, a late time-out event │ │ │ │ can be handled by ignoring it if it arrives in a state │ │ │ │ where it is known to be late.

      You can restart, cancel, or update a generic time-out. │ │ │ │ See section Time-Outs for details.

      │ │ │ │ @@ -774,32 +774,32 @@ │ │ │ │

      The most versatile way to handle time-outs is to use Erlang Timers; see │ │ │ │ erlang:start_timer/3,4. Most time-out tasks │ │ │ │ can be performed with the time-out features in gen_statem, │ │ │ │ but an example of one that cannot is if you should need the return value │ │ │ │ from erlang:cancel_timer(Tref), that is, │ │ │ │ the remaining time of the timer.

      Here is how to accomplish the state time-out in the previous example │ │ │ │ by instead using an Erlang Timer:

      ...
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ +	    do_unlock(),
      │ │ │ │  	    Tref =
      │ │ │ │ -                 erlang:start_timer(
      │ │ │ │ -                     10_000, self(), lock), % Time in milliseconds
      │ │ │ │ -            {next_state, open, Data#{buttons := [], timer => Tref}};
      │ │ │ │ +                 erlang:start_timer(
      │ │ │ │ +                     10_000, self(), lock), % Time in milliseconds
      │ │ │ │ +            {next_state, open, Data#{buttons := [], timer => Tref}};
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state,locked,maps:remove(timer, Data)};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data};
      │ │ │ │ +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state,locked,maps:remove(timer, Data)};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data};
      │ │ │ │  ...

      Removing the timer key from the map when we do a state change to locked │ │ │ │ is not strictly necessary since we can only get into state open │ │ │ │ with an updated timer map value. But it can be nice to not have │ │ │ │ outdated values in the state Data.

      If you need to cancel a timer because of some other event, you can use │ │ │ │ erlang:cancel_timer(Tref). Note that no time-out │ │ │ │ message will arrive after this (because the timer has been │ │ │ │ explicitly canceled), unless you have already postponed one earlier │ │ │ │ @@ -815,16 +815,16 @@ │ │ │ │ Postponing Events │ │ │ │

      │ │ │ │

      If you want to ignore a particular event in the current state and handle it │ │ │ │ in a future state, you can postpone the event. A postponed event │ │ │ │ is retried after a state change, that is, OldState =/= NewState.

      Postponing is ordered by the │ │ │ │ transition action postpone.

      In this example, instead of ignoring button events while in the open state, │ │ │ │ we can postpone them handle them later in the locked state:

      ...
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data,[postpone]};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data,[postpone]};
      │ │ │ │  ...

      Since a postponed event is only retried after a state change, you have to │ │ │ │ think about where to keep a state data item. You can keep it in the server │ │ │ │ Data or in the State itself, for example by having two more or less │ │ │ │ identical states to keep a boolean value, or by using a complex state (see │ │ │ │ section Complex State) with │ │ │ │ callback mode │ │ │ │ handle_event_function. If a change │ │ │ │ @@ -845,55 +845,55 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Selective Receive │ │ │ │ │ │ │ │

      Erlang's selective receive statement is often used to describe simple state │ │ │ │ machine examples in straightforward Erlang code. The following is a possible │ │ │ │ -implementation of the first example:

      -module(code_lock).
      │ │ │ │ --define(NAME, code_lock_1).
      │ │ │ │ --export([start_link/1,button/1]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    spawn(
      │ │ │ │ -      fun () ->
      │ │ │ │ -	      true = register(?NAME, self()),
      │ │ │ │ -	      do_lock(),
      │ │ │ │ -	      locked(Code, length(Code), [])
      │ │ │ │ -      end).
      │ │ │ │ +implementation of the first example:

      -module(code_lock).
      │ │ │ │ +-define(NAME, code_lock_1).
      │ │ │ │ +-export([start_link/1,button/1]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    spawn(
      │ │ │ │ +      fun () ->
      │ │ │ │ +	      true = register(?NAME, self()),
      │ │ │ │ +	      do_lock(),
      │ │ │ │ +	      locked(Code, length(Code), [])
      │ │ │ │ +      end).
      │ │ │ │  
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    ?NAME ! {button,Button}.
      locked(Code, Length, Buttons) ->
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    ?NAME ! {button,Button}.
      locked(Code, Length, Buttons) ->
      │ │ │ │      receive
      │ │ │ │ -        {button,Button} ->
      │ │ │ │ +        {button,Button} ->
      │ │ │ │              NewButtons =
      │ │ │ │                  if
      │ │ │ │ -                    length(Buttons) < Length ->
      │ │ │ │ +                    length(Buttons) < Length ->
      │ │ │ │                          Buttons;
      │ │ │ │                      true ->
      │ │ │ │ -                        tl(Buttons)
      │ │ │ │ -                end ++ [Button],
      │ │ │ │ +                        tl(Buttons)
      │ │ │ │ +                end ++ [Button],
      │ │ │ │              if
      │ │ │ │                  NewButtons =:= Code -> % Correct
      │ │ │ │ -                    do_unlock(),
      │ │ │ │ -		    open(Code, Length);
      │ │ │ │ +                    do_unlock(),
      │ │ │ │ +		    open(Code, Length);
      │ │ │ │                  true -> % Incomplete | Incorrect
      │ │ │ │ -                    locked(Code, Length, NewButtons)
      │ │ │ │ +                    locked(Code, Length, NewButtons)
      │ │ │ │              end
      │ │ │ │ -    end.
      open(Code, Length) ->
      │ │ │ │ +    end.
      open(Code, Length) ->
      │ │ │ │      receive
      │ │ │ │      after 10_000 -> % Time in milliseconds
      │ │ │ │ -	    do_lock(),
      │ │ │ │ -	    locked(Code, Length, [])
      │ │ │ │ +	    do_lock(),
      │ │ │ │ +	    locked(Code, Length, [])
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).

      The selective receive in this case causes open to implicitly postpone any │ │ │ │ +do_lock() -> │ │ │ │ + io:format("Locked~n", []). │ │ │ │ +do_unlock() -> │ │ │ │ + io:format("Open~n", []).

      The selective receive in this case causes open to implicitly postpone any │ │ │ │ events to the locked state.

      A catch-all receive should never be used from a gen_statem behaviour │ │ │ │ (or from any gen_* behaviour), as the receive statement is within │ │ │ │ the gen_* engine itself. sys-compatible behaviours must respond to │ │ │ │ system messages and therefore do that in their engine receive loop, │ │ │ │ passing non-system messages to the callback module. Using a catch-all │ │ │ │ receive can result in system messages being discarded, which in turn │ │ │ │ can lead to unexpected behaviour. If a selective receive must be used, │ │ │ │ @@ -916,40 +916,40 @@ │ │ │ │ section), especially if only one or a few states have state enter actions, │ │ │ │ this is a perfect use case for the built in │ │ │ │ state enter calls.

      You return a list containing state_enter from your │ │ │ │ callback_mode/0 function and the │ │ │ │ gen_statem engine will call your state callback once with an event │ │ │ │ (enter, OldState, ...) whenever it does a state change. Then you │ │ │ │ just need to handle these event-like calls in all states.

      ...
      │ │ │ │ -init(Code) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length = length(Code)},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ -
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [state_functions,state_enter].
      │ │ │ │ -
      │ │ │ │ -locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state,Data#{buttons => []}};
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +init(Code) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length = length(Code)},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │ +
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [state_functions,state_enter].
      │ │ │ │ +
      │ │ │ │ +locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state,Data#{buttons => []}};
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(enter, _OldState, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -open(state_timeout, lock, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ +open(enter, _OldState, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +open(state_timeout, lock, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │  ...

      You can repeat the state enter code by returning one of │ │ │ │ {repeat_state, ...},{repeat_state_and_data, _}, │ │ │ │ or repeat_state_and_data that otherwise behaves exactly like their │ │ │ │ keep_state siblings. See the type │ │ │ │ state_callback_result() │ │ │ │ in the Reference Manual.

      │ │ │ │ │ │ │ │ @@ -971,44 +971,44 @@ │ │ │ │ to dispatch pre-processed events as internal events to the main state │ │ │ │ machine.

      Using internal events also can make it easier to synchronize the state │ │ │ │ machines.

      A variant of this is to use a complex state with │ │ │ │ one state callback, modeling the state │ │ │ │ with, for example, a tuple {MainFSMState, SubFSMState}.

      To illustrate this we make up an example where the buttons instead generate │ │ │ │ down and up (press and release) events, and the lock responds │ │ │ │ to an up event only after the corresponding down event.

      ...
      │ │ │ │ --export([down/1, up/1]).
      │ │ │ │ +-export([down/1, up/1]).
      │ │ │ │  ...
      │ │ │ │ -down(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ +down(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │  
      │ │ │ │ -up(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ +up(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state,Data#{buttons => []}};
      │ │ │ │ -locked(
      │ │ │ │ -  internal, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ -...
      handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_common(cast, {up,Button}, Data) ->
      │ │ │ │ +locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state,Data#{buttons => []}};
      │ │ │ │ +locked(
      │ │ │ │ +  internal, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +...
      handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_common(cast, {up,Button}, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state,maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}}]};
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state,maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}}]};
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(internal, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data,[postpone]};
      │ │ │ │ +open(internal, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data,[postpone]};
      │ │ │ │  ...

      If you start this program with code_lock:start([17]) you can unlock with │ │ │ │ code_lock:down(17), code_lock:up(17).

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example Revisited │ │ │ │

      │ │ │ │ @@ -1036,152 +1036,152 @@ │ │ │ │ Also, the state diagram does not show that the code_length/0 call │ │ │ │ must be handled in every state.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: state_functions │ │ │ │

      │ │ │ │ -

      Using state functions:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock_2).
      │ │ │ │ +

      Using state functions:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock_2).
      │ │ │ │  
      │ │ │ │ --export([start_link/1,stop/0]).
      │ │ │ │ --export([down/1,up/1,code_length/0]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([locked/3,open/3]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).
      │ │ │ │ -
      │ │ │ │ -down(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ -up(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      init(Code) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ +-export([start_link/1,stop/0]).
      │ │ │ │ +-export([down/1,up/1,code_length/0]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([locked/3,open/3]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ +stop() ->
      │ │ │ │ +    gen_statem:stop(?NAME).
      │ │ │ │ +
      │ │ │ │ +down(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ +up(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      init(Code) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │  
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [state_functions,state_enter].
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [state_functions,state_enter].
      │ │ │ │  
      │ │ │ │ --define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │ +-define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │  %%
      │ │ │ │ -handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_common(cast, {up,Button}, Data) ->
      │ │ │ │ +handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_common(cast, {up,Button}, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state, maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}}]};
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state, maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}}]};
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code}) ->
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -locked(state_timeout, button, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -locked(
      │ │ │ │ -  internal, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code}) ->
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +locked(state_timeout, button, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +locked(
      │ │ │ │ +  internal, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      │ │ │ │ -?HANDLE_COMMON.
      open(enter, _OldState, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -open(state_timeout, lock, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -open(internal, {button,_}, _) ->
      │ │ │ │ -    {keep_state_and_data, [postpone]};
      │ │ │ │ +?HANDLE_COMMON.
      open(enter, _OldState, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +open(state_timeout, lock, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +open(internal, {button,_}, _) ->
      │ │ │ │ +    {keep_state_and_data, [postpone]};
      │ │ │ │  ?HANDLE_COMMON.
      │ │ │ │  
      │ │ │ │ -do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).
      │ │ │ │ +do_lock() ->
      │ │ │ │ +    io:format("Locked~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Open~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: handle_event_function │ │ │ │

      │ │ │ │

      This section describes what to change in the example to use one │ │ │ │ handle_event/4 function. The previously used approach to first branch │ │ │ │ depending on event does not work that well here because of │ │ │ │ -the state enter calls, so this example first branches depending on state:

      -export([handle_event/4]).
      callback_mode() ->
      │ │ │ │ -    [handle_event_function,state_enter].
      %%
      │ │ │ │ +the state enter calls, so this example first branches depending on state:

      -export([handle_event/4]).
      callback_mode() ->
      │ │ │ │ +    [handle_event_function,state_enter].
      %%
      │ │ │ │  %% State: locked
      │ │ │ │ -handle_event(enter, _OldState, locked, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(state_timeout, button, locked, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(
      │ │ │ │ -  internal, {button,Button}, locked,
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_event(enter, _OldState, locked, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(state_timeout, button, locked, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(
      │ │ │ │ +  internal, {button,Button}, locked,
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, open, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -handle_event(internal, {button,_}, open, _) ->
      │ │ │ │ -    {keep_state_and_data,[postpone]};
      %% Common events
      │ │ │ │ -handle_event(cast, {down,Button}, _State, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_event(cast, {up,Button}, _State, Data) ->
      │ │ │ │ +handle_event(enter, _OldState, open, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +handle_event(internal, {button,_}, open, _) ->
      │ │ │ │ +    {keep_state_and_data,[postpone]};
      %% Common events
      │ │ │ │ +handle_event(cast, {down,Button}, _State, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_event(cast, {up,Button}, _State, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state, maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}},
      │ │ │ │ -              {state_timeout,30_000,button}]}; % Time in milliseconds
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state, maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}},
      │ │ │ │ +              {state_timeout,30_000,button}]}; % Time in milliseconds
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_event({call,From}, code_length, _State, #{length := Length}) ->
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{reply,From,Length}]}.

      Notice that postponing buttons from the open state to the locked state │ │ │ │ +handle_event({call,From}, code_length, _State, #{length := Length}) -> │ │ │ │ + {keep_state_and_data, │ │ │ │ + [{reply,From,Length}]}.

      Notice that postponing buttons from the open state to the locked state │ │ │ │ seems like a strange thing to do for a code lock, but it at least │ │ │ │ illustrates event postponing.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Filter the State │ │ │ │

      │ │ │ │ @@ -1191,30 +1191,30 @@ │ │ │ │ and which digits that remain to unlock.

      This state data can be regarded as sensitive, and maybe not what you want │ │ │ │ in the error log because of some unpredictable event.

      Another reason to filter the state can be that the state is too large to print, │ │ │ │ as it fills the error log with uninteresting details.

      To avoid this, you can format the internal state that gets in the error log │ │ │ │ and gets returned from sys:get_status/1,2 │ │ │ │ by implementing function │ │ │ │ Module:format_status/2, │ │ │ │ for example like this:

      ...
      │ │ │ │ --export([init/1,terminate/3,format_status/2]).
      │ │ │ │ +-export([init/1,terminate/3,format_status/2]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -format_status(Opt, [_PDict,State,Data]) ->
      │ │ │ │ +format_status(Opt, [_PDict,State,Data]) ->
      │ │ │ │      StateData =
      │ │ │ │ -	{State,
      │ │ │ │ -	 maps:filter(
      │ │ │ │ -	   fun (code, _) -> false;
      │ │ │ │ -	       (_, _) -> true
      │ │ │ │ +	{State,
      │ │ │ │ +	 maps:filter(
      │ │ │ │ +	   fun (code, _) -> false;
      │ │ │ │ +	       (_, _) -> true
      │ │ │ │  	   end,
      │ │ │ │ -	   Data)},
      │ │ │ │ +	   Data)},
      │ │ │ │      case Opt of
      │ │ │ │  	terminate ->
      │ │ │ │  	    StateData;
      │ │ │ │  	normal ->
      │ │ │ │ -	    [{data,[{"State",StateData}]}]
      │ │ │ │ +	    [{data,[{"State",StateData}]}]
      │ │ │ │      end.

      It is not mandatory to implement a │ │ │ │ Module:format_status/2 function. │ │ │ │ If you do not, a default implementation is used that does the same │ │ │ │ as this example function without filtering the Data term, that is, │ │ │ │ StateData = {State, Data}, in this example containing sensitive information.

      │ │ │ │ │ │ │ │ │ │ │ │ @@ -1227,104 +1227,104 @@ │ │ │ │ like a tuple.

      One reason to use this is when you have a state item that when changed │ │ │ │ should cancel the state time-out, or one that affects │ │ │ │ the event handling in combination with postponing events. We will go for │ │ │ │ the latter and complicate the previous example by introducing │ │ │ │ a configurable lock button (this is the state item in question), │ │ │ │ which in the open state immediately locks the door, and an API function │ │ │ │ set_lock_button/1 to set the lock button.

      Suppose now that we call set_lock_button while the door is open, │ │ │ │ -and we have already postponed a button event that was the new lock button:

      1> code_lock:start_link([a,b,c], x).
      │ │ │ │ -{ok,<0.666.0>}
      │ │ │ │ -2> code_lock:button(a).
      │ │ │ │ +and we have already postponed a button event that was the new lock button:

      1> code_lock:start_link([a,b,c], x).
      │ │ │ │ +{ok,<0.666.0>}
      │ │ │ │ +2> code_lock:button(a).
      │ │ │ │  ok
      │ │ │ │ -3> code_lock:button(b).
      │ │ │ │ +3> code_lock:button(b).
      │ │ │ │  ok
      │ │ │ │ -4> code_lock:button(c).
      │ │ │ │ +4> code_lock:button(c).
      │ │ │ │  ok
      │ │ │ │  Open
      │ │ │ │ -5> code_lock:button(y).
      │ │ │ │ +5> code_lock:button(y).
      │ │ │ │  ok
      │ │ │ │ -6> code_lock:set_lock_button(y).
      │ │ │ │ +6> code_lock:set_lock_button(y).
      │ │ │ │  x
      │ │ │ │  % What should happen here?  Immediate lock or nothing?

      We could say that the button was pressed too early so it should not be │ │ │ │ recognized as the lock button. Or we can make the lock button part of │ │ │ │ the state so when we then change the lock button in the locked state, │ │ │ │ the change becomes a state change and all postponed events are retried, │ │ │ │ therefore the lock is immediately locked!

      We define the state as {StateName, LockButton}, where StateName │ │ │ │ -is as before and LockButton is the current lock button:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock_3).
      │ │ │ │ +is as before and LockButton is the current lock button:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock_3).
      │ │ │ │  
      │ │ │ │ --export([start_link/2,stop/0]).
      │ │ │ │ --export([button/1,set_lock_button/1]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([handle_event/4]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code, LockButton) ->
      │ │ │ │ -    gen_statem:start_link(
      │ │ │ │ -        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).
      │ │ │ │ -
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ -set_lock_button(LockButton) ->
      │ │ │ │ -    gen_statem:call(?NAME, {set_lock_button,LockButton}).
      init({Code,LockButton}) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, {locked,LockButton}, Data}.
      │ │ │ │ +-export([start_link/2,stop/0]).
      │ │ │ │ +-export([button/1,set_lock_button/1]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([handle_event/4]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code, LockButton) ->
      │ │ │ │ +    gen_statem:start_link(
      │ │ │ │ +        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
      │ │ │ │ +stop() ->
      │ │ │ │ +    gen_statem:stop(?NAME).
      │ │ │ │ +
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ +set_lock_button(LockButton) ->
      │ │ │ │ +    gen_statem:call(?NAME, {set_lock_button,LockButton}).
      init({Code,LockButton}) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, {locked,LockButton}, Data}.
      │ │ │ │  
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [handle_event_function,state_enter].
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [handle_event_function,state_enter].
      │ │ │ │  
      │ │ │ │  %% State: locked
      │ │ │ │ -handle_event(enter, _OldState, {locked,_}, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(state_timeout, button, {locked,_}, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(
      │ │ │ │ -  cast, {button,Button}, {locked,LockButton},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_event(enter, _OldState, {locked,_}, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(state_timeout, button, {locked,_}, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(
      │ │ │ │ +  cast, {button,Button}, {locked,LockButton},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, {open,LockButton}, Data};
      │ │ │ │ +            {next_state, {open,LockButton}, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -handle_event(state_timeout, lock, {open,LockButton}, Data) ->
      │ │ │ │ -    {next_state, {locked,LockButton}, Data};
      │ │ │ │ -handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
      │ │ │ │ -    {next_state, {locked,LockButton}, Data};
      │ │ │ │ -handle_event(cast, {button,_}, {open,_}, _Data) ->
      │ │ │ │ -    {keep_state_and_data,[postpone]};
      %%
      │ │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +handle_event(state_timeout, lock, {open,LockButton}, Data) ->
      │ │ │ │ +    {next_state, {locked,LockButton}, Data};
      │ │ │ │ +handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
      │ │ │ │ +    {next_state, {locked,LockButton}, Data};
      │ │ │ │ +handle_event(cast, {button,_}, {open,_}, _Data) ->
      │ │ │ │ +    {keep_state_and_data,[postpone]};
      %%
      │ │ │ │  %% Common events
      │ │ │ │ -handle_event(
      │ │ │ │ -  {call,From}, {set_lock_button,NewLockButton},
      │ │ │ │ -  {StateName,OldLockButton}, Data) ->
      │ │ │ │ -    {next_state, {StateName,NewLockButton}, Data,
      │ │ │ │ -     [{reply,From,OldLockButton}]}.
      do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).
      │ │ │ │ +handle_event(
      │ │ │ │ +  {call,From}, {set_lock_button,NewLockButton},
      │ │ │ │ +  {StateName,OldLockButton}, Data) ->
      │ │ │ │ +    {next_state, {StateName,NewLockButton}, Data,
      │ │ │ │ +     [{reply,From,OldLockButton}]}.
      do_lock() ->
      │ │ │ │ +    io:format("Locked~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Open~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Hibernation │ │ │ │

      │ │ │ │

      If you have many servers in one node and they have some state(s) in their │ │ │ │ @@ -1333,19 +1333,19 @@ │ │ │ │ footprint of a server can be minimized by hibernating it through │ │ │ │ proc_lib:hibernate/3.

      Note

      It is rather costly to hibernate a process; see erlang:hibernate/3. It is │ │ │ │ not something you want to do after every event.

      We can in this example hibernate in the {open, _} state, │ │ │ │ because what normally occurs in that state is that the state time-out │ │ │ │ after a while triggers a transition to {locked, _}:

      ...
      │ │ │ │  %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}, % Time in milliseconds
      │ │ │ │ -      hibernate]};
      │ │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}, % Time in milliseconds
      │ │ │ │ +      hibernate]};
      │ │ │ │  ...

      The atom hibernate in the action list on the │ │ │ │ last line when entering the {open, _} state is the only change. If any event │ │ │ │ arrives in the {open, _}, state, we do not bother to rehibernate, │ │ │ │ so the server stays awake after any event.

      To change that we would need to insert action hibernate in more places. │ │ │ │ For example, the state-independent set_lock_button operation │ │ │ │ would have to use hibernate but only in the {open, _} state, │ │ │ │ which would clutter the code.

      Another not uncommon scenario is to use the │ │ │ ├── OEBPS/spec_proc.xhtml │ │ │ │ @@ -28,72 +28,72 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Debugging │ │ │ │

      │ │ │ │

      The sys module has functions for simple debugging of processes implemented │ │ │ │ using behaviours. The code_lock example from │ │ │ │ -gen_statem Behaviour is used to illustrate this:

      Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │ +gen_statem Behaviour is used to illustrate this:

      Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │  
      │ │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ -1> code_lock:start_link([1,2,3,4]).
      │ │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ +1> code_lock:start_link([1,2,3,4]).
      │ │ │ │  Lock
      │ │ │ │ -{ok,<0.90.0>}
      │ │ │ │ -2> sys:statistics(code_lock, true).
      │ │ │ │ +{ok,<0.90.0>}
      │ │ │ │ +2> sys:statistics(code_lock, true).
      │ │ │ │  ok
      │ │ │ │ -3> sys:trace(code_lock, true).
      │ │ │ │ +3> sys:trace(code_lock, true).
      │ │ │ │  ok
      │ │ │ │ -4> code_lock:button(1).
      │ │ │ │ -*DBG* code_lock receive cast {button,1} in state locked
      │ │ │ │ +4> code_lock:button(1).
      │ │ │ │ +*DBG* code_lock receive cast {button,1} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,1} in state locked
      │ │ │ │ -5> code_lock:button(2).
      │ │ │ │ -*DBG* code_lock receive cast {button,2} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,1} in state locked
      │ │ │ │ +5> code_lock:button(2).
      │ │ │ │ +*DBG* code_lock receive cast {button,2} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,2} in state locked
      │ │ │ │ -6> code_lock:button(3).
      │ │ │ │ -*DBG* code_lock receive cast {button,3} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,2} in state locked
      │ │ │ │ +6> code_lock:button(3).
      │ │ │ │ +*DBG* code_lock receive cast {button,3} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,3} in state locked
      │ │ │ │ -7> code_lock:button(4).
      │ │ │ │ -*DBG* code_lock receive cast {button,4} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,3} in state locked
      │ │ │ │ +7> code_lock:button(4).
      │ │ │ │ +*DBG* code_lock receive cast {button,4} in state locked
      │ │ │ │  ok
      │ │ │ │  Unlock
      │ │ │ │ -*DBG* code_lock consume cast {button,4} in state locked => open
      │ │ │ │ -*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
      │ │ │ │ +*DBG* code_lock consume cast {button,4} in state locked => open
      │ │ │ │ +*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
      │ │ │ │  *DBG* code_lock receive state_timeout lock in state open
      │ │ │ │  Lock
      │ │ │ │  *DBG* code_lock consume state_timeout lock in state open => locked
      │ │ │ │ -8> sys:statistics(code_lock, get).
      │ │ │ │ -{ok,[{start_time,{{2024,5,3},{8,11,1}}},
      │ │ │ │ -     {current_time,{{2024,5,3},{8,11,48}}},
      │ │ │ │ -     {reductions,4098},
      │ │ │ │ -     {messages_in,5},
      │ │ │ │ -     {messages_out,0}]}
      │ │ │ │ -9> sys:statistics(code_lock, false).
      │ │ │ │ +8> sys:statistics(code_lock, get).
      │ │ │ │ +{ok,[{start_time,{{2024,5,3},{8,11,1}}},
      │ │ │ │ +     {current_time,{{2024,5,3},{8,11,48}}},
      │ │ │ │ +     {reductions,4098},
      │ │ │ │ +     {messages_in,5},
      │ │ │ │ +     {messages_out,0}]}
      │ │ │ │ +9> sys:statistics(code_lock, false).
      │ │ │ │  ok
      │ │ │ │ -10> sys:trace(code_lock, false).
      │ │ │ │ +10> sys:trace(code_lock, false).
      │ │ │ │  ok
      │ │ │ │ -11> sys:get_status(code_lock).
      │ │ │ │ -{status,<0.90.0>,
      │ │ │ │ -        {module,gen_statem},
      │ │ │ │ -        [[{'$initial_call',{code_lock,init,1}},
      │ │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
      │ │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
      │ │ │ │ -         running,<0.88.0>,[],
      │ │ │ │ -         [{header,"Status for state machine code_lock"},
      │ │ │ │ -          {data,[{"Status",running},
      │ │ │ │ -                 {"Parent",<0.88.0>},
      │ │ │ │ -                 {"Modules",[code_lock]},
      │ │ │ │ -                 {"Time-outs",{0,[]}},
      │ │ │ │ -                 {"Logged Events",[]},
      │ │ │ │ -                 {"Postponed",[]}]},
      │ │ │ │ -          {data,[{"State",
      │ │ │ │ -                  {locked,#{code => [1,2,3,4],
      │ │ │ │ -                            length => 4,buttons => []}}}]}]]}

      │ │ │ │ +11> sys:get_status(code_lock). │ │ │ │ +{status,<0.90.0>, │ │ │ │ + {module,gen_statem}, │ │ │ │ + [[{'$initial_call',{code_lock,init,1}}, │ │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ │ + running,<0.88.0>,[], │ │ │ │ + [{header,"Status for state machine code_lock"}, │ │ │ │ + {data,[{"Status",running}, │ │ │ │ + {"Parent",<0.88.0>}, │ │ │ │ + {"Modules",[code_lock]}, │ │ │ │ + {"Time-outs",{0,[]}}, │ │ │ │ + {"Logged Events",[]}, │ │ │ │ + {"Postponed",[]}]}, │ │ │ │ + {data,[{"State", │ │ │ │ + {locked,#{code => [1,2,3,4], │ │ │ │ + length => 4,buttons => []}}}]}]]}

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Special Processes │ │ │ │

      │ │ │ │

      This section describes how to write a process that complies to the OTP design │ │ │ │ principles, without using a standard behaviour. Such a process is to:

      System messages are messages with a special meaning, used in the supervision │ │ │ │ @@ -103,238 +103,238 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │ │ │

      Here follows the simple server from │ │ │ │ Overview, │ │ │ │ -implemented using sys and proc_lib to fit into a supervision tree:

      -module(ch4).
      │ │ │ │ --export([start_link/0]).
      │ │ │ │ --export([alloc/0, free/1]).
      │ │ │ │ --export([init/1]).
      │ │ │ │ --export([system_continue/3, system_terminate/4,
      │ │ │ │ +implemented using sys and proc_lib to fit into a supervision tree:

      -module(ch4).
      │ │ │ │ +-export([start_link/0]).
      │ │ │ │ +-export([alloc/0, free/1]).
      │ │ │ │ +-export([init/1]).
      │ │ │ │ +-export([system_continue/3, system_terminate/4,
      │ │ │ │           write_debug/3,
      │ │ │ │ -         system_get_state/1, system_replace_state/2]).
      │ │ │ │ +         system_get_state/1, system_replace_state/2]).
      │ │ │ │  
      │ │ │ │ -start_link() ->
      │ │ │ │ -    proc_lib:start_link(ch4, init, [self()]).
      │ │ │ │ +start_link() ->
      │ │ │ │ +    proc_lib:start_link(ch4, init, [self()]).
      │ │ │ │  
      │ │ │ │ -alloc() ->
      │ │ │ │ -    ch4 ! {self(), alloc},
      │ │ │ │ +alloc() ->
      │ │ │ │ +    ch4 ! {self(), alloc},
      │ │ │ │      receive
      │ │ │ │ -        {ch4, Res} ->
      │ │ │ │ +        {ch4, Res} ->
      │ │ │ │              Res
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -free(Ch) ->
      │ │ │ │ -    ch4 ! {free, Ch},
      │ │ │ │ +free(Ch) ->
      │ │ │ │ +    ch4 ! {free, Ch},
      │ │ │ │      ok.
      │ │ │ │  
      │ │ │ │ -init(Parent) ->
      │ │ │ │ -    register(ch4, self()),
      │ │ │ │ -    Chs = channels(),
      │ │ │ │ -    Deb = sys:debug_options([]),
      │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ -    loop(Chs, Parent, Deb).
      │ │ │ │ +init(Parent) ->
      │ │ │ │ +    register(ch4, self()),
      │ │ │ │ +    Chs = channels(),
      │ │ │ │ +    Deb = sys:debug_options([]),
      │ │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ +    loop(Chs, Parent, Deb).
      │ │ │ │  
      │ │ │ │ -loop(Chs, Parent, Deb) ->
      │ │ │ │ +loop(Chs, Parent, Deb) ->
      │ │ │ │      receive
      │ │ │ │ -        {From, alloc} ->
      │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {in, alloc, From}),
      │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
      │ │ │ │ -            From ! {ch4, Ch},
      │ │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ │ -            loop(Chs2, Parent, Deb3);
      │ │ │ │ -        {free, Ch} ->
      │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {in, {free, Ch}}),
      │ │ │ │ -            Chs2 = free(Ch, Chs),
      │ │ │ │ -            loop(Chs2, Parent, Deb2);
      │ │ │ │ -
      │ │ │ │ -        {system, From, Request} ->
      │ │ │ │ -            sys:handle_system_msg(Request, From, Parent,
      │ │ │ │ -                                  ch4, Deb, Chs)
      │ │ │ │ +        {From, alloc} ->
      │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {in, alloc, From}),
      │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
      │ │ │ │ +            From ! {ch4, Ch},
      │ │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ │ +            loop(Chs2, Parent, Deb3);
      │ │ │ │ +        {free, Ch} ->
      │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {in, {free, Ch}}),
      │ │ │ │ +            Chs2 = free(Ch, Chs),
      │ │ │ │ +            loop(Chs2, Parent, Deb2);
      │ │ │ │ +
      │ │ │ │ +        {system, From, Request} ->
      │ │ │ │ +            sys:handle_system_msg(Request, From, Parent,
      │ │ │ │ +                                  ch4, Deb, Chs)
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -system_continue(Parent, Deb, Chs) ->
      │ │ │ │ -    loop(Chs, Parent, Deb).
      │ │ │ │ +system_continue(Parent, Deb, Chs) ->
      │ │ │ │ +    loop(Chs, Parent, Deb).
      │ │ │ │  
      │ │ │ │ -system_terminate(Reason, _Parent, _Deb, _Chs) ->
      │ │ │ │ -    exit(Reason).
      │ │ │ │ +system_terminate(Reason, _Parent, _Deb, _Chs) ->
      │ │ │ │ +    exit(Reason).
      │ │ │ │  
      │ │ │ │ -system_get_state(Chs) ->
      │ │ │ │ -    {ok, Chs}.
      │ │ │ │ +system_get_state(Chs) ->
      │ │ │ │ +    {ok, Chs}.
      │ │ │ │  
      │ │ │ │ -system_replace_state(StateFun, Chs) ->
      │ │ │ │ -    NChs = StateFun(Chs),
      │ │ │ │ -    {ok, NChs, NChs}.
      │ │ │ │ +system_replace_state(StateFun, Chs) ->
      │ │ │ │ +    NChs = StateFun(Chs),
      │ │ │ │ +    {ok, NChs, NChs}.
      │ │ │ │  
      │ │ │ │ -write_debug(Dev, Event, Name) ->
      │ │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

      As it is not relevant to the example, the channel handling functions have been │ │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

      As it is not relevant to the example, the channel handling functions have been │ │ │ │ omitted. To compile this example, the │ │ │ │ implementation of channel handling │ │ │ │ needs to be added to the module.

      Here is an example showing how the debugging functions in the sys │ │ │ │ module can be used for ch4:

      % erl
      │ │ │ │ -Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │ +Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │  
      │ │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ -1> ch4:start_link().
      │ │ │ │ -{ok,<0.90.0>}
      │ │ │ │ -2> sys:statistics(ch4, true).
      │ │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ +1> ch4:start_link().
      │ │ │ │ +{ok,<0.90.0>}
      │ │ │ │ +2> sys:statistics(ch4, true).
      │ │ │ │  ok
      │ │ │ │ -3> sys:trace(ch4, true).
      │ │ │ │ +3> sys:trace(ch4, true).
      │ │ │ │  ok
      │ │ │ │ -4> ch4:alloc().
      │ │ │ │ -ch4 event = {in,alloc,<0.88.0>}
      │ │ │ │ -ch4 event = {out,{ch4,1},<0.88.0>}
      │ │ │ │ +4> ch4:alloc().
      │ │ │ │ +ch4 event = {in,alloc,<0.88.0>}
      │ │ │ │ +ch4 event = {out,{ch4,1},<0.88.0>}
      │ │ │ │  1
      │ │ │ │ -5> ch4:free(ch1).
      │ │ │ │ -ch4 event = {in,{free,ch1}}
      │ │ │ │ +5> ch4:free(ch1).
      │ │ │ │ +ch4 event = {in,{free,ch1}}
      │ │ │ │  ok
      │ │ │ │ -6> sys:statistics(ch4, get).
      │ │ │ │ -{ok,[{start_time,{{2024,5,3},{8,26,13}}},
      │ │ │ │ -     {current_time,{{2024,5,3},{8,26,49}}},
      │ │ │ │ -     {reductions,202},
      │ │ │ │ -     {messages_in,2},
      │ │ │ │ -     {messages_out,1}]}
      │ │ │ │ -7> sys:statistics(ch4, false).
      │ │ │ │ +6> sys:statistics(ch4, get).
      │ │ │ │ +{ok,[{start_time,{{2024,5,3},{8,26,13}}},
      │ │ │ │ +     {current_time,{{2024,5,3},{8,26,49}}},
      │ │ │ │ +     {reductions,202},
      │ │ │ │ +     {messages_in,2},
      │ │ │ │ +     {messages_out,1}]}
      │ │ │ │ +7> sys:statistics(ch4, false).
      │ │ │ │  ok
      │ │ │ │ -8> sys:trace(ch4, false).
      │ │ │ │ +8> sys:trace(ch4, false).
      │ │ │ │  ok
      │ │ │ │ -9> sys:get_status(ch4).
      │ │ │ │ -{status,<0.90.0>,
      │ │ │ │ -        {module,ch4},
      │ │ │ │ -        [[{'$initial_call',{ch4,init,1}},
      │ │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
      │ │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
      │ │ │ │ -         running,<0.88.0>,[],
      │ │ │ │ -         {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

      │ │ │ │ +9> sys:get_status(ch4). │ │ │ │ +{status,<0.90.0>, │ │ │ │ + {module,ch4}, │ │ │ │ + [[{'$initial_call',{ch4,init,1}}, │ │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ │ + running,<0.88.0>,[], │ │ │ │ + {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting the Process │ │ │ │

      │ │ │ │

      A function in the proc_lib module is to be used to start the process. Several │ │ │ │ functions are available, for example, │ │ │ │ proc_lib:spawn_link/3,4 │ │ │ │ for asynchronous start and │ │ │ │ proc_lib:start_link/3,4,5 for synchronous start.

      Information necessary for a process within a supervision tree, such as │ │ │ │ details on ancestors and the initial call, is stored when a process │ │ │ │ is started through one of these functions.

      If the process terminates with a reason other than normal or shutdown, a │ │ │ │ crash report is generated. For more information about the crash report, see │ │ │ │ Logging in Kernel User's Guide.

      In the example, synchronous start is used. The process starts by calling │ │ │ │ -ch4:start_link():

      start_link() ->
      │ │ │ │ -    proc_lib:start_link(ch4, init, [self()]).

      ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ │ +ch4:start_link():

      start_link() ->
      │ │ │ │ +    proc_lib:start_link(ch4, init, [self()]).

      ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ │ name, a function name, and an argument list as arguments. It then │ │ │ │ spawns a new process and establishes a link. The new process starts │ │ │ │ by executing the given function, here ch4:init(Pid), where Pid is │ │ │ │ the pid of the parent process (obtained by the call to │ │ │ │ self() in the call to proc_lib:start_link/3).

      All initialization, including name registration, is done in init/1. The new │ │ │ │ -process has to acknowledge that it has been started to the parent:

      init(Parent) ->
      │ │ │ │ +process has to acknowledge that it has been started to the parent:

      init(Parent) ->
      │ │ │ │      ...
      │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ -    loop(...).

      proc_lib:start_link/3 is synchronous and does not return until │ │ │ │ + proc_lib:init_ack(Parent, {ok, self()}), │ │ │ │ + loop(...).

      proc_lib:start_link/3 is synchronous and does not return until │ │ │ │ proc_lib:init_ack/1,2 or │ │ │ │ proc_lib:init_fail/2,3 has been called, │ │ │ │ or the process has exited.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Debugging │ │ │ │

      │ │ │ │

      To support the debug facilities in sys, a debug structure is needed. The │ │ │ │ -Deb term is initialized using sys:debug_options/1:

      init(Parent) ->
      │ │ │ │ +Deb term is initialized using sys:debug_options/1:

      init(Parent) ->
      │ │ │ │      ...
      │ │ │ │ -    Deb = sys:debug_options([]),
      │ │ │ │ +    Deb = sys:debug_options([]),
      │ │ │ │      ...
      │ │ │ │ -    loop(Chs, Parent, Deb).

      sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ │ + loop(Chs, Parent, Deb).

      sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ │ example means that debugging is initially disabled. For information about the │ │ │ │ possible options, see sys in STDLIB.

      For each system event to be logged or traced, the following function │ │ │ │ -is to be called:

      sys:handle_debug(Deb, Func, Info, Event) => Deb1

      The arguments have the follow meaning:

      • Deb is the debug structure as returned from sys:debug_options/1.
      • Func is a fun specifying a (user-defined) function used to format trace │ │ │ │ +is to be called:

        sys:handle_debug(Deb, Func, Info, Event) => Deb1

        The arguments have the follow meaning:

        • Deb is the debug structure as returned from sys:debug_options/1.
        • Func is a fun specifying a (user-defined) function used to format trace │ │ │ │ output. For each system event, the format function is called as │ │ │ │ Func(Dev, Event, Info), where:
          • Dev is the I/O device to which the output is to be printed. See io │ │ │ │ in STDLIB.
          • Event and Info are passed as-is from the call to sys:handle_debug/4.
        • Info is used to pass more information to Func. It can be any term, and it │ │ │ │ is passed as-is.
        • Event is the system event. It is up to the user to define what a system │ │ │ │ event is and how it is to be represented. Typically, at least incoming and │ │ │ │ outgoing messages are considered system events and represented by the tuples │ │ │ │ {in,Msg[,From]} and {out,Msg,To[,State]}, respectively.

        sys:handle_debug/4 returns an updated debug structure Deb1.

        In the example, sys:handle_debug/4 is called for each incoming and │ │ │ │ outgoing message. The format function Func is the function │ │ │ │ -ch4:write_debug/3, which prints the message using io:format/3.

        loop(Chs, Parent, Deb) ->
        │ │ │ │ +ch4:write_debug/3, which prints the message using io:format/3.

        loop(Chs, Parent, Deb) ->
        │ │ │ │      receive
        │ │ │ │ -        {From, alloc} ->
        │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {in, alloc, From}),
        │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
        │ │ │ │ -            From ! {ch4, Ch},
        │ │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
        │ │ │ │ -            loop(Chs2, Parent, Deb3);
        │ │ │ │ -        {free, Ch} ->
        │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {in, {free, Ch}}),
        │ │ │ │ -            Chs2 = free(Ch, Chs),
        │ │ │ │ -            loop(Chs2, Parent, Deb2);
        │ │ │ │ +        {From, alloc} ->
        │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {in, alloc, From}),
        │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
        │ │ │ │ +            From ! {ch4, Ch},
        │ │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
        │ │ │ │ +            loop(Chs2, Parent, Deb3);
        │ │ │ │ +        {free, Ch} ->
        │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {in, {free, Ch}}),
        │ │ │ │ +            Chs2 = free(Ch, Chs),
        │ │ │ │ +            loop(Chs2, Parent, Deb2);
        │ │ │ │          ...
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │ -write_debug(Dev, Event, Name) ->
        │ │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

        │ │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling System Messages │ │ │ │

        │ │ │ │

        System messages are received as:

        {system, From, Request}

        The content and meaning of these messages are not to be interpreted by the │ │ │ │ -process. Instead the following function is to be called:

        sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

        The arguments have the following meaning:

        • Request and From from the received system message are to be │ │ │ │ +process. Instead the following function is to be called:

          sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

          The arguments have the following meaning:

          • Request and From from the received system message are to be │ │ │ │ passed as-is to the call to sys:handle_system_msg/6.
          • Parent is the pid of the parent process.
          • Module is the name of the module implementing the speciall process.
          • Deb is the debug structure.
          • State is a term describing the internal state and is passed on to │ │ │ │ Module:system_continue/3, Module:system_terminate/4/ │ │ │ │ Module:system_get_state/1, and Module:system_replace_state/2.

          sys:handle_system_msg/6 does not return. It handles the system │ │ │ │ message and eventually calls either of the following functions:

          • Module:system_continue(Parent, Deb, State) - if process execution is to │ │ │ │ continue.

          • Module:system_terminate(Reason, Parent, Deb, State) - if the │ │ │ │ process is to terminate.

          While handling the system message, sys:handle_system_msg/6 can call │ │ │ │ one of the following functions:

          • Module:system_get_state(State) - if the process is to return its state.

          • Module:system_replace_state(StateFun, State) - if the process is │ │ │ │ to replace its state using the fun StateFun fun. See sys:replace_state/3 │ │ │ │ for more information.

          • system_code_change(Misc, Module, OldVsn, Extra) - if the process is to │ │ │ │ perform a code change.

          A process in a supervision tree is expected to terminate with the same reason as │ │ │ │ -its parent.

          In the example, system messages are handed by the following code:

          loop(Chs, Parent, Deb) ->
          │ │ │ │ +its parent.

          In the example, system messages are handed by the following code:

          loop(Chs, Parent, Deb) ->
          │ │ │ │      receive
          │ │ │ │          ...
          │ │ │ │  
          │ │ │ │ -        {system, From, Request} ->
          │ │ │ │ -            sys:handle_system_msg(Request, From, Parent,
          │ │ │ │ -                                  ch4, Deb, Chs)
          │ │ │ │ +        {system, From, Request} ->
          │ │ │ │ +            sys:handle_system_msg(Request, From, Parent,
          │ │ │ │ +                                  ch4, Deb, Chs)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -system_continue(Parent, Deb, Chs) ->
          │ │ │ │ -    loop(Chs, Parent, Deb).
          │ │ │ │ +system_continue(Parent, Deb, Chs) ->
          │ │ │ │ +    loop(Chs, Parent, Deb).
          │ │ │ │  
          │ │ │ │ -system_terminate(Reason, Parent, Deb, Chs) ->
          │ │ │ │ -    exit(Reason).
          │ │ │ │ +system_terminate(Reason, Parent, Deb, Chs) ->
          │ │ │ │ +    exit(Reason).
          │ │ │ │  
          │ │ │ │ -system_get_state(Chs) ->
          │ │ │ │ -    {ok, Chs, Chs}.
          │ │ │ │ +system_get_state(Chs) ->
          │ │ │ │ +    {ok, Chs, Chs}.
          │ │ │ │  
          │ │ │ │ -system_replace_state(StateFun, Chs) ->
          │ │ │ │ -    NChs = StateFun(Chs),
          │ │ │ │ -    {ok, NChs, NChs}.

          If a special process is configured to trap exits, it must take notice │ │ │ │ +system_replace_state(StateFun, Chs) -> │ │ │ │ + NChs = StateFun(Chs), │ │ │ │ + {ok, NChs, NChs}.

          If a special process is configured to trap exits, it must take notice │ │ │ │ of 'EXIT' messages from its parent process and terminate using the │ │ │ │ -same exit reason once the parent process has terminated.

          Here is an example:

          init(Parent) ->
          │ │ │ │ +same exit reason once the parent process has terminated.

          Here is an example:

          init(Parent) ->
          │ │ │ │      ...,
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │      ...,
          │ │ │ │ -    loop(Parent).
          │ │ │ │ +    loop(Parent).
          │ │ │ │  
          │ │ │ │ -loop(Parent) ->
          │ │ │ │ +loop(Parent) ->
          │ │ │ │      receive
          │ │ │ │          ...
          │ │ │ │ -        {'EXIT', Parent, Reason} ->
          │ │ │ │ +        {'EXIT', Parent, Reason} ->
          │ │ │ │              %% Clean up here, if needed.
          │ │ │ │ -            exit(Reason);
          │ │ │ │ +            exit(Reason);
          │ │ │ │          ...
          │ │ │ │      end.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ User-Defined Behaviours │ │ │ │

          │ │ │ │ @@ -353,69 +353,69 @@ │ │ │ │ function. Note that the -optional_callbacks attribute is to be used together │ │ │ │ with the -callback attribute; it cannot be combined with the │ │ │ │ behaviour_info() function described below.

          Tools that need to know about optional callback functions can call │ │ │ │ Behaviour:behaviour_info(optional_callbacks) to get a list of all optional │ │ │ │ callback functions.

          Note

          We recommend using the -callback attribute rather than the │ │ │ │ behaviour_info() function. The reason is that the extra type information can │ │ │ │ be used by tools to produce documentation or find discrepancies.

          As an alternative to the -callback and -optional_callbacks attributes you │ │ │ │ -may directly implement and export behaviour_info():

          behaviour_info(callbacks) ->
          │ │ │ │ -    [{Name1, Arity1},...,{NameN, ArityN}].

          where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ │ +may directly implement and export behaviour_info():

          behaviour_info(callbacks) ->
          │ │ │ │ +    [{Name1, Arity1},...,{NameN, ArityN}].

          where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ │ This function is otherwise automatically generated by the compiler using the │ │ │ │ -callback attributes.

          When the compiler encounters the module attribute -behaviour(Behaviour). in a │ │ │ │ module Mod, it calls Behaviour:behaviour_info(callbacks) and compares the │ │ │ │ result with the set of functions actually exported from Mod, and issues a │ │ │ │ warning if any callback function is missing.

          Example:

          %% User-defined behaviour module
          │ │ │ │ --module(simple_server).
          │ │ │ │ --export([start_link/2, init/3, ...]).
          │ │ │ │ +-module(simple_server).
          │ │ │ │ +-export([start_link/2, init/3, ...]).
          │ │ │ │  
          │ │ │ │ --callback init(State :: term()) -> 'ok'.
          │ │ │ │ --callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
          │ │ │ │ --callback terminate() -> 'ok'.
          │ │ │ │ --callback format_state(State :: term()) -> term().
          │ │ │ │ +-callback init(State :: term()) -> 'ok'.
          │ │ │ │ +-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
          │ │ │ │ +-callback terminate() -> 'ok'.
          │ │ │ │ +-callback format_state(State :: term()) -> term().
          │ │ │ │  
          │ │ │ │ --optional_callbacks([format_state/1]).
          │ │ │ │ +-optional_callbacks([format_state/1]).
          │ │ │ │  
          │ │ │ │  %% Alternatively you may define:
          │ │ │ │  %%
          │ │ │ │  %% -export([behaviour_info/1]).
          │ │ │ │  %% behaviour_info(callbacks) ->
          │ │ │ │  %%     [{init,1},
          │ │ │ │  %%      {handle_req,2},
          │ │ │ │  %%      {terminate,0}].
          │ │ │ │  
          │ │ │ │ -start_link(Name, Module) ->
          │ │ │ │ -    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
          │ │ │ │ +start_link(Name, Module) ->
          │ │ │ │ +    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
          │ │ │ │  
          │ │ │ │ -init(Parent, Name, Module) ->
          │ │ │ │ -    register(Name, self()),
          │ │ │ │ +init(Parent, Name, Module) ->
          │ │ │ │ +    register(Name, self()),
          │ │ │ │      ...,
          │ │ │ │ -    Dbg = sys:debug_options([]),
          │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
          │ │ │ │ -    loop(Parent, Module, Deb, ...).
          │ │ │ │ +    Dbg = sys:debug_options([]),
          │ │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
          │ │ │ │ +    loop(Parent, Module, Deb, ...).
          │ │ │ │  
          │ │ │ │ -...

          In a callback module:

          -module(db).
          │ │ │ │ --behaviour(simple_server).
          │ │ │ │ +...

          In a callback module:

          -module(db).
          │ │ │ │ +-behaviour(simple_server).
          │ │ │ │  
          │ │ │ │ --export([init/1, handle_req/2, terminate/0]).
          │ │ │ │ +-export([init/1, handle_req/2, terminate/0]).
          │ │ │ │  
          │ │ │ │  ...

          The contracts specified with -callback attributes in behaviour modules can be │ │ │ │ further refined by adding -spec attributes in callback modules. This can be │ │ │ │ useful as -callback contracts are usually generic. The same callback module │ │ │ │ -with contracts for the callbacks:

          -module(db).
          │ │ │ │ --behaviour(simple_server).
          │ │ │ │ +with contracts for the callbacks:

          -module(db).
          │ │ │ │ +-behaviour(simple_server).
          │ │ │ │  
          │ │ │ │ --export([init/1, handle_req/2, terminate/0]).
          │ │ │ │ +-export([init/1, handle_req/2, terminate/0]).
          │ │ │ │  
          │ │ │ │ --record(state, {field1 :: [atom()], field2 :: integer()}).
          │ │ │ │ +-record(state, {field1 :: [atom()], field2 :: integer()}).
          │ │ │ │  
          │ │ │ │ --type state()   :: #state{}.
          │ │ │ │ --type request() :: {'store', term(), term()};
          │ │ │ │ -                   {'lookup', term()}.
          │ │ │ │ +-type state()   :: #state{}.
          │ │ │ │ +-type request() :: {'store', term(), term()};
          │ │ │ │ +                   {'lookup', term()}.
          │ │ │ │  
          │ │ │ │  ...
          │ │ │ │  
          │ │ │ │ --spec handle_req(request(), state()) -> {'ok', term()}.
          │ │ │ │ +-spec handle_req(request(), state()) -> {'ok', term()}.
          │ │ │ │  
          │ │ │ │  ...

          Each -spec contract is to be a subtype of the respective -callback contract.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/seq_prog.xhtml │ │ │ │ @@ -41,293 +41,293 @@ │ │ │ │
          7 │ │ │ │ 2>

          As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and │ │ │ │ that it correctly says that 2 + 5 is 7. If you make writing mistakes in the │ │ │ │ shell, you can delete with the backspace key, as in most shells. There are many │ │ │ │ more editing commands in the shell (see │ │ │ │ tty - A command line interface in ERTS User's Guide).

          (Notice that many line numbers given by the shell in the following examples are │ │ │ │ out of sequence. This is because this tutorial was written and code-tested in │ │ │ │ -separate sessions).

          Here is a bit more complex calculation:

          2> (42 + 77) * 66 / 3.
          │ │ │ │ +separate sessions).

          Here is a bit more complex calculation:

          2> (42 + 77) * 66 / 3.
          │ │ │ │  2618.0

          Notice the use of brackets, the multiplication operator *, and the division │ │ │ │ operator /, as in normal arithmetic (see │ │ │ │ Expressions).

          Press Control-C to shut down the Erlang system and the Erlang shell.

          The following output is shown:

          BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
          │ │ │ │         (v)ersion (k)ill (D)b-tables (d)istribution
          │ │ │ │  a
          │ │ │ │ -$

          Type a to leave the Erlang system.

          Another way to shut down the Erlang system is by entering halt/0:

          3> halt().
          │ │ │ │ +$

          Type a to leave the Erlang system.

          Another way to shut down the Erlang system is by entering halt/0:

          3> halt().
          │ │ │ │  $

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Modules and Functions │ │ │ │

          │ │ │ │

          A programming language is not much use if you only can run code from the shell. │ │ │ │ So here is a small Erlang program. Enter it into a file named tut.erl using a │ │ │ │ suitable text editor. The file name tut.erl is important, and also that it is │ │ │ │ in the same directory as the one where you started erl). If you are lucky your │ │ │ │ editor has an Erlang mode that makes it easier for you to enter and format your │ │ │ │ code nicely (see The Erlang mode for Emacs │ │ │ │ in Tools User's Guide), but you can manage perfectly well without. Here is the │ │ │ │ -code to enter:

          -module(tut).
          │ │ │ │ --export([double/1]).
          │ │ │ │ +code to enter:

          -module(tut).
          │ │ │ │ +-export([double/1]).
          │ │ │ │  
          │ │ │ │ -double(X) ->
          │ │ │ │ +double(X) ->
          │ │ │ │      2 * X.

          It is not hard to guess that this program doubles the value of numbers. The │ │ │ │ first two lines of the code are described later. Let us compile the program. │ │ │ │ -This can be done in an Erlang shell as follows, where c means compile:

          3> c(tut).
          │ │ │ │ -{ok,tut}

          The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ │ +This can be done in an Erlang shell as follows, where c means compile:

          3> c(tut).
          │ │ │ │ +{ok,tut}

          The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ │ that there is some mistake in the text that you entered. Additional error │ │ │ │ messages gives an idea to what is wrong so you can modify the text and then try │ │ │ │ -to compile the program again.

          Now run the program:

          4> tut:double(10).
          │ │ │ │ +to compile the program again.

          Now run the program:

          4> tut:double(10).
          │ │ │ │  20

          As expected, double of 10 is 20.

          Now let us get back to the first two lines of the code. Erlang programs are │ │ │ │ written in files. Each file contains an Erlang module. The first line of code │ │ │ │ -in the module is the module name (see Modules):

          -module(tut).

          Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ │ +in the module is the module name (see Modules):

          -module(tut).

          Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ │ line. The files which are used to store the module must have the same name as │ │ │ │ the module but with the extension .erl. In this case the file name is │ │ │ │ tut.erl. When using a function in another module, the syntax │ │ │ │ module_name:function_name(arguments) is used. So the following means call │ │ │ │ -function double in module tut with argument 10.

          4> tut:double(10).

          The second line says that the module tut contains a function called double, │ │ │ │ -which takes one argument (X in our example):

          -export([double/1]).

          The second line also says that this function can be called from outside the │ │ │ │ +function double in module tut with argument 10.

          4> tut:double(10).

          The second line says that the module tut contains a function called double, │ │ │ │ +which takes one argument (X in our example):

          -export([double/1]).

          The second line also says that this function can be called from outside the │ │ │ │ module tut. More about this later. Again, notice the . at the end of the │ │ │ │ line.

          Now for a more complicated example, the factorial of a number. For example, the │ │ │ │ -factorial of 4 is 4 3 2 * 1, which equals 24.

          Enter the following code in a file named tut1.erl:

          -module(tut1).
          │ │ │ │ --export([fac/1]).
          │ │ │ │ +factorial of 4 is 4  3  2 * 1, which equals 24.

          Enter the following code in a file named tut1.erl:

          -module(tut1).
          │ │ │ │ +-export([fac/1]).
          │ │ │ │  
          │ │ │ │ -fac(1) ->
          │ │ │ │ +fac(1) ->
          │ │ │ │      1;
          │ │ │ │ -fac(N) ->
          │ │ │ │ -    N * fac(N - 1).

          So this is a module, called tut1 that contains a function called fac>, which │ │ │ │ -takes one argument, N.

          The first part says that the factorial of 1 is 1.:

          fac(1) ->
          │ │ │ │ +fac(N) ->
          │ │ │ │ +    N * fac(N - 1).

          So this is a module, called tut1 that contains a function called fac>, which │ │ │ │ +takes one argument, N.

          The first part says that the factorial of 1 is 1.:

          fac(1) ->
          │ │ │ │      1;

          Notice that this part ends with a semicolon ; that indicates that there is │ │ │ │ more of the function fac> to come.

          The second part says that the factorial of N is N multiplied by the factorial of │ │ │ │ -N - 1:

          fac(N) ->
          │ │ │ │ -    N * fac(N - 1).

          Notice that this part ends with a . saying that there are no more parts of │ │ │ │ -this function.

          Compile the file:

          5> c(tut1).
          │ │ │ │ -{ok,tut1}

          And now calculate the factorial of 4.

          6> tut1:fac(4).
          │ │ │ │ +N - 1:

          fac(N) ->
          │ │ │ │ +    N * fac(N - 1).

          Notice that this part ends with a . saying that there are no more parts of │ │ │ │ +this function.

          Compile the file:

          5> c(tut1).
          │ │ │ │ +{ok,tut1}

          And now calculate the factorial of 4.

          6> tut1:fac(4).
          │ │ │ │  24

          Here the function fac> in module tut1 is called with argument 4.

          A function can have many arguments. Let us expand the module tut1 with the │ │ │ │ -function to multiply two numbers:

          -module(tut1).
          │ │ │ │ --export([fac/1, mult/2]).
          │ │ │ │ +function to multiply two numbers:

          -module(tut1).
          │ │ │ │ +-export([fac/1, mult/2]).
          │ │ │ │  
          │ │ │ │ -fac(1) ->
          │ │ │ │ +fac(1) ->
          │ │ │ │      1;
          │ │ │ │ -fac(N) ->
          │ │ │ │ -    N * fac(N - 1).
          │ │ │ │ +fac(N) ->
          │ │ │ │ +    N * fac(N - 1).
          │ │ │ │  
          │ │ │ │ -mult(X, Y) ->
          │ │ │ │ +mult(X, Y) ->
          │ │ │ │      X * Y.

          Notice that it is also required to expand the -export line with the │ │ │ │ -information that there is another function mult with two arguments.

          Compile:

          7> c(tut1).
          │ │ │ │ -{ok,tut1}

          Try out the new function mult:

          8> tut1:mult(3,4).
          │ │ │ │ +information that there is another function mult with two arguments.

          Compile:

          7> c(tut1).
          │ │ │ │ +{ok,tut1}

          Try out the new function mult:

          8> tut1:mult(3,4).
          │ │ │ │  12

          In this example the numbers are integers and the arguments in the functions in │ │ │ │ the code N, X, and Y are called variables. Variables must start with a │ │ │ │ capital letter (see Variables). Examples of │ │ │ │ variables are Number, ShoeSize, and Age.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │ │

          │ │ │ │

          Atom is another data type in Erlang. Atoms start with a small letter (see │ │ │ │ Atom), for example, charles, centimeter, and │ │ │ │ inch. Atoms are simply names, nothing else. They are not like variables, which │ │ │ │ can have a value.

          Enter the next program in a file named tut2.erl). It can be useful for │ │ │ │ -converting from inches to centimeters and conversely:

          -module(tut2).
          │ │ │ │ --export([convert/2]).
          │ │ │ │ +converting from inches to centimeters and conversely:

          -module(tut2).
          │ │ │ │ +-export([convert/2]).
          │ │ │ │  
          │ │ │ │ -convert(M, inch) ->
          │ │ │ │ +convert(M, inch) ->
          │ │ │ │      M / 2.54;
          │ │ │ │  
          │ │ │ │ -convert(N, centimeter) ->
          │ │ │ │ -    N * 2.54.

          Compile:

          9> c(tut2).
          │ │ │ │ -{ok,tut2}

          Test:

          10> tut2:convert(3, inch).
          │ │ │ │ +convert(N, centimeter) ->
          │ │ │ │ +    N * 2.54.

          Compile:

          9> c(tut2).
          │ │ │ │ +{ok,tut2}

          Test:

          10> tut2:convert(3, inch).
          │ │ │ │  1.1811023622047243
          │ │ │ │ -11> tut2:convert(7, centimeter).
          │ │ │ │ +11> tut2:convert(7, centimeter).
          │ │ │ │  17.78

          Notice the introduction of decimals (floating point numbers) without any │ │ │ │ explanation. Hopefully you can cope with that.

          Let us see what happens if something other than centimeter or inch is │ │ │ │ -entered in the convert function:

          12> tut2:convert(3, miles).
          │ │ │ │ +entered in the convert function:

          12> tut2:convert(3, miles).
          │ │ │ │  ** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

          The two parts of the convert function are called its clauses. As shown, │ │ │ │ miles is not part of either of the clauses. The Erlang system cannot match │ │ │ │ either of the clauses so an error message function_clause is returned. The │ │ │ │ shell formats the error message nicely, but the error tuple is saved in the │ │ │ │ -shell's history list and can be output by the shell command v/1:

          13> v(12).
          │ │ │ │ -{'EXIT',{function_clause,[{tut2,convert,
          │ │ │ │ -                                [3,miles],
          │ │ │ │ -                                [{file,"tut2.erl"},{line,4}]},
          │ │ │ │ -                          {erl_eval,do_apply,6,
          │ │ │ │ -                                    [{file,"erl_eval.erl"},{line,677}]},
          │ │ │ │ -                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
          │ │ │ │ -                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
          │ │ │ │ -                          {shell,eval_loop,3,
          │ │ │ │ -                                 [{file,"shell.erl"},{line,627}]}]}}

          │ │ │ │ +shell's history list and can be output by the shell command v/1:

          13> v(12).
          │ │ │ │ +{'EXIT',{function_clause,[{tut2,convert,
          │ │ │ │ +                                [3,miles],
          │ │ │ │ +                                [{file,"tut2.erl"},{line,4}]},
          │ │ │ │ +                          {erl_eval,do_apply,6,
          │ │ │ │ +                                    [{file,"erl_eval.erl"},{line,677}]},
          │ │ │ │ +                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
          │ │ │ │ +                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
          │ │ │ │ +                          {shell,eval_loop,3,
          │ │ │ │ +                                 [{file,"shell.erl"},{line,627}]}]}}

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Tuples │ │ │ │

          │ │ │ │ -

          Now the tut2 program is hardly good programming style. Consider:

          tut2:convert(3, inch).

          Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ │ +

          Now the tut2 program is hardly good programming style. Consider:

          tut2:convert(3, inch).

          Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ │ is to be converted to inches? Erlang has a way to group things together to make │ │ │ │ things more understandable. These are called tuples and are surrounded by │ │ │ │ curly brackets, { and }.

          So, {inch,3} denotes 3 inches and {centimeter,5} denotes 5 centimeters. Now │ │ │ │ let us write a new program that converts centimeters to inches and conversely. │ │ │ │ -Enter the following code in a file called tut3.erl):

          -module(tut3).
          │ │ │ │ --export([convert_length/1]).
          │ │ │ │ +Enter the following code in a file called tut3.erl):

          -module(tut3).
          │ │ │ │ +-export([convert_length/1]).
          │ │ │ │  
          │ │ │ │ -convert_length({centimeter, X}) ->
          │ │ │ │ -    {inch, X / 2.54};
          │ │ │ │ -convert_length({inch, Y}) ->
          │ │ │ │ -    {centimeter, Y * 2.54}.

          Compile and test:

          14> c(tut3).
          │ │ │ │ -{ok,tut3}
          │ │ │ │ -15> tut3:convert_length({inch, 5}).
          │ │ │ │ -{centimeter,12.7}
          │ │ │ │ -16> tut3:convert_length(tut3:convert_length({inch, 5})).
          │ │ │ │ -{inch,5.0}

          Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ │ +convert_length({centimeter, X}) -> │ │ │ │ + {inch, X / 2.54}; │ │ │ │ +convert_length({inch, Y}) -> │ │ │ │ + {centimeter, Y * 2.54}.

          Compile and test:

          14> c(tut3).
          │ │ │ │ +{ok,tut3}
          │ │ │ │ +15> tut3:convert_length({inch, 5}).
          │ │ │ │ +{centimeter,12.7}
          │ │ │ │ +16> tut3:convert_length(tut3:convert_length({inch, 5})).
          │ │ │ │ +{inch,5.0}

          Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ │ reassuringly get back to the original value. That is, the argument to a function │ │ │ │ can be the result of another function. Consider how line 16 (above) works. The │ │ │ │ argument given to the function {inch,5} is first matched against the first │ │ │ │ head clause of convert_length, that is, convert_length({centimeter,X}). It │ │ │ │ can be seen that {centimeter,X} does not match {inch,5} (the head is the bit │ │ │ │ before the ->). This having failed, let us try the head of the next clause │ │ │ │ that is, convert_length({inch,Y}). This matches, and Y gets the value 5.

          Tuples can have more than two parts, in fact as many parts as you want, and │ │ │ │ contain any valid Erlang term. For example, to represent the temperature of │ │ │ │ -various cities of the world:

          {moscow, {c, -10}}
          │ │ │ │ -{cape_town, {f, 70}}
          │ │ │ │ -{paris, {f, 28}}

          Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ │ +various cities of the world:

          {moscow, {c, -10}}
          │ │ │ │ +{cape_town, {f, 70}}
          │ │ │ │ +{paris, {f, 28}}

          Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ │ element. In the tuple {moscow,{c,-10}}, element 1 is moscow and element 2 │ │ │ │ is {c,-10}. Here c represents Celsius and f Fahrenheit.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Lists │ │ │ │

          │ │ │ │

          Whereas tuples group things together, it is also needed to represent lists of │ │ │ │ things. Lists in Erlang are surrounded by square brackets, [ and ]. For │ │ │ │ -example, a list of the temperatures of various cities in the world can be:

          [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
          │ │ │ │ - {paris, {f, 28}}, {london, {f, 36}}]

          Notice that this list was so long that it did not fit on one line. This does not │ │ │ │ +example, a list of the temperatures of various cities in the world can be:

          [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
          │ │ │ │ + {paris, {f, 28}}, {london, {f, 36}}]

          Notice that this list was so long that it did not fit on one line. This does not │ │ │ │ matter, Erlang allows line breaks at all "sensible places" but not, for example, │ │ │ │ in the middle of atoms, integers, and others.

          A useful way of looking at parts of lists, is by using |. This is best │ │ │ │ -explained by an example using the shell:

          17> [First |TheRest] = [1,2,3,4,5].
          │ │ │ │ -[1,2,3,4,5]
          │ │ │ │ +explained by an example using the shell:

          17> [First |TheRest] = [1,2,3,4,5].
          │ │ │ │ +[1,2,3,4,5]
          │ │ │ │  18> First.
          │ │ │ │  1
          │ │ │ │  19> TheRest.
          │ │ │ │ -[2,3,4,5]

          To separate the first elements of the list from the rest of the list, | is │ │ │ │ -used. First has got value 1 and TheRest has got the value [2,3,4,5].

          Another example:

          20> [E1, E2 | R] = [1,2,3,4,5,6,7].
          │ │ │ │ -[1,2,3,4,5,6,7]
          │ │ │ │ +[2,3,4,5]

          To separate the first elements of the list from the rest of the list, | is │ │ │ │ +used. First has got value 1 and TheRest has got the value [2,3,4,5].

          Another example:

          20> [E1, E2 | R] = [1,2,3,4,5,6,7].
          │ │ │ │ +[1,2,3,4,5,6,7]
          │ │ │ │  21> E1.
          │ │ │ │  1
          │ │ │ │  22> E2.
          │ │ │ │  2
          │ │ │ │  23> R.
          │ │ │ │ -[3,4,5,6,7]

          Here you see the use of | to get the first two elements from the list. If you │ │ │ │ +[3,4,5,6,7]

          Here you see the use of | to get the first two elements from the list. If you │ │ │ │ try to get more elements from the list than there are elements in the list, an │ │ │ │ error is returned. Notice also the special case of the list with no elements, │ │ │ │ -[]:

          24> [A, B | C] = [1, 2].
          │ │ │ │ -[1,2]
          │ │ │ │ +[]:

          24> [A, B | C] = [1, 2].
          │ │ │ │ +[1,2]
          │ │ │ │  25> A.
          │ │ │ │  1
          │ │ │ │  26> B.
          │ │ │ │  2
          │ │ │ │  27> C.
          │ │ │ │ -[]

          In the previous examples, new variable names are used, instead of reusing the │ │ │ │ +[]

          In the previous examples, new variable names are used, instead of reusing the │ │ │ │ old ones: First, TheRest, E1, E2, R, A, B, and C. The reason for │ │ │ │ this is that a variable can only be given a value once in its context (scope). │ │ │ │ More about this later.

          The following example shows how to find the length of a list. Enter the │ │ │ │ -following code in a file named tut4.erl:

          -module(tut4).
          │ │ │ │ +following code in a file named tut4.erl:

          -module(tut4).
          │ │ │ │  
          │ │ │ │ --export([list_length/1]).
          │ │ │ │ +-export([list_length/1]).
          │ │ │ │  
          │ │ │ │ -list_length([]) ->
          │ │ │ │ +list_length([]) ->
          │ │ │ │      0;
          │ │ │ │ -list_length([First | Rest]) ->
          │ │ │ │ -    1 + list_length(Rest).

          Compile and test:

          28> c(tut4).
          │ │ │ │ -{ok,tut4}
          │ │ │ │ -29> tut4:list_length([1,2,3,4,5,6,7]).
          │ │ │ │ -7

          Explanation:

          list_length([]) ->
          │ │ │ │ -    0;

          The length of an empty list is obviously 0.

          list_length([First | Rest]) ->
          │ │ │ │ -    1 + list_length(Rest).

          The length of a list with the first element First and the remaining elements │ │ │ │ +list_length([First | Rest]) -> │ │ │ │ + 1 + list_length(Rest).

          Compile and test:

          28> c(tut4).
          │ │ │ │ +{ok,tut4}
          │ │ │ │ +29> tut4:list_length([1,2,3,4,5,6,7]).
          │ │ │ │ +7

          Explanation:

          list_length([]) ->
          │ │ │ │ +    0;

          The length of an empty list is obviously 0.

          list_length([First | Rest]) ->
          │ │ │ │ +    1 + list_length(Rest).

          The length of a list with the first element First and the remaining elements │ │ │ │ Rest is 1 + the length of Rest.

          (Advanced readers only: This is not tail recursive, there is a better way to │ │ │ │ write this function.)

          In general, tuples are used where "records" or "structs" are used in other │ │ │ │ languages. Also, lists are used when representing things with varying sizes, │ │ │ │ that is, where linked lists are used in other languages.

          Erlang does not have a string data type. Instead, strings can be represented by │ │ │ │ lists of Unicode characters. This implies for example that the list [97,98,99] │ │ │ │ is equivalent to "abc". The Erlang shell is "clever" and guesses what list you │ │ │ │ -mean and outputs it in what it thinks is the most appropriate form, for example:

          30> [97,98,99].
          │ │ │ │ +mean and outputs it in what it thinks is the most appropriate form, for example:

          30> [97,98,99].
          │ │ │ │  "abc"

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps │ │ │ │

          │ │ │ │

          Maps are a set of key to value associations. These associations are encapsulated │ │ │ │ -with #{ and }. To create an association from "key" to value 42:

          > #{ "key" => 42 }.
          │ │ │ │ -#{"key" => 42}

          Let us jump straight into the deep end with an example using some interesting │ │ │ │ +with #{ and }. To create an association from "key" to value 42:

          > #{ "key" => 42 }.
          │ │ │ │ +#{"key" => 42}

          Let us jump straight into the deep end with an example using some interesting │ │ │ │ features.

          The following example shows how to calculate alpha blending using maps to │ │ │ │ -reference color and alpha channels. Enter the code in a file named color.erl):

          -module(color).
          │ │ │ │ +reference color and alpha channels. Enter the code in a file named color.erl):

          -module(color).
          │ │ │ │  
          │ │ │ │ --export([new/4, blend/2]).
          │ │ │ │ +-export([new/4, blend/2]).
          │ │ │ │  
          │ │ │ │ --define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
          │ │ │ │ +-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
          │ │ │ │  
          │ │ │ │ -new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.
          │ │ │ │ -
          │ │ │ │ -blend(Src,Dst) ->
          │ │ │ │ -    blend(Src,Dst,alpha(Src,Dst)).
          │ │ │ │ -
          │ │ │ │ -blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ -    Dst#{
          │ │ │ │ -        red   := red(Src,Dst) / Alpha,
          │ │ │ │ -        green := green(Src,Dst) / Alpha,
          │ │ │ │ -        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │ +new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.
          │ │ │ │ +
          │ │ │ │ +blend(Src,Dst) ->
          │ │ │ │ +    blend(Src,Dst,alpha(Src,Dst)).
          │ │ │ │ +
          │ │ │ │ +blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ +    Dst#{
          │ │ │ │ +        red   := red(Src,Dst) / Alpha,
          │ │ │ │ +        green := green(Src,Dst) / Alpha,
          │ │ │ │ +        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │          alpha := Alpha
          │ │ │ │ -    };
          │ │ │ │ -blend(_,Dst,_) ->
          │ │ │ │ -    Dst#{
          │ │ │ │ +    };
          │ │ │ │ +blend(_,Dst,_) ->
          │ │ │ │ +    Dst#{
          │ │ │ │          red   := 0.0,
          │ │ │ │          green := 0.0,
          │ │ │ │          blue  := 0.0,
          │ │ │ │          alpha := 0.0
          │ │ │ │ -    }.
          │ │ │ │ +    }.
          │ │ │ │  
          │ │ │ │ -alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ -    SA + DA*(1.0 - SA).
          │ │ │ │ +alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ +    SA + DA*(1.0 - SA).
          │ │ │ │  
          │ │ │ │ -red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
          │ │ │ │ -green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
          │ │ │ │ -blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

          Compile and test:

          > c(color).
          │ │ │ │ -{ok,color}
          │ │ │ │ -> C1 = color:new(0.3,0.4,0.5,1.0).
          │ │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ -> C2 = color:new(1.0,0.8,0.1,0.3).
          │ │ │ │ -#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
          │ │ │ │ -> color:blend(C1,C2).
          │ │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ -> color:blend(C2,C1).
          │ │ │ │ -#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

          This example warrants some explanation:

          -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

          First a macro is_channel is defined to help with the guard tests. This is only │ │ │ │ +red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ │ +green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ │ +blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA).

          Compile and test:

          > c(color).
          │ │ │ │ +{ok,color}
          │ │ │ │ +> C1 = color:new(0.3,0.4,0.5,1.0).
          │ │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ +> C2 = color:new(1.0,0.8,0.1,0.3).
          │ │ │ │ +#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
          │ │ │ │ +> color:blend(C1,C2).
          │ │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ +> color:blend(C2,C1).
          │ │ │ │ +#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

          This example warrants some explanation:

          -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

          First a macro is_channel is defined to help with the guard tests. This is only │ │ │ │ here for convenience and to reduce syntax cluttering. For more information about │ │ │ │ -macros, see The Preprocessor.

          new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.

          The function new/4 creates a new map term and lets the keys red, green, │ │ │ │ +macros, see The Preprocessor.

          new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.

          The function new/4 creates a new map term and lets the keys red, green, │ │ │ │ blue, and alpha be associated with an initial value. In this case, only │ │ │ │ float values between and including 0.0 and 1.0 are allowed, as ensured by the │ │ │ │ ?is_channel/1 macro for each argument. Only the => operator is allowed when │ │ │ │ creating a new map.

          By calling blend/2 on any color term created by new/4, the resulting color │ │ │ │ -can be calculated as determined by the two map terms.

          The first thing blend/2 does is to calculate the resulting alpha channel:

          alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ -    SA + DA*(1.0 - SA).

          The value associated with key alpha is fetched for both arguments using the │ │ │ │ +can be calculated as determined by the two map terms.

          The first thing blend/2 does is to calculate the resulting alpha channel:

          alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ +    SA + DA*(1.0 - SA).

          The value associated with key alpha is fetched for both arguments using the │ │ │ │ := operator. The other keys in the map are ignored, only the key alpha is │ │ │ │ -required and checked for.

          This is also the case for functions red/2, blue/2, and green/2.

          red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

          The difference here is that a check is made for two keys in each map argument. │ │ │ │ -The other keys are ignored.

          Finally, let us return the resulting color in blend/3:

          blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ -    Dst#{
          │ │ │ │ -        red   := red(Src,Dst) / Alpha,
          │ │ │ │ -        green := green(Src,Dst) / Alpha,
          │ │ │ │ -        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │ +required and checked for.

          This is also the case for functions red/2, blue/2, and green/2.

          red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ +    SV*SA + DV*DA*(1.0 - SA).

          The difference here is that a check is made for two keys in each map argument. │ │ │ │ +The other keys are ignored.

          Finally, let us return the resulting color in blend/3:

          blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ +    Dst#{
          │ │ │ │ +        red   := red(Src,Dst) / Alpha,
          │ │ │ │ +        green := green(Src,Dst) / Alpha,
          │ │ │ │ +        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │          alpha := Alpha
          │ │ │ │ -    };

          The Dst map is updated with new channel values. The syntax for updating an │ │ │ │ + };

          The Dst map is updated with new channel values. The syntax for updating an │ │ │ │ existing key with a new value is with the := operator.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standard Modules and Manual Pages │ │ │ │

          │ │ │ │

          Erlang has many standard modules to help you do things. For example, the module │ │ │ │ @@ -347,24 +347,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Writing Output to a Terminal │ │ │ │ │ │ │ │

          It is nice to be able to do formatted output in examples, so the next example │ │ │ │ shows a simple way to use the io:format/2 function. Like all other exported │ │ │ │ -functions, you can test the io:format/2 function in the shell:

          31> io:format("hello world~n", []).
          │ │ │ │ +functions, you can test the io:format/2 function in the shell:

          31> io:format("hello world~n", []).
          │ │ │ │  hello world
          │ │ │ │  ok
          │ │ │ │ -32> io:format("this outputs one Erlang term: ~w~n", [hello]).
          │ │ │ │ +32> io:format("this outputs one Erlang term: ~w~n", [hello]).
          │ │ │ │  this outputs one Erlang term: hello
          │ │ │ │  ok
          │ │ │ │ -33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
          │ │ │ │ +33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
          │ │ │ │  this outputs two Erlang terms: helloworld
          │ │ │ │  ok
          │ │ │ │ -34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
          │ │ │ │ +34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
          │ │ │ │  this outputs two Erlang terms: hello world
          │ │ │ │  ok

          The function io:format/2 (that is, format with two arguments) takes two lists. │ │ │ │ The first one is nearly always a list written between " ". This list is printed │ │ │ │ out as it is, except that each ~w is replaced by a term taken in order from the │ │ │ │ second list. Each ~n is replaced by a new line. The io:format/2 function │ │ │ │ itself returns the atom ok if everything goes as planned. Like other functions │ │ │ │ in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a │ │ │ │ @@ -378,34 +378,34 @@ │ │ │ │ A Larger Example │ │ │ │ │ │ │ │

          Now for a larger example to consolidate what you have learnt so far. Assume that │ │ │ │ you have a list of temperature readings from a number of cities in the world. │ │ │ │ Some of them are in Celsius and some in Fahrenheit (as in the previous list). │ │ │ │ First let us convert them all to Celsius, then let us print the data neatly.

          %% This module is in file tut5.erl
          │ │ │ │  
          │ │ │ │ --module(tut5).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +-module(tut5).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │  %% Only this function is exported
          │ │ │ │ -format_temps([])->                        % No output for an empty list
          │ │ │ │ +format_temps([])->                        % No output for an empty list
          │ │ │ │      ok;
          │ │ │ │ -format_temps([City | Rest]) ->
          │ │ │ │ -    print_temp(convert_to_celsius(City)),
          │ │ │ │ -    format_temps(Rest).
          │ │ │ │ -
          │ │ │ │ -convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
          │ │ │ │ -    {Name, {c, Temp}};
          │ │ │ │ -convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
          │ │ │ │ -    {Name, {c, (Temp - 32) * 5 / 9}}.
          │ │ │ │ -
          │ │ │ │ -print_temp({Name, {c, Temp}}) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]).
          35> c(tut5).
          │ │ │ │ -{ok,tut5}
          │ │ │ │ -36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +format_temps([City | Rest]) ->
          │ │ │ │ +    print_temp(convert_to_celsius(City)),
          │ │ │ │ +    format_temps(Rest).
          │ │ │ │ +
          │ │ │ │ +convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
          │ │ │ │ +    {Name, {c, Temp}};
          │ │ │ │ +convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
          │ │ │ │ +    {Name, {c, (Temp - 32) * 5 / 9}}.
          │ │ │ │ +
          │ │ │ │ +print_temp({Name, {c, Temp}}) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]).
          35> c(tut5).
          │ │ │ │ +{ok,tut5}
          │ │ │ │ +36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  ok

          Before looking at how this program works, notice that a few comments are added │ │ │ │ to the code. A comment starts with a %-character and goes on to the end of the │ │ │ │ @@ -433,28 +433,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching, Guards, and Scope of Variables │ │ │ │ │ │ │ │

          It can be useful to find the maximum and minimum temperature in lists like this. │ │ │ │ Before extending the program to do this, let us look at functions for finding │ │ │ │ -the maximum value of the elements in a list:

          -module(tut6).
          │ │ │ │ --export([list_max/1]).
          │ │ │ │ +the maximum value of the elements in a list:

          -module(tut6).
          │ │ │ │ +-export([list_max/1]).
          │ │ │ │  
          │ │ │ │ -list_max([Head|Rest]) ->
          │ │ │ │ -   list_max(Rest, Head).
          │ │ │ │ +list_max([Head|Rest]) ->
          │ │ │ │ +   list_max(Rest, Head).
          │ │ │ │  
          │ │ │ │ -list_max([], Res) ->
          │ │ │ │ +list_max([], Res) ->
          │ │ │ │      Res;
          │ │ │ │ -list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ -    list_max(Rest, Head);
          │ │ │ │ -list_max([Head|Rest], Result_so_far)  ->
          │ │ │ │ -    list_max(Rest, Result_so_far).
          37> c(tut6).
          │ │ │ │ -{ok,tut6}
          │ │ │ │ -38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
          │ │ │ │ +list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ +    list_max(Rest, Head);
          │ │ │ │ +list_max([Head|Rest], Result_so_far)  ->
          │ │ │ │ +    list_max(Rest, Result_so_far).
          37> c(tut6).
          │ │ │ │ +{ok,tut6}
          │ │ │ │ +38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
          │ │ │ │  7

          First notice that two functions have the same name, list_max. However, each of │ │ │ │ these takes a different number of arguments (parameters). In Erlang these are │ │ │ │ regarded as completely different functions. Where you need to distinguish │ │ │ │ between these functions, you write Name/Arity, where Name is the function name │ │ │ │ and Arity is the number of arguments, in this case list_max/1 and │ │ │ │ list_max/2.

          In this example you walk through a list "carrying" a value, in this case │ │ │ │ Result_so_far. list_max/1 simply assumes that the max value of the list is │ │ │ │ @@ -483,180 +483,180 @@ │ │ │ │ 5 │ │ │ │ 40> M = 6. │ │ │ │ ** exception error: no match of right hand side value 6 │ │ │ │ 41> M = M + 1. │ │ │ │ ** exception error: no match of right hand side value 6 │ │ │ │ 42> N = M + 1. │ │ │ │ 6

          The use of the match operator is particularly useful for pulling apart Erlang │ │ │ │ -terms and creating new ones.

          43> {X, Y} = {paris, {f, 28}}.
          │ │ │ │ -{paris,{f,28}}
          │ │ │ │ +terms and creating new ones.

          43> {X, Y} = {paris, {f, 28}}.
          │ │ │ │ +{paris,{f,28}}
          │ │ │ │  44> X.
          │ │ │ │  paris
          │ │ │ │  45> Y.
          │ │ │ │ -{f,28}

          Here X gets the value paris and Y the value {f,28}.

          If you try to do the same again with another city, an error is returned:

          46> {X, Y} = {london, {f, 36}}.
          │ │ │ │ +{f,28}

          Here X gets the value paris and Y the value {f,28}.

          If you try to do the same again with another city, an error is returned:

          46> {X, Y} = {london, {f, 36}}.
          │ │ │ │  ** exception error: no match of right hand side value {london,{f,36}}

          Variables can also be used to improve the readability of programs. For example, │ │ │ │ -in function list_max/2 above, you can write:

          list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ +in function list_max/2 above, you can write:

          list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │      New_result_far = Head,
          │ │ │ │ -    list_max(Rest, New_result_far);

          This is possibly a little clearer.

          │ │ │ │ + list_max(Rest, New_result_far);

          This is possibly a little clearer.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ More About Lists │ │ │ │

          │ │ │ │ -

          Remember that the | operator can be used to get the head of a list:

          47> [M1|T1] = [paris, london, rome].
          │ │ │ │ -[paris,london,rome]
          │ │ │ │ +

          Remember that the | operator can be used to get the head of a list:

          47> [M1|T1] = [paris, london, rome].
          │ │ │ │ +[paris,london,rome]
          │ │ │ │  48> M1.
          │ │ │ │  paris
          │ │ │ │  49> T1.
          │ │ │ │ -[london,rome]

          The | operator can also be used to add a head to a list:

          50> L1 = [madrid | T1].
          │ │ │ │ -[madrid,london,rome]
          │ │ │ │ +[london,rome]

          The | operator can also be used to add a head to a list:

          50> L1 = [madrid | T1].
          │ │ │ │ +[madrid,london,rome]
          │ │ │ │  51> L1.
          │ │ │ │ -[madrid,london,rome]

          Now an example of this when working with lists - reversing the order of a list:

          -module(tut8).
          │ │ │ │ +[madrid,london,rome]

          Now an example of this when working with lists - reversing the order of a list:

          -module(tut8).
          │ │ │ │  
          │ │ │ │ --export([reverse/1]).
          │ │ │ │ +-export([reverse/1]).
          │ │ │ │  
          │ │ │ │ -reverse(List) ->
          │ │ │ │ -    reverse(List, []).
          │ │ │ │ +reverse(List) ->
          │ │ │ │ +    reverse(List, []).
          │ │ │ │  
          │ │ │ │ -reverse([Head | Rest], Reversed_List) ->
          │ │ │ │ -    reverse(Rest, [Head | Reversed_List]);
          │ │ │ │ -reverse([], Reversed_List) ->
          │ │ │ │ -    Reversed_List.
          52> c(tut8).
          │ │ │ │ -{ok,tut8}
          │ │ │ │ -53> tut8:reverse([1,2,3]).
          │ │ │ │ -[3,2,1]

          Consider how Reversed_List is built. It starts as [], then successively the │ │ │ │ +reverse([Head | Rest], Reversed_List) -> │ │ │ │ + reverse(Rest, [Head | Reversed_List]); │ │ │ │ +reverse([], Reversed_List) -> │ │ │ │ + Reversed_List.

          52> c(tut8).
          │ │ │ │ +{ok,tut8}
          │ │ │ │ +53> tut8:reverse([1,2,3]).
          │ │ │ │ +[3,2,1]

          Consider how Reversed_List is built. It starts as [], then successively the │ │ │ │ heads are taken off of the list to be reversed and added to the the │ │ │ │ -Reversed_List, as shown in the following:

          reverse([1|2,3], []) =>
          │ │ │ │ -    reverse([2,3], [1|[]])
          │ │ │ │ +Reversed_List, as shown in the following:

          reverse([1|2,3], []) =>
          │ │ │ │ +    reverse([2,3], [1|[]])
          │ │ │ │  
          │ │ │ │ -reverse([2|3], [1]) =>
          │ │ │ │ -    reverse([3], [2|[1])
          │ │ │ │ +reverse([2|3], [1]) =>
          │ │ │ │ +    reverse([3], [2|[1])
          │ │ │ │  
          │ │ │ │ -reverse([3|[]], [2,1]) =>
          │ │ │ │ -    reverse([], [3|[2,1]])
          │ │ │ │ +reverse([3|[]], [2,1]) =>
          │ │ │ │ +    reverse([], [3|[2,1]])
          │ │ │ │  
          │ │ │ │ -reverse([], [3,2,1]) =>
          │ │ │ │ -    [3,2,1]

          The module lists contains many functions for manipulating lists, for example, │ │ │ │ +reverse([], [3,2,1]) => │ │ │ │ + [3,2,1]

          The module lists contains many functions for manipulating lists, for example, │ │ │ │ for reversing them. So before writing a list-manipulating function it is a good │ │ │ │ idea to check if one not already is written for you (see the lists manual │ │ │ │ page in STDLIB).

          Now let us get back to the cities and temperatures, but take a more structured │ │ │ │ -approach this time. First let us convert the whole list to Celsius as follows:

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +approach this time. First let us convert the whole list to Celsius as follows:

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    convert_list_to_c(List_of_cities).
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    convert_list_to_c(List_of_cities).
          │ │ │ │  
          │ │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].

          Test the function:

          54> c(tut7).
          │ │ │ │ -{ok, tut7}.
          │ │ │ │ -55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {cape_town,{c,21.11111111111111}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2.2222222222222223}},
          │ │ │ │ - {london,{c,2.2222222222222223}}]

          Explanation:

          format_temps(List_of_cities) ->
          │ │ │ │ -    convert_list_to_c(List_of_cities).

          Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) -> │ │ │ │ + Converted_City = {Name, {c, (F -32)* 5 / 9}}, │ │ │ │ + [Converted_City | convert_list_to_c(Rest)]; │ │ │ │ + │ │ │ │ +convert_list_to_c([City | Rest]) -> │ │ │ │ + [City | convert_list_to_c(Rest)]; │ │ │ │ + │ │ │ │ +convert_list_to_c([]) -> │ │ │ │ + [].

          Test the function:

          54> c(tut7).
          │ │ │ │ +{ok, tut7}.
          │ │ │ │ +55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {cape_town,{c,21.11111111111111}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2.2222222222222223}},
          │ │ │ │ + {london,{c,2.2222222222222223}}]

          Explanation:

          format_temps(List_of_cities) ->
          │ │ │ │ +    convert_list_to_c(List_of_cities).

          Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ │ off the head of the List_of_cities, converts it to Celsius if needed. The | │ │ │ │ -operator is used to add the (maybe) converted to the converted rest of the list:

          [Converted_City | convert_list_to_c(Rest)];

          or:

          [City | convert_list_to_c(Rest)];

          This is done until the end of the list is reached, that is, the list is empty:

          convert_list_to_c([]) ->
          │ │ │ │ -    [].

          Now when the list is converted, a function to print it is added:

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ -
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ -    print_temp(Converted_List).
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].
          │ │ │ │ -
          │ │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ -    print_temp(Rest);
          │ │ │ │ -print_temp([]) ->
          │ │ │ │ -    ok.
          56> c(tut7).
          │ │ │ │ -{ok,tut7}
          │ │ │ │ -57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +operator is used to add the (maybe) converted to the converted rest of the list:

          [Converted_City | convert_list_to_c(Rest)];

          or:

          [City | convert_list_to_c(Rest)];

          This is done until the end of the list is reached, that is, the list is empty:

          convert_list_to_c([]) ->
          │ │ │ │ +    [].

          Now when the list is converted, a function to print it is added:

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │ +
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ +    print_temp(Converted_List).
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ +    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([City | Rest]) ->
          │ │ │ │ +    [City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([]) ->
          │ │ │ │ +    [].
          │ │ │ │ +
          │ │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ +    print_temp(Rest);
          │ │ │ │ +print_temp([]) ->
          │ │ │ │ +    ok.
          56> c(tut7).
          │ │ │ │ +{ok,tut7}
          │ │ │ │ +57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  ok

          Now a function has to be added to find the cities with the maximum and minimum │ │ │ │ temperatures. The following program is not the most efficient way of doing this │ │ │ │ as you walk through the list of cities four times. But it is better to first │ │ │ │ strive for clarity and correctness and to make programs efficient only if │ │ │ │ -needed.

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +needed.

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ -    print_temp(Converted_List),
          │ │ │ │ -    {Max_city, Min_city} = find_max_and_min(Converted_List),
          │ │ │ │ -    print_max_and_min(Max_city, Min_city).
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].
          │ │ │ │ -
          │ │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ -    print_temp(Rest);
          │ │ │ │ -print_temp([]) ->
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ +    print_temp(Converted_List),
          │ │ │ │ +    {Max_city, Min_city} = find_max_and_min(Converted_List),
          │ │ │ │ +    print_max_and_min(Max_city, Min_city).
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
          │ │ │ │ +    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
          │ │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([City | Rest]) ->
          │ │ │ │ +    [City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([]) ->
          │ │ │ │ +    [].
          │ │ │ │ +
          │ │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ +    print_temp(Rest);
          │ │ │ │ +print_temp([]) ->
          │ │ │ │      ok.
          │ │ │ │  
          │ │ │ │ -find_max_and_min([City | Rest]) ->
          │ │ │ │ -    find_max_and_min(Rest, City, City).
          │ │ │ │ +find_max_and_min([City | Rest]) ->
          │ │ │ │ +    find_max_and_min(Rest, City, City).
          │ │ │ │  
          │ │ │ │ -find_max_and_min([{Name, {c, Temp}} | Rest],
          │ │ │ │ -         {Max_Name, {c, Max_Temp}},
          │ │ │ │ -         {Min_Name, {c, Min_Temp}}) ->
          │ │ │ │ +find_max_and_min([{Name, {c, Temp}} | Rest],
          │ │ │ │ +         {Max_Name, {c, Max_Temp}},
          │ │ │ │ +         {Min_Name, {c, Min_Temp}}) ->
          │ │ │ │      if
          │ │ │ │          Temp > Max_Temp ->
          │ │ │ │ -            Max_City = {Name, {c, Temp}};           % Change
          │ │ │ │ +            Max_City = {Name, {c, Temp}};           % Change
          │ │ │ │          true ->
          │ │ │ │ -            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
          │ │ │ │ +            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
          │ │ │ │      end,
          │ │ │ │      if
          │ │ │ │           Temp < Min_Temp ->
          │ │ │ │ -            Min_City = {Name, {c, Temp}};           % Change
          │ │ │ │ +            Min_City = {Name, {c, Temp}};           % Change
          │ │ │ │          true ->
          │ │ │ │ -            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
          │ │ │ │ +            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
          │ │ │ │      end,
          │ │ │ │ -    find_max_and_min(Rest, Max_City, Min_City);
          │ │ │ │ +    find_max_and_min(Rest, Max_City, Min_City);
          │ │ │ │  
          │ │ │ │ -find_max_and_min([], Max_City, Min_City) ->
          │ │ │ │ -    {Max_City, Min_City}.
          │ │ │ │ +find_max_and_min([], Max_City, Min_City) ->
          │ │ │ │ +    {Max_City, Min_City}.
          │ │ │ │  
          │ │ │ │ -print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
          │ │ │ │ -    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
          │ │ │ │ -    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
          58> c(tut7).
          │ │ │ │ -{ok, tut7}
          │ │ │ │ -59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
          │ │ │ │ +    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
          │ │ │ │ +    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
          58> c(tut7).
          │ │ │ │ +{ok, tut7}
          │ │ │ │ +59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  Max temperature was 21.11111111111111 c in cape_town
          │ │ │ │  Min temperature was -10 c in moscow
          │ │ │ │ @@ -678,88 +678,88 @@
          │ │ │ │          Action 4
          │ │ │ │  end

          Notice that there is no ; before end. Conditions do the same as guards, that │ │ │ │ is, tests that succeed or fail. Erlang starts at the top and tests until it │ │ │ │ finds a condition that succeeds. Then it evaluates (performs) the action │ │ │ │ following the condition and ignores all other conditions and actions before the │ │ │ │ end. If no condition matches, a run-time failure occurs. A condition that │ │ │ │ always succeeds is the atom true. This is often used last in an if, meaning, │ │ │ │ -do the action following the true if all other conditions have failed.

          The following is a short program to show the workings of if.

          -module(tut9).
          │ │ │ │ --export([test_if/2]).
          │ │ │ │ +do the action following the true if all other conditions have failed.

          The following is a short program to show the workings of if.

          -module(tut9).
          │ │ │ │ +-export([test_if/2]).
          │ │ │ │  
          │ │ │ │ -test_if(A, B) ->
          │ │ │ │ +test_if(A, B) ->
          │ │ │ │      if
          │ │ │ │          A == 5 ->
          │ │ │ │ -            io:format("A == 5~n", []),
          │ │ │ │ +            io:format("A == 5~n", []),
          │ │ │ │              a_equals_5;
          │ │ │ │          B == 6 ->
          │ │ │ │ -            io:format("B == 6~n", []),
          │ │ │ │ +            io:format("B == 6~n", []),
          │ │ │ │              b_equals_6;
          │ │ │ │          A == 2, B == 3 ->                      %That is A equals 2 and B equals 3
          │ │ │ │ -            io:format("A == 2, B == 3~n", []),
          │ │ │ │ +            io:format("A == 2, B == 3~n", []),
          │ │ │ │              a_equals_2_b_equals_3;
          │ │ │ │          A == 1 ; B == 7 ->                     %That is A equals 1 or B equals 7
          │ │ │ │ -            io:format("A == 1 ; B == 7~n", []),
          │ │ │ │ +            io:format("A == 1 ; B == 7~n", []),
          │ │ │ │              a_equals_1_or_b_equals_7
          │ │ │ │ -    end.

          Testing this program gives:

          60> c(tut9).
          │ │ │ │ -{ok,tut9}
          │ │ │ │ -61> tut9:test_if(5,33).
          │ │ │ │ +    end.

          Testing this program gives:

          60> c(tut9).
          │ │ │ │ +{ok,tut9}
          │ │ │ │ +61> tut9:test_if(5,33).
          │ │ │ │  A == 5
          │ │ │ │  a_equals_5
          │ │ │ │ -62> tut9:test_if(33,6).
          │ │ │ │ +62> tut9:test_if(33,6).
          │ │ │ │  B == 6
          │ │ │ │  b_equals_6
          │ │ │ │ -63> tut9:test_if(2, 3).
          │ │ │ │ +63> tut9:test_if(2, 3).
          │ │ │ │  A == 2, B == 3
          │ │ │ │  a_equals_2_b_equals_3
          │ │ │ │ -64> tut9:test_if(1, 33).
          │ │ │ │ +64> tut9:test_if(1, 33).
          │ │ │ │  A == 1 ; B == 7
          │ │ │ │  a_equals_1_or_b_equals_7
          │ │ │ │ -65> tut9:test_if(33, 7).
          │ │ │ │ +65> tut9:test_if(33, 7).
          │ │ │ │  A == 1 ; B == 7
          │ │ │ │  a_equals_1_or_b_equals_7
          │ │ │ │ -66> tut9:test_if(33, 33).
          │ │ │ │ +66> tut9:test_if(33, 33).
          │ │ │ │  ** exception error: no true branch found when evaluating an if expression
          │ │ │ │       in function  tut9:test_if/2 (tut9.erl, line 5)

          Notice that tut9:test_if(33,33) does not cause any condition to succeed. This │ │ │ │ leads to the run time error if_clause, here nicely formatted by the shell. See │ │ │ │ Guard Sequences for details of the many guard tests │ │ │ │ available.

          case is another construct in Erlang. Recall that the convert_length function │ │ │ │ -was written as:

          convert_length({centimeter, X}) ->
          │ │ │ │ -    {inch, X / 2.54};
          │ │ │ │ -convert_length({inch, Y}) ->
          │ │ │ │ -    {centimeter, Y * 2.54}.

          The same program can also be written as:

          -module(tut10).
          │ │ │ │ --export([convert_length/1]).
          │ │ │ │ +was written as:

          convert_length({centimeter, X}) ->
          │ │ │ │ +    {inch, X / 2.54};
          │ │ │ │ +convert_length({inch, Y}) ->
          │ │ │ │ +    {centimeter, Y * 2.54}.

          The same program can also be written as:

          -module(tut10).
          │ │ │ │ +-export([convert_length/1]).
          │ │ │ │  
          │ │ │ │ -convert_length(Length) ->
          │ │ │ │ +convert_length(Length) ->
          │ │ │ │      case Length of
          │ │ │ │ -        {centimeter, X} ->
          │ │ │ │ -            {inch, X / 2.54};
          │ │ │ │ -        {inch, Y} ->
          │ │ │ │ -            {centimeter, Y * 2.54}
          │ │ │ │ -    end.
          67> c(tut10).
          │ │ │ │ -{ok,tut10}
          │ │ │ │ -68> tut10:convert_length({inch, 6}).
          │ │ │ │ -{centimeter,15.24}
          │ │ │ │ -69> tut10:convert_length({centimeter, 2.5}).
          │ │ │ │ -{inch,0.984251968503937}

          Both case and if have return values, that is, in the above example case │ │ │ │ + {centimeter, X} -> │ │ │ │ + {inch, X / 2.54}; │ │ │ │ + {inch, Y} -> │ │ │ │ + {centimeter, Y * 2.54} │ │ │ │ + end.

          67> c(tut10).
          │ │ │ │ +{ok,tut10}
          │ │ │ │ +68> tut10:convert_length({inch, 6}).
          │ │ │ │ +{centimeter,15.24}
          │ │ │ │ +69> tut10:convert_length({centimeter, 2.5}).
          │ │ │ │ +{inch,0.984251968503937}

          Both case and if have return values, that is, in the above example case │ │ │ │ returned either {inch,X/2.54} or {centimeter,Y*2.54}. The behaviour of │ │ │ │ case can also be modified by using guards. The following example clarifies │ │ │ │ this. It tells us the length of a month, given the year. The year must be known, │ │ │ │ -since February has 29 days in a leap year.

          -module(tut11).
          │ │ │ │ --export([month_length/2]).
          │ │ │ │ +since February has 29 days in a leap year.

          -module(tut11).
          │ │ │ │ +-export([month_length/2]).
          │ │ │ │  
          │ │ │ │ -month_length(Year, Month) ->
          │ │ │ │ +month_length(Year, Month) ->
          │ │ │ │      %% All years divisible by 400 are leap
          │ │ │ │      %% Years divisible by 100 are not leap (except the 400 rule above)
          │ │ │ │      %% Years divisible by 4 are leap (except the 100 rule above)
          │ │ │ │      Leap = if
          │ │ │ │ -        trunc(Year / 400) * 400 == Year ->
          │ │ │ │ +        trunc(Year / 400) * 400 == Year ->
          │ │ │ │              leap;
          │ │ │ │ -        trunc(Year / 100) * 100 == Year ->
          │ │ │ │ +        trunc(Year / 100) * 100 == Year ->
          │ │ │ │              not_leap;
          │ │ │ │ -        trunc(Year / 4) * 4 == Year ->
          │ │ │ │ +        trunc(Year / 4) * 4 == Year ->
          │ │ │ │              leap;
          │ │ │ │          true ->
          │ │ │ │              not_leap
          │ │ │ │      end,
          │ │ │ │      case Month of
          │ │ │ │          sep -> 30;
          │ │ │ │          apr -> 30;
          │ │ │ │ @@ -770,151 +770,151 @@
          │ │ │ │          jan -> 31;
          │ │ │ │          mar -> 31;
          │ │ │ │          may -> 31;
          │ │ │ │          jul -> 31;
          │ │ │ │          aug -> 31;
          │ │ │ │          oct -> 31;
          │ │ │ │          dec -> 31
          │ │ │ │ -    end.
          70> c(tut11).
          │ │ │ │ -{ok,tut11}
          │ │ │ │ -71> tut11:month_length(2004, feb).
          │ │ │ │ +    end.
          70> c(tut11).
          │ │ │ │ +{ok,tut11}
          │ │ │ │ +71> tut11:month_length(2004, feb).
          │ │ │ │  29
          │ │ │ │ -72> tut11:month_length(2003, feb).
          │ │ │ │ +72> tut11:month_length(2003, feb).
          │ │ │ │  28
          │ │ │ │ -73> tut11:month_length(1947, aug).
          │ │ │ │ +73> tut11:month_length(1947, aug).
          │ │ │ │  31

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │ │

          │ │ │ │

          BIFs are functions that for some reason are built-in to the Erlang virtual │ │ │ │ machine. BIFs often implement functionality that is impossible or is too │ │ │ │ inefficient to implement in Erlang. Some BIFs can be called using the function │ │ │ │ name only but they are by default belonging to the erlang module. For example, │ │ │ │ the call to the BIF trunc below is equivalent to a call to erlang:trunc.

          As shown, first it is checked if a year is leap. If a year is divisible by 400, │ │ │ │ it is a leap year. To determine this, first divide the year by 400 and use the │ │ │ │ BIF trunc (more about this later) to cut off any decimals. Then multiply by │ │ │ │ 400 again and see if the same value is returned again. For example, year 2004:

          2004 / 400 = 5.01
          │ │ │ │ -trunc(5.01) = 5
          │ │ │ │ +trunc(5.01) = 5
          │ │ │ │  5 * 400 = 2000

          2000 is not the same as 2004, so 2004 is not divisible by 400. Year 2000:

          2000 / 400 = 5.0
          │ │ │ │ -trunc(5.0) = 5
          │ │ │ │ +trunc(5.0) = 5
          │ │ │ │  5 * 400 = 2000

          That is, a leap year. The next two trunc-tests evaluate if the year is │ │ │ │ divisible by 100 or 4 in the same way. The first if returns leap or │ │ │ │ not_leap, which lands up in the variable Leap. This variable is used in the │ │ │ │ guard for feb in the following case that tells us how long the month is.

          This example showed the use of trunc. It is easier to use the Erlang operator │ │ │ │ rem that gives the remainder after division, for example:

          74> 2004 rem 400.
          │ │ │ │ -4

          So instead of writing:

          trunc(Year / 400) * 400 == Year ->
          │ │ │ │ +4

          So instead of writing:

          trunc(Year / 400) * 400 == Year ->
          │ │ │ │      leap;

          it can be written:

          Year rem 400 == 0 ->
          │ │ │ │      leap;

          There are many other BIFs such as trunc. Only a few BIFs can be used in │ │ │ │ guards, and you cannot use functions you have defined yourself in guards. (see │ │ │ │ Guard Sequences) (For advanced readers: This is to │ │ │ │ ensure that guards do not have side effects.) Let us play with a few of these │ │ │ │ -functions in the shell:

          75> trunc(5.6).
          │ │ │ │ +functions in the shell:

          75> trunc(5.6).
          │ │ │ │  5
          │ │ │ │ -76> round(5.6).
          │ │ │ │ +76> round(5.6).
          │ │ │ │  6
          │ │ │ │ -77> length([a,b,c,d]).
          │ │ │ │ +77> length([a,b,c,d]).
          │ │ │ │  4
          │ │ │ │ -78> float(5).
          │ │ │ │ +78> float(5).
          │ │ │ │  5.0
          │ │ │ │ -79> is_atom(hello).
          │ │ │ │ +79> is_atom(hello).
          │ │ │ │  true
          │ │ │ │ -80> is_atom("hello").
          │ │ │ │ +80> is_atom("hello").
          │ │ │ │  false
          │ │ │ │ -81> is_tuple({paris, {c, 30}}).
          │ │ │ │ +81> is_tuple({paris, {c, 30}}).
          │ │ │ │  true
          │ │ │ │ -82> is_tuple([paris, {c, 30}]).
          │ │ │ │ +82> is_tuple([paris, {c, 30}]).
          │ │ │ │  false

          All of these can be used in guards. Now for some BIFs that cannot be used in │ │ │ │ -guards:

          83> atom_to_list(hello).
          │ │ │ │ +guards:

          83> atom_to_list(hello).
          │ │ │ │  "hello"
          │ │ │ │ -84> list_to_atom("goodbye").
          │ │ │ │ +84> list_to_atom("goodbye").
          │ │ │ │  goodbye
          │ │ │ │ -85> integer_to_list(22).
          │ │ │ │ +85> integer_to_list(22).
          │ │ │ │  "22"

          These three BIFs do conversions that would be difficult (or impossible) to do in │ │ │ │ Erlang.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Higher-Order Functions (Funs) │ │ │ │

          │ │ │ │

          Erlang, like most modern functional programming languages, has higher-order │ │ │ │ -functions. Here is an example using the shell:

          86> Xf = fun(X) -> X * 2 end.
          │ │ │ │ +functions. Here is an example using the shell:

          86> Xf = fun(X) -> X * 2 end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -87> Xf(5).
          │ │ │ │ +87> Xf(5).
          │ │ │ │  10

          Here is defined a function that doubles the value of a number and assigned this │ │ │ │ function to a variable. Thus Xf(5) returns value 10. Two useful functions when │ │ │ │ -working with lists are foreach and map, which are defined as follows:

          foreach(Fun, [First|Rest]) ->
          │ │ │ │ -    Fun(First),
          │ │ │ │ -    foreach(Fun, Rest);
          │ │ │ │ -foreach(Fun, []) ->
          │ │ │ │ +working with lists are foreach and map, which are defined as follows:

          foreach(Fun, [First|Rest]) ->
          │ │ │ │ +    Fun(First),
          │ │ │ │ +    foreach(Fun, Rest);
          │ │ │ │ +foreach(Fun, []) ->
          │ │ │ │      ok.
          │ │ │ │  
          │ │ │ │ -map(Fun, [First|Rest]) ->
          │ │ │ │ -    [Fun(First)|map(Fun,Rest)];
          │ │ │ │ -map(Fun, []) ->
          │ │ │ │ -    [].

          These two functions are provided in the standard module lists. foreach takes │ │ │ │ +map(Fun, [First|Rest]) -> │ │ │ │ + [Fun(First)|map(Fun,Rest)]; │ │ │ │ +map(Fun, []) -> │ │ │ │ + [].

          These two functions are provided in the standard module lists. foreach takes │ │ │ │ a list and applies a fun to every element in the list. map creates a new list │ │ │ │ by applying a fun to every element in a list. Going back to the shell, map is │ │ │ │ -used and a fun to add 3 to every element of a list:

          88> Add_3 = fun(X) -> X + 3 end.
          │ │ │ │ +used and a fun to add 3 to every element of a list:

          88> Add_3 = fun(X) -> X + 3 end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -89> lists:map(Add_3, [1,2,3]).
          │ │ │ │ -[4,5,6]

          Let us (again) print the temperatures in a list of cities:

          90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
          │ │ │ │ -[City, X, Temp]) end.
          │ │ │ │ +89> lists:map(Add_3, [1,2,3]).
          │ │ │ │ +[4,5,6]

          Let us (again) print the temperatures in a list of cities:

          90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
          │ │ │ │ +[City, X, Temp]) end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          c -10
          │ │ │ │  cape_town       f 70
          │ │ │ │  stockholm       c -4
          │ │ │ │  paris           f 28
          │ │ │ │  london          f 36
          │ │ │ │  ok

          Let us now define a fun that can be used to go through a list of cities and │ │ │ │ -temperatures and transform them all to Celsius.

          -module(tut13).
          │ │ │ │ +temperatures and transform them all to Celsius.

          -module(tut13).
          │ │ │ │  
          │ │ │ │ --export([convert_list_to_c/1]).
          │ │ │ │ +-export([convert_list_to_c/1]).
          │ │ │ │  
          │ │ │ │ -convert_to_c({Name, {f, Temp}}) ->
          │ │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
          │ │ │ │ -convert_to_c({Name, {c, Temp}}) ->
          │ │ │ │ -    {Name, {c, Temp}}.
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c(List) ->
          │ │ │ │ -    lists:map(fun convert_to_c/1, List).
          92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {cape_town,{c,21}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2}},
          │ │ │ │ - {london,{c,2}}]

          The convert_to_c function is the same as before, but here it is used as a fun:

          lists:map(fun convert_to_c/1, List)

          When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ │ + {Name, {c, Temp}}. │ │ │ │ + │ │ │ │ +convert_list_to_c(List) -> │ │ │ │ + lists:map(fun convert_to_c/1, List).

          92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {cape_town,{c,21}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2}},
          │ │ │ │ + {london,{c,2}}]

          The convert_to_c function is the same as before, but here it is used as a fun:

          lists:map(fun convert_to_c/1, List)

          When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ │ Function/Arity (remember that Arity = number of arguments). So in the │ │ │ │ map-call lists:map(fun convert_to_c/1, List) is written. As shown, │ │ │ │ convert_list_to_c becomes much shorter and easier to understand.

          The standard module lists also contains a function sort(Fun, List) where │ │ │ │ Fun is a fun with two arguments. This fun returns true if the first argument │ │ │ │ is less than the second argument, or else false. Sorting is added to the │ │ │ │ -convert_list_to_c:

          -module(tut13).
          │ │ │ │ +convert_list_to_c:

          -module(tut13).
          │ │ │ │  
          │ │ │ │ --export([convert_list_to_c/1]).
          │ │ │ │ +-export([convert_list_to_c/1]).
          │ │ │ │  
          │ │ │ │ -convert_to_c({Name, {f, Temp}}) ->
          │ │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
          │ │ │ │ -convert_to_c({Name, {c, Temp}}) ->
          │ │ │ │ -    {Name, {c, Temp}}.
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c(List) ->
          │ │ │ │ -    New_list = lists:map(fun convert_to_c/1, List),
          │ │ │ │ -    lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
          │ │ │ │ -                       Temp1 < Temp2 end, New_list).
          93> c(tut13).
          │ │ │ │ -{ok,tut13}
          │ │ │ │ -94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2}},
          │ │ │ │ - {london,{c,2}},
          │ │ │ │ - {cape_town,{c,21}}]

          In sort the fun is used:

          fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

          Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ │ + {Name, {c, Temp}}. │ │ │ │ + │ │ │ │ +convert_list_to_c(List) -> │ │ │ │ + New_list = lists:map(fun convert_to_c/1, List), │ │ │ │ + lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> │ │ │ │ + Temp1 < Temp2 end, New_list).

          93> c(tut13).
          │ │ │ │ +{ok,tut13}
          │ │ │ │ +94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2}},
          │ │ │ │ + {london,{c,2}},
          │ │ │ │ + {cape_town,{c,21}}]

          In sort the fun is used:

          fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

          Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ │ shorthand for a variable that gets a value, but the value is ignored. This can │ │ │ │ be used anywhere suitable, not just in funs. Temp1 < Temp2 returns true if │ │ │ │ Temp1 is less than Temp2.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/robustness.xhtml │ │ │ │ @@ -33,68 +33,68 @@ │ │ │ │ │ │ │ │

          Before improving the messenger program, let us look at some general principles, │ │ │ │ using the ping pong program as an example. Recall that when "ping" finishes, it │ │ │ │ tells "pong" that it has done so by sending the atom finished as a message to │ │ │ │ "pong" so that "pong" can also finish. Another way to let "pong" finish is to │ │ │ │ make "pong" exit if it does not receive a message from ping within a certain │ │ │ │ time. This can be done by adding a time-out to pong as shown in the │ │ │ │ -following example:

          -module(tut19).
          │ │ │ │ +following example:

          -module(tut19).
          │ │ │ │  
          │ │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(0, Pong_Node) ->
          │ │ │ │ -    io:format("ping finished~n", []);
          │ │ │ │ +ping(0, Pong_Node) ->
          │ │ │ │ +    io:format("ping finished~n", []);
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Node) ->
          │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ │ +ping(N, Pong_Node) ->
          │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ +pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("Pong timed out~n", [])
          │ │ │ │ +            io:format("Pong timed out~n", [])
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start_pong() ->
          │ │ │ │ -    register(pong, spawn(tut19, pong, [])).
          │ │ │ │ +start_pong() ->
          │ │ │ │ +    register(pong, spawn(tut19, pong, [])).
          │ │ │ │  
          │ │ │ │ -start_ping(Pong_Node) ->
          │ │ │ │ -    spawn(tut19, ping, [3, Pong_Node]).

          After this is compiled and the file tut19.beam is copied to the necessary │ │ │ │ +start_ping(Pong_Node) -> │ │ │ │ + spawn(tut19, ping, [3, Pong_Node]).

          After this is compiled and the file tut19.beam is copied to the necessary │ │ │ │ directories, the following is seen on (pong@kosken):

          (pong@kosken)1> tut19:start_pong().
          │ │ │ │  true
          │ │ │ │  Pong received ping
          │ │ │ │  Pong received ping
          │ │ │ │  Pong received ping
          │ │ │ │  Pong timed out

          And the following is seen on (ping@gollum):

          (ping@gollum)1> tut19:start_ping(pong@kosken).
          │ │ │ │  <0.36.0>
          │ │ │ │  Ping received pong
          │ │ │ │  Ping received pong
          │ │ │ │  Ping received pong
          │ │ │ │ -ping finished

          The time-out is set in:

          pong() ->
          │ │ │ │ +ping finished

          The time-out is set in:

          pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("Pong timed out~n", [])
          │ │ │ │ +            io:format("Pong timed out~n", [])
          │ │ │ │      end.

          The time-out (after 5000) is started when receive is entered. The time-out │ │ │ │ is canceled if {ping,Ping_PID} is received. If {ping,Ping_PID} is not │ │ │ │ received, the actions following the time-out are done after 5000 milliseconds. │ │ │ │ after must be last in the receive, that is, preceded by all other message │ │ │ │ reception specifications in the receive. It is also possible to call a │ │ │ │ -function that returned an integer for the time-out:

          after pong_timeout() ->

          In general, there are better ways than using time-outs to supervise parts of a │ │ │ │ +function that returned an integer for the time-out:

          after pong_timeout() ->

          In general, there are better ways than using time-outs to supervise parts of a │ │ │ │ distributed Erlang system. Time-outs are usually appropriate to supervise │ │ │ │ external events, for example, if you have expected a message from some external │ │ │ │ system within a specified time. For example, a time-out can be used to log a │ │ │ │ user out of the messenger system if they have not accessed it for, say, ten │ │ │ │ minutes.

          │ │ │ │ │ │ │ │ │ │ │ │ @@ -114,96 +114,96 @@ │ │ │ │ something called a signal to all the processes it has links to.

          The signal carries information about the pid it was sent from and the exit │ │ │ │ reason.

          The default behaviour of a process that receives a normal exit is to ignore the │ │ │ │ signal.

          The default behaviour in the two other cases (that is, abnormal exit) above is │ │ │ │ to:

          • Bypass all messages to the receiving process.
          • Kill the receiving process.
          • Propagate the same error signal to the links of the killed process.

          In this way you can connect all processes in a transaction together using links. │ │ │ │ If one of the processes exits abnormally, all the processes in the transaction │ │ │ │ are killed. As it is often wanted to create a process and link to it at the same │ │ │ │ time, there is a special BIF, spawn_link that does the │ │ │ │ -same as spawn, but also creates a link to the spawned process.

          Now an example of the ping pong example using links to terminate "pong":

          -module(tut20).
          │ │ │ │ +same as spawn, but also creates a link to the spawned process.

          Now an example of the ping pong example using links to terminate "pong":

          -module(tut20).
          │ │ │ │  
          │ │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Pid) ->
          │ │ │ │ -    link(Pong_Pid),
          │ │ │ │ -    ping1(N, Pong_Pid).
          │ │ │ │ +ping(N, Pong_Pid) ->
          │ │ │ │ +    link(Pong_Pid),
          │ │ │ │ +    ping1(N, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -ping1(0, _) ->
          │ │ │ │ -    exit(ping);
          │ │ │ │ +ping1(0, _) ->
          │ │ │ │ +    exit(ping);
          │ │ │ │  
          │ │ │ │ -ping1(N, Pong_Pid) ->
          │ │ │ │ -    Pong_Pid ! {ping, self()},
          │ │ │ │ +ping1(N, Pong_Pid) ->
          │ │ │ │ +    Pong_Pid ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping1(N - 1, Pong_Pid).
          │ │ │ │ +    ping1(N - 1, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ +pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start(Ping_Node) ->
          │ │ │ │ -    PongPID = spawn(tut20, pong, []),
          │ │ │ │ -    spawn(Ping_Node, tut20, ping, [3, PongPID]).
          (s1@bill)3> tut20:start(s2@kosken).
          │ │ │ │ +start(Ping_Node) ->
          │ │ │ │ +    PongPID = spawn(tut20, pong, []),
          │ │ │ │ +    spawn(Ping_Node, tut20, ping, [3, PongPID]).
          (s1@bill)3> tut20:start(s2@kosken).
          │ │ │ │  Pong received ping
          │ │ │ │  <3820.41.0>
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong

          This is a slight modification of the ping pong program where both processes are │ │ │ │ spawned from the same start/1 function, and the "ping" process can be spawned │ │ │ │ on a separate node. Notice the use of the link BIF. "Ping" calls │ │ │ │ exit(ping) when it finishes and this causes an exit signal to be │ │ │ │ sent to "pong", which also terminates.

          It is possible to modify the default behaviour of a process so that it does not │ │ │ │ get killed when it receives abnormal exit signals. Instead, all signals are │ │ │ │ turned into normal messages on the format {'EXIT',FromPID,Reason} and added to │ │ │ │ -the end of the receiving process' message queue. This behaviour is set by:

          process_flag(trap_exit, true)

          There are several other process flags, see erlang(3). │ │ │ │ +the end of the receiving process' message queue. This behaviour is set by:

          process_flag(trap_exit, true)

          There are several other process flags, see erlang(3). │ │ │ │ Changing the default behaviour of a process in this way is usually not done in │ │ │ │ standard user programs, but is left to the supervisory programs in OTP. However, │ │ │ │ -the ping pong program is modified to illustrate exit trapping.

          -module(tut21).
          │ │ │ │ +the ping pong program is modified to illustrate exit trapping.

          -module(tut21).
          │ │ │ │  
          │ │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Pid) ->
          │ │ │ │ -    link(Pong_Pid),
          │ │ │ │ -    ping1(N, Pong_Pid).
          │ │ │ │ +ping(N, Pong_Pid) ->
          │ │ │ │ +    link(Pong_Pid),
          │ │ │ │ +    ping1(N, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -ping1(0, _) ->
          │ │ │ │ -    exit(ping);
          │ │ │ │ +ping1(0, _) ->
          │ │ │ │ +    exit(ping);
          │ │ │ │  
          │ │ │ │ -ping1(N, Pong_Pid) ->
          │ │ │ │ -    Pong_Pid ! {ping, self()},
          │ │ │ │ +ping1(N, Pong_Pid) ->
          │ │ │ │ +    Pong_Pid ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping1(N - 1, Pong_Pid).
          │ │ │ │ +    ping1(N - 1, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ -    pong1().
          │ │ │ │ +pong() ->
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │ +    pong1().
          │ │ │ │  
          │ │ │ │ -pong1() ->
          │ │ │ │ +pong1() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong1();
          │ │ │ │ -        {'EXIT', From, Reason} ->
          │ │ │ │ -            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
          │ │ │ │ +            pong1();
          │ │ │ │ +        {'EXIT', From, Reason} ->
          │ │ │ │ +            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start(Ping_Node) ->
          │ │ │ │ -    PongPID = spawn(tut21, pong, []),
          │ │ │ │ -    spawn(Ping_Node, tut21, ping, [3, PongPID]).
          (s1@bill)1> tut21:start(s2@gollum).
          │ │ │ │ +start(Ping_Node) ->
          │ │ │ │ +    PongPID = spawn(tut21, pong, []),
          │ │ │ │ +    spawn(Ping_Node, tut21, ping, [3, PongPID]).
          (s1@bill)1> tut21:start(s2@gollum).
          │ │ │ │  <3820.39.0>
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │ @@ -256,135 +256,135 @@
          │ │ │ │  %%% Started: messenger:client(Server_Node, Name)
          │ │ │ │  %%% To client: logoff
          │ │ │ │  %%% To client: {message_to, ToName, Message}
          │ │ │ │  %%%
          │ │ │ │  %%% Configuration: change the server_node() function to return the
          │ │ │ │  %%% name of the node where the messenger server runs
          │ │ │ │  
          │ │ │ │ --module(messenger).
          │ │ │ │ --export([start_server/0, server/0,
          │ │ │ │ -         logon/1, logoff/0, message/2, client/2]).
          │ │ │ │ +-module(messenger).
          │ │ │ │ +-export([start_server/0, server/0,
          │ │ │ │ +         logon/1, logoff/0, message/2, client/2]).
          │ │ │ │  
          │ │ │ │  %%% Change the function below to return the name of the node where the
          │ │ │ │  %%% messenger server runs
          │ │ │ │ -server_node() ->
          │ │ │ │ +server_node() ->
          │ │ │ │      messenger@super.
          │ │ │ │  
          │ │ │ │  %%% This is the server process for the "messenger"
          │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
          │ │ │ │ -server() ->
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ -    server([]).
          │ │ │ │ +server() ->
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │ +    server([]).
          │ │ │ │  
          │ │ │ │ -server(User_List) ->
          │ │ │ │ +server(User_List) ->
          │ │ │ │      receive
          │ │ │ │ -        {From, logon, Name} ->
          │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
          │ │ │ │ -            server(New_User_List);
          │ │ │ │ -        {'EXIT', From, _} ->
          │ │ │ │ -            New_User_List = server_logoff(From, User_List),
          │ │ │ │ -            server(New_User_List);
          │ │ │ │ -        {From, message_to, To, Message} ->
          │ │ │ │ -            server_transfer(From, To, Message, User_List),
          │ │ │ │ -            io:format("list is now: ~p~n", [User_List]),
          │ │ │ │ -            server(User_List)
          │ │ │ │ +        {From, logon, Name} ->
          │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
          │ │ │ │ +            server(New_User_List);
          │ │ │ │ +        {'EXIT', From, _} ->
          │ │ │ │ +            New_User_List = server_logoff(From, User_List),
          │ │ │ │ +            server(New_User_List);
          │ │ │ │ +        {From, message_to, To, Message} ->
          │ │ │ │ +            server_transfer(From, To, Message, User_List),
          │ │ │ │ +            io:format("list is now: ~p~n", [User_List]),
          │ │ │ │ +            server(User_List)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% Start the server
          │ │ │ │ -start_server() ->
          │ │ │ │ -    register(messenger, spawn(messenger, server, [])).
          │ │ │ │ +start_server() ->
          │ │ │ │ +    register(messenger, spawn(messenger, server, [])).
          │ │ │ │  
          │ │ │ │  %%% Server adds a new user to the user list
          │ │ │ │ -server_logon(From, Name, User_List) ->
          │ │ │ │ +server_logon(From, Name, User_List) ->
          │ │ │ │      %% check if logged on anywhere else
          │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
          │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
          │ │ │ │          true ->
          │ │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ │              User_List;
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, logged_on},
          │ │ │ │ -            link(From),
          │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
          │ │ │ │ +            From ! {messenger, logged_on},
          │ │ │ │ +            link(From),
          │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% Server deletes a user from the user list
          │ │ │ │ -server_logoff(From, User_List) ->
          │ │ │ │ -    lists:keydelete(From, 1, User_List).
          │ │ │ │ +server_logoff(From, User_List) ->
          │ │ │ │ +    lists:keydelete(From, 1, User_List).
          │ │ │ │  
          │ │ │ │  
          │ │ │ │  %%% Server transfers a message between user
          │ │ │ │ -server_transfer(From, To, Message, User_List) ->
          │ │ │ │ +server_transfer(From, To, Message, User_List) ->
          │ │ │ │      %% check that the user is logged on and who he is
          │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
          │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ │ -        {value, {_, Name}} ->
          │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
          │ │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ │ +        {value, {_, Name}} ->
          │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% If the user exists, send the message
          │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ │      %% Find the receiver and send the message
          │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
          │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, receiver_not_found};
          │ │ │ │ -        {value, {ToPid, To}} ->
          │ │ │ │ -            ToPid ! {message_from, Name, Message},
          │ │ │ │ -            From ! {messenger, sent}
          │ │ │ │ +            From ! {messenger, receiver_not_found};
          │ │ │ │ +        {value, {ToPid, To}} ->
          │ │ │ │ +            ToPid ! {message_from, Name, Message},
          │ │ │ │ +            From ! {messenger, sent}
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% User Commands
          │ │ │ │ -logon(Name) ->
          │ │ │ │ -    case whereis(mess_client) of
          │ │ │ │ +logon(Name) ->
          │ │ │ │ +    case whereis(mess_client) of
          │ │ │ │          undefined ->
          │ │ │ │ -            register(mess_client,
          │ │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ │ +            register(mess_client,
          │ │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ │          _ -> already_logged_on
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -logoff() ->
          │ │ │ │ +logoff() ->
          │ │ │ │      mess_client ! logoff.
          │ │ │ │  
          │ │ │ │ -message(ToName, Message) ->
          │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
          │ │ │ │ +message(ToName, Message) ->
          │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
          │ │ │ │          undefined ->
          │ │ │ │              not_logged_on;
          │ │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ │               ok
          │ │ │ │  end.
          │ │ │ │  
          │ │ │ │  %%% The client process which runs on each user node
          │ │ │ │ -client(Server_Node, Name) ->
          │ │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ │ -    await_result(),
          │ │ │ │ -    client(Server_Node).
          │ │ │ │ +client(Server_Node, Name) ->
          │ │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ │ +    await_result(),
          │ │ │ │ +    client(Server_Node).
          │ │ │ │  
          │ │ │ │ -client(Server_Node) ->
          │ │ │ │ +client(Server_Node) ->
          │ │ │ │      receive
          │ │ │ │          logoff ->
          │ │ │ │ -            exit(normal);
          │ │ │ │ -        {message_to, ToName, Message} ->
          │ │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ │ -            await_result();
          │ │ │ │ -        {message_from, FromName, Message} ->
          │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ │ +            exit(normal);
          │ │ │ │ +        {message_to, ToName, Message} ->
          │ │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ │ +            await_result();
          │ │ │ │ +        {message_from, FromName, Message} ->
          │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ │      end,
          │ │ │ │ -    client(Server_Node).
          │ │ │ │ +    client(Server_Node).
          │ │ │ │  
          │ │ │ │  %%% wait for a response from the server
          │ │ │ │ -await_result() ->
          │ │ │ │ +await_result() ->
          │ │ │ │      receive
          │ │ │ │ -        {messenger, stop, Why} -> % Stop the client
          │ │ │ │ -            io:format("~p~n", [Why]),
          │ │ │ │ -            exit(normal);
          │ │ │ │ -        {messenger, What} ->  % Normal response
          │ │ │ │ -            io:format("~p~n", [What])
          │ │ │ │ +        {messenger, stop, Why} -> % Stop the client
          │ │ │ │ +            io:format("~p~n", [Why]),
          │ │ │ │ +            exit(normal);
          │ │ │ │ +        {messenger, What} ->  % Normal response
          │ │ │ │ +            io:format("~p~n", [What])
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("No response from server~n", []),
          │ │ │ │ -            exit(timeout)
          │ │ │ │ +            io:format("No response from server~n", []),
          │ │ │ │ +            exit(timeout)
          │ │ │ │      end.

          The following changes are added:

          The messenger server traps exits. If it receives an exit signal, │ │ │ │ {'EXIT',From,Reason}, this means that a client process has terminated or is │ │ │ │ unreachable for one of the following reasons:

          • The user has logged off (the "logoff" message is removed).
          • The network connection to the client is broken.
          • The node on which the client process resides has gone down.
          • The client processes has done some illegal operation.

          If an exit signal is received as above, the tuple {From,Name} is deleted from │ │ │ │ the servers User_List using the server_logoff function. If the node on which │ │ │ │ the server runs goes down, an exit signal (automatically generated by the │ │ │ │ system) is sent to all of the client processes: │ │ │ │ {'EXIT',MessengerPID,noconnection} causing all the client processes to │ │ │ ├── OEBPS/release_structure.xhtml │ │ │ │ @@ -41,37 +41,37 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Release Resource File │ │ │ │

          │ │ │ │

          To define a release, create a release resource file, or in short a .rel │ │ │ │ file. In the file, specify the name and version of the release, which ERTS │ │ │ │ -version it is based on, and which applications it consists of:

          {release, {Name,Vsn}, {erts, EVsn},
          │ │ │ │ - [{Application1, AppVsn1},
          │ │ │ │ +version it is based on, and which applications it consists of:

          {release, {Name,Vsn}, {erts, EVsn},
          │ │ │ │ + [{Application1, AppVsn1},
          │ │ │ │     ...
          │ │ │ │ -  {ApplicationN, AppVsnN}]}.

          Name, Vsn, EVsn, and AppVsn are strings.

          The file must be named Rel.rel, where Rel is a unique name.

          Each Application (atom) and AppVsn is the name and version of an application │ │ │ │ + {ApplicationN, AppVsnN}]}.

          Name, Vsn, EVsn, and AppVsn are strings.

          The file must be named Rel.rel, where Rel is a unique name.

          Each Application (atom) and AppVsn is the name and version of an application │ │ │ │ included in the release. The minimal release based on Erlang/OTP consists of the │ │ │ │ Kernel and STDLIB applications, so these applications must be included in the │ │ │ │ list.

          If the release is to be upgraded, it must also include the SASL application.

          Here is an example showing the .app file for a release of ch_app from │ │ │ │ -the Applications section:

          {application, ch_app,
          │ │ │ │ - [{description, "Channel allocator"},
          │ │ │ │ -  {vsn, "1"},
          │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
          │ │ │ │ -  {registered, [ch3]},
          │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
          │ │ │ │ -  {mod, {ch_app,[]}}
          │ │ │ │ - ]}.

          The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ │ -applications are required by ch_app. The file is called ch_rel-1.rel:

          {release,
          │ │ │ │ - {"ch_rel", "A"},
          │ │ │ │ - {erts, "14.2.5"},
          │ │ │ │ - [{kernel, "9.2.4"},
          │ │ │ │ -  {stdlib, "5.2.3"},
          │ │ │ │ -  {sasl, "4.2.1"},
          │ │ │ │ -  {ch_app, "1"}]
          │ │ │ │ -}.

          │ │ │ │ +the Applications section:

          {application, ch_app,
          │ │ │ │ + [{description, "Channel allocator"},
          │ │ │ │ +  {vsn, "1"},
          │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
          │ │ │ │ +  {registered, [ch3]},
          │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
          │ │ │ │ +  {mod, {ch_app,[]}}
          │ │ │ │ + ]}.

          The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ │ +applications are required by ch_app. The file is called ch_rel-1.rel:

          {release,
          │ │ │ │ + {"ch_rel", "A"},
          │ │ │ │ + {erts, "14.2.5"},
          │ │ │ │ + [{kernel, "9.2.4"},
          │ │ │ │ +  {stdlib, "5.2.3"},
          │ │ │ │ +  {sasl, "4.2.1"},
          │ │ │ │ +  {ch_app, "1"}]
          │ │ │ │ +}.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Generating Boot Scripts │ │ │ │

          │ │ │ │

          systools in the SASL application includes tools to build and check │ │ │ │ releases. The functions read the .rel and .app files and perform │ │ │ │ @@ -95,17 +95,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Release Package │ │ │ │ │ │ │ │

          The systools:make_tar/1,2 function takes a │ │ │ │ .rel file as input and creates a zipped tar file with the code for │ │ │ │ -the specified applications, a release package:

          1> systools:make_script("ch_rel-1").
          │ │ │ │ +the specified applications, a release package:

          1> systools:make_script("ch_rel-1").
          │ │ │ │  ok
          │ │ │ │ -2> systools:make_tar("ch_rel-1").
          │ │ │ │ +2> systools:make_tar("ch_rel-1").
          │ │ │ │  ok

          The release package by default contains:

          • The .app files
          • The .rel file
          • The object code for all applications, structured according to the │ │ │ │ application directory structure
          • The binary boot script renamed to start.boot
          % tar tf ch_rel-1.tar
          │ │ │ │  lib/kernel-9.2.4/ebin/kernel.app
          │ │ │ │  lib/kernel-9.2.4/ebin/application.beam
          │ │ │ │  ...
          │ │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
          │ │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
          │ │ │ ├── OEBPS/release_handling.xhtml
          │ │ │ │ @@ -128,38 +128,38 @@
          │ │ │ │    update
          │ │ │ │  
          │ │ │ │  

          If a more complex change has been made, for example, a change to the format of │ │ │ │ the internal state of a gen_server, simple code replacement is not sufficient. │ │ │ │ Instead, it is necessary to:

          • Suspend the processes using the module (to avoid that they try to handle any │ │ │ │ requests before the code replacement is completed).
          • Ask them to transform the internal state format and switch to the new version │ │ │ │ of the module.
          • Remove the old version.
          • Resume the processes.

          This is called synchronized code replacement and for this the following │ │ │ │ -instructions are used:

          {update, Module, {advanced, Extra}}
          │ │ │ │ -{update, Module, supervisor}

          update with argument {advanced,Extra} is used when changing the internal │ │ │ │ +instructions are used:

          {update, Module, {advanced, Extra}}
          │ │ │ │ +{update, Module, supervisor}

          update with argument {advanced,Extra} is used when changing the internal │ │ │ │ state of a behaviour as described above. It causes behaviour processes to call │ │ │ │ the callback function code_change/3, passing the term Extra and some other │ │ │ │ information as arguments. See the manual pages for the respective behaviours and │ │ │ │ Appup Cookbook.

          update with argument supervisor is used when changing the start │ │ │ │ specification of a supervisor. See Appup Cookbook.

          When a module is to be updated, the release handler finds which processes that │ │ │ │ are using the module by traversing the supervision tree of each running │ │ │ │ -application and checking all the child specifications:

          {Id, StartFunc, Restart, Shutdown, Type, Modules}

          A process uses a module if the name is listed in Modules in the child │ │ │ │ +application and checking all the child specifications:

          {Id, StartFunc, Restart, Shutdown, Type, Modules}

          A process uses a module if the name is listed in Modules in the child │ │ │ │ specification for the process.

          If Modules=dynamic, which is the case for event managers, the event manager │ │ │ │ process informs the release handler about the list of currently installed event │ │ │ │ handlers (gen_event), and it is checked if the module name is in this list │ │ │ │ instead.

          The release handler suspends, asks for code change, and resumes processes by │ │ │ │ calling the functions sys:suspend/1,2, sys:change_code/4,5, and │ │ │ │ sys:resume/1,2, respectively.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ add_module and delete_module │ │ │ │

          │ │ │ │ -

          If a new module is introduced, the following instruction is used:

          {add_module, Module}

          This instruction loads module Module. When running Erlang in │ │ │ │ +

          If a new module is introduced, the following instruction is used:

          {add_module, Module}

          This instruction loads module Module. When running Erlang in │ │ │ │ embedded mode it is necessary to use this this instruction. It is not │ │ │ │ strictly required when running Erlang in interactive mode, since the │ │ │ │ -code server automatically searches for and loads unloaded modules.

          The opposite of add_module is delete_module, which unloads a module:

          {delete_module, Module}

          Any process, in any application, with Module as residence module, is │ │ │ │ +code server automatically searches for and loads unloaded modules.

          The opposite of add_module is delete_module, which unloads a module:

          {delete_module, Module}

          Any process, in any application, with Module as residence module, is │ │ │ │ killed when the instruction is evaluated. Therefore, the user must │ │ │ │ ensure that all such processes are terminated before deleting module │ │ │ │ Module to avoid a situation with failing supervisor restarts.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Instructions │ │ │ │ @@ -246,60 +246,60 @@ │ │ │ │ .app file.

        • Each UpFromVsn is a previous version of the application to upgrade from.
        • Each DownToVsn is a previous version of the application to downgrade to.
        • Each Instructions is a list of release handling instructions.

        UpFromVsn and DownToVsn can also be specified as regular expressions. For │ │ │ │ more information about the syntax and contents of the .appup file, see │ │ │ │ appup in SASL.

        Appup Cookbook includes examples of .appup files for │ │ │ │ typical upgrade/downgrade cases.

        Example: Consider the release ch_rel-1 from │ │ │ │ Releases. Assume you want to add a function │ │ │ │ available/0 to server ch3, which returns the number of available channels │ │ │ │ (when trying out the example, make the change in a copy of the original │ │ │ │ -directory, to ensure that the first version is still available):

        -module(ch3).
        │ │ │ │ --behaviour(gen_server).
        │ │ │ │ +directory, to ensure that the first version is still available):

        -module(ch3).
        │ │ │ │ +-behaviour(gen_server).
        │ │ │ │  
        │ │ │ │ --export([start_link/0]).
        │ │ │ │ --export([alloc/0, free/1]).
        │ │ │ │ --export([available/0]).
        │ │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
        │ │ │ │ +-export([start_link/0]).
        │ │ │ │ +-export([alloc/0, free/1]).
        │ │ │ │ +-export([available/0]).
        │ │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
        │ │ │ │  
        │ │ │ │ -start_link() ->
        │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
        │ │ │ │ +start_link() ->
        │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
        │ │ │ │  
        │ │ │ │ -alloc() ->
        │ │ │ │ -    gen_server:call(ch3, alloc).
        │ │ │ │ +alloc() ->
        │ │ │ │ +    gen_server:call(ch3, alloc).
        │ │ │ │  
        │ │ │ │ -free(Ch) ->
        │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).
        │ │ │ │ +free(Ch) ->
        │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).
        │ │ │ │  
        │ │ │ │ -available() ->
        │ │ │ │ -    gen_server:call(ch3, available).
        │ │ │ │ +available() ->
        │ │ │ │ +    gen_server:call(ch3, available).
        │ │ │ │  
        │ │ │ │ -init(_Args) ->
        │ │ │ │ -    {ok, channels()}.
        │ │ │ │ +init(_Args) ->
        │ │ │ │ +    {ok, channels()}.
        │ │ │ │  
        │ │ │ │ -handle_call(alloc, _From, Chs) ->
        │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
        │ │ │ │ -    {reply, Ch, Chs2};
        │ │ │ │ -handle_call(available, _From, Chs) ->
        │ │ │ │ -    N = available(Chs),
        │ │ │ │ -    {reply, N, Chs}.
        │ │ │ │ +handle_call(alloc, _From, Chs) ->
        │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
        │ │ │ │ +    {reply, Ch, Chs2};
        │ │ │ │ +handle_call(available, _From, Chs) ->
        │ │ │ │ +    N = available(Chs),
        │ │ │ │ +    {reply, N, Chs}.
        │ │ │ │  
        │ │ │ │ -handle_cast({free, Ch}, Chs) ->
        │ │ │ │ -    Chs2 = free(Ch, Chs),
        │ │ │ │ -    {noreply, Chs2}.

        A new version of the ch_app.app file must now be created, where the version is │ │ │ │ -updated:

        {application, ch_app,
        │ │ │ │ - [{description, "Channel allocator"},
        │ │ │ │ -  {vsn, "2"},
        │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
        │ │ │ │ -  {registered, [ch3]},
        │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
        │ │ │ │ -  {mod, {ch_app,[]}}
        │ │ │ │ - ]}.

        To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + Chs2 = free(Ch, Chs), │ │ │ │ + {noreply, Chs2}.

        A new version of the ch_app.app file must now be created, where the version is │ │ │ │ +updated:

        {application, ch_app,
        │ │ │ │ + [{description, "Channel allocator"},
        │ │ │ │ +  {vsn, "2"},
        │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
        │ │ │ │ +  {registered, [ch3]},
        │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
        │ │ │ │ +  {mod, {ch_app,[]}}
        │ │ │ │ + ]}.

        To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ │ you only need to load the new (old) version of the ch3 callback module. Create │ │ │ │ -the application upgrade file ch_app.appup in the ebin directory:

        {"2",
        │ │ │ │ - [{"1", [{load_module, ch3}]}],
        │ │ │ │ - [{"1", [{load_module, ch3}]}]
        │ │ │ │ -}.

        │ │ │ │ +the application upgrade file ch_app.appup in the ebin directory:

        {"2",
        │ │ │ │ + [{"1", [{load_module, ch3}]}],
        │ │ │ │ + [{"1", [{load_module, ch3}]}]
        │ │ │ │ +}.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Release Upgrade File │ │ │ │

        │ │ │ │

        To define how to upgrade/downgrade between the new version and previous versions │ │ │ │ of a release, a release upgrade file, or in short .relup file, is to be │ │ │ │ @@ -310,22 +310,22 @@ │ │ │ │ are to be added and deleted, and which applications that must be upgraded and/or │ │ │ │ downgraded. The instructions for this are fetched from the .appup files and │ │ │ │ transformed into a single list of low-level instructions in the right order.

        If the relup file is relatively simple, it can be created manually. It is only │ │ │ │ to contain low-level instructions.

        For details about the syntax and contents of the release upgrade file, see │ │ │ │ relup in SASL.

        Example, continued from the previous section: You have a new version "2" of │ │ │ │ ch_app and an .appup file. A new version of the .rel file is also needed. │ │ │ │ This time the file is called ch_rel-2.rel and the release version string is │ │ │ │ -changed from "A" to "B":

        {release,
        │ │ │ │ - {"ch_rel", "B"},
        │ │ │ │ - {erts, "14.2.5"},
        │ │ │ │ - [{kernel, "9.2.4"},
        │ │ │ │ -  {stdlib, "5.2.3"},
        │ │ │ │ -  {sasl, "4.2.1"},
        │ │ │ │ -  {ch_app, "2"}]
        │ │ │ │ -}.

        Now the relup file can be generated:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
        │ │ │ │ +changed from "A" to "B":

        {release,
        │ │ │ │ + {"ch_rel", "B"},
        │ │ │ │ + {erts, "14.2.5"},
        │ │ │ │ + [{kernel, "9.2.4"},
        │ │ │ │ +  {stdlib, "5.2.3"},
        │ │ │ │ +  {sasl, "4.2.1"},
        │ │ │ │ +  {ch_app, "2"}]
        │ │ │ │ +}.

        Now the relup file can be generated:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
        │ │ │ │  ok

        This generates a relup file with instructions for how to upgrade from version │ │ │ │ "A" ("ch_rel-1") to version "B" ("ch_rel-2") and how to downgrade from version │ │ │ │ "B" to version "A".

        Both the old and new versions of the .app and .rel files must be in the code │ │ │ │ path, as well as the .appup and (new) .beam files. The code path can be │ │ │ │ extended by using the option path:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
        │ │ │ │  [{path,["../ch_rel-1",
        │ │ │ │  "../ch_rel-1/lib/ch_app-1/ebin"]}]).
        │ │ │ │ @@ -338,25 +338,25 @@
        │ │ │ │  

        When you have made a new version of a release, a release package can be created │ │ │ │ with this new version and transferred to the target environment.

        To install the new version of the release in runtime, the release │ │ │ │ handler is used. This is a process belonging to the SASL application, │ │ │ │ which handles unpacking, installation, and removal of release │ │ │ │ packages. The release_handler module communicates with this process.

        Assuming there is an operational target system with installation root directory │ │ │ │ $ROOT, the release package with the new version of the release is to be copied │ │ │ │ to $ROOT/releases.

        First, unpack the release package. The files are then extracted from the │ │ │ │ -package:

        release_handler:unpack_release(ReleaseName) => {ok, Vsn}
        • ReleaseName is the name of the release package except the .tar.gz │ │ │ │ +package:

          release_handler:unpack_release(ReleaseName) => {ok, Vsn}
          • ReleaseName is the name of the release package except the .tar.gz │ │ │ │ extension.
          • Vsn is the version of the unpacked release, as defined in its .rel file.

          A directory $ROOT/lib/releases/Vsn is created, where the .rel file, the boot │ │ │ │ script start.boot, the system configuration file sys.config, and relup are │ │ │ │ placed. For applications with new version numbers, the application directories │ │ │ │ are placed under $ROOT/lib. Unchanged applications are not affected.

          An unpacked release can be installed. The release handler then evaluates the │ │ │ │ -instructions in relup, step by step:

          release_handler:install_release(Vsn) => {ok, FromVsn, []}

          If an error occurs during the installation, the system is rebooted using the old │ │ │ │ +instructions in relup, step by step:

          release_handler:install_release(Vsn) => {ok, FromVsn, []}

          If an error occurs during the installation, the system is rebooted using the old │ │ │ │ version of the release. If installation succeeds, the system is afterwards using │ │ │ │ the new version of the release, but if anything happens and the system is │ │ │ │ rebooted, it starts using the previous version again.

          To be made the default version, the newly installed release must be made │ │ │ │ permanent, which means the previous version becomes old:

          release_handler:make_permanent(Vsn) => ok

          The system keeps information about which versions are old and permanent in the │ │ │ │ -files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

          To downgrade from Vsn to FromVsn, install_release must be called again:

          release_handler:install_release(FromVsn) => {ok, Vsn, []}

          An installed, but not permanent, release can be removed. Information about the │ │ │ │ +files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

          To downgrade from Vsn to FromVsn, install_release must be called again:

          release_handler:install_release(FromVsn) => {ok, Vsn, []}

          An installed, but not permanent, release can be removed. Information about the │ │ │ │ release is then deleted from $ROOT/releases/RELEASES and the release-specific │ │ │ │ code, that is, the new application directories and the $ROOT/releases/Vsn │ │ │ │ directory, are removed.

          release_handler:remove_release(Vsn) => ok

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example (continued from the previous sections) │ │ │ │ @@ -367,17 +367,17 @@ │ │ │ │ is needed, the file is to contain the empty list:

          [].

          Step 2) Start the system as a simple target system. In reality, it is to be │ │ │ │ started as an embedded system. However, using erl with the correct boot script │ │ │ │ and config file is enough for illustration purposes:

          % cd $ROOT
          │ │ │ │  % bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
          │ │ │ │  ...

          $ROOT is the installation directory of the target system.

          Step 3) In another Erlang shell, generate start scripts and create a release │ │ │ │ package for the new version "B". Remember to include (a possible updated) │ │ │ │ sys.config and the relup file. For more information, see │ │ │ │ -Release Upgrade File.

          1> systools:make_script("ch_rel-2").
          │ │ │ │ +Release Upgrade File.

          1> systools:make_script("ch_rel-2").
          │ │ │ │  ok
          │ │ │ │ -2> systools:make_tar("ch_rel-2").
          │ │ │ │ +2> systools:make_tar("ch_rel-2").
          │ │ │ │  ok

          The new release package now also contains version "2" of ch_app and the │ │ │ │ relup file:

          % tar tf ch_rel-2.tar
          │ │ │ │  lib/kernel-9.2.4/ebin/kernel.app
          │ │ │ │  lib/kernel-9.2.4/ebin/application.beam
          │ │ │ │  ...
          │ │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
          │ │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
          │ │ │ │ @@ -390,31 +390,31 @@
          │ │ │ │  lib/ch_app-2/ebin/ch_sup.beam
          │ │ │ │  lib/ch_app-2/ebin/ch3.beam
          │ │ │ │  releases/B/start.boot
          │ │ │ │  releases/B/relup
          │ │ │ │  releases/B/sys.config
          │ │ │ │  releases/B/ch_rel-2.rel
          │ │ │ │  releases/ch_rel-2.rel

          Step 4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases │ │ │ │ -directory.

          Step 5) In the running target system, unpack the release package:

          1> release_handler:unpack_release("ch_rel-2").
          │ │ │ │ -{ok,"B"}

          The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ │ +directory.

          Step 5) In the running target system, unpack the release package:

          1> release_handler:unpack_release("ch_rel-2").
          │ │ │ │ +{ok,"B"}

          The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ │ ch_app-1. The kernel, stdlib, and sasl directories are not affected, as │ │ │ │ they have not changed.

          Under $ROOT/releases, a new directory B is created, containing │ │ │ │ -ch_rel-2.rel, start.boot, sys.config, and relup.

          Step 6) Check if the function ch3:available/0 is available:

          2> ch3:available().
          │ │ │ │ +ch_rel-2.rel, start.boot, sys.config, and relup.

          Step 6) Check if the function ch3:available/0 is available:

          2> ch3:available().
          │ │ │ │  ** exception error: undefined function ch3:available/0

          Step 7) Install the new release. The instructions in $ROOT/releases/B/relup │ │ │ │ are executed one by one, resulting in the new version of ch3 being loaded. The │ │ │ │ -function ch3:available/0 is now available:

          3> release_handler:install_release("B").
          │ │ │ │ -{ok,"A",[]}
          │ │ │ │ -4> ch3:available().
          │ │ │ │ +function ch3:available/0 is now available:

          3> release_handler:install_release("B").
          │ │ │ │ +{ok,"A",[]}
          │ │ │ │ +4> ch3:available().
          │ │ │ │  3
          │ │ │ │ -5> code:which(ch3).
          │ │ │ │ +5> code:which(ch3).
          │ │ │ │  ".../lib/ch_app-2/ebin/ch3.beam"
          │ │ │ │ -6> code:which(ch_sup).
          │ │ │ │ +6> code:which(ch_sup).
          │ │ │ │  ".../lib/ch_app-1/ebin/ch_sup.beam"

          Processes in ch_app for which code have not been updated, for example, the │ │ │ │ supervisor, are still evaluating code from ch_app-1.

          Step 8) If the target system is now rebooted, it uses version "A" again. The │ │ │ │ -"B" version must be made permanent, to be used when the system is rebooted.

          7> release_handler:make_permanent("B").
          │ │ │ │ +"B" version must be made permanent, to be used when the system is rebooted.

          7> release_handler:make_permanent("B").
          │ │ │ │  ok

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Application Specifications │ │ │ │

          │ │ │ │

          When a new version of a release is installed, the application specifications are │ │ │ │ @@ -423,14 +423,14 @@ │ │ │ │ boot script is generated from the same .rel file as is used to build the │ │ │ │ release package itself.

          Specifically, the application configuration parameters are automatically updated │ │ │ │ according to (in increasing priority order):

          • The data in the boot script, fetched from the new application resource file │ │ │ │ App.app
          • The new sys.config
          • Command-line arguments -App Par Val

          This means that parameter values set in the other system configuration files and │ │ │ │ values set using application:set_env/3 are disregarded.

          When an installed release is made permanent, the system process init is set to │ │ │ │ point out the new sys.config.

          After the installation, the application controller compares the old and new │ │ │ │ configuration parameters for all running applications and call the callback │ │ │ │ -function:

          Module:config_change(Changed, New, Removed)
          • Module is the application callback module as defined by the mod key in the │ │ │ │ +function:

            Module:config_change(Changed, New, Removed)
            • Module is the application callback module as defined by the mod key in the │ │ │ │ .app file.
            • Changed and New are lists of {Par,Val} for all changed and added │ │ │ │ configuration parameters, respectively.
            • Removed is a list of all parameters Par that have been removed.

            The function is optional and can be omitted when implementing an application │ │ │ │ callback module.

            │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/ref_man_records.xhtml │ │ │ │ @@ -28,17 +28,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ Defining Records │ │ │ │

          │ │ │ │

          A record definition consists of the name of the record, followed by the field │ │ │ │ names of the record. Record and field names must be atoms. Each field can be │ │ │ │ given an optional default value. If no default value is supplied, undefined is │ │ │ │ -used.

          -record(Name, {Field1 [= Expr1],
          │ │ │ │ +used.

          -record(Name, {Field1 [= Expr1],
          │ │ │ │                 ...
          │ │ │ │ -               FieldN [= ExprN]}).

          The default value for a field is an arbitrary expression, except that it must │ │ │ │ + FieldN [= ExprN]}).

          The default value for a field is an arbitrary expression, except that it must │ │ │ │ not use any variables.

          A record definition can be placed anywhere among the attributes and function │ │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ │ record.

          If a record is used in several modules, it is recommended that the record │ │ │ │ definition is placed in an include file.

          Change

          Starting from Erlang/OTP 26, records can be defined in the Erlang shell │ │ │ │ using the syntax described in this section. In earlier releases, it was │ │ │ │ necessary to use the shell built-in function rd/2.

          │ │ │ │ │ │ │ │ @@ -48,32 +48,32 @@ │ │ │ │

          │ │ │ │

          The following expression creates a new Name record where the value of each │ │ │ │ field FieldI is the value of evaluating the corresponding expression ExprI:

          #Name{Field1=Expr1, ..., FieldK=ExprK}

          The fields can be in any order, not necessarily the same order as in the record │ │ │ │ definition, and fields can be omitted. Omitted fields get their respective │ │ │ │ default value instead.

          If several fields are to be assigned the same value, the following construction │ │ │ │ can be used:

          #Name{Field1=Expr1, ..., FieldK=ExprK, _=ExprL}

          Omitted fields then get the value of evaluating ExprL instead of their default │ │ │ │ values. This feature is primarily intended to be used to create patterns for ETS │ │ │ │ -and Mnesia match functions.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +and Mnesia match functions.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -lookup(Name, Tab) ->
          │ │ │ │ -    ets:match_object(Tab, #person{name=Name, _='_'}).

          │ │ │ │ +lookup(Name, Tab) -> │ │ │ │ + ets:match_object(Tab, #person{name=Name, _='_'}).

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accessing Record Fields │ │ │ │

          │ │ │ │
          Expr#Name.Field

          Returns the value of the specified field. Expr is to evaluate to a Name │ │ │ │ -record.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +record.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -get_person_name(Person) ->
          │ │ │ │ +get_person_name(Person) ->
          │ │ │ │      Person#person.name.

          The following expression returns the position of the specified field in the │ │ │ │ -tuple representation of the record:

          #Name.Field

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +tuple representation of the record:

          #Name.Field

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -lookup(Name, List) ->
          │ │ │ │ -    lists:keyfind(Name, #person.name, List).

          │ │ │ │ +lookup(Name, List) -> │ │ │ │ + lists:keyfind(Name, #person.name, List).

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Records │ │ │ │

          │ │ │ │
          Expr#Name{Field1=Expr1, ..., FieldK=ExprK}

          Expr is to evaluate to a Name record. A copy of this record is returned, │ │ │ │ with the value of each specified field FieldI changed to the value of │ │ │ │ @@ -83,48 +83,48 @@ │ │ │ │ │ │ │ │ │ │ │ │ Records in Guards │ │ │ │

        │ │ │ │

        Since record expressions are expanded to tuple expressions, creating │ │ │ │ records and accessing record fields are allowed in guards. However, │ │ │ │ all subexpressions (for initializing fields), must be valid guard │ │ │ │ -expressions as well.

        Examples:

        handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
        │ │ │ │ +expressions as well.

        Examples:

        handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
        │ │ │ │      ...
        │ │ │ │  
        │ │ │ │ -handle(Msg, State) when State#state.running =:= true ->
        │ │ │ │ -    ...

        There is also a type test BIF is_record(Term, RecordTag).

        Example:

        is_person(P) when is_record(P, person) ->
        │ │ │ │ +handle(Msg, State) when State#state.running =:= true ->
        │ │ │ │ +    ...

        There is also a type test BIF is_record(Term, RecordTag).

        Example:

        is_person(P) when is_record(P, person) ->
        │ │ │ │      true;
        │ │ │ │ -is_person(_P) ->
        │ │ │ │ +is_person(_P) ->
        │ │ │ │      false.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Records in Patterns │ │ │ │

        │ │ │ │

        A pattern that matches a certain record is created in the same way as a record │ │ │ │ is created:

        #Name{Field1=Expr1, ..., FieldK=ExprK}

        In this case, one or more of Expr1 ... ExprK can be unbound variables.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │ │

        │ │ │ │ -

        Assume the following record definitions:

        -record(nrec0, {name = "nested0"}).
        │ │ │ │ --record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
        │ │ │ │ --record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
        │ │ │ │ +

        Assume the following record definitions:

        -record(nrec0, {name = "nested0"}).
        │ │ │ │ +-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
        │ │ │ │ +-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
        │ │ │ │  
        │ │ │ │ -N2 = #nrec2{},

        Accessing or updating nested records can be written without parentheses:

        "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
        │ │ │ │ +N2 = #nrec2{},

        Accessing or updating nested records can be written without parentheses:

        "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
        │ │ │ │      N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},

        which is equivalent to:

        "nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
        │ │ │ │  N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},

        Change

        Before Erlang/OTP R14, parentheses were necessary when accessing or updating │ │ │ │ nested records.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Internal Representation of Records │ │ │ │

        │ │ │ │

        Record expressions are translated to tuple expressions during compilation. A │ │ │ │ -record defined as:

        -record(Name, {Field1, ..., FieldN}).

        is internally represented by the tuple:

        {Name, Value1, ..., ValueN}

        Here each ValueI is the default value for FieldI.

        To each module using records, a pseudo function is added during compilation to │ │ │ │ -obtain information about records:

        record_info(fields, Record) -> [Field]
        │ │ │ │ -record_info(size, Record) -> Size

        Size is the size of the tuple representation, that is, one more than the │ │ │ │ +record defined as:

        -record(Name, {Field1, ..., FieldN}).

        is internally represented by the tuple:

        {Name, Value1, ..., ValueN}

        Here each ValueI is the default value for FieldI.

        To each module using records, a pseudo function is added during compilation to │ │ │ │ +obtain information about records:

        record_info(fields, Record) -> [Field]
        │ │ │ │ +record_info(size, Record) -> Size

        Size is the size of the tuple representation, that is, one more than the │ │ │ │ number of fields.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/ref_man_processes.xhtml │ │ │ │ @@ -30,18 +30,18 @@ │ │ │ │ (grow and shrink dynamically) with small memory footprint, fast to create and │ │ │ │ terminate, and the scheduling overhead is low.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Process Creation │ │ │ │

        │ │ │ │ -

        A process is created by calling spawn():

        spawn(Module, Name, Args) -> pid()
        │ │ │ │ -  Module = Name = atom()
        │ │ │ │ -  Args = [Arg1,...,ArgN]
        │ │ │ │ -    ArgI = term()

        spawn() creates a new process and returns the pid.

        The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ │ +

        A process is created by calling spawn():

        spawn(Module, Name, Args) -> pid()
        │ │ │ │ +  Module = Name = atom()
        │ │ │ │ +  Args = [Arg1,...,ArgN]
        │ │ │ │ +    ArgI = term()

        spawn() creates a new process and returns the pid.

        The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ │ arguments are the elements of the (possible empty) Args argument list.

        There exist a number of different spawn BIFs:

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Registered Processes │ │ │ │

        │ │ │ │

        Besides addressing a process by using its pid, there are also BIFs for │ │ │ ├── OEBPS/ref_man_functions.xhtml │ │ │ │ @@ -25,51 +25,51 @@ │ │ │ │ │ │ │ │ │ │ │ │ Function Declaration Syntax │ │ │ │ │ │ │ │

        A function declaration is a sequence of function clauses separated by │ │ │ │ semicolons, and terminated by a period (.).

        A function clause consists of a clause head and a clause body, separated by │ │ │ │ ->.

        A clause head consists of the function name, an argument list, and an optional │ │ │ │ -guard sequence beginning with the keyword when:

        Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
        │ │ │ │ +guard sequence beginning with the keyword when:

        Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
        │ │ │ │      Body1;
        │ │ │ │  ...;
        │ │ │ │ -Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
        │ │ │ │ +Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
        │ │ │ │      BodyK.

        The function name is an atom. Each argument is a pattern.

        The number of arguments N is the arity of the function. A function is │ │ │ │ uniquely defined by the module name, function name, and arity. That is, two │ │ │ │ functions with the same name and in the same module, but with different arities │ │ │ │ are two different functions.

        A function named f in module mod and with arity N is often denoted as │ │ │ │ mod:f/N.

        A clause body consists of a sequence of expressions separated by comma (,):

        Expr1,
        │ │ │ │  ...,
        │ │ │ │  ExprN

        Valid Erlang expressions and guard sequences are described in │ │ │ │ -Expressions.

        Example:

        fact(N) when N > 0 ->  % first clause head
        │ │ │ │ -    N * fact(N-1);     % first clause body
        │ │ │ │ +Expressions.

        Example:

        fact(N) when N > 0 ->  % first clause head
        │ │ │ │ +    N * fact(N-1);     % first clause body
        │ │ │ │  
        │ │ │ │ -fact(0) ->             % second clause head
        │ │ │ │ +fact(0) ->             % second clause head
        │ │ │ │      1.                 % second clause body

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Function Evaluation │ │ │ │

        │ │ │ │

        When a function M:F/N is called, first the code for the function is located. │ │ │ │ If the function cannot be found, an undef runtime error occurs. Notice that │ │ │ │ the function must be exported to be visible outside the module it is defined in.

        If the function is found, the function clauses are scanned sequentially until a │ │ │ │ clause is found that fulfills both of the following two conditions:

        1. The patterns in the clause head can be successfully matched against the given │ │ │ │ arguments.
        2. The guard sequence, if any, is true.

        If such a clause cannot be found, a function_clause runtime error occurs.

        If such a clause is found, the corresponding clause body is evaluated. That is, │ │ │ │ the expressions in the body are evaluated sequentially and the value of the last │ │ │ │ -expression is returned.

        Consider the function fact:

        -module(mod).
        │ │ │ │ --export([fact/1]).
        │ │ │ │ +expression is returned.

        Consider the function fact:

        -module(mod).
        │ │ │ │ +-export([fact/1]).
        │ │ │ │  
        │ │ │ │ -fact(N) when N > 0 ->
        │ │ │ │ -    N * fact(N - 1);
        │ │ │ │ -fact(0) ->
        │ │ │ │ +fact(N) when N > 0 ->
        │ │ │ │ +    N * fact(N - 1);
        │ │ │ │ +fact(0) ->
        │ │ │ │      1.

        Assume that you want to calculate the factorial for 1:

        1> mod:fact(1).

        Evaluation starts at the first clause. The pattern N is matched against │ │ │ │ argument 1. The matching succeeds and the guard (N > 0) is true, thus N is │ │ │ │ -bound to 1, and the corresponding body is evaluated:

        N * fact(N-1) => (N is bound to 1)
        │ │ │ │ -1 * fact(0)

        Now, fact(0) is called, and the function clauses are scanned │ │ │ │ +bound to 1, and the corresponding body is evaluated:

        N * fact(N-1) => (N is bound to 1)
        │ │ │ │ +1 * fact(0)

        Now, fact(0) is called, and the function clauses are scanned │ │ │ │ sequentially again. First, the pattern N is matched against 0. The │ │ │ │ matching succeeds, but the guard (N > 0) is false. Second, the │ │ │ │ pattern 0 is matched against the argument 0. The matching succeeds │ │ │ │ and the body is evaluated:

        1 * fact(0) =>
        │ │ │ │  1 * 1 =>
        │ │ │ │  1

        Evaluation has succeed and mod:fact(1) returns 1.

        If mod:fact/1 is called with a negative number as argument, no clause head │ │ │ │ matches. A function_clause runtime error occurs.

        │ │ │ │ @@ -78,17 +78,17 @@ │ │ │ │ │ │ │ │ Tail recursion │ │ │ │

        │ │ │ │

        If the last expression of a function body is a function call, a │ │ │ │ tail-recursive call is done. This is to ensure that no system │ │ │ │ resources, for example, call stack, are consumed. This means that an │ │ │ │ infinite loop using tail-recursive calls will not exhaust the call │ │ │ │ -stack and can (in principle) run forever.

        Example:

        loop(N) ->
        │ │ │ │ -    io:format("~w~n", [N]),
        │ │ │ │ -    loop(N+1).

        The earlier factorial example is a counter-example. It is not │ │ │ │ +stack and can (in principle) run forever.

        Example:

        loop(N) ->
        │ │ │ │ +    io:format("~w~n", [N]),
        │ │ │ │ +    loop(N+1).

        The earlier factorial example is a counter-example. It is not │ │ │ │ tail-recursive, since a multiplication is done on the result of the recursive │ │ │ │ call to fact(N-1).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │ │

        │ │ │ │ @@ -96,14 +96,14 @@ │ │ │ │ system. BIFs do things that are difficult or impossible to implement │ │ │ │ in Erlang. Most of the BIFs belong to module erlang, but there │ │ │ │ are also BIFs belonging to a few other modules, for example lists │ │ │ │ and ets.

        The most commonly used BIFs belonging to erlang are auto-imported. They do │ │ │ │ not need to be prefixed with the module name. Which BIFs that are auto-imported │ │ │ │ is specified in the erlang module in ERTS. For example, standard-type │ │ │ │ conversion BIFs like atom_to_list and BIFs allowed in guards can be called │ │ │ │ -without specifying the module name.

        Examples:

        1> tuple_size({a,b,c}).
        │ │ │ │ +without specifying the module name.

        Examples:

        1> tuple_size({a,b,c}).
        │ │ │ │  3
        │ │ │ │ -2> atom_to_list('Erlang').
        │ │ │ │ +2> atom_to_list('Erlang').
        │ │ │ │  "Erlang"
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/records_macros.xhtml │ │ │ │ @@ -29,40 +29,40 @@ │ │ │ │ │ │ │ │

        To illustrate this, the messenger example from the previous section is divided │ │ │ │ into the following five files:

        • mess_config.hrl

          Header file for configuration data

        • mess_interface.hrl

          Interface definitions between the client and the messenger

        • user_interface.erl

          Functions for the user interface

        • mess_client.erl

          Functions for the client side of the messenger

        • mess_server.erl

          Functions for the server side of the messenger

        While doing this, the message passing interface between the shell, the client, │ │ │ │ and the server is cleaned up and is defined using records. Also, macros are │ │ │ │ introduced:

        %%%----FILE mess_config.hrl----
        │ │ │ │  
        │ │ │ │  %%% Configure the location of the server node,
        │ │ │ │ --define(server_node, messenger@super).
        │ │ │ │ +-define(server_node, messenger@super).
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE mess_interface.hrl----
        │ │ │ │  
        │ │ │ │  %%% Message interface between client and server and client shell for
        │ │ │ │  %%% messenger program
        │ │ │ │  
        │ │ │ │  %%%Messages from Client to server received in server/1 function.
        │ │ │ │ --record(logon,{client_pid, username}).
        │ │ │ │ --record(message,{client_pid, to_name, message}).
        │ │ │ │ +-record(logon,{client_pid, username}).
        │ │ │ │ +-record(message,{client_pid, to_name, message}).
        │ │ │ │  %%% {'EXIT', ClientPid, Reason}  (client terminated or unreachable.
        │ │ │ │  
        │ │ │ │  %%% Messages from Server to Client, received in await_result/0 function
        │ │ │ │ --record(abort_client,{message}).
        │ │ │ │ +-record(abort_client,{message}).
        │ │ │ │  %%% Messages are: user_exists_at_other_node,
        │ │ │ │  %%%               you_are_not_logged_on
        │ │ │ │ --record(server_reply,{message}).
        │ │ │ │ +-record(server_reply,{message}).
        │ │ │ │  %%% Messages are: logged_on
        │ │ │ │  %%%               receiver_not_found
        │ │ │ │  %%%               sent  (Message has been sent (no guarantee)
        │ │ │ │  %%% Messages from Server to Client received in client/1 function
        │ │ │ │ --record(message_from,{from_name, message}).
        │ │ │ │ +-record(message_from,{from_name, message}).
        │ │ │ │  
        │ │ │ │  %%% Messages from shell to Client received in client/1 function
        │ │ │ │  %%% spawn(mess_client, client, [server_node(), Name])
        │ │ │ │ --record(message_to,{to_name, message}).
        │ │ │ │ +-record(message_to,{to_name, message}).
        │ │ │ │  %%% logoff
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE user_interface.erl----
        │ │ │ │  
        │ │ │ │  %%% User interface to the messenger program
        │ │ │ │  %%% login(Name)
        │ │ │ │  %%%     One user at a time can log in from each Erlang node in the
        │ │ │ │ @@ -75,177 +75,177 @@
        │ │ │ │  %%%     Logs off anybody at that node
        │ │ │ │  
        │ │ │ │  %%% message(ToName, Message)
        │ │ │ │  %%%     sends Message to ToName. Error messages if the user of this
        │ │ │ │  %%%     function is not logged on or if ToName is not logged on at
        │ │ │ │  %%%     any node.
        │ │ │ │  
        │ │ │ │ --module(user_interface).
        │ │ │ │ --export([logon/1, logoff/0, message/2]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ --include("mess_config.hrl").
        │ │ │ │ +-module(user_interface).
        │ │ │ │ +-export([logon/1, logoff/0, message/2]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +-include("mess_config.hrl").
        │ │ │ │  
        │ │ │ │ -logon(Name) ->
        │ │ │ │ -    case whereis(mess_client) of
        │ │ │ │ +logon(Name) ->
        │ │ │ │ +    case whereis(mess_client) of
        │ │ │ │          undefined ->
        │ │ │ │ -            register(mess_client,
        │ │ │ │ -                     spawn(mess_client, client, [?server_node, Name]));
        │ │ │ │ +            register(mess_client,
        │ │ │ │ +                     spawn(mess_client, client, [?server_node, Name]));
        │ │ │ │          _ -> already_logged_on
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │ -logoff() ->
        │ │ │ │ +logoff() ->
        │ │ │ │      mess_client ! logoff.
        │ │ │ │  
        │ │ │ │ -message(ToName, Message) ->
        │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
        │ │ │ │ +message(ToName, Message) ->
        │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
        │ │ │ │          undefined ->
        │ │ │ │              not_logged_on;
        │ │ │ │ -        _ -> mess_client ! #message_to{to_name=ToName, message=Message},
        │ │ │ │ +        _ -> mess_client ! #message_to{to_name=ToName, message=Message},
        │ │ │ │               ok
        │ │ │ │  end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE mess_client.erl----
        │ │ │ │  
        │ │ │ │  %%% The client process which runs on each user node
        │ │ │ │  
        │ │ │ │ --module(mess_client).
        │ │ │ │ --export([client/2]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ -
        │ │ │ │ -client(Server_Node, Name) ->
        │ │ │ │ -    {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
        │ │ │ │ -    await_result(),
        │ │ │ │ -    client(Server_Node).
        │ │ │ │ +-module(mess_client).
        │ │ │ │ +-export([client/2]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +
        │ │ │ │ +client(Server_Node, Name) ->
        │ │ │ │ +    {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
        │ │ │ │ +    await_result(),
        │ │ │ │ +    client(Server_Node).
        │ │ │ │  
        │ │ │ │ -client(Server_Node) ->
        │ │ │ │ +client(Server_Node) ->
        │ │ │ │      receive
        │ │ │ │          logoff ->
        │ │ │ │ -            exit(normal);
        │ │ │ │ -        #message_to{to_name=ToName, message=Message} ->
        │ │ │ │ -            {messenger, Server_Node} !
        │ │ │ │ -                #message{client_pid=self(), to_name=ToName, message=Message},
        │ │ │ │ -            await_result();
        │ │ │ │ -        {message_from, FromName, Message} ->
        │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
        │ │ │ │ +            exit(normal);
        │ │ │ │ +        #message_to{to_name=ToName, message=Message} ->
        │ │ │ │ +            {messenger, Server_Node} !
        │ │ │ │ +                #message{client_pid=self(), to_name=ToName, message=Message},
        │ │ │ │ +            await_result();
        │ │ │ │ +        {message_from, FromName, Message} ->
        │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
        │ │ │ │      end,
        │ │ │ │ -    client(Server_Node).
        │ │ │ │ +    client(Server_Node).
        │ │ │ │  
        │ │ │ │  %%% wait for a response from the server
        │ │ │ │ -await_result() ->
        │ │ │ │ +await_result() ->
        │ │ │ │      receive
        │ │ │ │ -        #abort_client{message=Why} ->
        │ │ │ │ -            io:format("~p~n", [Why]),
        │ │ │ │ -            exit(normal);
        │ │ │ │ -        #server_reply{message=What} ->
        │ │ │ │ -            io:format("~p~n", [What])
        │ │ │ │ +        #abort_client{message=Why} ->
        │ │ │ │ +            io:format("~p~n", [Why]),
        │ │ │ │ +            exit(normal);
        │ │ │ │ +        #server_reply{message=What} ->
        │ │ │ │ +            io:format("~p~n", [What])
        │ │ │ │      after 5000 ->
        │ │ │ │ -            io:format("No response from server~n", []),
        │ │ │ │ -            exit(timeout)
        │ │ │ │ +            io:format("No response from server~n", []),
        │ │ │ │ +            exit(timeout)
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE---
        %%%----FILE mess_server.erl----
        │ │ │ │  
        │ │ │ │  %%% This is the server process of the messenger service
        │ │ │ │  
        │ │ │ │ --module(mess_server).
        │ │ │ │ --export([start_server/0, server/0]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ -
        │ │ │ │ -server() ->
        │ │ │ │ -    process_flag(trap_exit, true),
        │ │ │ │ -    server([]).
        │ │ │ │ +-module(mess_server).
        │ │ │ │ +-export([start_server/0, server/0]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +
        │ │ │ │ +server() ->
        │ │ │ │ +    process_flag(trap_exit, true),
        │ │ │ │ +    server([]).
        │ │ │ │  
        │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
        │ │ │ │ -server(User_List) ->
        │ │ │ │ -    io:format("User list = ~p~n", [User_List]),
        │ │ │ │ +server(User_List) ->
        │ │ │ │ +    io:format("User list = ~p~n", [User_List]),
        │ │ │ │      receive
        │ │ │ │ -        #logon{client_pid=From, username=Name} ->
        │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
        │ │ │ │ -            server(New_User_List);
        │ │ │ │ -        {'EXIT', From, _} ->
        │ │ │ │ -            New_User_List = server_logoff(From, User_List),
        │ │ │ │ -            server(New_User_List);
        │ │ │ │ -        #message{client_pid=From, to_name=To, message=Message} ->
        │ │ │ │ -            server_transfer(From, To, Message, User_List),
        │ │ │ │ -            server(User_List)
        │ │ │ │ +        #logon{client_pid=From, username=Name} ->
        │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
        │ │ │ │ +            server(New_User_List);
        │ │ │ │ +        {'EXIT', From, _} ->
        │ │ │ │ +            New_User_List = server_logoff(From, User_List),
        │ │ │ │ +            server(New_User_List);
        │ │ │ │ +        #message{client_pid=From, to_name=To, message=Message} ->
        │ │ │ │ +            server_transfer(From, To, Message, User_List),
        │ │ │ │ +            server(User_List)
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%% Start the server
        │ │ │ │ -start_server() ->
        │ │ │ │ -    register(messenger, spawn(?MODULE, server, [])).
        │ │ │ │ +start_server() ->
        │ │ │ │ +    register(messenger, spawn(?MODULE, server, [])).
        │ │ │ │  
        │ │ │ │  %%% Server adds a new user to the user list
        │ │ │ │ -server_logon(From, Name, User_List) ->
        │ │ │ │ +server_logon(From, Name, User_List) ->
        │ │ │ │      %% check if logged on anywhere else
        │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
        │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
        │ │ │ │          true ->
        │ │ │ │ -            From ! #abort_client{message=user_exists_at_other_node},
        │ │ │ │ +            From ! #abort_client{message=user_exists_at_other_node},
        │ │ │ │              User_List;
        │ │ │ │          false ->
        │ │ │ │ -            From ! #server_reply{message=logged_on},
        │ │ │ │ -            link(From),
        │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
        │ │ │ │ +            From ! #server_reply{message=logged_on},
        │ │ │ │ +            link(From),
        │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%% Server deletes a user from the user list
        │ │ │ │ -server_logoff(From, User_List) ->
        │ │ │ │ -    lists:keydelete(From, 1, User_List).
        │ │ │ │ +server_logoff(From, User_List) ->
        │ │ │ │ +    lists:keydelete(From, 1, User_List).
        │ │ │ │  
        │ │ │ │  %%% Server transfers a message between user
        │ │ │ │ -server_transfer(From, To, Message, User_List) ->
        │ │ │ │ +server_transfer(From, To, Message, User_List) ->
        │ │ │ │      %% check that the user is logged on and who he is
        │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
        │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
        │ │ │ │          false ->
        │ │ │ │ -            From ! #abort_client{message=you_are_not_logged_on};
        │ │ │ │ -        {value, {_, Name}} ->
        │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
        │ │ │ │ +            From ! #abort_client{message=you_are_not_logged_on};
        │ │ │ │ +        {value, {_, Name}} ->
        │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
        │ │ │ │      end.
        │ │ │ │  %%% If the user exists, send the message
        │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
        │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
        │ │ │ │      %% Find the receiver and send the message
        │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
        │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
        │ │ │ │          false ->
        │ │ │ │ -            From ! #server_reply{message=receiver_not_found};
        │ │ │ │ -        {value, {ToPid, To}} ->
        │ │ │ │ -            ToPid ! #message_from{from_name=Name, message=Message},
        │ │ │ │ -            From !  #server_reply{message=sent}
        │ │ │ │ +            From ! #server_reply{message=receiver_not_found};
        │ │ │ │ +        {value, {ToPid, To}} ->
        │ │ │ │ +            ToPid ! #message_from{from_name=Name, message=Message},
        │ │ │ │ +            From !  #server_reply{message=sent}
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE---

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Header Files │ │ │ │

        │ │ │ │

        As shown above, some files have extension .hrl. These are header files that │ │ │ │ -are included in the .erl files by:

        -include("File_Name").

        for example:

        -include("mess_interface.hrl").

        In the case above the file is fetched from the same directory as all the other │ │ │ │ +are included in the .erl files by:

        -include("File_Name").

        for example:

        -include("mess_interface.hrl").

        In the case above the file is fetched from the same directory as all the other │ │ │ │ files in the messenger example. (manual).

        .hrl files can contain any valid Erlang code but are most often used for record │ │ │ │ and macro definitions.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Records │ │ │ │

        │ │ │ │ -

        A record is defined as:

        -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

        For example:

        -record(message_to,{to_name, message}).

        This is equivalent to:

        {message_to, To_Name, Message}

        Creating a record is best illustrated by an example:

        #message_to{message="hello", to_name=fred)

        This creates:

        {message_to, fred, "hello"}

        Notice that you do not have to worry about the order you assign values to the │ │ │ │ +

        A record is defined as:

        -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

        For example:

        -record(message_to,{to_name, message}).

        This is equivalent to:

        {message_to, To_Name, Message}

        Creating a record is best illustrated by an example:

        #message_to{message="hello", to_name=fred)

        This creates:

        {message_to, fred, "hello"}

        Notice that you do not have to worry about the order you assign values to the │ │ │ │ various parts of the records when you create it. The advantage of using records │ │ │ │ is that by placing their definitions in header files you can conveniently define │ │ │ │ interfaces that are easy to change. For example, if you want to add a new field │ │ │ │ to the record, you only have to change the code where the new field is used and │ │ │ │ not at every place the record is referred to. If you leave out a field when │ │ │ │ creating a record, it gets the value of the atom undefined. (manual)

        Pattern matching with records is very similar to creating records. For example, │ │ │ │ -inside a case or receive:

        #message_to{to_name=ToName, message=Message} ->

        This is the same as:

        {message_to, ToName, Message}

        │ │ │ │ +inside a case or receive:

        #message_to{to_name=ToName, message=Message} ->

        This is the same as:

        {message_to, ToName, Message}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Macros │ │ │ │

        │ │ │ │

        Another thing that has been added to the messenger is a macro. The file │ │ │ │ mess_config.hrl contains the definition:

        %%% Configure the location of the server node,
        │ │ │ │ --define(server_node, messenger@super).

        This file is included in mess_server.erl:

        -include("mess_config.hrl").

        Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ │ -messenger@super.

        A macro is also used when spawning the server process:

        spawn(?MODULE, server, [])

        This is a standard macro (that is, defined by the system, not by the user). │ │ │ │ +-define(server_node, messenger@super).

        This file is included in mess_server.erl:

        -include("mess_config.hrl").

        Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ │ +messenger@super.

        A macro is also used when spawning the server process:

        spawn(?MODULE, server, [])

        This is a standard macro (that is, defined by the system, not by the user). │ │ │ │ ?MODULE is always replaced by the name of the current module (that is, the │ │ │ │ -module definition near the start of the file). There are more advanced ways │ │ │ │ of using macros with, for example, parameters.

        The three Erlang (.erl) files in the messenger example are individually │ │ │ │ compiled into object code file (.beam). The Erlang system loads and links │ │ │ │ these files into the system when they are referred to during execution of the │ │ │ │ code. In this case, they are simply put in our current working directory (that │ │ │ │ is, the place you have done "cd" to). There are ways of putting the .beam │ │ │ ├── OEBPS/prog_ex_records.xhtml │ │ │ │ @@ -27,105 +27,105 @@ │ │ │ │ Records and Tuples │ │ │ │ │ │ │ │

        The main advantage of using records rather than tuples is that fields in a │ │ │ │ record are accessed by name, whereas fields in a tuple are accessed by position. │ │ │ │ To illustrate these differences, suppose that you want to represent a person │ │ │ │ with the tuple {Name, Address, Phone}.

        To write functions that manipulate this data, remember the following:

        • The Name field is the first element of the tuple.
        • The Address field is the second element.
        • The Phone field is the third element.

        For example, to extract data from a variable P that contains such a tuple, you │ │ │ │ can write the following code and then use pattern matching to extract the │ │ │ │ -relevant fields:

        Name = element(1, P),
        │ │ │ │ -Address = element(2, P),
        │ │ │ │ +relevant fields:

        Name = element(1, P),
        │ │ │ │ +Address = element(2, P),
        │ │ │ │  ...

        Such code is difficult to read and understand, and errors occur if the numbering │ │ │ │ of the elements in the tuple is wrong. If the data representation of the fields │ │ │ │ is changed, by re-ordering, adding, or removing fields, all references to the │ │ │ │ person tuple must be checked and possibly modified.

        Records allow references to the fields by name, instead of by position. In the │ │ │ │ -following example, a record instead of a tuple is used to store the data:

        -record(person, {name, phone, address}).

        This enables references to the fields of the record by name. For example, if P │ │ │ │ +following example, a record instead of a tuple is used to store the data:

        -record(person, {name, phone, address}).

        This enables references to the fields of the record by name. For example, if P │ │ │ │ is a variable whose value is a person record, the following code access the │ │ │ │ name and address fields of the records:

        Name = P#person.name,
        │ │ │ │  Address = P#person.address,
        │ │ │ │ -...

        Internally, records are represented using tagged tuples:

        {person, Name, Phone, Address}

        │ │ │ │ +...

        Internally, records are represented using tagged tuples:

        {person, Name, Phone, Address}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Defining a Record │ │ │ │

        │ │ │ │

        This following definition of a person is used in several examples in this │ │ │ │ section. Three fields are included, name, phone, and address. The default │ │ │ │ values for name and phone is "" and [], respectively. The default value for │ │ │ │ address is the atom undefined, since no default value is supplied for this │ │ │ │ -field:

        -record(person, {name = "", phone = [], address}).

        The record must be defined in the shell to enable use of the record syntax in │ │ │ │ -the examples:

        > rd(person, {name = "", phone = [], address}).
        │ │ │ │ +field:

        -record(person, {name = "", phone = [], address}).

        The record must be defined in the shell to enable use of the record syntax in │ │ │ │ +the examples:

        > rd(person, {name = "", phone = [], address}).
        │ │ │ │  person

        This is because record definitions are only available at compile time, not at │ │ │ │ runtime. For details on records in the shell, see the shell manual page in │ │ │ │ STDLIB.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Record │ │ │ │

        │ │ │ │ -

        A new person record is created as follows:

        > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
        │ │ │ │ -#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

        As the address field was omitted, its default value is used.

        From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ │ -special field _. _ means "all fields not explicitly specified".

        Example:

        > #person{name = "Jakob", _ = '_'}.
        │ │ │ │ -#person{name = "Jakob",phone = '_',address = '_'}

        It is primarily intended to be used in ets:match/2 and │ │ │ │ +

        A new person record is created as follows:

        > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
        │ │ │ │ +#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

        As the address field was omitted, its default value is used.

        From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ │ +special field _. _ means "all fields not explicitly specified".

        Example:

        > #person{name = "Jakob", _ = '_'}.
        │ │ │ │ +#person{name = "Jakob",phone = '_',address = '_'}

        It is primarily intended to be used in ets:match/2 and │ │ │ │ mnesia:match_object/3, to set record fields to the atom '_'. (This is a │ │ │ │ wildcard in ets:match/2.)

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accessing a Record Field │ │ │ │

        │ │ │ │ -

        The following example shows how to access a record field:

        > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
        │ │ │ │ -#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
        │ │ │ │ +

        The following example shows how to access a record field:

        > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
        │ │ │ │ +#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
        │ │ │ │  > P#person.name.
        │ │ │ │  "Joe"

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating a Record │ │ │ │

        │ │ │ │ -

        The following example shows how to update a record:

        > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
        │ │ │ │ -#person{name = "Joe",phone = [1,2,3],address = "A street"}
        │ │ │ │ -> P2 = P1#person{name="Robert"}.
        │ │ │ │ -#person{name = "Robert",phone = [1,2,3],address = "A street"}

        │ │ │ │ +

        The following example shows how to update a record:

        > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
        │ │ │ │ +#person{name = "Joe",phone = [1,2,3],address = "A street"}
        │ │ │ │ +> P2 = P1#person{name="Robert"}.
        │ │ │ │ +#person{name = "Robert",phone = [1,2,3],address = "A street"}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Testing │ │ │ │

        │ │ │ │

        The following example shows that the guard succeeds if P is record of type │ │ │ │ -person:

        foo(P) when is_record(P, person) -> a_person;
        │ │ │ │ -foo(_) -> not_a_person.

        │ │ │ │ +person:

        foo(P) when is_record(P, person) -> a_person;
        │ │ │ │ +foo(_) -> not_a_person.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Pattern Matching │ │ │ │

        │ │ │ │

        Matching can be used in combination with records, as shown in the following │ │ │ │ -example:

        > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
        │ │ │ │ -#person{name = "Joe",phone = [0,0,7],address = "A street"}
        │ │ │ │ -> #person{name = Name} = P3, Name.
        │ │ │ │ +example:

        > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
        │ │ │ │ +#person{name = "Joe",phone = [0,0,7],address = "A street"}
        │ │ │ │ +> #person{name = Name} = P3, Name.
        │ │ │ │  "Joe"

        The following function takes a list of person records and searches for the │ │ │ │ -phone number of a person with a particular name:

        find_phone([#person{name=Name, phone=Phone} | _], Name) ->
        │ │ │ │ -    {found,  Phone};
        │ │ │ │ -find_phone([_| T], Name) ->
        │ │ │ │ -    find_phone(T, Name);
        │ │ │ │ -find_phone([], Name) ->
        │ │ │ │ +phone number of a person with a particular name:

        find_phone([#person{name=Name, phone=Phone} | _], Name) ->
        │ │ │ │ +    {found,  Phone};
        │ │ │ │ +find_phone([_| T], Name) ->
        │ │ │ │ +    find_phone(T, Name);
        │ │ │ │ +find_phone([], Name) ->
        │ │ │ │      not_found.

        The fields referred to in the pattern can be given in any order.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │ │

        │ │ │ │

        The value of a field in a record can be an instance of a record. Retrieval of │ │ │ │ nested data can be done stepwise, or in a single step, as shown in the following │ │ │ │ -example:

        -record(name, {first = "Robert", last = "Ericsson"}).
        │ │ │ │ --record(person, {name = #name{}, phone}).
        │ │ │ │ +example:

        -record(name, {first = "Robert", last = "Ericsson"}).
        │ │ │ │ +-record(person, {name = #name{}, phone}).
        │ │ │ │  
        │ │ │ │ -demo() ->
        │ │ │ │ -  P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
        │ │ │ │ -  First = (P#person.name)#name.first.

        Here, demo() evaluates to "Robert".

        │ │ │ │ +demo() -> │ │ │ │ + P = #person{name= #name{first="Robert",last="Virding"}, phone=123}, │ │ │ │ + First = (P#person.name)#name.first.

        Here, demo() evaluates to "Robert".

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ A Longer Example │ │ │ │

        │ │ │ │

        Comments are embedded in the following example:

        %% File: person.hrl
        │ │ │ │  
        │ │ │ │ @@ -135,44 +135,44 @@
        │ │ │ │  %%    name:  A string (default is undefined).
        │ │ │ │  %%    age:   An integer (default is undefined).
        │ │ │ │  %%    phone: A list of integers (default is []).
        │ │ │ │  %%    dict:  A dictionary containing various information
        │ │ │ │  %%           about the person.
        │ │ │ │  %%           A {Key, Value} list (default is the empty list).
        │ │ │ │  %%------------------------------------------------------------
        │ │ │ │ --record(person, {name, age, phone = [], dict = []}).
        -module(person).
        │ │ │ │ --include("person.hrl").
        │ │ │ │ --compile(export_all). % For test purposes only.
        │ │ │ │ +-record(person, {name, age, phone = [], dict = []}).
        -module(person).
        │ │ │ │ +-include("person.hrl").
        │ │ │ │ +-compile(export_all). % For test purposes only.
        │ │ │ │  
        │ │ │ │  %% This creates an instance of a person.
        │ │ │ │  %%   Note: The phone number is not supplied so the
        │ │ │ │  %%         default value [] will be used.
        │ │ │ │  
        │ │ │ │ -make_hacker_without_phone(Name, Age) ->
        │ │ │ │ -   #person{name = Name, age = Age,
        │ │ │ │ -           dict = [{computer_knowledge, excellent},
        │ │ │ │ -                   {drinks, coke}]}.
        │ │ │ │ +make_hacker_without_phone(Name, Age) ->
        │ │ │ │ +   #person{name = Name, age = Age,
        │ │ │ │ +           dict = [{computer_knowledge, excellent},
        │ │ │ │ +                   {drinks, coke}]}.
        │ │ │ │  
        │ │ │ │  %% This demonstrates matching in arguments
        │ │ │ │  
        │ │ │ │ -print(#person{name = Name, age = Age,
        │ │ │ │ -              phone = Phone, dict = Dict}) ->
        │ │ │ │ -  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
        │ │ │ │ -            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
        │ │ │ │ +print(#person{name = Name, age = Age,
        │ │ │ │ +              phone = Phone, dict = Dict}) ->
        │ │ │ │ +  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
        │ │ │ │ +            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
        │ │ │ │  
        │ │ │ │  %% Demonstrates type testing, selector, updating.
        │ │ │ │  
        │ │ │ │ -birthday(P) when is_record(P, person) ->
        │ │ │ │ -   P#person{age = P#person.age + 1}.
        │ │ │ │ +birthday(P) when is_record(P, person) ->
        │ │ │ │ +   P#person{age = P#person.age + 1}.
        │ │ │ │  
        │ │ │ │ -register_two_hackers() ->
        │ │ │ │ -   Hacker1 = make_hacker_without_phone("Joe", 29),
        │ │ │ │ -   OldHacker = birthday(Hacker1),
        │ │ │ │ +register_two_hackers() ->
        │ │ │ │ +   Hacker1 = make_hacker_without_phone("Joe", 29),
        │ │ │ │ +   OldHacker = birthday(Hacker1),
        │ │ │ │     % The central_register_server should have
        │ │ │ │     % an interface function for this.
        │ │ │ │ -   central_register_server ! {register_person, Hacker1},
        │ │ │ │ -   central_register_server ! {register_person,
        │ │ │ │ -             OldHacker#person{name = "Robert",
        │ │ │ │ -                              phone = [0,8,3,2,4,5,3,1]}}.
        │ │ │ │ +
        central_register_server ! {register_person, Hacker1}, │ │ │ │ + central_register_server ! {register_person, │ │ │ │ + OldHacker#person{name = "Robert", │ │ │ │ + phone = [0,8,3,2,4,5,3,1]}}.
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/patterns.xhtml │ │ │ │ @@ -33,16 +33,16 @@ │ │ │ │ succeeds, any unbound variables in the pattern become bound. If the matching │ │ │ │ fails, an exception is raised.

        Examples:

        1> X.
        │ │ │ │  ** 1:1: variable 'X' is unbound **
        │ │ │ │  2> X = 2.
        │ │ │ │  2
        │ │ │ │  3> X + 1.
        │ │ │ │  3
        │ │ │ │ -4> {X, Y} = {1, 2}.
        │ │ │ │ +4> {X, Y} = {1, 2}.
        │ │ │ │  ** exception error: no match of right hand side value {1,2}
        │ │ │ │ -5> {X, Y} = {2, 3}.
        │ │ │ │ -{2,3}
        │ │ │ │ +5> {X, Y} = {2, 3}.
        │ │ │ │ +{2,3}
        │ │ │ │  6> Y.
        │ │ │ │  3
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/otp-patch-apply.xhtml │ │ │ │ @@ -106,13 +106,13 @@ │ │ │ │ │ │ │ │ Sanity check │ │ │ │ │ │ │ │

        The application dependencies can be checked using the Erlang shell. │ │ │ │ Application dependencies are verified among installed applications by │ │ │ │ otp_patch_apply, but these are not necessarily those actually loaded. │ │ │ │ By calling system_information:sanity_check() one can validate │ │ │ │ -dependencies among applications actually loaded.

        1> system_information:sanity_check().
        │ │ │ │ +dependencies among applications actually loaded.

        1> system_information:sanity_check().
        │ │ │ │  ok

        Please take a look at the reference of sanity_check() for more │ │ │ │ information.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/opaques.xhtml │ │ │ │ @@ -27,24 +27,24 @@ │ │ │ │ Opaque Type Aliases │ │ │ │ │ │ │ │

        The main use case for opacity in Erlang is to hide the implementation of a data │ │ │ │ type, enabling evolving the API while minimizing the risk of breaking consumers. │ │ │ │ The runtime does not check opacity. Dialyzer provides some opacity-checking, but │ │ │ │ the rest is up to convention.

        This document explains what Erlang opacity is (and the trade-offs involved) via │ │ │ │ the example of the sets:set() data type. This type was │ │ │ │ -defined in the sets module like this:

        -opaque set(Element) :: #set{segs :: segs(Element)}.

        OTP 24 changed the definition to the following in │ │ │ │ -this commit.

        -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

        And this change was safer and more backwards-compatible than if the type had │ │ │ │ +defined in the sets module like this:

        -opaque set(Element) :: #set{segs :: segs(Element)}.

        OTP 24 changed the definition to the following in │ │ │ │ +this commit.

        -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

        And this change was safer and more backwards-compatible than if the type had │ │ │ │ been defined with -type instead of -opaque. Here is why: when a module │ │ │ │ defines an -opaque, the contract is that only the defining module should rely │ │ │ │ on the definition of the type: no other modules should rely on the definition.

        This means that code that pattern-matched on set as a record/tuple technically │ │ │ │ broke the contract, and opted in to being potentially broken when the definition │ │ │ │ of set() changed. Before OTP 24, this code printed ok. In OTP 24 it may │ │ │ │ -error:

        case sets:new() of
        │ │ │ │ -    Set when is_tuple(Set) ->
        │ │ │ │ -        io:format("ok")
        │ │ │ │ +error:

        case sets:new() of
        │ │ │ │ +    Set when is_tuple(Set) ->
        │ │ │ │ +        io:format("ok")
        │ │ │ │  end.

        When working with an opaque defined in another module, here are some │ │ │ │ recommendations:

        • Don't examine the underlying type using pattern-matching, guards, or functions │ │ │ │ that reveal the type, such as tuple_size/1 .
        • Instead, use functions provided by the module for working with the type. For │ │ │ │ example, sets module provides sets:new/0, sets:add_element/2, │ │ │ │ sets:is_element/2, and so on.
        • sets:set(a) is a subtype of sets:set(a | b) and not the │ │ │ │ other way around. Generally, you can rely on the property that the_opaque(T) │ │ │ │ is a subtype of the_opaque(U) when T is a subtype of U.

        When defining your own opaques, here are some recommendations:

        • Since consumers are expected to not rely on the definition of the opaque type, │ │ │ ├── OEBPS/nif.xhtml │ │ │ │ @@ -38,26 +38,26 @@ │ │ │ │ Erlang Program │ │ │ │ │ │ │ │

          Even if all functions of a module are NIFs, an Erlang module is still needed for │ │ │ │ two reasons:

          • The NIF library must be explicitly loaded by Erlang code in the same module.
          • All NIFs of a module must have an Erlang implementation as well.

          Normally these are minimal stub implementations that throw an exception. But │ │ │ │ they can also be used as fallback implementations for functions that do not have │ │ │ │ native implementations on some architectures.

          NIF libraries are loaded by calling erlang:load_nif/2, with the name of the │ │ │ │ shared library as argument. The second argument can be any term that will be │ │ │ │ -passed on to the library and used for initialization:

          -module(complex6).
          │ │ │ │ --export([foo/1, bar/1]).
          │ │ │ │ --nifs([foo/1, bar/1]).
          │ │ │ │ --on_load(init/0).
          │ │ │ │ -
          │ │ │ │ -init() ->
          │ │ │ │ -    ok = erlang:load_nif("./complex6_nif", 0).
          │ │ │ │ -
          │ │ │ │ -foo(_X) ->
          │ │ │ │ -    erlang:nif_error(nif_library_not_loaded).
          │ │ │ │ -bar(_Y) ->
          │ │ │ │ -    erlang:nif_error(nif_library_not_loaded).

          Here, the directive on_load is used to get function init to be automatically │ │ │ │ +passed on to the library and used for initialization:

          -module(complex6).
          │ │ │ │ +-export([foo/1, bar/1]).
          │ │ │ │ +-nifs([foo/1, bar/1]).
          │ │ │ │ +-on_load(init/0).
          │ │ │ │ +
          │ │ │ │ +init() ->
          │ │ │ │ +    ok = erlang:load_nif("./complex6_nif", 0).
          │ │ │ │ +
          │ │ │ │ +foo(_X) ->
          │ │ │ │ +    erlang:nif_error(nif_library_not_loaded).
          │ │ │ │ +bar(_Y) ->
          │ │ │ │ +    erlang:nif_error(nif_library_not_loaded).

          Here, the directive on_load is used to get function init to be automatically │ │ │ │ called when the module is loaded. If init returns anything other than ok, │ │ │ │ such when the loading of the NIF library fails in this example, the module is │ │ │ │ unloaded and calls to functions within it, fail.

          Loading the NIF library overrides the stub implementations and cause calls to │ │ │ │ foo and bar to be dispatched to the NIF implementations instead.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -114,22 +114,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

          │ │ │ │

          Step 1. Compile the C code:

          unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
          │ │ │ │  windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c

          Step 2: Start Erlang and compile the Erlang code:

          > erl
          │ │ │ │ -Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
          │ │ │ │ +Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
          │ │ │ │  
          │ │ │ │ -Eshell V5.7.5  (abort with ^G)
          │ │ │ │ -1> c(complex6).
          │ │ │ │ -{ok,complex6}

          Step 3: Run the example:

          3> complex6:foo(3).
          │ │ │ │ +Eshell V5.7.5  (abort with ^G)
          │ │ │ │ +1> c(complex6).
          │ │ │ │ +{ok,complex6}

          Step 3: Run the example:

          3> complex6:foo(3).
          │ │ │ │  4
          │ │ │ │ -4> complex6:bar(5).
          │ │ │ │ +4> complex6:bar(5).
          │ │ │ │  10
          │ │ │ │ -5> complex6:foo("not an integer").
          │ │ │ │ +5> complex6:foo("not an integer").
          │ │ │ │  ** exception error: bad argument
          │ │ │ │       in function  complex6:foo/1
          │ │ │ │          called as comlpex6:foo("not an integer")
          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/modules.xhtml │ │ │ │ @@ -23,20 +23,20 @@ │ │ │ │

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Module Syntax │ │ │ │

          │ │ │ │

          Erlang code is divided into modules. A module consists of a sequence of │ │ │ │ -attributes and function declarations, each terminated by a period (.).

          Example:

          -module(m).          % module attribute
          │ │ │ │ --export([fact/1]).   % module attribute
          │ │ │ │ +attributes and function declarations, each terminated by a period (.).

          Example:

          -module(m).          % module attribute
          │ │ │ │ +-export([fact/1]).   % module attribute
          │ │ │ │  
          │ │ │ │ -fact(N) when N>0 ->  % beginning of function declaration
          │ │ │ │ -    N * fact(N-1);   %  |
          │ │ │ │ -fact(0) ->           %  |
          │ │ │ │ +fact(N) when N>0 ->  % beginning of function declaration
          │ │ │ │ +    N * fact(N-1);   %  |
          │ │ │ │ +fact(0) ->           %  |
          │ │ │ │      1.               % end of function declaration

          For a description of function declarations, see │ │ │ │ Function Declaration Syntax.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Module Attributes │ │ │ │

          │ │ │ │ @@ -81,71 +81,71 @@ │ │ │ │ meaning.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Behaviour Module Attribute │ │ │ │

        │ │ │ │

        It is possible to specify that the module is the callback module for a │ │ │ │ -behaviour:

        -behaviour(Behaviour).

        The atom Behaviour gives the name of the behaviour, which can be a │ │ │ │ +behaviour:

        -behaviour(Behaviour).

        The atom Behaviour gives the name of the behaviour, which can be a │ │ │ │ user-defined behaviour or one of the following OTP standard behaviours:

        • gen_server
        • gen_statem
        • gen_event
        • supervisor

        The spelling behavior is also accepted.

        The callback functions of the module can be specified either directly by the │ │ │ │ -exported function behaviour_info/1:

        behaviour_info(callbacks) -> Callbacks.

        or by a -callback attribute for each callback function:

        -callback Name(Arguments) -> Result.

        Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ │ +exported function behaviour_info/1:

        behaviour_info(callbacks) -> Callbacks.

        or by a -callback attribute for each callback function:

        -callback Name(Arguments) -> Result.

        Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ │ is to be preferred since the extra type information can be used by tools to │ │ │ │ produce documentation or find discrepancies.

        Read more about behaviours and callback modules in │ │ │ │ OTP Design Principles.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Record Definitions │ │ │ │

        │ │ │ │ -

        The same syntax as for module attributes is used for record definitions:

        -record(Record, Fields).

        Record definitions are allowed anywhere in a module, also among the function │ │ │ │ +

        The same syntax as for module attributes is used for record definitions:

        -record(Record, Fields).

        Record definitions are allowed anywhere in a module, also among the function │ │ │ │ declarations. Read more in Records.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Preprocessor │ │ │ │

        │ │ │ │

        The same syntax as for module attributes is used by the preprocessor, which │ │ │ │ -supports file inclusion, macros, and conditional compilation:

        -include("SomeFile.hrl").
        │ │ │ │ --define(Macro, Replacement).

        Read more in Preprocessor.

        │ │ │ │ +supports file inclusion, macros, and conditional compilation:

        -include("SomeFile.hrl").
        │ │ │ │ +-define(Macro, Replacement).

        Read more in Preprocessor.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Setting File and Line │ │ │ │

        │ │ │ │

        The same syntax as for module attributes is used for changing the pre-defined │ │ │ │ -macros ?FILE and ?LINE:

        -file(File, Line).

        This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ │ +macros ?FILE and ?LINE:

        -file(File, Line).

        This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ │ source program is generated by another tool. It also indicates the │ │ │ │ correspondence of source files to lines of the original user-written file, from │ │ │ │ which the source program is produced.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Types and function specifications │ │ │ │

        │ │ │ │

        A similar syntax as for module attributes is used for specifying types and │ │ │ │ -function specifications:

        -type my_type() :: atom() | integer().
        │ │ │ │ --spec my_function(integer()) -> integer().

        Read more in Types and Function specifications.

        The description is based on │ │ │ │ +function specifications:

        -type my_type() :: atom() | integer().
        │ │ │ │ +-spec my_function(integer()) -> integer().

        Read more in Types and Function specifications.

        The description is based on │ │ │ │ EEP8 - Types and function specifications, │ │ │ │ which is not to be further updated.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documentation attributes │ │ │ │

        │ │ │ │

        The module attribute -doc(Documentation) is used to provide user documentation │ │ │ │ -for a function/type/callback:

        -doc("Example documentation").
        │ │ │ │ -example() -> ok.

        The attribute should be placed just before the entity it documents.The │ │ │ │ +for a function/type/callback:

        -doc("Example documentation").
        │ │ │ │ +example() -> ok.

        The attribute should be placed just before the entity it documents.The │ │ │ │ parenthesis are optional around Documentation. The allowed values for │ │ │ │ Documentation are:

        • literal string or │ │ │ │ utf-8 encoded binary string - The string │ │ │ │ documenting the entity. Any literal string is allowed, so both │ │ │ │ triple quoted strings and │ │ │ │ sigils that translate to literal strings can be used. │ │ │ │ -The following examples are equivalent:

          -doc("Example \"docs\"").
          │ │ │ │ --doc(<<"Example \"docs\""/utf8>>).
          │ │ │ │ +The following examples are equivalent:

          -doc("Example \"docs\"").
          │ │ │ │ +-doc(<<"Example \"docs\""/utf8>>).
          │ │ │ │  -doc ~S/Example "docs"/.
          │ │ │ │  -doc """
          │ │ │ │     Example "docs"
          │ │ │ │     """
          │ │ │ │  -doc ~B|Example "docs"|.

          For clarity it is recommended to use either normal "strings" or triple │ │ │ │ quoted strings for documentation attributes.

        • {file, file:name/0 } - Read the contents of filename and use │ │ │ │ that as the documentation string.

        • false - Set the current entity as hidden, that is, it should not be │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The feature directive │ │ │ │ │ │ │ │

          While not a module attribute, but rather a directive (since it might affect │ │ │ │ syntax), there is the -feature(..) directive used for enabling and disabling │ │ │ │ -features.

          The syntax is similar to that of an attribute, but has two arguments:

          -feature(FeatureName, enable | disable).

          Note that the feature directive can only appear │ │ │ │ +features.

          The syntax is similar to that of an attribute, but has two arguments:

          -feature(FeatureName, enable | disable).

          Note that the feature directive can only appear │ │ │ │ in a prefix of the module.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Comments │ │ │ │

          │ │ │ │

          Comments can be placed anywhere in a module except within strings and │ │ │ ├── OEBPS/maps.xhtml │ │ │ │ @@ -53,16 +53,16 @@ │ │ │ │ single function that constructs the map using the map syntax and always use │ │ │ │ it.

        • Always update the map using the := operator (that is, requiring that an │ │ │ │ element with that key already exists). The := operator is slightly more │ │ │ │ efficient, and it helps catching mispellings of keys.

        • Whenever possible, match multiple map elements at once.

        • Whenever possible, update multiple map elements at once.

        • Avoid default values and the maps:get/3 function. If there are default │ │ │ │ values, sharing of keys between different instances of the map will be less │ │ │ │ effective, and it is not possible to match multiple elements having default │ │ │ │ values in one go.

        • To avoid having to deal with a map that may lack some keys, maps:merge/2 can │ │ │ │ -efficiently add multiple default values. For example:

          DefaultMap = #{shoe_size => 42, editor => emacs},
          │ │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

        │ │ │ │ +efficiently add multiple default values. For example:

        DefaultMap = #{shoe_size => 42, editor => emacs},
        │ │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Dictionaries │ │ │ │

      │ │ │ │

      Using a map as a dictionary implies the following usage pattern:

      • Keys are usually variables not known at compile-time.
      • There can be any number of elements in the map.
      • Usually, no more than one element is looked up or updated at once.

      Given that usage pattern, the difference in performance between using the map │ │ │ │ syntax and the maps module is usually small. Therefore, which one to use is │ │ │ │ @@ -72,18 +72,18 @@ │ │ │ │ choice.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Sets │ │ │ │

    │ │ │ │

    Starting in OTP 24, the sets module has an option to represent sets as maps. │ │ │ │ -Examples:

    1> sets:new([{version,2}]).
    │ │ │ │ -#{}
    │ │ │ │ -2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ │ -#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ │ +Examples:

    1> sets:new([{version,2}]).
    │ │ │ │ +#{}
    │ │ │ │ +2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ │ +#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ │ few possible exceptions:

    • ordsets:intersection/2 can be more efficient than sets:intersection/2. If │ │ │ │ the intersection operation is frequently used and operations that operate on a │ │ │ │ single element in a set (such as is_element/2) are avoided, ordsets can │ │ │ │ be a better choice than sets.
    • If the intersection operation is frequently used and operations that operate │ │ │ │ on a single element in a set (such as is_element/2) must also be efficient, │ │ │ │ gb_sets can potentially be a better choice than sets.
    • If the elements of the set are integers in a fairly compact range, the set can │ │ │ │ be represented as an integer where each bit represents an element in the set. │ │ │ │ @@ -108,18 +108,18 @@ │ │ │ │ for the runtime system).

    • N - The number of elements in the map.

    • Keys - A tuple with keys of the map: {Key1,...,KeyN}. The keys are │ │ │ │ sorted.

    • Value1 - The value corresponding to the first key in the key tuple.

    • ValueN - The value corresponding to the last key in the key tuple.

    As an example, let us look at how the map #{a => foo, z => bar} is │ │ │ │ represented:

    01234
    FLATMAP2{a,z}foobar

    Table: #{a => foo, z => bar}

    Let us update the map: M#{q => baz}. The map now looks like this:

    012345
    FLATMAP3{a,q,z}foobazbar

    Table: #{a => foo, q => baz, z => bar}

    Finally, change the value of one element: M#{z := bird}. The map now looks │ │ │ │ like this:

    012345
    FLATMAP3{a,q,z}foobazbird

    Table: #{a => foo, q => baz, z => bird}

    When the value for an existing key is updated, the key tuple is not updated, │ │ │ │ allowing the key tuple to be shared with other instances of the map that have │ │ │ │ the same keys. In fact, the key tuple can be shared between all maps with the │ │ │ │ same keys with some care. To arrange that, define a function that returns a map. │ │ │ │ -For example:

    new() ->
    │ │ │ │ -    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ │ +For example:

    new() ->
    │ │ │ │ +    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ │ that the key tuple is shared when creating an instance of the map, always call │ │ │ │ -new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ │ +new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ │ keys are known at compile-time, the map is updated in one go, making the time to │ │ │ │ update a map essentially constant regardless of the number of keys updated. The │ │ │ │ same goes for matching. (When the keys are variables, one or more of the keys │ │ │ │ could be identical, so the operations need to be performed sequentially from │ │ │ │ left to right.)

    The memory size for a small map is the size of all keys and values plus 5 words. │ │ │ │ See Memory for more information about memory sizes.

    │ │ │ │ │ │ │ │ @@ -146,21 +146,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using the Map Syntax │ │ │ │

    │ │ │ │

    Using the map syntax is usually slightly more efficient than using the │ │ │ │ corresponding function in the maps module.

    The gain in efficiency for the map syntax is more noticeable for the following │ │ │ │ -operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ │ -Map3 = maps:update(y, Y, Map2),
    │ │ │ │ -Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ │ -right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ │ -left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ │ -Map3 = Map2#{Key2 := Y},
    │ │ │ │ -Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ │ +operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ │ +Map3 = maps:update(y, Y, Map2),
    │ │ │ │ +Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ │ +right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ │ +left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ │ +Map3 = Map2#{Key2 := Y},
    │ │ │ │ +Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ │ efficient than using the => operator for a small map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using the Functions in the maps Module │ │ │ │

    │ │ │ │

    Here follows some notes about most of the functions in the maps module. For │ │ │ │ @@ -211,23 +211,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ maps:get/3 │ │ │ │ │ │ │ │

    As an optimization, the compiler will rewrite a call to maps:get/3 to Erlang │ │ │ │ code similar to the following:

    Result = case Map of
    │ │ │ │ -             #{Key := Value} -> Value;
    │ │ │ │ -             #{} -> Default
    │ │ │ │ +             #{Key := Value} -> Value;
    │ │ │ │ +             #{} -> Default
    │ │ │ │           end

    This is reasonably efficient, but if a small map is used as an alternative to │ │ │ │ using a record it is often better not to rely on default values as it prevents │ │ │ │ sharing of keys, which may in the end use more memory than what you save from │ │ │ │ not storing default values in the map.

    If default values are nevertheless required, instead of calling maps:get/3 │ │ │ │ multiple times, consider putting the default values in a map and merging that │ │ │ │ -map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ │ +map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ │ to, as long as the default map contains all the keys that will ever be used │ │ │ │ and not just the ones with default values. Whether this is faster than calling │ │ │ │ maps:get/3 multiple times depends on the size of the map and the number of │ │ │ │ default values.

    Change

    Before OTP 26.0 maps:get/3 was implemented by calling the function instead │ │ │ │ of rewriting it as an Erlang expression. It is now slightly faster but can no │ │ │ │ longer be traced.

    │ │ │ │ │ │ │ ├── OEBPS/macros.xhtml │ │ │ │ @@ -22,56 +22,56 @@ │ │ │ │

    │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ File Inclusion │ │ │ │

    │ │ │ │ -

    A file can be included as follows:

    -include(File).
    │ │ │ │ --include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ │ +

    A file can be included as follows:

    -include(File).
    │ │ │ │ +-include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ │ as is, at the position of the directive.

    Include files are typically used for record and macro definitions that are │ │ │ │ shared by several modules. It is recommended to use the file name extension │ │ │ │ .hrl for include files.

    File can start with a path component $VAR, for some string VAR. If that is │ │ │ │ the case, the value of the environment variable VAR as returned by │ │ │ │ os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false, │ │ │ │ $VAR is left as is.

    If the filename File is absolute (possibly after variable substitution), the │ │ │ │ include file with that name is included. Otherwise, the specified file is │ │ │ │ searched for in the following directories, and in this order:

    1. The current working directory
    2. The directory where the module is being compiled
    3. The directories given by the include option

    For details, see erlc in ERTS and │ │ │ │ -compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ │ --include("incdir/my_records.hrl").
    │ │ │ │ --include("/home/user/proj/my_records.hrl").
    │ │ │ │ --include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ │ +compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ │ +-include("incdir/my_records.hrl").
    │ │ │ │ +-include("/home/user/proj/my_records.hrl").
    │ │ │ │ +-include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ │ Instead, the first path component (possibly after variable substitution) is │ │ │ │ -assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ │ +assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ │ (latest) version of Kernel, and then the subdirectory include is searched for │ │ │ │ the file file.hrl.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Defining and Using Macros │ │ │ │

    │ │ │ │ -

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ │ --define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ │ +

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ │ +-define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ │ macro.

    If a macro is used in several modules, it is recommended that the macro │ │ │ │ definition is placed in an include file.

    A macro is used as follows:

    ?Const
    │ │ │ │  ?Func(Arg1,...,ArgN)

    Macros are expanded during compilation. A simple macro ?Const is replaced with │ │ │ │ -Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ │ +Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ │  ...
    │ │ │ │ -call(Request) ->
    │ │ │ │ -    server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ │ -    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ │ +call(Request) -> │ │ │ │ + server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ │ +    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ │ occurrences of a variable Var from the macro definition are replaced with the │ │ │ │ -corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ │ +corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ │  ...
    │ │ │ │ -bar(X) ->
    │ │ │ │ -    ?MACRO1(a, b),
    │ │ │ │ -    ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ │ -    {a,a,b,b},
    │ │ │ │ -    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ │ +bar(X) -> │ │ │ │ + ?MACRO1(a, b), │ │ │ │ + ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ │ +    {a,a,b,b},
    │ │ │ │ +    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ │ definition is a valid Erlang syntactic form.

    To view the result of macro expansion, a module can be compiled with the 'P' │ │ │ │ option. compile:file(File, ['P']). This produces a listing of the parsed code │ │ │ │ after preprocessing and parse transforms, in the file File.P.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Predefined Macros │ │ │ │ @@ -90,29 +90,29 @@ │ │ │ │ │ │ │ │ │ │ │ │ Macros Overloading │ │ │ │

    │ │ │ │

    It is possible to overload macros, except for predefined macros. An overloaded │ │ │ │ macro has more than one definition, each with a different number of arguments.

    Change

    Support for overloading of macros was added in Erlang 5.7.5/OTP R13B04.

    A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results │ │ │ │ in an error message if there is at least one definition of Func with │ │ │ │ -arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ │ --define(F1(A), A).
    │ │ │ │ --define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ │ +arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ │ +-define(F1(A), A).
    │ │ │ │ +-define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ │      ?F0. % No, an empty list of arguments expected.
    │ │ │ │  
    │ │ │ │ -f1(A) ->
    │ │ │ │ -    ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ │ -    ?C().

    is expanded to

    f() ->
    │ │ │ │ -    m:f().

    │ │ │ │ +f1(A) -> │ │ │ │ + ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ │ +    ?C().

    is expanded to

    f() ->
    │ │ │ │ +    m:f().

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Removing a macro definition │ │ │ │

    │ │ │ │ -

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ +

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Conditional Compilation │ │ │ │

    │ │ │ │

    The following macro directives support conditional compilation:

    • -ifdef(Macro). - Evaluate the following lines only if Macro is │ │ │ │ defined.

    • -ifndef(Macro). - Evaluate the following lines only if Macro is not │ │ │ │ @@ -124,43 +124,43 @@ │ │ │ │ true, and the Condition evaluates to true, the lines following the elif │ │ │ │ are evaluated instead.

    • -endif. - Specifies the end of a series of control flow directives.

    Note

    Macro directives cannot be used inside functions.

    Syntactically, the Condition in if and elif must be a │ │ │ │ guard expression. Other constructs (such as │ │ │ │ a case expression) result in a compilation error.

    As opposed to the standard guard expressions, an expression in an if and │ │ │ │ elif also supports calling the psuedo-function defined(Name), which tests │ │ │ │ whether the Name argument is the name of a previously defined macro. │ │ │ │ defined(Name) evaluates to true if the macro is defined and false │ │ │ │ -otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ │ +otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ --ifdef(debug).
    │ │ │ │ --define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ │ +-ifdef(debug).
    │ │ │ │ +-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ │  -else.
    │ │ │ │ --define(LOG(X), true).
    │ │ │ │ +-define(LOG(X), true).
    │ │ │ │  -endif.
    │ │ │ │  
    │ │ │ │  ...

    When trace output is desired, debug is to be defined when the module m is │ │ │ │ compiled:

    % erlc -Ddebug m.erl
    │ │ │ │  
    │ │ │ │  or
    │ │ │ │  
    │ │ │ │ -1> c(m, {d, debug}).
    │ │ │ │ -{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ │ -with some simple trace output.

    Example:

    -module(m)
    │ │ │ │ +1> c(m, {d, debug}).
    │ │ │ │ +{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ │ +with some simple trace output.

    Example:

    -module(m)
    │ │ │ │  ...
    │ │ │ │ --if(?OTP_RELEASE >= 25).
    │ │ │ │ +-if(?OTP_RELEASE >= 25).
    │ │ │ │  %% Code that will work in OTP 25 or higher
    │ │ │ │ --elif(?OTP_RELEASE >= 26).
    │ │ │ │ +-elif(?OTP_RELEASE >= 26).
    │ │ │ │  %% Code that will work in OTP 26 or higher
    │ │ │ │  -else.
    │ │ │ │  %% Code that will work in OTP 24 or lower.
    │ │ │ │  -endif.
    │ │ │ │  ...

    This code uses the OTP_RELEASE macro to conditionally select code depending on │ │ │ │ -release.

    Example:

    -module(m)
    │ │ │ │ +release.

    Example:

    -module(m)
    │ │ │ │  ...
    │ │ │ │ --if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ │ +-if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ │  %% Debugging code that requires OTP 26 or later.
    │ │ │ │  -else.
    │ │ │ │  %% Non-debug code that works in any release.
    │ │ │ │  -endif.
    │ │ │ │  ...

    This code uses the OTP_RELEASE macro and defined(debug) to compile debug │ │ │ │ code only for OTP 26 or later.

    │ │ │ │ │ │ │ │ @@ -175,40 +175,40 @@ │ │ │ │ used. In practice this means it should appear before any -export(..) or record │ │ │ │ definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ -error() and -warning() directives │ │ │ │

    │ │ │ │ -

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ │ --export([version/0]).
    │ │ │ │ +

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ │ +-export([version/0]).
    │ │ │ │  
    │ │ │ │ --ifdef(VERSION).
    │ │ │ │ -version() -> ?VERSION.
    │ │ │ │ +-ifdef(VERSION).
    │ │ │ │ +version() -> ?VERSION.
    │ │ │ │  -else.
    │ │ │ │ --error("Macro VERSION must be defined.").
    │ │ │ │ -version() -> "".
    │ │ │ │ +-error("Macro VERSION must be defined.").
    │ │ │ │ +version() -> "".
    │ │ │ │  -endif.

    The error message will look like this:

    % erlc t.erl
    │ │ │ │ -t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ │ --export([version/0]).
    │ │ │ │ +t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ │ +-export([version/0]).
    │ │ │ │  
    │ │ │ │ --ifndef(VERSION).
    │ │ │ │ --warning("Macro VERSION not defined -- using default version.").
    │ │ │ │ --define(VERSION, "0").
    │ │ │ │ +-ifndef(VERSION).
    │ │ │ │ +-warning("Macro VERSION not defined -- using default version.").
    │ │ │ │ +-define(VERSION, "0").
    │ │ │ │  -endif.
    │ │ │ │ -version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ │ +version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ │  t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

    Change

    The -error() and -warning() directives were added in Erlang/OTP 19.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stringifying Macro Arguments │ │ │ │

    │ │ │ │

    The construction ??Arg, where Arg is a macro argument, is expanded to a │ │ │ │ string containing the tokens of the argument. This is similar to the #arg │ │ │ │ -stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ │ +stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ │  
    │ │ │ │ -?TESTCALL(myfunction(1,2)),
    │ │ │ │ -?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ │ -io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ │ +
    ?TESTCALL(myfunction(1,2)), │ │ │ │ +?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ │ +io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/listhandling.xhtml │ │ │ │ @@ -25,101 +25,101 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating a List │ │ │ │

    │ │ │ │

    Lists can only be built starting from the end and attaching list elements at the │ │ │ │ beginning. If you use the ++ operator as follows, a new list is created that │ │ │ │ is a copy of the elements in List1, followed by List2:

    List1 ++ List2

    Looking at how lists:append/2 or ++ would be implemented in plain Erlang, │ │ │ │ -clearly the first list is copied:

    append([H|T], Tail) ->
    │ │ │ │ -    [H|append(T, Tail)];
    │ │ │ │ -append([], Tail) ->
    │ │ │ │ +clearly the first list is copied:

    append([H|T], Tail) ->
    │ │ │ │ +    [H|append(T, Tail)];
    │ │ │ │ +append([], Tail) ->
    │ │ │ │      Tail.

    When recursing and building a list, it is important to ensure that you attach │ │ │ │ the new elements to the beginning of the list. In this way, you will build one │ │ │ │ -list, not hundreds or thousands of copies of the growing result list.

    Let us first see how it is not to be done:

    DO NOT

    bad_fib(N) ->
    │ │ │ │ -    bad_fib(N, 0, 1, []).
    │ │ │ │ +list, not hundreds or thousands of copies of the growing result list.

    Let us first see how it is not to be done:

    DO NOT

    bad_fib(N) ->
    │ │ │ │ +    bad_fib(N, 0, 1, []).
    │ │ │ │  
    │ │ │ │ -bad_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │ +bad_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │      Fibs;
    │ │ │ │ -bad_fib(N, Current, Next, Fibs) ->
    │ │ │ │ -    bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

    Here more than one list is built. In each iteration step a new list is created │ │ │ │ +bad_fib(N, Current, Next, Fibs) -> │ │ │ │ + bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

    Here more than one list is built. In each iteration step a new list is created │ │ │ │ that is one element longer than the new previous list.

    To avoid copying the result in each iteration, build the list in reverse order │ │ │ │ -and reverse the list when you are done:

    DO

    tail_recursive_fib(N) ->
    │ │ │ │ -    tail_recursive_fib(N, 0, 1, []).
    │ │ │ │ +and reverse the list when you are done:

    DO

    tail_recursive_fib(N) ->
    │ │ │ │ +    tail_recursive_fib(N, 0, 1, []).
    │ │ │ │  
    │ │ │ │ -tail_recursive_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │ -    lists:reverse(Fibs);
    │ │ │ │ -tail_recursive_fib(N, Current, Next, Fibs) ->
    │ │ │ │ -    tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

    │ │ │ │ +tail_recursive_fib(0, _Current, _Next, Fibs) -> │ │ │ │ + lists:reverse(Fibs); │ │ │ │ +tail_recursive_fib(N, Current, Next, Fibs) -> │ │ │ │ + tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List Comprehensions │ │ │ │

    │ │ │ │ -

    A list comprehension:

    [Expr(E) || E <- List]

    is basically translated to a local function:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ -    [Expr(E)|'lc^0'(Tail, Expr)];
    │ │ │ │ -'lc^0'([], _Expr) -> [].

    If the result of the list comprehension will obviously not be used, a list │ │ │ │ -will not be constructed. For example, in this code:

    [io:put_chars(E) || E <- List],
    │ │ │ │ +

    A list comprehension:

    [Expr(E) || E <- List]

    is basically translated to a local function:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ +    [Expr(E)|'lc^0'(Tail, Expr)];
    │ │ │ │ +'lc^0'([], _Expr) -> [].

    If the result of the list comprehension will obviously not be used, a list │ │ │ │ +will not be constructed. For example, in this code:

    [io:put_chars(E) || E <- List],
    │ │ │ │  ok.

    or in this code:

    case Var of
    │ │ │ │      ... ->
    │ │ │ │ -        [io:put_chars(E) || E <- List];
    │ │ │ │ +        [io:put_chars(E) || E <- List];
    │ │ │ │      ... ->
    │ │ │ │  end,
    │ │ │ │ -some_function(...),

    the value is not assigned to a variable, not passed to another function, and not │ │ │ │ +some_function(...),

    the value is not assigned to a variable, not passed to another function, and not │ │ │ │ returned. This means that there is no need to construct a list and the compiler │ │ │ │ -will simplify the code for the list comprehension to:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ -    Expr(E),
    │ │ │ │ -    'lc^0'(Tail, Expr);
    │ │ │ │ -'lc^0'([], _Expr) -> [].

    The compiler also understands that assigning to _ means that the value will │ │ │ │ -not be used. Therefore, the code in the following example will also be optimized:

    _ = [io:put_chars(E) || E <- List],
    │ │ │ │ +will simplify the code for the list comprehension to:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ +    Expr(E),
    │ │ │ │ +    'lc^0'(Tail, Expr);
    │ │ │ │ +'lc^0'([], _Expr) -> [].

    The compiler also understands that assigning to _ means that the value will │ │ │ │ +not be used. Therefore, the code in the following example will also be optimized:

    _ = [io:put_chars(E) || E <- List],
    │ │ │ │  ok.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Deep and Flat Lists │ │ │ │

    │ │ │ │

    lists:flatten/1 builds an entirely new list. It is therefore expensive, and │ │ │ │ even more expensive than the ++ operator (which copies its left argument, │ │ │ │ but not its right argument).

    In the following situations it is unnecessary to call lists:flatten/1:

    • When sending data to a port. Ports understand deep lists so there is no reason │ │ │ │ to flatten the list before sending it to the port.
    • When calling BIFs that accept deep lists, such as │ │ │ │ list_to_binary/1 or │ │ │ │ iolist_to_binary/1.
    • When you know that your list is only one level deep. Use lists:append/1 │ │ │ │ -instead.

    Examples:

    DO

    port_command(Port, DeepList)

    DO NOT

    port_command(Port, lists:flatten(DeepList))

    A common way to send a zero-terminated string to a port is the following:

    DO NOT

    TerminatedStr = String ++ [0],
    │ │ │ │ -port_command(Port, TerminatedStr)

    Instead:

    DO

    TerminatedStr = [String, 0],
    │ │ │ │ -port_command(Port, TerminatedStr)

    DO

    1> lists:append([[1], [2], [3]]).
    │ │ │ │ -[1,2,3]

    DO NOT

    1> lists:flatten([[1], [2], [3]]).
    │ │ │ │ -[1,2,3]

    │ │ │ │ +instead.

Examples:

DO

port_command(Port, DeepList)

DO NOT

port_command(Port, lists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:

DO NOT

TerminatedStr = String ++ [0],
│ │ │ │ +port_command(Port, TerminatedStr)

Instead:

DO

TerminatedStr = [String, 0],
│ │ │ │ +port_command(Port, TerminatedStr)

DO

1> lists:append([[1], [2], [3]]).
│ │ │ │ +[1,2,3]

DO NOT

1> lists:flatten([[1], [2], [3]]).
│ │ │ │ +[1,2,3]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Recursive List Functions │ │ │ │

│ │ │ │

There are two basic ways to write a function that traverses a list and │ │ │ │ produces a new list.

The first way is writing a body-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ -add_42_body([H|T]) ->
│ │ │ │ -    [H + 42 | add_42_body(T)];
│ │ │ │ -add_42_body([]) ->
│ │ │ │ -    [].

The second way is writing a tail-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ -add_42_tail(List) ->
│ │ │ │ -    add_42_tail(List, []).
│ │ │ │ +add_42_body([H|T]) ->
│ │ │ │ +    [H + 42 | add_42_body(T)];
│ │ │ │ +add_42_body([]) ->
│ │ │ │ +    [].

The second way is writing a tail-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ +add_42_tail(List) ->
│ │ │ │ +    add_42_tail(List, []).
│ │ │ │  
│ │ │ │ -add_42_tail([H|T], Acc) ->
│ │ │ │ -    add_42_tail(T, [H + 42 | Acc]);
│ │ │ │ -add_42_tail([], Acc) ->
│ │ │ │ -    lists:reverse(Acc).

In early version of Erlang the tail-recursive function would typically │ │ │ │ +add_42_tail([H|T], Acc) -> │ │ │ │ + add_42_tail(T, [H + 42 | Acc]); │ │ │ │ +add_42_tail([], Acc) -> │ │ │ │ + lists:reverse(Acc).

In early version of Erlang the tail-recursive function would typically │ │ │ │ be more efficient. In modern versions of Erlang, there is usually not │ │ │ │ much difference in performance between a body-recursive list function and │ │ │ │ tail-recursive function that reverses the list at the end. Therefore, │ │ │ │ concentrate on writing beautiful code and forget about the performance │ │ │ │ of your list functions. In the time-critical parts of your code, │ │ │ │ measure before rewriting your code.

For a thorough discussion about tail and body recursion, see │ │ │ │ Erlang's Tail Recursion is Not a Silver Bullet.

Note

This section is about list functions that construct lists. A tail-recursive │ │ │ │ function that does not construct a list runs in constant space, while the │ │ │ │ corresponding body-recursive function uses stack space proportional to the │ │ │ │ length of the list.

For example, a function that sums a list of integers, is not to be written as │ │ │ │ -follows:

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
│ │ │ │ -recursive_sum([])    -> 0.

Instead:

DO

sum(L) -> sum(L, 0).
│ │ │ │ +follows:

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
│ │ │ │ +recursive_sum([])    -> 0.

Instead:

DO

sum(L) -> sum(L, 0).
│ │ │ │  
│ │ │ │ -sum([H|T], Sum) -> sum(T, Sum + H);
│ │ │ │ -sum([], Sum)    -> Sum.
│ │ │ │ +
sum([H|T], Sum) -> sum(T, Sum + H); │ │ │ │ +sum([], Sum) -> Sum.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/list_comprehensions.xhtml │ │ │ │ @@ -22,33 +22,33 @@ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Examples │ │ │ │

│ │ │ │ -

This section starts with a simple example, showing a generator and a filter:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
│ │ │ │ -[a,4,b,5,6]

This is read as follows: The list of X such that X is taken from the list │ │ │ │ +

This section starts with a simple example, showing a generator and a filter:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
│ │ │ │ +[a,4,b,5,6]

This is read as follows: The list of X such that X is taken from the list │ │ │ │ [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a │ │ │ │ filter.

An additional filter, is_integer(X), can be added to │ │ │ │ -restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
│ │ │ │ -[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can │ │ │ │ -be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
│ │ │ │ -[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

│ │ │ │ +restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
│ │ │ │ +[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can │ │ │ │ +be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
│ │ │ │ +[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Quick Sort │ │ │ │

│ │ │ │ -

The well-known quick sort routine can be written as follows:

sort([]) -> [];
│ │ │ │ -sort([_] = L) -> L;
│ │ │ │ -sort([Pivot|T]) ->
│ │ │ │ -    sort([ X || X <- T, X < Pivot]) ++
│ │ │ │ -    [Pivot] ++
│ │ │ │ -    sort([ X || X <- T, X >= Pivot]).

The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ │ +

The well-known quick sort routine can be written as follows:

sort([]) -> [];
│ │ │ │ +sort([_] = L) -> L;
│ │ │ │ +sort([Pivot|T]) ->
│ │ │ │ +    sort([ X || X <- T, X < Pivot]) ++
│ │ │ │ +    [Pivot] ++
│ │ │ │ +    sort([ X || X <- T, X >= Pivot]).

The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ │ that are less than Pivot.

[X || X <- T, X >= Pivot] is the list of all elements in T that are greater │ │ │ │ than or equal to Pivot.

With the algorithm above, a list is sorted as follows:

  • A list with zero or one element is trivially sorted.
  • For lists with more than one element:
    1. The first element in the list is isolated as the pivot element.
    2. The remaining list is partitioned into two sublists, such that:
    • The first sublist contains all elements that are smaller than the pivot │ │ │ │ element.
    • The second sublist contains all elements that are greater than or equal to │ │ │ │ the pivot element.
    1. The sublists are recursively sorted by the same algorithm and the results │ │ │ │ are combined, resulting in a list consisting of:
    • All elements from the first sublist, that is all elements smaller than the │ │ │ │ pivot element, in sorted order.
    • The pivot element.
    • All elements from the second sublist, that is all elements greater than or │ │ │ │ equal to the pivot element, in sorted order.

Note

While the sorting algorithm as shown above serves as a nice example to │ │ │ │ @@ -56,90 +56,90 @@ │ │ │ │ lists module contains sorting functions that are implemented in a more │ │ │ │ efficient way.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Permutations │ │ │ │

│ │ │ │ -

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
│ │ │ │ -perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

This takes H from L in all possible ways. The result is the set of all lists │ │ │ │ +

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
│ │ │ │ +perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

This takes H from L in all possible ways. The result is the set of all lists │ │ │ │ [H|T], where T is the set of all possible permutations of L, with H │ │ │ │ -removed:

> perms([b,u,g]).
│ │ │ │ -[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

│ │ │ │ +removed:

> perms([b,u,g]).
│ │ │ │ +[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Pythagorean Triplets │ │ │ │

│ │ │ │

Pythagorean triplets are sets of integers {A,B,C} such that │ │ │ │ A**2 + B**2 = C**2.

The function pyth(N) generates a list of all integers {A,B,C} such that │ │ │ │ A**2 + B**2 = C**2 and where the sum of the sides is equal to, or less than, │ │ │ │ -N:

pyth(N) ->
│ │ │ │ -    [ {A,B,C} ||
│ │ │ │ -        A <- lists:seq(1,N),
│ │ │ │ -        B <- lists:seq(1,N),
│ │ │ │ -        C <- lists:seq(1,N),
│ │ │ │ +N:

pyth(N) ->
│ │ │ │ +    [ {A,B,C} ||
│ │ │ │ +        A <- lists:seq(1,N),
│ │ │ │ +        B <- lists:seq(1,N),
│ │ │ │ +        C <- lists:seq(1,N),
│ │ │ │          A+B+C =< N,
│ │ │ │          A*A+B*B == C*C
│ │ │ │ -    ].
> pyth(3).
│ │ │ │ -[].
│ │ │ │ -> pyth(11).
│ │ │ │ -[].
│ │ │ │ -> pyth(12).
│ │ │ │ -[{3,4,5},{4,3,5}]
│ │ │ │ -> pyth(50).
│ │ │ │ -[{3,4,5},
│ │ │ │ - {4,3,5},
│ │ │ │ - {5,12,13},
│ │ │ │ - {6,8,10},
│ │ │ │ - {8,6,10},
│ │ │ │ - {8,15,17},
│ │ │ │ - {9,12,15},
│ │ │ │ - {12,5,13},
│ │ │ │ - {12,9,15},
│ │ │ │ - {12,16,20},
│ │ │ │ - {15,8,17},
│ │ │ │ - {16,12,20}]

The following code reduces the search space and is more efficient:

pyth1(N) ->
│ │ │ │ -   [{A,B,C} ||
│ │ │ │ -       A <- lists:seq(1,N-2),
│ │ │ │ -       B <- lists:seq(A+1,N-1),
│ │ │ │ -       C <- lists:seq(B+1,N),
│ │ │ │ +    ].
> pyth(3).
│ │ │ │ +[].
│ │ │ │ +> pyth(11).
│ │ │ │ +[].
│ │ │ │ +> pyth(12).
│ │ │ │ +[{3,4,5},{4,3,5}]
│ │ │ │ +> pyth(50).
│ │ │ │ +[{3,4,5},
│ │ │ │ + {4,3,5},
│ │ │ │ + {5,12,13},
│ │ │ │ + {6,8,10},
│ │ │ │ + {8,6,10},
│ │ │ │ + {8,15,17},
│ │ │ │ + {9,12,15},
│ │ │ │ + {12,5,13},
│ │ │ │ + {12,9,15},
│ │ │ │ + {12,16,20},
│ │ │ │ + {15,8,17},
│ │ │ │ + {16,12,20}]

The following code reduces the search space and is more efficient:

pyth1(N) ->
│ │ │ │ +   [{A,B,C} ||
│ │ │ │ +       A <- lists:seq(1,N-2),
│ │ │ │ +       B <- lists:seq(A+1,N-1),
│ │ │ │ +       C <- lists:seq(B+1,N),
│ │ │ │         A+B+C =< N,
│ │ │ │ -       A*A+B*B == C*C ].

│ │ │ │ + A*A+B*B == C*C ].

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simplifications With List Comprehensions │ │ │ │

│ │ │ │

As an example, list comprehensions can be used to simplify some of the functions │ │ │ │ -in lists.erl:

append(L)   ->  [X || L1 <- L, X <- L1].
│ │ │ │ -map(Fun, L) -> [Fun(X) || X <- L].
│ │ │ │ -filter(Pred, L) -> [X || X <- L, Pred(X)].

│ │ │ │ +in lists.erl:

append(L)   ->  [X || L1 <- L, X <- L1].
│ │ │ │ +map(Fun, L) -> [Fun(X) || X <- L].
│ │ │ │ +filter(Pred, L) -> [X || X <- L, Pred(X)].

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings in List Comprehensions │ │ │ │

│ │ │ │

The scope rules for variables that occur in list comprehensions are as follows:

  • All variables that occur in a generator pattern are assumed to be "fresh" │ │ │ │ variables.
  • Any variables that are defined before the list comprehension, and that are │ │ │ │ used in filters, have the values they had before the list comprehension.
  • Variables cannot be exported from a list comprehension.

As an example of these rules, suppose you want to write the function select, │ │ │ │ which selects certain elements from a list of tuples. Suppose you write │ │ │ │ select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting all │ │ │ │ tuples from L, where the first item is X.

Compiling this gives the following diagnostic:

./FileName.erl:Line: Warning: variable 'X' shadowed in generate

This diagnostic warns that the variable X in the pattern is not the same as │ │ │ │ -the variable X that occurs in the function head.

Evaluating select gives the following result:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ -[1,2,3,7]

This is not the wanted result. To achieve the desired effect, select must be │ │ │ │ -written as follows:

select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into │ │ │ │ -the filter.

This now works as expected:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ -[2,7]

Also note that a variable in a generator pattern will shadow a variable with the │ │ │ │ -same name bound in a previous generator pattern. For example:

> [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
│ │ │ │ -[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of the rules for importing variables into a list comprehensions is │ │ │ │ +the variable X that occurs in the function head.

Evaluating select gives the following result:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ +[1,2,3,7]

This is not the wanted result. To achieve the desired effect, select must be │ │ │ │ +written as follows:

select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into │ │ │ │ +the filter.

This now works as expected:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ +[2,7]

Also note that a variable in a generator pattern will shadow a variable with the │ │ │ │ +same name bound in a previous generator pattern. For example:

> [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
│ │ │ │ +[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of the rules for importing variables into a list comprehensions is │ │ │ │ that certain pattern matching operations must be moved into the filters and │ │ │ │ -cannot be written directly in the generators.

To illustrate this, do not write as follows:

f(...) ->
│ │ │ │ +cannot be written directly in the generators.

To illustrate this, do not write as follows:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    [ Expression || PatternInvolving Y  <- Expr, ...]
│ │ │ │ -    ...

Instead, write as follows:

f(...) ->
│ │ │ │ +    [ Expression || PatternInvolving Y  <- Expr, ...]
│ │ │ │ +    ...

Instead, write as follows:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
│ │ │ │ +    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
│ │ │ │      ...
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/install-win32.xhtml │ │ │ │ @@ -200,15 +200,15 @@ │ │ │ │
$ cd erts/emulator │ │ │ │ $ make debug │ │ │ │ $ cd ../etc │ │ │ │ $ make debug │ │ │ │

and sometimes

$ cd $ERL_TOP
│ │ │ │  $ make local_setup
│ │ │ │  

So now when you run $ERL_TOP/erl.exe, you should have a debug compiled │ │ │ │ -emulator, which you will see if you do a:

1> erlang:system_info(system_version).

in the erlang shell. If the returned string contains [debug], you │ │ │ │ +emulator, which you will see if you do a:

1> erlang:system_info(system_version).

in the erlang shell. If the returned string contains [debug], you │ │ │ │ got a debug compiled emulator.

To hack the erlang libraries, you simply do a make opt in the │ │ │ │ specific "applications" directory, like:

$ cd $ERL_TOP/lib/stdlib
│ │ │ │  $ make opt
│ │ │ │  

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
│ │ │ │  $ make opt
│ │ │ │  

Note that you're expected to have a fresh Erlang in your path when │ │ │ │ doing this, preferably the plain 27 you have built in the previous │ │ │ │ @@ -223,19 +223,19 @@ │ │ │ │ :$ERL_TOP/erts/etc/win32/wsl_tools:$ERL_TOP/bootstrap/bin:$PATH │ │ │ │

That should make it possible to rebuild any library without hassle...

If you want to copy a library (an application) newly built, to a │ │ │ │ release area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
│ │ │ │  $ make TESTROOT=/tmp/erlang_release release
│ │ │ │  

Remember that:

  • Windows specific C-code goes in the $ERL_TOP/erts/emulator/sys/win32, │ │ │ │ $ERL_TOP/erts/emulator/drivers/win32 or $ERL_TOP/erts/etc/win32.

  • Windows specific erlang code should be used conditionally and the │ │ │ │ host OS tested in runtime, the exactly same beam files should be │ │ │ │ -distributed for every platform! So write code like:

    case os:type() of
    │ │ │ │ -    {win32,_} ->
    │ │ │ │ -        do_windows_specific();
    │ │ │ │ +distributed for every platform! So write code like:

    case os:type() of
    │ │ │ │ +    {win32,_} ->
    │ │ │ │ +        do_windows_specific();
    │ │ │ │      Other ->
    │ │ │ │ -        do_fallback_or_exit()
    │ │ │ │ +        do_fallback_or_exit()
    │ │ │ │  end,

That's basically all you need to get going.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Frequently Asked Questions │ │ │ │

│ │ │ │
  • Q: So, now I can build Erlang using GCC on Windows?

    A: No, unfortunately not. You'll need Microsoft's Visual C++ │ │ │ ├── OEBPS/included_applications.xhtml │ │ │ │ @@ -66,72 +66,72 @@ │ │ │ │ belonging to the primary application.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Specifying Included Applications │ │ │ │

    │ │ │ │

    Which applications to include is defined by the included_applications key in │ │ │ │ -the .app file:

    {application, prim_app,
    │ │ │ │ - [{description, "Tree application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ -  {registered, [prim_app_server]},
    │ │ │ │ -  {included_applications, [incl_app]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {prim_app_cb,[]}},
    │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ - ]}.

    │ │ │ │ +the .app file:

    {application, prim_app,
    │ │ │ │ + [{description, "Tree application"},
    │ │ │ │ +  {vsn, "1"},
    │ │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ +  {registered, [prim_app_server]},
    │ │ │ │ +  {included_applications, [incl_app]},
    │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ +  {mod, {prim_app_cb,[]}},
    │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ + ]}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Synchronizing Processes during Startup │ │ │ │

    │ │ │ │

    The supervisor tree of an included application is started as part of the │ │ │ │ supervisor tree of the including application. If there is a need for │ │ │ │ synchronization between processes in the including and included applications, │ │ │ │ this can be achieved by using start phases.

    Start phases are defined by the start_phases key in the .app file as a list │ │ │ │ of tuples {Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a │ │ │ │ term.

    The value of the mod key of the including application must be set to │ │ │ │ {application_starter,[Module,StartArgs]}, where Module as usual is the │ │ │ │ application callback module. StartArgs is a term provided as argument to the │ │ │ │ -callback function Module:start/2:

    {application, prim_app,
    │ │ │ │ - [{description, "Tree application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ -  {registered, [prim_app_server]},
    │ │ │ │ -  {included_applications, [incl_app]},
    │ │ │ │ -  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ - ]}.
    │ │ │ │ +callback function Module:start/2:

    {application, prim_app,
    │ │ │ │ + [{description, "Tree application"},
    │ │ │ │ +  {vsn, "1"},
    │ │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ +  {registered, [prim_app_server]},
    │ │ │ │ +  {included_applications, [incl_app]},
    │ │ │ │ +  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ +  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ + ]}.
    │ │ │ │  
    │ │ │ │ -{application, incl_app,
    │ │ │ │ - [{description, "Included application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
    │ │ │ │ -  {registered, []},
    │ │ │ │ -  {start_phases, [{go,[]}]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {incl_app_cb,[]}}
    │ │ │ │ - ]}.

    When starting a primary application with included applications, the primary │ │ │ │ +{application, incl_app, │ │ │ │ + [{description, "Included application"}, │ │ │ │ + {vsn, "1"}, │ │ │ │ + {modules, [incl_app_cb, incl_app_sup, incl_app_server]}, │ │ │ │ + {registered, []}, │ │ │ │ + {start_phases, [{go,[]}]}, │ │ │ │ + {applications, [kernel, stdlib, sasl]}, │ │ │ │ + {mod, {incl_app_cb,[]}} │ │ │ │ + ]}.

    When starting a primary application with included applications, the primary │ │ │ │ application is started the normal way, that is:

    • The application controller creates an application master for the application
    • The application master calls Module:start(normal, StartArgs) to start the │ │ │ │ top supervisor.

    Then, for the primary application and each included application in top-down, │ │ │ │ left-to-right order, the application master calls │ │ │ │ Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for the │ │ │ │ primary application, in that order. If a phase is not defined for an included │ │ │ │ application, the function is not called for this phase and application.

    The following requirements apply to the .app file for an included application:

    • The {mod, {Module,StartArgs}} option must be included. This option is used │ │ │ │ to find the callback module Module of the application. StartArgs is │ │ │ │ ignored, as Module:start/2 is called only for the primary application.
    • If the included application itself contains included applications, instead the │ │ │ │ {mod, {application_starter, [Module,StartArgs]}} option must be included.
    • The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set │ │ │ │ of specified phases must be a subset of the set of phases specified for the │ │ │ │ primary application.

    When starting prim_app as defined above, the application controller calls the │ │ │ │ following callback functions before application:start(prim_app) returns a │ │ │ │ -value:

    application:start(prim_app)
    │ │ │ │ - => prim_app_cb:start(normal, [])
    │ │ │ │ - => prim_app_cb:start_phase(init, normal, [])
    │ │ │ │ - => prim_app_cb:start_phase(go, normal, [])
    │ │ │ │ - => incl_app_cb:start_phase(go, normal, [])
    │ │ │ │ +value:

    application:start(prim_app)
    │ │ │ │ + => prim_app_cb:start(normal, [])
    │ │ │ │ + => prim_app_cb:start_phase(init, normal, [])
    │ │ │ │ + => prim_app_cb:start_phase(go, normal, [])
    │ │ │ │ + => incl_app_cb:start_phase(go, normal, [])
    │ │ │ │  ok
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/gen_server_concepts.xhtml │ │ │ │ @@ -62,63 +62,63 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │ │ │

    An example of a simple server written in plain Erlang is provided in │ │ │ │ Overview. The server can be reimplemented using │ │ │ │ -gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ │ --behaviour(gen_server).
    │ │ │ │ +gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ │ +-behaviour(gen_server).
    │ │ │ │  
    │ │ │ │ --export([start_link/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ │ +-export([start_link/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ │  
    │ │ │ │ -start_link() ->
    │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ │ +start_link() ->
    │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ │  
    │ │ │ │ -alloc() ->
    │ │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ │ +alloc() ->
    │ │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │ │  
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │ │  
    │ │ │ │ -init(_Args) ->
    │ │ │ │ -    {ok, channels()}.
    │ │ │ │ +init(_Args) ->
    │ │ │ │ +    {ok, channels()}.
    │ │ │ │  
    │ │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -    {reply, Ch, Chs2}.
    │ │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +    {reply, Ch, Chs2}.
    │ │ │ │  
    │ │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ │ -    {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + Chs2 = free(Ch, Chs), │ │ │ │ + {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting a Gen_Server │ │ │ │

    │ │ │ │

    In the example in the previous section, gen_server is started by calling │ │ │ │ -ch3:start_link():

    start_link() ->
    │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ │ +ch3:start_link():

    start_link() ->
    │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ │ spawns and links to a new process, a gen_server.

    • The first argument, {local, ch3}, specifies the name. │ │ │ │ The gen_server is then locally registered as ch3.

      If the name is omitted, the gen_server is not registered. Instead its pid │ │ │ │ must be used. The name can also be given as {global, Name}, in which case │ │ │ │ the gen_server is registered using global:register_name/2.

    • The second argument, ch3, is the name of the callback module, which is │ │ │ │ the module where the callback functions are located.

      The interface functions (start_link/0, alloc/0, and free/1) are located │ │ │ │ in the same module as the callback functions (init/1, handle_call/3, and │ │ │ │ handle_cast/2). It is usually good programming practice to have the code │ │ │ │ corresponding to one process contained in a single module.

    • The third argument, [], is a term that is passed as is to the callback │ │ │ │ function init. Here, init does not need any indata and ignores the │ │ │ │ argument.

    • The fourth argument, [], is a list of options. See gen_server │ │ │ │ for the available options.

    If name registration succeeds, the new gen_server process calls the callback │ │ │ │ function ch3:init([]). init is expected to return {ok, State}, where │ │ │ │ State is the internal state of the gen_server. In this case, the state is │ │ │ │ -the available channels.

    init(_Args) ->
    │ │ │ │ -    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ │ +the available channels.

    init(_Args) ->
    │ │ │ │ +    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ │ gen_server has been initialized and is ready to receive requests.

    gen_server:start_link/4 must be used if the gen_server is part of │ │ │ │ a supervision tree, meaning that it was started by a supervisor. There │ │ │ │ is another function, gen_server:start/4, to start a standalone │ │ │ │ gen_server that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -126,32 +126,32 @@ │ │ │ │

    │ │ │ │

    The synchronous request alloc() is implemented using gen_server:call/2:

    alloc() ->
    │ │ │ │      gen_server:call(ch3, alloc).

    ch3 is the name of the gen_server and must agree with the name │ │ │ │ used to start it. alloc is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ When the request is received, the gen_server calls │ │ │ │ handle_call(Request, From, State), which is expected to return │ │ │ │ a tuple {reply,Reply,State1}. Reply is the reply that is to be sent back │ │ │ │ -to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ │ +to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ │ set of remaining available channels Chs2.

    Thus, the call ch3:alloc() returns the allocated channel Ch and the │ │ │ │ gen_server then waits for new requests, now with an updated list of │ │ │ │ available channels.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Asynchronous Requests - Cast │ │ │ │

    │ │ │ │ -

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ +

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ cast, and thus free, then returns ok.

    When the request is received, the gen_server calls │ │ │ │ handle_cast(Request, State), which is expected to return a tuple │ │ │ │ -{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ │ -    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ │ +{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ │ +    Chs2 = free(Ch, Chs),
    │ │ │ │ +    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ │ The gen_server is now ready for new requests.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

    │ │ │ │

    │ │ │ │ @@ -162,65 +162,65 @@ │ │ │ │

    │ │ │ │

    If the gen_server is part of a supervision tree, no stop function is needed. │ │ │ │ The gen_server is automatically terminated by its supervisor. Exactly how │ │ │ │ this is done is defined by a shutdown strategy │ │ │ │ set in the supervisor.

    If it is necessary to clean up before termination, the shutdown strategy │ │ │ │ must be a time-out value and the gen_server must be set to trap exit signals │ │ │ │ in function init. When ordered to shutdown, the gen_server then calls │ │ │ │ -the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ │ +the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ │      ...,
    │ │ │ │ -    process_flag(trap_exit, true),
    │ │ │ │ +    process_flag(trap_exit, true),
    │ │ │ │      ...,
    │ │ │ │ -    {ok, State}.
    │ │ │ │ +    {ok, State}.
    │ │ │ │  
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -terminate(shutdown, State) ->
    │ │ │ │ +terminate(shutdown, State) ->
    │ │ │ │      %% Code for cleaning up here
    │ │ │ │      ...
    │ │ │ │      ok.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone Gen_Servers │ │ │ │

    │ │ │ │

    If the gen_server is not part of a supervision tree, a stop function │ │ │ │ can be useful, for example:

    ...
    │ │ │ │ -export([stop/0]).
    │ │ │ │ +export([stop/0]).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -stop() ->
    │ │ │ │ -    gen_server:cast(ch3, stop).
    │ │ │ │ +stop() ->
    │ │ │ │ +    gen_server:cast(ch3, stop).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -handle_cast(stop, State) ->
    │ │ │ │ -    {stop, normal, State};
    │ │ │ │ -handle_cast({free, Ch}, State) ->
    │ │ │ │ +handle_cast(stop, State) ->
    │ │ │ │ +    {stop, normal, State};
    │ │ │ │ +handle_cast({free, Ch}, State) ->
    │ │ │ │      ...
    │ │ │ │  
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -terminate(normal, State) ->
    │ │ │ │ +terminate(normal, State) ->
    │ │ │ │      ok.

    The callback function handling the stop request returns a tuple │ │ │ │ {stop,normal,State1}, where normal specifies that it is │ │ │ │ a normal termination and State1 is a new value for the state │ │ │ │ of the gen_server. This causes the gen_server to call │ │ │ │ terminate(normal, State1) and then it terminates gracefully.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │ │

    │ │ │ │

    If the gen_server is to be able to receive other messages than requests, │ │ │ │ the callback function handle_info(Info, State) must be implemented │ │ │ │ to handle them. Examples of other messages are exit messages, │ │ │ │ if the gen_server is linked to other processes than the supervisor │ │ │ │ -and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ │ +and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ │      %% Code to handle exits here.
    │ │ │ │      ...
    │ │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ │      %% Code to convert state (and more) during code change.
    │ │ │ │      ...
    │ │ │ │ -    {ok, NewState}.
    │ │ │ │ +
    {ok, NewState}.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/funs.xhtml │ │ │ │ @@ -22,399 +22,399 @@ │ │ │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │ │

    │ │ │ │ -

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ │ -double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ │ -[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ │ -add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ │ -by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ │ -map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ │ -follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ │ -add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ │ +

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ │ +double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ │ +[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ │ +add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ │ +by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ │ +map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ │ +follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ │ +add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ │ arguments and returns a new list, obtained by applying F to each of the │ │ │ │ elements in L.

    The process of abstracting out the common features of a number of different │ │ │ │ programs is called procedural abstraction. Procedural abstraction can be used │ │ │ │ to write several different functions that have a similar structure, but differ │ │ │ │ in some minor detail. This is done as follows:

    1. Step 1. Write one function that represents the common features of these │ │ │ │ functions.
    2. Step 2. Parameterize the difference in terms of functions that are passed │ │ │ │ as arguments to the common function.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │ │

    │ │ │ │

    This section illustrates procedural abstraction. Initially, the following two │ │ │ │ -examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ │ -    io:format(Stream, "~p~n", [H]),
    │ │ │ │ -    print_list(Stream, T);
    │ │ │ │ -print_list(Stream, []) ->
    │ │ │ │ -    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ │ +examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ │ +    io:format(Stream, "~p~n", [H]),
    │ │ │ │ +    print_list(Stream, T);
    │ │ │ │ +print_list(Stream, []) ->
    │ │ │ │ +    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ │      Pid ! Msg,
    │ │ │ │ -    broadcast(Msg, Pids);
    │ │ │ │ -broadcast(_, []) ->
    │ │ │ │ +    broadcast(Msg, Pids);
    │ │ │ │ +broadcast(_, []) ->
    │ │ │ │      true.

    These two functions have a similar structure. They both iterate over a list and │ │ │ │ do something to each element in the list. The "something" is passed on as an │ │ │ │ -extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ │ -    F(H),
    │ │ │ │ -    foreach(F, T);
    │ │ │ │ -foreach(F, []) ->
    │ │ │ │ -    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ │ +extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ │ +    F(H),
    │ │ │ │ +    foreach(F, T);
    │ │ │ │ +foreach(F, []) ->
    │ │ │ │ +    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ │ calls Fun(X) for each element X in L and the processing occurs in the │ │ │ │ order that the elements were defined in L. map does not define the order in │ │ │ │ which its elements are processed.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Syntax of Funs │ │ │ │

    │ │ │ │

    Funs are written with the following syntax (see │ │ │ │ -Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ │ +Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ │          ...
    │ │ │ │      end

    This creates an anonymous function of N arguments and binds it to the variable │ │ │ │ F.

    Another function, FunctionName, written in the same module, can be passed as │ │ │ │ an argument, using the following syntax:

    F = fun FunctionName/Arity

    With this form of function reference, the function that is referred to does not │ │ │ │ need to be exported from the module.

    It is also possible to refer to a function defined in a different module, with │ │ │ │ -the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ │ --export([t1/0, t2/0]).
    │ │ │ │ --import(lists, [map/2]).
    │ │ │ │ +the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ │ +-export([t1/0, t2/0]).
    │ │ │ │ +-import(lists, [map/2]).
    │ │ │ │  
    │ │ │ │ -t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ │ +t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ │  
    │ │ │ │ -t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ │ +t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ │  
    │ │ │ │ -double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ │ -is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ │ -   apply(F, Args);
    │ │ │ │ -f(N, _) when is_integer(N) ->
    │ │ │ │ +double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ │ +is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ │ +   apply(F, Args);
    │ │ │ │ +f(N, _) when is_integer(N) ->
    │ │ │ │     N.

    Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve │ │ │ │ information about a fun, and the BIF erlang:fun_to_list/1 returns a textual │ │ │ │ representation of a fun. The check_process_code/2 │ │ │ │ BIF returns true if the process contains funs that depend on the old version │ │ │ │ of a module.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings Within a Fun │ │ │ │

    │ │ │ │

    The scope rules for variables that occur in funs are as follows:

    • All variables that occur in the head of a fun are assumed to be "fresh" │ │ │ │ variables.
    • Variables that are defined before the fun, and that occur in function calls or │ │ │ │ -guard tests within the fun, have the values they had outside the fun.
    • Variables cannot be exported from a fun.

    The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ │ -    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ │ -    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ │ +guard tests within the fun, have the values they had outside the fun.

  • Variables cannot be exported from a fun.

The following examples illustrate these rules:

print_list(File, List) ->
│ │ │ │ +    {ok, Stream} = file:open(File, write),
│ │ │ │ +    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
│ │ │ │ +    file:close(Stream).

Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ │ variable Stream, which is used within the fun, gets its value from the │ │ │ │ file:open line.

As any variable that occurs in the head of a fun is considered a new variable, │ │ │ │ -it is equally valid to write as follows:

print_list(File, List) ->
│ │ │ │ -    {ok, Stream} = file:open(File, write),
│ │ │ │ -    foreach(fun(File) ->
│ │ │ │ -                io:format(Stream,"~p~n",[File])
│ │ │ │ -            end, List),
│ │ │ │ -    file:close(Stream).

Here, File is used as the new variable instead of X. This is not so wise │ │ │ │ +it is equally valid to write as follows:

print_list(File, List) ->
│ │ │ │ +    {ok, Stream} = file:open(File, write),
│ │ │ │ +    foreach(fun(File) ->
│ │ │ │ +                io:format(Stream,"~p~n",[File])
│ │ │ │ +            end, List),
│ │ │ │ +    file:close(Stream).

Here, File is used as the new variable instead of X. This is not so wise │ │ │ │ because code in the fun body cannot refer to the variable File, which is │ │ │ │ defined outside of the fun. Compiling this example gives the following │ │ │ │ diagnostic:

./FileName.erl:Line: Warning: variable 'File'
│ │ │ │        shadowed in 'fun'

This indicates that the variable File, which is defined inside the fun, │ │ │ │ collides with the variable File, which is defined outside the fun.

The rules for importing variables into a fun has the consequence that certain │ │ │ │ pattern matching operations must be moved into guard expressions and cannot be │ │ │ │ written in the head of the fun. For example, you might write the following code │ │ │ │ if you intend the first clause of F to be evaluated when the value of its │ │ │ │ -argument is Y:

f(...) ->
│ │ │ │ +argument is Y:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    map(fun(X) when X == Y ->
│ │ │ │ +    map(fun(X) when X == Y ->
│ │ │ │               ;
│ │ │ │ -           (_) ->
│ │ │ │ +           (_) ->
│ │ │ │               ...
│ │ │ │ -        end, ...)
│ │ │ │ -    ...

instead of writing the following code:

f(...) ->
│ │ │ │ +        end, ...)
│ │ │ │ +    ...

instead of writing the following code:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    map(fun(Y) ->
│ │ │ │ +    map(fun(Y) ->
│ │ │ │               ;
│ │ │ │ -           (_) ->
│ │ │ │ +           (_) ->
│ │ │ │               ...
│ │ │ │ -        end, ...)
│ │ │ │ +        end, ...)
│ │ │ │      ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Funs and Module Lists │ │ │ │

│ │ │ │

The following examples show a dialogue with the Erlang shell. All the higher │ │ │ │ order functions discussed are exported from the module lists.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │ │

│ │ │ │ -

lists:map/2 takes a function of one argument and a list of terms:

map(F, [H|T]) -> [F(H)|map(F, T)];
│ │ │ │ -map(F, [])    -> [].

It returns the list obtained by applying the function to every argument in the │ │ │ │ +

lists:map/2 takes a function of one argument and a list of terms:

map(F, [H|T]) -> [F(H)|map(F, T)];
│ │ │ │ +map(F, [])    -> [].

It returns the list obtained by applying the function to every argument in the │ │ │ │ list.

When a new fun is defined in the shell, the value of the fun is printed as │ │ │ │ -Fun#<erl_eval>:

> Double = fun(X) -> 2 * X end.
│ │ │ │ +Fun#<erl_eval>:

> Double = fun(X) -> 2 * X end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> lists:map(Double, [1,2,3,4,5]).
│ │ │ │ -[2,4,6,8,10]

│ │ │ │ +> lists:map(Double, [1,2,3,4,5]). │ │ │ │ +[2,4,6,8,10]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ any │ │ │ │

│ │ │ │ -

lists:any/2 takes a predicate P of one argument and a list of terms:

any(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ +

lists:any/2 takes a predicate P of one argument and a list of terms:

any(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │          true  ->  true;
│ │ │ │ -        false ->  any(Pred, T)
│ │ │ │ +        false ->  any(Pred, T)
│ │ │ │      end;
│ │ │ │ -any(Pred, []) ->
│ │ │ │ +any(Pred, []) ->
│ │ │ │      false.

A predicate is a function that returns true or false. any is true if │ │ │ │ there is a term X in the list such that P(X) is true.

A predicate Big(X) is defined, which is true if its argument is greater that │ │ │ │ -10:

> Big =  fun(X) -> if X > 10 -> true; true -> false end end.
│ │ │ │ +10:

> Big =  fun(X) -> if X > 10 -> true; true -> false end end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> lists:any(Big, [1,2,3,4]).
│ │ │ │ +> lists:any(Big, [1,2,3,4]).
│ │ │ │  false
│ │ │ │ -> lists:any(Big, [1,2,3,12,5]).
│ │ │ │ +> lists:any(Big, [1,2,3,12,5]).
│ │ │ │  true

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ all │ │ │ │

│ │ │ │ -

lists:all/2 has the same arguments as any:

all(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  ->  all(Pred, T);
│ │ │ │ +

lists:all/2 has the same arguments as any:

all(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  ->  all(Pred, T);
│ │ │ │          false ->  false
│ │ │ │      end;
│ │ │ │ -all(Pred, []) ->
│ │ │ │ -    true.

It is true if the predicate applied to all elements in the list is true.

> lists:all(Big, [1,2,3,4,12,6]).
│ │ │ │ +all(Pred, []) ->
│ │ │ │ +    true.

It is true if the predicate applied to all elements in the list is true.

> lists:all(Big, [1,2,3,4,12,6]).
│ │ │ │  false
│ │ │ │ -> lists:all(Big, [12,13,14,15]).
│ │ │ │ +> lists:all(Big, [12,13,14,15]).
│ │ │ │  true

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │ │

│ │ │ │ -

lists:foreach/2 takes a function of one argument and a list of terms:

foreach(F, [H|T]) ->
│ │ │ │ -    F(H),
│ │ │ │ -    foreach(F, T);
│ │ │ │ -foreach(F, []) ->
│ │ │ │ +

lists:foreach/2 takes a function of one argument and a list of terms:

foreach(F, [H|T]) ->
│ │ │ │ +    F(H),
│ │ │ │ +    foreach(F, T);
│ │ │ │ +foreach(F, []) ->
│ │ │ │      ok.

The function is applied to each argument in the list. foreach returns ok. It │ │ │ │ -is only used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
│ │ │ │ +is only used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
│ │ │ │  1
│ │ │ │  2
│ │ │ │  3
│ │ │ │  4
│ │ │ │  ok

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foldl │ │ │ │

│ │ │ │ -

lists:foldl/3 takes a function of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Tail]) ->
│ │ │ │ -    foldl(F, F(Hd, Accu), Tail);
│ │ │ │ -foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive │ │ │ │ +

lists:foldl/3 takes a function of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Tail]) ->
│ │ │ │ +    foldl(F, F(Hd, Accu), Tail);
│ │ │ │ +foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive │ │ │ │ elements in the list. The second argument is the accumulator. The function must │ │ │ │ return a new accumulator, which is used the next time the function is called.

If you have a list of lists L = ["I","like","Erlang"], then you can sum the │ │ │ │ -lengths of all the strings in L as follows:

> L = ["I","like","Erlang"].
│ │ │ │ -["I","like","Erlang"]
│ │ │ │ -10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
│ │ │ │ -11

lists:foldl/3 works like a while loop in an imperative language:

L =  ["I","like","Erlang"],
│ │ │ │ +lengths of all the strings in L as follows:

> L = ["I","like","Erlang"].
│ │ │ │ +["I","like","Erlang"]
│ │ │ │ +10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
│ │ │ │ +11

lists:foldl/3 works like a while loop in an imperative language:

L =  ["I","like","Erlang"],
│ │ │ │  Sum = 0,
│ │ │ │ -while( L != []){
│ │ │ │ -    Sum += length(head(L)),
│ │ │ │ -    L = tail(L)
│ │ │ │ +while( L != []){
│ │ │ │ +    Sum += length(head(L)),
│ │ │ │ +    L = tail(L)
│ │ │ │  end

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ mapfoldl │ │ │ │

│ │ │ │ -

lists:mapfoldl/3 simultaneously maps and folds over a list:

mapfoldl(F, Accu0, [Hd|Tail]) ->
│ │ │ │ -    {R,Accu1} = F(Hd, Accu0),
│ │ │ │ -    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
│ │ │ │ -    {[R|Rs], Accu2};
│ │ │ │ -mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change all letters in L to upper case and │ │ │ │ -then count them.

First the change to upper case:

> Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
│ │ │ │ -(X) -> X
│ │ │ │ +

lists:mapfoldl/3 simultaneously maps and folds over a list:

mapfoldl(F, Accu0, [Hd|Tail]) ->
│ │ │ │ +    {R,Accu1} = F(Hd, Accu0),
│ │ │ │ +    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
│ │ │ │ +    {[R|Rs], Accu2};
│ │ │ │ +mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change all letters in L to upper case and │ │ │ │ +then count them.

First the change to upper case:

> Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
│ │ │ │ +(X) -> X
│ │ │ │  end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │  > Upcase_word =
│ │ │ │ -fun(X) ->
│ │ │ │ -lists:map(Upcase, X)
│ │ │ │ +fun(X) ->
│ │ │ │ +lists:map(Upcase, X)
│ │ │ │  end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Upcase_word("Erlang").
│ │ │ │ +> Upcase_word("Erlang").
│ │ │ │  "ERLANG"
│ │ │ │ -> lists:map(Upcase_word, L).
│ │ │ │ -["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
│ │ │ │ -{Upcase_word(Word), Sum + length(Word)}
│ │ │ │ -end, 0, L).
│ │ │ │ -{["I","LIKE","ERLANG"],11}

│ │ │ │ +> lists:map(Upcase_word, L). │ │ │ │ +["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
│ │ │ │ +{Upcase_word(Word), Sum + length(Word)}
│ │ │ │ +end, 0, L).
│ │ │ │ +{["I","LIKE","ERLANG"],11}

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ filter │ │ │ │

│ │ │ │

lists:filter/2 takes a predicate of one argument and a list and returns all elements │ │ │ │ -in the list that satisfy the predicate:

filter(F, [H|T]) ->
│ │ │ │ -    case F(H) of
│ │ │ │ -        true  -> [H|filter(F, T)];
│ │ │ │ -        false -> filter(F, T)
│ │ │ │ +in the list that satisfy the predicate:

filter(F, [H|T]) ->
│ │ │ │ +    case F(H) of
│ │ │ │ +        true  -> [H|filter(F, T)];
│ │ │ │ +        false -> filter(F, T)
│ │ │ │      end;
│ │ │ │ -filter(F, []) -> [].
> lists:filter(Big, [500,12,2,45,6,7]).
│ │ │ │ -[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, │ │ │ │ +filter(F, []) -> [].

> lists:filter(Big, [500,12,2,45,6,7]).
│ │ │ │ +[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, │ │ │ │ to define a set difference function diff(L1, L2) to be the difference between │ │ │ │ -the lists L1 and L2, the code can be written as follows:

diff(L1, L2) ->
│ │ │ │ -    filter(fun(X) -> not member(X, L2) end, L1).

This gives the list of all elements in L1 that are not contained in L2.

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

│ │ │ │ +the lists L1 and L2, the code can be written as follows:

diff(L1, L2) ->
│ │ │ │ +    filter(fun(X) -> not member(X, L2) end, L1).

This gives the list of all elements in L1 that are not contained in L2.

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ takewhile │ │ │ │

│ │ │ │

lists:takewhile/2 takes elements X from a list L as long as the predicate │ │ │ │ -P(X) is true:

takewhile(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> [H|takewhile(Pred, T)];
│ │ │ │ -        false -> []
│ │ │ │ +P(X) is true:

takewhile(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> [H|takewhile(Pred, T)];
│ │ │ │ +        false -> []
│ │ │ │      end;
│ │ │ │ -takewhile(Pred, []) ->
│ │ │ │ -    [].
> lists:takewhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -[200,500,45]

│ │ │ │ +takewhile(Pred, []) -> │ │ │ │ + [].

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +[200,500,45]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ dropwhile │ │ │ │

│ │ │ │ -

lists:dropwhile/2 is the complement of takewhile:

dropwhile(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> dropwhile(Pred, T);
│ │ │ │ -        false -> [H|T]
│ │ │ │ +

lists:dropwhile/2 is the complement of takewhile:

dropwhile(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> dropwhile(Pred, T);
│ │ │ │ +        false -> [H|T]
│ │ │ │      end;
│ │ │ │ -dropwhile(Pred, []) ->
│ │ │ │ -    [].
> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -[5,3,45,6]

│ │ │ │ +dropwhile(Pred, []) -> │ │ │ │ + [].

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +[5,3,45,6]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ splitwith │ │ │ │

│ │ │ │

lists:splitwith/2 splits the list L into the two sublists {L1, L2}, where │ │ │ │ -L = takewhile(P, L) and L2 = dropwhile(P, L):

splitwith(Pred, L) ->
│ │ │ │ -    splitwith(Pred, L, []).
│ │ │ │ +L = takewhile(P, L) and L2 = dropwhile(P, L):

splitwith(Pred, L) ->
│ │ │ │ +    splitwith(Pred, L, []).
│ │ │ │  
│ │ │ │ -splitwith(Pred, [H|T], L) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> splitwith(Pred, T, [H|L]);
│ │ │ │ -        false -> {reverse(L), [H|T]}
│ │ │ │ +splitwith(Pred, [H|T], L) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> splitwith(Pred, T, [H|L]);
│ │ │ │ +        false -> {reverse(L), [H|T]}
│ │ │ │      end;
│ │ │ │ -splitwith(Pred, [], L) ->
│ │ │ │ -    {reverse(L), []}.
> lists:splitwith(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -{[200,500,45],[5,3,45,6]}

│ │ │ │ +splitwith(Pred, [], L) -> │ │ │ │ + {reverse(L), []}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +{[200,500,45],[5,3,45,6]}

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Funs Returning Funs │ │ │ │

│ │ │ │

So far, only functions that take funs as arguments have been described. More │ │ │ │ powerful functions, that themselves return funs, can also be written. The │ │ │ │ following examples illustrate these type of functions.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Higher Order Functions │ │ │ │

│ │ │ │

Adder(X) is a function that given X, returns a new function G such that │ │ │ │ -G(K) returns K + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
│ │ │ │ +G(K) returns K + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Add6 = Adder(6).
│ │ │ │ +> Add6 = Adder(6).
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Add6(10).
│ │ │ │ +> Add6(10).
│ │ │ │  16

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Infinite Lists │ │ │ │

│ │ │ │ -

The idea is to write something like:

-module(lazy).
│ │ │ │ --export([ints_from/1]).
│ │ │ │ -ints_from(N) ->
│ │ │ │ -    fun() ->
│ │ │ │ -            [N|ints_from(N+1)]
│ │ │ │ -    end.

Then proceed as follows:

> XX = lazy:ints_from(1).
│ │ │ │ +

The idea is to write something like:

-module(lazy).
│ │ │ │ +-export([ints_from/1]).
│ │ │ │ +ints_from(N) ->
│ │ │ │ +    fun() ->
│ │ │ │ +            [N|ints_from(N+1)]
│ │ │ │ +    end.

Then proceed as follows:

> XX = lazy:ints_from(1).
│ │ │ │  #Fun<lazy.0.29874839>
│ │ │ │ -> XX().
│ │ │ │ -[1|#Fun<lazy.0.29874839>]
│ │ │ │ -> hd(XX()).
│ │ │ │ +> XX().
│ │ │ │ +[1|#Fun<lazy.0.29874839>]
│ │ │ │ +> hd(XX()).
│ │ │ │  1
│ │ │ │ -> Y = tl(XX()).
│ │ │ │ +> Y = tl(XX()).
│ │ │ │  #Fun<lazy.0.29874839>
│ │ │ │ -> hd(Y()).
│ │ │ │ +> hd(Y()).
│ │ │ │  2

And so on. This is an example of "lazy embedding".

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Parsing │ │ │ │

│ │ │ │ -

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toks1} | fail

Toks is the list of tokens to be parsed. A successful parse returns │ │ │ │ +

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toks1} | fail

Toks is the list of tokens to be parsed. A successful parse returns │ │ │ │ {ok, Tree, Toks1}.

  • Tree is a parse tree.
  • Toks1 is a tail of Tree that contains symbols encountered after the │ │ │ │ structure that was correctly parsed.

An unsuccessful parse returns fail.

The following example illustrates a simple, functional parser that parses the │ │ │ │ grammar:

(a | b) & (c | d)

The following code defines a function pconst(X) in the module funparse, │ │ │ │ -which returns a fun that parses a list of tokens:

pconst(X) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ +which returns a fun that parses a list of tokens:

pconst(X) ->
│ │ │ │ +    fun (T) ->
│ │ │ │         case T of
│ │ │ │ -           [X|T1] -> {ok, {const, X}, T1};
│ │ │ │ +           [X|T1] -> {ok, {const, X}, T1};
│ │ │ │             _      -> fail
│ │ │ │         end
│ │ │ │ -    end.

This function can be used as follows:

> P1 = funparse:pconst(a).
│ │ │ │ +    end.

This function can be used as follows:

> P1 = funparse:pconst(a).
│ │ │ │  #Fun<funparse.0.22674075>
│ │ │ │ -> P1([a,b,c]).
│ │ │ │ -{ok,{const,a},[b,c]}
│ │ │ │ -> P1([x,y,z]).
│ │ │ │ +> P1([a,b,c]).
│ │ │ │ +{ok,{const,a},[b,c]}
│ │ │ │ +> P1([x,y,z]).
│ │ │ │  fail

Next, the two higher order functions pand and por are defined. They combine │ │ │ │ -primitive parsers to produce more complex parsers.

First pand:

pand(P1, P2) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ -        case P1(T) of
│ │ │ │ -            {ok, R1, T1} ->
│ │ │ │ -                case P2(T1) of
│ │ │ │ -                    {ok, R2, T2} ->
│ │ │ │ -                        {ok, {'and', R1, R2}};
│ │ │ │ +primitive parsers to produce more complex parsers.

First pand:

pand(P1, P2) ->
│ │ │ │ +    fun (T) ->
│ │ │ │ +        case P1(T) of
│ │ │ │ +            {ok, R1, T1} ->
│ │ │ │ +                case P2(T1) of
│ │ │ │ +                    {ok, R2, T2} ->
│ │ │ │ +                        {ok, {'and', R1, R2}};
│ │ │ │                      fail ->
│ │ │ │                          fail
│ │ │ │                  end;
│ │ │ │              fail ->
│ │ │ │                  fail
│ │ │ │          end
│ │ │ │      end.

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, │ │ │ │ pand(P1, P2) returns a parser for the grammar, which consists of sequences of │ │ │ │ tokens that satisfy G1, followed by sequences of tokens that satisfy G2.

por(P1, P2) returns a parser for the language described by the grammar G1 or │ │ │ │ -G2:

por(P1, P2) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ -        case P1(T) of
│ │ │ │ -            {ok, R, T1} ->
│ │ │ │ -                {ok, {'or',1,R}, T1};
│ │ │ │ +G2:

por(P1, P2) ->
│ │ │ │ +    fun (T) ->
│ │ │ │ +        case P1(T) of
│ │ │ │ +            {ok, R, T1} ->
│ │ │ │ +                {ok, {'or',1,R}, T1};
│ │ │ │              fail ->
│ │ │ │ -                case P2(T) of
│ │ │ │ -                    {ok, R1, T1} ->
│ │ │ │ -                        {ok, {'or',2,R1}, T1};
│ │ │ │ +                case P2(T) of
│ │ │ │ +                    {ok, R1, T1} ->
│ │ │ │ +                        {ok, {'or',2,R1}, T1};
│ │ │ │                      fail ->
│ │ │ │                          fail
│ │ │ │                  end
│ │ │ │          end
│ │ │ │      end.

The original problem was to parse the grammar (a | b) & (c | d). The following │ │ │ │ -code addresses this problem:

grammar() ->
│ │ │ │ -    pand(
│ │ │ │ -         por(pconst(a), pconst(b)),
│ │ │ │ -         por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
│ │ │ │ -    (grammar())(List).

The parser can be tested as follows:

> funparse:parse([a,c]).
│ │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
│ │ │ │ -> funparse:parse([a,d]).
│ │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
│ │ │ │ -> funparse:parse([b,c]).
│ │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
│ │ │ │ -> funparse:parse([b,d]).
│ │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
│ │ │ │ -> funparse:parse([a,b]).
│ │ │ │ +code addresses this problem:

grammar() ->
│ │ │ │ +    pand(
│ │ │ │ +         por(pconst(a), pconst(b)),
│ │ │ │ +         por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
│ │ │ │ +    (grammar())(List).

The parser can be tested as follows:

> funparse:parse([a,c]).
│ │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
│ │ │ │ +> funparse:parse([a,d]).
│ │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
│ │ │ │ +> funparse:parse([b,c]).
│ │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
│ │ │ │ +> funparse:parse([b,d]).
│ │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
│ │ │ │ +> funparse:parse([a,b]).
│ │ │ │  fail
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/expressions.xhtml │ │ │ │ @@ -56,81 +56,81 @@ │ │ │ │
Phone_number │ │ │ │ _ │ │ │ │ _Height │ │ │ │ name@node

Variables are bound to values using pattern matching. Erlang uses │ │ │ │ single assignment, that is, a variable can only be bound once.

The anonymous variable is denoted by underscore (_) and can be used when a │ │ │ │ variable is required but its value can be ignored.

Example:

[H|_] = [1,2,3]

Variables starting with underscore (_), for example, _Height, are normal │ │ │ │ variables, not anonymous. However, they are ignored by the compiler in the sense │ │ │ │ -that they do not generate warnings.

Example:

The following code:

member(_, []) ->
│ │ │ │ -    [].

can be rewritten to be more readable:

member(Elem, []) ->
│ │ │ │ -    [].

This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ │ -the code can be rewritten to:

member(_Elem, []) ->
│ │ │ │ -    [].

Notice that since variables starting with an underscore are not anonymous, the │ │ │ │ -following example matches:

{_,_} = {1,2}

But this example fails:

{_N,_N} = {1,2}

The scope for a variable is its function clause. Variables bound in a branch of │ │ │ │ +that they do not generate warnings.

Example:

The following code:

member(_, []) ->
│ │ │ │ +    [].

can be rewritten to be more readable:

member(Elem, []) ->
│ │ │ │ +    [].

This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ │ +the code can be rewritten to:

member(_Elem, []) ->
│ │ │ │ +    [].

Notice that since variables starting with an underscore are not anonymous, the │ │ │ │ +following example matches:

{_,_} = {1,2}

But this example fails:

{_N,_N} = {1,2}

The scope for a variable is its function clause. Variables bound in a branch of │ │ │ │ an if, case, or receive expression must be bound in all branches to have a │ │ │ │ value outside the expression. Otherwise they are regarded as unsafe outside │ │ │ │ the expression.

For the try expression variable scoping is limited so that variables bound in │ │ │ │ the expression are always unsafe outside the expression.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Patterns │ │ │ │

│ │ │ │

A pattern has the same structure as a term but can contain unbound variables.

Example:

Name1
│ │ │ │ -[H|T]
│ │ │ │ -{error,Reason}

Patterns are allowed in clause heads, case expressions, │ │ │ │ +[H|T] │ │ │ │ +{error,Reason}

Patterns are allowed in clause heads, case expressions, │ │ │ │ receive expressions, and │ │ │ │ match expressions.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The Compound Pattern Operator │ │ │ │

│ │ │ │

If Pattern1 and Pattern2 are valid patterns, the following is also a valid │ │ │ │ pattern:

Pattern1 = Pattern2

When matched against a term, both Pattern1 and Pattern2 are matched against │ │ │ │ -the term. The idea behind this feature is to avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
│ │ │ │ -    Signal = {connect,From,To,Number,Options},
│ │ │ │ +the term. The idea behind this feature is to avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
│ │ │ │ +    Signal = {connect,From,To,Number,Options},
│ │ │ │      ...;
│ │ │ │ -f(Signal, To) ->
│ │ │ │ -    ignore.

can instead be written as

f({connect,_,To,_,_} = Signal, To) ->
│ │ │ │ +f(Signal, To) ->
│ │ │ │ +    ignore.

can instead be written as

f({connect,_,To,_,_} = Signal, To) ->
│ │ │ │      ...;
│ │ │ │ -f(Signal, To) ->
│ │ │ │ +f(Signal, To) ->
│ │ │ │      ignore.

The compound pattern operator does not imply that its operands are matched in │ │ │ │ any particular order. That means that it is not legal to bind a variable in │ │ │ │ Pattern1 and use it in Pattern2, or vice versa.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ String Prefix in Patterns │ │ │ │

│ │ │ │ -

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

│ │ │ │ +

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Expressions in Patterns │ │ │ │

│ │ │ │

An arithmetic expression can be used within a pattern if it meets both of the │ │ │ │ -following two conditions:

  • It uses only numeric or bitwise operators.
  • Its value can be evaluated to a constant when complied.

Example:

case {Value, Result} of
│ │ │ │ -    {?THRESHOLD+1, ok} -> ...

│ │ │ │ +following two conditions:

  • It uses only numeric or bitwise operators.
  • Its value can be evaluated to a constant when complied.

Example:

case {Value, Result} of
│ │ │ │ +    {?THRESHOLD+1, ok} -> ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The Match Operator │ │ │ │

│ │ │ │

The following matches Pattern against Expr:

Pattern = Expr

If the matching succeeds, any unbound variable in the pattern becomes bound and │ │ │ │ the value of Expr is returned.

If multiple match operators are applied in sequence, they will be evaluated from │ │ │ │ -right to left.

If the matching fails, a badmatch run-time error occurs.

Examples:

1> {A, B} = T = {answer, 42}.
│ │ │ │ -{answer,42}
│ │ │ │ +right to left.

If the matching fails, a badmatch run-time error occurs.

Examples:

1> {A, B} = T = {answer, 42}.
│ │ │ │ +{answer,42}
│ │ │ │  2> A.
│ │ │ │  answer
│ │ │ │  3> B.
│ │ │ │  42
│ │ │ │  4> T.
│ │ │ │ -{answer,42}
│ │ │ │ -5> {C, D} = [1, 2].
│ │ │ │ +{answer,42}
│ │ │ │ +5> {C, D} = [1, 2].
│ │ │ │  ** exception error: no match of right-hand side value [1,2]

Because multiple match operators are evaluated from right to left, it means │ │ │ │ that:

Pattern1 = Pattern2 = . . . = PatternN = Expression

is equivalent to:

Temporary = Expression,
│ │ │ │  PatternN = Temporary,
│ │ │ │     .
│ │ │ │     .
│ │ │ │     .,
│ │ │ │  Pattern2 = Temporary,
│ │ │ │ @@ -144,30 +144,30 @@
│ │ │ │  can safely be skipped on a first reading.

The = character is used to denote two similar but distinct operators: the │ │ │ │ match operator and the compound pattern operator. Which one is meant is │ │ │ │ determined by context.

The compound pattern operator is used to construct a compound pattern from two │ │ │ │ patterns. Compound patterns are accepted everywhere a pattern is accepted. A │ │ │ │ compound pattern matches if all of its constituent patterns match. It is not │ │ │ │ legal for a pattern that is part of a compound pattern to use variables (as keys │ │ │ │ in map patterns or sizes in binary patterns) bound in other sub patterns of the │ │ │ │ -same compound pattern.

Examples:

1> fun(#{Key := Value} = #{key := Key}) -> Value end.
│ │ │ │ +same compound pattern.

Examples:

1> fun(#{Key := Value} = #{key := Key}) -> Value end.
│ │ │ │  * 1:7: variable 'Key' is unbound
│ │ │ │ -2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}).
│ │ │ │ -{{1,2},3}
│ │ │ │ -3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>).
│ │ │ │ -{42,43,10795}

The match operator is allowed everywhere an expression is allowed. It is used │ │ │ │ +2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}). │ │ │ │ +{{1,2},3} │ │ │ │ +3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>). │ │ │ │ +{42,43,10795}

The match operator is allowed everywhere an expression is allowed. It is used │ │ │ │ to match the value of an expression to a pattern. If multiple match operators │ │ │ │ -are applied in sequence, they will be evaluated from right to left.

Examples:

1> M = #{key => key2, key2 => value}.
│ │ │ │ -#{key => key2,key2 => value}
│ │ │ │ -2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
│ │ │ │ +are applied in sequence, they will be evaluated from right to left.

Examples:

1> M = #{key => key2, key2 => value}.
│ │ │ │ +#{key => key2,key2 => value}
│ │ │ │ +2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
│ │ │ │  value
│ │ │ │ -3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
│ │ │ │ +3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
│ │ │ │  value
│ │ │ │ -4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
│ │ │ │ +4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
│ │ │ │  * 1:12: variable 'Key' is unbound
│ │ │ │ -5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
│ │ │ │ +5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
│ │ │ │  42

The expression at prompt 2> first matches the value of variable M against │ │ │ │ pattern #{key := Key}, binding variable Key. It then matches the value of │ │ │ │ M against pattern #{Key := Value} using variable Key as the key, binding │ │ │ │ variable Value.

The expression at prompt 3> matches expression (#{key := Key} = M) against │ │ │ │ pattern #{Key := Value}. The expression inside the parentheses is evaluated │ │ │ │ first. That is, M is matched against #{key := Key}, and then the value of │ │ │ │ M is matched against pattern #{Key := Value}. That is the same evaluation │ │ │ │ @@ -181,30 +181,30 @@ │ │ │ │ binding variable Y and creating a binary. The binary is then matched against │ │ │ │ pattern <<X:Y>> using the value of Y as the size of the segment.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Function Calls │ │ │ │

│ │ │ │ -
ExprF(Expr1,...,ExprN)
│ │ │ │ -ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ │ +

ExprF(Expr1,...,ExprN)
│ │ │ │ +ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ │ ExprM and ExprF must be an atom or an expression that evaluates to an atom. │ │ │ │ The function is said to be called by using the fully qualified function name. │ │ │ │ -This is often referred to as a remote or external function call.

Example:

lists:keyfind(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ │ +This is often referred to as a remote or external function call.

Example:

lists:keyfind(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ │ an atom or evaluate to a fun.

If ExprF is an atom, the function is said to be called by using the │ │ │ │ implicitly qualified function name. If the function ExprF is locally │ │ │ │ defined, it is called. Alternatively, if ExprF is explicitly imported from the │ │ │ │ M module, M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared │ │ │ │ locally nor explicitly imported, ExprF must be the name of an automatically │ │ │ │ -imported BIF.

Examples:

handle(Msg, State)
│ │ │ │ -spawn(m, init, [])

Examples where ExprF is a fun:

1> Fun1 = fun(X) -> X+1 end,
│ │ │ │ -Fun1(3).
│ │ │ │ +imported BIF.

Examples:

handle(Msg, State)
│ │ │ │ +spawn(m, init, [])

Examples where ExprF is a fun:

1> Fun1 = fun(X) -> X+1 end,
│ │ │ │ +Fun1(3).
│ │ │ │  4
│ │ │ │ -2> fun lists:append/2([1,2], [3,4]).
│ │ │ │ -[1,2,3,4]
│ │ │ │ +2> fun lists:append/2([1,2], [3,4]).
│ │ │ │ +[1,2,3,4]
│ │ │ │  3>

Notice that when calling a local function, there is a difference between using │ │ │ │ the implicitly or fully qualified function name. The latter always refers to the │ │ │ │ latest version of the module. See │ │ │ │ Compilation and Code Loading and │ │ │ │ Function Evaluation.

│ │ │ │ │ │ │ │ │ │ │ │ @@ -221,40 +221,40 @@ │ │ │ │ called instead. This is to avoid that future additions to the set of │ │ │ │ auto-imported BIFs do not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled │ │ │ │ with Erlang/OTP version R14A or later, the following restriction applies: If you │ │ │ │ override the name of a BIF that was auto-imported in OTP versions prior to R14A │ │ │ │ (ERTS version 5.8) and have an implicitly qualified call to that function in │ │ │ │ your code, you either need to explicitly remove the auto-import using a compiler │ │ │ │ directive, or replace the call with a fully qualified function call. Otherwise │ │ │ │ -you get a compilation error. See the following example:

-export([length/1,f/1]).
│ │ │ │ +you get a compilation error. See the following example:

-export([length/1,f/1]).
│ │ │ │  
│ │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │  
│ │ │ │ -length([]) ->
│ │ │ │ +length([]) ->
│ │ │ │      0;
│ │ │ │ -length([H|T]) ->
│ │ │ │ -    1 + length(T). %% Calls the local function length/1
│ │ │ │ +length([H|T]) ->
│ │ │ │ +    1 + length(T). %% Calls the local function length/1
│ │ │ │  
│ │ │ │ -f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
│ │ │ │ +f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
│ │ │ │                                    %% which is allowed in guards
│ │ │ │      long.

The same logic applies to explicitly imported functions from other modules, as │ │ │ │ to locally defined functions. It is not allowed to both import a function from │ │ │ │ -another module and have the function declared in the module at the same time:

-export([f/1]).
│ │ │ │ +another module and have the function declared in the module at the same time:

-export([f/1]).
│ │ │ │  
│ │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │  
│ │ │ │ --import(mod,[length/1]).
│ │ │ │ +-import(mod,[length/1]).
│ │ │ │  
│ │ │ │ -f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
│ │ │ │ +f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
│ │ │ │                                     %% which is allowed in guards
│ │ │ │  
│ │ │ │ -    erlang:length(X);              %% Explicit call to erlang:length in body
│ │ │ │ +    erlang:length(X);              %% Explicit call to erlang:length in body
│ │ │ │  
│ │ │ │ -f(X) ->
│ │ │ │ -    length(X).                     %% mod:length/1 is called

For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ │ +f(X) -> │ │ │ │ + length(X). %% mod:length/1 is called

For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ │ name with a local function or explicit import is always allowed. However, if the │ │ │ │ -compile({no_auto_import,[F/A]) directive is not used, the compiler issues a │ │ │ │ warning whenever the function is called in the module using the implicitly │ │ │ │ qualified function name.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -266,40 +266,40 @@ │ │ │ │ ...; │ │ │ │ GuardSeqN -> │ │ │ │ BodyN │ │ │ │ end

The branches of an if-expression are scanned sequentially until a guard │ │ │ │ sequence GuardSeq that evaluates to true is found. Then the corresponding │ │ │ │ Body (a sequence of expressions separated by ,) is evaluated.

The return value of Body is the return value of the if expression.

If no guard sequence is evaluated as true, an if_clause run-time error occurs. │ │ │ │ If necessary, the guard expression true can be used in the last branch, as │ │ │ │ -that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
│ │ │ │ +that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
│ │ │ │      if
│ │ │ │          X > Y ->
│ │ │ │              true;
│ │ │ │          true -> % works as an 'else' branch
│ │ │ │              false
│ │ │ │      end

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Case │ │ │ │

│ │ │ │
case Expr of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

The expression Expr is evaluated and the patterns Pattern are sequentially │ │ │ │ matched against the result. If a match succeeds and the optional guard sequence │ │ │ │ GuardSeq is true, the corresponding Body is evaluated.

The return value of Body is the return value of the case expression.

If there is no matching pattern with a true guard sequence, a case_clause │ │ │ │ -run-time error occurs.

Example:

is_valid_signal(Signal) ->
│ │ │ │ +run-time error occurs.

Example:

is_valid_signal(Signal) ->
│ │ │ │      case Signal of
│ │ │ │ -        {signal, _What, _From, _To} ->
│ │ │ │ +        {signal, _What, _From, _To} ->
│ │ │ │              true;
│ │ │ │ -        {signal, _What, _To} ->
│ │ │ │ +        {signal, _What, _To} ->
│ │ │ │              true;
│ │ │ │          _Else ->
│ │ │ │              false
│ │ │ │      end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -317,57 +317,57 @@ │ │ │ │ the top-level of a maybe block. It matches the pattern Expr1 against │ │ │ │ Expr2. If the matching succeeds, any unbound variable in the pattern becomes │ │ │ │ bound. If the expression is the last expression in the maybe block, it also │ │ │ │ returns the value of Expr2. If the matching is unsuccessful, the rest of the │ │ │ │ expressions in the maybe block are skipped and the return value of the maybe │ │ │ │ block is Expr2.

None of the variables bound in a maybe block must be used in the code that │ │ │ │ follows the block.

Here is an example:

maybe
│ │ │ │ -    {ok, A} ?= a(),
│ │ │ │ +    {ok, A} ?= a(),
│ │ │ │      true = A >= 0,
│ │ │ │ -    {ok, B} ?= b(),
│ │ │ │ +    {ok, B} ?= b(),
│ │ │ │      A + B
│ │ │ │  end

Let us first assume that a() returns {ok,42} and b() returns {ok,58}. │ │ │ │ With those return values, all of the match operators will succeed, and the │ │ │ │ return value of the maybe block is A + B, which is equal to 42 + 58 = 100.

Now let us assume that a() returns error. The conditional match operator in │ │ │ │ {ok, A} ?= a() fails to match, and the return value of the maybe block is │ │ │ │ the value of the expression that failed to match, namely error. Similarly, if │ │ │ │ b() returns wrong, the return value of the maybe block is wrong.

Finally, let us assume that a() returns {ok,-1}. Because true = A >= 0 uses │ │ │ │ the match operator =, a {badmatch,false} run-time error occurs when the │ │ │ │ -expression fails to match the pattern.

The example can be written in a less succient way using nested case expressions:

case a() of
│ │ │ │ -    {ok, A} ->
│ │ │ │ +expression fails to match the pattern.

The example can be written in a less succient way using nested case expressions:

case a() of
│ │ │ │ +    {ok, A} ->
│ │ │ │          true = A >= 0,
│ │ │ │ -        case b() of
│ │ │ │ -            {ok, B} ->
│ │ │ │ +        case b() of
│ │ │ │ +            {ok, B} ->
│ │ │ │                  A + B;
│ │ │ │              Other1 ->
│ │ │ │                  Other1
│ │ │ │          end;
│ │ │ │      Other2 ->
│ │ │ │          Other2
│ │ │ │  end

The maybe block can be augmented with else clauses:

maybe
│ │ │ │      Expr1,
│ │ │ │      ...,
│ │ │ │      ExprN
│ │ │ │  else
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

If a conditional match operator fails, the failed expression is matched against │ │ │ │ the patterns in all clauses between the else and end keywords. If a match │ │ │ │ succeeds and the optional guard sequence GuardSeq is true, the corresponding │ │ │ │ Body is evaluated. The value returned from the body is the return value of the │ │ │ │ maybe block.

If there is no matching pattern with a true guard sequence, an else_clause │ │ │ │ run-time error occurs.

None of the variables bound in a maybe block must be used in the else │ │ │ │ clauses. None of the variables bound in the else clauses must be used in the │ │ │ │ code that follows the maybe block.

Here is the previous example augmented with else clauses:

maybe
│ │ │ │ -    {ok, A} ?= a(),
│ │ │ │ +    {ok, A} ?= a(),
│ │ │ │      true = A >= 0,
│ │ │ │ -    {ok, B} ?= b(),
│ │ │ │ +    {ok, B} ?= b(),
│ │ │ │      A + B
│ │ │ │  else
│ │ │ │      error -> error;
│ │ │ │      wrong -> error
│ │ │ │  end

The else clauses translate the failing value from the conditional match │ │ │ │ operators to the value error. If the failing value is not one of the │ │ │ │ recognized values, a else_clause run-time error occurs.

│ │ │ │ @@ -386,75 +386,75 @@ │ │ │ │ {Name,Node} (or a pid located at another node), also never fails.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Receive │ │ │ │

│ │ │ │
receive
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

Fetches a received message present in the message queue of the process. The │ │ │ │ first message in the message queue is matched sequentially against the patterns │ │ │ │ from top to bottom. If no match was found, the matching sequence is repeated for │ │ │ │ the second message in the queue, and so on. Messages are queued in the │ │ │ │ order they were received. If a match │ │ │ │ succeeds, that is, if the Pattern matches and the optional guard sequence │ │ │ │ GuardSeq is true, then the message is removed from the message queue and the │ │ │ │ corresponding Body is evaluated. All other messages in the message queue │ │ │ │ remain unchanged.

The return value of Body is the return value of the receive expression.

receive never fails. The execution is suspended, possibly indefinitely, until │ │ │ │ a message arrives that matches one of the patterns and with a true guard │ │ │ │ -sequence.

Example:

wait_for_onhook() ->
│ │ │ │ +sequence.

Example:

wait_for_onhook() ->
│ │ │ │      receive
│ │ │ │          onhook ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            idle();
│ │ │ │ -        {connect, B} ->
│ │ │ │ -            B ! {busy, self()},
│ │ │ │ -            wait_for_onhook()
│ │ │ │ +            disconnect(),
│ │ │ │ +            idle();
│ │ │ │ +        {connect, B} ->
│ │ │ │ +            B ! {busy, self()},
│ │ │ │ +            wait_for_onhook()
│ │ │ │      end.

The receive expression can be augmented with a timeout:

receive
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  after
│ │ │ │      ExprT ->
│ │ │ │          BodyT
│ │ │ │  end

receive...after works exactly as receive, except that if no matching message │ │ │ │ has arrived within ExprT milliseconds, then BodyT is evaluated instead. The │ │ │ │ return value of BodyT then becomes the return value of the receive...after │ │ │ │ expression. ExprT is to evaluate to an integer, or the atom infinity. The │ │ │ │ allowed integer range is from 0 to 4294967295, that is, the longest possible │ │ │ │ timeout is almost 50 days. With a zero value the timeout occurs immediately if │ │ │ │ there is no matching message in the message queue.

The atom infinity will make the process wait indefinitely for a matching │ │ │ │ message. This is the same as not using a timeout. It can be useful for timeout │ │ │ │ -values that are calculated at runtime.

Example:

wait_for_onhook() ->
│ │ │ │ +values that are calculated at runtime.

Example:

wait_for_onhook() ->
│ │ │ │      receive
│ │ │ │          onhook ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            idle();
│ │ │ │ -        {connect, B} ->
│ │ │ │ -            B ! {busy, self()},
│ │ │ │ -            wait_for_onhook()
│ │ │ │ +            disconnect(),
│ │ │ │ +            idle();
│ │ │ │ +        {connect, B} ->
│ │ │ │ +            B ! {busy, self()},
│ │ │ │ +            wait_for_onhook()
│ │ │ │      after
│ │ │ │          60000 ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            error()
│ │ │ │ +            disconnect(),
│ │ │ │ +            error()
│ │ │ │      end.

It is legal to use a receive...after expression with no branches:

receive
│ │ │ │  after
│ │ │ │      ExprT ->
│ │ │ │          BodyT
│ │ │ │  end

This construction does not consume any messages, only suspends execution in the │ │ │ │ -process for ExprT milliseconds. This can be used to implement simple timers.

Example:

timer() ->
│ │ │ │ -    spawn(m, timer, [self()]).
│ │ │ │ +process for ExprT milliseconds. This can be used to implement simple timers.

Example:

timer() ->
│ │ │ │ +    spawn(m, timer, [self()]).
│ │ │ │  
│ │ │ │ -timer(Pid) ->
│ │ │ │ +timer(Pid) ->
│ │ │ │      receive
│ │ │ │      after
│ │ │ │          5000 ->
│ │ │ │              Pid ! timeout
│ │ │ │      end.

For more information on timers in Erlang in general, see the │ │ │ │ Timers section of the │ │ │ │ Time and Time Correction in Erlang │ │ │ │ @@ -496,21 +496,21 @@ │ │ │ │ false │ │ │ │ 4> 0.0 =:= -0.0. │ │ │ │ false │ │ │ │ 5> 0.0 =:= +0.0. │ │ │ │ true │ │ │ │ 6> 1 > a. │ │ │ │ false │ │ │ │ -7> #{c => 3} > #{a => 1, b => 2}. │ │ │ │ +7> #{c => 3} > #{a => 1, b => 2}. │ │ │ │ false │ │ │ │ -8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ │ +8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ │ true │ │ │ │ -9> <<2:2>> < <<128>>. │ │ │ │ +9> <<2:2>> < <<128>>. │ │ │ │ true │ │ │ │ -10> <<3:2>> < <<128>>. │ │ │ │ +10> <<3:2>> < <<128>>. │ │ │ │ false

Note

Prior to OTP 27, the term equivalence operators considered 0.0 │ │ │ │ and -0.0 to be the same term.

This was changed in OTP 27 but legacy code may have expected them to be │ │ │ │ considered the same. To help users catch errors that may arise from an │ │ │ │ upgrade, the compiler raises a warning when 0.0 is pattern-matched or used │ │ │ │ in a term equivalence test.

If you need to match 0.0 specifically, the warning can be silenced by │ │ │ │ writing +0.0 instead, which produces the same term but makes the compiler │ │ │ │ interpret the match as being done on purpose.

│ │ │ │ @@ -536,15 +536,15 @@ │ │ │ │ 0 │ │ │ │ 8> 2#10 bor 2#01. │ │ │ │ 3 │ │ │ │ 9> a + 10. │ │ │ │ ** exception error: an error occurred when evaluating an arithmetic expression │ │ │ │ in operator +/2 │ │ │ │ called as a + 10 │ │ │ │ -10> 1 bsl (1 bsl 64). │ │ │ │ +10> 1 bsl (1 bsl 64). │ │ │ │ ** exception error: a system limit has been reached │ │ │ │ in operator bsl/2 │ │ │ │ called as 1 bsl 18446744073709551616

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Boolean Expressions │ │ │ │ @@ -563,136 +563,136 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Short-Circuit Expressions │ │ │ │

│ │ │ │
Expr1 orelse Expr2
│ │ │ │  Expr1 andalso Expr2

Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if:

  • Expr1 evaluates to false in an orelse expression.

or

  • Expr1 evaluates to true in an andalso expression.

Returns either the value of Expr1 (that is, true or false) or the value of │ │ │ │ -Expr2 (if Expr2 is evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ │ -never evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
│ │ │ │ -         (is_list(L) andalso length(L) == 1),

Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ │ -andalso and orelse are tail-recursive.

Example 3 (tail-recursive function):

all(Pred, [Hd|Tail]) ->
│ │ │ │ -    Pred(Hd) andalso all(Pred, Tail);
│ │ │ │ -all(_, []) ->
│ │ │ │ +Expr2 (if Expr2 is evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ │ +never evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
│ │ │ │ +         (is_list(L) andalso length(L) == 1),

Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ │ +andalso and orelse are tail-recursive.

Example 3 (tail-recursive function):

all(Pred, [Hd|Tail]) ->
│ │ │ │ +    Pred(Hd) andalso all(Pred, Tail);
│ │ │ │ +all(_, []) ->
│ │ │ │      true.

Change

Before Erlang/OTP R13A, Expr2 was required to evaluate to a Boolean value, │ │ │ │ and as consequence, andalso and orelse were not tail-recursive.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List Operations │ │ │ │

│ │ │ │
Expr1 ++ Expr2
│ │ │ │  Expr1 -- Expr2

The list concatenation operator ++ appends its second argument to its first │ │ │ │ and returns the resulting list.

The list subtraction operator -- produces a list that is a copy of the first │ │ │ │ argument. The procedure is as follows: for each element in the second argument, │ │ │ │ -the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3] ++ [4,5].
│ │ │ │ -[1,2,3,4,5]
│ │ │ │ -2> [1,2,3,2,1,2] -- [2,1,2].
│ │ │ │ -[3,1,2]

│ │ │ │ +the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3] ++ [4,5].
│ │ │ │ +[1,2,3,4,5]
│ │ │ │ +2> [1,2,3,2,1,2] -- [2,1,2].
│ │ │ │ +[3,1,2]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Map Expressions │ │ │ │

│ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating Maps │ │ │ │

│ │ │ │

Constructing a new map is done by letting an expression K be associated with │ │ │ │ -another expression V:

#{K => V}

New maps can include multiple associations at construction by listing every │ │ │ │ -association:

#{K1 => V1, ..., Kn => Vn}

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and │ │ │ │ +another expression V:

#{K => V}

New maps can include multiple associations at construction by listing every │ │ │ │ +association:

#{K1 => V1, ..., Kn => Vn}

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and │ │ │ │ then the resulting terms are used as key and value respectively.

Keys and values are separated by the => arrow and associations are separated │ │ │ │ -by a comma (,).

Examples:

M0 = #{},                 % empty map
│ │ │ │ -M1 = #{a => <<"hello">>}, % single association with literals
│ │ │ │ -M2 = #{1 => 2, b => b},   % multiple associations with literals
│ │ │ │ -M3 = #{k => {A,B}},       % single association with variables
│ │ │ │ -M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ │ -map terms.

If two matching keys are declared, the latter key takes precedence.

Example:

1> #{1 => a, 1 => b}.
│ │ │ │ -#{1 => b }
│ │ │ │ -2> #{1.0 => a, 1 => b}.
│ │ │ │ -#{1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated │ │ │ │ +by a comma (,).

Examples:

M0 = #{},                 % empty map
│ │ │ │ +M1 = #{a => <<"hello">>}, % single association with literals
│ │ │ │ +M2 = #{1 => 2, b => b},   % multiple associations with literals
│ │ │ │ +M3 = #{k => {A,B}},       % single association with variables
│ │ │ │ +M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ │ +map terms.

If two matching keys are declared, the latter key takes precedence.

Example:

1> #{1 => a, 1 => b}.
│ │ │ │ +#{1 => b }
│ │ │ │ +2> #{1.0 => a, 1 => b}.
│ │ │ │ +#{1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated │ │ │ │ values) are evaluated is not defined. The syntactic order of the key-value pairs │ │ │ │ in the construction is of no relevance, except in the recently mentioned case of │ │ │ │ two matching keys.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Maps │ │ │ │

│ │ │ │

Updating a map has a similar syntax as constructing it.

An expression defining the map to be updated is put in front of the expression │ │ │ │ -defining the keys to be updated and their respective values:

M#{K => V}

Here M is a term of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association is │ │ │ │ +defining the keys to be updated and their respective values:

M#{K => V}

Here M is a term of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association is │ │ │ │ created from key K to value V.

If key K matches an existing key in map M, its associated value is replaced │ │ │ │ by the new value V. In both cases, the evaluated map expression returns a new │ │ │ │ -map.

If M is not of type map, an exception of type badmap is raised.

To only update an existing value, the following syntax is used:

M#{K := V}

Here M is a term of type map, V is an expression and K is an expression │ │ │ │ +map.

If M is not of type map, an exception of type badmap is raised.

To only update an existing value, the following syntax is used:

M#{K := V}

Here M is a term of type map, V is an expression and K is an expression │ │ │ │ that evaluates to an existing key in M.

If key K does not match any existing keys in map M, an exception of type │ │ │ │ badkey is raised at runtime. If a matching key K is present in map M, │ │ │ │ its associated value is replaced by the new value V, and the evaluated map │ │ │ │ -expression returns a new map.

If M is not of type map, an exception of type badmap is raised.

Examples:

M0 = #{},
│ │ │ │ -M1 = M0#{a => 0},
│ │ │ │ -M2 = M1#{a => 1, b => 2},
│ │ │ │ -M3 = M2#{"function" => fun() -> f() end},
│ │ │ │ -M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

Here M0 is any map. It follows that M1 through M4 are maps as well.

More examples:

1> M = #{1 => a}.
│ │ │ │ -#{1 => a }
│ │ │ │ -2> M#{1.0 => b}.
│ │ │ │ -#{1 => a, 1.0 => b}.
│ │ │ │ -3> M#{1 := b}.
│ │ │ │ -#{1 => b}
│ │ │ │ -4> M#{1.0 := b}.
│ │ │ │ +expression returns a new map.

If M is not of type map, an exception of type badmap is raised.

Examples:

M0 = #{},
│ │ │ │ +M1 = M0#{a => 0},
│ │ │ │ +M2 = M1#{a => 1, b => 2},
│ │ │ │ +M3 = M2#{"function" => fun() -> f() end},
│ │ │ │ +M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

Here M0 is any map. It follows that M1 through M4 are maps as well.

More examples:

1> M = #{1 => a}.
│ │ │ │ +#{1 => a }
│ │ │ │ +2> M#{1.0 => b}.
│ │ │ │ +#{1 => a, 1.0 => b}.
│ │ │ │ +3> M#{1 := b}.
│ │ │ │ +#{1 => b}
│ │ │ │ +4> M#{1.0 := b}.
│ │ │ │  ** exception error: bad argument

As in construction, the order in which the key and value expressions are │ │ │ │ evaluated is not defined. The syntactic order of the key-value pairs in the │ │ │ │ update is of no relevance, except in the case where two keys match. In that │ │ │ │ case, the latter value is used.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps in Patterns │ │ │ │

│ │ │ │ -

Matching of key-value associations from maps is done as follows:

#{K := V} = M

Here M is any map. The key K must be a │ │ │ │ +

Matching of key-value associations from maps is done as follows:

#{K := V} = M

Here M is any map. The key K must be a │ │ │ │ guard expression, with all variables already │ │ │ │ bound. V can be any pattern with either bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with │ │ │ │ the key K, which must exist in the map M. If the variable V is bound, it │ │ │ │ must match the value associated with K in M.

Change

Before Erlang/OTP 23, the expression defining the key K was restricted to be │ │ │ │ -either a single variable or a literal.

Example:

1> M = #{"tuple" => {1,2}}.
│ │ │ │ -#{"tuple" => {1,2}}
│ │ │ │ -2> #{"tuple" := {1,B}} = M.
│ │ │ │ -#{"tuple" => {1,2}}
│ │ │ │ +either a single variable or a literal.

Example:

1> M = #{"tuple" => {1,2}}.
│ │ │ │ +#{"tuple" => {1,2}}
│ │ │ │ +2> #{"tuple" := {1,B}} = M.
│ │ │ │ +#{"tuple" => {1,2}}
│ │ │ │  3> B.
│ │ │ │ -2.

This binds variable B to integer 2.

Similarly, multiple values from the map can be matched:

#{K1 := V1, ..., Kn := Vn} = M

Here keys K1 through Kn are any expressions with literals or bound │ │ │ │ +2.

This binds variable B to integer 2.

Similarly, multiple values from the map can be matched:

#{K1 := V1, ..., Kn := Vn} = M

Here keys K1 through Kn are any expressions with literals or bound │ │ │ │ variables. If all key expressions evaluate successfully and all keys │ │ │ │ exist in map M, all variables in V1 .. Vn is matched to the │ │ │ │ associated values of their respective keys.

If the matching conditions are not met the match fails.

Note that when matching a map, only the := operator (not the =>) is allowed │ │ │ │ as a delimiter for the associations.

The order in which keys are declared in matching has no relevance.

Duplicate keys are allowed in matching and match each pattern associated to the │ │ │ │ -keys:

#{K := V1, K := V2} = M

The empty map literal (#{}) matches any map when used as a pattern:

#{} = Expr

This expression matches if the expression Expr is of type map, otherwise it │ │ │ │ -fails with an exception badmatch.

Here the key to be retrieved is constructed from an expression:

#{{tag,length(List)} := V} = Map

List must be an already bound variable.

Matching Syntax

Matching of literals as keys are allowed in function heads:

%% only start if not_started
│ │ │ │ -handle_call(start, From, #{state := not_started} = S) ->
│ │ │ │ +keys:

#{K := V1, K := V2} = M

The empty map literal (#{}) matches any map when used as a pattern:

#{} = Expr

This expression matches if the expression Expr is of type map, otherwise it │ │ │ │ +fails with an exception badmatch.

Here the key to be retrieved is constructed from an expression:

#{{tag,length(List)} := V} = Map

List must be an already bound variable.

Matching Syntax

Matching of literals as keys are allowed in function heads:

%% only start if not_started
│ │ │ │ +handle_call(start, From, #{state := not_started} = S) ->
│ │ │ │  ...
│ │ │ │ -    {reply, ok, S#{state := start}};
│ │ │ │ +    {reply, ok, S#{state := start}};
│ │ │ │  
│ │ │ │  %% only change if started
│ │ │ │ -handle_call(change, From, #{state := start} = S) ->
│ │ │ │ +handle_call(change, From, #{state := start} = S) ->
│ │ │ │  ...
│ │ │ │ -    {reply, ok, S#{state := changed}};

│ │ │ │ + {reply, ok, S#{state := changed}};

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps in Guards │ │ │ │

│ │ │ │

Maps are allowed in guards as long as all subexpressions are valid guard │ │ │ │ expressions.

The following guard BIFs handle maps:

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Bit Syntax Expressions │ │ │ │

│ │ │ │

The bit syntax operates on bit strings. A bit string is a sequence of bits │ │ │ │ -ordered from the most significant bit to the least significant bit.

<<>>  % The empty bit string, zero length
│ │ │ │ -<<E1>>
│ │ │ │ -<<E1,...,En>>

Each element Ei specifies a segment of the bit string. The segments are │ │ │ │ +ordered from the most significant bit to the least significant bit.

<<>>  % The empty bit string, zero length
│ │ │ │ +<<E1>>
│ │ │ │ +<<E1,...,En>>

Each element Ei specifies a segment of the bit string. The segments are │ │ │ │ ordered left to right from the most significant bit to the least significant bit │ │ │ │ of the bit string.

Each segment specification Ei is a value, whose default type is integer, │ │ │ │ followed by an optional size expression and an optional type specifier list.

Ei = Value |
│ │ │ │       Value:Size |
│ │ │ │       Value/TypeSpecifierList |
│ │ │ │       Value:Size/TypeSpecifierList

When used in a bit string construction, Value is an expression that is to │ │ │ │ evaluate to an integer, float, or bit string. If the expression is not a single │ │ │ │ @@ -703,34 +703,34 @@ │ │ │ │ guard expression that evaluates to an │ │ │ │ integer. All variables in the guard expression must be already bound.

Change

Before Erlang/OTP 23, Size was restricted to be an integer or a variable │ │ │ │ bound to an integer.

The value of Size specifies the size of the segment in units (see below). The │ │ │ │ default value depends on the type (see below):

  • For integer it is 8.
  • For float it is 64.
  • For binary and bitstring it is the whole binary or bit string.

In matching, the default value for a binary or bit string segment is only valid │ │ │ │ for the last element. All other bit string or binary elements in the matching │ │ │ │ must have a size specification.

Binaries

A bit string with a length that is a multiple of 8 bits is known as a binary, │ │ │ │ which is the most common and useful type of bit string.

A binary has a canonical representation in memory. Here follows a sequence of │ │ │ │ -bytes where each byte's value is its sequence number:

<<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

Bit strings are a later generalization of binaries, so many texts and much │ │ │ │ -information about binaries apply just as well for bit strings.

Example:

1> <<A/binary, B/binary>> = <<"abcde">>.
│ │ │ │ +bytes where each byte's value is its sequence number:

<<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

Bit strings are a later generalization of binaries, so many texts and much │ │ │ │ +information about binaries apply just as well for bit strings.

Example:

1> <<A/binary, B/binary>> = <<"abcde">>.
│ │ │ │  * 1:3: a binary field without size is only allowed at the end of a binary pattern
│ │ │ │ -2> <<A:3/binary, B/binary>> = <<"abcde">>.
│ │ │ │ -<<"abcde">>
│ │ │ │ +2> <<A:3/binary, B/binary>> = <<"abcde">>.
│ │ │ │ +<<"abcde">>
│ │ │ │  3> A.
│ │ │ │ -<<"abc">>
│ │ │ │ +<<"abc">>
│ │ │ │  4> B.
│ │ │ │ -<<"de">>

For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ │ +<<"de">>

For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ │ of the segment is implicitly determined by the type and value itself.

TypeSpecifierList is a list of type specifiers, in any order, separated by │ │ │ │ hyphens (-). Default values are used for any omitted type specifiers.

  • Type= integer | float | binary | bytes | bitstring | bits | │ │ │ │ utf8 | utf16 | utf32 - The default is integer. bytes is a │ │ │ │ shorthand for binary and bits is a shorthand for bitstring. See below │ │ │ │ for more information about the utf types.

  • Signedness= signed | unsigned - Only matters for matching and when │ │ │ │ the type is integer. The default is unsigned.

  • Endianness= big | little | native - Specifies byte level (octet │ │ │ │ level) endianness (byte order). Native-endian means that the endianness is │ │ │ │ resolved at load time to be either big-endian or little-endian, depending on │ │ │ │ what is native for the CPU that the Erlang machine is run on. Endianness only │ │ │ │ matters when the Type is either integer, utf16, utf32, or float. The │ │ │ │ -default is big.

    <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
  • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ │ +default is big.

    <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
  • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ │ Defaults to 1 for integer, float, and bitstring, and to 8 for binary. │ │ │ │ For types bitstring, bits, and bytes, it is not allowed to specify a │ │ │ │ unit value different from the default value. No unit specifier must be given │ │ │ │ for the types utf8, utf16, and utf32.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -755,41 +755,41 @@ │ │ │ │ │ │ │ │ Binary segments │ │ │ │

│ │ │ │

In this section, the phrase "binary segment" refers to any one of the segment │ │ │ │ types binary, bitstring, bytes, and bits.

See also the paragraphs about Binaries.

When constructing binaries and no size is specified for a binary segment, the │ │ │ │ entire binary value is interpolated into the binary being constructed. However, │ │ │ │ the size in bits of the binary being interpolated must be evenly divisible by │ │ │ │ -the unit value for the segment; otherwise an exception is raised.

For example, the following examples all succeed:

1> <<(<<"abc">>)/bitstring>>.
│ │ │ │ -<<"abc">>
│ │ │ │ -2> <<(<<"abc">>)/binary-unit:1>>.
│ │ │ │ -<<"abc">>
│ │ │ │ -3> <<(<<"abc">>)/binary>>.
│ │ │ │ -<<"abc">>

The first two examples have a unit value of 1 for the segment, while the third │ │ │ │ +the unit value for the segment; otherwise an exception is raised.

For example, the following examples all succeed:

1> <<(<<"abc">>)/bitstring>>.
│ │ │ │ +<<"abc">>
│ │ │ │ +2> <<(<<"abc">>)/binary-unit:1>>.
│ │ │ │ +<<"abc">>
│ │ │ │ +3> <<(<<"abc">>)/binary>>.
│ │ │ │ +<<"abc">>

The first two examples have a unit value of 1 for the segment, while the third │ │ │ │ segment has a unit value of 8.

Attempting to interpolate a bit string of size 1 into a binary segment with unit │ │ │ │ -8 (the default unit for binary) fails as shown in this example:

1> <<(<<1:1>>)/binary>>.
│ │ │ │ -** exception error: bad argument

For the construction to succeed, the unit value of the segment must be 1:

2> <<(<<1:1>>)/bitstring>>.
│ │ │ │ -<<1:1>>
│ │ │ │ -3> <<(<<1:1>>)/binary-unit:1>>.
│ │ │ │ -<<1:1>>

Similarly, when matching a binary segment with no size specified, the match │ │ │ │ +8 (the default unit for binary) fails as shown in this example:

1> <<(<<1:1>>)/binary>>.
│ │ │ │ +** exception error: bad argument

For the construction to succeed, the unit value of the segment must be 1:

2> <<(<<1:1>>)/bitstring>>.
│ │ │ │ +<<1:1>>
│ │ │ │ +3> <<(<<1:1>>)/binary-unit:1>>.
│ │ │ │ +<<1:1>>

Similarly, when matching a binary segment with no size specified, the match │ │ │ │ succeeds if and only if the size in bits of the rest of the binary is evenly │ │ │ │ -divisible by the unit value:

1> <<_/binary-unit:16>> = <<"">>.
│ │ │ │ -<<>>
│ │ │ │ -2> <<_/binary-unit:16>> = <<"a">>.
│ │ │ │ +divisible by the unit value:

1> <<_/binary-unit:16>> = <<"">>.
│ │ │ │ +<<>>
│ │ │ │ +2> <<_/binary-unit:16>> = <<"a">>.
│ │ │ │  ** exception error: no match of right hand side value <<"a">>
│ │ │ │ -3> <<_/binary-unit:16>> = <<"ab">>.
│ │ │ │ -<<"ab">>
│ │ │ │ -4> <<_/binary-unit:16>> = <<"abc">>.
│ │ │ │ +3> <<_/binary-unit:16>> = <<"ab">>.
│ │ │ │ +<<"ab">>
│ │ │ │ +4> <<_/binary-unit:16>> = <<"abc">>.
│ │ │ │  ** exception error: no match of right hand side value <<"abc">>
│ │ │ │ -5> <<_/binary-unit:16>> = <<"abcd">>.
│ │ │ │ -<<"abcd">>

When a size is explicitly specified for a binary segment, the segment size in │ │ │ │ +5> <<_/binary-unit:16>> = <<"abcd">>. │ │ │ │ +<<"abcd">>

When a size is explicitly specified for a binary segment, the segment size in │ │ │ │ bits is the value of Size multiplied by the default or explicit unit value.

When constructing binaries, the size of the binary being interpolated into the │ │ │ │ -constructed binary must be at least as large as the size of the binary segment.

Examples:

1> <<(<<"abc">>):2/binary>>.
│ │ │ │ -<<"ab">>
│ │ │ │ -2> <<(<<"a">>):2/binary>>.
│ │ │ │ +constructed binary must be at least as large as the size of the binary segment.

Examples:

1> <<(<<"abc">>):2/binary>>.
│ │ │ │ +<<"ab">>
│ │ │ │ +2> <<(<<"a">>):2/binary>>.
│ │ │ │  ** exception error: construction of binary failed
│ │ │ │          *** segment 1 of type 'binary': the value <<"a">> is shorter than the size of the segment

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Unicode segments │ │ │ │

│ │ │ │ @@ -805,78 +805,78 @@ │ │ │ │ range 0 through 16#D7FF or 16#E000 through 16#10FFFF. The match fails if the │ │ │ │ returned value falls outside those ranges.

A segment of type utf8 matches 1-4 bytes in the bit string, if the bit string │ │ │ │ at the match position contains a valid UTF-8 sequence. (See RFC-3629 or the │ │ │ │ Unicode standard.)

A segment of type utf16 can match 2 or 4 bytes in the bit string. The match │ │ │ │ fails if the bit string at the match position does not contain a legal UTF-16 │ │ │ │ encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type utf32 can match 4 bytes in the bit string in the same way as │ │ │ │ an integer segment matches 32 bits. The match fails if the resulting integer │ │ │ │ -is outside the legal ranges previously mentioned.

Examples:

1> Bin1 = <<1,17,42>>.
│ │ │ │ -<<1,17,42>>
│ │ │ │ -2> Bin2 = <<"abc">>.
│ │ │ │ -<<97,98,99>>
│ │ │ │ +is outside the legal ranges previously mentioned.

Examples:

1> Bin1 = <<1,17,42>>.
│ │ │ │ +<<1,17,42>>
│ │ │ │ +2> Bin2 = <<"abc">>.
│ │ │ │ +<<97,98,99>>
│ │ │ │  
│ │ │ │ -3> Bin3 = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ -4> <<A,B,C:16>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +3> Bin3 = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │ +4> <<A,B,C:16>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  5> C.
│ │ │ │  42
│ │ │ │ -6> <<D:16,E,F>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +6> <<D:16,E,F>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  7> D.
│ │ │ │  273
│ │ │ │  8> F.
│ │ │ │  42
│ │ │ │ -9> <<G,H/binary>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +9> <<G,H/binary>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  10> H.
│ │ │ │ -<<17,0,42>>
│ │ │ │ -11> <<G,J/bitstring>> = <<1,17,42:12>>.
│ │ │ │ -<<1,17,2,10:4>>
│ │ │ │ +<<17,0,42>>
│ │ │ │ +11> <<G,J/bitstring>> = <<1,17,42:12>>.
│ │ │ │ +<<1,17,2,10:4>>
│ │ │ │  12> J.
│ │ │ │ -<<17,2,10:4>>
│ │ │ │ +<<17,2,10:4>>
│ │ │ │  
│ │ │ │ -13> <<1024/utf8>>.
│ │ │ │ -<<208,128>>
│ │ │ │ +13> <<1024/utf8>>.
│ │ │ │ +<<208,128>>
│ │ │ │  
│ │ │ │ -14> <<1:1,0:7>>.
│ │ │ │ -<<128>>
│ │ │ │ -15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>.
│ │ │ │ -<<35,1:4>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ │ +14> <<1:1,0:7>>. │ │ │ │ +<<128>> │ │ │ │ +15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>. │ │ │ │ +<<35,1:4>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ │ error. The correct way is to write a space after =: "B = <<1>>.

More examples are provided in Programming Examples.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fun Expressions │ │ │ │

│ │ │ │
fun
│ │ │ │ -    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
│ │ │ │ +    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
│ │ │ │                Body1;
│ │ │ │      ...;
│ │ │ │ -    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
│ │ │ │ +    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
│ │ │ │                BodyK
│ │ │ │  end

A fun expression begins with the keyword fun and ends with the keyword end. │ │ │ │ Between them is to be a function declaration, similar to a │ │ │ │ regular function declaration, │ │ │ │ except that the function name is optional and is to be a variable, if any.

Variables in a fun head shadow the function name and both shadow variables in │ │ │ │ the function clause surrounding the fun expression. Variables bound in a fun │ │ │ │ -body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
│ │ │ │ +body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -2> Fun1(2).
│ │ │ │ +2> Fun1(2).
│ │ │ │  3
│ │ │ │ -3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
│ │ │ │ +3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -4> Fun2(7).
│ │ │ │ +4> Fun2(7).
│ │ │ │  gt
│ │ │ │ -5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
│ │ │ │ +5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -6> Fun3(4).
│ │ │ │ +6> Fun3(4).
│ │ │ │  24

The following fun expressions are also allowed:

fun Name/Arity
│ │ │ │  fun Module:Name/Arity

In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must │ │ │ │ -specify an existing local function. The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ │ +specify an existing local function. The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ │ integer. Module, Name, and Arity can also be variables. A fun defined in │ │ │ │ this way refers to the function Name with arity Arity in the latest │ │ │ │ version of module Module. A fun defined in this way is not dependent on the │ │ │ │ code for the module in which it is defined.

Change

Before Erlang/OTP R15, Module, Name, and Arity were not allowed to be │ │ │ │ variables.

More examples are provided in Programming Examples.

│ │ │ │ │ │ │ │ │ │ │ │ @@ -886,35 +886,35 @@ │ │ │ │
catch Expr

Returns the value of Expr unless an exception is raised during the evaluation. In │ │ │ │ that case, the exception is caught. The return value depends on the class of the │ │ │ │ exception:

Reason depends on the type of error that occurred, and Stack is the stack of │ │ │ │ recent function calls, see Exit Reasons.

Examples:

1> catch 1+2.
│ │ │ │  3
│ │ │ │  2> catch 1+a.
│ │ │ │ -{'EXIT',{badarith,[...]}}

The BIF throw(Any) can be used for non-local return from a │ │ │ │ -function. It must be evaluated within a catch, which returns the value Any.

Example:

3> catch throw(hello).
│ │ │ │ +{'EXIT',{badarith,[...]}}

The BIF throw(Any) can be used for non-local return from a │ │ │ │ +function. It must be evaluated within a catch, which returns the value Any.

Example:

3> catch throw(hello).
│ │ │ │  hello

If throw/1 is not evaluated within a catch, a nocatch run-time │ │ │ │ error occurs.

Change

Before Erlang/OTP 24, the catch operator had the lowest precedence, making │ │ │ │ -it necessary to add parentheses when combining it with the match operator:

1> A = (catch 42).
│ │ │ │ +it necessary to add parentheses when combining it with the match operator:

1> A = (catch 42).
│ │ │ │  42
│ │ │ │  2> A.
│ │ │ │  42

Starting from Erlang/OTP 24, the parentheses can be omitted:

1> A = catch 42.
│ │ │ │  42
│ │ │ │  2> A.
│ │ │ │  42

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Try │ │ │ │

│ │ │ │
try Exprs
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

This is an enhancement of catch. It gives the │ │ │ │ possibility to:

  • Distinguish between different exception classes.
  • Choose to handle only the desired ones.
  • Passing the others on to an enclosing try or catch, or to default error │ │ │ │ handling.

Notice that although the keyword catch is used in the try expression, there │ │ │ │ is not a catch expression within the try expression.

It returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) │ │ │ │ unless an exception occurs during the evaluation. In that case the exception is │ │ │ │ caught and the patterns ExceptionPattern with the right exception class │ │ │ │ @@ -924,47 +924,47 @@ │ │ │ │ stack trace is bound to the variable when the corresponding ExceptionPattern │ │ │ │ matches.

If an exception occurs during evaluation of Exprs but there is no matching │ │ │ │ ExceptionPattern of the right Class with a true guard sequence, the │ │ │ │ exception is passed on as if Exprs had not been enclosed in a try │ │ │ │ expression.

If an exception occurs during evaluation of ExceptionBody, it is not caught.

It is allowed to omit Class and Stacktrace. An omitted Class is shorthand │ │ │ │ for throw:

try Exprs
│ │ │ │  catch
│ │ │ │ -    ExceptionPattern1 [when ExceptionGuardSeq1] ->
│ │ │ │ +    ExceptionPattern1 [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │ -    ExceptionPatternN [when ExceptionGuardSeqN] ->
│ │ │ │ +    ExceptionPatternN [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

The try expression can have an of section:

try Exprs of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │      ...;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

If the evaluation of Exprs succeeds without an exception, the patterns │ │ │ │ Pattern are sequentially matched against the result in the same way as for a │ │ │ │ case expression, except that if the matching fails, a │ │ │ │ try_clause run-time error occurs instead of a case_clause.

Only exceptions occurring during the evaluation of Exprs can be caught by the │ │ │ │ catch section. Exceptions occurring in a Body or due to a failed match are │ │ │ │ not caught.

The try expression can also be augmented with an after section, intended to │ │ │ │ be used for cleanup with side effects:

try Exprs of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │      ...;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  after
│ │ │ │      AfterBody
│ │ │ │  end

AfterBody is evaluated after either Body or ExceptionBody, no matter which │ │ │ │ one. The evaluated value of AfterBody is lost; the return value of the try │ │ │ │ expression is the same with an after section as without.

Even if an exception occurs during evaluation of Body or ExceptionBody, │ │ │ │ AfterBody is evaluated. In this case the exception is passed on after │ │ │ │ @@ -987,40 +987,40 @@ │ │ │ │ ExpressionBody │ │ │ │ after │ │ │ │ AfterBody │ │ │ │ end │ │ │ │ │ │ │ │ try Exprs after AfterBody end

Next is an example of using after. This closes the file, even in the event of │ │ │ │ exceptions in file:read/2 or in binary_to_term/1. The │ │ │ │ -exceptions are the same as without the try...after...end expression:

termize_file(Name) ->
│ │ │ │ -    {ok,F} = file:open(Name, [read,binary]),
│ │ │ │ +exceptions are the same as without the try...after...end expression:

termize_file(Name) ->
│ │ │ │ +    {ok,F} = file:open(Name, [read,binary]),
│ │ │ │      try
│ │ │ │ -        {ok,Bin} = file:read(F, 1024*1024),
│ │ │ │ -        binary_to_term(Bin)
│ │ │ │ +        {ok,Bin} = file:read(F, 1024*1024),
│ │ │ │ +        binary_to_term(Bin)
│ │ │ │      after
│ │ │ │ -        file:close(F)
│ │ │ │ +        file:close(F)
│ │ │ │      end.

Next is an example of using try to emulate catch Expr:

try Expr
│ │ │ │  catch
│ │ │ │      throw:Term -> Term;
│ │ │ │ -    exit:Reason -> {'EXIT',Reason};
│ │ │ │ -    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
│ │ │ │ +    exit:Reason -> {'EXIT',Reason};
│ │ │ │ +    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
│ │ │ │  end

Variables bound in the various parts of these expressions have different scopes. │ │ │ │ Variables bound just after the try keyword are:

  • bound in the of section
  • unsafe in both the catch and after sections, as well as after the whole │ │ │ │ construct

Variables bound in of section are:

  • unbound in the catch section
  • unsafe in both the after section, as well as after the whole construct

Variables bound in the catch section are unsafe in the after section, as │ │ │ │ well as after the whole construct.

Variables bound in the after section are unsafe after the whole construct.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Parenthesized Expressions │ │ │ │

│ │ │ │ -
(Expr)

Parenthesized expressions are useful to override │ │ │ │ +

(Expr)

Parenthesized expressions are useful to override │ │ │ │ operator precedences, for example, in arithmetic │ │ │ │ expressions:

1> 1 + 2 * 3.
│ │ │ │  7
│ │ │ │ -2> (1 + 2) * 3.
│ │ │ │ +2> (1 + 2) * 3.
│ │ │ │  9

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Block Expressions │ │ │ │

│ │ │ │
begin
│ │ │ │ @@ -1032,71 +1032,71 @@
│ │ │ │    
│ │ │ │      
│ │ │ │    
│ │ │ │    Comprehensions
│ │ │ │  

│ │ │ │

Comprehensions provide a succinct notation for iterating over one or more terms │ │ │ │ and constructing a new term. Comprehensions come in three different flavors, │ │ │ │ -depending on the type of term they build.

List comprehensions construct lists. They have the following syntax:

[Expr || Qualifier1, . . ., QualifierN]

Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ │ +depending on the type of term they build.

List comprehensions construct lists. They have the following syntax:

[Expr || Qualifier1, . . ., QualifierN]

Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ │ generator or a filter.

Bit string comprehensions construct bit strings or binaries. They have the │ │ │ │ -following syntax:

<< BitStringExpr || Qualifier1, . . ., QualifierN >>

BitStringExpr is an expression that evaluates to a bit string. If │ │ │ │ +following syntax:

<< BitStringExpr || Qualifier1, . . ., QualifierN >>

BitStringExpr is an expression that evaluates to a bit string. If │ │ │ │ BitStringExpr is a function call, it must be enclosed in parentheses. Each │ │ │ │ -Qualifier is either a generator or a filter.

Map comprehensions construct maps. They have the following syntax:

#{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ │ +Qualifier is either a generator or a filter.

Map comprehensions construct maps. They have the following syntax:

#{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ │ is either a generator or a filter.

Change

Map comprehensions and map generators were introduced in Erlang/OTP 26.

There are three kinds of generators.

A list generator has the following syntax:

Pattern <- ListExpr

where ListExpr is an expression that evaluates to a list of terms.

A bit string generator has the following syntax:

BitstringPattern <= BitStringExpr

where BitStringExpr is an expression that evaluates to a bit string.

A map generator has the following syntax:

KeyPattern := ValuePattern <- MapExpression

where MapExpr is an expression that evaluates to a map, or a map iterator │ │ │ │ obtained by calling maps:iterator/1 or maps:iterator/2.

A filter is an expression that evaluates to true or false.

The variables in the generator patterns shadow previously bound variables, │ │ │ │ including variables bound in a previous generator pattern.

Variables bound in a generator expression are not visible outside the │ │ │ │ -expression:

1> [{E,L} || E <- L=[1,2,3]].
│ │ │ │ +expression:

1> [{E,L} || E <- L=[1,2,3]].
│ │ │ │  * 1:5: variable 'L' is unbound

A list comprehension returns a list, where the list elements are the result │ │ │ │ of evaluating Expr for each combination of generator elements for which all │ │ │ │ filters are true.

A bit string comprehension returns a bit string, which is created by │ │ │ │ concatenating the results of evaluating BitStringExpr for each combination of │ │ │ │ bit string generator elements for which all filters are true.

A map comprehension returns a map, where the map elements are the result of │ │ │ │ evaluating KeyExpr and ValueExpr for each combination of generator elements │ │ │ │ for which all filters are true. If the key expressions are not unique, the last │ │ │ │ -occurrence is stored in the map.

Examples:

Multiplying each element in a list by two:

1> [X*2 || X <- [1,2,3]].
│ │ │ │ -[2,4,6]

Multiplying each byte in a binary by two, returning a list:

1> [X*2 || <<X>> <= <<1,2,3>>].
│ │ │ │ -[2,4,6]

Multiplying each byte in a binary by two:

1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
│ │ │ │ -<<2,4,6>>

Multiplying each element in a list by two, returning a binary:

1> << <<(X*2)>> || X <- [1,2,3] >>.
│ │ │ │ -<<2,4,6>>

Creating a mapping from an integer to its square:

1> #{X => X*X || X <- [1,2,3]}.
│ │ │ │ -#{1 => 1,2 => 4,3 => 9}

Multiplying the value of each element in a map by two:

1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
│ │ │ │ -#{a => 2,b => 4,c => 6}

Filtering a list, keeping odd numbers:

1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
│ │ │ │ -[1,3,5]

Filtering a list, keeping only elements that match:

1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
│ │ │ │ -[{a,b},{1,2}]

Combining elements from two list generators:

1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
│ │ │ │ -[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

More examples are provided in │ │ │ │ +occurrence is stored in the map.

Examples:

Multiplying each element in a list by two:

1> [X*2 || X <- [1,2,3]].
│ │ │ │ +[2,4,6]

Multiplying each byte in a binary by two, returning a list:

1> [X*2 || <<X>> <= <<1,2,3>>].
│ │ │ │ +[2,4,6]

Multiplying each byte in a binary by two:

1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
│ │ │ │ +<<2,4,6>>

Multiplying each element in a list by two, returning a binary:

1> << <<(X*2)>> || X <- [1,2,3] >>.
│ │ │ │ +<<2,4,6>>

Creating a mapping from an integer to its square:

1> #{X => X*X || X <- [1,2,3]}.
│ │ │ │ +#{1 => 1,2 => 4,3 => 9}

Multiplying the value of each element in a map by two:

1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
│ │ │ │ +#{a => 2,b => 4,c => 6}

Filtering a list, keeping odd numbers:

1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
│ │ │ │ +[1,3,5]

Filtering a list, keeping only elements that match:

1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
│ │ │ │ +[{a,b},{1,2}]

Combining elements from two list generators:

1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
│ │ │ │ +[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

More examples are provided in │ │ │ │ Programming Examples.

When there are no generators, a comprehension returns either a term constructed │ │ │ │ from a single element (the result of evaluating Expr) if all filters are true, │ │ │ │ or a term constructed from no elements (that is, [] for list comprehension, │ │ │ │ -<<>> for a bit string comprehension, and #{} for a map comprehension).

Example:

1> [2 || is_integer(2)].
│ │ │ │ -[2]
│ │ │ │ -2> [x || is_integer(x)].
│ │ │ │ -[]

What happens when the filter expression does not evaluate to a boolean value │ │ │ │ +<<>> for a bit string comprehension, and #{} for a map comprehension).

Example:

1> [2 || is_integer(2)].
│ │ │ │ +[2]
│ │ │ │ +2> [x || is_integer(x)].
│ │ │ │ +[]

What happens when the filter expression does not evaluate to a boolean value │ │ │ │ depends on the expression:

  • If the expression is a guard expression, │ │ │ │ failure to evaluate or evaluating to a non-boolean value is equivalent to │ │ │ │ evaluating to false.
  • If the expression is not a guard expression and evaluates to a non-Boolean │ │ │ │ value Val, an exception {bad_filter, Val} is triggered at runtime. If the │ │ │ │ evaluation of the expression raises an exception, it is not caught by the │ │ │ │ -comprehension.

Examples (using a guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ -[1,2,a,b,c,3,4]
│ │ │ │ -2> [E || E <- List, E rem 2].
│ │ │ │ -[]
│ │ │ │ -3> [E || E <- List, E rem 2 =:= 0].
│ │ │ │ -[2,4]

Examples (using a non-guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ -[1,2,a,b,c,3,4]
│ │ │ │ -2> FaultyIsEven = fun(E) -> E rem 2 end.
│ │ │ │ +comprehension.

Examples (using a guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ +[1,2,a,b,c,3,4]
│ │ │ │ +2> [E || E <- List, E rem 2].
│ │ │ │ +[]
│ │ │ │ +3> [E || E <- List, E rem 2 =:= 0].
│ │ │ │ +[2,4]

Examples (using a non-guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ +[1,2,a,b,c,3,4]
│ │ │ │ +2> FaultyIsEven = fun(E) -> E rem 2 end.
│ │ │ │  #Fun<erl_eval.42.17316486>
│ │ │ │ -3> [E || E <- List, FaultyIsEven(E)].
│ │ │ │ +3> [E || E <- List, FaultyIsEven(E)].
│ │ │ │  ** exception error: bad filter 1
│ │ │ │ -4> IsEven = fun(E) -> E rem 2 =:= 0 end.
│ │ │ │ +4> IsEven = fun(E) -> E rem 2 =:= 0 end.
│ │ │ │  #Fun<erl_eval.42.17316486>
│ │ │ │ -5> [E || E <- List, IsEven(E)].
│ │ │ │ +5> [E || E <- List, IsEven(E)].
│ │ │ │  ** exception error: an error occurred when evaluating an arithmetic expression
│ │ │ │       in operator  rem/2
│ │ │ │          called as a rem 2
│ │ │ │ -6> [E || E <- List, is_integer(E), IsEven(E)].
│ │ │ │ -[2,4]

│ │ │ │ +6> [E || E <- List, is_integer(E), IsEven(E)]. │ │ │ │ +[2,4]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Guard Sequences │ │ │ │

│ │ │ │

A guard sequence is a sequence of guards, separated by semicolon (;). The │ │ │ │ guard sequence is true if at least one of the guards is true. (The remaining │ │ │ ├── OEBPS/example.xhtml │ │ │ │ @@ -36,14 +36,14 @@ │ │ │ │ │ │ │ │ int bar(int y) { │ │ │ │ return y*2; │ │ │ │ }

The functions are deliberately kept as simple as possible, for readability │ │ │ │ reasons.

From an Erlang perspective, it is preferable to be able to call foo and bar │ │ │ │ without having to bother about that they are C functions:

% Erlang code
│ │ │ │  ...
│ │ │ │ -Res = complex:foo(X),
│ │ │ │ +Res = complex:foo(X),
│ │ │ │  ...

Here, the communication with C is hidden in the implementation of complex.erl. │ │ │ │ In the following sections, it is shown how this module can be implemented using │ │ │ │ the different interoperability mechanisms.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/events.xhtml │ │ │ │ @@ -40,43 +40,43 @@ │ │ │ │ event handler.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │

│ │ │ │

The callback module for the event handler writing error messages to the terminal │ │ │ │ -can look as follows:

-module(terminal_logger).
│ │ │ │ --behaviour(gen_event).
│ │ │ │ +can look as follows:

-module(terminal_logger).
│ │ │ │ +-behaviour(gen_event).
│ │ │ │  
│ │ │ │ --export([init/1, handle_event/2, terminate/2]).
│ │ │ │ +-export([init/1, handle_event/2, terminate/2]).
│ │ │ │  
│ │ │ │ -init(_Args) ->
│ │ │ │ -    {ok, []}.
│ │ │ │ +init(_Args) ->
│ │ │ │ +    {ok, []}.
│ │ │ │  
│ │ │ │ -handle_event(ErrorMsg, State) ->
│ │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, State}.
│ │ │ │ +handle_event(ErrorMsg, State) ->
│ │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, State}.
│ │ │ │  
│ │ │ │ -terminate(_Args, _State) ->
│ │ │ │ +terminate(_Args, _State) ->
│ │ │ │      ok.

The callback module for the event handler writing error messages to a file can │ │ │ │ -look as follows:

-module(file_logger).
│ │ │ │ --behaviour(gen_event).
│ │ │ │ +look as follows:

-module(file_logger).
│ │ │ │ +-behaviour(gen_event).
│ │ │ │  
│ │ │ │ --export([init/1, handle_event/2, terminate/2]).
│ │ │ │ +-export([init/1, handle_event/2, terminate/2]).
│ │ │ │  
│ │ │ │ -init(File) ->
│ │ │ │ -    {ok, Fd} = file:open(File, read),
│ │ │ │ -    {ok, Fd}.
│ │ │ │ -
│ │ │ │ -handle_event(ErrorMsg, Fd) ->
│ │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, Fd}.
│ │ │ │ +init(File) ->
│ │ │ │ +    {ok, Fd} = file:open(File, read),
│ │ │ │ +    {ok, Fd}.
│ │ │ │ +
│ │ │ │ +handle_event(ErrorMsg, Fd) ->
│ │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, Fd}.
│ │ │ │  
│ │ │ │ -terminate(_Args, Fd) ->
│ │ │ │ -    file:close(Fd).

The code is explained in the next sections.

│ │ │ │ +terminate(_Args, Fd) -> │ │ │ │ + file:close(Fd).

The code is explained in the next sections.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting an Event Manager │ │ │ │

│ │ │ │

To start an event manager for handling errors, as described in the previous │ │ │ │ example, call the following function:

gen_event:start_link({local, error_man})

gen_event:start_link/1 spawns and links to a new event manager process.

The argument, {local, error_man}, specifies the name under which the │ │ │ │ @@ -89,57 +89,57 @@ │ │ │ │ manager that is not part of a supervision tree.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding an Event Handler │ │ │ │

│ │ │ │

The following example shows how to start an event manager and add an event │ │ │ │ -handler to it by using the shell:

1> gen_event:start({local, error_man}).
│ │ │ │ -{ok,<0.31.0>}
│ │ │ │ -2> gen_event:add_handler(error_man, terminal_logger, []).
│ │ │ │ +handler to it by using the shell:

1> gen_event:start({local, error_man}).
│ │ │ │ +{ok,<0.31.0>}
│ │ │ │ +2> gen_event:add_handler(error_man, terminal_logger, []).
│ │ │ │  ok

This function sends a message to the event manager registered as error_man, │ │ │ │ telling it to add the event handler terminal_logger. The event manager calls │ │ │ │ the callback function terminal_logger:init([]), where the argument [] is the │ │ │ │ third argument to add_handler. init/1 is expected to return {ok, State}, │ │ │ │ -where State is the internal state of the event handler.

init(_Args) ->
│ │ │ │ -    {ok, []}.

Here, init/1 does not need any input data and ignores its argument. For │ │ │ │ +where State is the internal state of the event handler.

init(_Args) ->
│ │ │ │ +    {ok, []}.

Here, init/1 does not need any input data and ignores its argument. For │ │ │ │ terminal_logger, the internal state is not used. For file_logger, the │ │ │ │ -internal state is used to save the open file descriptor.

init(File) ->
│ │ │ │ -    {ok, Fd} = file:open(File, read),
│ │ │ │ -    {ok, Fd}.

│ │ │ │ +internal state is used to save the open file descriptor.

init(File) ->
│ │ │ │ +    {ok, Fd} = file:open(File, read),
│ │ │ │ +    {ok, Fd}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Notifying about Events │ │ │ │

│ │ │ │
3> gen_event:notify(error_man, no_reply).
│ │ │ │  ***Error*** no_reply
│ │ │ │  ok

error_man is the name of the event manager and no_reply is the event.

The event is made into a message and sent to the event manager. When the event │ │ │ │ is received, the event manager calls handle_event(Event, State) for each │ │ │ │ installed event handler, in the same order as they were added. The function is │ │ │ │ expected to return a tuple {ok,State1}, where State1 is a new value for the │ │ │ │ -state of the event handler.

In terminal_logger:

handle_event(ErrorMsg, State) ->
│ │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, State}.

In file_logger:

handle_event(ErrorMsg, Fd) ->
│ │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, Fd}.

│ │ │ │ +state of the event handler.

In terminal_logger:

handle_event(ErrorMsg, State) ->
│ │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, State}.

In file_logger:

handle_event(ErrorMsg, Fd) ->
│ │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, Fd}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Event Handler │ │ │ │

│ │ │ │ -
4> gen_event:delete_handler(error_man, terminal_logger, []).
│ │ │ │ +
4> gen_event:delete_handler(error_man, terminal_logger, []).
│ │ │ │  ok

This function sends a message to the event manager registered as error_man, │ │ │ │ telling it to delete the event handler terminal_logger. The event manager │ │ │ │ calls the callback function terminal_logger:terminate([], State), where the │ │ │ │ argument [] is the third argument to delete_handler. terminate/2 is to be │ │ │ │ the opposite of init/1 and do any necessary cleaning up. Its return value is │ │ │ │ -ignored.

For terminal_logger, no cleaning up is necessary:

terminate(_Args, _State) ->
│ │ │ │ -    ok.

For file_logger, the file descriptor opened in init must be closed:

terminate(_Args, Fd) ->
│ │ │ │ -    file:close(Fd).

│ │ │ │ +ignored.

For terminal_logger, no cleaning up is necessary:

terminate(_Args, _State) ->
│ │ │ │ +    ok.

For file_logger, the file descriptor opened in init must be closed:

terminate(_Args, Fd) ->
│ │ │ │ +    file:close(Fd).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

│ │ │ │

When an event manager is stopped, it gives each of the installed event handlers │ │ │ │ the chance to clean up by calling terminate/2, the same way as when deleting a │ │ │ │ @@ -154,29 +154,29 @@ │ │ │ │ this is done is defined by a shutdown strategy set in │ │ │ │ the supervisor.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone Event Managers │ │ │ │

│ │ │ │ -

An event manager can also be stopped by calling:

1> gen_event:stop(error_man).
│ │ │ │ +

An event manager can also be stopped by calling:

1> gen_event:stop(error_man).
│ │ │ │  ok

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │ │

│ │ │ │

If the gen_event process is to be able to receive other messages │ │ │ │ than events, the callback function handle_info(Info, State) must be │ │ │ │ implemented to handle them. Examples of other messages are exit │ │ │ │ messages if the event manager is linked to other processes than the │ │ │ │ supervisor (for example via gen_event:add_sup_handler/3) and is │ │ │ │ -trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
│ │ │ │ +trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
│ │ │ │      %% Code to handle exits here.
│ │ │ │      ...
│ │ │ │ -    {noreply, State1}.

The final function to implement is code_change/3:

code_change(OldVsn, State, Extra) ->
│ │ │ │ +    {noreply, State1}.

The final function to implement is code_change/3:

code_change(OldVsn, State, Extra) ->
│ │ │ │      %% Code to convert state (and more) during code change.
│ │ │ │      ...
│ │ │ │ -    {ok, NewState}.
│ │ │ │ +
{ok, NewState}.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/errors.xhtml │ │ │ │ @@ -56,22 +56,22 @@ │ │ │ │ classes, with different origins. The try expression can │ │ │ │ distinguish between the different classes, whereas the │ │ │ │ catch expression cannot. try and catch are described │ │ │ │ in Expressions.

ClassOrigin
errorRun-time error, for example, 1+a, or the process called error/1
exitThe process called exit/1
throwThe process called throw/1

Table: Exception Classes.

All of the above exceptions can also be generated by calling erlang:raise/3.

An exception consists of its class, an exit reason (see │ │ │ │ Exit Reason), and a stack trace (which aids in finding │ │ │ │ the code location of the exception).

The stack trace can be bound to a variable from within a try expression for │ │ │ │ any exception class, or as part of the exit reason when a run-time error is │ │ │ │ -caught by a catch. Example:

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
│ │ │ │ -[{shell,apply_fun,3,[]},
│ │ │ │ - {erl_eval,do_apply,6,[]},
│ │ │ │ - ...]
│ │ │ │ -> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
│ │ │ │ -[{shell,apply_fun,3,[]},
│ │ │ │ - {erl_eval,do_apply,6,[]},
│ │ │ │ - ...]

│ │ │ │ +caught by a catch. Example:

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
│ │ │ │ +[{shell,apply_fun,3,[]},
│ │ │ │ + {erl_eval,do_apply,6,[]},
│ │ │ │ + ...]
│ │ │ │ +> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
│ │ │ │ +[{shell,apply_fun,3,[]},
│ │ │ │ + {erl_eval,do_apply,6,[]},
│ │ │ │ + ...]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The call-stack back trace (stacktrace) │ │ │ │

│ │ │ │

The stack back-trace (stacktrace) is a list that │ │ │ │ contains {Module, Function, Arity, ExtraInfo} and/or {Fun, Arity, ExtraInfo} │ │ │ ├── OEBPS/error_logging.xhtml │ │ │ │ @@ -48,36 +48,36 @@ │ │ │ │ reports and other error and information reports are by default logged through │ │ │ │ the log handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only │ │ │ │ logged when the SASL application was running. This behaviour can, for backwards │ │ │ │ compatibility, be enabled by setting the Kernel configuration parameter │ │ │ │ logger_sasl_compatible to │ │ │ │ true. For more information, see │ │ │ │ SASL Error Logging in the SASL User's Guide.

% erl -kernel logger_level info
│ │ │ │ -Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
│ │ │ │ +Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
│ │ │ │  
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
│ │ │ │      application: kernel
│ │ │ │      started_at: nonode@nohost
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
│ │ │ │      application: stdlib
│ │ │ │      started_at: nonode@nohost
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
│ │ │ │ -    supervisor: {local,kernel_safe_sup}
│ │ │ │ -    started: [{pid,<0.74.0>},
│ │ │ │ -              {id,disk_log_sup},
│ │ │ │ -              {mfargs,{disk_log_sup,start_link,[]}},
│ │ │ │ -              {restart_type,permanent},
│ │ │ │ -              {shutdown,1000},
│ │ │ │ -              {child_type,supervisor}]
│ │ │ │ +    supervisor: {local,kernel_safe_sup}
│ │ │ │ +    started: [{pid,<0.74.0>},
│ │ │ │ +              {id,disk_log_sup},
│ │ │ │ +              {mfargs,{disk_log_sup,start_link,[]}},
│ │ │ │ +              {restart_type,permanent},
│ │ │ │ +              {shutdown,1000},
│ │ │ │ +              {child_type,supervisor}]
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
│ │ │ │ -    supervisor: {local,kernel_safe_sup}
│ │ │ │ -    started: [{pid,<0.75.0>},
│ │ │ │ -              {id,disk_log_server},
│ │ │ │ -              {mfargs,{disk_log_server,start_link,[]}},
│ │ │ │ -              {restart_type,permanent},
│ │ │ │ -              {shutdown,2000},
│ │ │ │ -              {child_type,worker}]
│ │ │ │ -Eshell V10.0  (abort with ^G)
│ │ │ │ +    supervisor: {local,kernel_safe_sup}
│ │ │ │ +    started: [{pid,<0.75.0>},
│ │ │ │ +              {id,disk_log_server},
│ │ │ │ +              {mfargs,{disk_log_server,start_link,[]}},
│ │ │ │ +              {restart_type,permanent},
│ │ │ │ +              {shutdown,2000},
│ │ │ │ +              {child_type,worker}]
│ │ │ │ +Eshell V10.0  (abort with ^G)
│ │ │ │  1>
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/erl_interface.xhtml │ │ │ │ @@ -25,119 +25,119 @@ │ │ │ │ to read the port example in Ports before reading this section.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Erlang Program │ │ │ │

│ │ │ │

The following example shows an Erlang program communicating with a C program │ │ │ │ -over a plain port with home made encoding:

-module(complex1).
│ │ │ │ --export([start/1, stop/0, init/1]).
│ │ │ │ --export([foo/1, bar/1]).
│ │ │ │ -
│ │ │ │ -start(ExtPrg) ->
│ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ -stop() ->
│ │ │ │ +over a plain port with home made encoding:

-module(complex1).
│ │ │ │ +-export([start/1, stop/0, init/1]).
│ │ │ │ +-export([foo/1, bar/1]).
│ │ │ │ +
│ │ │ │ +start(ExtPrg) ->
│ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ +stop() ->
│ │ │ │      complex ! stop.
│ │ │ │  
│ │ │ │ -foo(X) ->
│ │ │ │ -    call_port({foo, X}).
│ │ │ │ -bar(Y) ->
│ │ │ │ -    call_port({bar, Y}).
│ │ │ │ +foo(X) ->
│ │ │ │ +    call_port({foo, X}).
│ │ │ │ +bar(Y) ->
│ │ │ │ +    call_port({bar, Y}).
│ │ │ │  
│ │ │ │ -call_port(Msg) ->
│ │ │ │ -    complex ! {call, self(), Msg},
│ │ │ │ +call_port(Msg) ->
│ │ │ │ +    complex ! {call, self(), Msg},
│ │ │ │      receive
│ │ │ │ -	{complex, Result} ->
│ │ │ │ +	{complex, Result} ->
│ │ │ │  	    Result
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -init(ExtPrg) ->
│ │ │ │ -    register(complex, self()),
│ │ │ │ -    process_flag(trap_exit, true),
│ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
│ │ │ │ -    loop(Port).
│ │ │ │ +init(ExtPrg) ->
│ │ │ │ +    register(complex, self()),
│ │ │ │ +    process_flag(trap_exit, true),
│ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
│ │ │ │ +    loop(Port).
│ │ │ │  
│ │ │ │ -loop(Port) ->
│ │ │ │ +loop(Port) ->
│ │ │ │      receive
│ │ │ │ -	{call, Caller, Msg} ->
│ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
│ │ │ │ +	{call, Caller, Msg} ->
│ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
│ │ │ │  	    receive
│ │ │ │ -		{Port, {data, Data}} ->
│ │ │ │ -		    Caller ! {complex, decode(Data)}
│ │ │ │ +		{Port, {data, Data}} ->
│ │ │ │ +		    Caller ! {complex, decode(Data)}
│ │ │ │  	    end,
│ │ │ │ -	    loop(Port);
│ │ │ │ +	    loop(Port);
│ │ │ │  	stop ->
│ │ │ │ -	    Port ! {self(), close},
│ │ │ │ +	    Port ! {self(), close},
│ │ │ │  	    receive
│ │ │ │ -		{Port, closed} ->
│ │ │ │ -		    exit(normal)
│ │ │ │ +		{Port, closed} ->
│ │ │ │ +		    exit(normal)
│ │ │ │  	    end;
│ │ │ │ -	{'EXIT', Port, Reason} ->
│ │ │ │ -	    exit(port_terminated)
│ │ │ │ +	{'EXIT', Port, Reason} ->
│ │ │ │ +	    exit(port_terminated)
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -encode({foo, X}) -> [1, X];
│ │ │ │ -encode({bar, Y}) -> [2, Y].
│ │ │ │ +encode({foo, X}) -> [1, X];
│ │ │ │ +encode({bar, Y}) -> [2, Y].
│ │ │ │  
│ │ │ │ -decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the │ │ │ │ +decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the │ │ │ │ example in Ports, using only the plain port:

  • As Erl_Interface operates on the Erlang external term format, the port must be │ │ │ │ set to use binaries.
  • Instead of inventing an encoding/decoding scheme, the │ │ │ │ term_to_binary/1 and │ │ │ │ -binary_to_term/1 BIFs are to be used.

That is:

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
│ │ │ │ +binary_to_term/1 BIFs are to be used.

That is:

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
│ │ │ │  receive
│ │ │ │ -  {Port, {data, Data}} ->
│ │ │ │ -    Caller ! {complex, decode(Data)}
│ │ │ │ -end

is replaced with:

Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │ +  {Port, {data, Data}} ->
│ │ │ │ +    Caller ! {complex, decode(Data)}
│ │ │ │ +end

is replaced with:

Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │  receive
│ │ │ │ -  {Port, {data, Data}} ->
│ │ │ │ -    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ -end

The resulting Erlang program is as follows:

-module(complex2).
│ │ │ │ --export([start/1, stop/0, init/1]).
│ │ │ │ --export([foo/1, bar/1]).
│ │ │ │ -
│ │ │ │ -start(ExtPrg) ->
│ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ -stop() ->
│ │ │ │ +  {Port, {data, Data}} ->
│ │ │ │ +    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ +end

The resulting Erlang program is as follows:

-module(complex2).
│ │ │ │ +-export([start/1, stop/0, init/1]).
│ │ │ │ +-export([foo/1, bar/1]).
│ │ │ │ +
│ │ │ │ +start(ExtPrg) ->
│ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ +stop() ->
│ │ │ │      complex ! stop.
│ │ │ │  
│ │ │ │ -foo(X) ->
│ │ │ │ -    call_port({foo, X}).
│ │ │ │ -bar(Y) ->
│ │ │ │ -    call_port({bar, Y}).
│ │ │ │ +foo(X) ->
│ │ │ │ +    call_port({foo, X}).
│ │ │ │ +bar(Y) ->
│ │ │ │ +    call_port({bar, Y}).
│ │ │ │  
│ │ │ │ -call_port(Msg) ->
│ │ │ │ -    complex ! {call, self(), Msg},
│ │ │ │ +call_port(Msg) ->
│ │ │ │ +    complex ! {call, self(), Msg},
│ │ │ │      receive
│ │ │ │ -	{complex, Result} ->
│ │ │ │ +	{complex, Result} ->
│ │ │ │  	    Result
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -init(ExtPrg) ->
│ │ │ │ -    register(complex, self()),
│ │ │ │ -    process_flag(trap_exit, true),
│ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
│ │ │ │ -    loop(Port).
│ │ │ │ +init(ExtPrg) ->
│ │ │ │ +    register(complex, self()),
│ │ │ │ +    process_flag(trap_exit, true),
│ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
│ │ │ │ +    loop(Port).
│ │ │ │  
│ │ │ │ -loop(Port) ->
│ │ │ │ +loop(Port) ->
│ │ │ │      receive
│ │ │ │ -	{call, Caller, Msg} ->
│ │ │ │ -	    Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │ +	{call, Caller, Msg} ->
│ │ │ │ +	    Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │  	    receive
│ │ │ │ -		{Port, {data, Data}} ->
│ │ │ │ -		    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ +		{Port, {data, Data}} ->
│ │ │ │ +		    Caller ! {complex, binary_to_term(Data)}
│ │ │ │  	    end,
│ │ │ │ -	    loop(Port);
│ │ │ │ +	    loop(Port);
│ │ │ │  	stop ->
│ │ │ │ -	    Port ! {self(), close},
│ │ │ │ +	    Port ! {self(), close},
│ │ │ │  	    receive
│ │ │ │ -		{Port, closed} ->
│ │ │ │ -		    exit(normal)
│ │ │ │ +		{Port, closed} ->
│ │ │ │ +		    exit(normal)
│ │ │ │  	    end;
│ │ │ │ -	{'EXIT', Port, Reason} ->
│ │ │ │ -	    exit(port_terminated)
│ │ │ │ +	{'EXIT', Port, Reason} ->
│ │ │ │ +	    exit(port_terminated)
│ │ │ │      end.

Notice that calling complex2:foo/1 and complex2:bar/1 results in the tuple │ │ │ │ {foo,X} or {bar,Y} being sent to the complex process, which codes them as │ │ │ │ binaries and sends them to the port. This means that the C program must be able │ │ │ │ to handle these two tuples.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -267,24 +267,24 @@ │ │ │ │ -L/usr/local/otp/lib/erl_interface-3.9.2/lib \ │ │ │ │ complex.c erl_comm.c ei.c -lei -lpthread

In Erlang/OTP R5B and later versions of OTP, the include and lib directories │ │ │ │ are situated under $OTPROOT/lib/erl_interface-VSN, where $OTPROOT is the │ │ │ │ root directory of the OTP installation (/usr/local/otp in the recent example) │ │ │ │ and VSN is the version of the Erl_interface application (3.2.1 in the recent │ │ │ │ example).

In R4B and earlier versions of OTP, include and lib are situated under │ │ │ │ $OTPROOT/usr.

Step 2. Start Erlang and compile the Erlang code:

$ erl
│ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
│ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
│ │ │ │  
│ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ -1> c(complex2).
│ │ │ │ -{ok,complex2}

Step 3. Run the example:

2> complex2:start("./extprg").
│ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ +1> c(complex2).
│ │ │ │ +{ok,complex2}

Step 3. Run the example:

2> complex2:start("./extprg").
│ │ │ │  <0.34.0>
│ │ │ │ -3> complex2:foo(3).
│ │ │ │ +3> complex2:foo(3).
│ │ │ │  4
│ │ │ │ -4> complex2:bar(5).
│ │ │ │ +4> complex2:bar(5).
│ │ │ │  10
│ │ │ │ -5> complex2:bar(352).
│ │ │ │ +5> complex2:bar(352).
│ │ │ │  704
│ │ │ │ -6> complex2:stop().
│ │ │ │ +6> complex2:stop().
│ │ │ │  stop
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/eff_guide_processes.xhtml │ │ │ │ @@ -24,45 +24,45 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating an Erlang Process │ │ │ │

│ │ │ │

An Erlang process is lightweight compared to threads and processes in operating │ │ │ │ systems.

A newly spawned Erlang process uses 327 words of memory. The size can be found │ │ │ │ -as follows:

Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
│ │ │ │ +as follows:

Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
│ │ │ │  
│ │ │ │ -Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ -1> Fun = fun() -> receive after infinity -> ok end end.
│ │ │ │ +Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ +1> Fun = fun() -> receive after infinity -> ok end end.
│ │ │ │  #Fun<erl_eval.43.39164016>
│ │ │ │ -2> {_,Bytes} = process_info(spawn(Fun), memory).
│ │ │ │ -{memory,2616}
│ │ │ │ -3> Bytes div erlang:system_info(wordsize).
│ │ │ │ +2> {_,Bytes} = process_info(spawn(Fun), memory).
│ │ │ │ +{memory,2616}
│ │ │ │ +3> Bytes div erlang:system_info(wordsize).
│ │ │ │  327

The size includes 233 words for the heap area (which includes the stack). The │ │ │ │ garbage collector increases the heap as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the │ │ │ │ -stack grows until the process terminates.

DO NOT

loop() ->
│ │ │ │ +stack grows until the process terminates.

DO NOT

loop() ->
│ │ │ │    receive
│ │ │ │ -     {sys, Msg} ->
│ │ │ │ -         handle_sys_msg(Msg),
│ │ │ │ -         loop();
│ │ │ │ -     {From, Msg} ->
│ │ │ │ -          Reply = handle_msg(Msg),
│ │ │ │ +     {sys, Msg} ->
│ │ │ │ +         handle_sys_msg(Msg),
│ │ │ │ +         loop();
│ │ │ │ +     {From, Msg} ->
│ │ │ │ +          Reply = handle_msg(Msg),
│ │ │ │            From ! Reply,
│ │ │ │ -          loop()
│ │ │ │ +          loop()
│ │ │ │    end,
│ │ │ │ -  io:format("Message is processed~n", []).

The call to io:format/2 will never be executed, but a return address will │ │ │ │ + io:format("Message is processed~n", []).

The call to io:format/2 will never be executed, but a return address will │ │ │ │ still be pushed to the stack each time loop/0 is called recursively. The │ │ │ │ -correct tail-recursive version of the function looks as follows:

DO

loop() ->
│ │ │ │ +correct tail-recursive version of the function looks as follows:

DO

loop() ->
│ │ │ │     receive
│ │ │ │ -      {sys, Msg} ->
│ │ │ │ -         handle_sys_msg(Msg),
│ │ │ │ -         loop();
│ │ │ │ -      {From, Msg} ->
│ │ │ │ -         Reply = handle_msg(Msg),
│ │ │ │ +      {sys, Msg} ->
│ │ │ │ +         handle_sys_msg(Msg),
│ │ │ │ +         loop();
│ │ │ │ +      {From, Msg} ->
│ │ │ │ +         Reply = handle_msg(Msg),
│ │ │ │           From ! Reply,
│ │ │ │ -         loop()
│ │ │ │ +         loop()
│ │ │ │   end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Initial Heap Size │ │ │ │

│ │ │ │

The default initial heap size of 233 words is quite conservative to support │ │ │ │ @@ -94,30 +94,30 @@ │ │ │ │ │ │ │ │ │ │ │ │ Receiving messages │ │ │ │ │ │ │ │

The cost of receiving messages depends on how complicated the receive │ │ │ │ expression is. A simple expression that matches any message is very cheap │ │ │ │ because it retrieves the first message in the message queue:

DO

receive
│ │ │ │ -    Message -> handle_msg(Message)
│ │ │ │ +    Message -> handle_msg(Message)
│ │ │ │  end.

However, this is not always convenient: we can receive a message that we do not │ │ │ │ know how to handle at this point, so it is common to only match the messages we │ │ │ │ expect:

receive
│ │ │ │ -    {Tag, Message} -> handle_msg(Message)
│ │ │ │ +    {Tag, Message} -> handle_msg(Message)
│ │ │ │  end.

While this is convenient it means that the entire message queue must be searched │ │ │ │ until it finds a matching message. This is very expensive for processes with │ │ │ │ long message queues, so there is an optimization for the common case of │ │ │ │ -sending a request and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
│ │ │ │ -Process ! {self(), MRef, Request},
│ │ │ │ +sending a request and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
│ │ │ │ +Process ! {self(), MRef, Request},
│ │ │ │  receive
│ │ │ │ -    {MRef, Reply} ->
│ │ │ │ -        erlang:demonitor(MRef, [flush]),
│ │ │ │ -        handle_reply(Reply);
│ │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ -        handle_error(Reason)
│ │ │ │ +    {MRef, Reply} ->
│ │ │ │ +        erlang:demonitor(MRef, [flush]),
│ │ │ │ +        handle_reply(Reply);
│ │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ +        handle_error(Reason)
│ │ │ │  end.

Since the compiler knows that the reference created by │ │ │ │ monitor/2 cannot exist before the call (since it is a globally │ │ │ │ unique identifier), and that the receive only matches messages that contain │ │ │ │ said reference, it will tell the emulator to search only the messages that │ │ │ │ arrived after the call to monitor/2.

The above is a simple example where one is but guaranteed that the optimization │ │ │ │ will take, but what about more complicated code?

│ │ │ │ │ │ │ │ @@ -133,101 +133,101 @@ │ │ │ │ efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference │ │ │ │ efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position │ │ │ │ efficiency_guide.erl:208: Warning: OPTIMIZED: all clauses match reference created by monitor/2 at efficiency_guide.erl:206 │ │ │ │ efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218 │ │ │ │ efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1

To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ │ example:

%% DO
│ │ │ │ -simple_receive() ->
│ │ │ │ +simple_receive() ->
│ │ │ │  %% efficiency_guide.erl:194: Warning: INFO: not a selective receive, this is always fast
│ │ │ │  receive
│ │ │ │ -    Message -> handle_msg(Message)
│ │ │ │ +    Message -> handle_msg(Message)
│ │ │ │  end.
│ │ │ │  
│ │ │ │  %% DO NOT, unless Tag is known to be a suitable reference: see
│ │ │ │  %% cross_function_receive/0 further down.
│ │ │ │ -selective_receive(Tag, Message) ->
│ │ │ │ +selective_receive(Tag, Message) ->
│ │ │ │  %% efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
│ │ │ │  receive
│ │ │ │ -    {Tag, Message} -> handle_msg(Message)
│ │ │ │ +    {Tag, Message} -> handle_msg(Message)
│ │ │ │  end.
│ │ │ │  
│ │ │ │  %% DO
│ │ │ │ -optimized_receive(Process, Request) ->
│ │ │ │ +optimized_receive(Process, Request) ->
│ │ │ │  %% efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
│ │ │ │ -    MRef = monitor(process, Process),
│ │ │ │ -    Process ! {self(), MRef, Request},
│ │ │ │ +    MRef = monitor(process, Process),
│ │ │ │ +    Process ! {self(), MRef, Request},
│ │ │ │      %% efficiency_guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency_guide.erl:206
│ │ │ │      receive
│ │ │ │ -        {MRef, Reply} ->
│ │ │ │ -        erlang:demonitor(MRef, [flush]),
│ │ │ │ -        handle_reply(Reply);
│ │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ -    handle_error(Reason)
│ │ │ │ +        {MRef, Reply} ->
│ │ │ │ +        erlang:demonitor(MRef, [flush]),
│ │ │ │ +        handle_reply(Reply);
│ │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ +    handle_error(Reason)
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %% DO
│ │ │ │ -cross_function_receive() ->
│ │ │ │ +cross_function_receive() ->
│ │ │ │      %% efficiency_guide.erl:218: Warning: OPTIMIZED: reference used to mark a message queue position
│ │ │ │ -    Ref = make_ref(),
│ │ │ │ +    Ref = make_ref(),
│ │ │ │      %% efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
│ │ │ │ -    cross_function_receive(Ref).
│ │ │ │ +    cross_function_receive(Ref).
│ │ │ │  
│ │ │ │ -cross_function_receive(Ref) ->
│ │ │ │ +cross_function_receive(Ref) ->
│ │ │ │      %% efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
│ │ │ │      receive
│ │ │ │ -        {Ref, Message} -> handle_msg(Message)
│ │ │ │ +        {Ref, Message} -> handle_msg(Message)
│ │ │ │      end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Literal Pool │ │ │ │

│ │ │ │

Constant Erlang terms (hereafter called literals) are kept in literal pools; │ │ │ │ each loaded module has its own pool. The following function does not build the │ │ │ │ tuple every time it is called (only to have it discarded the next time the │ │ │ │ garbage collector was run), but the tuple is located in the module's literal │ │ │ │ -pool:

DO

days_in_month(M) ->
│ │ │ │ -    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ │ +pool:

DO

days_in_month(M) ->
│ │ │ │ +    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ │ it is copied. The reason is that the module containing the literal can be │ │ │ │ unloaded in the future.

When a literal is sent to another process, it is not copied. When a module │ │ │ │ holding a literal is unloaded, the literal will be copied to the heap of all │ │ │ │ processes that hold references to that literal.

There also exists a global literal pool that is managed by the │ │ │ │ persistent_term module.

By default, 1 GB of virtual address space is reserved for all literal pools (in │ │ │ │ BEAM code and persistent terms). The amount of virtual address space reserved │ │ │ │ for literals can be changed by using the │ │ │ │ +MIscs option when starting the emulator.

Here is an example how the reserved virtual address space for literals can be │ │ │ │ raised to 2 GB (2048 MB):

erl +MIscs 2048

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Loss of Sharing │ │ │ │

│ │ │ │ -

An Erlang term can have shared subterms. Here is a simple example:

{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

  • When a term is sent to another process
  • When a term is passed as the initial process arguments in the spawn call
  • When a term is stored in an Ets table

That is an optimization. Most applications do not send messages with shared │ │ │ │ -subterms.

The following example shows how a shared subterm can be created:

kilo_byte() ->
│ │ │ │ -    kilo_byte(10, [42]).
│ │ │ │ +

An Erlang term can have shared subterms. Here is a simple example:

{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

  • When a term is sent to another process
  • When a term is passed as the initial process arguments in the spawn call
  • When a term is stored in an Ets table

That is an optimization. Most applications do not send messages with shared │ │ │ │ +subterms.

The following example shows how a shared subterm can be created:

kilo_byte() ->
│ │ │ │ +    kilo_byte(10, [42]).
│ │ │ │  
│ │ │ │ -kilo_byte(0, Acc) ->
│ │ │ │ +kilo_byte(0, Acc) ->
│ │ │ │      Acc;
│ │ │ │ -kilo_byte(N, Acc) ->
│ │ │ │ -    kilo_byte(N-1, [Acc|Acc]).

kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ │ +kilo_byte(N, Acc) -> │ │ │ │ + kilo_byte(N-1, [Acc|Acc]).

kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ │ is called, the deep list can be converted to a binary of 1024 bytes:

1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
│ │ │ │  1024

Using the erts_debug:size/1 BIF, it can be seen that the deep list only │ │ │ │ -requires 22 words of heap space:

2> erts_debug:size(efficiency_guide:kilo_byte()).
│ │ │ │ +requires 22 words of heap space:

2> erts_debug:size(efficiency_guide:kilo_byte()).
│ │ │ │  22

Using the erts_debug:flat_size/1 BIF, the size of the deep list can be │ │ │ │ calculated if sharing is ignored. It becomes the size of the list when it has │ │ │ │ -been sent to another process or stored in an Ets table:

3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
│ │ │ │ +been sent to another process or stored in an Ets table:

3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
│ │ │ │  4094

It can be verified that sharing will be lost if the data is inserted into an Ets │ │ │ │ -table:

4> T = ets:new(tab, []).
│ │ │ │ +table:

4> T = ets:new(tab, []).
│ │ │ │  #Ref<0.1662103692.2407923716.214181>
│ │ │ │ -5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
│ │ │ │ +5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
│ │ │ │  true
│ │ │ │ -6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │ +6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │  4094
│ │ │ │ -7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │ +7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │  4094

When the data has passed through an Ets table, erts_debug:size/1 and │ │ │ │ erts_debug:flat_size/1 return the same value. Sharing has been lost.

It is possible to build an experimental variant of the runtime system that │ │ │ │ will preserve sharing when copying terms by giving the │ │ │ │ --enable-sharing-preserving option to the configure script.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/eff_guide_functions.xhtml │ │ │ │ @@ -27,67 +27,67 @@ │ │ │ │ Pattern Matching │ │ │ │

│ │ │ │

Pattern matching in function head as well as in case and receive clauses are │ │ │ │ optimized by the compiler. With a few exceptions, there is nothing to gain by │ │ │ │ rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange │ │ │ │ clauses that match binaries. Placing the clause that matches against the empty │ │ │ │ binary last is usually slightly faster than placing it first.

The following is a rather unnatural example to show another exception where │ │ │ │ -rearranging clauses is beneficial:

DO NOT

atom_map1(one) -> 1;
│ │ │ │ -atom_map1(two) -> 2;
│ │ │ │ -atom_map1(three) -> 3;
│ │ │ │ -atom_map1(Int) when is_integer(Int) -> Int;
│ │ │ │ -atom_map1(four) -> 4;
│ │ │ │ -atom_map1(five) -> 5;
│ │ │ │ -atom_map1(six) -> 6.

The problem is the clause with the variable Int. As a variable can match │ │ │ │ +rearranging clauses is beneficial:

DO NOT

atom_map1(one) -> 1;
│ │ │ │ +atom_map1(two) -> 2;
│ │ │ │ +atom_map1(three) -> 3;
│ │ │ │ +atom_map1(Int) when is_integer(Int) -> Int;
│ │ │ │ +atom_map1(four) -> 4;
│ │ │ │ +atom_map1(five) -> 5;
│ │ │ │ +atom_map1(six) -> 6.

The problem is the clause with the variable Int. As a variable can match │ │ │ │ anything, including the atoms four, five, and six, which the following │ │ │ │ clauses also match, the compiler must generate suboptimal code that executes as │ │ │ │ follows:

  • First, the input value is compared to one, two, and three (using a │ │ │ │ single instruction that does a binary search; thus, quite efficient even if │ │ │ │ there are many values) to select which one of the first three clauses to │ │ │ │ execute (if any).
  • If none of the first three clauses match, the fourth clause match as a │ │ │ │ variable always matches.
  • If the guard test is_integer(Int) succeeds, the fourth │ │ │ │ clause is executed.
  • If the guard test fails, the input value is compared to four, five, and │ │ │ │ six, and the appropriate clause is selected. (There is a function_clause │ │ │ │ -exception if none of the values matched.)

Rewriting to either:

DO

atom_map2(one) -> 1;
│ │ │ │ -atom_map2(two) -> 2;
│ │ │ │ -atom_map2(three) -> 3;
│ │ │ │ -atom_map2(four) -> 4;
│ │ │ │ -atom_map2(five) -> 5;
│ │ │ │ -atom_map2(six) -> 6;
│ │ │ │ -atom_map2(Int) when is_integer(Int) -> Int.

or:

DO

atom_map3(Int) when is_integer(Int) -> Int;
│ │ │ │ -atom_map3(one) -> 1;
│ │ │ │ -atom_map3(two) -> 2;
│ │ │ │ -atom_map3(three) -> 3;
│ │ │ │ -atom_map3(four) -> 4;
│ │ │ │ -atom_map3(five) -> 5;
│ │ │ │ -atom_map3(six) -> 6.

gives slightly more efficient matching code.

Another example:

DO NOT

map_pairs1(_Map, [], Ys) ->
│ │ │ │ +exception if none of the values matched.)

Rewriting to either:

DO

atom_map2(one) -> 1;
│ │ │ │ +atom_map2(two) -> 2;
│ │ │ │ +atom_map2(three) -> 3;
│ │ │ │ +atom_map2(four) -> 4;
│ │ │ │ +atom_map2(five) -> 5;
│ │ │ │ +atom_map2(six) -> 6;
│ │ │ │ +atom_map2(Int) when is_integer(Int) -> Int.

or:

DO

atom_map3(Int) when is_integer(Int) -> Int;
│ │ │ │ +atom_map3(one) -> 1;
│ │ │ │ +atom_map3(two) -> 2;
│ │ │ │ +atom_map3(three) -> 3;
│ │ │ │ +atom_map3(four) -> 4;
│ │ │ │ +atom_map3(five) -> 5;
│ │ │ │ +atom_map3(six) -> 6.

gives slightly more efficient matching code.

Another example:

DO NOT

map_pairs1(_Map, [], Ys) ->
│ │ │ │      Ys;
│ │ │ │ -map_pairs1(_Map, Xs, []) ->
│ │ │ │ +map_pairs1(_Map, Xs, []) ->
│ │ │ │      Xs;
│ │ │ │ -map_pairs1(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ -    [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

The first argument is not a problem. It is variable, but it is a variable in │ │ │ │ +map_pairs1(Map, [X|Xs], [Y|Ys]) -> │ │ │ │ + [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

The first argument is not a problem. It is variable, but it is a variable in │ │ │ │ all clauses. The problem is the variable in the second argument, Xs, in the │ │ │ │ middle clause. Because the variable can match anything, the compiler is not │ │ │ │ allowed to rearrange the clauses, but must generate code that matches them in │ │ │ │ the order written.

If the function is rewritten as follows, the compiler is free to rearrange the │ │ │ │ -clauses:

DO

map_pairs2(_Map, [], Ys) ->
│ │ │ │ +clauses:

DO

map_pairs2(_Map, [], Ys) ->
│ │ │ │      Ys;
│ │ │ │ -map_pairs2(_Map, [_|_]=Xs, [] ) ->
│ │ │ │ +map_pairs2(_Map, [_|_]=Xs, [] ) ->
│ │ │ │      Xs;
│ │ │ │ -map_pairs2(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ -    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:

DO NOT (already done by the compiler)

explicit_map_pairs(Map, Xs0, Ys0) ->
│ │ │ │ +map_pairs2(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ +    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:

DO NOT (already done by the compiler)

explicit_map_pairs(Map, Xs0, Ys0) ->
│ │ │ │      case Xs0 of
│ │ │ │ -	[X|Xs] ->
│ │ │ │ +	[X|Xs] ->
│ │ │ │  	    case Ys0 of
│ │ │ │ -		[Y|Ys] ->
│ │ │ │ -		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
│ │ │ │ -		[] ->
│ │ │ │ +		[Y|Ys] ->
│ │ │ │ +		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
│ │ │ │ +		[] ->
│ │ │ │  		    Xs0
│ │ │ │  	    end;
│ │ │ │ -	[] ->
│ │ │ │ +	[] ->
│ │ │ │  	    Ys0
│ │ │ │      end.

This is slightly faster for probably the most common case that the input lists │ │ │ │ are not empty or very short. (Another advantage is that Dialyzer can deduce a │ │ │ │ better type for the Xs variable.)

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/drivers.xhtml │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ Drivers and Concurrency │ │ │ │

│ │ │ │

The runtime system always takes a lock before running any code in a driver.

By default, that lock is at the driver level, that is, if several ports have │ │ │ │ been opened to the same driver, only code for one port at the same time can be │ │ │ │ running.

A driver can be configured to have one lock for each port instead.

If a driver is used in a functional way (that is, holds no state, but only does │ │ │ │ some heavy calculation and returns a result), several ports with registered │ │ │ │ names can be opened beforehand, and the port to be used can be chosen based on │ │ │ │ -the scheduler ID as follows:

-define(PORT_NAMES(),
│ │ │ │ -	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
│ │ │ │ +the scheduler ID as follows:

-define(PORT_NAMES(),
│ │ │ │ +	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
│ │ │ │  	 some_driver_05, some_driver_06, some_driver_07, some_driver_08,
│ │ │ │  	 some_driver_09, some_driver_10, some_driver_11, some_driver_12,
│ │ │ │ -	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
│ │ │ │ +	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
│ │ │ │  
│ │ │ │ -client_port() ->
│ │ │ │ -    element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
│ │ │ │ -	    ?PORT_NAMES()).

As long as there are no more than 16 schedulers, there will never be any lock │ │ │ │ +client_port() -> │ │ │ │ + element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1, │ │ │ │ + ?PORT_NAMES()).

As long as there are no more than 16 schedulers, there will never be any lock │ │ │ │ contention on the port lock for the driver.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Avoiding Copying Binaries When Calling a Driver │ │ │ │

│ │ │ │

There are basically two ways to avoid copying a binary that is sent to a driver:

  • If the Data argument for port_control/3 is a │ │ │ ├── OEBPS/documentation.xhtml │ │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

    │ │ │ │ Documentation │ │ │ │

    │ │ │ │

    Documentation in Erlang is done through the -moduledoc and -doc │ │ │ │ -attributes. For example:

    -module(arith).
    │ │ │ │ +attributes. For example:

    -module(arith).
    │ │ │ │  -moduledoc """
    │ │ │ │  A module for basic arithmetic.
    │ │ │ │  """.
    │ │ │ │  
    │ │ │ │ --export([add/2]).
    │ │ │ │ +-export([add/2]).
    │ │ │ │  
    │ │ │ │  -doc "Adds two numbers.".
    │ │ │ │ -add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ │ +add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ │ or function declaration. It documents the overall purpose of the module.

    The -doc attribute always precedes the function or │ │ │ │ attribute it documents. The │ │ │ │ attributes that can be documented are │ │ │ │ user-defined types │ │ │ │ (-type and -opaque) and │ │ │ │ behaviour module attributes │ │ │ │ (-callback).

    By default the format used for documentation attributes is │ │ │ │ @@ -45,55 +45,55 @@ │ │ │ │ Documentation Attributes.

    -doc attributes have been available since Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documentation metadata │ │ │ │

    │ │ │ │

    It is possible to add metadata to the documentation entry. You do this by adding │ │ │ │ -a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ │ +a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ │  -moduledoc """
    │ │ │ │  A module for basic arithmetic.
    │ │ │ │  """.
    │ │ │ │ --moduledoc #{since => "1.0"}.
    │ │ │ │ +-moduledoc #{since => "1.0"}.
    │ │ │ │  
    │ │ │ │ --export([add/2]).
    │ │ │ │ +-export([add/2]).
    │ │ │ │  
    │ │ │ │  -doc "Adds two numbers.".
    │ │ │ │ --doc(#{since => "1.0"}).
    │ │ │ │ -add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ │ +-doc(#{since => "1.0"}). │ │ │ │ +add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ │ user. There can be multiple metadata documentation entries, in which case the │ │ │ │ maps will be merged with the latest taking precedence if there are duplicate │ │ │ │ keys. Example:

    -doc "Adds two numbers.".
    │ │ │ │ --doc #{since => "1.0", author => "Joe"}.
    │ │ │ │ --doc #{since => "2.0"}.
    │ │ │ │ -add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ │ +-doc #{since => "1.0", author => "Joe"}. │ │ │ │ +-doc #{since => "2.0"}. │ │ │ │ +add(One, Two) -> One + Two.

This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

The keys and values in the metadata map can be any type, but it is recommended │ │ │ │ that only atoms are used for keys and │ │ │ │ strings for the values.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ External documentation files │ │ │ │

│ │ │ │

The -moduledoc and -doc can also be placed in external files. To do so use │ │ │ │ -doc {file, "path/to/doc.md"} to point to the documentation. The path used is │ │ │ │ relative to the file where the -doc attribute is located. For example:

%% doc/add.md
│ │ │ │  Adds two numbers.

and

%% src/arith.erl
│ │ │ │ --doc({file, "../doc/add.md"}).
│ │ │ │ -add(One, Two) -> One + Two.

│ │ │ │ +-doc({file, "../doc/add.md"}). │ │ │ │ +add(One, Two) -> One + Two.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documenting a module │ │ │ │

│ │ │ │

The module description should include details on how to use the API and examples │ │ │ │ of the different functions working together. Here is a good place to use images │ │ │ │ and other diagrams to better show the usage of the module. Instead of writing a │ │ │ │ long text in the moduledoc attribute, it could be better to break it out into │ │ │ │ an external page.

The moduledoc attribute should start with a short paragraph describing the │ │ │ │ -module and then go into greater details. For example:

-module(arith).
│ │ │ │ +module and then go into greater details. For example:

-module(arith).
│ │ │ │  -moduledoc """
│ │ │ │     A module for basic arithmetic.
│ │ │ │  
│ │ │ │     This module can be used to add and subtract values. For example:
│ │ │ │  
│ │ │ │     ```erlang
│ │ │ │     1> arith:substract(arith:add(2, 3), 1).
│ │ │ │ @@ -108,94 +108,94 @@
│ │ │ │  

There are three reserved metadata keys for -moduledoc:

  • since - Shows in which version of the application the module was added. │ │ │ │ If this is added, all functions, types, and callbacks within will also receive │ │ │ │ the same since value unless specified in the metadata of the function, type │ │ │ │ or callback.
  • deprecated - Shows a text in the documentation explaining that it is │ │ │ │ deprecated and what to use instead.
  • format - The format to use for all documentation in this module. The │ │ │ │ default is text/markdown. It should be written using the │ │ │ │ mime type │ │ │ │ -of the format.

Example:

-moduledoc {file, "../doc/arith.asciidoc"}.
│ │ │ │ --moduledoc #{since => "0.1", format => "text/asciidoc"}.
│ │ │ │ --moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

│ │ │ │ +of the format.

Example:

-moduledoc {file, "../doc/arith.asciidoc"}.
│ │ │ │ +-moduledoc #{since => "0.1", format => "text/asciidoc"}.
│ │ │ │ +-moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documenting functions, user-defined types, and callbacks │ │ │ │

│ │ │ │

Functions, types, and callbacks can be documented using the -doc attribute. │ │ │ │ Each entry should start with a short paragraph describing the purpose of entity, │ │ │ │ and then go into greater detail in needed.

It is not recommended to include images or diagrams in this documentation as it │ │ │ │ is used by IDEs and c:h/1 to show the documentation to the user.

For example:

-doc """
│ │ │ │  A number that can be used by the arith module.
│ │ │ │  
│ │ │ │  We use a special number here so that we know
│ │ │ │  that this number comes from this module.
│ │ │ │  """.
│ │ │ │ --opaque number() :: {arith, erlang:number()}.
│ │ │ │ +-opaque number() :: {arith, erlang:number()}.
│ │ │ │  
│ │ │ │  -doc """
│ │ │ │  Adds two numbers.
│ │ │ │  
│ │ │ │  ### Example:
│ │ │ │  
│ │ │ │  ```
│ │ │ │  1> arith:add(arith:number(1), arith:number(2)). {number, 3}
│ │ │ │  ```
│ │ │ │  """.
│ │ │ │ --spec add(number(), number()) -> number().
│ │ │ │ -add({number, One}, {number, Two}) -> {number, One + Two}.

│ │ │ │ +-spec add(number(), number()) -> number(). │ │ │ │ +add({number, One}, {number, Two}) -> {number, One + Two}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Doc metadata │ │ │ │

│ │ │ │

There are four reserved metadata keys for -doc:

  • since => unicode:chardata() - Shows which version of the application the │ │ │ │ module was added.

  • deprecated => unicode:chardata() - Shows a text in the documentation │ │ │ │ explaining that it is deprecated and what to use instead. The compiler will │ │ │ │ automatically insert this key if there is a -deprecated attribute marking a │ │ │ │ function as deprecated.

  • equiv => unicode:chardata() | F/A | F(...) - Notes that this function is equivalent to │ │ │ │ another function in this module. The equivalence can be described using either │ │ │ │ -Func/Arity, Func(Args) or a unicode string. For example:

    -doc #{equiv => add/3}.
    │ │ │ │ -add(One, Two) -> add(One, Two, []).
    │ │ │ │ -add(One, Two, Options) -> ...

    or

    -doc #{equiv => add(One, Two, [])}.
    │ │ │ │ --spec add(One :: number(), Two :: number()) -> number().
    │ │ │ │ -add(One, Two) -> add(One, Two, []).
    │ │ │ │ -add(One, Two, Options) -> ...

    The entry into the EEP-48 doc chunk metadata is │ │ │ │ +Func/Arity, Func(Args) or a unicode string. For example:

    -doc #{equiv => add/3}.
    │ │ │ │ +add(One, Two) -> add(One, Two, []).
    │ │ │ │ +add(One, Two, Options) -> ...

    or

    -doc #{equiv => add(One, Two, [])}.
    │ │ │ │ +-spec add(One :: number(), Two :: number()) -> number().
    │ │ │ │ +add(One, Two) -> add(One, Two, []).
    │ │ │ │ +add(One, Two, Options) -> ...

    The entry into the EEP-48 doc chunk metadata is │ │ │ │ the value converted to a string.

  • exported => boolean() - A boolean/0 signifying if the entry is exported │ │ │ │ or not. This value is automatically set by the compiler and should not be set │ │ │ │ by the user.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Doc signatures │ │ │ │

│ │ │ │

The doc signature is a short text shown to describe the function and its arguments. │ │ │ │ By default it is determined by looking at the names of the arguments in the │ │ │ │ --spec or function. For example:

add(One, Two) -> One + Two.
│ │ │ │ +-spec or function. For example:

add(One, Two) -> One + Two.
│ │ │ │  
│ │ │ │ --spec sub(One :: integer(), Two :: integer()) -> integer().
│ │ │ │ -sub(X, Y) -> X - Y.

will have a signature of add(One, Two) and sub(One, Two).

For types or callbacks, the signature is derived from the type or callback │ │ │ │ -specification. For example:

-type number(Value) :: {number, Value}.
│ │ │ │ +-spec sub(One :: integer(), Two :: integer()) -> integer().
│ │ │ │ +sub(X, Y) -> X - Y.

will have a signature of add(One, Two) and sub(One, Two).

For types or callbacks, the signature is derived from the type or callback │ │ │ │ +specification. For example:

-type number(Value) :: {number, Value}.
│ │ │ │  %% signature will be `number(Value)`
│ │ │ │  
│ │ │ │ --opaque number() :: {number, number()}.
│ │ │ │ +-opaque number() :: {number, number()}.
│ │ │ │  %% signature will be `number()`
│ │ │ │  
│ │ │ │ --callback increment(In :: number()) -> Out.
│ │ │ │ +-callback increment(In :: number()) -> Out.
│ │ │ │  %% signature will be `increment(In)`
│ │ │ │  
│ │ │ │ --callback increment(In) -> Out when In :: number().
│ │ │ │ +-callback increment(In) -> Out when In :: number().
│ │ │ │  %% signature will be `increment(In)`

If it is not possible to "easily" figure out a nice signature from the code, the │ │ │ │ MFA syntax is used instead. For example: add/2, number/1, increment/1

It is possible to supply a custom signature by placing it as the first line of the │ │ │ │ -doc attribute. The provided signature must be in the form of a function │ │ │ │ declaration up until the ->. For example:

-doc """
│ │ │ │  add(One, Two)
│ │ │ │  
│ │ │ │  Adds two numbers.
│ │ │ │  """.
│ │ │ │ -add(A, B) -> A + B.

Will create the signature add(One, Two). The signature will be removed from the │ │ │ │ +add(A, B) -> A + B.

Will create the signature add(One, Two). The signature will be removed from the │ │ │ │ documentation string, so in the example above only the text "Adds two numbers" │ │ │ │ will be part of the documentation. This works for functions, types, and │ │ │ │ callbacks.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Compiling and getting documentation │ │ │ │ @@ -280,21 +280,21 @@ │ │ │ │ Using ExDoc to generate HTML/ePub documentation │ │ │ │

│ │ │ │

ExDoc has built-in support to generate │ │ │ │ documentation from Markdown. The simplest way is by using the │ │ │ │ rebar3_ex_doc plugin. To set up a │ │ │ │ rebar3 project to use ExDoc to generate │ │ │ │ documentation add the following to your rebar3.config.

%% Enable the plugin
│ │ │ │ -{plugins, [rebar3_ex_doc]}.
│ │ │ │ +{plugins, [rebar3_ex_doc]}.
│ │ │ │  
│ │ │ │ -{ex_doc, [
│ │ │ │ -  {extras, ["README.md"]},
│ │ │ │ -  {main, "README.md"},
│ │ │ │ -  {source_url, "https://github.com/namespace/your_app"}
│ │ │ │ -]}.

When configured you can run rebar3 ex_doc to generate the │ │ │ │ +{ex_doc, [ │ │ │ │ + {extras, ["README.md"]}, │ │ │ │ + {main, "README.md"}, │ │ │ │ + {source_url, "https://github.com/namespace/your_app"} │ │ │ │ +]}.

When configured you can run rebar3 ex_doc to generate the │ │ │ │ documentation to doc/index.html. For more details and options see │ │ │ │ the rebar3_ex_doc documentation.

You can also download the │ │ │ │ release escript bundle from │ │ │ │ github and run it from the command line. The documentation for using the escript │ │ │ │ is found by running ex_doc --help.

If you are writing documentation that will be using │ │ │ │ ExDoc to generate HTML/ePub it is highly │ │ │ │ recommended to read its documentation.

│ │ │ ├── OEBPS/distributed_applications.xhtml │ │ │ │ @@ -55,36 +55,36 @@ │ │ │ │ (within the time-out specified by sync_nodes_timeout).
  • sync_nodes_timeout = integer() | infinity - Specifies how many milliseconds │ │ │ │ to wait for the other nodes to start.

  • When started, the node waits for all nodes specified by sync_nodes_mandatory │ │ │ │ and sync_nodes_optional to come up. When all nodes are up, or when all │ │ │ │ mandatory nodes are up and the time specified by sync_nodes_timeout has │ │ │ │ elapsed, all applications start. If not all mandatory nodes are up, the node │ │ │ │ terminates.

    Example:

    An application myapp is to run at the node cp1@cave. If this node goes down, │ │ │ │ myapp is to be restarted at cp2@cave or cp3@cave. A system configuration │ │ │ │ -file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ │ -  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ │ -   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ │ -   {sync_nodes_timeout, 5000}
    │ │ │ │ -  ]
    │ │ │ │ - }
    │ │ │ │ -].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ │ +file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ │ +  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ │ +   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ │ +   {sync_nodes_timeout, 5000}
    │ │ │ │ +  ]
    │ │ │ │ + }
    │ │ │ │ +].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ │ except for the list of mandatory nodes, which is to be [cp1@cave, cp3@cave] │ │ │ │ for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.

    Note

    All involved nodes must have the same value for distributed and │ │ │ │ sync_nodes_timeout. Otherwise the system behavior is undefined.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Distributed Applications │ │ │ │

    │ │ │ │

    When all involved (mandatory) nodes have been started, the distributed │ │ │ │ application can be started by calling application:start(Application) at all │ │ │ │ of these nodes.

    A boot script (see Releases) can be used that │ │ │ │ automatically starts the application.

    The application is started at the first operational node that is listed in the │ │ │ │ list of nodes in the distributed configuration parameter. The application is │ │ │ │ started as usual. That is, an application master is created and calls the │ │ │ │ -application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ │ +application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ │ specifying the system configuration file:

    > erl -sname cp1 -config cp1
    │ │ │ │  > erl -sname cp2 -config cp2
    │ │ │ │  > erl -sname cp3 -config cp3

    When all nodes are operational, myapp can be started. This is achieved by │ │ │ │ calling application:start(myapp) at all three nodes. It is then started at │ │ │ │ cp1, as shown in the following figure:

    Application myapp - Situation 1

    Similarly, the application must be stopped by calling │ │ │ │ application:stop(Application) at all involved nodes.

    │ │ │ │ │ │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ │ │ │ │ Failover │ │ │ │

    │ │ │ │

    If the node where the application is running goes down, the application is │ │ │ │ restarted (after the specified time-out) at the first operational node that is │ │ │ │ listed in the list of nodes in the distributed configuration parameter. This │ │ │ │ is called a failover.

    The application is started the normal way at the new node, that is, by the │ │ │ │ -application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ │ +application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ │ Included Applications). The application is then │ │ │ │ -instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ │ +instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ │ cp3, has the least number of running applications, but waits for 5 seconds for │ │ │ │ cp1 to restart. If cp1 does not restart and cp2 runs fewer applications │ │ │ │ than cp3, myapp is restarted on cp2.

    Application myapp - Situation 2

    Suppose now that cp2 goes also down and does not restart within 5 seconds. │ │ │ │ myapp is now restarted on cp3.

    Application myapp - Situation 3

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Takeover │ │ │ │

    │ │ │ │

    If a node is started, which has higher priority according to distributed than │ │ │ │ the node where a distributed application is running, the application is │ │ │ │ restarted at the new node and stopped at the old node. This is called a │ │ │ │ -takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ │ +takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ │ myapp, as the order between the cp2 and cp3 nodes is undefined.

    Application myapp - Situation 4

    However, if cp1 also restarts, the function application:takeover/2 moves │ │ │ │ myapp to cp1, as cp1 has a higher priority than cp3 for this │ │ │ │ application. In this case, Module:start({takeover, cp3@cave}, StartArgs) is │ │ │ │ executed at cp1 to start the application.

    Application myapp - Situation 5

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/distributed.xhtml │ │ │ │ @@ -47,25 +47,25 @@ │ │ │ │ │ │ │ │

    A node is an executing Erlang runtime system that has been given a name, using │ │ │ │ the command-line flag -name (long names) or │ │ │ │ -sname (short names).

    The format of the node name is an atom name@host. name is the name given by │ │ │ │ the user. host is the full host name if long names are used, or the first part │ │ │ │ of the host name if short names are used. Function node() │ │ │ │ returns the name of the node.

    Example:

    % erl -name dilbert
    │ │ │ │ -(dilbert@uab.ericsson.se)1> node().
    │ │ │ │ +(dilbert@uab.ericsson.se)1> node().
    │ │ │ │  'dilbert@uab.ericsson.se'
    │ │ │ │  
    │ │ │ │  % erl -sname dilbert
    │ │ │ │ -(dilbert@uab)1> node().
    │ │ │ │ +(dilbert@uab)1> node().
    │ │ │ │  dilbert@uab

    The node name can also be given in runtime by calling net_kernel:start/1.

    Example:

    % erl
    │ │ │ │ -1> node().
    │ │ │ │ +1> node().
    │ │ │ │  nonode@nohost
    │ │ │ │ -2> net_kernel:start([dilbert,shortnames]).
    │ │ │ │ -{ok,<0.102.0>}
    │ │ │ │ -(dilbert@uab)3> node().
    │ │ │ │ +2> net_kernel:start([dilbert,shortnames]).
    │ │ │ │ +{ok,<0.102.0>}
    │ │ │ │ +(dilbert@uab)3> node().
    │ │ │ │  dilbert@uab

    Note

    A node with a long node name cannot communicate with a node with a short node │ │ │ │ name.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Node Connections │ │ │ │

    │ │ │ ├── OEBPS/design_principles.xhtml │ │ │ │ @@ -57,135 +57,135 @@ │ │ │ │ the code for a process in a generic part (a behaviour module) and a specific │ │ │ │ part (a callback module).

    The behaviour module is part of Erlang/OTP. To implement a process such as a │ │ │ │ supervisor, the user only needs to implement the callback module, which is to │ │ │ │ export a pre-defined set of functions, the callback functions.

    The following example illustrate how code can be divided into a generic and a │ │ │ │ specific part. Consider the following code (written in plain Erlang) for a │ │ │ │ simple server, which keeps track of a number of "channels". Other processes can │ │ │ │ allocate and free the channels by calling the functions alloc/0 and free/1, │ │ │ │ -respectively.

    -module(ch1).
    │ │ │ │ --export([start/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/0]).
    │ │ │ │ +respectively.

    -module(ch1).
    │ │ │ │ +-export([start/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/0]).
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    spawn(ch1, init, []).
    │ │ │ │ +start() ->
    │ │ │ │ +    spawn(ch1, init, []).
    │ │ │ │  
    │ │ │ │ -alloc() ->
    │ │ │ │ -    ch1 ! {self(), alloc},
    │ │ │ │ +alloc() ->
    │ │ │ │ +    ch1 ! {self(), alloc},
    │ │ │ │      receive
    │ │ │ │ -        {ch1, Res} ->
    │ │ │ │ +        {ch1, Res} ->
    │ │ │ │              Res
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    ch1 ! {free, Ch},
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    ch1 ! {free, Ch},
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │ -init() ->
    │ │ │ │ -    register(ch1, self()),
    │ │ │ │ -    Chs = channels(),
    │ │ │ │ -    loop(Chs).
    │ │ │ │ +init() ->
    │ │ │ │ +    register(ch1, self()),
    │ │ │ │ +    Chs = channels(),
    │ │ │ │ +    loop(Chs).
    │ │ │ │  
    │ │ │ │ -loop(Chs) ->
    │ │ │ │ +loop(Chs) ->
    │ │ │ │      receive
    │ │ │ │ -        {From, alloc} ->
    │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -            From ! {ch1, Ch},
    │ │ │ │ -            loop(Chs2);
    │ │ │ │ -        {free, Ch} ->
    │ │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ │ -            loop(Chs2)
    │ │ │ │ -    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ │ --export([start/1]).
    │ │ │ │ --export([call/2, cast/2]).
    │ │ │ │ --export([init/1]).
    │ │ │ │ +        {From, alloc} ->
    │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +            From ! {ch1, Ch},
    │ │ │ │ +            loop(Chs2);
    │ │ │ │ +        {free, Ch} ->
    │ │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ │ +            loop(Chs2)
    │ │ │ │ +    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ │ +-export([start/1]).
    │ │ │ │ +-export([call/2, cast/2]).
    │ │ │ │ +-export([init/1]).
    │ │ │ │  
    │ │ │ │ -start(Mod) ->
    │ │ │ │ -    spawn(server, init, [Mod]).
    │ │ │ │ +start(Mod) ->
    │ │ │ │ +    spawn(server, init, [Mod]).
    │ │ │ │  
    │ │ │ │ -call(Name, Req) ->
    │ │ │ │ -    Name ! {call, self(), Req},
    │ │ │ │ +call(Name, Req) ->
    │ │ │ │ +    Name ! {call, self(), Req},
    │ │ │ │      receive
    │ │ │ │ -        {Name, Res} ->
    │ │ │ │ +        {Name, Res} ->
    │ │ │ │              Res
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -cast(Name, Req) ->
    │ │ │ │ -    Name ! {cast, Req},
    │ │ │ │ +cast(Name, Req) ->
    │ │ │ │ +    Name ! {cast, Req},
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │ -init(Mod) ->
    │ │ │ │ -    register(Mod, self()),
    │ │ │ │ -    State = Mod:init(),
    │ │ │ │ -    loop(Mod, State).
    │ │ │ │ +init(Mod) ->
    │ │ │ │ +    register(Mod, self()),
    │ │ │ │ +    State = Mod:init(),
    │ │ │ │ +    loop(Mod, State).
    │ │ │ │  
    │ │ │ │ -loop(Mod, State) ->
    │ │ │ │ +loop(Mod, State) ->
    │ │ │ │      receive
    │ │ │ │ -        {call, From, Req} ->
    │ │ │ │ -            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ │ -            From ! {Mod, Res},
    │ │ │ │ -            loop(Mod, State2);
    │ │ │ │ -        {cast, Req} ->
    │ │ │ │ -            State2 = Mod:handle_cast(Req, State),
    │ │ │ │ -            loop(Mod, State2)
    │ │ │ │ -    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ │ --export([start/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ │ -
    │ │ │ │ -start() ->
    │ │ │ │ -    server:start(ch2).
    │ │ │ │ -
    │ │ │ │ -alloc() ->
    │ │ │ │ -    server:call(ch2, alloc).
    │ │ │ │ -
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    server:cast(ch2, {free, Ch}).
    │ │ │ │ +        {call, From, Req} ->
    │ │ │ │ +            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ │ +            From ! {Mod, Res},
    │ │ │ │ +            loop(Mod, State2);
    │ │ │ │ +        {cast, Req} ->
    │ │ │ │ +            State2 = Mod:handle_cast(Req, State),
    │ │ │ │ +            loop(Mod, State2)
    │ │ │ │ +    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ │ +-export([start/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ │ +
    │ │ │ │ +start() ->
    │ │ │ │ +    server:start(ch2).
    │ │ │ │ +
    │ │ │ │ +alloc() ->
    │ │ │ │ +    server:call(ch2, alloc).
    │ │ │ │ +
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    server:cast(ch2, {free, Ch}).
    │ │ │ │  
    │ │ │ │ -init() ->
    │ │ │ │ -    channels().
    │ │ │ │ +init() ->
    │ │ │ │ +    channels().
    │ │ │ │  
    │ │ │ │ -handle_call(alloc, Chs) ->
    │ │ │ │ -    alloc(Chs). % => {Ch,Chs2}
    │ │ │ │ +handle_call(alloc, Chs) ->
    │ │ │ │ +    alloc(Chs). % => {Ch,Chs2}
    │ │ │ │  
    │ │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ │ the client functions. This means that the name can be changed without │ │ │ │ affecting them.
    • The protocol (messages sent to and received from the server) is also hidden. │ │ │ │ This is good programming practice and allows one to change the protocol │ │ │ │ without changing the code using the interface functions.
    • The functionality of server can be extended without having to change ch2 │ │ │ │ or any other callback module.

    In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1, │ │ │ │ and free/2 has been intentionally left out, as it is not relevant to the │ │ │ │ example. For completeness, one way to write these functions is given below. This │ │ │ │ is an example only, a realistic implementation must be able to handle situations │ │ │ │ -like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ │ -   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ │ +like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ │ +   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ │  
    │ │ │ │ -alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ │ -   {H, {[H|Allocated], T}}.
    │ │ │ │ +alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ │ +   {H, {[H|Allocated], T}}.
    │ │ │ │  
    │ │ │ │ -free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ │ -   case lists:member(Ch, Alloc) of
    │ │ │ │ +free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ │ +   case lists:member(Ch, Alloc) of
    │ │ │ │        true ->
    │ │ │ │ -         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ │ +         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ │        false ->
    │ │ │ │           Channels
    │ │ │ │     end.

    Code written without using behaviours can be more efficient, but the increased │ │ │ │ efficiency is at the expense of generality. The ability to manage all │ │ │ │ applications in the system in a consistent manner is important.

    Using behaviours also makes it easier to read and understand code written by │ │ │ │ other programmers. Improvised programming structures, while possibly more │ │ │ │ efficient, are always more difficult to understand.

    The server module corresponds, greatly simplified, to the Erlang/OTP behaviour │ │ │ │ gen_server.

    The standard Erlang/OTP behaviours are:

    • gen_server

      For implementing the server of a client-server relation

    • gen_statem

      For implementing state machines

    • gen_event

      For implementing event handling functionality

    • supervisor

      For implementing a supervisor in a supervision tree

    The compiler understands the module attribute -behaviour(Behaviour) and issues │ │ │ │ -warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ │ --behaviour(gen_server).
    │ │ │ │ +warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ │ +-behaviour(gen_server).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -3> c(chs3).
    │ │ │ │ +3> c(chs3).
    │ │ │ │  ./chs3.erl:10: Warning: undefined call-back function handle_call/3
    │ │ │ │ -{ok,chs3}

    │ │ │ │ +{ok,chs3}

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Applications │ │ │ │

    │ │ │ │

    Erlang/OTP comes with a number of components, each implementing some specific │ │ │ │ functionality. Components are with Erlang/OTP terminology called applications. │ │ │ ├── OEBPS/data_types.xhtml │ │ │ │ @@ -97,18 +97,18 @@ │ │ │ │ │ │ │ │ Representation of Floating Point Numbers │ │ │ │ │ │ │ │

    When working with floats you may not see what you expect when printing or doing │ │ │ │ arithmetic operations. This is because floats are represented by a fixed number │ │ │ │ of bits in a base-2 system while printed floats are represented with a base-10 │ │ │ │ system. Erlang uses 64-bit floats. Here are examples of this phenomenon:

    1> 0.1+0.2.
    │ │ │ │ -0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ │ -  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ │ -{3.602879701896397e16, true,
    │ │ │ │ - 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ │ +0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ │ +  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ │ +{3.602879701896397e16, true,
    │ │ │ │ + 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ │ Erlang's pretty printer rounds 36028797018963968.0 to 3.602879701896397e16 │ │ │ │ (=36028797018963970.0) as all values in the range │ │ │ │ [36028797018963966.0, 36028797018963972.0] are represented by │ │ │ │ 36028797018963968.0.

    For more information about floats and issues with them see:

    If you need to work with exact decimal fractions, for instance to represent │ │ │ │ money, it is recommended to use a library that handles that, or work in │ │ │ │ cents instead of dollars or euros so that decimal fractions are not needed.

    Also note that Erlang's floats do not exactly match IEEE 754 floats, │ │ │ │ in that neither Inf nor NaN are supported in Erlang. Any │ │ │ │ @@ -142,52 +142,52 @@ │ │ │ │ by eight are called binaries.

    Examples:

    1> <<10,20>>.
    │ │ │ │  <<10,20>>
    │ │ │ │  2> <<"ABC">>.
    │ │ │ │  <<"ABC">>
    │ │ │ │  3> <<1:1,0:1>>.
    │ │ │ │  <<2:2>>

    The is_bitstring/1 BIF tests whether a │ │ │ │ term is a bit string, and the is_binary/1 │ │ │ │ -BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ │ +BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ │  true
    │ │ │ │ -2> is_binary(<<1:1>>).
    │ │ │ │ +2> is_binary(<<1:1>>).
    │ │ │ │  false
    │ │ │ │ -3> is_binary(<<42>>).
    │ │ │ │ +3> is_binary(<<42>>).
    │ │ │ │  true
    │ │ │ │  

    For more examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Reference │ │ │ │

    │ │ │ │

    A term that is unique │ │ │ │ among connected nodes. A reference is created by calling the │ │ │ │ make_ref/0 BIF. The │ │ │ │ is_reference/1 BIF tests whether a term │ │ │ │ -is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ │ +is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ │  #Ref<0.76482849.3801088007.198204>
    │ │ │ │ -2> is_reference(Ref).
    │ │ │ │ +2> is_reference(Ref).
    │ │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fun │ │ │ │

    │ │ │ │

    A fun is a functional object. Funs make it possible to create an anonymous │ │ │ │ function and pass the function itself — not its name — as argument to other │ │ │ │ -functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ │ +functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ │ -2> Fun1(2).
    │ │ │ │ +2> Fun1(2).
    │ │ │ │  3

    The is_function/1 and is_function/2 │ │ │ │ -BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ │ +BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ │  #Fun<erl_eval.43.105768164>
    │ │ │ │ -2> is_function(F).
    │ │ │ │ +2> is_function(F).
    │ │ │ │  true
    │ │ │ │ -3> is_function(F, 0).
    │ │ │ │ +3> is_function(F, 0).
    │ │ │ │  true
    │ │ │ │ -4> is_function(F, 1).
    │ │ │ │ +4> is_function(F, 1).
    │ │ │ │  false

    Read more about funs in Fun Expressions. For more │ │ │ │ examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Port Identifier │ │ │ │

    │ │ │ │ @@ -205,94 +205,94 @@ │ │ │ │ for a new process after a while.

    The BIF self/0 returns the Pid of the calling process. When │ │ │ │ creating a new process, the parent │ │ │ │ process will be able to get the Pid of the child process either via the return │ │ │ │ value, as is the case when calling the spawn/3 BIF, or via │ │ │ │ a message, which is the case when calling the │ │ │ │ spawn_request/5 BIF. A Pid is typically used when │ │ │ │ when sending a process a signal. The │ │ │ │ -is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ │ --export([loop/0]).
    │ │ │ │ +is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ │ +-export([loop/0]).
    │ │ │ │  
    │ │ │ │ -loop() ->
    │ │ │ │ +loop() ->
    │ │ │ │      receive
    │ │ │ │          who_are_you ->
    │ │ │ │ -            io:format("I am ~p~n", [self()]),
    │ │ │ │ -            loop()
    │ │ │ │ +            io:format("I am ~p~n", [self()]),
    │ │ │ │ +            loop()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -1> P = spawn(m, loop, []).
    │ │ │ │ +1> P = spawn(m, loop, []).
    │ │ │ │  <0.58.0>
    │ │ │ │  2> P ! who_are_you.
    │ │ │ │  I am <0.58.0>
    │ │ │ │  who_are_you

    Read more about processes in Processes.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Tuple │ │ │ │

    │ │ │ │

    A tuple is a compound data type with a fixed number of terms:

    {Term1,...,TermN}

    Each term Term in the tuple is called an element. The number of elements is │ │ │ │ -said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ │ -{adam,24,{july,29}}
    │ │ │ │ -2> element(1,P).
    │ │ │ │ +said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ │ +{adam,24,{july,29}}
    │ │ │ │ +2> element(1,P).
    │ │ │ │  adam
    │ │ │ │ -3> element(3,P).
    │ │ │ │ -{july,29}
    │ │ │ │ -4> P2 = setelement(2,P,25).
    │ │ │ │ -{adam,25,{july,29}}
    │ │ │ │ -5> tuple_size(P).
    │ │ │ │ +3> element(3,P).
    │ │ │ │ +{july,29}
    │ │ │ │ +4> P2 = setelement(2,P,25).
    │ │ │ │ +{adam,25,{july,29}}
    │ │ │ │ +5> tuple_size(P).
    │ │ │ │  3
    │ │ │ │ -6> tuple_size({}).
    │ │ │ │ +6> tuple_size({}).
    │ │ │ │  0
    │ │ │ │ -7> is_tuple({a,b,c}).
    │ │ │ │ +7> is_tuple({a,b,c}).
    │ │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Map │ │ │ │

    │ │ │ │

    A map is a compound data type with a variable number of key-value associations:

    #{Key1 => Value1, ..., KeyN => ValueN}

    Each key-value association in the map is called an association pair. The key │ │ │ │ and value parts of the pair are called elements. The number of association │ │ │ │ -pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ │ -#{age => 24,date => {july,29},name => adam}
    │ │ │ │ -2> maps:get(name, M1).
    │ │ │ │ +pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ │ +#{age => 24,date => {july,29},name => adam}
    │ │ │ │ +2> maps:get(name, M1).
    │ │ │ │  adam
    │ │ │ │ -3> maps:get(date, M1).
    │ │ │ │ -{july,29}
    │ │ │ │ -4> M2 = maps:update(age, 25, M1).
    │ │ │ │ -#{age => 25,date => {july,29},name => adam}
    │ │ │ │ -5> map_size(M).
    │ │ │ │ +3> maps:get(date, M1).
    │ │ │ │ +{july,29}
    │ │ │ │ +4> M2 = maps:update(age, 25, M1).
    │ │ │ │ +#{age => 25,date => {july,29},name => adam}
    │ │ │ │ +5> map_size(M).
    │ │ │ │  3
    │ │ │ │ -6> map_size(#{}).
    │ │ │ │ +6> map_size(#{}).
    │ │ │ │  0

    A collection of maps processing functions are found in module maps │ │ │ │ in STDLIB.

    Read more about maps in Map Expressions.

    Change

    Maps were introduced as an experimental feature in Erlang/OTP R17. Their │ │ │ │ functionality was extended and became fully supported in Erlang/OTP 18.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List │ │ │ │

    │ │ │ │

    A list is a compound data type with a variable number of terms.

    [Term1,...,TermN]

    Each term Term in the list is called an element. The number of elements is │ │ │ │ said to be the length of the list.

    Formally, a list is either the empty list [] or consists of a head (first │ │ │ │ element) and a tail (remainder of the list). The tail is also a list. The │ │ │ │ latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is │ │ │ │ equivalent with the list [Term1|[...|[TermN|[]]]].

    Example:

    [] is a list, thus
    [c|[]] is a list, thus
    [b|[c|[]]] is a list, thus
    [a|[b|[c|[]]]] is a list, or in short [a,b,c]

    A list where the tail is a list is sometimes called a proper list. It is │ │ │ │ allowed to have a list where the tail is not a list, for example, [a|b]. │ │ │ │ -However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ │ -[a,2,{c,4}]
    │ │ │ │ -2> [H|T] = L1.
    │ │ │ │ -[a,2,{c,4}]
    │ │ │ │ +However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ │ +[a,2,{c,4}]
    │ │ │ │ +2> [H|T] = L1.
    │ │ │ │ +[a,2,{c,4}]
    │ │ │ │  3> H.
    │ │ │ │  a
    │ │ │ │  4> T.
    │ │ │ │ -[2,{c,4}]
    │ │ │ │ -5> L2 = [d|T].
    │ │ │ │ -[d,2,{c,4}]
    │ │ │ │ -6> length(L1).
    │ │ │ │ +[2,{c,4}]
    │ │ │ │ +5> L2 = [d|T].
    │ │ │ │ +[d,2,{c,4}]
    │ │ │ │ +6> length(L1).
    │ │ │ │  3
    │ │ │ │ -7> length([]).
    │ │ │ │ +7> length([]).
    │ │ │ │  0

    A collection of list processing functions are found in module │ │ │ │ lists in STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ String │ │ │ │

    │ │ │ │ @@ -412,41 +412,41 @@ │ │ │ │ Record │ │ │ │ │ │ │ │

    A record is a data structure for storing a fixed number of elements. It has │ │ │ │ named fields and is similar to a struct in C. However, a record is not a true │ │ │ │ data type. Instead, record expressions are translated to tuple expressions │ │ │ │ during compilation. Therefore, record expressions are not understood by the │ │ │ │ shell unless special actions are taken. For details, see module shell │ │ │ │ -in STDLIB.

    Examples:

    -module(person).
    │ │ │ │ --export([new/2]).
    │ │ │ │ +in STDLIB.

    Examples:

    -module(person).
    │ │ │ │ +-export([new/2]).
    │ │ │ │  
    │ │ │ │ --record(person, {name, age}).
    │ │ │ │ +-record(person, {name, age}).
    │ │ │ │  
    │ │ │ │ -new(Name, Age) ->
    │ │ │ │ -    #person{name=Name, age=Age}.
    │ │ │ │ +new(Name, Age) ->
    │ │ │ │ +    #person{name=Name, age=Age}.
    │ │ │ │  
    │ │ │ │ -1> person:new(ernie, 44).
    │ │ │ │ -{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ │ +1> person:new(ernie, 44). │ │ │ │ +{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ │ found in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Boolean │ │ │ │

    │ │ │ │

    There is no Boolean data type in Erlang. Instead the atoms true and false │ │ │ │ are used to denote Boolean values. The is_boolean/1 │ │ │ │ BIF tests whether a term is a boolean.

    Examples:

    1> 2 =< 3.
    │ │ │ │  true
    │ │ │ │  2> true or false.
    │ │ │ │  true
    │ │ │ │ -3> is_boolean(true).
    │ │ │ │ +3> is_boolean(true).
    │ │ │ │  true
    │ │ │ │ -4> is_boolean(false).
    │ │ │ │ +4> is_boolean(false).
    │ │ │ │  true
    │ │ │ │ -5> is_boolean(ok).
    │ │ │ │ +5> is_boolean(ok).
    │ │ │ │  false

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Escape Sequences │ │ │ │

    │ │ │ │

    Within strings ("-delimited), quoted atoms, and the content of │ │ │ │ @@ -464,44 +464,44 @@ │ │ │ │ ~b or ~s sigils the escape sequences for normal │ │ │ │ strings, above, are used.

    Change

    Triple-quoted strings and sigils were introduced in Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Conversions │ │ │ │

    │ │ │ │ -

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ │ +

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ │  "hello"
    │ │ │ │ -2> list_to_atom("hello").
    │ │ │ │ +2> list_to_atom("hello").
    │ │ │ │  hello
    │ │ │ │ -3> binary_to_list(<<"hello">>).
    │ │ │ │ +3> binary_to_list(<<"hello">>).
    │ │ │ │  "hello"
    │ │ │ │ -4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ │ +4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ │  "hello"
    │ │ │ │ -5> list_to_binary("hello").
    │ │ │ │ -<<104,101,108,108,111>>
    │ │ │ │ -6> float_to_list(7.0).
    │ │ │ │ +5> list_to_binary("hello").
    │ │ │ │ +<<104,101,108,108,111>>
    │ │ │ │ +6> float_to_list(7.0).
    │ │ │ │  "7.00000000000000000000e+00"
    │ │ │ │ -7> list_to_float("7.000e+00").
    │ │ │ │ +7> list_to_float("7.000e+00").
    │ │ │ │  7.0
    │ │ │ │ -8> integer_to_list(77).
    │ │ │ │ +8> integer_to_list(77).
    │ │ │ │  "77"
    │ │ │ │ -9> list_to_integer("77").
    │ │ │ │ +9> list_to_integer("77").
    │ │ │ │  77
    │ │ │ │ -10> tuple_to_list({a,b,c}).
    │ │ │ │ -[a,b,c]
    │ │ │ │ -11> list_to_tuple([a,b,c]).
    │ │ │ │ -{a,b,c}
    │ │ │ │ -12> term_to_binary({a,b,c}).
    │ │ │ │ -<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ │ -13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ │ -{a,b,c}
    │ │ │ │ -14> binary_to_integer(<<"77">>).
    │ │ │ │ +10> tuple_to_list({a,b,c}).
    │ │ │ │ +[a,b,c]
    │ │ │ │ +11> list_to_tuple([a,b,c]).
    │ │ │ │ +{a,b,c}
    │ │ │ │ +12> term_to_binary({a,b,c}).
    │ │ │ │ +<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ │ +13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ │ +{a,b,c}
    │ │ │ │ +14> binary_to_integer(<<"77">>).
    │ │ │ │  77
    │ │ │ │ -15> integer_to_binary(77).
    │ │ │ │ -<<"77">>
    │ │ │ │ -16> float_to_binary(7.0).
    │ │ │ │ -<<"7.00000000000000000000e+00">>
    │ │ │ │ -17> binary_to_float(<<"7.000e+00">>).
    │ │ │ │ +15> integer_to_binary(77).
    │ │ │ │ +<<"77">>
    │ │ │ │ +16> float_to_binary(7.0).
    │ │ │ │ +<<"7.00000000000000000000e+00">>
    │ │ │ │ +17> binary_to_float(<<"7.000e+00">>).
    │ │ │ │  7.0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/create_target.xhtml │ │ │ │ @@ -43,21 +43,21 @@ │ │ │ │ Creating a Target System │ │ │ │ │ │ │ │

    It is assumed that you have a working Erlang/OTP system structured according to │ │ │ │ the OTP design principles.

    Step 1. Create a .rel file (see the rel(4) manual page in │ │ │ │ SASL), which specifies the ERTS version and lists all applications that are to │ │ │ │ be included in the new basic target system. An example is the following │ │ │ │ mysystem.rel file:

    %% mysystem.rel
    │ │ │ │ -{release,
    │ │ │ │ - {"MYSYSTEM", "FIRST"},
    │ │ │ │ - {erts, "5.10.4"},
    │ │ │ │ - [{kernel, "2.16.4"},
    │ │ │ │ -  {stdlib, "1.19.4"},
    │ │ │ │ -  {sasl, "2.3.4"},
    │ │ │ │ -  {pea, "1.0"}]}.

    The listed applications are not only original Erlang/OTP applications but │ │ │ │ +{release, │ │ │ │ + {"MYSYSTEM", "FIRST"}, │ │ │ │ + {erts, "5.10.4"}, │ │ │ │ + [{kernel, "2.16.4"}, │ │ │ │ + {stdlib, "1.19.4"}, │ │ │ │ + {sasl, "2.3.4"}, │ │ │ │ + {pea, "1.0"}]}.

    The listed applications are not only original Erlang/OTP applications but │ │ │ │ possibly also new applications that you have written (here exemplified by the │ │ │ │ application Pea (pea)).

    Step 2. Start Erlang/OTP from the directory where the mysystem.rel file │ │ │ │ resides:

    % erl -pa /home/user/target_system/myapps/pea-1.0/ebin

    The -pa argument prepends the path to the ebin directory for │ │ │ │ the Pea application to the code path.

    Step 3. Create the target system:

    1> target_system:create("mysystem").

    The function target_system:create/1 performs the following:

    1. Reads the file mysystem.rel and creates a new file plain.rel. │ │ │ │ The new file is identical to the original, except that it only │ │ │ │ lists the Kernel and STDLIB applications.

    2. From the files mysystem.rel and plain.rel creates the files │ │ │ │ mysystem.script, mysystem.boot, plain.script, and plain.boot │ │ │ │ @@ -147,25 +147,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating the Next Version │ │ │ │ │ │ │ │

      In this example the Pea application has been changed, and so are the │ │ │ │ applications ERTS, Kernel, STDLIB and SASL.

      Step 1. Create the file .rel:

      %% mysystem2.rel
      │ │ │ │ -{release,
      │ │ │ │ - {"MYSYSTEM", "SECOND"},
      │ │ │ │ - {erts, "6.0"},
      │ │ │ │ - [{kernel, "3.0"},
      │ │ │ │ -  {stdlib, "2.0"},
      │ │ │ │ -  {sasl, "2.4"},
      │ │ │ │ -  {pea, "2.0"}]}.

      Step 2. Create the application upgrade file (see │ │ │ │ +{release, │ │ │ │ + {"MYSYSTEM", "SECOND"}, │ │ │ │ + {erts, "6.0"}, │ │ │ │ + [{kernel, "3.0"}, │ │ │ │ + {stdlib, "2.0"}, │ │ │ │ + {sasl, "2.4"}, │ │ │ │ + {pea, "2.0"}]}.

    Step 2. Create the application upgrade file (see │ │ │ │ appup in SASL) for Pea, for example:

    %% pea.appup
    │ │ │ │ -{"2.0",
    │ │ │ │ - [{"1.0",[{load_module,pea_lib}]}],
    │ │ │ │ - [{"1.0",[{load_module,pea_lib}]}]}.

    Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ │ +{"2.0", │ │ │ │ + [{"1.0",[{load_module,pea_lib}]}], │ │ │ │ + [{"1.0",[{load_module,pea_lib}]}]}.

    Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ │ Erlang/OTP system, giving the path to the new version of Pea:

    % erl -pa /home/user/target_system/myapps/pea-2.0/ebin

    Step 4. Create the release upgrade file (see relup │ │ │ │ in SASL):

    1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],
    │ │ │ │      [{path,["/home/user/target_system/myapps/pea-1.0/ebin",
    │ │ │ │      "/my/old/erlang/lib/*/ebin"]}]).

    Here "mysystem" is the base release and "mysystem2" is the release to │ │ │ │ upgrade to.

    The path option is used for pointing out the old version of all applications. │ │ │ │ (The new versions are already in the code path - assuming of course that the │ │ │ │ Erlang node on which this is executed is running the correct version of │ │ │ │ @@ -197,21 +197,21 @@ │ │ │ │ {continue_after_restart,"FIRST",[]} │ │ │ │ heart: Tue Apr 1 12:15:10 2014: Erlang has closed. │ │ │ │ heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating. │ │ │ │ [End]

    The above return value and output after the call to │ │ │ │ release_handler:install_release/1 means that the release_handler has │ │ │ │ restarted the node by using heart. This is always done when the upgrade │ │ │ │ involves a change of the applications ERTS, Kernel, STDLIB, or SASL. For more │ │ │ │ -information, see Upgrade when Erlang/OTP has Changed.

    The node is accessible through a new pipe:

    % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

    List the available releases in the system:

    1> release_handler:which_releases().
    │ │ │ │ -[{"MYSYSTEM","SECOND",
    │ │ │ │ -  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │ -  current},
    │ │ │ │ - {"MYSYSTEM","FIRST",
    │ │ │ │ -  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ -  permanent}]

    Our new release, "SECOND", is now the current release, but we can also see that │ │ │ │ +information, see Upgrade when Erlang/OTP has Changed.

    The node is accessible through a new pipe:

    % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

    List the available releases in the system:

    1> release_handler:which_releases().
    │ │ │ │ +[{"MYSYSTEM","SECOND",
    │ │ │ │ +  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │ +  current},
    │ │ │ │ + {"MYSYSTEM","FIRST",
    │ │ │ │ +  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ +  permanent}]

    Our new release, "SECOND", is now the current release, but we can also see that │ │ │ │ our "FIRST" release is still permanent. This means that if the node would be │ │ │ │ restarted now, it would come up running the "FIRST" release again.

    Step 3. Make the new release permanent:

    2> release_handler:make_permanent("SECOND").

    Check the releases again:

    3> release_handler:which_releases().
    │ │ │ │  [{"MYSYSTEM","SECOND",
    │ │ │ │    ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │    permanent},
    │ │ │ │   {"MYSYSTEM","FIRST",
    │ │ │ │    ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ @@ -220,264 +220,264 @@
    │ │ │ │    
    │ │ │ │      
    │ │ │ │    
    │ │ │ │    Listing of target_system.erl
    │ │ │ │  
    │ │ │ │  

    This module can also be found in the examples directory of the SASL │ │ │ │ application.

    
    │ │ │ │ --module(target_system).
    │ │ │ │ --export([create/1, create/2, install/2]).
    │ │ │ │ +-module(target_system).
    │ │ │ │ +-export([create/1, create/2, install/2]).
    │ │ │ │  
    │ │ │ │  %% Note: RelFileName below is the *stem* without trailing .rel,
    │ │ │ │  %% .script etc.
    │ │ │ │  %%
    │ │ │ │  
    │ │ │ │  %% create(RelFileName)
    │ │ │ │  %%
    │ │ │ │ -create(RelFileName) ->
    │ │ │ │ -    create(RelFileName,[]).
    │ │ │ │ +create(RelFileName) ->
    │ │ │ │ +    create(RelFileName,[]).
    │ │ │ │  
    │ │ │ │ -create(RelFileName,SystoolsOpts) ->
    │ │ │ │ +create(RelFileName,SystoolsOpts) ->
    │ │ │ │      RelFile = RelFileName ++ ".rel",
    │ │ │ │ -    Dir = filename:dirname(RelFileName),
    │ │ │ │ -    PlainRelFileName = filename:join(Dir,"plain"),
    │ │ │ │ +    Dir = filename:dirname(RelFileName),
    │ │ │ │ +    PlainRelFileName = filename:join(Dir,"plain"),
    │ │ │ │      PlainRelFile = PlainRelFileName ++ ".rel",
    │ │ │ │ -    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
    │ │ │ │ -    {ok, [RelSpec]} = file:consult(RelFile),
    │ │ │ │ -    io:fwrite("Creating file: ~ts from ~ts ...~n",
    │ │ │ │ -              [PlainRelFile, RelFile]),
    │ │ │ │ -    {release,
    │ │ │ │ -     {RelName, RelVsn},
    │ │ │ │ -     {erts, ErtsVsn},
    │ │ │ │ -     AppVsns} = RelSpec,
    │ │ │ │ -    PlainRelSpec = {release,
    │ │ │ │ -                    {RelName, RelVsn},
    │ │ │ │ -                    {erts, ErtsVsn},
    │ │ │ │ -                    lists:filter(fun({kernel, _}) ->
    │ │ │ │ +    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
    │ │ │ │ +    {ok, [RelSpec]} = file:consult(RelFile),
    │ │ │ │ +    io:fwrite("Creating file: ~ts from ~ts ...~n",
    │ │ │ │ +              [PlainRelFile, RelFile]),
    │ │ │ │ +    {release,
    │ │ │ │ +     {RelName, RelVsn},
    │ │ │ │ +     {erts, ErtsVsn},
    │ │ │ │ +     AppVsns} = RelSpec,
    │ │ │ │ +    PlainRelSpec = {release,
    │ │ │ │ +                    {RelName, RelVsn},
    │ │ │ │ +                    {erts, ErtsVsn},
    │ │ │ │ +                    lists:filter(fun({kernel, _}) ->
    │ │ │ │                                           true;
    │ │ │ │ -                                    ({stdlib, _}) ->
    │ │ │ │ +                                    ({stdlib, _}) ->
    │ │ │ │                                           true;
    │ │ │ │ -                                    (_) ->
    │ │ │ │ +                                    (_) ->
    │ │ │ │                                           false
    │ │ │ │ -                                 end, AppVsns)
    │ │ │ │ -                   },
    │ │ │ │ -    {ok, Fd} = file:open(PlainRelFile, [write]),
    │ │ │ │ -    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
    │ │ │ │ -    file:close(Fd),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ -	      [PlainRelFileName,PlainRelFileName]),
    │ │ │ │ -    make_script(PlainRelFileName,SystoolsOpts),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ -              [RelFileName, RelFileName]),
    │ │ │ │ -    make_script(RelFileName,SystoolsOpts),
    │ │ │ │ +                                 end, AppVsns)
    │ │ │ │ +                   },
    │ │ │ │ +    {ok, Fd} = file:open(PlainRelFile, [write]),
    │ │ │ │ +    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
    │ │ │ │ +    file:close(Fd),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ +	      [PlainRelFileName,PlainRelFileName]),
    │ │ │ │ +    make_script(PlainRelFileName,SystoolsOpts),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ +              [RelFileName, RelFileName]),
    │ │ │ │ +    make_script(RelFileName,SystoolsOpts),
    │ │ │ │  
    │ │ │ │      TarFileName = RelFileName ++ ".tar.gz",
    │ │ │ │ -    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
    │ │ │ │ -    make_tar(RelFileName,SystoolsOpts),
    │ │ │ │ +    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
    │ │ │ │ +    make_tar(RelFileName,SystoolsOpts),
    │ │ │ │  
    │ │ │ │ -    TmpDir = filename:join(Dir,"tmp"),
    │ │ │ │ -    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
    │ │ │ │ -    file:make_dir(TmpDir),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
    │ │ │ │ -    extract_tar(TarFileName, TmpDir),
    │ │ │ │ -
    │ │ │ │ -    TmpBinDir = filename:join([TmpDir, "bin"]),
    │ │ │ │ -    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
    │ │ │ │ -    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
    │ │ │ │ -              [ErtsBinDir]),
    │ │ │ │ -    file:delete(filename:join([ErtsBinDir, "erl"])),
    │ │ │ │ -    file:delete(filename:join([ErtsBinDir, "start"])),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
    │ │ │ │ -    file:make_dir(TmpBinDir),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
    │ │ │ │ -              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
    │ │ │ │ -    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
    │ │ │ │ +    TmpDir = filename:join(Dir,"tmp"),
    │ │ │ │ +    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
    │ │ │ │ +    file:make_dir(TmpDir),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
    │ │ │ │ +    extract_tar(TarFileName, TmpDir),
    │ │ │ │ +
    │ │ │ │ +    TmpBinDir = filename:join([TmpDir, "bin"]),
    │ │ │ │ +    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
    │ │ │ │ +    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
    │ │ │ │ +              [ErtsBinDir]),
    │ │ │ │ +    file:delete(filename:join([ErtsBinDir, "erl"])),
    │ │ │ │ +    file:delete(filename:join([ErtsBinDir, "start"])),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
    │ │ │ │ +    file:make_dir(TmpBinDir),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
    │ │ │ │ +              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
    │ │ │ │ +    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
    │ │ │ │  
    │ │ │ │ -    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
    │ │ │ │ +    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
    │ │ │ │                "~ts to ~ts ...~n",
    │ │ │ │ -              [ErtsBinDir, TmpBinDir]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "epmd"]),
    │ │ │ │ -              filename:join([TmpBinDir, "epmd"]), [preserve]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "run_erl"]),
    │ │ │ │ -              filename:join([TmpBinDir, "run_erl"]), [preserve]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "to_erl"]),
    │ │ │ │ -              filename:join([TmpBinDir, "to_erl"]), [preserve]),
    │ │ │ │ +              [ErtsBinDir, TmpBinDir]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "epmd"]),
    │ │ │ │ +              filename:join([TmpBinDir, "epmd"]), [preserve]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "run_erl"]),
    │ │ │ │ +              filename:join([TmpBinDir, "run_erl"]), [preserve]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "to_erl"]),
    │ │ │ │ +              filename:join([TmpBinDir, "to_erl"]), [preserve]),
    │ │ │ │  
    │ │ │ │      %% This is needed if 'start' script created from 'start.src' shall
    │ │ │ │      %% be used as it points out this directory as log dir for 'run_erl'
    │ │ │ │ -    TmpLogDir = filename:join([TmpDir, "log"]),
    │ │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
    │ │ │ │ -    ok = file:make_dir(TmpLogDir),
    │ │ │ │ -
    │ │ │ │ -    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
    │ │ │ │ -    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
    │ │ │ │ -    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
    │ │ │ │ -    write_file(StartErlDataFile, StartErlData),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
    │ │ │ │ -	      [TarFileName,TmpDir]),
    │ │ │ │ -    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
    │ │ │ │ +    TmpLogDir = filename:join([TmpDir, "log"]),
    │ │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
    │ │ │ │ +    ok = file:make_dir(TmpLogDir),
    │ │ │ │ +
    │ │ │ │ +    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
    │ │ │ │ +    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
    │ │ │ │ +    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
    │ │ │ │ +    write_file(StartErlDataFile, StartErlData),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
    │ │ │ │ +	      [TarFileName,TmpDir]),
    │ │ │ │ +    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
    │ │ │ │      %% {ok, Cwd} = file:get_cwd(),
    │ │ │ │      %% file:set_cwd("tmp"),
    │ │ │ │      ErtsDir = "erts-"++ErtsVsn,
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
    │ │ │ │ -    erl_tar:close(Tar),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
    │ │ │ │ +    erl_tar:close(Tar),
    │ │ │ │      %% file:set_cwd(Cwd),
    │ │ │ │ -    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
    │ │ │ │ -    remove_dir_tree(TmpDir),
    │ │ │ │ +    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
    │ │ │ │ +    remove_dir_tree(TmpDir),
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │ -install(RelFileName, RootDir) ->
    │ │ │ │ +install(RelFileName, RootDir) ->
    │ │ │ │      TarFile = RelFileName ++ ".tar.gz",
    │ │ │ │ -    io:fwrite("Extracting ~ts ...~n", [TarFile]),
    │ │ │ │ -    extract_tar(TarFile, RootDir),
    │ │ │ │ -    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
    │ │ │ │ -    {ok, StartErlData} = read_txt_file(StartErlDataFile),
    │ │ │ │ -    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
    │ │ │ │ -    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
    │ │ │ │ -    BinDir = filename:join([RootDir, "bin"]),
    │ │ │ │ -    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
    │ │ │ │ -              "form erl, start and start_erl ...\n"),
    │ │ │ │ -    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
    │ │ │ │ -                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
    │ │ │ │ -                      [preserve]),
    │ │ │ │ +    io:fwrite("Extracting ~ts ...~n", [TarFile]),
    │ │ │ │ +    extract_tar(TarFile, RootDir),
    │ │ │ │ +    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
    │ │ │ │ +    {ok, StartErlData} = read_txt_file(StartErlDataFile),
    │ │ │ │ +    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
    │ │ │ │ +    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
    │ │ │ │ +    BinDir = filename:join([RootDir, "bin"]),
    │ │ │ │ +    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
    │ │ │ │ +              "form erl, start and start_erl ...\n"),
    │ │ │ │ +    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
    │ │ │ │ +                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
    │ │ │ │ +                      [preserve]),
    │ │ │ │      %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
    │ │ │ │      %%! not have correct permissions, so the above 'preserve' option did not help
    │ │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
    │ │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
    │ │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
    │ │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
    │ │ │ │  
    │ │ │ │ -    io:fwrite("Creating the RELEASES file ...\n"),
    │ │ │ │ -    create_RELEASES(RootDir, filename:join([RootDir, "releases",
    │ │ │ │ -					    filename:basename(RelFileName)])).
    │ │ │ │ +    io:fwrite("Creating the RELEASES file ...\n"),
    │ │ │ │ +    create_RELEASES(RootDir, filename:join([RootDir, "releases",
    │ │ │ │ +					    filename:basename(RelFileName)])).
    │ │ │ │  
    │ │ │ │  %% LOCALS
    │ │ │ │  
    │ │ │ │  %% make_script(RelFileName,Opts)
    │ │ │ │  %%
    │ │ │ │ -make_script(RelFileName,Opts) ->
    │ │ │ │ -    systools:make_script(RelFileName, [no_module_tests,
    │ │ │ │ -				       {outdir,filename:dirname(RelFileName)}
    │ │ │ │ -				       |Opts]).
    │ │ │ │ +make_script(RelFileName,Opts) ->
    │ │ │ │ +    systools:make_script(RelFileName, [no_module_tests,
    │ │ │ │ +				       {outdir,filename:dirname(RelFileName)}
    │ │ │ │ +				       |Opts]).
    │ │ │ │  
    │ │ │ │  %% make_tar(RelFileName,Opts)
    │ │ │ │  %%
    │ │ │ │ -make_tar(RelFileName,Opts) ->
    │ │ │ │ -    RootDir = code:root_dir(),
    │ │ │ │ -    systools:make_tar(RelFileName, [{erts, RootDir},
    │ │ │ │ -				    {outdir,filename:dirname(RelFileName)}
    │ │ │ │ -				    |Opts]).
    │ │ │ │ +make_tar(RelFileName,Opts) ->
    │ │ │ │ +    RootDir = code:root_dir(),
    │ │ │ │ +    systools:make_tar(RelFileName, [{erts, RootDir},
    │ │ │ │ +				    {outdir,filename:dirname(RelFileName)}
    │ │ │ │ +				    |Opts]).
    │ │ │ │  
    │ │ │ │  %% extract_tar(TarFile, DestDir)
    │ │ │ │  %%
    │ │ │ │ -extract_tar(TarFile, DestDir) ->
    │ │ │ │ -    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
    │ │ │ │ +extract_tar(TarFile, DestDir) ->
    │ │ │ │ +    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
    │ │ │ │  
    │ │ │ │ -create_RELEASES(DestDir, RelFileName) ->
    │ │ │ │ -    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
    │ │ │ │ +create_RELEASES(DestDir, RelFileName) ->
    │ │ │ │ +    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
    │ │ │ │  
    │ │ │ │ -subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ -    lists:foreach(fun(Script) ->
    │ │ │ │ -                          subst_src_script(Script, SrcDir, DestDir,
    │ │ │ │ -                                           Vars, Opts)
    │ │ │ │ -                  end, Scripts).
    │ │ │ │ -
    │ │ │ │ -subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ -    subst_file(filename:join([SrcDir, Script ++ ".src"]),
    │ │ │ │ -               filename:join([DestDir, Script]),
    │ │ │ │ -               Vars, Opts).
    │ │ │ │ -
    │ │ │ │ -subst_file(Src, Dest, Vars, Opts) ->
    │ │ │ │ -    {ok, Conts} = read_txt_file(Src),
    │ │ │ │ -    NConts = subst(Conts, Vars),
    │ │ │ │ -    write_file(Dest, NConts),
    │ │ │ │ -    case lists:member(preserve, Opts) of
    │ │ │ │ +subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ +    lists:foreach(fun(Script) ->
    │ │ │ │ +                          subst_src_script(Script, SrcDir, DestDir,
    │ │ │ │ +                                           Vars, Opts)
    │ │ │ │ +                  end, Scripts).
    │ │ │ │ +
    │ │ │ │ +subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ +    subst_file(filename:join([SrcDir, Script ++ ".src"]),
    │ │ │ │ +               filename:join([DestDir, Script]),
    │ │ │ │ +               Vars, Opts).
    │ │ │ │ +
    │ │ │ │ +subst_file(Src, Dest, Vars, Opts) ->
    │ │ │ │ +    {ok, Conts} = read_txt_file(Src),
    │ │ │ │ +    NConts = subst(Conts, Vars),
    │ │ │ │ +    write_file(Dest, NConts),
    │ │ │ │ +    case lists:member(preserve, Opts) of
    │ │ │ │          true ->
    │ │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ -            file:write_file_info(Dest, FileInfo);
    │ │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ +            file:write_file_info(Dest, FileInfo);
    │ │ │ │          false ->
    │ │ │ │              ok
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %% subst(Str, Vars)
    │ │ │ │  %% Vars = [{Var, Val}]
    │ │ │ │  %% Var = Val = string()
    │ │ │ │  %% Substitute all occurrences of %Var% for Val in Str, using the list
    │ │ │ │  %% of variables in Vars.
    │ │ │ │  %%
    │ │ │ │ -subst(Str, Vars) ->
    │ │ │ │ -    subst(Str, Vars, []).
    │ │ │ │ +subst(Str, Vars) ->
    │ │ │ │ +    subst(Str, Vars, []).
    │ │ │ │  
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when  C == $_ ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([C| Rest], Vars, Result) ->
    │ │ │ │ -    subst(Rest, Vars, [C| Result]);
    │ │ │ │ -subst([], _Vars, Result) ->
    │ │ │ │ -    lists:reverse(Result).
    │ │ │ │ -
    │ │ │ │ -subst_var([$%| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ -    Key = lists:reverse(VarAcc),
    │ │ │ │ -    case lists:keysearch(Key, 1, Vars) of
    │ │ │ │ -        {value, {Key, Value}} ->
    │ │ │ │ -            subst(Rest, Vars, lists:reverse(Value, Result));
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when  C == $_ ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([C| Rest], Vars, Result) ->
    │ │ │ │ +    subst(Rest, Vars, [C| Result]);
    │ │ │ │ +subst([], _Vars, Result) ->
    │ │ │ │ +    lists:reverse(Result).
    │ │ │ │ +
    │ │ │ │ +subst_var([$%| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ +    Key = lists:reverse(VarAcc),
    │ │ │ │ +    case lists:keysearch(Key, 1, Vars) of
    │ │ │ │ +        {value, {Key, Value}} ->
    │ │ │ │ +            subst(Rest, Vars, lists:reverse(Value, Result));
    │ │ │ │          false ->
    │ │ │ │ -            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
    │ │ │ │ +            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
    │ │ │ │      end;
    │ │ │ │ -subst_var([C| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ -    subst_var(Rest, Vars, Result, [C| VarAcc]);
    │ │ │ │ -subst_var([], Vars, Result, VarAcc) ->
    │ │ │ │ -    subst([], Vars, [VarAcc ++ [$%| Result]]).
    │ │ │ │ -
    │ │ │ │ -copy_file(Src, Dest) ->
    │ │ │ │ -    copy_file(Src, Dest, []).
    │ │ │ │ -
    │ │ │ │ -copy_file(Src, Dest, Opts) ->
    │ │ │ │ -    {ok,_} = file:copy(Src, Dest),
    │ │ │ │ -    case lists:member(preserve, Opts) of
    │ │ │ │ +subst_var([C| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ +    subst_var(Rest, Vars, Result, [C| VarAcc]);
    │ │ │ │ +subst_var([], Vars, Result, VarAcc) ->
    │ │ │ │ +    subst([], Vars, [VarAcc ++ [$%| Result]]).
    │ │ │ │ +
    │ │ │ │ +copy_file(Src, Dest) ->
    │ │ │ │ +    copy_file(Src, Dest, []).
    │ │ │ │ +
    │ │ │ │ +copy_file(Src, Dest, Opts) ->
    │ │ │ │ +    {ok,_} = file:copy(Src, Dest),
    │ │ │ │ +    case lists:member(preserve, Opts) of
    │ │ │ │          true ->
    │ │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ -            file:write_file_info(Dest, FileInfo);
    │ │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ +            file:write_file_info(Dest, FileInfo);
    │ │ │ │          false ->
    │ │ │ │              ok
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -write_file(FName, Conts) ->
    │ │ │ │ -    Enc = file:native_name_encoding(),
    │ │ │ │ -    {ok, Fd} = file:open(FName, [write]),
    │ │ │ │ -    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
    │ │ │ │ -    file:close(Fd).
    │ │ │ │ -
    │ │ │ │ -read_txt_file(File) ->
    │ │ │ │ -    {ok, Bin} = file:read_file(File),
    │ │ │ │ -    {ok, binary_to_list(Bin)}.
    │ │ │ │ -
    │ │ │ │ -remove_dir_tree(Dir) ->
    │ │ │ │ -    remove_all_files(".", [Dir]).
    │ │ │ │ -
    │ │ │ │ -remove_all_files(Dir, Files) ->
    │ │ │ │ -    lists:foreach(fun(File) ->
    │ │ │ │ -                          FilePath = filename:join([Dir, File]),
    │ │ │ │ -                          case filelib:is_dir(FilePath) of
    │ │ │ │ +write_file(FName, Conts) ->
    │ │ │ │ +    Enc = file:native_name_encoding(),
    │ │ │ │ +    {ok, Fd} = file:open(FName, [write]),
    │ │ │ │ +    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
    │ │ │ │ +    file:close(Fd).
    │ │ │ │ +
    │ │ │ │ +read_txt_file(File) ->
    │ │ │ │ +    {ok, Bin} = file:read_file(File),
    │ │ │ │ +    {ok, binary_to_list(Bin)}.
    │ │ │ │ +
    │ │ │ │ +remove_dir_tree(Dir) ->
    │ │ │ │ +    remove_all_files(".", [Dir]).
    │ │ │ │ +
    │ │ │ │ +remove_all_files(Dir, Files) ->
    │ │ │ │ +    lists:foreach(fun(File) ->
    │ │ │ │ +                          FilePath = filename:join([Dir, File]),
    │ │ │ │ +                          case filelib:is_dir(FilePath) of
    │ │ │ │                                true ->
    │ │ │ │ -                                  {ok, DirFiles} = file:list_dir(FilePath),
    │ │ │ │ -                                  remove_all_files(FilePath, DirFiles),
    │ │ │ │ -                                  file:del_dir(FilePath);
    │ │ │ │ +                                  {ok, DirFiles} = file:list_dir(FilePath),
    │ │ │ │ +                                  remove_all_files(FilePath, DirFiles),
    │ │ │ │ +                                  file:del_dir(FilePath);
    │ │ │ │                                _ ->
    │ │ │ │ -                                  file:delete(FilePath)
    │ │ │ │ +                                  file:delete(FilePath)
    │ │ │ │                            end
    │ │ │ │ -                  end, Files).
    │ │ │ │ + end, Files).
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/content.opf │ │ │ │ ├── OEBPS/content.opf │ │ │ │ │ @@ -1,14 +1,14 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Erlang System Documentation - 27.3.4.1 │ │ │ │ │ - urn:uuid:0afb0830-b2de-2fb7-c2e5-cdfb4c0e115d │ │ │ │ │ + urn:uuid:47472685-58ec-9bda-dff7-fcf530b2648d │ │ │ │ │ en │ │ │ │ │ - 2025-07-08T08:11:07Z │ │ │ │ │ + 2025-07-26T21:28:41Z │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -82,21 +82,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ │ │ - │ │ │ │ │ │ │ │ │ │ - │ │ │ │ │ - │ │ │ │ │ │ │ │ │ │ + │ │ │ │ │ + │ │ │ │ │ + │ │ │ │ │ │ │ │ │ │ + │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/conc_prog.xhtml │ │ │ │ @@ -37,107 +37,107 @@ │ │ │ │ threads of execution in an Erlang program and to allow these threads to │ │ │ │ communicate with each other. In Erlang, each thread of execution is called a │ │ │ │ process.

    (Aside: the term "process" is usually used when the threads of execution share │ │ │ │ no data with each other and the term "thread" when they share data in some way. │ │ │ │ Threads of execution in Erlang share no data, that is why they are called │ │ │ │ processes).

    The Erlang BIF spawn is used to create a new process: │ │ │ │ spawn(Module, Exported_Function, List of Arguments). Consider the following │ │ │ │ -module:

    -module(tut14).
    │ │ │ │ +module:

    -module(tut14).
    │ │ │ │  
    │ │ │ │ --export([start/0, say_something/2]).
    │ │ │ │ +-export([start/0, say_something/2]).
    │ │ │ │  
    │ │ │ │ -say_something(What, 0) ->
    │ │ │ │ +say_something(What, 0) ->
    │ │ │ │      done;
    │ │ │ │ -say_something(What, Times) ->
    │ │ │ │ -    io:format("~p~n", [What]),
    │ │ │ │ -    say_something(What, Times - 1).
    │ │ │ │ -
    │ │ │ │ -start() ->
    │ │ │ │ -    spawn(tut14, say_something, [hello, 3]),
    │ │ │ │ -    spawn(tut14, say_something, [goodbye, 3]).
    5> c(tut14).
    │ │ │ │ -{ok,tut14}
    │ │ │ │ -6> tut14:say_something(hello, 3).
    │ │ │ │ +say_something(What, Times) ->
    │ │ │ │ +    io:format("~p~n", [What]),
    │ │ │ │ +    say_something(What, Times - 1).
    │ │ │ │ +
    │ │ │ │ +start() ->
    │ │ │ │ +    spawn(tut14, say_something, [hello, 3]),
    │ │ │ │ +    spawn(tut14, say_something, [goodbye, 3]).
    5> c(tut14).
    │ │ │ │ +{ok,tut14}
    │ │ │ │ +6> tut14:say_something(hello, 3).
    │ │ │ │  hello
    │ │ │ │  hello
    │ │ │ │  hello
    │ │ │ │  done

    As shown, the function say_something writes its first argument the number of │ │ │ │ times specified by second argument. The function start starts two Erlang │ │ │ │ processes, one that writes "hello" three times and one that writes "goodbye" │ │ │ │ three times. Both processes use the function say_something. Notice that a │ │ │ │ function used in this way by spawn, to start a process, must be exported from │ │ │ │ -the module (that is, in the -export at the start of the module).

    9> tut14:start().
    │ │ │ │ +the module (that is, in the -export at the start of the module).

    9> tut14:start().
    │ │ │ │  hello
    │ │ │ │  goodbye
    │ │ │ │  <0.63.0>
    │ │ │ │  hello
    │ │ │ │  goodbye
    │ │ │ │  hello
    │ │ │ │  goodbye

    Notice that it did not write "hello" three times and then "goodbye" three times. │ │ │ │ Instead, the first process wrote a "hello", the second a "goodbye", the first │ │ │ │ another "hello" and so forth. But where did the <0.63.0> come from? The return │ │ │ │ value of a function is the return value of the last "thing" in the function. The │ │ │ │ -last thing in the function start is

    spawn(tut14, say_something, [goodbye, 3]).

    spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ │ +last thing in the function start is

    spawn(tut14, say_something, [goodbye, 3]).

    spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ │ process. So <0.63.0> is the pid of the spawn function call above. The next │ │ │ │ example shows how to use pids.

    Notice also that ~p is used instead of ~w in io:format/2. To quote the manual:

    ~p Writes the data with standard syntax in the same way as ~w, but breaks terms │ │ │ │ whose printed representation is longer than one line into many lines and indents │ │ │ │ each line sensibly. It also tries to detect flat lists of printable characters and │ │ │ │ to output these as strings

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Message Passing │ │ │ │

    │ │ │ │

    In the following example two processes are created and they send messages to │ │ │ │ -each other a number of times.

    -module(tut15).
    │ │ │ │ +each other a number of times.

    -module(tut15).
    │ │ │ │  
    │ │ │ │ --export([start/0, ping/2, pong/0]).
    │ │ │ │ +-export([start/0, ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_PID) ->
    │ │ │ │ +ping(0, Pong_PID) ->
    │ │ │ │      Pong_PID ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_PID) ->
    │ │ │ │ -    Pong_PID ! {ping, self()},
    │ │ │ │ +ping(N, Pong_PID) ->
    │ │ │ │ +    Pong_PID ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_PID).
    │ │ │ │ +    ping(N - 1, Pong_PID).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    Pong_PID = spawn(tut15, pong, []),
    │ │ │ │ -    spawn(tut15, ping, [3, Pong_PID]).
    1> c(tut15).
    │ │ │ │ -{ok,tut15}
    │ │ │ │ -2> tut15: start().
    │ │ │ │ +start() ->
    │ │ │ │ +    Pong_PID = spawn(tut15, pong, []),
    │ │ │ │ +    spawn(tut15, ping, [3, Pong_PID]).
    1> c(tut15).
    │ │ │ │ +{ok,tut15}
    │ │ │ │ +2> tut15: start().
    │ │ │ │  <0.36.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished
    │ │ │ │ -Pong finished

    The function start first creates a process, let us call it "pong":

    Pong_PID = spawn(tut15, pong, [])

    This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ │ -"pong" process. The function start now creates another process "ping":

    spawn(tut15, ping, [3, Pong_PID]),

    This process executes:

    tut15:ping(3, Pong_PID)

    <0.36.0> is the return value from the start function.

    The process "pong" now does:

    receive
    │ │ │ │ +Pong finished

    The function start first creates a process, let us call it "pong":

    Pong_PID = spawn(tut15, pong, [])

    This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ │ +"pong" process. The function start now creates another process "ping":

    spawn(tut15, ping, [3, Pong_PID]),

    This process executes:

    tut15:ping(3, Pong_PID)

    <0.36.0> is the return value from the start function.

    The process "pong" now does:

    receive
    │ │ │ │      finished ->
    │ │ │ │ -        io:format("Pong finished~n", []);
    │ │ │ │ -    {ping, Ping_PID} ->
    │ │ │ │ -        io:format("Pong received ping~n", []),
    │ │ │ │ +        io:format("Pong finished~n", []);
    │ │ │ │ +    {ping, Ping_PID} ->
    │ │ │ │ +        io:format("Pong received ping~n", []),
    │ │ │ │          Ping_PID ! pong,
    │ │ │ │ -        pong()
    │ │ │ │ +        pong()
    │ │ │ │  end.

    The receive construct is used to allow processes to wait for messages from │ │ │ │ other processes. It has the following format:

    receive
    │ │ │ │     pattern1 ->
    │ │ │ │         actions1;
    │ │ │ │     pattern2 ->
    │ │ │ │         actions2;
    │ │ │ │     ....
    │ │ │ │ @@ -158,84 +158,84 @@
    │ │ │ │  queue (keeping the first message and any other messages in the queue). If the
    │ │ │ │  second message does not match, the third message is tried, and so on, until the
    │ │ │ │  end of the queue is reached. If the end of the queue is reached, the process
    │ │ │ │  blocks (stops execution) and waits until a new message is received and this
    │ │ │ │  procedure is repeated.

    The Erlang implementation is "clever" and minimizes the number of times each │ │ │ │ message is tested against the patterns in each receive.

    Now back to the ping pong example.

    "Pong" is waiting for messages. If the atom finished is received, "pong" │ │ │ │ writes "Pong finished" to the output and, as it has nothing more to do, │ │ │ │ -terminates. If it receives a message with the format:

    {ping, Ping_PID}

    it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ │ +terminates. If it receives a message with the format:

    {ping, Ping_PID}

    it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ │ process "ping":

    Ping_PID ! pong

    Notice how the operator "!" is used to send messages. The syntax of "!" is:

    Pid ! Message

    That is, Message (any Erlang term) is sent to the process with identity Pid.

    After sending the message pong to the process "ping", "pong" calls the pong │ │ │ │ function again, which causes it to get back to the receive again and wait for │ │ │ │ -another message.

    Now let us look at the process "ping". Recall that it was started by executing:

    tut15:ping(3, Pong_PID)

    Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ │ +another message.

    Now let us look at the process "ping". Recall that it was started by executing:

    tut15:ping(3, Pong_PID)

    Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ │ since the value of the first argument is 3 (not 0) (first clause head is │ │ │ │ -ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

    The second clause sends a message to "pong":

    Pong_PID ! {ping, self()},

    self/0 returns the pid of the process that executes self/0, in this case the │ │ │ │ +ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

    The second clause sends a message to "pong":

    Pong_PID ! {ping, self()},

    self/0 returns the pid of the process that executes self/0, in this case the │ │ │ │ pid of "ping". (Recall the code for "pong", this lands up in the variable │ │ │ │ Ping_PID in the receive previously explained.)

    "Ping" now waits for a reply from "pong":

    receive
    │ │ │ │      pong ->
    │ │ │ │ -        io:format("Ping received pong~n", [])
    │ │ │ │ +        io:format("Ping received pong~n", [])
    │ │ │ │  end,

    It writes "Ping received pong" when this reply arrives, after which "ping" calls │ │ │ │ -the ping function again.

    ping(N - 1, Pong_PID)

    N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ │ -occurs, the first clause of ping/2 is executed:

    ping(0, Pong_PID) ->
    │ │ │ │ +the ping function again.

    ping(N - 1, Pong_PID)

    N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ │ +occurs, the first clause of ping/2 is executed:

    ping(0, Pong_PID) ->
    │ │ │ │      Pong_PID !  finished,
    │ │ │ │ -    io:format("ping finished~n", []);

    The atom finished is sent to "pong" (causing it to terminate as described │ │ │ │ + io:format("ping finished~n", []);

    The atom finished is sent to "pong" (causing it to terminate as described │ │ │ │ above) and "ping finished" is written to the output. "Ping" then terminates as │ │ │ │ it has nothing left to do.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Registered Process Names │ │ │ │

    │ │ │ │

    In the above example, "pong" was first created to be able to give the identity │ │ │ │ of "pong" when "ping" was started. That is, in some way "ping" must be able to │ │ │ │ know the identity of "pong" to be able to send a message to it. Sometimes │ │ │ │ processes which need to know each other's identities are started independently │ │ │ │ of each other. Erlang thus provides a mechanism for processes to be given names │ │ │ │ so that these names can be used as identities instead of pids. This is done by │ │ │ │ -using the register BIF:

    register(some_atom, Pid)

    Let us now rewrite the ping pong example using this and give the name pong to │ │ │ │ -the "pong" process:

    -module(tut16).
    │ │ │ │ +using the register BIF:

    register(some_atom, Pid)

    Let us now rewrite the ping pong example using this and give the name pong to │ │ │ │ +the "pong" process:

    -module(tut16).
    │ │ │ │  
    │ │ │ │ --export([start/0, ping/1, pong/0]).
    │ │ │ │ +-export([start/0, ping/1, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0) ->
    │ │ │ │ +ping(0) ->
    │ │ │ │      pong ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N) ->
    │ │ │ │ -    pong ! {ping, self()},
    │ │ │ │ +ping(N) ->
    │ │ │ │ +    pong ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1).
    │ │ │ │ +    ping(N - 1).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    register(pong, spawn(tut16, pong, [])),
    │ │ │ │ -    spawn(tut16, ping, [3]).
    2> c(tut16).
    │ │ │ │ -{ok, tut16}
    │ │ │ │ -3> tut16:start().
    │ │ │ │ +start() ->
    │ │ │ │ +    register(pong, spawn(tut16, pong, [])),
    │ │ │ │ +    spawn(tut16, ping, [3]).
    2> c(tut16).
    │ │ │ │ +{ok, tut16}
    │ │ │ │ +3> tut16:start().
    │ │ │ │  <0.38.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished
    │ │ │ │ -Pong finished

    Here the start/0 function,

    register(pong, spawn(tut16, pong, [])),

    both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ │ -process, messages can be sent to pong by:

    pong ! {ping, self()},

    ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

    │ │ │ │ +Pong finished

    Here the start/0 function,

    register(pong, spawn(tut16, pong, [])),

    both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ │ +process, messages can be sent to pong by:

    pong ! {ping, self()},

    ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Distributed Programming │ │ │ │

    │ │ │ │

    Let us rewrite the ping pong program with "ping" and "pong" on different │ │ │ │ computers. First a few things are needed to set up to get this to work. The │ │ │ │ @@ -255,106 +255,106 @@ │ │ │ │ of the file. This is a requirement.

    When you start an Erlang system that is going to talk to other Erlang systems, │ │ │ │ you must give it a name, for example:

    $ erl -sname my_name

    We will see more details of this later. If you want to experiment with │ │ │ │ distributed Erlang, but you only have one computer to work on, you can start two │ │ │ │ separate Erlang systems on the same computer but give them different names. Each │ │ │ │ Erlang system running on a computer is called an Erlang node.

    (Note: erl -sname assumes that all nodes are in the same IP domain and we can │ │ │ │ use only the first component of the IP address, if we want to use nodes in │ │ │ │ different domains we use -name instead, but then all IP address must be given │ │ │ │ -in full.)

    Here is the ping pong example modified to run on two separate nodes:

    -module(tut17).
    │ │ │ │ +in full.)

    Here is the ping pong example modified to run on two separate nodes:

    -module(tut17).
    │ │ │ │  
    │ │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +ping(0, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! finished,
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │ +ping(N, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start_pong() ->
    │ │ │ │ -    register(pong, spawn(tut17, pong, [])).
    │ │ │ │ +start_pong() ->
    │ │ │ │ +    register(pong, spawn(tut17, pong, [])).
    │ │ │ │  
    │ │ │ │ -start_ping(Pong_Node) ->
    │ │ │ │ -    spawn(tut17, ping, [3, Pong_Node]).

    Let us assume there are two computers called gollum and kosken. First a node is │ │ │ │ +start_ping(Pong_Node) -> │ │ │ │ + spawn(tut17, ping, [3, Pong_Node]).

    Let us assume there are two computers called gollum and kosken. First a node is │ │ │ │ started on kosken, called ping, and then a node on gollum, called pong.

    On kosken (on a Linux/UNIX system):

    kosken> erl -sname ping
    │ │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │  Eshell V5.2.3.7  (abort with ^G)
    │ │ │ │  (ping@kosken)1>

    On gollum:

    gollum> erl -sname pong
    │ │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │  Eshell V5.2.3.7  (abort with ^G)
    │ │ │ │ -(pong@gollum)1>

    Now the "pong" process on gollum is started:

    (pong@gollum)1> tut17:start_pong().
    │ │ │ │ +(pong@gollum)1>

    Now the "pong" process on gollum is started:

    (pong@gollum)1> tut17:start_pong().
    │ │ │ │  true

    And the "ping" process on kosken is started (from the code above you can see │ │ │ │ that a parameter of the start_ping function is the node name of the Erlang │ │ │ │ -system where "pong" is running):

    (ping@kosken)1> tut17:start_ping(pong@gollum).
    │ │ │ │ +system where "pong" is running):

    (ping@kosken)1> tut17:start_ping(pong@gollum).
    │ │ │ │  <0.37.0>
    │ │ │ │  Ping received pong
    │ │ │ │  Ping received pong
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished

    As shown, the ping pong program has run. On the "pong" side:

    (pong@gollum)2> 
    │ │ │ │  Pong received ping
    │ │ │ │  Pong received ping
    │ │ │ │  Pong received ping
    │ │ │ │  Pong finished
    │ │ │ │ -(pong@gollum)2> 

    Looking at the tut17 code, you see that the pong function itself is │ │ │ │ +(pong@gollum)2>

    Looking at the tut17 code, you see that the pong function itself is │ │ │ │ unchanged, the following lines work in the same way irrespective of on which │ │ │ │ -node the "ping" process is executes:

    {ping, Ping_PID} ->
    │ │ │ │ -    io:format("Pong received ping~n", []),
    │ │ │ │ +node the "ping" process is executes:

    {ping, Ping_PID} ->
    │ │ │ │ +    io:format("Pong received ping~n", []),
    │ │ │ │      Ping_PID ! pong,

    Thus, Erlang pids contain information about where the process executes. So if │ │ │ │ you know the pid of a process, the ! operator can be used to send it a │ │ │ │ -message disregarding if the process is on the same node or on a different node.

    A difference is how messages are sent to a registered process on another node:

    {pong, Pong_Node} ! {ping, self()},

    A tuple {registered_name,node_name} is used instead of just the │ │ │ │ +message disregarding if the process is on the same node or on a different node.

    A difference is how messages are sent to a registered process on another node:

    {pong, Pong_Node} ! {ping, self()},

    A tuple {registered_name,node_name} is used instead of just the │ │ │ │ registered_name.

    In the previous example, "ping" and "pong" were started from the shells of two │ │ │ │ separate Erlang nodes. spawn can also be used to start processes in other │ │ │ │ nodes.

    The next example is the ping pong program, yet again, but this time "ping" is │ │ │ │ -started in another node:

    -module(tut18).
    │ │ │ │ +started in another node:

    -module(tut18).
    │ │ │ │  
    │ │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +ping(0, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! finished,
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │ +ping(N, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start(Ping_Node) ->
    │ │ │ │ -    register(pong, spawn(tut18, pong, [])),
    │ │ │ │ -    spawn(Ping_Node, tut18, ping, [3, node()]).

    Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ │ -been started on kosken, then on gollum this is done:

    (pong@gollum)1> tut18:start(ping@kosken).
    │ │ │ │ +start(Ping_Node) ->
    │ │ │ │ +    register(pong, spawn(tut18, pong, [])),
    │ │ │ │ +    spawn(Ping_Node, tut18, ping, [3, node()]).

    Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ │ +been started on kosken, then on gollum this is done:

    (pong@gollum)1> tut18:start(ping@kosken).
    │ │ │ │  <3934.39.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │ @@ -421,184 +421,184 @@
    │ │ │ │  %%% Started: messenger:client(Server_Node, Name)
    │ │ │ │  %%% To client: logoff
    │ │ │ │  %%% To client: {message_to, ToName, Message}
    │ │ │ │  %%%
    │ │ │ │  %%% Configuration: change the server_node() function to return the
    │ │ │ │  %%% name of the node where the messenger server runs
    │ │ │ │  
    │ │ │ │ --module(messenger).
    │ │ │ │ --export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
    │ │ │ │ +-module(messenger).
    │ │ │ │ +-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
    │ │ │ │  
    │ │ │ │  %%% Change the function below to return the name of the node where the
    │ │ │ │  %%% messenger server runs
    │ │ │ │ -server_node() ->
    │ │ │ │ +server_node() ->
    │ │ │ │      messenger@super.
    │ │ │ │  
    │ │ │ │  %%% This is the server process for the "messenger"
    │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
    │ │ │ │ -server(User_List) ->
    │ │ │ │ +server(User_List) ->
    │ │ │ │      receive
    │ │ │ │ -        {From, logon, Name} ->
    │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
    │ │ │ │ -            server(New_User_List);
    │ │ │ │ -        {From, logoff} ->
    │ │ │ │ -            New_User_List = server_logoff(From, User_List),
    │ │ │ │ -            server(New_User_List);
    │ │ │ │ -        {From, message_to, To, Message} ->
    │ │ │ │ -            server_transfer(From, To, Message, User_List),
    │ │ │ │ -            io:format("list is now: ~p~n", [User_List]),
    │ │ │ │ -            server(User_List)
    │ │ │ │ +        {From, logon, Name} ->
    │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
    │ │ │ │ +            server(New_User_List);
    │ │ │ │ +        {From, logoff} ->
    │ │ │ │ +            New_User_List = server_logoff(From, User_List),
    │ │ │ │ +            server(New_User_List);
    │ │ │ │ +        {From, message_to, To, Message} ->
    │ │ │ │ +            server_transfer(From, To, Message, User_List),
    │ │ │ │ +            io:format("list is now: ~p~n", [User_List]),
    │ │ │ │ +            server(User_List)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %%% Start the server
    │ │ │ │ -start_server() ->
    │ │ │ │ -    register(messenger, spawn(messenger, server, [[]])).
    │ │ │ │ +start_server() ->
    │ │ │ │ +    register(messenger, spawn(messenger, server, [[]])).
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% Server adds a new user to the user list
    │ │ │ │ -server_logon(From, Name, User_List) ->
    │ │ │ │ +server_logon(From, Name, User_List) ->
    │ │ │ │      %% check if logged on anywhere else
    │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
    │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
    │ │ │ │          true ->
    │ │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ │              User_List;
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, logged_on},
    │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
    │ │ │ │ +            From ! {messenger, logged_on},
    │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %%% Server deletes a user from the user list
    │ │ │ │ -server_logoff(From, User_List) ->
    │ │ │ │ -    lists:keydelete(From, 1, User_List).
    │ │ │ │ +server_logoff(From, User_List) ->
    │ │ │ │ +    lists:keydelete(From, 1, User_List).
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% Server transfers a message between user
    │ │ │ │ -server_transfer(From, To, Message, User_List) ->
    │ │ │ │ +server_transfer(From, To, Message, User_List) ->
    │ │ │ │      %% check that the user is logged on and who he is
    │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
    │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ │ -        {value, {From, Name}} ->
    │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
    │ │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ │ +        {value, {From, Name}} ->
    │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
    │ │ │ │      end.
    │ │ │ │  %%% If the user exists, send the message
    │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ │      %% Find the receiver and send the message
    │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
    │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, receiver_not_found};
    │ │ │ │ -        {value, {ToPid, To}} ->
    │ │ │ │ -            ToPid ! {message_from, Name, Message},
    │ │ │ │ -            From ! {messenger, sent}
    │ │ │ │ +            From ! {messenger, receiver_not_found};
    │ │ │ │ +        {value, {ToPid, To}} ->
    │ │ │ │ +            ToPid ! {message_from, Name, Message},
    │ │ │ │ +            From ! {messenger, sent}
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% User Commands
    │ │ │ │ -logon(Name) ->
    │ │ │ │ -    case whereis(mess_client) of
    │ │ │ │ +logon(Name) ->
    │ │ │ │ +    case whereis(mess_client) of
    │ │ │ │          undefined ->
    │ │ │ │ -            register(mess_client,
    │ │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ │ +            register(mess_client,
    │ │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ │          _ -> already_logged_on
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -logoff() ->
    │ │ │ │ +logoff() ->
    │ │ │ │      mess_client ! logoff.
    │ │ │ │  
    │ │ │ │ -message(ToName, Message) ->
    │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
    │ │ │ │ +message(ToName, Message) ->
    │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
    │ │ │ │          undefined ->
    │ │ │ │              not_logged_on;
    │ │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ │               ok
    │ │ │ │  end.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% The client process which runs on each server node
    │ │ │ │ -client(Server_Node, Name) ->
    │ │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ │ -    await_result(),
    │ │ │ │ -    client(Server_Node).
    │ │ │ │ +client(Server_Node, Name) ->
    │ │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ │ +    await_result(),
    │ │ │ │ +    client(Server_Node).
    │ │ │ │  
    │ │ │ │ -client(Server_Node) ->
    │ │ │ │ +client(Server_Node) ->
    │ │ │ │      receive
    │ │ │ │          logoff ->
    │ │ │ │ -            {messenger, Server_Node} ! {self(), logoff},
    │ │ │ │ -            exit(normal);
    │ │ │ │ -        {message_to, ToName, Message} ->
    │ │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ │ -            await_result();
    │ │ │ │ -        {message_from, FromName, Message} ->
    │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ │ +            {messenger, Server_Node} ! {self(), logoff},
    │ │ │ │ +            exit(normal);
    │ │ │ │ +        {message_to, ToName, Message} ->
    │ │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ │ +            await_result();
    │ │ │ │ +        {message_from, FromName, Message} ->
    │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ │      end,
    │ │ │ │ -    client(Server_Node).
    │ │ │ │ +    client(Server_Node).
    │ │ │ │  
    │ │ │ │  %%% wait for a response from the server
    │ │ │ │ -await_result() ->
    │ │ │ │ +await_result() ->
    │ │ │ │      receive
    │ │ │ │ -        {messenger, stop, Why} -> % Stop the client
    │ │ │ │ -            io:format("~p~n", [Why]),
    │ │ │ │ -            exit(normal);
    │ │ │ │ -        {messenger, What} ->  % Normal response
    │ │ │ │ -            io:format("~p~n", [What])
    │ │ │ │ +        {messenger, stop, Why} -> % Stop the client
    │ │ │ │ +            io:format("~p~n", [Why]),
    │ │ │ │ +            exit(normal);
    │ │ │ │ +        {messenger, What} ->  % Normal response
    │ │ │ │ +            io:format("~p~n", [What])
    │ │ │ │      end.

    To use this program, you need to:

    • Configure the server_node() function.
    • Copy the compiled code (messenger.beam) to the directory on each computer │ │ │ │ where you start Erlang.

    In the following example using this program, nodes are started on four different │ │ │ │ computers. If you do not have that many machines available on your network, you │ │ │ │ can start several nodes on the same machine.

    Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, │ │ │ │ -c3@gollum.

    First the server at messenger@super is started up:

    (messenger@super)1> messenger:start_server().
    │ │ │ │ -true

    Now Peter logs on at c1@bilbo:

    (c1@bilbo)1> messenger:logon(peter).
    │ │ │ │ +c3@gollum.

    First the server at messenger@super is started up:

    (messenger@super)1> messenger:start_server().
    │ │ │ │ +true

    Now Peter logs on at c1@bilbo:

    (c1@bilbo)1> messenger:logon(peter).
    │ │ │ │  true
    │ │ │ │ -logged_on

    James logs on at c2@kosken:

    (c2@kosken)1> messenger:logon(james).
    │ │ │ │ +logged_on

    James logs on at c2@kosken:

    (c2@kosken)1> messenger:logon(james).
    │ │ │ │  true
    │ │ │ │ -logged_on

    And Fred logs on at c3@gollum:

    (c3@gollum)1> messenger:logon(fred).
    │ │ │ │ +logged_on

    And Fred logs on at c3@gollum:

    (c3@gollum)1> messenger:logon(fred).
    │ │ │ │  true
    │ │ │ │ -logged_on

    Now Peter sends Fred a message:

    (c1@bilbo)2> messenger:message(fred, "hello").
    │ │ │ │ +logged_on

    Now Peter sends Fred a message:

    (c1@bilbo)2> messenger:message(fred, "hello").
    │ │ │ │  ok
    │ │ │ │  sent

    Fred receives the message and sends a message to Peter and logs off:

    Message from peter: "hello"
    │ │ │ │ -(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
    │ │ │ │ +(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
    │ │ │ │  ok
    │ │ │ │  sent
    │ │ │ │ -(c3@gollum)3> messenger:logoff().
    │ │ │ │ -logoff

    James now tries to send a message to Fred:

    (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
    │ │ │ │ +(c3@gollum)3> messenger:logoff().
    │ │ │ │ +logoff

    James now tries to send a message to Fred:

    (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
    │ │ │ │  ok
    │ │ │ │  receiver_not_found

    But this fails as Fred has already logged off.

    First let us look at some of the new concepts that have been introduced.

    There are two versions of the server_transfer function: one with four │ │ │ │ arguments (server_transfer/4) and one with five (server_transfer/5). These │ │ │ │ are regarded by Erlang as two separate functions.

    Notice how to write the server function so that it calls itself, through │ │ │ │ server(User_List), and thus creates a loop. The Erlang compiler is "clever" │ │ │ │ and optimizes the code so that this really is a sort of loop and not a proper │ │ │ │ function call. But this only works if there is no code after the call. │ │ │ │ Otherwise, the compiler expects the call to return and make a proper function │ │ │ │ call. This would result in the process getting bigger and bigger for every loop.

    Functions in the lists module are used. This is a very useful module and a │ │ │ │ study of the manual page is recommended (erl -man lists). │ │ │ │ lists:keymember(Key,Position,Lists) looks through a list of tuples and looks │ │ │ │ at Position in each tuple to see if it is the same as Key. The first element │ │ │ │ is position 1. If it finds a tuple where the element at Position is the same │ │ │ │ -as Key, it returns true, otherwise false.

    3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +as Key, it returns true, otherwise false.

    3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │  true
    │ │ │ │ -4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │  false

    lists:keydelete works in the same way but deletes the first tuple found (if │ │ │ │ -any) and returns the remaining list:

    5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ -[{x,y,z},{b,b,b},{q,r,s}]

    lists:keysearch is like lists:keymember, but it returns │ │ │ │ +any) and returns the remaining list:

    5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +[{x,y,z},{b,b,b},{q,r,s}]

    lists:keysearch is like lists:keymember, but it returns │ │ │ │ {value,Tuple_Found} or the atom false.

    There are many very useful functions in the lists module.

    An Erlang process (conceptually) runs until it does a receive and there is no │ │ │ │ message which it wants to receive in the message queue. "conceptually" is used │ │ │ │ here because the Erlang system shares the CPU time between the active processes │ │ │ │ in the system.

    A process terminates when there is nothing more for it to do, that is, the last │ │ │ │ function it calls simply returns and does not call another function. Another way │ │ │ │ for a process to terminate is for it to call exit/1. The argument │ │ │ │ to exit/1 has a special meaning, which is discussed later. In this │ │ │ │ example, exit(normal) is done, which has the same effect as a │ │ │ │ process running out of functions to call.

    The BIF whereis(RegisteredName) checks if a registered process │ │ │ │ of name RegisteredName exists. If it exists, the pid of that process is │ │ │ │ returned. If it does not exist, the atom undefined is returned.

    You should by now be able to understand most of the code in the │ │ │ │ messenger-module. Let us study one case in detail: a message is sent from one │ │ │ │ -user to another.

    The first user "sends" the message in the example above by:

    messenger:message(fred, "hello")

    After testing that the client process exists:

    whereis(mess_client)

    And a message is sent to mess_client:

    mess_client ! {message_to, fred, "hello"}

    The client sends the message to the server by:

    {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

    And waits for a reply from the server.

    The server receives this message and calls:

    server_transfer(From, fred, "hello", User_List),

    This checks that the pid From is in the User_List:

    lists:keysearch(From, 1, User_List)

    If keysearch returns the atom false, some error has occurred and the server │ │ │ │ -sends back the message:

    From ! {messenger, stop, you_are_not_logged_on}

    This is received by the client, which in turn does exit(normal) │ │ │ │ +user to another.

    The first user "sends" the message in the example above by:

    messenger:message(fred, "hello")

    After testing that the client process exists:

    whereis(mess_client)

    And a message is sent to mess_client:

    mess_client ! {message_to, fred, "hello"}

    The client sends the message to the server by:

    {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

    And waits for a reply from the server.

    The server receives this message and calls:

    server_transfer(From, fred, "hello", User_List),

    This checks that the pid From is in the User_List:

    lists:keysearch(From, 1, User_List)

    If keysearch returns the atom false, some error has occurred and the server │ │ │ │ +sends back the message:

    From ! {messenger, stop, you_are_not_logged_on}

    This is received by the client, which in turn does exit(normal) │ │ │ │ and terminates. If keysearch returns {value,{From,Name}} it is certain that │ │ │ │ -the user is logged on and that his name (peter) is in variable Name.

    Let us now call:

    server_transfer(From, peter, fred, "hello", User_List)

    Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ │ +the user is logged on and that his name (peter) is in variable Name.

    Let us now call:

    server_transfer(From, peter, fred, "hello", User_List)

    Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ │ function server_transfer/4. Another keysearch is done on User_List to find │ │ │ │ -the pid of the client corresponding to fred:

    lists:keysearch(fred, 2, User_List)

    This time argument 2 is used, which is the second element in the tuple. If this │ │ │ │ +the pid of the client corresponding to fred:

    lists:keysearch(fred, 2, User_List)

    This time argument 2 is used, which is the second element in the tuple. If this │ │ │ │ returns the atom false, fred is not logged on and the following message is │ │ │ │ -sent:

    From ! {messenger, receiver_not_found};

    This is received by the client.

    If keysearch returns:

    {value, {ToPid, fred}}

    The following message is sent to fred's client:

    ToPid ! {message_from, peter, "hello"},

    The following message is sent to peter's client:

    From ! {messenger, sent}

    Fred's client receives the message and prints it:

    {message_from, peter, "hello"} ->
    │ │ │ │ -    io:format("Message from ~p: ~p~n", [peter, "hello"])

    Peter's client receives the message in the await_result function.

    │ │ │ │ +sent:

    From ! {messenger, receiver_not_found};

    This is received by the client.

    If keysearch returns:

    {value, {ToPid, fred}}

    The following message is sent to fred's client:

    ToPid ! {message_from, peter, "hello"},

    The following message is sent to peter's client:

    From ! {messenger, sent}

    Fred's client receives the message and prints it:

    {message_from, peter, "hello"} ->
    │ │ │ │ +    io:format("Message from ~p: ~p~n", [peter, "hello"])

    Peter's client receives the message in the await_result function.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/commoncaveats.xhtml │ │ │ │ @@ -23,31 +23,31 @@ │ │ │ │

    This section lists a few constructs to watch out for.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Operator ++ │ │ │ │

    │ │ │ │

    The ++ operator copies its left-hand side operand. That is clearly │ │ │ │ -seen if we do our own implementation in Erlang:

    my_plus_plus([H|T], Tail) ->
    │ │ │ │ -    [H|my_plus_plus(T, Tail)];
    │ │ │ │ -my_plus_plus([], Tail) ->
    │ │ │ │ -    Tail.

    We must be careful how we use ++ in a loop. First is how not to use it:

    DO NOT

    naive_reverse([H|T]) ->
    │ │ │ │ -    naive_reverse(T) ++ [H];
    │ │ │ │ -naive_reverse([]) ->
    │ │ │ │ -    [].

    As the ++ operator copies its left-hand side operand, the growing │ │ │ │ -result is copied repeatedly, leading to quadratic complexity.

    On the other hand, using ++ in loop like this is perfectly fine:

    OK

    naive_but_ok_reverse(List) ->
    │ │ │ │ -    naive_but_ok_reverse(List, []).
    │ │ │ │ +seen if we do our own implementation in Erlang:

    my_plus_plus([H|T], Tail) ->
    │ │ │ │ +    [H|my_plus_plus(T, Tail)];
    │ │ │ │ +my_plus_plus([], Tail) ->
    │ │ │ │ +    Tail.

    We must be careful how we use ++ in a loop. First is how not to use it:

    DO NOT

    naive_reverse([H|T]) ->
    │ │ │ │ +    naive_reverse(T) ++ [H];
    │ │ │ │ +naive_reverse([]) ->
    │ │ │ │ +    [].

    As the ++ operator copies its left-hand side operand, the growing │ │ │ │ +result is copied repeatedly, leading to quadratic complexity.

    On the other hand, using ++ in loop like this is perfectly fine:

    OK

    naive_but_ok_reverse(List) ->
    │ │ │ │ +    naive_but_ok_reverse(List, []).
    │ │ │ │  
    │ │ │ │ -naive_but_ok_reverse([H|T], Acc) ->
    │ │ │ │ -    naive_but_ok_reverse(T, [H] ++ Acc);
    │ │ │ │ -naive_but_ok_reverse([], Acc) ->
    │ │ │ │ +naive_but_ok_reverse([H|T], Acc) ->
    │ │ │ │ +    naive_but_ok_reverse(T, [H] ++ Acc);
    │ │ │ │ +naive_but_ok_reverse([], Acc) ->
    │ │ │ │      Acc.

    Each list element is copied only once. The growing result Acc is the right-hand │ │ │ │ -side operand, which it is not copied.

    Experienced Erlang programmers would probably write as follows:

    DO

    vanilla_reverse([H|T], Acc) ->
    │ │ │ │ -    vanilla_reverse(T, [H|Acc]);
    │ │ │ │ -vanilla_reverse([], Acc) ->
    │ │ │ │ +side operand, which it is not copied.

    Experienced Erlang programmers would probably write as follows:

    DO

    vanilla_reverse([H|T], Acc) ->
    │ │ │ │ +    vanilla_reverse(T, [H|Acc]);
    │ │ │ │ +vanilla_reverse([], Acc) ->
    │ │ │ │      Acc.

    In principle, this is slightly more efficient because the list element [H] │ │ │ │ is not built before being copied and discarded. In practice, the compiler │ │ │ │ rewrites [H] ++ Acc to [H|Acc].

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Timer Module │ │ │ │ @@ -65,77 +65,77 @@ │ │ │ │ therefore harmless.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accidental Copying and Loss of Sharing │ │ │ │

    │ │ │ │

    When spawning a new process using a fun, one can accidentally copy more data to │ │ │ │ -the process than intended. For example:

    DO NOT

    accidental1(State) ->
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [State#state.info])
    │ │ │ │ -          end).

    The code in the fun will extract one element from the record and print it. The │ │ │ │ +the process than intended. For example:

    DO NOT

    accidental1(State) ->
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [State#state.info])
    │ │ │ │ +          end).

    The code in the fun will extract one element from the record and print it. The │ │ │ │ rest of the state record is not used. However, when the spawn/1 │ │ │ │ -function is executed, the entire record is copied to the newly created process.

    The same kind of problem can happen with a map:

    DO NOT

    accidental2(State) ->
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [map_get(info, State)])
    │ │ │ │ -          end).

    In the following example (part of a module implementing the gen_server │ │ │ │ -behavior) the created fun is sent to another process:

    DO NOT

    handle_call(give_me_a_fun, _From, State) ->
    │ │ │ │ -    Fun = fun() -> State#state.size =:= 42 end,
    │ │ │ │ -    {reply, Fun, State}.

    How bad that unnecessary copy is depends on the contents of the record or the │ │ │ │ -map.

    For example, if the state record is initialized like this:

    init1() ->
    │ │ │ │ -    #state{data=lists:seq(1, 10000)}.

    a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ │ +function is executed, the entire record is copied to the newly created process.

    The same kind of problem can happen with a map:

    DO NOT

    accidental2(State) ->
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [map_get(info, State)])
    │ │ │ │ +          end).

    In the following example (part of a module implementing the gen_server │ │ │ │ +behavior) the created fun is sent to another process:

    DO NOT

    handle_call(give_me_a_fun, _From, State) ->
    │ │ │ │ +    Fun = fun() -> State#state.size =:= 42 end,
    │ │ │ │ +    {reply, Fun, State}.

    How bad that unnecessary copy is depends on the contents of the record or the │ │ │ │ +map.

    For example, if the state record is initialized like this:

    init1() ->
    │ │ │ │ +    #state{data=lists:seq(1, 10000)}.

    a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ │ newly created process.

    An unnecessary copy of 10000 element list can be bad enough, but it can get even │ │ │ │ worse if the state record contains shared subterms. Here is a simple example │ │ │ │ -of a term with a shared subterm:

    {SubTerm, SubTerm}

    When a term is copied to another process, sharing of subterms will be lost and │ │ │ │ -the copied term can be many times larger than the original term. For example:

    init2() ->
    │ │ │ │ -    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
    │ │ │ │ -    #state{data=Shared}.

    In the process that calls init2/0, the size of the data field in the state │ │ │ │ +of a term with a shared subterm:

    {SubTerm, SubTerm}

    When a term is copied to another process, sharing of subterms will be lost and │ │ │ │ +the copied term can be many times larger than the original term. For example:

    init2() ->
    │ │ │ │ +    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
    │ │ │ │ +    #state{data=Shared}.

    In the process that calls init2/0, the size of the data field in the state │ │ │ │ record will be 32 heap words. When the record is copied to the newly created │ │ │ │ process, sharing will be lost and the size of the copied data field will be │ │ │ │ 131070 heap words. More details about │ │ │ │ loss off sharing are found in a later │ │ │ │ section.

    To avoid the problem, outside of the fun extract only the fields of the record │ │ │ │ -that are actually used:

    DO

    fixed_accidental1(State) ->
    │ │ │ │ +that are actually used:

    DO

    fixed_accidental1(State) ->
    │ │ │ │      Info = State#state.info,
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [Info])
    │ │ │ │ -          end).

    Similarly, outside of the fun extract only the map elements that are actually │ │ │ │ -used:

    DO

    fixed_accidental2(State) ->
    │ │ │ │ -    Info = map_get(info, State),
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [Info])
    │ │ │ │ -          end).

    │ │ │ │ + spawn(fun() -> │ │ │ │ + io:format("~p\n", [Info]) │ │ │ │ + end).

    Similarly, outside of the fun extract only the map elements that are actually │ │ │ │ +used:

    DO

    fixed_accidental2(State) ->
    │ │ │ │ +    Info = map_get(info, State),
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [Info])
    │ │ │ │ +          end).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ list_to_atom/1 │ │ │ │

    │ │ │ │

    Atoms are not garbage-collected. Once an atom is created, it is never removed. │ │ │ │ The emulator terminates if the limit for the number of atoms (1,048,576 by │ │ │ │ default) is reached.

    Therefore, converting arbitrary input strings to atoms can be dangerous in a │ │ │ │ system that runs continuously. If only certain well-defined atoms are allowed as │ │ │ │ input, list_to_existing_atom/1 or │ │ │ │ binary_to_existing_atom/1 can be used │ │ │ │ to guard against a denial-of-service attack. (All atoms that are allowed must │ │ │ │ have been created earlier, for example, by using all of them in a module │ │ │ │ and loading that module.)

    Using list_to_atom/1 to construct an atom that │ │ │ │ -is passed to apply/3 is quite expensive.

    DO NOT

    apply(list_to_atom("some_prefix"++Var), foo, Args)

    │ │ │ │ +is passed to apply/3 is quite expensive.

    DO NOT

    apply(list_to_atom("some_prefix"++Var), foo, Args)

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ length/1 │ │ │ │

    │ │ │ │

    The time for calculating the length of a list is proportional to the length of │ │ │ │ the list, as opposed to tuple_size/1, │ │ │ │ byte_size/1, and bit_size/1, which all │ │ │ │ execute in constant time.

    Normally, there is no need to worry about the speed of length/1, │ │ │ │ because it is efficiently implemented in C. In time-critical code, you might │ │ │ │ want to avoid it if the input list could potentially be very long.

    Some uses of length/1 can be replaced by matching. For example, │ │ │ │ -the following code:

    foo(L) when length(L) >= 3 ->
    │ │ │ │ -    ...

    can be rewritten to:

    foo([_,_,_|_]=L) ->
    │ │ │ │ +the following code:

    foo(L) when length(L) >= 3 ->
    │ │ │ │ +    ...

    can be rewritten to:

    foo([_,_,_|_]=L) ->
    │ │ │ │     ...

    One slight difference is that length(L) fails if L is an │ │ │ │ improper list, while the pattern in the second code fragment accepts an improper │ │ │ │ list.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ setelement/3 │ │ │ │ @@ -143,18 +143,18 @@ │ │ │ │

    setelement/3 copies the tuple it modifies. Therefore, │ │ │ │ updating a tuple in a loop using setelement/3 creates a new │ │ │ │ copy of the tuple every time.

    There is one exception to the rule that the tuple is copied. If the compiler │ │ │ │ clearly can see that destructively updating the tuple would give the same result │ │ │ │ as if the tuple was copied, the call to setelement/3 is │ │ │ │ replaced with a special destructive setelement instruction. In the following │ │ │ │ code sequence, the first setelement/3 call copies the tuple │ │ │ │ -and modifies the ninth element:

    multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
    │ │ │ │ -    T1 = setelement(9, T0, bar),
    │ │ │ │ -    T2 = setelement(7, T1, foobar),
    │ │ │ │ -    setelement(5, T2, new_value).

    The two following setelement/3 calls modify the tuple in │ │ │ │ +and modifies the ninth element:

    multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
    │ │ │ │ +    T1 = setelement(9, T0, bar),
    │ │ │ │ +    T2 = setelement(7, T1, foobar),
    │ │ │ │ +    setelement(5, T2, new_value).

    The two following setelement/3 calls modify the tuple in │ │ │ │ place.

    For the optimization to be applied, all the following conditions must be true:

    • The tuple argument must be known to be a tuple of a known size.
    • The indices must be integer literals, not variables or expressions.
    • The indices must be given in descending order.
    • There must be no calls to another function in between the calls to │ │ │ │ setelement/3.
    • The tuple returned from one setelement/3 call must only be │ │ │ │ used in the subsequent call to setelement/3.

    If the code cannot be structured as in the multiple_setelement/1 example, the │ │ │ │ best way to modify multiple elements in a large tuple is to convert the tuple to │ │ │ │ a list, modify the list, and convert it back to a tuple.

    │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/code_loading.xhtml │ │ │ │ @@ -27,16 +27,16 @@ │ │ │ │ │ │ │ │ │ │ │ │ Compilation │ │ │ │

    │ │ │ │

    Erlang programs must be compiled to object code. The compiler can generate a │ │ │ │ new file that contains the object code. The current abstract machine, which runs │ │ │ │ the object code, is called BEAM, therefore the object files get the suffix │ │ │ │ -.beam. The compiler can also generate a binary which can be loaded directly.

    The compiler is located in the module compile in Compiler.

    compile:file(Module)
    │ │ │ │ -compile:file(Module, Options)

    The Erlang shell understands the command c(Module), which both compiles and │ │ │ │ +.beam. The compiler can also generate a binary which can be loaded directly.

    The compiler is located in the module compile in Compiler.

    compile:file(Module)
    │ │ │ │ +compile:file(Module, Options)

    The Erlang shell understands the command c(Module), which both compiles and │ │ │ │ loads Module.

    There is also a module make, which provides a set of functions similar to the │ │ │ │ UNIX type Make functions, see module make in Tools.

    The compiler can also be accessed from the OS prompt using the │ │ │ │ erl executable in ERTS.

    % erl -compile Module1...ModuleN
    │ │ │ │  % erl -make

    The erlc program provides way to compile modules from the OS │ │ │ │ shell, see the erlc executable in ERTS. It │ │ │ │ understands a number of flags that can be used to define macros, add search │ │ │ │ paths for include files, and more.

    % erlc <flags> File1.erl...FileN.erl

    │ │ │ │ @@ -61,51 +61,51 @@ │ │ │ │ When a module is loaded into the system for the first time, the code becomes │ │ │ │ 'current'. If then a new instance of the module is loaded, the code of the │ │ │ │ previous instance becomes 'old' and the new instance becomes 'current'.

    Both old and current code is valid, and can be evaluated concurrently. Fully │ │ │ │ qualified function calls always refer to current code. Old code can still be │ │ │ │ evaluated because of processes lingering in the old code.

    If a third instance of the module is loaded, the code server removes (purges) │ │ │ │ the old code and any processes lingering in it is terminated. Then the third │ │ │ │ instance becomes 'current' and the previously current code becomes 'old'.

    To change from old code to current code, a process must make a fully qualified │ │ │ │ -function call.

    Example:

    -module(m).
    │ │ │ │ --export([loop/0]).
    │ │ │ │ +function call.

    Example:

    -module(m).
    │ │ │ │ +-export([loop/0]).
    │ │ │ │  
    │ │ │ │ -loop() ->
    │ │ │ │ +loop() ->
    │ │ │ │      receive
    │ │ │ │          code_switch ->
    │ │ │ │ -            m:loop();
    │ │ │ │ +            m:loop();
    │ │ │ │          Msg ->
    │ │ │ │              ...
    │ │ │ │ -            loop()
    │ │ │ │ +            loop()
    │ │ │ │      end.

    To make the process change code, send the message code_switch to it. The │ │ │ │ process then makes a fully qualified call to m:loop() and changes to current │ │ │ │ code. Notice that m:loop/0 must be exported.

    For code replacement of funs to work, use the syntax │ │ │ │ fun Module:FunctionName/Arity.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running a Function When a Module is Loaded │ │ │ │

    │ │ │ │

    The -on_load() directive names a function that is to be run automatically when │ │ │ │ -a module is loaded.

    Its syntax is as follows:

    -on_load(Name/0).

    It is not necessary to export the function. It is called in a freshly spawned │ │ │ │ +a module is loaded.

    Its syntax is as follows:

    -on_load(Name/0).

    It is not necessary to export the function. It is called in a freshly spawned │ │ │ │ process (which terminates as soon as the function returns).

    The function must return ok if the module is to become the new current code │ │ │ │ for the module and become callable.

    Returning any other value or generating an exception causes the new code to be │ │ │ │ unloaded. If the return value is not an atom, a warning error report is sent to │ │ │ │ the error logger.

    If there already is current code for the module, that code will remain current │ │ │ │ and can be called until the on_load function has returned. If the on_load │ │ │ │ function fails, the current code (if any) will remain current. If there is no │ │ │ │ current code for a module, any process that makes an external call to the module │ │ │ │ before the on_load function has finished will be suspended until the on_load │ │ │ │ function have finished.

    Change

    Before Erlang/OTP 19, if the on_load function failed, any previously current │ │ │ │ code would become old, essentially leaving the system without any working and │ │ │ │ reachable instance of the module.

    In embedded mode, first all modules are loaded. Then all on_load functions are │ │ │ │ called. The system is terminated unless all of the on_load functions return │ │ │ │ -ok.

    Example:

    -module(m).
    │ │ │ │ --on_load(load_my_nifs/0).
    │ │ │ │ +ok.

    Example:

    -module(m).
    │ │ │ │ +-on_load(load_my_nifs/0).
    │ │ │ │  
    │ │ │ │ -load_my_nifs() ->
    │ │ │ │ +load_my_nifs() ->
    │ │ │ │      NifPath = ...,    %Set up the path to the NIF library.
    │ │ │ │      Info = ...,       %Initialize the Info term
    │ │ │ │ -    erlang:load_nif(NifPath, Info).

    If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ │ + erlang:load_nif(NifPath, Info).

    If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ │ report is sent to the error loader.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/c_portdriver.xhtml │ │ │ │ @@ -56,112 +56,112 @@ │ │ │ │

    Like a port program, the port communicates with an Erlang process. All │ │ │ │ communication goes through one Erlang process that is the connected process of │ │ │ │ the port driver. Terminating this process closes the port driver.

    Before the port is created, the driver must be loaded. This is done with the │ │ │ │ function erl_ddll:load_driver/2, with the name of the shared library as │ │ │ │ argument.

    The port is then created using the BIF open_port/2, with the │ │ │ │ tuple {spawn, DriverName} as the first argument. The string SharedLib is the │ │ │ │ name of the port driver. The second argument is a list of options, none in this │ │ │ │ -case:

    -module(complex5).
    │ │ │ │ --export([start/1, init/1]).
    │ │ │ │ +case:

    -module(complex5).
    │ │ │ │ +-export([start/1, init/1]).
    │ │ │ │  
    │ │ │ │ -start(SharedLib) ->
    │ │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │ +start(SharedLib) ->
    │ │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │          ok -> ok;
    │ │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ │ -        _ -> exit({error, could_not_load_driver})
    │ │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ │ +        _ -> exit({error, could_not_load_driver})
    │ │ │ │      end,
    │ │ │ │ -    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │ +    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │  
    │ │ │ │ -init(SharedLib) ->
    │ │ │ │ -  register(complex, self()),
    │ │ │ │ -  Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ -  loop(Port).

    Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ │ -message to the complex process and receive the following reply:

    foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +init(SharedLib) ->
    │ │ │ │ +  register(complex, self()),
    │ │ │ │ +  Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ +  loop(Port).

    Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ │ +message to the complex process and receive the following reply:

    foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -        {complex, Result} ->
    │ │ │ │ +        {complex, Result} ->
    │ │ │ │              Result
    │ │ │ │ -    end.

    The complex process performs the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │ +    end.

    The complex process performs the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -        {call, Caller, Msg} ->
    │ │ │ │ -            Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +        {call, Caller, Msg} ->
    │ │ │ │ +            Port ! {self(), {command, encode(Msg)}},
    │ │ │ │              receive
    │ │ │ │ -                {Port, {data, Data}} ->
    │ │ │ │ -                    Caller ! {complex, decode(Data)}
    │ │ │ │ +                {Port, {data, Data}} ->
    │ │ │ │ +                    Caller ! {complex, decode(Data)}
    │ │ │ │              end,
    │ │ │ │ -            loop(Port)
    │ │ │ │ +            loop(Port)
    │ │ │ │      end.

    Assuming that both the arguments and the results from the C functions are less │ │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ │ -represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    The resulting Erlang program, including functions for stopping the port and │ │ │ │ +decode([Int]) -> Int.

    The resulting Erlang program, including functions for stopping the port and │ │ │ │ detecting port failures, is as follows:

    
    │ │ │ │ --module(complex5).
    │ │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ │ --export([foo/1, bar/1]).
    │ │ │ │ +-module(complex5).
    │ │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ │ +-export([foo/1, bar/1]).
    │ │ │ │  
    │ │ │ │ -start(SharedLib) ->
    │ │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │ +start(SharedLib) ->
    │ │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │  	ok -> ok;
    │ │ │ │ -	{error, already_loaded} -> ok;
    │ │ │ │ -	_ -> exit({error, could_not_load_driver})
    │ │ │ │ +	{error, already_loaded} -> ok;
    │ │ │ │ +	_ -> exit({error, could_not_load_driver})
    │ │ │ │      end,
    │ │ │ │ -    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │ +    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │  
    │ │ │ │ -init(SharedLib) ->
    │ │ │ │ -    register(complex, self()),
    │ │ │ │ -    Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ -    loop(Port).
    │ │ │ │ +init(SharedLib) ->
    │ │ │ │ +    register(complex, self()),
    │ │ │ │ +    Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ +    loop(Port).
    │ │ │ │  
    │ │ │ │ -stop() ->
    │ │ │ │ +stop() ->
    │ │ │ │      complex ! stop.
    │ │ │ │  
    │ │ │ │ -foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -	{complex, Result} ->
    │ │ │ │ +	{complex, Result} ->
    │ │ │ │  	    Result
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -loop(Port) ->
    │ │ │ │ +loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -	{call, Caller, Msg} ->
    │ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +	{call, Caller, Msg} ->
    │ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, {data, Data}} ->
    │ │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ │ +		{Port, {data, Data}} ->
    │ │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │ │  	    end,
    │ │ │ │ -	    loop(Port);
    │ │ │ │ +	    loop(Port);
    │ │ │ │  	stop ->
    │ │ │ │ -	    Port ! {self(), close},
    │ │ │ │ +	    Port ! {self(), close},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, closed} ->
    │ │ │ │ -		    exit(normal)
    │ │ │ │ +		{Port, closed} ->
    │ │ │ │ +		    exit(normal)
    │ │ │ │  	    end;
    │ │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ │ -	    io:format("~p ~n", [Reason]),
    │ │ │ │ -	    exit(port_terminated)
    │ │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ │ +	    io:format("~p ~n", [Reason]),
    │ │ │ │ +	    exit(port_terminated)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    │ │ │ │ +decode([Int]) -> Int.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ C Driver │ │ │ │

    │ │ │ │

    The C driver is a module that is compiled and linked into a shared library. It │ │ │ │ uses a driver structure and includes the header file erl_driver.h.

    The driver structure is filled with the driver name and function pointers. It is │ │ │ │ @@ -252,22 +252,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

    │ │ │ │

    Step 1. Compile the C code:

    unix> gcc -o example_drv.so -fpic -shared complex.c port_driver.c
    │ │ │ │  windows> cl -LD -MD -Fe example_drv.dll complex.c port_driver.c

    Step 2. Start Erlang and compile the Erlang code:

    > erl
    │ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │  
    │ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ -1> c(complex5).
    │ │ │ │ -{ok,complex5}

    Step 3. Run the example:

    2> complex5:start("example_drv").
    │ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ +1> c(complex5).
    │ │ │ │ +{ok,complex5}

    Step 3. Run the example:

    2> complex5:start("example_drv").
    │ │ │ │  <0.34.0>
    │ │ │ │ -3> complex5:foo(3).
    │ │ │ │ +3> complex5:foo(3).
    │ │ │ │  4
    │ │ │ │ -4> complex5:bar(5).
    │ │ │ │ +4> complex5:bar(5).
    │ │ │ │  10
    │ │ │ │ -5> complex5:stop().
    │ │ │ │ +5> complex5:stop().
    │ │ │ │  stop
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/c_port.xhtml │ │ │ │ @@ -53,101 +53,101 @@ │ │ │ │ external program, if it is written properly).

    The port is created using the BIF open_port/2 with │ │ │ │ {spawn,ExtPrg} as the first argument. The string ExtPrg is the name of the │ │ │ │ external program, including any command line arguments. The second argument is a │ │ │ │ list of options, in this case only {packet,2}. This option says that a 2 byte │ │ │ │ length indicator is to be used to simplify the communication between C and │ │ │ │ Erlang. The Erlang port automatically adds the length indicator, but this must │ │ │ │ be done explicitly in the external C program.

    The process is also set to trap exits, which enables detection of failure of the │ │ │ │ -external program:

    -module(complex1).
    │ │ │ │ --export([start/1, init/1]).
    │ │ │ │ +external program:

    -module(complex1).
    │ │ │ │ +-export([start/1, init/1]).
    │ │ │ │  
    │ │ │ │ -start(ExtPrg) ->
    │ │ │ │ -  spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ +start(ExtPrg) ->
    │ │ │ │ +  spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │  
    │ │ │ │ -init(ExtPrg) ->
    │ │ │ │ -  register(complex, self()),
    │ │ │ │ -  process_flag(trap_exit, true),
    │ │ │ │ -  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ -  loop(Port).

    Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ │ -message to the complex process and receive the following replies:

    foo(X) ->
    │ │ │ │ -  call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -  call_port({bar, Y}).
    │ │ │ │ +init(ExtPrg) ->
    │ │ │ │ +  register(complex, self()),
    │ │ │ │ +  process_flag(trap_exit, true),
    │ │ │ │ +  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ +  loop(Port).

    Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ │ +message to the complex process and receive the following replies:

    foo(X) ->
    │ │ │ │ +  call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +  call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -  complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +  complex ! {call, self(), Msg},
    │ │ │ │    receive
    │ │ │ │ -    {complex, Result} ->
    │ │ │ │ +    {complex, Result} ->
    │ │ │ │        Result
    │ │ │ │ -  end.

    The complex process does the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │ +  end.

    The complex process does the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │    receive
    │ │ │ │ -    {call, Caller, Msg} ->
    │ │ │ │ -      Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +    {call, Caller, Msg} ->
    │ │ │ │ +      Port ! {self(), {command, encode(Msg)}},
    │ │ │ │        receive
    │ │ │ │ -        {Port, {data, Data}} ->
    │ │ │ │ -          Caller ! {complex, decode(Data)}
    │ │ │ │ +        {Port, {data, Data}} ->
    │ │ │ │ +          Caller ! {complex, decode(Data)}
    │ │ │ │        end,
    │ │ │ │ -      loop(Port)
    │ │ │ │ +      loop(Port)
    │ │ │ │    end.

    Assuming that both the arguments and the results from the C functions are less │ │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ │ -represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    The resulting Erlang program, including functionality for stopping the port and │ │ │ │ -detecting port failures, is as follows:

    -module(complex1).
    │ │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ │ --export([foo/1, bar/1]).
    │ │ │ │ -
    │ │ │ │ -start(ExtPrg) ->
    │ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ -stop() ->
    │ │ │ │ +decode([Int]) -> Int.

    The resulting Erlang program, including functionality for stopping the port and │ │ │ │ +detecting port failures, is as follows:

    -module(complex1).
    │ │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ │ +-export([foo/1, bar/1]).
    │ │ │ │ +
    │ │ │ │ +start(ExtPrg) ->
    │ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ +stop() ->
    │ │ │ │      complex ! stop.
    │ │ │ │  
    │ │ │ │ -foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -	{complex, Result} ->
    │ │ │ │ +	{complex, Result} ->
    │ │ │ │  	    Result
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -init(ExtPrg) ->
    │ │ │ │ -    register(complex, self()),
    │ │ │ │ -    process_flag(trap_exit, true),
    │ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ -    loop(Port).
    │ │ │ │ +init(ExtPrg) ->
    │ │ │ │ +    register(complex, self()),
    │ │ │ │ +    process_flag(trap_exit, true),
    │ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ +    loop(Port).
    │ │ │ │  
    │ │ │ │ -loop(Port) ->
    │ │ │ │ +loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -	{call, Caller, Msg} ->
    │ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +	{call, Caller, Msg} ->
    │ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, {data, Data}} ->
    │ │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ │ +		{Port, {data, Data}} ->
    │ │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │ │  	    end,
    │ │ │ │ -	    loop(Port);
    │ │ │ │ +	    loop(Port);
    │ │ │ │  	stop ->
    │ │ │ │ -	    Port ! {self(), close},
    │ │ │ │ +	    Port ! {self(), close},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, closed} ->
    │ │ │ │ -		    exit(normal)
    │ │ │ │ +		{Port, closed} ->
    │ │ │ │ +		    exit(normal)
    │ │ │ │  	    end;
    │ │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ │ -	    exit(port_terminated)
    │ │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ │ +	    exit(port_terminated)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    │ │ │ │ +decode([Int]) -> Int.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ C Program │ │ │ │

    │ │ │ │

    On the C side, it is necessary to write functions for receiving and sending data │ │ │ │ with 2 byte length indicators from/to Erlang. By default, the C program is to │ │ │ │ @@ -238,22 +238,22 @@ │ │ │ │ and terminates.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

    │ │ │ │

    Step 1. Compile the C code:

    $ gcc -o extprg complex.c erl_comm.c port.c

    Step 2. Start Erlang and compile the Erlang code:

    $ erl
    │ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │  
    │ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ -1> c(complex1).
    │ │ │ │ -{ok,complex1}

    Step 3. Run the example:

    2> complex1:start("./extprg").
    │ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ +1> c(complex1).
    │ │ │ │ +{ok,complex1}

    Step 3. Run the example:

    2> complex1:start("./extprg").
    │ │ │ │  <0.34.0>
    │ │ │ │ -3> complex1:foo(3).
    │ │ │ │ +3> complex1:foo(3).
    │ │ │ │  4
    │ │ │ │ -4> complex1:bar(5).
    │ │ │ │ +4> complex1:bar(5).
    │ │ │ │  10
    │ │ │ │ -5> complex1:stop().
    │ │ │ │ +5> complex1:stop().
    │ │ │ │  stop
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/bit_syntax.xhtml │ │ │ │ @@ -24,48 +24,48 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Introduction │ │ │ │ │ │ │ │

    The complete specification for the bit syntax appears in the │ │ │ │ Reference Manual.

    In Erlang, a Bin is used for constructing binaries and matching binary patterns. │ │ │ │ -A Bin is written with the following syntax:

    <<E1, E2, ... En>>

    A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ │ -enable construction of binaries:

    Bin = <<E1, E2, ... En>>

    All elements must be bound. Or match a binary:

    <<E1, E2, ... En>> = Bin

    Here, Bin is bound and the elements are bound or unbound, as in any match.

    A Bin does not need to consist of a whole number of bytes.

    A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ │ +A Bin is written with the following syntax:

    <<E1, E2, ... En>>

    A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ │ +enable construction of binaries:

    Bin = <<E1, E2, ... En>>

    All elements must be bound. Or match a binary:

    <<E1, E2, ... En>> = Bin

    Here, Bin is bound and the elements are bound or unbound, as in any match.

    A Bin does not need to consist of a whole number of bytes.

    A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ │ not need to be divisible by 8. If the number of bits is divisible by 8, the │ │ │ │ bitstring is also a binary.

    Each element specifies a certain segment of the bitstring. A segment is a set │ │ │ │ of contiguous bits of the binary (not necessarily on a byte boundary). The first │ │ │ │ element specifies the initial segment, the second element specifies the │ │ │ │ following segment, and so on.

    The following examples illustrate how binaries are constructed, or matched, and │ │ │ │ how elements and tails are specified.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Examples │ │ │ │

    │ │ │ │

    Example 1: A binary can be constructed from a set of constants or a string │ │ │ │ -literal:

    Bin11 = <<1, 17, 42>>,
    │ │ │ │ -Bin12 = <<"abc">>

    This gives two binaries of size 3, with the following evaluations:

    Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ │ +literal:

    Bin11 = <<1, 17, 42>>,
    │ │ │ │ +Bin12 = <<"abc">>

    This gives two binaries of size 3, with the following evaluations:

    Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ │ variables:

    A = 1, B = 17, C = 42,
    │ │ │ │ -Bin2 = <<A, B, C:16>>

    This gives a binary of size 4. Here, a size expression is used for the │ │ │ │ +Bin2 = <<A, B, C:16>>

    This gives a binary of size 4. Here, a size expression is used for the │ │ │ │ variable C to specify a 16-bits segment of Bin2.

    binary_to_list(Bin2) evaluates to [1, 17, 00, 42].

    Example 3: A Bin can also be used for matching. D, E, and F are unbound │ │ │ │ -variables, and Bin2 is bound, as in Example 2:

    <<D:16, E, F/binary>> = Bin2

    This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ │ +variables, and Bin2 is bound, as in Example 2:

    <<D:16, E, F/binary>> = Bin2

    This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ │ binary_to_list(F) = [42].

    Example 4: The following is a more elaborate example of matching. Here, │ │ │ │ Dgram is bound to the consecutive bytes of an IP datagram of IP protocol │ │ │ │ -version 4. The ambition is to extract the header and the data of the datagram:

    -define(IP_VERSION, 4).
    │ │ │ │ --define(IP_MIN_HDR_LEN, 5).
    │ │ │ │ +version 4. The ambition is to extract the header and the data of the datagram:

    -define(IP_VERSION, 4).
    │ │ │ │ +-define(IP_MIN_HDR_LEN, 5).
    │ │ │ │  
    │ │ │ │ -DgramSize = byte_size(Dgram),
    │ │ │ │ +DgramSize = byte_size(Dgram),
    │ │ │ │  case Dgram of
    │ │ │ │ -    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
    │ │ │ │ +    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
    │ │ │ │        ID:16, Flgs:3, FragOff:13,
    │ │ │ │        TTL:8, Proto:8, HdrChkSum:16,
    │ │ │ │        SrcIP:32,
    │ │ │ │ -      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
    │ │ │ │ -        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
    │ │ │ │ -        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    │ │ │ │ +      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
    │ │ │ │ +        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
    │ │ │ │ +        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    │ │ │ │      ...
    │ │ │ │  end.

    Here, the segment corresponding to the Opts variable has a type modifier, │ │ │ │ specifying that Opts is to bind to a binary. All other variables have the │ │ │ │ default type equal to unsigned integer.

    An IP datagram header is of variable length. This length is measured in the │ │ │ │ number of 32-bit words and is given in the segment corresponding to HLen. The │ │ │ │ minimum value of HLen is 5. It is the segment corresponding to Opts that is │ │ │ │ variable, so if HLen is equal to 5, Opts becomes an empty binary.

    The tail variables RestDgram and Data bind to binaries, as all tail │ │ │ │ @@ -123,77 +123,77 @@ │ │ │ │

    This section describes the rules for constructing binaries using the bit syntax. │ │ │ │ Unlike when constructing lists or tuples, the construction of a binary can fail │ │ │ │ with a badarg exception.

    There can be zero or more segments in a binary to be constructed. The expression │ │ │ │ <<>> constructs a zero length binary.

    Each segment in a binary can consist of zero or more bits. There are no │ │ │ │ alignment rules for individual segments of type integer and float. For │ │ │ │ binaries and bitstrings without size, the unit specifies the alignment. Since │ │ │ │ the default alignment for the binary type is 8, the size of a binary segment │ │ │ │ -must be a multiple of 8 bits, that is, only whole bytes.

    Example:

    <<Bin/binary,Bitstring/bitstring>>

    The variable Bin must contain a whole number of bytes, because the binary │ │ │ │ +must be a multiple of 8 bits, that is, only whole bytes.

    Example:

    <<Bin/binary,Bitstring/bitstring>>

    The variable Bin must contain a whole number of bytes, because the binary │ │ │ │ type defaults to unit:8. A badarg exception is generated if Bin consist │ │ │ │ of, for example, 17 bits.

    The Bitstring variable can consist of any number of bits, for example, 0, 1, │ │ │ │ 8, 11, 17, 42, and so on. This is because the default unit for bitstrings │ │ │ │ is 1.

    For clarity, it is recommended not to change the unit size for binaries. │ │ │ │ Instead, use binary when you need byte alignment and bitstring when you need │ │ │ │ bit alignment.

    The following example successfully constructs a bitstring of 7 bits, provided │ │ │ │ -that all of X and Y are integers:

    <<X:1,Y:6>>

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When constructing binaries, Value and Size can be any Erlang expression. │ │ │ │ +that all of X and Y are integers:

    <<X:1,Y:6>>

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When constructing binaries, Value and Size can be any Erlang expression. │ │ │ │ However, for syntactical reasons, both Value and Size must be enclosed in │ │ │ │ parenthesis if the expression consists of anything more than a single literal or │ │ │ │ -a variable. The following gives a compiler syntax error:

    <<X+1:8>>

    This expression must be rewritten into the following, to be accepted by the │ │ │ │ -compiler:

    <<(X+1):8>>

    │ │ │ │ +a variable. The following gives a compiler syntax error:

    <<X+1:8>>

    This expression must be rewritten into the following, to be accepted by the │ │ │ │ +compiler:

    <<(X+1):8>>

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Including Literal Strings │ │ │ │

    │ │ │ │ -

    A literal string can be written instead of an element:

    <<"hello">>

    This is syntactic sugar for the following:

    <<$h,$e,$l,$l,$o>>

    │ │ │ │ +

    A literal string can be written instead of an element:

    <<"hello">>

    This is syntactic sugar for the following:

    <<$h,$e,$l,$l,$o>>

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │ │

    │ │ │ │

    This section describes the rules for matching binaries, using the bit syntax.

    There can be zero or more segments in a binary pattern. A binary pattern can │ │ │ │ occur wherever patterns are allowed, including inside other patterns. Binary │ │ │ │ patterns cannot be nested. The pattern <<>> matches a zero length binary.

    Each segment in a binary can consist of zero or more bits. A segment of type │ │ │ │ binary must have a size evenly divisible by 8 (or divisible by the unit size, │ │ │ │ if the unit size has been changed). A segment of type bitstring has no │ │ │ │ restrictions on the size. A segment of type float must have size 64 or 32.

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When matching Value, value must be either a variable or an integer, or a │ │ │ │ floating point literal. Expressions are not allowed.

    Size must be a │ │ │ │ guard expression, which can use │ │ │ │ -literals and previously bound variables. The following is not allowed:

    foo(N, <<X:N,T/binary>>) ->
    │ │ │ │ -   {X,T}.

    The two occurrences of N are not related. The compiler will complain that the │ │ │ │ -N in the size field is unbound.

    The correct way to write this example is as follows:

    foo(N, Bin) ->
    │ │ │ │ -   <<X:N,T/binary>> = Bin,
    │ │ │ │ -   {X,T}.

    Note

    Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ │ +literals and previously bound variables. The following is not allowed:

    foo(N, <<X:N,T/binary>>) ->
    │ │ │ │ +   {X,T}.

    The two occurrences of N are not related. The compiler will complain that the │ │ │ │ +N in the size field is unbound.

    The correct way to write this example is as follows:

    foo(N, Bin) ->
    │ │ │ │ +   <<X:N,T/binary>> = Bin,
    │ │ │ │ +   {X,T}.

    Note

    Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ │ an integer.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Binding and Using a Size Variable │ │ │ │

    │ │ │ │

    There is one exception to the rule that a variable that is used as size must be │ │ │ │ previously bound. It is possible to match and bind a variable, and use it as a │ │ │ │ -size within the same binary pattern. For example:

    bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
    │ │ │ │ -   {Payload,Rest}.

    Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ │ -used at the number of bytes to match out as a binary.

    Starting in OTP 23, the size can be a guard expression:

    bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
    │ │ │ │ -   {Payload,Rest}.

    Here Sz is the combined size of the header and the payload, so we will need to │ │ │ │ +size within the same binary pattern. For example:

    bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
    │ │ │ │ +   {Payload,Rest}.

    Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ │ +used at the number of bytes to match out as a binary.

    Starting in OTP 23, the size can be a guard expression:

    bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
    │ │ │ │ +   {Payload,Rest}.

    Here Sz is the combined size of the header and the payload, so we will need to │ │ │ │ subtract one byte to get the size of the payload.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Getting the Rest of the Binary or Bitstring │ │ │ │

    │ │ │ │ -

    To match out the rest of a binary, specify a binary field without size:

    foo(<<A:8,Rest/binary>>) ->

    The size of the tail must be evenly divisible by 8.

    To match out the rest of a bitstring, specify a field without size:

    foo(<<A:8,Rest/bitstring>>) ->

    There are no restrictions on the number of bits in the tail.

    │ │ │ │ +

    To match out the rest of a binary, specify a binary field without size:

    foo(<<A:8,Rest/binary>>) ->

    The size of the tail must be evenly divisible by 8.

    To match out the rest of a bitstring, specify a field without size:

    foo(<<A:8,Rest/bitstring>>) ->

    There are no restrictions on the number of bits in the tail.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Appending to a Binary │ │ │ │

    │ │ │ │ -

    Appending to a binary in an efficient way can be done as follows:

    triples_to_bin(T) ->
    │ │ │ │ -    triples_to_bin(T, <<>>).
    │ │ │ │ +

    Appending to a binary in an efficient way can be done as follows:

    triples_to_bin(T) ->
    │ │ │ │ +    triples_to_bin(T, <<>>).
    │ │ │ │  
    │ │ │ │ -triples_to_bin([{X,Y,Z} | T], Acc) ->
    │ │ │ │ -    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
    │ │ │ │ -triples_to_bin([], Acc) ->
    │ │ │ │ +triples_to_bin([{X,Y,Z} | T], Acc) ->
    │ │ │ │ +    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
    │ │ │ │ +triples_to_bin([], Acc) ->
    │ │ │ │      Acc.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/binaryhandling.xhtml │ │ │ │ @@ -19,43 +19,43 @@ │ │ │ │ │ │ │ │

    │ │ │ │ Constructing and Matching Binaries │ │ │ │

    │ │ │ │

    This section gives a few examples on how to handle binaries in an efficient way. │ │ │ │ The sections that follow take an in-depth look at how binaries are implemented │ │ │ │ and how to best take advantages of the optimizations done by the compiler and │ │ │ │ -runtime system.

    Binaries can be efficiently built in the following way:

    DO

    my_list_to_binary(List) ->
    │ │ │ │ -    my_list_to_binary(List, <<>>).
    │ │ │ │ +runtime system.

    Binaries can be efficiently built in the following way:

    DO

    my_list_to_binary(List) ->
    │ │ │ │ +    my_list_to_binary(List, <<>>).
    │ │ │ │  
    │ │ │ │ -my_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    my_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ -my_list_to_binary([], Acc) ->
    │ │ │ │ +my_list_to_binary([H|T], Acc) ->
    │ │ │ │ +    my_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ +my_list_to_binary([], Acc) ->
    │ │ │ │      Acc.

    Appending data to a binary as in the example is efficient because it is │ │ │ │ specially optimized by the runtime system to avoid copying the Acc binary │ │ │ │ -every time.

    Prepending data to a binary in a loop is not efficient:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ -    rev_list_to_binary(List, <<>>).
    │ │ │ │ +every time.

    Prepending data to a binary in a loop is not efficient:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ +    rev_list_to_binary(List, <<>>).
    │ │ │ │  
    │ │ │ │ -rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    rev_list_to_binary(T, <<H,Acc/binary>>);
    │ │ │ │ -rev_list_to_binary([], Acc) ->
    │ │ │ │ +rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ +    rev_list_to_binary(T, <<H,Acc/binary>>);
    │ │ │ │ +rev_list_to_binary([], Acc) ->
    │ │ │ │      Acc.

    This is not efficient for long lists because the Acc binary is copied every │ │ │ │ -time. One way to make the function more efficient is like this:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ -    rev_list_to_binary(lists:reverse(List), <<>>).
    │ │ │ │ +time. One way to make the function more efficient is like this:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ +    rev_list_to_binary(lists:reverse(List), <<>>).
    │ │ │ │  
    │ │ │ │ -rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    rev_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ -rev_list_to_binary([], Acc) ->
    │ │ │ │ -    Acc.

    Another way to avoid copying the binary each time is like this:

    DO

    rev_list_to_binary([H|T]) ->
    │ │ │ │ -    RevTail = rev_list_to_binary(T),
    │ │ │ │ -    <<RevTail/binary,H>>;
    │ │ │ │ -rev_list_to_binary([]) ->
    │ │ │ │ -    <<>>.

    Note that in each of the DO examples, the binary to be appended to is always │ │ │ │ -given as the first segment.

    Binaries can be efficiently matched in the following way:

    DO

    my_binary_to_list(<<H,T/binary>>) ->
    │ │ │ │ -    [H|my_binary_to_list(T)];
    │ │ │ │ -my_binary_to_list(<<>>) -> [].

    │ │ │ │ +rev_list_to_binary([H|T], Acc) -> │ │ │ │ + rev_list_to_binary(T, <<Acc/binary,H>>); │ │ │ │ +rev_list_to_binary([], Acc) -> │ │ │ │ + Acc.

    Another way to avoid copying the binary each time is like this:

    DO

    rev_list_to_binary([H|T]) ->
    │ │ │ │ +    RevTail = rev_list_to_binary(T),
    │ │ │ │ +    <<RevTail/binary,H>>;
    │ │ │ │ +rev_list_to_binary([]) ->
    │ │ │ │ +    <<>>.

    Note that in each of the DO examples, the binary to be appended to is always │ │ │ │ +given as the first segment.

    Binaries can be efficiently matched in the following way:

    DO

    my_binary_to_list(<<H,T/binary>>) ->
    │ │ │ │ +    [H|my_binary_to_list(T)];
    │ │ │ │ +my_binary_to_list(<<>>) -> [].

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ How Binaries are Implemented │ │ │ │

    │ │ │ │

    Internally, binaries and bitstrings are implemented in the same way. In this │ │ │ │ section, they are called binaries because that is what they are called in the │ │ │ │ @@ -110,29 +110,29 @@ │ │ │ │ called referential transparency) of Erlang would break.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Constructing Binaries │ │ │ │

    │ │ │ │

    Appending to a binary or bitstring in the following way is specially optimized │ │ │ │ -to avoid copying the binary:

    <<Binary/binary, ...>>
    │ │ │ │ +to avoid copying the binary:

    <<Binary/binary, ...>>
    │ │ │ │  %% - OR -
    │ │ │ │ -<<Binary/bitstring, ...>>

    This optimization is applied by the runtime system in a way that makes it │ │ │ │ +<<Binary/bitstring, ...>>

    This optimization is applied by the runtime system in a way that makes it │ │ │ │ effective in most circumstances (for exceptions, see │ │ │ │ Circumstances That Force Copying). The │ │ │ │ optimization in its basic form does not need any help from the compiler. │ │ │ │ However, the compiler add hints to the runtime system when it is safe to apply │ │ │ │ the optimization in a more efficient way.

    Change

    The compiler support for making the optimization more efficient was added in │ │ │ │ Erlang/OTP 26.

    To explain how the basic optimization works, let us examine the following code │ │ │ │ -line by line:

    Bin0 = <<0>>,                    %% 1
    │ │ │ │ -Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
    │ │ │ │ -Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
    │ │ │ │ -Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
    │ │ │ │ -Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
    │ │ │ │ -{Bin4,Bin3}                      %% 6
    • Line 1 (marked with the %% 1 comment), assigns a │ │ │ │ +line by line:

      Bin0 = <<0>>,                    %% 1
      │ │ │ │ +Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
      │ │ │ │ +Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
      │ │ │ │ +Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
      │ │ │ │ +Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
      │ │ │ │ +{Bin4,Bin3}                      %% 6
      • Line 1 (marked with the %% 1 comment), assigns a │ │ │ │ heap binary to the Bin0 variable.

      • Line 2 is an append operation. As Bin0 has not been involved in an append │ │ │ │ operation, a new refc binary is created and │ │ │ │ the contents of Bin0 is copied into it. The ProcBin part of the refc │ │ │ │ binary has its size set to the size of the data stored in the binary, while │ │ │ │ the binary object has extra space allocated. The size of the binary object is │ │ │ │ either twice the size of Bin1 or 256, whichever is larger. In this case it │ │ │ │ is 256.

      • Line 3 is more interesting. Bin1 has been used in an append operation, and │ │ │ │ @@ -158,23 +158,23 @@ │ │ │ │ handle an append operation to a heap binary by copying it to a refc binary (line │ │ │ │ 2), and also handle an append operation to a previous version of the binary by │ │ │ │ copying it (line 5). The support for doing that does not come for free. For │ │ │ │ example, to make it possible to know when it is necessary to copy the binary, │ │ │ │ for every append operation, the runtime system must create a sub binary.

        When the compiler can determine that none of those situations need to be handled │ │ │ │ and that the append operation cannot possibly fail, the compiler generates code │ │ │ │ that causes the runtime system to apply a more efficient variant of the │ │ │ │ -optimization.

        Example:

        -module(repack).
        │ │ │ │ --export([repack/1]).
        │ │ │ │ +optimization.

        Example:

        -module(repack).
        │ │ │ │ +-export([repack/1]).
        │ │ │ │  
        │ │ │ │ -repack(Bin) when is_binary(Bin) ->
        │ │ │ │ -    repack(Bin, <<>>).
        │ │ │ │ +repack(Bin) when is_binary(Bin) ->
        │ │ │ │ +    repack(Bin, <<>>).
        │ │ │ │  
        │ │ │ │ -repack(<<C:8,T/binary>>, Result) ->
        │ │ │ │ -    repack(T, <<Result/binary,C:16>>);
        │ │ │ │ -repack(<<>>, Result) ->
        │ │ │ │ +repack(<<C:8,T/binary>>, Result) ->
        │ │ │ │ +    repack(T, <<Result/binary,C:16>>);
        │ │ │ │ +repack(<<>>, Result) ->
        │ │ │ │      Result.

        The repack/2 function only keeps a single version of the binary, so there is │ │ │ │ never any need to copy the binary. The compiler rewrites the creation of the │ │ │ │ empty binary in repack/1 to instead create a refc binary with 256 bytes │ │ │ │ already reserved; thus, the append operation in repack/2 never needs to handle │ │ │ │ a binary not prepared for appending.

        │ │ │ │ │ │ │ │ │ │ │ │ @@ -186,72 +186,72 @@ │ │ │ │ reason is that the binary object can be moved (reallocated) during an append │ │ │ │ operation, and when that happens, the pointer in the ProcBin must be updated. If │ │ │ │ there would be more than one ProcBin pointing to the binary object, it would not │ │ │ │ be possible to find and update all of them.

        Therefore, certain operations on a binary mark it so that any future append │ │ │ │ operation will be forced to copy the binary. In most cases, the binary object │ │ │ │ will be shrunk at the same time to reclaim the extra space allocated for │ │ │ │ growing.

        When appending to a binary as follows, only the binary returned from the latest │ │ │ │ -append operation will support further cheap append operations:

        Bin = <<Bin0,...>>

        In the code fragment in the beginning of this section, appending to Bin will │ │ │ │ +append operation will support further cheap append operations:

        Bin = <<Bin0,...>>

        In the code fragment in the beginning of this section, appending to Bin will │ │ │ │ be cheap, while appending to Bin0 will force the creation of a new binary and │ │ │ │ copying of the contents of Bin0.

        If a binary is sent as a message to a process or port, the binary will be shrunk │ │ │ │ and any further append operation will copy the binary data into a new binary. │ │ │ │ For example, in the following code fragment Bin1 will be copied in the third │ │ │ │ -line:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ +line:

        Bin1 = <<Bin0,...>>,
        │ │ │ │  PortOrPid ! Bin1,
        │ │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The same happens if you insert a binary into an Ets table, send it to a port │ │ │ │ +Bin = <<Bin1,...>> %% Bin1 will be COPIED

        The same happens if you insert a binary into an Ets table, send it to a port │ │ │ │ using erlang:port_command/2, or pass it to │ │ │ │ enif_inspect_binary in a NIF.

        Matching a binary will also cause it to shrink and the next append operation │ │ │ │ -will copy the binary data:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ -<<X,Y,Z,T/binary>> = Bin1,
        │ │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The reason is that a match context contains a │ │ │ │ +will copy the binary data:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ +<<X,Y,Z,T/binary>> = Bin1,
        │ │ │ │ +Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The reason is that a match context contains a │ │ │ │ direct pointer to the binary data.

        If a process simply keeps binaries (either in "loop data" or in the process │ │ │ │ dictionary), the garbage collector can eventually shrink the binaries. If only │ │ │ │ one such binary is kept, it will not be shrunk. If the process later appends to │ │ │ │ a binary that has been shrunk, the binary object will be reallocated to make │ │ │ │ place for the data to be appended.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │ │

        │ │ │ │ -

        Let us revisit the example in the beginning of the previous section:

        DO

        my_binary_to_list(<<H,T/binary>>) ->
        │ │ │ │ -    [H|my_binary_to_list(T)];
        │ │ │ │ -my_binary_to_list(<<>>) -> [].

        The first time my_binary_to_list/1 is called, a │ │ │ │ +

        Let us revisit the example in the beginning of the previous section:

        DO

        my_binary_to_list(<<H,T/binary>>) ->
        │ │ │ │ +    [H|my_binary_to_list(T)];
        │ │ │ │ +my_binary_to_list(<<>>) -> [].

        The first time my_binary_to_list/1 is called, a │ │ │ │ match context is created. The match context │ │ │ │ points to the first byte of the binary. 1 byte is matched out and the match │ │ │ │ context is updated to point to the second byte in the binary.

        At this point it would make sense to create a │ │ │ │ sub binary, but in this particular example the │ │ │ │ compiler sees that there will soon be a call to a function (in this case, to │ │ │ │ my_binary_to_list/1 itself) that immediately will create a new match context │ │ │ │ and discard the sub binary.

        Therefore my_binary_to_list/1 calls itself with the match context instead of │ │ │ │ with a sub binary. The instruction that initializes the matching operation │ │ │ │ basically does nothing when it sees that it was passed a match context instead │ │ │ │ of a binary.

        When the end of the binary is reached and the second clause matches, the match │ │ │ │ context will simply be discarded (removed in the next garbage collection, as │ │ │ │ there is no longer any reference to it).

        To summarize, my_binary_to_list/1 only needs to create one match context and │ │ │ │ no sub binaries.

        Notice that the match context in my_binary_to_list/1 was discarded when the │ │ │ │ entire binary had been traversed. What happens if the iteration stops before it │ │ │ │ -has reached the end of the binary? Will the optimization still work?

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +has reached the end of the binary? Will the optimization still work?

        after_zero(<<0,T/binary>>) ->
        │ │ │ │      T;
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -after_zero(<<>>) ->
        │ │ │ │ -    <<>>.

        Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ │ +after_zero(<<_,T/binary>>) -> │ │ │ │ + after_zero(T); │ │ │ │ +after_zero(<<>>) -> │ │ │ │ + <<>>.

        Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ │ second clause:

        ...
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -...

        But it will generate code that builds a sub binary in the first clause:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +after_zero(<<_,T/binary>>) ->
        │ │ │ │ +    after_zero(T);
        │ │ │ │ +...

        But it will generate code that builds a sub binary in the first clause:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │      T;
        │ │ │ │  ...

        Therefore, after_zero/1 builds one match context and one sub binary (assuming │ │ │ │ -it is passed a binary that contains a zero byte).

        Code like the following will also be optimized:

        all_but_zeroes_to_list(Buffer, Acc, 0) ->
        │ │ │ │ -    {lists:reverse(Acc),Buffer};
        │ │ │ │ -all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
        │ │ │ │ -    all_but_zeroes_to_list(T, Acc, Remaining-1);
        │ │ │ │ -all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
        │ │ │ │ -    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

        The compiler removes building of sub binaries in the second and third clauses, │ │ │ │ +it is passed a binary that contains a zero byte).

        Code like the following will also be optimized:

        all_but_zeroes_to_list(Buffer, Acc, 0) ->
        │ │ │ │ +    {lists:reverse(Acc),Buffer};
        │ │ │ │ +all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
        │ │ │ │ +    all_but_zeroes_to_list(T, Acc, Remaining-1);
        │ │ │ │ +all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
        │ │ │ │ +    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

        The compiler removes building of sub binaries in the second and third clauses, │ │ │ │ and it adds an instruction to the first clause that converts Buffer from a │ │ │ │ match context to a sub binary (or do nothing if Buffer is a binary already).

        But in more complicated code, how can one know whether the optimization is │ │ │ │ applied or not?

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Option bin_opt_info │ │ │ │ @@ -259,35 +259,35 @@ │ │ │ │

        Use the bin_opt_info option to have the compiler print a lot of information │ │ │ │ about binary optimizations. It can be given either to the compiler or erlc:

        erlc +bin_opt_info Mod.erl

        or passed through an environment variable:

        export ERL_COMPILER_OPTIONS=bin_opt_info

        Notice that the bin_opt_info is not meant to be a permanent option added to │ │ │ │ your Makefiles, because all messages that it generates cannot be eliminated. │ │ │ │ Therefore, passing the option through the environment is in most cases the most │ │ │ │ practical approach.

        The warnings look as follows:

        ./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
        │ │ │ │  ./efficiency_guide.erl:62: Warning: OPTIMIZED: match context reused

        To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ │ -example:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +example:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │           %% BINARY CREATED: binary is returned from the function
        │ │ │ │      T;
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ +after_zero(<<_,T/binary>>) ->
        │ │ │ │           %% OPTIMIZED: match context reused
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -after_zero(<<>>) ->
        │ │ │ │ -    <<>>.

        The warning for the first clause says that the creation of a sub binary cannot │ │ │ │ + after_zero(T); │ │ │ │ +after_zero(<<>>) -> │ │ │ │ + <<>>.

        The warning for the first clause says that the creation of a sub binary cannot │ │ │ │ be delayed, because it will be returned. The warning for the second clause says │ │ │ │ that a sub binary will not be created (yet).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Unused Variables │ │ │ │

        │ │ │ │

        The compiler figures out if a variable is unused. The same code is generated for │ │ │ │ -each of the following functions:

        count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
        │ │ │ │ -count1(<<>>, Count) -> Count.
        │ │ │ │ +each of the following functions:

        count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
        │ │ │ │ +count1(<<>>, Count) -> Count.
        │ │ │ │  
        │ │ │ │ -count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
        │ │ │ │ -count2(<<>>, Count) -> Count.
        │ │ │ │ +count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
        │ │ │ │ +count2(<<>>, Count) -> Count.
        │ │ │ │  
        │ │ │ │ -count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
        │ │ │ │ -count3(<<>>, Count) -> Count.

        In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ │ +count3(<<_H,T/binary>>, Count) -> count3(T, Count+1); │ │ │ │ +count3(<<>>, Count) -> Count.

        In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ │ out.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/benchmarking.xhtml │ │ │ │ @@ -49,16 +49,16 @@ │ │ │ │ fast as possible, what can we do? One way could be to generate more │ │ │ │ than two bytes at the time.

        % erlperf 'rand:bytes(100).' 'crypto:strong_rand_bytes(100).'
        │ │ │ │  Code                                   ||        QPS       Time   Rel
        │ │ │ │  rand:bytes(100).                        1    2124 Ki     470 ns  100%
        │ │ │ │  crypto:strong_rand_bytes(100).          1    1915 Ki     522 ns   90%

        rand:bytes/1 is still faster when we generate 100 bytes at the time, │ │ │ │ but the relative difference is smaller.

        % erlperf 'rand:bytes(1000).' 'crypto:strong_rand_bytes(1000).'
        │ │ │ │  Code                                    ||        QPS       Time   Rel
        │ │ │ │ -crypto:strong_rand_bytes(1000).          1    1518 Ki     658 ns  100%
        │ │ │ │ -rand:bytes(1000).                        1     284 Ki    3521 ns   19%

        When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ │ +crypto:strong_rand_bytes(1000). 1 1518 Ki 658 ns 100% │ │ │ │ +rand:bytes(1000). 1 284 Ki 3521 ns 19%

        When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ │ now the fastest.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Benchmarking using Erlang/OTP functionality │ │ │ │

        │ │ │ │

        Benchmarks can measure wall-clock time or CPU time.

        • timer:tc/3 measures wall-clock time. The advantage with wall-clock time is │ │ │ ├── OEBPS/appup_cookbook.xhtml │ │ │ │ @@ -25,18 +25,18 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Functional Module │ │ │ │ │ │ │ │

          When a functional module has been changed, for example, if a new function has │ │ │ │ been added or a bug has been corrected, simple code replacement is sufficient, │ │ │ │ -for example:

          {"2",
          │ │ │ │ - [{"1", [{load_module, m}]}],
          │ │ │ │ - [{"1", [{load_module, m}]}]
          │ │ │ │ -}.

          │ │ │ │ +for example:

          {"2",
          │ │ │ │ + [{"1", [{load_module, m}]}],
          │ │ │ │ + [{"1", [{load_module, m}]}]
          │ │ │ │ +}.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Residence Module │ │ │ │

          │ │ │ │

          In a system implemented according to the OTP design principles, all processes, │ │ │ │ except system processes and special processes, reside in one of the behaviours │ │ │ │ @@ -47,46 +47,46 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Callback Module │ │ │ │ │ │ │ │

          A callback module is a functional module, and for code extensions simple code │ │ │ │ replacement is sufficient.

          Example

          When adding a function to ch3, as described in the example in │ │ │ │ -Release Handling, ch_app.appup looks as follows:

          {"2",
          │ │ │ │ - [{"1", [{load_module, ch3}]}],
          │ │ │ │ - [{"1", [{load_module, ch3}]}]
          │ │ │ │ -}.

          OTP also supports changing the internal state of behaviour processes; see │ │ │ │ +Release Handling, ch_app.appup looks as follows:

          {"2",
          │ │ │ │ + [{"1", [{load_module, ch3}]}],
          │ │ │ │ + [{"1", [{load_module, ch3}]}]
          │ │ │ │ +}.

          OTP also supports changing the internal state of behaviour processes; see │ │ │ │ Changing Internal State.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Internal State │ │ │ │

          │ │ │ │

          In this case, simple code replacement is not sufficient. The process must │ │ │ │ explicitly transform its state using the callback function code_change/3 before │ │ │ │ switching to the new version of the callback module. Thus, synchronized code │ │ │ │ replacement is used.

          Example

          Consider the ch3 module from │ │ │ │ gen_server Behaviour. The internal state is a term │ │ │ │ Chs representing the available channels. Assume you want to add a counter N, │ │ │ │ which keeps track of the number of alloc requests so far. This means that the │ │ │ │ -format must be changed to {Chs,N}.

          The .appup file can look as follows:

          {"2",
          │ │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}],
          │ │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}]
          │ │ │ │ -}.

          The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ │ +format must be changed to {Chs,N}.

          The .appup file can look as follows:

          {"2",
          │ │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}],
          │ │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}]
          │ │ │ │ +}.

          The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ │ which says that the affected processes are to do a state transformation before │ │ │ │ loading the new version of the module. This is done by the processes calling the │ │ │ │ callback function code_change/3 (see gen_server in STDLIB). │ │ │ │ -The term Extra, in this case [], is passed as is to the function:

          -module(ch3).
          │ │ │ │ +The term Extra, in this case [], is passed as is to the function:

          -module(ch3).
          │ │ │ │  ...
          │ │ │ │ --export([code_change/3]).
          │ │ │ │ +-export([code_change/3]).
          │ │ │ │  ...
          │ │ │ │ -code_change({down, _Vsn}, {Chs, N}, _Extra) ->
          │ │ │ │ -    {ok, Chs};
          │ │ │ │ -code_change(_Vsn, Chs, _Extra) ->
          │ │ │ │ -    {ok, {Chs, 0}}.

          The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ │ +code_change({down, _Vsn}, {Chs, N}, _Extra) -> │ │ │ │ + {ok, Chs}; │ │ │ │ +code_change(_Vsn, Chs, _Extra) -> │ │ │ │ + {ok, {Chs, 0}}.

          The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ │ a upgrade. The term Vsn is fetched from the 'original' version of the module, │ │ │ │ that is, the version you are upgrading from, or downgrading to.

          The version is defined by the module attribute vsn, if any. There is no such │ │ │ │ attribute in ch3, so in this case the version is the checksum (a huge integer) │ │ │ │ of the beam file, an uninteresting value, which is ignored.

          The other callback functions of ch3 must also be modified and perhaps a new │ │ │ │ interface function must be added, but this is not shown here.

          │ │ │ │ │ │ │ │ │ │ │ │ @@ -95,67 +95,67 @@ │ │ │ │

          │ │ │ │

          Assume that a module is extended by adding an interface function, as in the │ │ │ │ example in Release Handling, where a function │ │ │ │ available/0 is added to ch3.

          If a call is added to this function, say in module m1, a runtime error could │ │ │ │ can occur during release upgrade if the new version of m1 is loaded first and │ │ │ │ calls ch3:available/0 before the new version of ch3 is loaded.

          Thus, ch3 must be loaded before m1, in the upgrade case, and conversely in │ │ │ │ the downgrade case. m1 is said to be dependent on ch3. In a release │ │ │ │ -handling instruction, this is expressed by the DepMods element:

          {load_module, Module, DepMods}
          │ │ │ │ -{update, Module, {advanced, Extra}, DepMods}

          DepMods is a list of modules, on which Module is dependent.

          Example

          The module m1 in application myapp is dependent on ch3 when │ │ │ │ +handling instruction, this is expressed by the DepMods element:

          {load_module, Module, DepMods}
          │ │ │ │ +{update, Module, {advanced, Extra}, DepMods}

          DepMods is a list of modules, on which Module is dependent.

          Example

          The module m1 in application myapp is dependent on ch3 when │ │ │ │ upgrading from "1" to "2", or downgrading from "2" to "1":

          myapp.appup:
          │ │ │ │  
          │ │ │ │ -{"2",
          │ │ │ │ - [{"1", [{load_module, m1, [ch3]}]}],
          │ │ │ │ - [{"1", [{load_module, m1, [ch3]}]}]
          │ │ │ │ -}.
          │ │ │ │ +{"2",
          │ │ │ │ + [{"1", [{load_module, m1, [ch3]}]}],
          │ │ │ │ + [{"1", [{load_module, m1, [ch3]}]}]
          │ │ │ │ +}.
          │ │ │ │  
          │ │ │ │  ch_app.appup:
          │ │ │ │  
          │ │ │ │ -{"2",
          │ │ │ │ - [{"1", [{load_module, ch3}]}],
          │ │ │ │ - [{"1", [{load_module, ch3}]}]
          │ │ │ │ -}.

          If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ │ -look as follows:

          {"2",
          │ │ │ │ - [{"1",
          │ │ │ │ -   [{load_module, ch3},
          │ │ │ │ -    {load_module, m1, [ch3]}]}],
          │ │ │ │ - [{"1",
          │ │ │ │ -   [{load_module, ch3},
          │ │ │ │ -    {load_module, m1, [ch3]}]}]
          │ │ │ │ -}.

          m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ │ +{"2", │ │ │ │ + [{"1", [{load_module, ch3}]}], │ │ │ │ + [{"1", [{load_module, ch3}]}] │ │ │ │ +}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ │ +look as follows:

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{load_module, ch3},
    │ │ │ │ +    {load_module, m1, [ch3]}]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{load_module, ch3},
    │ │ │ │ +    {load_module, m1, [ch3]}]}]
    │ │ │ │ +}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ │ difference between up- and downgrading and generates a correct relup, where │ │ │ │ ch3 is loaded before m1 when upgrading, but m1 is loaded before ch3 when │ │ │ │ downgrading.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Code for a Special Process │ │ │ │

    │ │ │ │

    In this case, simple code replacement is not sufficient. When a new version of a │ │ │ │ residence module for a special process is loaded, the process must make a fully │ │ │ │ qualified call to its loop function to switch to the new code. Thus, │ │ │ │ synchronized code replacement must be used.

    Note

    The name(s) of the user-defined residence module(s) must be listed in the │ │ │ │ Modules part of the child specification for the special process. Otherwise │ │ │ │ the release handler cannot find the process.

    Example

    Consider the example ch4 in sys and proc_lib. │ │ │ │ -When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ │ - permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ │ +When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ │ + permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ │ to be loaded when upgrading from version "1" to "2" of this application, │ │ │ │ -sp_app.appup can look as follows:

    {"2",
    │ │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ │ -}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ │ +sp_app.appup can look as follows:

    {"2",
    │ │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ │ +}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ │ instruction makes the special process call the callback function │ │ │ │ system_code_change/4, a function the user must implement. The term Extra, in │ │ │ │ -this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ │ +this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ │  ...
    │ │ │ │ --export([system_code_change/4]).
    │ │ │ │ +-export([system_code_change/4]).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -system_code_change(Chs, _Module, _OldVsn, _Extra) ->
    │ │ │ │ -    {ok, Chs}.
    • The first argument is the internal state State, passed from │ │ │ │ +system_code_change(Chs, _Module, _OldVsn, _Extra) -> │ │ │ │ + {ok, Chs}.

    In this case, all arguments but the first are ignored and the function simply │ │ │ │ returns the internal state again. This is enough if the code only has been │ │ │ │ extended. If instead the internal state is changed (similar to the example in │ │ │ │ @@ -176,85 +176,85 @@ │ │ │ │ Changing Properties │ │ │ │ │ │ │ │

    Since the supervisor is to change its internal state, synchronized code │ │ │ │ replacement is required. However, a special update instruction must be used.

    First, the new version of the callback module must be loaded, both in the case │ │ │ │ of upgrade and downgrade. Then the new return value of init/1 can be checked │ │ │ │ and the internal state be changed accordingly.

    The following upgrade instruction is used for supervisors:

    {update, Module, supervisor}

    Example

    To change the restart strategy of ch_sup (from │ │ │ │ Supervisor Behaviour) from one_for_one to one_for_all, │ │ │ │ -change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ │ +change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -init(_Args) ->
    │ │ │ │ -    {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ -}.

    │ │ │ │ +init(_Args) -> │ │ │ │ + {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Child Specifications │ │ │ │

    │ │ │ │

    The instruction, and thus the .appup file, when changing an existing child │ │ │ │ -specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ -}.

    The changes do not affect existing child processes. For example, changing the │ │ │ │ +specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ +}.

    The changes do not affect existing child processes. For example, changing the │ │ │ │ start function only specifies how the child process is to be restarted, if │ │ │ │ needed later on.

    The id of the child specification cannot be changed.

    Changing the Modules field of the child specification can affect the release │ │ │ │ handling process itself, as this field is used to identify which processes are │ │ │ │ affected when doing a synchronized code replacement.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding and Deleting Child Processes │ │ │ │

    │ │ │ │

    As stated earlier, changing child specifications does not affect existing child │ │ │ │ processes. New child specifications are automatically added, but not deleted. │ │ │ │ Child processes are not automatically started or terminated, this must be done │ │ │ │ using apply instructions.

    Example

    Assume a new child process m1 is to be added to ch_sup when │ │ │ │ upgrading ch_app from "1" to "2". This means m1 is to be deleted when │ │ │ │ -downgrading from "2" to "1":

    {"2",
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{update, ch_sup, supervisor},
    │ │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ -   ]}],
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ -    {update, ch_sup, supervisor}
    │ │ │ │ -   ]}]
    │ │ │ │ -}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ │ +downgrading from "2" to "1":

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{update, ch_sup, supervisor},
    │ │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ +   ]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ +    {update, ch_sup, supervisor}
    │ │ │ │ +   ]}]
    │ │ │ │ +}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ │ supervisor is not registered, it cannot be accessed directly from the script. │ │ │ │ Instead a help function that finds the pid of the supervisor and calls │ │ │ │ supervisor:restart_child, and so on, must be written. This function is then to │ │ │ │ be called from the script using the apply instruction.

    If the module m1 is introduced in version "2" of ch_app, it must also be │ │ │ │ -loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{add_module, m1},
    │ │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ -   ]}],
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ │ -    {delete_module, m1}
    │ │ │ │ -   ]}]
    │ │ │ │ -}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ │ +loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{add_module, m1},
    │ │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ +   ]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ │ +    {delete_module, m1}
    │ │ │ │ +   ]}]
    │ │ │ │ +}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ │ m1 must be loaded, and the supervisor child specification changed, before the │ │ │ │ new child process can be started. When downgrading, the child process must be │ │ │ │ terminated before the child specification is changed and the module is deleted.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding or Deleting a Module │ │ │ │

    │ │ │ │ -

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ │ - [{"1", [{add_module, m}]}],
    │ │ │ │ - [{"1", [{delete_module, m}]}]

    │ │ │ │ +

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ │ + [{"1", [{add_module, m}]}],
    │ │ │ │ + [{"1", [{delete_module, m}]}]

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting or Terminating a Process │ │ │ │

    │ │ │ │

    In a system structured according to the OTP design principles, any process would │ │ │ │ be a child process belonging to a supervisor, see │ │ │ │ @@ -274,29 +274,29 @@ │ │ │ │ Restarting an Application │ │ │ │ │ │ │ │

    Restarting an application is useful when a change is too complicated to be made │ │ │ │ without restarting the processes, for example, if the supervisor hierarchy has │ │ │ │ been restructured.

    Example

    When adding a child m1 to ch_sup, as in │ │ │ │ Adding and Deleting Child Processes in Changing a │ │ │ │ Supervisor, an alternative to updating the supervisor is to restart the entire │ │ │ │ -application:

    {"2",
    │ │ │ │ - [{"1", [{restart_application, ch_app}]}],
    │ │ │ │ - [{"1", [{restart_application, ch_app}]}]
    │ │ │ │ -}.

    │ │ │ │ +application:

    {"2",
    │ │ │ │ + [{"1", [{restart_application, ch_app}]}],
    │ │ │ │ + [{"1", [{restart_application, ch_app}]}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing an Application Specification │ │ │ │

    │ │ │ │

    When installing a release, the application specifications are automatically │ │ │ │ updated before evaluating the relup script. Thus, no instructions are needed │ │ │ │ -in the .appup file:

    {"2",
    │ │ │ │ - [{"1", []}],
    │ │ │ │ - [{"1", []}]
    │ │ │ │ -}.

    │ │ │ │ +in the .appup file:

    {"2",
    │ │ │ │ + [{"1", []}],
    │ │ │ │ + [{"1", []}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Application Configuration │ │ │ │

    │ │ │ │

    Changing an application configuration by updating the env key in the .app │ │ │ │ file is an instance of changing an application specification, see the previous │ │ │ │ @@ -311,26 +311,26 @@ │ │ │ │ applications apply to primary applications only. There are no corresponding │ │ │ │ instructions for included applications. However, since an included application │ │ │ │ is really a supervision tree with a topmost supervisor, started as a child │ │ │ │ process to a supervisor in the including application, a .relup file can be │ │ │ │ manually created.

    Example

    Assume there is a release containing an application prim_app, which │ │ │ │ have a supervisor prim_sup in its supervision tree.

    In a new version of the release, the application ch_app is to be included in │ │ │ │ prim_app. That is, its topmost supervisor ch_sup is to be started as a child │ │ │ │ -process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ │ -    {ok, {...supervisor flags...,
    │ │ │ │ -          [...,
    │ │ │ │ -           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ │ -            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ │ -           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ │ - [...,
    │ │ │ │ -  {vsn, "2"},
    │ │ │ │ +process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ │ +    {ok, {...supervisor flags...,
    │ │ │ │ +          [...,
    │ │ │ │ +           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ │ +            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ │ +           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ │ + [...,
    │ │ │ │ +  {vsn, "2"},
    │ │ │ │    ...,
    │ │ │ │ -  {included_applications, [ch_app]},
    │ │ │ │ +  {included_applications, [ch_app]},
    │ │ │ │    ...
    │ │ │ │ - ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ │ + ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ │   ...,
    │ │ │ │   [...,
    │ │ │ │    {prim_app, "2"},
    │ │ │ │    {ch_app, "1"}]}.

    The included application can be started in two ways. This is described in the │ │ │ │ next two sections.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -385,74 +385,74 @@ │ │ │ │

    Step 4b) Another way to start the included application (or stop it in the case │ │ │ │ of downgrade) is by combining instructions for adding and removing child │ │ │ │ processes to/from prim_sup with instructions for loading/unloading all │ │ │ │ ch_app code and its application specification.

    Again, the .relup file is created manually, either from scratch or by editing a │ │ │ │ generated version. Load all code for ch_app first, and also load the │ │ │ │ application specification, before prim_sup is updated. When downgrading, │ │ │ │ prim_sup is to updated first, before the code for ch_app and its application │ │ │ │ -specification are unloaded.

    {"B",
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ │ -    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ │ +specification are unloaded.

    {"B",
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ │ +    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ │      point_of_no_return,
    │ │ │ │ -    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ -    {apply,{application,load,[ch_app]}},
    │ │ │ │ -    {suspend,[prim_sup]},
    │ │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {code_change,up,[{prim_sup,[]}]},
    │ │ │ │ -    {resume,[prim_sup]},
    │ │ │ │ -    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ │ +    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ +    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ +    {apply,{application,load,[ch_app]}},
    │ │ │ │ +    {suspend,[prim_sup]},
    │ │ │ │ +    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ +    {code_change,up,[{prim_sup,[]}]},
    │ │ │ │ +    {resume,[prim_sup]},
    │ │ │ │ +    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ │      point_of_no_return,
    │ │ │ │ -    {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
    │ │ │ │ -    {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
    │ │ │ │ -    {suspend,[prim_sup]},
    │ │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {code_change,down,[{prim_sup,[]}]},
    │ │ │ │ -    {resume,[prim_sup]},
    │ │ │ │ -    {remove,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {remove,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ -    {purge,[ch_sup,ch3]},
    │ │ │ │ -    {apply,{application,unload,[ch_app]}}]}]
    │ │ │ │ -}.

    │ │ │ │ + {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}}, │ │ │ │ + {apply,{supervisor,delete_child,[prim_sup,ch_sup]}}, │ │ │ │ + {suspend,[prim_sup]}, │ │ │ │ + {load,{prim_sup,brutal_purge,brutal_purge}}, │ │ │ │ + {code_change,down,[{prim_sup,[]}]}, │ │ │ │ + {resume,[prim_sup]}, │ │ │ │ + {remove,{ch_sup,brutal_purge,brutal_purge}}, │ │ │ │ + {remove,{ch3,brutal_purge,brutal_purge}}, │ │ │ │ + {purge,[ch_sup,ch3]}, │ │ │ │ + {apply,{application,unload,[ch_app]}}]}] │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Non-Erlang Code │ │ │ │

    │ │ │ │

    Changing code for a program written in another programming language than Erlang, │ │ │ │ for example, a port program, is application-dependent and OTP provides no │ │ │ │ special support.

    Example

    When changing code for a port program, assume that the Erlang process │ │ │ │ controlling the port is a gen_server portc and that the port is opened in │ │ │ │ -the callback function init/1:

    init(...) ->
    │ │ │ │ +the callback function init/1:

    init(...) ->
    │ │ │ │      ...,
    │ │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │      ...,
    │ │ │ │ -    {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ │ + {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ │ extended with a code_change/3 function, which closes the old port and opens a │ │ │ │ new port. (If necessary, the gen_server can first request data that must be │ │ │ │ -saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ │ +saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ │      State#state.port ! close,
    │ │ │ │      receive
    │ │ │ │ -        {Port,close} ->
    │ │ │ │ +        {Port,close} ->
    │ │ │ │              true
    │ │ │ │      end,
    │ │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ -    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ │ -file:

    ["2",
    │ │ │ │ - [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ │ - [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ │ -].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ │ -the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ +    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ │ +file:

    ["2",
    │ │ │ │ + [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ │ + [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ │ +].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ │ +the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ │  ...

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Runtime System Restart and Upgrade │ │ │ │

    │ │ │ │

    Two upgrade instructions restart the runtime system:

    • restart_new_emulator

      Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically │ │ │ │ @@ -460,20 +460,20 @@ │ │ │ │ executed before all other upgrade instructions. For more information about │ │ │ │ this instruction, see restart_new_emulator (Low-Level) in │ │ │ │ Release Handling Instructions.

    • restart_emulator

      Used when a restart of the runtime system is required after all other upgrade │ │ │ │ instructions are executed. For more information about this instruction, see │ │ │ │ restart_emulator (Low-Level) in │ │ │ │ Release Handling Instructions.

    If a runtime system restart is necessary and no upgrade instructions are needed, │ │ │ │ that is, if the restart itself is enough for the upgraded applications to start │ │ │ │ -running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [restart_emulator]}],
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [restart_emulator]}]
    │ │ │ │ -}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ │ +running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [restart_emulator]}],
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [restart_emulator]}]
    │ │ │ │ +}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ │ of release packages, automatic path updates, and so on, can be used without │ │ │ │ having to specify .appup files.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/applications.xhtml │ │ │ │ @@ -40,34 +40,34 @@ │ │ │ │ directory structure.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Callback Module │ │ │ │

    │ │ │ │

    How to start and stop the code for the application, including its supervision │ │ │ │ -tree, is described by two callback functions:

    start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
    │ │ │ │ -stop(State)
    • start/2 is called when starting the application and is to create the │ │ │ │ +tree, is described by two callback functions:

      start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
      │ │ │ │ +stop(State)
      • start/2 is called when starting the application and is to create the │ │ │ │ supervision tree by starting the top supervisor. It is expected to return the │ │ │ │ pid of the top supervisor and an optional term, State, which defaults to │ │ │ │ []. This term is passed as is to stop/1.
      • StartType is usually the atom normal. It has other values only in the case │ │ │ │ of a takeover or failover; see │ │ │ │ Distributed Applications.
      • StartArgs is defined by the key mod in the │ │ │ │ application resource file.
      • stop/1 is called after the application has been stopped and is to do any │ │ │ │ necessary cleaning up. The actual stopping of the application, that is, │ │ │ │ shutting down the supervision tree, is handled automatically as described in │ │ │ │ Starting and Stopping Applications.

      Example of an application callback module for packaging the supervision tree │ │ │ │ -from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ │ --behaviour(application).
      │ │ │ │ +from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ │ +-behaviour(application).
      │ │ │ │  
      │ │ │ │ --export([start/2, stop/1]).
      │ │ │ │ +-export([start/2, stop/1]).
      │ │ │ │  
      │ │ │ │ -start(_Type, _Args) ->
      │ │ │ │ -    ch_sup:start_link().
      │ │ │ │ +start(_Type, _Args) ->
      │ │ │ │ +    ch_sup:start_link().
      │ │ │ │  
      │ │ │ │ -stop(_State) ->
      │ │ │ │ +stop(_State) ->
      │ │ │ │      ok.

      A library application that cannot be started or stopped does not need any │ │ │ │ application callback module.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Resource File │ │ │ │

      │ │ │ │ @@ -78,22 +78,22 @@ │ │ │ │ keys.

    The contents of a minimal .app file for a library application libapp looks │ │ │ │ as follows:

    {application, libapp, []}.

    The contents of a minimal .app file ch_app.app for a supervision tree │ │ │ │ application like ch_app looks as follows:

    {application, ch_app,
    │ │ │ │   [{mod, {ch_app,[]}}]}.

    The key mod defines the callback module and start argument of the application, │ │ │ │ in this case ch_app and [], respectively. This means that the following is │ │ │ │ called when the application is to be started:

    ch_app:start(normal, [])

    The following is called when the application is stopped:

    ch_app:stop([])

    When using systools, the Erlang/OTP tools for packaging code (see Section │ │ │ │ Releases), the keys description, vsn, modules, │ │ │ │ -registered, and applications are also to be specified:

    {application, ch_app,
    │ │ │ │ - [{description, "Channel allocator"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ │ -  {registered, [ch3]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ │ - ]}.
    • description - A short description, a string. Defaults to "".
    • vsn - Version number, a string. Defaults to "".
    • modules - All modules introduced by this application. systools uses │ │ │ │ +registered, and applications are also to be specified:

      {application, ch_app,
      │ │ │ │ + [{description, "Channel allocator"},
      │ │ │ │ +  {vsn, "1"},
      │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ +  {registered, [ch3]},
      │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ +  {mod, {ch_app,[]}}
      │ │ │ │ + ]}.
      • description - A short description, a string. Defaults to "".
      • vsn - Version number, a string. Defaults to "".
      • modules - All modules introduced by this application. systools uses │ │ │ │ this list when generating boot scripts and tar files. A module must only │ │ │ │ be included in one application. Defaults to [].
      • registered - All names of registered processes in the application. │ │ │ │ systools uses this list to detect name clashes between applications. │ │ │ │ Defaults to [].
      • applications - All applications that must be started before this │ │ │ │ application is started. systools uses this list to generate correct boot │ │ │ │ scripts. Defaults to []. Notice that all applications have dependencies to │ │ │ │ at least Kernel and STDLIB.

      Note

      For details about the syntax and contents of the application resource file, │ │ │ │ @@ -205,38 +205,38 @@ │ │ │ │ stop applications.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Loading and Unloading Applications │ │ │ │

      │ │ │ │

      Before an application can be started, it must be loaded. The application │ │ │ │ -controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ │ +controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ │  ok
      │ │ │ │ -2> application:loaded_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ │ - {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ │ +2> application:loaded_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ │ + {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ │ unloaded. The information about the application is erased from the internal │ │ │ │ -database of the application controller.

      3> application:unload(ch_app).
      │ │ │ │ +database of the application controller.

      3> application:unload(ch_app).
      │ │ │ │  ok
      │ │ │ │ -4> application:loaded_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ │ +4> application:loaded_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ │ application. Code loading is handled in the usual way by the code server.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Applications │ │ │ │

      │ │ │ │ -

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ │ +

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ │  ok
      │ │ │ │ -6> application:which_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ │ - {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ │ +6> application:which_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ │ + {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ │ it using application:load/1. It checks the value of the applications key to │ │ │ │ ensure that all applications that are to be started before this application are │ │ │ │ running.

      Following that, the application controller creates an application master for │ │ │ │ the application.

      The application master establishes itself as the group │ │ │ │ leader of all processes in the application │ │ │ │ and will forward I/O to the previous group leader.

      Note

      The purpose of the application master being the group leader is to easily │ │ │ │ keep track of which processes that belong to the application. That is needed │ │ │ │ @@ -252,55 +252,55 @@ │ │ │ │ defined by the mod key.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Configuring an Application │ │ │ │

      │ │ │ │

      An application can be configured using configuration parameters. These are a │ │ │ │ -list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ │ - [{description, "Channel allocator"},
      │ │ │ │ -  {vsn, "1"},
      │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ -  {registered, [ch3]},
      │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ -  {mod, {ch_app,[]}},
      │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
      │ │ │ │ - ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ │ +list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ │ + [{description, "Channel allocator"},
      │ │ │ │ +  {vsn, "1"},
      │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ +  {registered, [ch3]},
      │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ +  {mod, {ch_app,[]}},
      │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
      │ │ │ │ + ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ │ value of a configuration parameter by calling application:get_env(App, Par) or │ │ │ │ a number of similar functions. For more information, see module application │ │ │ │ in Kernel.

      Example:

      % erl
      │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ │  
      │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
      │ │ │ │ -1> application:start(ch_app).
      │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
      │ │ │ │ +1> application:start(ch_app).
      │ │ │ │  ok
      │ │ │ │ -2> application:get_env(ch_app, file).
      │ │ │ │ -{ok,"/usr/local/log"}

      The values in the .app file can be overridden by values in a system │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"/usr/local/log"}

    The values in the .app file can be overridden by values in a system │ │ │ │ configuration file. This is a file that contains configuration parameters for │ │ │ │ -relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ │ +relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ │   ...,
    │ │ │ │ - {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ │ + {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ │ started with the command-line argument -config Name. For details, see │ │ │ │ config in Kernel.

    Example:

    A file test.config is created with the following contents:

    [{ch_app, [{file, "testlog"}]}].

    The value of file overrides the value of file as defined in the .app file:

    % erl -config test
    │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ -1> application:start(ch_app).
    │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ +1> application:start(ch_app).
    │ │ │ │  ok
    │ │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ │ -{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ │ configuration file is to be used and that file is to be called sys.config.

    The values in the .app file and the values in a system configuration file can │ │ │ │ be overridden directly from the command line:

    % erl -ApplName Par1 Val1 ... ParN ValN

    Example:

    % erl -ch_app file '"testlog"'
    │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ -1> application:start(ch_app).
    │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ +1> application:start(ch_app).
    │ │ │ │  ok
    │ │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ │ -{ok,"testlog"}

    │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"testlog"}

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Start Types │ │ │ │

    │ │ │ │

    A start type is defined when starting the application:

    application:start(Application, Type)

    application:start(Application) is the same as calling │ │ │ │ application:start(Application, temporary). The type can also be permanent or │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/applications.html │ │ │ @@ -135,34 +135,34 @@ │ │ │ directory structure.

    │ │ │ │ │ │ │ │ │ │ │ │ Application Callback Module │ │ │

    │ │ │

    How to start and stop the code for the application, including its supervision │ │ │ -tree, is described by two callback functions:

    start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
    │ │ │ -stop(State)
    • start/2 is called when starting the application and is to create the │ │ │ +tree, is described by two callback functions:

      start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
      │ │ │ +stop(State)
      • start/2 is called when starting the application and is to create the │ │ │ supervision tree by starting the top supervisor. It is expected to return the │ │ │ pid of the top supervisor and an optional term, State, which defaults to │ │ │ []. This term is passed as is to stop/1.
      • StartType is usually the atom normal. It has other values only in the case │ │ │ of a takeover or failover; see │ │ │ Distributed Applications.
      • StartArgs is defined by the key mod in the │ │ │ application resource file.
      • stop/1 is called after the application has been stopped and is to do any │ │ │ necessary cleaning up. The actual stopping of the application, that is, │ │ │ shutting down the supervision tree, is handled automatically as described in │ │ │ Starting and Stopping Applications.

      Example of an application callback module for packaging the supervision tree │ │ │ -from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ --behaviour(application).
      │ │ │ +from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ +-behaviour(application).
      │ │ │  
      │ │ │ --export([start/2, stop/1]).
      │ │ │ +-export([start/2, stop/1]).
      │ │ │  
      │ │ │ -start(_Type, _Args) ->
      │ │ │ -    ch_sup:start_link().
      │ │ │ +start(_Type, _Args) ->
      │ │ │ +    ch_sup:start_link().
      │ │ │  
      │ │ │ -stop(_State) ->
      │ │ │ +stop(_State) ->
      │ │ │      ok.

      A library application that cannot be started or stopped does not need any │ │ │ application callback module.

      │ │ │ │ │ │ │ │ │ │ │ │ Application Resource File │ │ │

      │ │ │ @@ -173,22 +173,22 @@ │ │ │ keys.

    The contents of a minimal .app file for a library application libapp looks │ │ │ as follows:

    {application, libapp, []}.

    The contents of a minimal .app file ch_app.app for a supervision tree │ │ │ application like ch_app looks as follows:

    {application, ch_app,
    │ │ │   [{mod, {ch_app,[]}}]}.

    The key mod defines the callback module and start argument of the application, │ │ │ in this case ch_app and [], respectively. This means that the following is │ │ │ called when the application is to be started:

    ch_app:start(normal, [])

    The following is called when the application is stopped:

    ch_app:stop([])

    When using systools, the Erlang/OTP tools for packaging code (see Section │ │ │ Releases), the keys description, vsn, modules, │ │ │ -registered, and applications are also to be specified:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.
    • description - A short description, a string. Defaults to "".
    • vsn - Version number, a string. Defaults to "".
    • modules - All modules introduced by this application. systools uses │ │ │ +registered, and applications are also to be specified:

      {application, ch_app,
      │ │ │ + [{description, "Channel allocator"},
      │ │ │ +  {vsn, "1"},
      │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ +  {registered, [ch3]},
      │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ +  {mod, {ch_app,[]}}
      │ │ │ + ]}.
      • description - A short description, a string. Defaults to "".
      • vsn - Version number, a string. Defaults to "".
      • modules - All modules introduced by this application. systools uses │ │ │ this list when generating boot scripts and tar files. A module must only │ │ │ be included in one application. Defaults to [].
      • registered - All names of registered processes in the application. │ │ │ systools uses this list to detect name clashes between applications. │ │ │ Defaults to [].
      • applications - All applications that must be started before this │ │ │ application is started. systools uses this list to generate correct boot │ │ │ scripts. Defaults to []. Notice that all applications have dependencies to │ │ │ at least Kernel and STDLIB.

      Note

      For details about the syntax and contents of the application resource file, │ │ │ @@ -300,38 +300,38 @@ │ │ │ stop applications.

      │ │ │ │ │ │ │ │ │ │ │ │ Loading and Unloading Applications │ │ │

      │ │ │

      Before an application can be started, it must be loaded. The application │ │ │ -controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ +controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │  ok
      │ │ │ -2> application:loaded_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ - {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ +2> application:loaded_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ + {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ unloaded. The information about the application is erased from the internal │ │ │ -database of the application controller.

      3> application:unload(ch_app).
      │ │ │ +database of the application controller.

      3> application:unload(ch_app).
      │ │ │  ok
      │ │ │ -4> application:loaded_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ +4> application:loaded_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ application. Code loading is handled in the usual way by the code server.

      │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Applications │ │ │

      │ │ │ -

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ +

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │  ok
      │ │ │ -6> application:which_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ - {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ +6> application:which_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ + {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ it using application:load/1. It checks the value of the applications key to │ │ │ ensure that all applications that are to be started before this application are │ │ │ running.

      Following that, the application controller creates an application master for │ │ │ the application.

      The application master establishes itself as the group │ │ │ leader of all processes in the application │ │ │ and will forward I/O to the previous group leader.

      Note

      The purpose of the application master being the group leader is to easily │ │ │ keep track of which processes that belong to the application. That is needed │ │ │ @@ -347,55 +347,55 @@ │ │ │ defined by the mod key.

      │ │ │ │ │ │ │ │ │ │ │ │ Configuring an Application │ │ │

      │ │ │

      An application can be configured using configuration parameters. These are a │ │ │ -list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ - [{description, "Channel allocator"},
      │ │ │ -  {vsn, "1"},
      │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ -  {registered, [ch3]},
      │ │ │ -  {applications, [kernel, stdlib, sasl]},
      │ │ │ -  {mod, {ch_app,[]}},
      │ │ │ -  {env, [{file, "/usr/local/log"}]}
      │ │ │ - ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ +list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ + [{description, "Channel allocator"},
      │ │ │ +  {vsn, "1"},
      │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ +  {registered, [ch3]},
      │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ +  {mod, {ch_app,[]}},
      │ │ │ +  {env, [{file, "/usr/local/log"}]}
      │ │ │ + ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ value of a configuration parameter by calling application:get_env(App, Par) or │ │ │ a number of similar functions. For more information, see module application │ │ │ in Kernel.

      Example:

      % erl
      │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │  
      │ │ │ -Eshell V5.2.3.6  (abort with ^G)
      │ │ │ -1> application:start(ch_app).
      │ │ │ +Eshell V5.2.3.6  (abort with ^G)
      │ │ │ +1> application:start(ch_app).
      │ │ │  ok
      │ │ │ -2> application:get_env(ch_app, file).
      │ │ │ -{ok,"/usr/local/log"}

      The values in the .app file can be overridden by values in a system │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"/usr/local/log"}

    The values in the .app file can be overridden by values in a system │ │ │ configuration file. This is a file that contains configuration parameters for │ │ │ -relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ +relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │   ...,
    │ │ │ - {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ + {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ started with the command-line argument -config Name. For details, see │ │ │ config in Kernel.

    Example:

    A file test.config is created with the following contents:

    [{ch_app, [{file, "testlog"}]}].

    The value of file overrides the value of file as defined in the .app file:

    % erl -config test
    │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │  
    │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ -1> application:start(ch_app).
    │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ +1> application:start(ch_app).
    │ │ │  ok
    │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ -{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ configuration file is to be used and that file is to be called sys.config.

    The values in the .app file and the values in a system configuration file can │ │ │ be overridden directly from the command line:

    % erl -ApplName Par1 Val1 ... ParN ValN

    Example:

    % erl -ch_app file '"testlog"'
    │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │  
    │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ -1> application:start(ch_app).
    │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ +1> application:start(ch_app).
    │ │ │  ok
    │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ -{ok,"testlog"}

    │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"testlog"}

    │ │ │ │ │ │ │ │ │ │ │ │ Application Start Types │ │ │

    │ │ │

    A start type is defined when starting the application:

    application:start(Application, Type)

    application:start(Application) is the same as calling │ │ │ application:start(Application, temporary). The type can also be permanent or │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/appup_cookbook.html │ │ │ @@ -120,18 +120,18 @@ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Functional Module │ │ │ │ │ │

    When a functional module has been changed, for example, if a new function has │ │ │ been added or a bug has been corrected, simple code replacement is sufficient, │ │ │ -for example:

    {"2",
    │ │ │ - [{"1", [{load_module, m}]}],
    │ │ │ - [{"1", [{load_module, m}]}]
    │ │ │ -}.

    │ │ │ +for example:

    {"2",
    │ │ │ + [{"1", [{load_module, m}]}],
    │ │ │ + [{"1", [{load_module, m}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing a Residence Module │ │ │

    │ │ │

    In a system implemented according to the OTP design principles, all processes, │ │ │ except system processes and special processes, reside in one of the behaviours │ │ │ @@ -142,46 +142,46 @@ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Callback Module │ │ │ │ │ │

    A callback module is a functional module, and for code extensions simple code │ │ │ replacement is sufficient.

    Example

    When adding a function to ch3, as described in the example in │ │ │ -Release Handling, ch_app.appup looks as follows:

    {"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    OTP also supports changing the internal state of behaviour processes; see │ │ │ +Release Handling, ch_app.appup looks as follows:

    {"2",
    │ │ │ + [{"1", [{load_module, ch3}]}],
    │ │ │ + [{"1", [{load_module, ch3}]}]
    │ │ │ +}.

    OTP also supports changing the internal state of behaviour processes; see │ │ │ Changing Internal State.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Internal State │ │ │

    │ │ │

    In this case, simple code replacement is not sufficient. The process must │ │ │ explicitly transform its state using the callback function code_change/3 before │ │ │ switching to the new version of the callback module. Thus, synchronized code │ │ │ replacement is used.

    Example

    Consider the ch3 module from │ │ │ gen_server Behaviour. The internal state is a term │ │ │ Chs representing the available channels. Assume you want to add a counter N, │ │ │ which keeps track of the number of alloc requests so far. This means that the │ │ │ -format must be changed to {Chs,N}.

    The .appup file can look as follows:

    {"2",
    │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}],
    │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}]
    │ │ │ -}.

    The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ +format must be changed to {Chs,N}.

    The .appup file can look as follows:

    {"2",
    │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}],
    │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}]
    │ │ │ +}.

    The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ which says that the affected processes are to do a state transformation before │ │ │ loading the new version of the module. This is done by the processes calling the │ │ │ callback function code_change/3 (see gen_server in STDLIB). │ │ │ -The term Extra, in this case [], is passed as is to the function:

    -module(ch3).
    │ │ │ +The term Extra, in this case [], is passed as is to the function:

    -module(ch3).
    │ │ │  ...
    │ │ │ --export([code_change/3]).
    │ │ │ +-export([code_change/3]).
    │ │ │  ...
    │ │ │ -code_change({down, _Vsn}, {Chs, N}, _Extra) ->
    │ │ │ -    {ok, Chs};
    │ │ │ -code_change(_Vsn, Chs, _Extra) ->
    │ │ │ -    {ok, {Chs, 0}}.

    The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ +code_change({down, _Vsn}, {Chs, N}, _Extra) -> │ │ │ + {ok, Chs}; │ │ │ +code_change(_Vsn, Chs, _Extra) -> │ │ │ + {ok, {Chs, 0}}.

    The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ a upgrade. The term Vsn is fetched from the 'original' version of the module, │ │ │ that is, the version you are upgrading from, or downgrading to.

    The version is defined by the module attribute vsn, if any. There is no such │ │ │ attribute in ch3, so in this case the version is the checksum (a huge integer) │ │ │ of the beam file, an uninteresting value, which is ignored.

    The other callback functions of ch3 must also be modified and perhaps a new │ │ │ interface function must be added, but this is not shown here.

    │ │ │ │ │ │ │ │ │ @@ -190,67 +190,67 @@ │ │ │

    │ │ │

    Assume that a module is extended by adding an interface function, as in the │ │ │ example in Release Handling, where a function │ │ │ available/0 is added to ch3.

    If a call is added to this function, say in module m1, a runtime error could │ │ │ can occur during release upgrade if the new version of m1 is loaded first and │ │ │ calls ch3:available/0 before the new version of ch3 is loaded.

    Thus, ch3 must be loaded before m1, in the upgrade case, and conversely in │ │ │ the downgrade case. m1 is said to be dependent on ch3. In a release │ │ │ -handling instruction, this is expressed by the DepMods element:

    {load_module, Module, DepMods}
    │ │ │ -{update, Module, {advanced, Extra}, DepMods}

    DepMods is a list of modules, on which Module is dependent.

    Example

    The module m1 in application myapp is dependent on ch3 when │ │ │ +handling instruction, this is expressed by the DepMods element:

    {load_module, Module, DepMods}
    │ │ │ +{update, Module, {advanced, Extra}, DepMods}

    DepMods is a list of modules, on which Module is dependent.

    Example

    The module m1 in application myapp is dependent on ch3 when │ │ │ upgrading from "1" to "2", or downgrading from "2" to "1":

    myapp.appup:
    │ │ │  
    │ │ │ -{"2",
    │ │ │ - [{"1", [{load_module, m1, [ch3]}]}],
    │ │ │ - [{"1", [{load_module, m1, [ch3]}]}]
    │ │ │ -}.
    │ │ │ +{"2",
    │ │ │ + [{"1", [{load_module, m1, [ch3]}]}],
    │ │ │ + [{"1", [{load_module, m1, [ch3]}]}]
    │ │ │ +}.
    │ │ │  
    │ │ │  ch_app.appup:
    │ │ │  
    │ │ │ -{"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ -look as follows:

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{load_module, ch3},
    │ │ │ -    {load_module, m1, [ch3]}]}],
    │ │ │ - [{"1",
    │ │ │ -   [{load_module, ch3},
    │ │ │ -    {load_module, m1, [ch3]}]}]
    │ │ │ -}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ +{"2", │ │ │ + [{"1", [{load_module, ch3}]}], │ │ │ + [{"1", [{load_module, ch3}]}] │ │ │ +}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ +look as follows:

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{load_module, ch3},
    │ │ │ +    {load_module, m1, [ch3]}]}],
    │ │ │ + [{"1",
    │ │ │ +   [{load_module, ch3},
    │ │ │ +    {load_module, m1, [ch3]}]}]
    │ │ │ +}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ difference between up- and downgrading and generates a correct relup, where │ │ │ ch3 is loaded before m1 when upgrading, but m1 is loaded before ch3 when │ │ │ downgrading.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Code for a Special Process │ │ │

    │ │ │

    In this case, simple code replacement is not sufficient. When a new version of a │ │ │ residence module for a special process is loaded, the process must make a fully │ │ │ qualified call to its loop function to switch to the new code. Thus, │ │ │ synchronized code replacement must be used.

    Note

    The name(s) of the user-defined residence module(s) must be listed in the │ │ │ Modules part of the child specification for the special process. Otherwise │ │ │ the release handler cannot find the process.

    Example

    Consider the example ch4 in sys and proc_lib. │ │ │ -When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ - permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ +When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ + permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ to be loaded when upgrading from version "1" to "2" of this application, │ │ │ -sp_app.appup can look as follows:

    {"2",
    │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ -}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ +sp_app.appup can look as follows:

    {"2",
    │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ +}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ instruction makes the special process call the callback function │ │ │ system_code_change/4, a function the user must implement. The term Extra, in │ │ │ -this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ +this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │  ...
    │ │ │ --export([system_code_change/4]).
    │ │ │ +-export([system_code_change/4]).
    │ │ │  ...
    │ │ │  
    │ │ │ -system_code_change(Chs, _Module, _OldVsn, _Extra) ->
    │ │ │ -    {ok, Chs}.
    • The first argument is the internal state State, passed from │ │ │ +system_code_change(Chs, _Module, _OldVsn, _Extra) -> │ │ │ + {ok, Chs}.

    In this case, all arguments but the first are ignored and the function simply │ │ │ returns the internal state again. This is enough if the code only has been │ │ │ extended. If instead the internal state is changed (similar to the example in │ │ │ @@ -271,85 +271,85 @@ │ │ │ Changing Properties │ │ │ │ │ │

    Since the supervisor is to change its internal state, synchronized code │ │ │ replacement is required. However, a special update instruction must be used.

    First, the new version of the callback module must be loaded, both in the case │ │ │ of upgrade and downgrade. Then the new return value of init/1 can be checked │ │ │ and the internal state be changed accordingly.

    The following upgrade instruction is used for supervisors:

    {update, Module, supervisor}

    Example

    To change the restart strategy of ch_sup (from │ │ │ Supervisor Behaviour) from one_for_one to one_for_all, │ │ │ -change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ +change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │  ...
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ -}.

    │ │ │ +init(_Args) -> │ │ │ + {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Child Specifications │ │ │

    │ │ │

    The instruction, and thus the .appup file, when changing an existing child │ │ │ -specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ -}.

    The changes do not affect existing child processes. For example, changing the │ │ │ +specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ +}.

    The changes do not affect existing child processes. For example, changing the │ │ │ start function only specifies how the child process is to be restarted, if │ │ │ needed later on.

    The id of the child specification cannot be changed.

    Changing the Modules field of the child specification can affect the release │ │ │ handling process itself, as this field is used to identify which processes are │ │ │ affected when doing a synchronized code replacement.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding and Deleting Child Processes │ │ │

    │ │ │

    As stated earlier, changing child specifications does not affect existing child │ │ │ processes. New child specifications are automatically added, but not deleted. │ │ │ Child processes are not automatically started or terminated, this must be done │ │ │ using apply instructions.

    Example

    Assume a new child process m1 is to be added to ch_sup when │ │ │ upgrading ch_app from "1" to "2". This means m1 is to be deleted when │ │ │ -downgrading from "2" to "1":

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{update, ch_sup, supervisor},
    │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ -   ]}],
    │ │ │ - [{"1",
    │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ -    {update, ch_sup, supervisor}
    │ │ │ -   ]}]
    │ │ │ -}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ +downgrading from "2" to "1":

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{update, ch_sup, supervisor},
    │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ +   ]}],
    │ │ │ + [{"1",
    │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ +    {update, ch_sup, supervisor}
    │ │ │ +   ]}]
    │ │ │ +}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ supervisor is not registered, it cannot be accessed directly from the script. │ │ │ Instead a help function that finds the pid of the supervisor and calls │ │ │ supervisor:restart_child, and so on, must be written. This function is then to │ │ │ be called from the script using the apply instruction.

    If the module m1 is introduced in version "2" of ch_app, it must also be │ │ │ -loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{add_module, m1},
    │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ -   ]}],
    │ │ │ - [{"1",
    │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ -    {delete_module, m1}
    │ │ │ -   ]}]
    │ │ │ -}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ +loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{add_module, m1},
    │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ +   ]}],
    │ │ │ + [{"1",
    │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ +    {delete_module, m1}
    │ │ │ +   ]}]
    │ │ │ +}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ m1 must be loaded, and the supervisor child specification changed, before the │ │ │ new child process can be started. When downgrading, the child process must be │ │ │ terminated before the child specification is changed and the module is deleted.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding or Deleting a Module │ │ │

    │ │ │ -

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ - [{"1", [{add_module, m}]}],
    │ │ │ - [{"1", [{delete_module, m}]}]

    │ │ │ +

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ + [{"1", [{add_module, m}]}],
    │ │ │ + [{"1", [{delete_module, m}]}]

    │ │ │ │ │ │ │ │ │ │ │ │ Starting or Terminating a Process │ │ │

    │ │ │

    In a system structured according to the OTP design principles, any process would │ │ │ be a child process belonging to a supervisor, see │ │ │ @@ -369,29 +369,29 @@ │ │ │ Restarting an Application │ │ │ │ │ │

    Restarting an application is useful when a change is too complicated to be made │ │ │ without restarting the processes, for example, if the supervisor hierarchy has │ │ │ been restructured.

    Example

    When adding a child m1 to ch_sup, as in │ │ │ Adding and Deleting Child Processes in Changing a │ │ │ Supervisor, an alternative to updating the supervisor is to restart the entire │ │ │ -application:

    {"2",
    │ │ │ - [{"1", [{restart_application, ch_app}]}],
    │ │ │ - [{"1", [{restart_application, ch_app}]}]
    │ │ │ -}.

    │ │ │ +application:

    {"2",
    │ │ │ + [{"1", [{restart_application, ch_app}]}],
    │ │ │ + [{"1", [{restart_application, ch_app}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing an Application Specification │ │ │

    │ │ │

    When installing a release, the application specifications are automatically │ │ │ updated before evaluating the relup script. Thus, no instructions are needed │ │ │ -in the .appup file:

    {"2",
    │ │ │ - [{"1", []}],
    │ │ │ - [{"1", []}]
    │ │ │ -}.

    │ │ │ +in the .appup file:

    {"2",
    │ │ │ + [{"1", []}],
    │ │ │ + [{"1", []}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Application Configuration │ │ │

    │ │ │

    Changing an application configuration by updating the env key in the .app │ │ │ file is an instance of changing an application specification, see the previous │ │ │ @@ -406,26 +406,26 @@ │ │ │ applications apply to primary applications only. There are no corresponding │ │ │ instructions for included applications. However, since an included application │ │ │ is really a supervision tree with a topmost supervisor, started as a child │ │ │ process to a supervisor in the including application, a .relup file can be │ │ │ manually created.

    Example

    Assume there is a release containing an application prim_app, which │ │ │ have a supervisor prim_sup in its supervision tree.

    In a new version of the release, the application ch_app is to be included in │ │ │ prim_app. That is, its topmost supervisor ch_sup is to be started as a child │ │ │ -process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ -    {ok, {...supervisor flags...,
    │ │ │ -          [...,
    │ │ │ -           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ -            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ -           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ - [...,
    │ │ │ -  {vsn, "2"},
    │ │ │ +process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ +    {ok, {...supervisor flags...,
    │ │ │ +          [...,
    │ │ │ +           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ +            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ +           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ + [...,
    │ │ │ +  {vsn, "2"},
    │ │ │    ...,
    │ │ │ -  {included_applications, [ch_app]},
    │ │ │ +  {included_applications, [ch_app]},
    │ │ │    ...
    │ │ │ - ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ + ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │   ...,
    │ │ │   [...,
    │ │ │    {prim_app, "2"},
    │ │ │    {ch_app, "1"}]}.

    The included application can be started in two ways. This is described in the │ │ │ next two sections.

    │ │ │ │ │ │ │ │ │ @@ -480,74 +480,74 @@ │ │ │

    Step 4b) Another way to start the included application (or stop it in the case │ │ │ of downgrade) is by combining instructions for adding and removing child │ │ │ processes to/from prim_sup with instructions for loading/unloading all │ │ │ ch_app code and its application specification.

    Again, the .relup file is created manually, either from scratch or by editing a │ │ │ generated version. Load all code for ch_app first, and also load the │ │ │ application specification, before prim_sup is updated. When downgrading, │ │ │ prim_sup is to updated first, before the code for ch_app and its application │ │ │ -specification are unloaded.

    {"B",
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ -    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ +specification are unloaded.

    {"B",
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ +    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │      point_of_no_return,
    │ │ │ -    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ -    {apply,{application,load,[ch_app]}},
    │ │ │ -    {suspend,[prim_sup]},
    │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {code_change,up,[{prim_sup,[]}]},
    │ │ │ -    {resume,[prim_sup]},
    │ │ │ -    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ +    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ +    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ +    {apply,{application,load,[ch_app]}},
    │ │ │ +    {suspend,[prim_sup]},
    │ │ │ +    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ +    {code_change,up,[{prim_sup,[]}]},
    │ │ │ +    {resume,[prim_sup]},
    │ │ │ +    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │      point_of_no_return,
    │ │ │ -    {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
    │ │ │ -    {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
    │ │ │ -    {suspend,[prim_sup]},
    │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {code_change,down,[{prim_sup,[]}]},
    │ │ │ -    {resume,[prim_sup]},
    │ │ │ -    {remove,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {remove,{ch3,brutal_purge,brutal_purge}},
    │ │ │ -    {purge,[ch_sup,ch3]},
    │ │ │ -    {apply,{application,unload,[ch_app]}}]}]
    │ │ │ -}.

    │ │ │ + {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}}, │ │ │ + {apply,{supervisor,delete_child,[prim_sup,ch_sup]}}, │ │ │ + {suspend,[prim_sup]}, │ │ │ + {load,{prim_sup,brutal_purge,brutal_purge}}, │ │ │ + {code_change,down,[{prim_sup,[]}]}, │ │ │ + {resume,[prim_sup]}, │ │ │ + {remove,{ch_sup,brutal_purge,brutal_purge}}, │ │ │ + {remove,{ch3,brutal_purge,brutal_purge}}, │ │ │ + {purge,[ch_sup,ch3]}, │ │ │ + {apply,{application,unload,[ch_app]}}]}] │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Non-Erlang Code │ │ │

    │ │ │

    Changing code for a program written in another programming language than Erlang, │ │ │ for example, a port program, is application-dependent and OTP provides no │ │ │ special support.

    Example

    When changing code for a port program, assume that the Erlang process │ │ │ controlling the port is a gen_server portc and that the port is opened in │ │ │ -the callback function init/1:

    init(...) ->
    │ │ │ +the callback function init/1:

    init(...) ->
    │ │ │      ...,
    │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │      ...,
    │ │ │ -    {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ + {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ extended with a code_change/3 function, which closes the old port and opens a │ │ │ new port. (If necessary, the gen_server can first request data that must be │ │ │ -saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ +saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │      State#state.port ! close,
    │ │ │      receive
    │ │ │ -        {Port,close} ->
    │ │ │ +        {Port,close} ->
    │ │ │              true
    │ │ │      end,
    │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ -    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ -file:

    ["2",
    │ │ │ - [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ - [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ -].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ -the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ +    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ +file:

    ["2",
    │ │ │ + [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ + [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ +].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ +the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │  ...

    │ │ │ │ │ │ │ │ │ │ │ │ Runtime System Restart and Upgrade │ │ │

    │ │ │

    Two upgrade instructions restart the runtime system:

    • restart_new_emulator

      Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically │ │ │ @@ -555,22 +555,22 @@ │ │ │ executed before all other upgrade instructions. For more information about │ │ │ this instruction, see restart_new_emulator (Low-Level) in │ │ │ Release Handling Instructions.

    • restart_emulator

      Used when a restart of the runtime system is required after all other upgrade │ │ │ instructions are executed. For more information about this instruction, see │ │ │ restart_emulator (Low-Level) in │ │ │ Release Handling Instructions.

    If a runtime system restart is necessary and no upgrade instructions are needed, │ │ │ that is, if the restart itself is enough for the upgraded applications to start │ │ │ -running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [restart_emulator]}],
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [restart_emulator]}]
    │ │ │ -}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ +running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [restart_emulator]}],
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [restart_emulator]}]
    │ │ │ +}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ of release packages, automatic path updates, and so on, can be used without │ │ │ having to specify .appup files.

    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/benchmarking.html │ │ │ @@ -144,16 +144,16 @@ │ │ │ fast as possible, what can we do? One way could be to generate more │ │ │ than two bytes at the time.

    % erlperf 'rand:bytes(100).' 'crypto:strong_rand_bytes(100).'
    │ │ │  Code                                   ||        QPS       Time   Rel
    │ │ │  rand:bytes(100).                        1    2124 Ki     470 ns  100%
    │ │ │  crypto:strong_rand_bytes(100).          1    1915 Ki     522 ns   90%

    rand:bytes/1 is still faster when we generate 100 bytes at the time, │ │ │ but the relative difference is smaller.

    % erlperf 'rand:bytes(1000).' 'crypto:strong_rand_bytes(1000).'
    │ │ │  Code                                    ||        QPS       Time   Rel
    │ │ │ -crypto:strong_rand_bytes(1000).          1    1518 Ki     658 ns  100%
    │ │ │ -rand:bytes(1000).                        1     284 Ki    3521 ns   19%

    When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ +crypto:strong_rand_bytes(1000). 1 1518 Ki 658 ns 100% │ │ │ +rand:bytes(1000). 1 284 Ki 3521 ns 19%

    When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ now the fastest.

    │ │ │ │ │ │ │ │ │ │ │ │ Benchmarking using Erlang/OTP functionality │ │ │

    │ │ │

    Benchmarks can measure wall-clock time or CPU time.

    • timer:tc/3 measures wall-clock time. The advantage with wall-clock time is │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/binaryhandling.html │ │ │ @@ -114,43 +114,43 @@ │ │ │ │ │ │ Constructing and Matching Binaries │ │ │ │ │ │ │ │ │

      This section gives a few examples on how to handle binaries in an efficient way. │ │ │ The sections that follow take an in-depth look at how binaries are implemented │ │ │ and how to best take advantages of the optimizations done by the compiler and │ │ │ -runtime system.

      Binaries can be efficiently built in the following way:

      DO

      my_list_to_binary(List) ->
      │ │ │ -    my_list_to_binary(List, <<>>).
      │ │ │ +runtime system.

      Binaries can be efficiently built in the following way:

      DO

      my_list_to_binary(List) ->
      │ │ │ +    my_list_to_binary(List, <<>>).
      │ │ │  
      │ │ │ -my_list_to_binary([H|T], Acc) ->
      │ │ │ -    my_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ -my_list_to_binary([], Acc) ->
      │ │ │ +my_list_to_binary([H|T], Acc) ->
      │ │ │ +    my_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ +my_list_to_binary([], Acc) ->
      │ │ │      Acc.

      Appending data to a binary as in the example is efficient because it is │ │ │ specially optimized by the runtime system to avoid copying the Acc binary │ │ │ -every time.

      Prepending data to a binary in a loop is not efficient:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ -    rev_list_to_binary(List, <<>>).
      │ │ │ +every time.

      Prepending data to a binary in a loop is not efficient:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ +    rev_list_to_binary(List, <<>>).
      │ │ │  
      │ │ │ -rev_list_to_binary([H|T], Acc) ->
      │ │ │ -    rev_list_to_binary(T, <<H,Acc/binary>>);
      │ │ │ -rev_list_to_binary([], Acc) ->
      │ │ │ +rev_list_to_binary([H|T], Acc) ->
      │ │ │ +    rev_list_to_binary(T, <<H,Acc/binary>>);
      │ │ │ +rev_list_to_binary([], Acc) ->
      │ │ │      Acc.

      This is not efficient for long lists because the Acc binary is copied every │ │ │ -time. One way to make the function more efficient is like this:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ -    rev_list_to_binary(lists:reverse(List), <<>>).
      │ │ │ +time. One way to make the function more efficient is like this:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ +    rev_list_to_binary(lists:reverse(List), <<>>).
      │ │ │  
      │ │ │ -rev_list_to_binary([H|T], Acc) ->
      │ │ │ -    rev_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ -rev_list_to_binary([], Acc) ->
      │ │ │ -    Acc.

      Another way to avoid copying the binary each time is like this:

      DO

      rev_list_to_binary([H|T]) ->
      │ │ │ -    RevTail = rev_list_to_binary(T),
      │ │ │ -    <<RevTail/binary,H>>;
      │ │ │ -rev_list_to_binary([]) ->
      │ │ │ -    <<>>.

      Note that in each of the DO examples, the binary to be appended to is always │ │ │ -given as the first segment.

      Binaries can be efficiently matched in the following way:

      DO

      my_binary_to_list(<<H,T/binary>>) ->
      │ │ │ -    [H|my_binary_to_list(T)];
      │ │ │ -my_binary_to_list(<<>>) -> [].

      │ │ │ +rev_list_to_binary([H|T], Acc) -> │ │ │ + rev_list_to_binary(T, <<Acc/binary,H>>); │ │ │ +rev_list_to_binary([], Acc) -> │ │ │ + Acc.

      Another way to avoid copying the binary each time is like this:

      DO

      rev_list_to_binary([H|T]) ->
      │ │ │ +    RevTail = rev_list_to_binary(T),
      │ │ │ +    <<RevTail/binary,H>>;
      │ │ │ +rev_list_to_binary([]) ->
      │ │ │ +    <<>>.

      Note that in each of the DO examples, the binary to be appended to is always │ │ │ +given as the first segment.

      Binaries can be efficiently matched in the following way:

      DO

      my_binary_to_list(<<H,T/binary>>) ->
      │ │ │ +    [H|my_binary_to_list(T)];
      │ │ │ +my_binary_to_list(<<>>) -> [].

      │ │ │ │ │ │ │ │ │ │ │ │ How Binaries are Implemented │ │ │

      │ │ │

      Internally, binaries and bitstrings are implemented in the same way. In this │ │ │ section, they are called binaries because that is what they are called in the │ │ │ @@ -205,29 +205,29 @@ │ │ │ called referential transparency) of Erlang would break.

      │ │ │ │ │ │ │ │ │ │ │ │ Constructing Binaries │ │ │

      │ │ │

      Appending to a binary or bitstring in the following way is specially optimized │ │ │ -to avoid copying the binary:

      <<Binary/binary, ...>>
      │ │ │ +to avoid copying the binary:

      <<Binary/binary, ...>>
      │ │ │  %% - OR -
      │ │ │ -<<Binary/bitstring, ...>>

      This optimization is applied by the runtime system in a way that makes it │ │ │ +<<Binary/bitstring, ...>>

      This optimization is applied by the runtime system in a way that makes it │ │ │ effective in most circumstances (for exceptions, see │ │ │ Circumstances That Force Copying). The │ │ │ optimization in its basic form does not need any help from the compiler. │ │ │ However, the compiler add hints to the runtime system when it is safe to apply │ │ │ the optimization in a more efficient way.

      Change

      The compiler support for making the optimization more efficient was added in │ │ │ Erlang/OTP 26.

      To explain how the basic optimization works, let us examine the following code │ │ │ -line by line:

      Bin0 = <<0>>,                    %% 1
      │ │ │ -Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
      │ │ │ -Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
      │ │ │ -Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
      │ │ │ -Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
      │ │ │ -{Bin4,Bin3}                      %% 6
      • Line 1 (marked with the %% 1 comment), assigns a │ │ │ +line by line:

        Bin0 = <<0>>,                    %% 1
        │ │ │ +Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
        │ │ │ +Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
        │ │ │ +Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
        │ │ │ +Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
        │ │ │ +{Bin4,Bin3}                      %% 6
        • Line 1 (marked with the %% 1 comment), assigns a │ │ │ heap binary to the Bin0 variable.

        • Line 2 is an append operation. As Bin0 has not been involved in an append │ │ │ operation, a new refc binary is created and │ │ │ the contents of Bin0 is copied into it. The ProcBin part of the refc │ │ │ binary has its size set to the size of the data stored in the binary, while │ │ │ the binary object has extra space allocated. The size of the binary object is │ │ │ either twice the size of Bin1 or 256, whichever is larger. In this case it │ │ │ is 256.

        • Line 3 is more interesting. Bin1 has been used in an append operation, and │ │ │ @@ -253,23 +253,23 @@ │ │ │ handle an append operation to a heap binary by copying it to a refc binary (line │ │ │ 2), and also handle an append operation to a previous version of the binary by │ │ │ copying it (line 5). The support for doing that does not come for free. For │ │ │ example, to make it possible to know when it is necessary to copy the binary, │ │ │ for every append operation, the runtime system must create a sub binary.

          When the compiler can determine that none of those situations need to be handled │ │ │ and that the append operation cannot possibly fail, the compiler generates code │ │ │ that causes the runtime system to apply a more efficient variant of the │ │ │ -optimization.

          Example:

          -module(repack).
          │ │ │ --export([repack/1]).
          │ │ │ +optimization.

          Example:

          -module(repack).
          │ │ │ +-export([repack/1]).
          │ │ │  
          │ │ │ -repack(Bin) when is_binary(Bin) ->
          │ │ │ -    repack(Bin, <<>>).
          │ │ │ +repack(Bin) when is_binary(Bin) ->
          │ │ │ +    repack(Bin, <<>>).
          │ │ │  
          │ │ │ -repack(<<C:8,T/binary>>, Result) ->
          │ │ │ -    repack(T, <<Result/binary,C:16>>);
          │ │ │ -repack(<<>>, Result) ->
          │ │ │ +repack(<<C:8,T/binary>>, Result) ->
          │ │ │ +    repack(T, <<Result/binary,C:16>>);
          │ │ │ +repack(<<>>, Result) ->
          │ │ │      Result.

          The repack/2 function only keeps a single version of the binary, so there is │ │ │ never any need to copy the binary. The compiler rewrites the creation of the │ │ │ empty binary in repack/1 to instead create a refc binary with 256 bytes │ │ │ already reserved; thus, the append operation in repack/2 never needs to handle │ │ │ a binary not prepared for appending.

          │ │ │ │ │ │ │ │ │ @@ -281,72 +281,72 @@ │ │ │ reason is that the binary object can be moved (reallocated) during an append │ │ │ operation, and when that happens, the pointer in the ProcBin must be updated. If │ │ │ there would be more than one ProcBin pointing to the binary object, it would not │ │ │ be possible to find and update all of them.

          Therefore, certain operations on a binary mark it so that any future append │ │ │ operation will be forced to copy the binary. In most cases, the binary object │ │ │ will be shrunk at the same time to reclaim the extra space allocated for │ │ │ growing.

          When appending to a binary as follows, only the binary returned from the latest │ │ │ -append operation will support further cheap append operations:

          Bin = <<Bin0,...>>

          In the code fragment in the beginning of this section, appending to Bin will │ │ │ +append operation will support further cheap append operations:

          Bin = <<Bin0,...>>

          In the code fragment in the beginning of this section, appending to Bin will │ │ │ be cheap, while appending to Bin0 will force the creation of a new binary and │ │ │ copying of the contents of Bin0.

          If a binary is sent as a message to a process or port, the binary will be shrunk │ │ │ and any further append operation will copy the binary data into a new binary. │ │ │ For example, in the following code fragment Bin1 will be copied in the third │ │ │ -line:

          Bin1 = <<Bin0,...>>,
          │ │ │ +line:

          Bin1 = <<Bin0,...>>,
          │ │ │  PortOrPid ! Bin1,
          │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The same happens if you insert a binary into an Ets table, send it to a port │ │ │ +Bin = <<Bin1,...>> %% Bin1 will be COPIED

          The same happens if you insert a binary into an Ets table, send it to a port │ │ │ using erlang:port_command/2, or pass it to │ │ │ enif_inspect_binary in a NIF.

          Matching a binary will also cause it to shrink and the next append operation │ │ │ -will copy the binary data:

          Bin1 = <<Bin0,...>>,
          │ │ │ -<<X,Y,Z,T/binary>> = Bin1,
          │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The reason is that a match context contains a │ │ │ +will copy the binary data:

          Bin1 = <<Bin0,...>>,
          │ │ │ +<<X,Y,Z,T/binary>> = Bin1,
          │ │ │ +Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The reason is that a match context contains a │ │ │ direct pointer to the binary data.

          If a process simply keeps binaries (either in "loop data" or in the process │ │ │ dictionary), the garbage collector can eventually shrink the binaries. If only │ │ │ one such binary is kept, it will not be shrunk. If the process later appends to │ │ │ a binary that has been shrunk, the binary object will be reallocated to make │ │ │ place for the data to be appended.

          │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │

          │ │ │ -

          Let us revisit the example in the beginning of the previous section:

          DO

          my_binary_to_list(<<H,T/binary>>) ->
          │ │ │ -    [H|my_binary_to_list(T)];
          │ │ │ -my_binary_to_list(<<>>) -> [].

          The first time my_binary_to_list/1 is called, a │ │ │ +

          Let us revisit the example in the beginning of the previous section:

          DO

          my_binary_to_list(<<H,T/binary>>) ->
          │ │ │ +    [H|my_binary_to_list(T)];
          │ │ │ +my_binary_to_list(<<>>) -> [].

          The first time my_binary_to_list/1 is called, a │ │ │ match context is created. The match context │ │ │ points to the first byte of the binary. 1 byte is matched out and the match │ │ │ context is updated to point to the second byte in the binary.

          At this point it would make sense to create a │ │ │ sub binary, but in this particular example the │ │ │ compiler sees that there will soon be a call to a function (in this case, to │ │ │ my_binary_to_list/1 itself) that immediately will create a new match context │ │ │ and discard the sub binary.

          Therefore my_binary_to_list/1 calls itself with the match context instead of │ │ │ with a sub binary. The instruction that initializes the matching operation │ │ │ basically does nothing when it sees that it was passed a match context instead │ │ │ of a binary.

          When the end of the binary is reached and the second clause matches, the match │ │ │ context will simply be discarded (removed in the next garbage collection, as │ │ │ there is no longer any reference to it).

          To summarize, my_binary_to_list/1 only needs to create one match context and │ │ │ no sub binaries.

          Notice that the match context in my_binary_to_list/1 was discarded when the │ │ │ entire binary had been traversed. What happens if the iteration stops before it │ │ │ -has reached the end of the binary? Will the optimization still work?

          after_zero(<<0,T/binary>>) ->
          │ │ │ +has reached the end of the binary? Will the optimization still work?

          after_zero(<<0,T/binary>>) ->
          │ │ │      T;
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ -    after_zero(T);
          │ │ │ -after_zero(<<>>) ->
          │ │ │ -    <<>>.

          Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ +after_zero(<<_,T/binary>>) -> │ │ │ + after_zero(T); │ │ │ +after_zero(<<>>) -> │ │ │ + <<>>.

          Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ second clause:

          ...
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ -    after_zero(T);
          │ │ │ -...

          But it will generate code that builds a sub binary in the first clause:

          after_zero(<<0,T/binary>>) ->
          │ │ │ +after_zero(<<_,T/binary>>) ->
          │ │ │ +    after_zero(T);
          │ │ │ +...

          But it will generate code that builds a sub binary in the first clause:

          after_zero(<<0,T/binary>>) ->
          │ │ │      T;
          │ │ │  ...

          Therefore, after_zero/1 builds one match context and one sub binary (assuming │ │ │ -it is passed a binary that contains a zero byte).

          Code like the following will also be optimized:

          all_but_zeroes_to_list(Buffer, Acc, 0) ->
          │ │ │ -    {lists:reverse(Acc),Buffer};
          │ │ │ -all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
          │ │ │ -    all_but_zeroes_to_list(T, Acc, Remaining-1);
          │ │ │ -all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
          │ │ │ -    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

          The compiler removes building of sub binaries in the second and third clauses, │ │ │ +it is passed a binary that contains a zero byte).

          Code like the following will also be optimized:

          all_but_zeroes_to_list(Buffer, Acc, 0) ->
          │ │ │ +    {lists:reverse(Acc),Buffer};
          │ │ │ +all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
          │ │ │ +    all_but_zeroes_to_list(T, Acc, Remaining-1);
          │ │ │ +all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
          │ │ │ +    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

          The compiler removes building of sub binaries in the second and third clauses, │ │ │ and it adds an instruction to the first clause that converts Buffer from a │ │ │ match context to a sub binary (or do nothing if Buffer is a binary already).

          But in more complicated code, how can one know whether the optimization is │ │ │ applied or not?

          │ │ │ │ │ │ │ │ │ │ │ │ Option bin_opt_info │ │ │ @@ -354,38 +354,38 @@ │ │ │

          Use the bin_opt_info option to have the compiler print a lot of information │ │ │ about binary optimizations. It can be given either to the compiler or erlc:

          erlc +bin_opt_info Mod.erl

          or passed through an environment variable:

          export ERL_COMPILER_OPTIONS=bin_opt_info

          Notice that the bin_opt_info is not meant to be a permanent option added to │ │ │ your Makefiles, because all messages that it generates cannot be eliminated. │ │ │ Therefore, passing the option through the environment is in most cases the most │ │ │ practical approach.

          The warnings look as follows:

          ./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
          │ │ │  ./efficiency_guide.erl:62: Warning: OPTIMIZED: match context reused

          To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ -example:

          after_zero(<<0,T/binary>>) ->
          │ │ │ +example:

          after_zero(<<0,T/binary>>) ->
          │ │ │           %% BINARY CREATED: binary is returned from the function
          │ │ │      T;
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ +after_zero(<<_,T/binary>>) ->
          │ │ │           %% OPTIMIZED: match context reused
          │ │ │ -    after_zero(T);
          │ │ │ -after_zero(<<>>) ->
          │ │ │ -    <<>>.

          The warning for the first clause says that the creation of a sub binary cannot │ │ │ + after_zero(T); │ │ │ +after_zero(<<>>) -> │ │ │ + <<>>.

          The warning for the first clause says that the creation of a sub binary cannot │ │ │ be delayed, because it will be returned. The warning for the second clause says │ │ │ that a sub binary will not be created (yet).

          │ │ │ │ │ │ │ │ │ │ │ │ Unused Variables │ │ │

          │ │ │

          The compiler figures out if a variable is unused. The same code is generated for │ │ │ -each of the following functions:

          count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
          │ │ │ -count1(<<>>, Count) -> Count.
          │ │ │ +each of the following functions:

          count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
          │ │ │ +count1(<<>>, Count) -> Count.
          │ │ │  
          │ │ │ -count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
          │ │ │ -count2(<<>>, Count) -> Count.
          │ │ │ +count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
          │ │ │ +count2(<<>>, Count) -> Count.
          │ │ │  
          │ │ │ -count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
          │ │ │ -count3(<<>>, Count) -> Count.

          In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ +count3(<<_H,T/binary>>, Count) -> count3(T, Count+1); │ │ │ +count3(<<>>, Count) -> Count.

          In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ out.

          │ │ │ │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Introduction │ │ │ │ │ │

          The complete specification for the bit syntax appears in the │ │ │ Reference Manual.

          In Erlang, a Bin is used for constructing binaries and matching binary patterns. │ │ │ -A Bin is written with the following syntax:

          <<E1, E2, ... En>>

          A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ -enable construction of binaries:

          Bin = <<E1, E2, ... En>>

          All elements must be bound. Or match a binary:

          <<E1, E2, ... En>> = Bin

          Here, Bin is bound and the elements are bound or unbound, as in any match.

          A Bin does not need to consist of a whole number of bytes.

          A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ +A Bin is written with the following syntax:

          <<E1, E2, ... En>>

          A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ +enable construction of binaries:

          Bin = <<E1, E2, ... En>>

          All elements must be bound. Or match a binary:

          <<E1, E2, ... En>> = Bin

          Here, Bin is bound and the elements are bound or unbound, as in any match.

          A Bin does not need to consist of a whole number of bytes.

          A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ not need to be divisible by 8. If the number of bits is divisible by 8, the │ │ │ bitstring is also a binary.

          Each element specifies a certain segment of the bitstring. A segment is a set │ │ │ of contiguous bits of the binary (not necessarily on a byte boundary). The first │ │ │ element specifies the initial segment, the second element specifies the │ │ │ following segment, and so on.

          The following examples illustrate how binaries are constructed, or matched, and │ │ │ how elements and tails are specified.

          │ │ │ │ │ │ │ │ │ │ │ │ Examples │ │ │

          │ │ │

          Example 1: A binary can be constructed from a set of constants or a string │ │ │ -literal:

          Bin11 = <<1, 17, 42>>,
          │ │ │ -Bin12 = <<"abc">>

          This gives two binaries of size 3, with the following evaluations:

          Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ +literal:

          Bin11 = <<1, 17, 42>>,
          │ │ │ +Bin12 = <<"abc">>

          This gives two binaries of size 3, with the following evaluations:

          Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ variables:

          A = 1, B = 17, C = 42,
          │ │ │ -Bin2 = <<A, B, C:16>>

          This gives a binary of size 4. Here, a size expression is used for the │ │ │ +Bin2 = <<A, B, C:16>>

          This gives a binary of size 4. Here, a size expression is used for the │ │ │ variable C to specify a 16-bits segment of Bin2.

          binary_to_list(Bin2) evaluates to [1, 17, 00, 42].

          Example 3: A Bin can also be used for matching. D, E, and F are unbound │ │ │ -variables, and Bin2 is bound, as in Example 2:

          <<D:16, E, F/binary>> = Bin2

          This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ +variables, and Bin2 is bound, as in Example 2:

          <<D:16, E, F/binary>> = Bin2

          This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ binary_to_list(F) = [42].

          Example 4: The following is a more elaborate example of matching. Here, │ │ │ Dgram is bound to the consecutive bytes of an IP datagram of IP protocol │ │ │ -version 4. The ambition is to extract the header and the data of the datagram:

          -define(IP_VERSION, 4).
          │ │ │ --define(IP_MIN_HDR_LEN, 5).
          │ │ │ +version 4. The ambition is to extract the header and the data of the datagram:

          -define(IP_VERSION, 4).
          │ │ │ +-define(IP_MIN_HDR_LEN, 5).
          │ │ │  
          │ │ │ -DgramSize = byte_size(Dgram),
          │ │ │ +DgramSize = byte_size(Dgram),
          │ │ │  case Dgram of
          │ │ │ -    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
          │ │ │ +    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
          │ │ │        ID:16, Flgs:3, FragOff:13,
          │ │ │        TTL:8, Proto:8, HdrChkSum:16,
          │ │ │        SrcIP:32,
          │ │ │ -      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
          │ │ │ -        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
          │ │ │ -        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
          │ │ │ +      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
          │ │ │ +        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
          │ │ │ +        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
          │ │ │      ...
          │ │ │  end.

          Here, the segment corresponding to the Opts variable has a type modifier, │ │ │ specifying that Opts is to bind to a binary. All other variables have the │ │ │ default type equal to unsigned integer.

          An IP datagram header is of variable length. This length is measured in the │ │ │ number of 32-bit words and is given in the segment corresponding to HLen. The │ │ │ minimum value of HLen is 5. It is the segment corresponding to Opts that is │ │ │ variable, so if HLen is equal to 5, Opts becomes an empty binary.

          The tail variables RestDgram and Data bind to binaries, as all tail │ │ │ @@ -218,80 +218,80 @@ │ │ │

          This section describes the rules for constructing binaries using the bit syntax. │ │ │ Unlike when constructing lists or tuples, the construction of a binary can fail │ │ │ with a badarg exception.

          There can be zero or more segments in a binary to be constructed. The expression │ │ │ <<>> constructs a zero length binary.

          Each segment in a binary can consist of zero or more bits. There are no │ │ │ alignment rules for individual segments of type integer and float. For │ │ │ binaries and bitstrings without size, the unit specifies the alignment. Since │ │ │ the default alignment for the binary type is 8, the size of a binary segment │ │ │ -must be a multiple of 8 bits, that is, only whole bytes.

          Example:

          <<Bin/binary,Bitstring/bitstring>>

          The variable Bin must contain a whole number of bytes, because the binary │ │ │ +must be a multiple of 8 bits, that is, only whole bytes.

          Example:

          <<Bin/binary,Bitstring/bitstring>>

          The variable Bin must contain a whole number of bytes, because the binary │ │ │ type defaults to unit:8. A badarg exception is generated if Bin consist │ │ │ of, for example, 17 bits.

          The Bitstring variable can consist of any number of bits, for example, 0, 1, │ │ │ 8, 11, 17, 42, and so on. This is because the default unit for bitstrings │ │ │ is 1.

          For clarity, it is recommended not to change the unit size for binaries. │ │ │ Instead, use binary when you need byte alignment and bitstring when you need │ │ │ bit alignment.

          The following example successfully constructs a bitstring of 7 bits, provided │ │ │ -that all of X and Y are integers:

          <<X:1,Y:6>>

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When constructing binaries, Value and Size can be any Erlang expression. │ │ │ +that all of X and Y are integers:

          <<X:1,Y:6>>

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When constructing binaries, Value and Size can be any Erlang expression. │ │ │ However, for syntactical reasons, both Value and Size must be enclosed in │ │ │ parenthesis if the expression consists of anything more than a single literal or │ │ │ -a variable. The following gives a compiler syntax error:

          <<X+1:8>>

          This expression must be rewritten into the following, to be accepted by the │ │ │ -compiler:

          <<(X+1):8>>

          │ │ │ +a variable. The following gives a compiler syntax error:

          <<X+1:8>>

          This expression must be rewritten into the following, to be accepted by the │ │ │ +compiler:

          <<(X+1):8>>

          │ │ │ │ │ │ │ │ │ │ │ │ Including Literal Strings │ │ │

          │ │ │ -

          A literal string can be written instead of an element:

          <<"hello">>

          This is syntactic sugar for the following:

          <<$h,$e,$l,$l,$o>>

          │ │ │ +

          A literal string can be written instead of an element:

          <<"hello">>

          This is syntactic sugar for the following:

          <<$h,$e,$l,$l,$o>>

          │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │

          │ │ │

          This section describes the rules for matching binaries, using the bit syntax.

          There can be zero or more segments in a binary pattern. A binary pattern can │ │ │ occur wherever patterns are allowed, including inside other patterns. Binary │ │ │ patterns cannot be nested. The pattern <<>> matches a zero length binary.

          Each segment in a binary can consist of zero or more bits. A segment of type │ │ │ binary must have a size evenly divisible by 8 (or divisible by the unit size, │ │ │ if the unit size has been changed). A segment of type bitstring has no │ │ │ restrictions on the size. A segment of type float must have size 64 or 32.

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When matching Value, value must be either a variable or an integer, or a │ │ │ floating point literal. Expressions are not allowed.

          Size must be a │ │ │ guard expression, which can use │ │ │ -literals and previously bound variables. The following is not allowed:

          foo(N, <<X:N,T/binary>>) ->
          │ │ │ -   {X,T}.

          The two occurrences of N are not related. The compiler will complain that the │ │ │ -N in the size field is unbound.

          The correct way to write this example is as follows:

          foo(N, Bin) ->
          │ │ │ -   <<X:N,T/binary>> = Bin,
          │ │ │ -   {X,T}.

          Note

          Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ +literals and previously bound variables. The following is not allowed:

          foo(N, <<X:N,T/binary>>) ->
          │ │ │ +   {X,T}.

          The two occurrences of N are not related. The compiler will complain that the │ │ │ +N in the size field is unbound.

          The correct way to write this example is as follows:

          foo(N, Bin) ->
          │ │ │ +   <<X:N,T/binary>> = Bin,
          │ │ │ +   {X,T}.

          Note

          Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ an integer.

          │ │ │ │ │ │ │ │ │ │ │ │ Binding and Using a Size Variable │ │ │

          │ │ │

          There is one exception to the rule that a variable that is used as size must be │ │ │ previously bound. It is possible to match and bind a variable, and use it as a │ │ │ -size within the same binary pattern. For example:

          bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
          │ │ │ -   {Payload,Rest}.

          Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ -used at the number of bytes to match out as a binary.

          Starting in OTP 23, the size can be a guard expression:

          bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
          │ │ │ -   {Payload,Rest}.

          Here Sz is the combined size of the header and the payload, so we will need to │ │ │ +size within the same binary pattern. For example:

          bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
          │ │ │ +   {Payload,Rest}.

          Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ +used at the number of bytes to match out as a binary.

          Starting in OTP 23, the size can be a guard expression:

          bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
          │ │ │ +   {Payload,Rest}.

          Here Sz is the combined size of the header and the payload, so we will need to │ │ │ subtract one byte to get the size of the payload.

          │ │ │ │ │ │ │ │ │ │ │ │ Getting the Rest of the Binary or Bitstring │ │ │

          │ │ │ -

          To match out the rest of a binary, specify a binary field without size:

          foo(<<A:8,Rest/binary>>) ->

          The size of the tail must be evenly divisible by 8.

          To match out the rest of a bitstring, specify a field without size:

          foo(<<A:8,Rest/bitstring>>) ->

          There are no restrictions on the number of bits in the tail.

          │ │ │ +

          To match out the rest of a binary, specify a binary field without size:

          foo(<<A:8,Rest/binary>>) ->

          The size of the tail must be evenly divisible by 8.

          To match out the rest of a bitstring, specify a field without size:

          foo(<<A:8,Rest/bitstring>>) ->

          There are no restrictions on the number of bits in the tail.

          │ │ │ │ │ │ │ │ │ │ │ │ Appending to a Binary │ │ │

          │ │ │ -

          Appending to a binary in an efficient way can be done as follows:

          triples_to_bin(T) ->
          │ │ │ -    triples_to_bin(T, <<>>).
          │ │ │ +

          Appending to a binary in an efficient way can be done as follows:

          triples_to_bin(T) ->
          │ │ │ +    triples_to_bin(T, <<>>).
          │ │ │  
          │ │ │ -triples_to_bin([{X,Y,Z} | T], Acc) ->
          │ │ │ -    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
          │ │ │ -triples_to_bin([], Acc) ->
          │ │ │ +triples_to_bin([{X,Y,Z} | T], Acc) ->
          │ │ │ +    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
          │ │ │ +triples_to_bin([], Acc) ->
          │ │ │      Acc.
          │ │ │ │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          open_port/2 with │ │ │ {spawn,ExtPrg} as the first argument. The string ExtPrg is the name of the │ │ │ external program, including any command line arguments. The second argument is a │ │ │ list of options, in this case only {packet,2}. This option says that a 2 byte │ │ │ length indicator is to be used to simplify the communication between C and │ │ │ Erlang. The Erlang port automatically adds the length indicator, but this must │ │ │ be done explicitly in the external C program.

          The process is also set to trap exits, which enables detection of failure of the │ │ │ -external program:

          -module(complex1).
          │ │ │ --export([start/1, init/1]).
          │ │ │ +external program:

          -module(complex1).
          │ │ │ +-export([start/1, init/1]).
          │ │ │  
          │ │ │ -start(ExtPrg) ->
          │ │ │ -  spawn(?MODULE, init, [ExtPrg]).
          │ │ │ +start(ExtPrg) ->
          │ │ │ +  spawn(?MODULE, init, [ExtPrg]).
          │ │ │  
          │ │ │ -init(ExtPrg) ->
          │ │ │ -  register(complex, self()),
          │ │ │ -  process_flag(trap_exit, true),
          │ │ │ -  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ -  loop(Port).

          Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ -message to the complex process and receive the following replies:

          foo(X) ->
          │ │ │ -  call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -  call_port({bar, Y}).
          │ │ │ +init(ExtPrg) ->
          │ │ │ +  register(complex, self()),
          │ │ │ +  process_flag(trap_exit, true),
          │ │ │ +  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ +  loop(Port).

          Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ +message to the complex process and receive the following replies:

          foo(X) ->
          │ │ │ +  call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +  call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -  complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +  complex ! {call, self(), Msg},
          │ │ │    receive
          │ │ │ -    {complex, Result} ->
          │ │ │ +    {complex, Result} ->
          │ │ │        Result
          │ │ │ -  end.

          The complex process does the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │ +  end.

          The complex process does the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │    receive
          │ │ │ -    {call, Caller, Msg} ->
          │ │ │ -      Port ! {self(), {command, encode(Msg)}},
          │ │ │ +    {call, Caller, Msg} ->
          │ │ │ +      Port ! {self(), {command, encode(Msg)}},
          │ │ │        receive
          │ │ │ -        {Port, {data, Data}} ->
          │ │ │ -          Caller ! {complex, decode(Data)}
          │ │ │ +        {Port, {data, Data}} ->
          │ │ │ +          Caller ! {complex, decode(Data)}
          │ │ │        end,
          │ │ │ -      loop(Port)
          │ │ │ +      loop(Port)
          │ │ │    end.

          Assuming that both the arguments and the results from the C functions are less │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ -represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          The resulting Erlang program, including functionality for stopping the port and │ │ │ -detecting port failures, is as follows:

          -module(complex1).
          │ │ │ --export([start/1, stop/0, init/1]).
          │ │ │ --export([foo/1, bar/1]).
          │ │ │ -
          │ │ │ -start(ExtPrg) ->
          │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
          │ │ │ -stop() ->
          │ │ │ +decode([Int]) -> Int.

          The resulting Erlang program, including functionality for stopping the port and │ │ │ +detecting port failures, is as follows:

          -module(complex1).
          │ │ │ +-export([start/1, stop/0, init/1]).
          │ │ │ +-export([foo/1, bar/1]).
          │ │ │ +
          │ │ │ +start(ExtPrg) ->
          │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
          │ │ │ +stop() ->
          │ │ │      complex ! stop.
          │ │ │  
          │ │ │ -foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -	{complex, Result} ->
          │ │ │ +	{complex, Result} ->
          │ │ │  	    Result
          │ │ │      end.
          │ │ │  
          │ │ │ -init(ExtPrg) ->
          │ │ │ -    register(complex, self()),
          │ │ │ -    process_flag(trap_exit, true),
          │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ -    loop(Port).
          │ │ │ +init(ExtPrg) ->
          │ │ │ +    register(complex, self()),
          │ │ │ +    process_flag(trap_exit, true),
          │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ +    loop(Port).
          │ │ │  
          │ │ │ -loop(Port) ->
          │ │ │ +loop(Port) ->
          │ │ │      receive
          │ │ │ -	{call, Caller, Msg} ->
          │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
          │ │ │ +	{call, Caller, Msg} ->
          │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
          │ │ │  	    receive
          │ │ │ -		{Port, {data, Data}} ->
          │ │ │ -		    Caller ! {complex, decode(Data)}
          │ │ │ +		{Port, {data, Data}} ->
          │ │ │ +		    Caller ! {complex, decode(Data)}
          │ │ │  	    end,
          │ │ │ -	    loop(Port);
          │ │ │ +	    loop(Port);
          │ │ │  	stop ->
          │ │ │ -	    Port ! {self(), close},
          │ │ │ +	    Port ! {self(), close},
          │ │ │  	    receive
          │ │ │ -		{Port, closed} ->
          │ │ │ -		    exit(normal)
          │ │ │ +		{Port, closed} ->
          │ │ │ +		    exit(normal)
          │ │ │  	    end;
          │ │ │ -	{'EXIT', Port, Reason} ->
          │ │ │ -	    exit(port_terminated)
          │ │ │ +	{'EXIT', Port, Reason} ->
          │ │ │ +	    exit(port_terminated)
          │ │ │      end.
          │ │ │  
          │ │ │ -encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          │ │ │ +decode([Int]) -> Int.

          │ │ │ │ │ │ │ │ │ │ │ │ C Program │ │ │

          │ │ │

          On the C side, it is necessary to write functions for receiving and sending data │ │ │ with 2 byte length indicators from/to Erlang. By default, the C program is to │ │ │ @@ -333,25 +333,25 @@ │ │ │ and terminates.

          │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │

          │ │ │

          Step 1. Compile the C code:

          $ gcc -o extprg complex.c erl_comm.c port.c

          Step 2. Start Erlang and compile the Erlang code:

          $ erl
          │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │  
          │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ -1> c(complex1).
          │ │ │ -{ok,complex1}

          Step 3. Run the example:

          2> complex1:start("./extprg").
          │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ +1> c(complex1).
          │ │ │ +{ok,complex1}

          Step 3. Run the example:

          2> complex1:start("./extprg").
          │ │ │  <0.34.0>
          │ │ │ -3> complex1:foo(3).
          │ │ │ +3> complex1:foo(3).
          │ │ │  4
          │ │ │ -4> complex1:bar(5).
          │ │ │ +4> complex1:bar(5).
          │ │ │  10
          │ │ │ -5> complex1:stop().
          │ │ │ +5> complex1:stop().
          │ │ │  stop
          │ │ │
          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          erl_ddll:load_driver/2, with the name of the shared library as │ │ │ argument.

          The port is then created using the BIF open_port/2, with the │ │ │ tuple {spawn, DriverName} as the first argument. The string SharedLib is the │ │ │ name of the port driver. The second argument is a list of options, none in this │ │ │ -case:

          -module(complex5).
          │ │ │ --export([start/1, init/1]).
          │ │ │ +case:

          -module(complex5).
          │ │ │ +-export([start/1, init/1]).
          │ │ │  
          │ │ │ -start(SharedLib) ->
          │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │ +start(SharedLib) ->
          │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │          ok -> ok;
          │ │ │ -        {error, already_loaded} -> ok;
          │ │ │ -        _ -> exit({error, could_not_load_driver})
          │ │ │ +        {error, already_loaded} -> ok;
          │ │ │ +        _ -> exit({error, could_not_load_driver})
          │ │ │      end,
          │ │ │ -    spawn(?MODULE, init, [SharedLib]).
          │ │ │ +    spawn(?MODULE, init, [SharedLib]).
          │ │ │  
          │ │ │ -init(SharedLib) ->
          │ │ │ -  register(complex, self()),
          │ │ │ -  Port = open_port({spawn, SharedLib}, []),
          │ │ │ -  loop(Port).

          Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ -message to the complex process and receive the following reply:

          foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +init(SharedLib) ->
          │ │ │ +  register(complex, self()),
          │ │ │ +  Port = open_port({spawn, SharedLib}, []),
          │ │ │ +  loop(Port).

          Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ +message to the complex process and receive the following reply:

          foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -        {complex, Result} ->
          │ │ │ +        {complex, Result} ->
          │ │ │              Result
          │ │ │ -    end.

          The complex process performs the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │ +    end.

          The complex process performs the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │      receive
          │ │ │ -        {call, Caller, Msg} ->
          │ │ │ -            Port ! {self(), {command, encode(Msg)}},
          │ │ │ +        {call, Caller, Msg} ->
          │ │ │ +            Port ! {self(), {command, encode(Msg)}},
          │ │ │              receive
          │ │ │ -                {Port, {data, Data}} ->
          │ │ │ -                    Caller ! {complex, decode(Data)}
          │ │ │ +                {Port, {data, Data}} ->
          │ │ │ +                    Caller ! {complex, decode(Data)}
          │ │ │              end,
          │ │ │ -            loop(Port)
          │ │ │ +            loop(Port)
          │ │ │      end.

          Assuming that both the arguments and the results from the C functions are less │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ -represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          The resulting Erlang program, including functions for stopping the port and │ │ │ +decode([Int]) -> Int.

          The resulting Erlang program, including functions for stopping the port and │ │ │ detecting port failures, is as follows:

          
          │ │ │ --module(complex5).
          │ │ │ --export([start/1, stop/0, init/1]).
          │ │ │ --export([foo/1, bar/1]).
          │ │ │ +-module(complex5).
          │ │ │ +-export([start/1, stop/0, init/1]).
          │ │ │ +-export([foo/1, bar/1]).
          │ │ │  
          │ │ │ -start(SharedLib) ->
          │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │ +start(SharedLib) ->
          │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │  	ok -> ok;
          │ │ │ -	{error, already_loaded} -> ok;
          │ │ │ -	_ -> exit({error, could_not_load_driver})
          │ │ │ +	{error, already_loaded} -> ok;
          │ │ │ +	_ -> exit({error, could_not_load_driver})
          │ │ │      end,
          │ │ │ -    spawn(?MODULE, init, [SharedLib]).
          │ │ │ +    spawn(?MODULE, init, [SharedLib]).
          │ │ │  
          │ │ │ -init(SharedLib) ->
          │ │ │ -    register(complex, self()),
          │ │ │ -    Port = open_port({spawn, SharedLib}, []),
          │ │ │ -    loop(Port).
          │ │ │ +init(SharedLib) ->
          │ │ │ +    register(complex, self()),
          │ │ │ +    Port = open_port({spawn, SharedLib}, []),
          │ │ │ +    loop(Port).
          │ │ │  
          │ │ │ -stop() ->
          │ │ │ +stop() ->
          │ │ │      complex ! stop.
          │ │ │  
          │ │ │ -foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -	{complex, Result} ->
          │ │ │ +	{complex, Result} ->
          │ │ │  	    Result
          │ │ │      end.
          │ │ │  
          │ │ │ -loop(Port) ->
          │ │ │ +loop(Port) ->
          │ │ │      receive
          │ │ │ -	{call, Caller, Msg} ->
          │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
          │ │ │ +	{call, Caller, Msg} ->
          │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
          │ │ │  	    receive
          │ │ │ -		{Port, {data, Data}} ->
          │ │ │ -		    Caller ! {complex, decode(Data)}
          │ │ │ +		{Port, {data, Data}} ->
          │ │ │ +		    Caller ! {complex, decode(Data)}
          │ │ │  	    end,
          │ │ │ -	    loop(Port);
          │ │ │ +	    loop(Port);
          │ │ │  	stop ->
          │ │ │ -	    Port ! {self(), close},
          │ │ │ +	    Port ! {self(), close},
          │ │ │  	    receive
          │ │ │ -		{Port, closed} ->
          │ │ │ -		    exit(normal)
          │ │ │ +		{Port, closed} ->
          │ │ │ +		    exit(normal)
          │ │ │  	    end;
          │ │ │ -	{'EXIT', Port, Reason} ->
          │ │ │ -	    io:format("~p ~n", [Reason]),
          │ │ │ -	    exit(port_terminated)
          │ │ │ +	{'EXIT', Port, Reason} ->
          │ │ │ +	    io:format("~p ~n", [Reason]),
          │ │ │ +	    exit(port_terminated)
          │ │ │      end.
          │ │ │  
          │ │ │ -encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          │ │ │ +decode([Int]) -> Int.

          │ │ │ │ │ │ │ │ │ │ │ │ C Driver │ │ │

          │ │ │

          The C driver is a module that is compiled and linked into a shared library. It │ │ │ uses a driver structure and includes the header file erl_driver.h.

          The driver structure is filled with the driver name and function pointers. It is │ │ │ @@ -347,25 +347,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │ │ │

          Step 1. Compile the C code:

          unix> gcc -o example_drv.so -fpic -shared complex.c port_driver.c
          │ │ │  windows> cl -LD -MD -Fe example_drv.dll complex.c port_driver.c

          Step 2. Start Erlang and compile the Erlang code:

          > erl
          │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │  
          │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ -1> c(complex5).
          │ │ │ -{ok,complex5}

          Step 3. Run the example:

          2> complex5:start("example_drv").
          │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ +1> c(complex5).
          │ │ │ +{ok,complex5}

          Step 3. Run the example:

          2> complex5:start("example_drv").
          │ │ │  <0.34.0>
          │ │ │ -3> complex5:foo(3).
          │ │ │ +3> complex5:foo(3).
          │ │ │  4
          │ │ │ -4> complex5:bar(5).
          │ │ │ +4> complex5:bar(5).
          │ │ │  10
          │ │ │ -5> complex5:stop().
          │ │ │ +5> complex5:stop().
          │ │ │  stop
          │ │ │
          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ Compilation │ │ │ │ │ │

          Erlang programs must be compiled to object code. The compiler can generate a │ │ │ new file that contains the object code. The current abstract machine, which runs │ │ │ the object code, is called BEAM, therefore the object files get the suffix │ │ │ -.beam. The compiler can also generate a binary which can be loaded directly.

          The compiler is located in the module compile in Compiler.

          compile:file(Module)
          │ │ │ -compile:file(Module, Options)

          The Erlang shell understands the command c(Module), which both compiles and │ │ │ +.beam. The compiler can also generate a binary which can be loaded directly.

          The compiler is located in the module compile in Compiler.

          compile:file(Module)
          │ │ │ +compile:file(Module, Options)

          The Erlang shell understands the command c(Module), which both compiles and │ │ │ loads Module.

          There is also a module make, which provides a set of functions similar to the │ │ │ UNIX type Make functions, see module make in Tools.

          The compiler can also be accessed from the OS prompt using the │ │ │ erl executable in ERTS.

          % erl -compile Module1...ModuleN
          │ │ │  % erl -make

          The erlc program provides way to compile modules from the OS │ │ │ shell, see the erlc executable in ERTS. It │ │ │ understands a number of flags that can be used to define macros, add search │ │ │ paths for include files, and more.

          % erlc <flags> File1.erl...FileN.erl

          │ │ │ @@ -156,54 +156,54 @@ │ │ │ When a module is loaded into the system for the first time, the code becomes │ │ │ 'current'. If then a new instance of the module is loaded, the code of the │ │ │ previous instance becomes 'old' and the new instance becomes 'current'.

          Both old and current code is valid, and can be evaluated concurrently. Fully │ │ │ qualified function calls always refer to current code. Old code can still be │ │ │ evaluated because of processes lingering in the old code.

          If a third instance of the module is loaded, the code server removes (purges) │ │ │ the old code and any processes lingering in it is terminated. Then the third │ │ │ instance becomes 'current' and the previously current code becomes 'old'.

          To change from old code to current code, a process must make a fully qualified │ │ │ -function call.

          Example:

          -module(m).
          │ │ │ --export([loop/0]).
          │ │ │ +function call.

          Example:

          -module(m).
          │ │ │ +-export([loop/0]).
          │ │ │  
          │ │ │ -loop() ->
          │ │ │ +loop() ->
          │ │ │      receive
          │ │ │          code_switch ->
          │ │ │ -            m:loop();
          │ │ │ +            m:loop();
          │ │ │          Msg ->
          │ │ │              ...
          │ │ │ -            loop()
          │ │ │ +            loop()
          │ │ │      end.

          To make the process change code, send the message code_switch to it. The │ │ │ process then makes a fully qualified call to m:loop() and changes to current │ │ │ code. Notice that m:loop/0 must be exported.

          For code replacement of funs to work, use the syntax │ │ │ fun Module:FunctionName/Arity.

          │ │ │ │ │ │ │ │ │ │ │ │ Running a Function When a Module is Loaded │ │ │

          │ │ │

          The -on_load() directive names a function that is to be run automatically when │ │ │ -a module is loaded.

          Its syntax is as follows:

          -on_load(Name/0).

          It is not necessary to export the function. It is called in a freshly spawned │ │ │ +a module is loaded.

          Its syntax is as follows:

          -on_load(Name/0).

          It is not necessary to export the function. It is called in a freshly spawned │ │ │ process (which terminates as soon as the function returns).

          The function must return ok if the module is to become the new current code │ │ │ for the module and become callable.

          Returning any other value or generating an exception causes the new code to be │ │ │ unloaded. If the return value is not an atom, a warning error report is sent to │ │ │ the error logger.

          If there already is current code for the module, that code will remain current │ │ │ and can be called until the on_load function has returned. If the on_load │ │ │ function fails, the current code (if any) will remain current. If there is no │ │ │ current code for a module, any process that makes an external call to the module │ │ │ before the on_load function has finished will be suspended until the on_load │ │ │ function have finished.

          Change

          Before Erlang/OTP 19, if the on_load function failed, any previously current │ │ │ code would become old, essentially leaving the system without any working and │ │ │ reachable instance of the module.

          In embedded mode, first all modules are loaded. Then all on_load functions are │ │ │ called. The system is terminated unless all of the on_load functions return │ │ │ -ok.

          Example:

          -module(m).
          │ │ │ --on_load(load_my_nifs/0).
          │ │ │ +ok.

          Example:

          -module(m).
          │ │ │ +-on_load(load_my_nifs/0).
          │ │ │  
          │ │ │ -load_my_nifs() ->
          │ │ │ +load_my_nifs() ->
          │ │ │      NifPath = ...,    %Set up the path to the NIF library.
          │ │ │      Info = ...,       %Initialize the Info term
          │ │ │ -    erlang:load_nif(NifPath, Info).

          If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ + erlang:load_nif(NifPath, Info).

          If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ report is sent to the error loader.

          │ │ │

          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          │ │ │ │ │ │ │ │ │ Operator ++ │ │ │

          │ │ │

          The ++ operator copies its left-hand side operand. That is clearly │ │ │ -seen if we do our own implementation in Erlang:

          my_plus_plus([H|T], Tail) ->
          │ │ │ -    [H|my_plus_plus(T, Tail)];
          │ │ │ -my_plus_plus([], Tail) ->
          │ │ │ -    Tail.

          We must be careful how we use ++ in a loop. First is how not to use it:

          DO NOT

          naive_reverse([H|T]) ->
          │ │ │ -    naive_reverse(T) ++ [H];
          │ │ │ -naive_reverse([]) ->
          │ │ │ -    [].

          As the ++ operator copies its left-hand side operand, the growing │ │ │ -result is copied repeatedly, leading to quadratic complexity.

          On the other hand, using ++ in loop like this is perfectly fine:

          OK

          naive_but_ok_reverse(List) ->
          │ │ │ -    naive_but_ok_reverse(List, []).
          │ │ │ +seen if we do our own implementation in Erlang:

          my_plus_plus([H|T], Tail) ->
          │ │ │ +    [H|my_plus_plus(T, Tail)];
          │ │ │ +my_plus_plus([], Tail) ->
          │ │ │ +    Tail.

          We must be careful how we use ++ in a loop. First is how not to use it:

          DO NOT

          naive_reverse([H|T]) ->
          │ │ │ +    naive_reverse(T) ++ [H];
          │ │ │ +naive_reverse([]) ->
          │ │ │ +    [].

          As the ++ operator copies its left-hand side operand, the growing │ │ │ +result is copied repeatedly, leading to quadratic complexity.

          On the other hand, using ++ in loop like this is perfectly fine:

          OK

          naive_but_ok_reverse(List) ->
          │ │ │ +    naive_but_ok_reverse(List, []).
          │ │ │  
          │ │ │ -naive_but_ok_reverse([H|T], Acc) ->
          │ │ │ -    naive_but_ok_reverse(T, [H] ++ Acc);
          │ │ │ -naive_but_ok_reverse([], Acc) ->
          │ │ │ +naive_but_ok_reverse([H|T], Acc) ->
          │ │ │ +    naive_but_ok_reverse(T, [H] ++ Acc);
          │ │ │ +naive_but_ok_reverse([], Acc) ->
          │ │ │      Acc.

          Each list element is copied only once. The growing result Acc is the right-hand │ │ │ -side operand, which it is not copied.

          Experienced Erlang programmers would probably write as follows:

          DO

          vanilla_reverse([H|T], Acc) ->
          │ │ │ -    vanilla_reverse(T, [H|Acc]);
          │ │ │ -vanilla_reverse([], Acc) ->
          │ │ │ +side operand, which it is not copied.

          Experienced Erlang programmers would probably write as follows:

          DO

          vanilla_reverse([H|T], Acc) ->
          │ │ │ +    vanilla_reverse(T, [H|Acc]);
          │ │ │ +vanilla_reverse([], Acc) ->
          │ │ │      Acc.

          In principle, this is slightly more efficient because the list element [H] │ │ │ is not built before being copied and discarded. In practice, the compiler │ │ │ rewrites [H] ++ Acc to [H|Acc].

          │ │ │ │ │ │ │ │ │ │ │ │ Timer Module │ │ │ @@ -160,77 +160,77 @@ │ │ │ therefore harmless.

          │ │ │ │ │ │ │ │ │ │ │ │ Accidental Copying and Loss of Sharing │ │ │

          │ │ │

          When spawning a new process using a fun, one can accidentally copy more data to │ │ │ -the process than intended. For example:

          DO NOT

          accidental1(State) ->
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [State#state.info])
          │ │ │ -          end).

          The code in the fun will extract one element from the record and print it. The │ │ │ +the process than intended. For example:

          DO NOT

          accidental1(State) ->
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [State#state.info])
          │ │ │ +          end).

          The code in the fun will extract one element from the record and print it. The │ │ │ rest of the state record is not used. However, when the spawn/1 │ │ │ -function is executed, the entire record is copied to the newly created process.

          The same kind of problem can happen with a map:

          DO NOT

          accidental2(State) ->
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [map_get(info, State)])
          │ │ │ -          end).

          In the following example (part of a module implementing the gen_server │ │ │ -behavior) the created fun is sent to another process:

          DO NOT

          handle_call(give_me_a_fun, _From, State) ->
          │ │ │ -    Fun = fun() -> State#state.size =:= 42 end,
          │ │ │ -    {reply, Fun, State}.

          How bad that unnecessary copy is depends on the contents of the record or the │ │ │ -map.

          For example, if the state record is initialized like this:

          init1() ->
          │ │ │ -    #state{data=lists:seq(1, 10000)}.

          a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ +function is executed, the entire record is copied to the newly created process.

          The same kind of problem can happen with a map:

          DO NOT

          accidental2(State) ->
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [map_get(info, State)])
          │ │ │ +          end).

          In the following example (part of a module implementing the gen_server │ │ │ +behavior) the created fun is sent to another process:

          DO NOT

          handle_call(give_me_a_fun, _From, State) ->
          │ │ │ +    Fun = fun() -> State#state.size =:= 42 end,
          │ │ │ +    {reply, Fun, State}.

          How bad that unnecessary copy is depends on the contents of the record or the │ │ │ +map.

          For example, if the state record is initialized like this:

          init1() ->
          │ │ │ +    #state{data=lists:seq(1, 10000)}.

          a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ newly created process.

          An unnecessary copy of 10000 element list can be bad enough, but it can get even │ │ │ worse if the state record contains shared subterms. Here is a simple example │ │ │ -of a term with a shared subterm:

          {SubTerm, SubTerm}

          When a term is copied to another process, sharing of subterms will be lost and │ │ │ -the copied term can be many times larger than the original term. For example:

          init2() ->
          │ │ │ -    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
          │ │ │ -    #state{data=Shared}.

          In the process that calls init2/0, the size of the data field in the state │ │ │ +of a term with a shared subterm:

          {SubTerm, SubTerm}

          When a term is copied to another process, sharing of subterms will be lost and │ │ │ +the copied term can be many times larger than the original term. For example:

          init2() ->
          │ │ │ +    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
          │ │ │ +    #state{data=Shared}.

          In the process that calls init2/0, the size of the data field in the state │ │ │ record will be 32 heap words. When the record is copied to the newly created │ │ │ process, sharing will be lost and the size of the copied data field will be │ │ │ 131070 heap words. More details about │ │ │ loss off sharing are found in a later │ │ │ section.

          To avoid the problem, outside of the fun extract only the fields of the record │ │ │ -that are actually used:

          DO

          fixed_accidental1(State) ->
          │ │ │ +that are actually used:

          DO

          fixed_accidental1(State) ->
          │ │ │      Info = State#state.info,
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [Info])
          │ │ │ -          end).

          Similarly, outside of the fun extract only the map elements that are actually │ │ │ -used:

          DO

          fixed_accidental2(State) ->
          │ │ │ -    Info = map_get(info, State),
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [Info])
          │ │ │ -          end).

          │ │ │ + spawn(fun() -> │ │ │ + io:format("~p\n", [Info]) │ │ │ + end).

          Similarly, outside of the fun extract only the map elements that are actually │ │ │ +used:

          DO

          fixed_accidental2(State) ->
          │ │ │ +    Info = map_get(info, State),
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [Info])
          │ │ │ +          end).

          │ │ │ │ │ │ │ │ │ │ │ │ list_to_atom/1 │ │ │

          │ │ │

          Atoms are not garbage-collected. Once an atom is created, it is never removed. │ │ │ The emulator terminates if the limit for the number of atoms (1,048,576 by │ │ │ default) is reached.

          Therefore, converting arbitrary input strings to atoms can be dangerous in a │ │ │ system that runs continuously. If only certain well-defined atoms are allowed as │ │ │ input, list_to_existing_atom/1 or │ │ │ binary_to_existing_atom/1 can be used │ │ │ to guard against a denial-of-service attack. (All atoms that are allowed must │ │ │ have been created earlier, for example, by using all of them in a module │ │ │ and loading that module.)

          Using list_to_atom/1 to construct an atom that │ │ │ -is passed to apply/3 is quite expensive.

          DO NOT

          apply(list_to_atom("some_prefix"++Var), foo, Args)

          │ │ │ +is passed to apply/3 is quite expensive.

          DO NOT

          apply(list_to_atom("some_prefix"++Var), foo, Args)

          │ │ │ │ │ │ │ │ │ │ │ │ length/1 │ │ │

          │ │ │

          The time for calculating the length of a list is proportional to the length of │ │ │ the list, as opposed to tuple_size/1, │ │ │ byte_size/1, and bit_size/1, which all │ │ │ execute in constant time.

          Normally, there is no need to worry about the speed of length/1, │ │ │ because it is efficiently implemented in C. In time-critical code, you might │ │ │ want to avoid it if the input list could potentially be very long.

          Some uses of length/1 can be replaced by matching. For example, │ │ │ -the following code:

          foo(L) when length(L) >= 3 ->
          │ │ │ -    ...

          can be rewritten to:

          foo([_,_,_|_]=L) ->
          │ │ │ +the following code:

          foo(L) when length(L) >= 3 ->
          │ │ │ +    ...

          can be rewritten to:

          foo([_,_,_|_]=L) ->
          │ │ │     ...

          One slight difference is that length(L) fails if L is an │ │ │ improper list, while the pattern in the second code fragment accepts an improper │ │ │ list.

          │ │ │ │ │ │ │ │ │ │ │ │ setelement/3 │ │ │ @@ -238,18 +238,18 @@ │ │ │

          setelement/3 copies the tuple it modifies. Therefore, │ │ │ updating a tuple in a loop using setelement/3 creates a new │ │ │ copy of the tuple every time.

          There is one exception to the rule that the tuple is copied. If the compiler │ │ │ clearly can see that destructively updating the tuple would give the same result │ │ │ as if the tuple was copied, the call to setelement/3 is │ │ │ replaced with a special destructive setelement instruction. In the following │ │ │ code sequence, the first setelement/3 call copies the tuple │ │ │ -and modifies the ninth element:

          multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
          │ │ │ -    T1 = setelement(9, T0, bar),
          │ │ │ -    T2 = setelement(7, T1, foobar),
          │ │ │ -    setelement(5, T2, new_value).

          The two following setelement/3 calls modify the tuple in │ │ │ +and modifies the ninth element:

          multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
          │ │ │ +    T1 = setelement(9, T0, bar),
          │ │ │ +    T2 = setelement(7, T1, foobar),
          │ │ │ +    setelement(5, T2, new_value).

          The two following setelement/3 calls modify the tuple in │ │ │ place.

          For the optimization to be applied, all the following conditions must be true:

          • The tuple argument must be known to be a tuple of a known size.
          • The indices must be integer literals, not variables or expressions.
          • The indices must be given in descending order.
          • There must be no calls to another function in between the calls to │ │ │ setelement/3.
          • The tuple returned from one setelement/3 call must only be │ │ │ used in the subsequent call to setelement/3.

          If the code cannot be structured as in the multiple_setelement/1 example, the │ │ │ best way to modify multiple elements in a large tuple is to convert the tuple to │ │ │ a list, modify the list, and convert it back to a tuple.

          │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/conc_prog.html │ │ │ @@ -132,107 +132,107 @@ │ │ │ threads of execution in an Erlang program and to allow these threads to │ │ │ communicate with each other. In Erlang, each thread of execution is called a │ │ │ process.

          (Aside: the term "process" is usually used when the threads of execution share │ │ │ no data with each other and the term "thread" when they share data in some way. │ │ │ Threads of execution in Erlang share no data, that is why they are called │ │ │ processes).

          The Erlang BIF spawn is used to create a new process: │ │ │ spawn(Module, Exported_Function, List of Arguments). Consider the following │ │ │ -module:

          -module(tut14).
          │ │ │ +module:

          -module(tut14).
          │ │ │  
          │ │ │ --export([start/0, say_something/2]).
          │ │ │ +-export([start/0, say_something/2]).
          │ │ │  
          │ │ │ -say_something(What, 0) ->
          │ │ │ +say_something(What, 0) ->
          │ │ │      done;
          │ │ │ -say_something(What, Times) ->
          │ │ │ -    io:format("~p~n", [What]),
          │ │ │ -    say_something(What, Times - 1).
          │ │ │ -
          │ │ │ -start() ->
          │ │ │ -    spawn(tut14, say_something, [hello, 3]),
          │ │ │ -    spawn(tut14, say_something, [goodbye, 3]).
          5> c(tut14).
          │ │ │ -{ok,tut14}
          │ │ │ -6> tut14:say_something(hello, 3).
          │ │ │ +say_something(What, Times) ->
          │ │ │ +    io:format("~p~n", [What]),
          │ │ │ +    say_something(What, Times - 1).
          │ │ │ +
          │ │ │ +start() ->
          │ │ │ +    spawn(tut14, say_something, [hello, 3]),
          │ │ │ +    spawn(tut14, say_something, [goodbye, 3]).
          5> c(tut14).
          │ │ │ +{ok,tut14}
          │ │ │ +6> tut14:say_something(hello, 3).
          │ │ │  hello
          │ │ │  hello
          │ │ │  hello
          │ │ │  done

          As shown, the function say_something writes its first argument the number of │ │ │ times specified by second argument. The function start starts two Erlang │ │ │ processes, one that writes "hello" three times and one that writes "goodbye" │ │ │ three times. Both processes use the function say_something. Notice that a │ │ │ function used in this way by spawn, to start a process, must be exported from │ │ │ -the module (that is, in the -export at the start of the module).

          9> tut14:start().
          │ │ │ +the module (that is, in the -export at the start of the module).

          9> tut14:start().
          │ │ │  hello
          │ │ │  goodbye
          │ │ │  <0.63.0>
          │ │ │  hello
          │ │ │  goodbye
          │ │ │  hello
          │ │ │  goodbye

          Notice that it did not write "hello" three times and then "goodbye" three times. │ │ │ Instead, the first process wrote a "hello", the second a "goodbye", the first │ │ │ another "hello" and so forth. But where did the <0.63.0> come from? The return │ │ │ value of a function is the return value of the last "thing" in the function. The │ │ │ -last thing in the function start is

          spawn(tut14, say_something, [goodbye, 3]).

          spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ +last thing in the function start is

          spawn(tut14, say_something, [goodbye, 3]).

          spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ process. So <0.63.0> is the pid of the spawn function call above. The next │ │ │ example shows how to use pids.

          Notice also that ~p is used instead of ~w in io:format/2. To quote the manual:

          ~p Writes the data with standard syntax in the same way as ~w, but breaks terms │ │ │ whose printed representation is longer than one line into many lines and indents │ │ │ each line sensibly. It also tries to detect flat lists of printable characters and │ │ │ to output these as strings

          │ │ │ │ │ │ │ │ │ │ │ │ Message Passing │ │ │

          │ │ │

          In the following example two processes are created and they send messages to │ │ │ -each other a number of times.

          -module(tut15).
          │ │ │ +each other a number of times.

          -module(tut15).
          │ │ │  
          │ │ │ --export([start/0, ping/2, pong/0]).
          │ │ │ +-export([start/0, ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_PID) ->
          │ │ │ +ping(0, Pong_PID) ->
          │ │ │      Pong_PID ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_PID) ->
          │ │ │ -    Pong_PID ! {ping, self()},
          │ │ │ +ping(N, Pong_PID) ->
          │ │ │ +    Pong_PID ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_PID).
          │ │ │ +    ping(N - 1, Pong_PID).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start() ->
          │ │ │ -    Pong_PID = spawn(tut15, pong, []),
          │ │ │ -    spawn(tut15, ping, [3, Pong_PID]).
          1> c(tut15).
          │ │ │ -{ok,tut15}
          │ │ │ -2> tut15: start().
          │ │ │ +start() ->
          │ │ │ +    Pong_PID = spawn(tut15, pong, []),
          │ │ │ +    spawn(tut15, ping, [3, Pong_PID]).
          1> c(tut15).
          │ │ │ +{ok,tut15}
          │ │ │ +2> tut15: start().
          │ │ │  <0.36.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  ping finished
          │ │ │ -Pong finished

          The function start first creates a process, let us call it "pong":

          Pong_PID = spawn(tut15, pong, [])

          This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ -"pong" process. The function start now creates another process "ping":

          spawn(tut15, ping, [3, Pong_PID]),

          This process executes:

          tut15:ping(3, Pong_PID)

          <0.36.0> is the return value from the start function.

          The process "pong" now does:

          receive
          │ │ │ +Pong finished

          The function start first creates a process, let us call it "pong":

          Pong_PID = spawn(tut15, pong, [])

          This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ +"pong" process. The function start now creates another process "ping":

          spawn(tut15, ping, [3, Pong_PID]),

          This process executes:

          tut15:ping(3, Pong_PID)

          <0.36.0> is the return value from the start function.

          The process "pong" now does:

          receive
          │ │ │      finished ->
          │ │ │ -        io:format("Pong finished~n", []);
          │ │ │ -    {ping, Ping_PID} ->
          │ │ │ -        io:format("Pong received ping~n", []),
          │ │ │ +        io:format("Pong finished~n", []);
          │ │ │ +    {ping, Ping_PID} ->
          │ │ │ +        io:format("Pong received ping~n", []),
          │ │ │          Ping_PID ! pong,
          │ │ │ -        pong()
          │ │ │ +        pong()
          │ │ │  end.

          The receive construct is used to allow processes to wait for messages from │ │ │ other processes. It has the following format:

          receive
          │ │ │     pattern1 ->
          │ │ │         actions1;
          │ │ │     pattern2 ->
          │ │ │         actions2;
          │ │ │     ....
          │ │ │ @@ -253,84 +253,84 @@
          │ │ │  queue (keeping the first message and any other messages in the queue). If the
          │ │ │  second message does not match, the third message is tried, and so on, until the
          │ │ │  end of the queue is reached. If the end of the queue is reached, the process
          │ │ │  blocks (stops execution) and waits until a new message is received and this
          │ │ │  procedure is repeated.

          The Erlang implementation is "clever" and minimizes the number of times each │ │ │ message is tested against the patterns in each receive.

          Now back to the ping pong example.

          "Pong" is waiting for messages. If the atom finished is received, "pong" │ │ │ writes "Pong finished" to the output and, as it has nothing more to do, │ │ │ -terminates. If it receives a message with the format:

          {ping, Ping_PID}

          it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ +terminates. If it receives a message with the format:

          {ping, Ping_PID}

          it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ process "ping":

          Ping_PID ! pong

          Notice how the operator "!" is used to send messages. The syntax of "!" is:

          Pid ! Message

          That is, Message (any Erlang term) is sent to the process with identity Pid.

          After sending the message pong to the process "ping", "pong" calls the pong │ │ │ function again, which causes it to get back to the receive again and wait for │ │ │ -another message.

          Now let us look at the process "ping". Recall that it was started by executing:

          tut15:ping(3, Pong_PID)

          Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ +another message.

          Now let us look at the process "ping". Recall that it was started by executing:

          tut15:ping(3, Pong_PID)

          Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ since the value of the first argument is 3 (not 0) (first clause head is │ │ │ -ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

          The second clause sends a message to "pong":

          Pong_PID ! {ping, self()},

          self/0 returns the pid of the process that executes self/0, in this case the │ │ │ +ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

          The second clause sends a message to "pong":

          Pong_PID ! {ping, self()},

          self/0 returns the pid of the process that executes self/0, in this case the │ │ │ pid of "ping". (Recall the code for "pong", this lands up in the variable │ │ │ Ping_PID in the receive previously explained.)

          "Ping" now waits for a reply from "pong":

          receive
          │ │ │      pong ->
          │ │ │ -        io:format("Ping received pong~n", [])
          │ │ │ +        io:format("Ping received pong~n", [])
          │ │ │  end,

          It writes "Ping received pong" when this reply arrives, after which "ping" calls │ │ │ -the ping function again.

          ping(N - 1, Pong_PID)

          N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ -occurs, the first clause of ping/2 is executed:

          ping(0, Pong_PID) ->
          │ │ │ +the ping function again.

          ping(N - 1, Pong_PID)

          N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ +occurs, the first clause of ping/2 is executed:

          ping(0, Pong_PID) ->
          │ │ │      Pong_PID !  finished,
          │ │ │ -    io:format("ping finished~n", []);

          The atom finished is sent to "pong" (causing it to terminate as described │ │ │ + io:format("ping finished~n", []);

          The atom finished is sent to "pong" (causing it to terminate as described │ │ │ above) and "ping finished" is written to the output. "Ping" then terminates as │ │ │ it has nothing left to do.

          │ │ │ │ │ │ │ │ │ │ │ │ Registered Process Names │ │ │

          │ │ │

          In the above example, "pong" was first created to be able to give the identity │ │ │ of "pong" when "ping" was started. That is, in some way "ping" must be able to │ │ │ know the identity of "pong" to be able to send a message to it. Sometimes │ │ │ processes which need to know each other's identities are started independently │ │ │ of each other. Erlang thus provides a mechanism for processes to be given names │ │ │ so that these names can be used as identities instead of pids. This is done by │ │ │ -using the register BIF:

          register(some_atom, Pid)

          Let us now rewrite the ping pong example using this and give the name pong to │ │ │ -the "pong" process:

          -module(tut16).
          │ │ │ +using the register BIF:

          register(some_atom, Pid)

          Let us now rewrite the ping pong example using this and give the name pong to │ │ │ +the "pong" process:

          -module(tut16).
          │ │ │  
          │ │ │ --export([start/0, ping/1, pong/0]).
          │ │ │ +-export([start/0, ping/1, pong/0]).
          │ │ │  
          │ │ │ -ping(0) ->
          │ │ │ +ping(0) ->
          │ │ │      pong ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N) ->
          │ │ │ -    pong ! {ping, self()},
          │ │ │ +ping(N) ->
          │ │ │ +    pong ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1).
          │ │ │ +    ping(N - 1).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start() ->
          │ │ │ -    register(pong, spawn(tut16, pong, [])),
          │ │ │ -    spawn(tut16, ping, [3]).
          2> c(tut16).
          │ │ │ -{ok, tut16}
          │ │ │ -3> tut16:start().
          │ │ │ +start() ->
          │ │ │ +    register(pong, spawn(tut16, pong, [])),
          │ │ │ +    spawn(tut16, ping, [3]).
          2> c(tut16).
          │ │ │ +{ok, tut16}
          │ │ │ +3> tut16:start().
          │ │ │  <0.38.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  ping finished
          │ │ │ -Pong finished

          Here the start/0 function,

          register(pong, spawn(tut16, pong, [])),

          both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ -process, messages can be sent to pong by:

          pong ! {ping, self()},

          ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

          │ │ │ +Pong finished

          Here the start/0 function,

          register(pong, spawn(tut16, pong, [])),

          both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ +process, messages can be sent to pong by:

          pong ! {ping, self()},

          ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

          │ │ │ │ │ │ │ │ │ │ │ │ Distributed Programming │ │ │

          │ │ │

          Let us rewrite the ping pong program with "ping" and "pong" on different │ │ │ computers. First a few things are needed to set up to get this to work. The │ │ │ @@ -350,106 +350,106 @@ │ │ │ of the file. This is a requirement.

          When you start an Erlang system that is going to talk to other Erlang systems, │ │ │ you must give it a name, for example:

          $ erl -sname my_name

          We will see more details of this later. If you want to experiment with │ │ │ distributed Erlang, but you only have one computer to work on, you can start two │ │ │ separate Erlang systems on the same computer but give them different names. Each │ │ │ Erlang system running on a computer is called an Erlang node.

          (Note: erl -sname assumes that all nodes are in the same IP domain and we can │ │ │ use only the first component of the IP address, if we want to use nodes in │ │ │ different domains we use -name instead, but then all IP address must be given │ │ │ -in full.)

          Here is the ping pong example modified to run on two separate nodes:

          -module(tut17).
          │ │ │ +in full.)

          Here is the ping pong example modified to run on two separate nodes:

          -module(tut17).
          │ │ │  
          │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +ping(0, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! finished,
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ +ping(N, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start_pong() ->
          │ │ │ -    register(pong, spawn(tut17, pong, [])).
          │ │ │ +start_pong() ->
          │ │ │ +    register(pong, spawn(tut17, pong, [])).
          │ │ │  
          │ │ │ -start_ping(Pong_Node) ->
          │ │ │ -    spawn(tut17, ping, [3, Pong_Node]).

          Let us assume there are two computers called gollum and kosken. First a node is │ │ │ +start_ping(Pong_Node) -> │ │ │ + spawn(tut17, ping, [3, Pong_Node]).

          Let us assume there are two computers called gollum and kosken. First a node is │ │ │ started on kosken, called ping, and then a node on gollum, called pong.

          On kosken (on a Linux/UNIX system):

          kosken> erl -sname ping
          │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
          │ │ │  
          │ │ │  Eshell V5.2.3.7  (abort with ^G)
          │ │ │  (ping@kosken)1>

          On gollum:

          gollum> erl -sname pong
          │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
          │ │ │  
          │ │ │  Eshell V5.2.3.7  (abort with ^G)
          │ │ │ -(pong@gollum)1>

          Now the "pong" process on gollum is started:

          (pong@gollum)1> tut17:start_pong().
          │ │ │ +(pong@gollum)1>

          Now the "pong" process on gollum is started:

          (pong@gollum)1> tut17:start_pong().
          │ │ │  true

          And the "ping" process on kosken is started (from the code above you can see │ │ │ that a parameter of the start_ping function is the node name of the Erlang │ │ │ -system where "pong" is running):

          (ping@kosken)1> tut17:start_ping(pong@gollum).
          │ │ │ +system where "pong" is running):

          (ping@kosken)1> tut17:start_ping(pong@gollum).
          │ │ │  <0.37.0>
          │ │ │  Ping received pong
          │ │ │  Ping received pong
          │ │ │  Ping received pong
          │ │ │  ping finished

          As shown, the ping pong program has run. On the "pong" side:

          (pong@gollum)2> 
          │ │ │  Pong received ping
          │ │ │  Pong received ping
          │ │ │  Pong received ping
          │ │ │  Pong finished
          │ │ │ -(pong@gollum)2> 

          Looking at the tut17 code, you see that the pong function itself is │ │ │ +(pong@gollum)2>

          Looking at the tut17 code, you see that the pong function itself is │ │ │ unchanged, the following lines work in the same way irrespective of on which │ │ │ -node the "ping" process is executes:

          {ping, Ping_PID} ->
          │ │ │ -    io:format("Pong received ping~n", []),
          │ │ │ +node the "ping" process is executes:

          {ping, Ping_PID} ->
          │ │ │ +    io:format("Pong received ping~n", []),
          │ │ │      Ping_PID ! pong,

          Thus, Erlang pids contain information about where the process executes. So if │ │ │ you know the pid of a process, the ! operator can be used to send it a │ │ │ -message disregarding if the process is on the same node or on a different node.

          A difference is how messages are sent to a registered process on another node:

          {pong, Pong_Node} ! {ping, self()},

          A tuple {registered_name,node_name} is used instead of just the │ │ │ +message disregarding if the process is on the same node or on a different node.

          A difference is how messages are sent to a registered process on another node:

          {pong, Pong_Node} ! {ping, self()},

          A tuple {registered_name,node_name} is used instead of just the │ │ │ registered_name.

          In the previous example, "ping" and "pong" were started from the shells of two │ │ │ separate Erlang nodes. spawn can also be used to start processes in other │ │ │ nodes.

          The next example is the ping pong program, yet again, but this time "ping" is │ │ │ -started in another node:

          -module(tut18).
          │ │ │ +started in another node:

          -module(tut18).
          │ │ │  
          │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +ping(0, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! finished,
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ +ping(N, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start(Ping_Node) ->
          │ │ │ -    register(pong, spawn(tut18, pong, [])),
          │ │ │ -    spawn(Ping_Node, tut18, ping, [3, node()]).

          Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ -been started on kosken, then on gollum this is done:

          (pong@gollum)1> tut18:start(ping@kosken).
          │ │ │ +start(Ping_Node) ->
          │ │ │ +    register(pong, spawn(tut18, pong, [])),
          │ │ │ +    spawn(Ping_Node, tut18, ping, [3, node()]).

          Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ +been started on kosken, then on gollum this is done:

          (pong@gollum)1> tut18:start(ping@kosken).
          │ │ │  <3934.39.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │ @@ -516,188 +516,188 @@
          │ │ │  %%% Started: messenger:client(Server_Node, Name)
          │ │ │  %%% To client: logoff
          │ │ │  %%% To client: {message_to, ToName, Message}
          │ │ │  %%%
          │ │ │  %%% Configuration: change the server_node() function to return the
          │ │ │  %%% name of the node where the messenger server runs
          │ │ │  
          │ │ │ --module(messenger).
          │ │ │ --export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
          │ │ │ +-module(messenger).
          │ │ │ +-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
          │ │ │  
          │ │ │  %%% Change the function below to return the name of the node where the
          │ │ │  %%% messenger server runs
          │ │ │ -server_node() ->
          │ │ │ +server_node() ->
          │ │ │      messenger@super.
          │ │ │  
          │ │ │  %%% This is the server process for the "messenger"
          │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
          │ │ │ -server(User_List) ->
          │ │ │ +server(User_List) ->
          │ │ │      receive
          │ │ │ -        {From, logon, Name} ->
          │ │ │ -            New_User_List = server_logon(From, Name, User_List),
          │ │ │ -            server(New_User_List);
          │ │ │ -        {From, logoff} ->
          │ │ │ -            New_User_List = server_logoff(From, User_List),
          │ │ │ -            server(New_User_List);
          │ │ │ -        {From, message_to, To, Message} ->
          │ │ │ -            server_transfer(From, To, Message, User_List),
          │ │ │ -            io:format("list is now: ~p~n", [User_List]),
          │ │ │ -            server(User_List)
          │ │ │ +        {From, logon, Name} ->
          │ │ │ +            New_User_List = server_logon(From, Name, User_List),
          │ │ │ +            server(New_User_List);
          │ │ │ +        {From, logoff} ->
          │ │ │ +            New_User_List = server_logoff(From, User_List),
          │ │ │ +            server(New_User_List);
          │ │ │ +        {From, message_to, To, Message} ->
          │ │ │ +            server_transfer(From, To, Message, User_List),
          │ │ │ +            io:format("list is now: ~p~n", [User_List]),
          │ │ │ +            server(User_List)
          │ │ │      end.
          │ │ │  
          │ │ │  %%% Start the server
          │ │ │ -start_server() ->
          │ │ │ -    register(messenger, spawn(messenger, server, [[]])).
          │ │ │ +start_server() ->
          │ │ │ +    register(messenger, spawn(messenger, server, [[]])).
          │ │ │  
          │ │ │  
          │ │ │  %%% Server adds a new user to the user list
          │ │ │ -server_logon(From, Name, User_List) ->
          │ │ │ +server_logon(From, Name, User_List) ->
          │ │ │      %% check if logged on anywhere else
          │ │ │ -    case lists:keymember(Name, 2, User_List) of
          │ │ │ +    case lists:keymember(Name, 2, User_List) of
          │ │ │          true ->
          │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │              User_List;
          │ │ │          false ->
          │ │ │ -            From ! {messenger, logged_on},
          │ │ │ -            [{From, Name} | User_List]        %add user to the list
          │ │ │ +            From ! {messenger, logged_on},
          │ │ │ +            [{From, Name} | User_List]        %add user to the list
          │ │ │      end.
          │ │ │  
          │ │ │  %%% Server deletes a user from the user list
          │ │ │ -server_logoff(From, User_List) ->
          │ │ │ -    lists:keydelete(From, 1, User_List).
          │ │ │ +server_logoff(From, User_List) ->
          │ │ │ +    lists:keydelete(From, 1, User_List).
          │ │ │  
          │ │ │  
          │ │ │  %%% Server transfers a message between user
          │ │ │ -server_transfer(From, To, Message, User_List) ->
          │ │ │ +server_transfer(From, To, Message, User_List) ->
          │ │ │      %% check that the user is logged on and who he is
          │ │ │ -    case lists:keysearch(From, 1, User_List) of
          │ │ │ +    case lists:keysearch(From, 1, User_List) of
          │ │ │          false ->
          │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ -        {value, {From, Name}} ->
          │ │ │ -            server_transfer(From, Name, To, Message, User_List)
          │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ +        {value, {From, Name}} ->
          │ │ │ +            server_transfer(From, Name, To, Message, User_List)
          │ │ │      end.
          │ │ │  %%% If the user exists, send the message
          │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
          │ │ │      %% Find the receiver and send the message
          │ │ │ -    case lists:keysearch(To, 2, User_List) of
          │ │ │ +    case lists:keysearch(To, 2, User_List) of
          │ │ │          false ->
          │ │ │ -            From ! {messenger, receiver_not_found};
          │ │ │ -        {value, {ToPid, To}} ->
          │ │ │ -            ToPid ! {message_from, Name, Message},
          │ │ │ -            From ! {messenger, sent}
          │ │ │ +            From ! {messenger, receiver_not_found};
          │ │ │ +        {value, {ToPid, To}} ->
          │ │ │ +            ToPid ! {message_from, Name, Message},
          │ │ │ +            From ! {messenger, sent}
          │ │ │      end.
          │ │ │  
          │ │ │  
          │ │ │  %%% User Commands
          │ │ │ -logon(Name) ->
          │ │ │ -    case whereis(mess_client) of
          │ │ │ +logon(Name) ->
          │ │ │ +    case whereis(mess_client) of
          │ │ │          undefined ->
          │ │ │ -            register(mess_client,
          │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ +            register(mess_client,
          │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
          │ │ │          _ -> already_logged_on
          │ │ │      end.
          │ │ │  
          │ │ │ -logoff() ->
          │ │ │ +logoff() ->
          │ │ │      mess_client ! logoff.
          │ │ │  
          │ │ │ -message(ToName, Message) ->
          │ │ │ -    case whereis(mess_client) of % Test if the client is running
          │ │ │ +message(ToName, Message) ->
          │ │ │ +    case whereis(mess_client) of % Test if the client is running
          │ │ │          undefined ->
          │ │ │              not_logged_on;
          │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │               ok
          │ │ │  end.
          │ │ │  
          │ │ │  
          │ │ │  %%% The client process which runs on each server node
          │ │ │ -client(Server_Node, Name) ->
          │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ -    await_result(),
          │ │ │ -    client(Server_Node).
          │ │ │ +client(Server_Node, Name) ->
          │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ +    await_result(),
          │ │ │ +    client(Server_Node).
          │ │ │  
          │ │ │ -client(Server_Node) ->
          │ │ │ +client(Server_Node) ->
          │ │ │      receive
          │ │ │          logoff ->
          │ │ │ -            {messenger, Server_Node} ! {self(), logoff},
          │ │ │ -            exit(normal);
          │ │ │ -        {message_to, ToName, Message} ->
          │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ -            await_result();
          │ │ │ -        {message_from, FromName, Message} ->
          │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ +            {messenger, Server_Node} ! {self(), logoff},
          │ │ │ +            exit(normal);
          │ │ │ +        {message_to, ToName, Message} ->
          │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ +            await_result();
          │ │ │ +        {message_from, FromName, Message} ->
          │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │      end,
          │ │ │ -    client(Server_Node).
          │ │ │ +    client(Server_Node).
          │ │ │  
          │ │ │  %%% wait for a response from the server
          │ │ │ -await_result() ->
          │ │ │ +await_result() ->
          │ │ │      receive
          │ │ │ -        {messenger, stop, Why} -> % Stop the client
          │ │ │ -            io:format("~p~n", [Why]),
          │ │ │ -            exit(normal);
          │ │ │ -        {messenger, What} ->  % Normal response
          │ │ │ -            io:format("~p~n", [What])
          │ │ │ +        {messenger, stop, Why} -> % Stop the client
          │ │ │ +            io:format("~p~n", [Why]),
          │ │ │ +            exit(normal);
          │ │ │ +        {messenger, What} ->  % Normal response
          │ │ │ +            io:format("~p~n", [What])
          │ │ │      end.

          To use this program, you need to:

          • Configure the server_node() function.
          • Copy the compiled code (messenger.beam) to the directory on each computer │ │ │ where you start Erlang.

          In the following example using this program, nodes are started on four different │ │ │ computers. If you do not have that many machines available on your network, you │ │ │ can start several nodes on the same machine.

          Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, │ │ │ -c3@gollum.

          First the server at messenger@super is started up:

          (messenger@super)1> messenger:start_server().
          │ │ │ -true

          Now Peter logs on at c1@bilbo:

          (c1@bilbo)1> messenger:logon(peter).
          │ │ │ +c3@gollum.

          First the server at messenger@super is started up:

          (messenger@super)1> messenger:start_server().
          │ │ │ +true

          Now Peter logs on at c1@bilbo:

          (c1@bilbo)1> messenger:logon(peter).
          │ │ │  true
          │ │ │ -logged_on

          James logs on at c2@kosken:

          (c2@kosken)1> messenger:logon(james).
          │ │ │ +logged_on

          James logs on at c2@kosken:

          (c2@kosken)1> messenger:logon(james).
          │ │ │  true
          │ │ │ -logged_on

          And Fred logs on at c3@gollum:

          (c3@gollum)1> messenger:logon(fred).
          │ │ │ +logged_on

          And Fred logs on at c3@gollum:

          (c3@gollum)1> messenger:logon(fred).
          │ │ │  true
          │ │ │ -logged_on

          Now Peter sends Fred a message:

          (c1@bilbo)2> messenger:message(fred, "hello").
          │ │ │ +logged_on

          Now Peter sends Fred a message:

          (c1@bilbo)2> messenger:message(fred, "hello").
          │ │ │  ok
          │ │ │  sent

          Fred receives the message and sends a message to Peter and logs off:

          Message from peter: "hello"
          │ │ │ -(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
          │ │ │ +(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
          │ │ │  ok
          │ │ │  sent
          │ │ │ -(c3@gollum)3> messenger:logoff().
          │ │ │ -logoff

          James now tries to send a message to Fred:

          (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
          │ │ │ +(c3@gollum)3> messenger:logoff().
          │ │ │ +logoff

          James now tries to send a message to Fred:

          (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
          │ │ │  ok
          │ │ │  receiver_not_found

          But this fails as Fred has already logged off.

          First let us look at some of the new concepts that have been introduced.

          There are two versions of the server_transfer function: one with four │ │ │ arguments (server_transfer/4) and one with five (server_transfer/5). These │ │ │ are regarded by Erlang as two separate functions.

          Notice how to write the server function so that it calls itself, through │ │ │ server(User_List), and thus creates a loop. The Erlang compiler is "clever" │ │ │ and optimizes the code so that this really is a sort of loop and not a proper │ │ │ function call. But this only works if there is no code after the call. │ │ │ Otherwise, the compiler expects the call to return and make a proper function │ │ │ call. This would result in the process getting bigger and bigger for every loop.

          Functions in the lists module are used. This is a very useful module and a │ │ │ study of the manual page is recommended (erl -man lists). │ │ │ lists:keymember(Key,Position,Lists) looks through a list of tuples and looks │ │ │ at Position in each tuple to see if it is the same as Key. The first element │ │ │ is position 1. If it finds a tuple where the element at Position is the same │ │ │ -as Key, it returns true, otherwise false.

          3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +as Key, it returns true, otherwise false.

          3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │  true
          │ │ │ -4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │  false

          lists:keydelete works in the same way but deletes the first tuple found (if │ │ │ -any) and returns the remaining list:

          5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ -[{x,y,z},{b,b,b},{q,r,s}]

          lists:keysearch is like lists:keymember, but it returns │ │ │ +any) and returns the remaining list:

          5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +[{x,y,z},{b,b,b},{q,r,s}]

          lists:keysearch is like lists:keymember, but it returns │ │ │ {value,Tuple_Found} or the atom false.

          There are many very useful functions in the lists module.

          An Erlang process (conceptually) runs until it does a receive and there is no │ │ │ message which it wants to receive in the message queue. "conceptually" is used │ │ │ here because the Erlang system shares the CPU time between the active processes │ │ │ in the system.

          A process terminates when there is nothing more for it to do, that is, the last │ │ │ function it calls simply returns and does not call another function. Another way │ │ │ for a process to terminate is for it to call exit/1. The argument │ │ │ to exit/1 has a special meaning, which is discussed later. In this │ │ │ example, exit(normal) is done, which has the same effect as a │ │ │ process running out of functions to call.

          The BIF whereis(RegisteredName) checks if a registered process │ │ │ of name RegisteredName exists. If it exists, the pid of that process is │ │ │ returned. If it does not exist, the atom undefined is returned.

          You should by now be able to understand most of the code in the │ │ │ messenger-module. Let us study one case in detail: a message is sent from one │ │ │ -user to another.

          The first user "sends" the message in the example above by:

          messenger:message(fred, "hello")

          After testing that the client process exists:

          whereis(mess_client)

          And a message is sent to mess_client:

          mess_client ! {message_to, fred, "hello"}

          The client sends the message to the server by:

          {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

          And waits for a reply from the server.

          The server receives this message and calls:

          server_transfer(From, fred, "hello", User_List),

          This checks that the pid From is in the User_List:

          lists:keysearch(From, 1, User_List)

          If keysearch returns the atom false, some error has occurred and the server │ │ │ -sends back the message:

          From ! {messenger, stop, you_are_not_logged_on}

          This is received by the client, which in turn does exit(normal) │ │ │ +user to another.

          The first user "sends" the message in the example above by:

          messenger:message(fred, "hello")

          After testing that the client process exists:

          whereis(mess_client)

          And a message is sent to mess_client:

          mess_client ! {message_to, fred, "hello"}

          The client sends the message to the server by:

          {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

          And waits for a reply from the server.

          The server receives this message and calls:

          server_transfer(From, fred, "hello", User_List),

          This checks that the pid From is in the User_List:

          lists:keysearch(From, 1, User_List)

          If keysearch returns the atom false, some error has occurred and the server │ │ │ +sends back the message:

          From ! {messenger, stop, you_are_not_logged_on}

          This is received by the client, which in turn does exit(normal) │ │ │ and terminates. If keysearch returns {value,{From,Name}} it is certain that │ │ │ -the user is logged on and that his name (peter) is in variable Name.

          Let us now call:

          server_transfer(From, peter, fred, "hello", User_List)

          Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ +the user is logged on and that his name (peter) is in variable Name.

          Let us now call:

          server_transfer(From, peter, fred, "hello", User_List)

          Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ function server_transfer/4. Another keysearch is done on User_List to find │ │ │ -the pid of the client corresponding to fred:

          lists:keysearch(fred, 2, User_List)

          This time argument 2 is used, which is the second element in the tuple. If this │ │ │ +the pid of the client corresponding to fred:

          lists:keysearch(fred, 2, User_List)

          This time argument 2 is used, which is the second element in the tuple. If this │ │ │ returns the atom false, fred is not logged on and the following message is │ │ │ -sent:

          From ! {messenger, receiver_not_found};

          This is received by the client.

          If keysearch returns:

          {value, {ToPid, fred}}

          The following message is sent to fred's client:

          ToPid ! {message_from, peter, "hello"},

          The following message is sent to peter's client:

          From ! {messenger, sent}

          Fred's client receives the message and prints it:

          {message_from, peter, "hello"} ->
          │ │ │ -    io:format("Message from ~p: ~p~n", [peter, "hello"])

          Peter's client receives the message in the await_result function.

          │ │ │ +sent:

          From ! {messenger, receiver_not_found};

          This is received by the client.

          If keysearch returns:

          {value, {ToPid, fred}}

          The following message is sent to fred's client:

          ToPid ! {message_from, peter, "hello"},

          The following message is sent to peter's client:

          From ! {messenger, sent}

          Fred's client receives the message and prints it:

          {message_from, peter, "hello"} ->
          │ │ │ +    io:format("Message from ~p: ~p~n", [peter, "hello"])

          Peter's client receives the message in the await_result function.

          │ │ │

          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          rel(4) manual page in │ │ │ SASL), which specifies the ERTS version and lists all applications that are to │ │ │ be included in the new basic target system. An example is the following │ │ │ mysystem.rel file:

          %% mysystem.rel
          │ │ │ -{release,
          │ │ │ - {"MYSYSTEM", "FIRST"},
          │ │ │ - {erts, "5.10.4"},
          │ │ │ - [{kernel, "2.16.4"},
          │ │ │ -  {stdlib, "1.19.4"},
          │ │ │ -  {sasl, "2.3.4"},
          │ │ │ -  {pea, "1.0"}]}.

          The listed applications are not only original Erlang/OTP applications but │ │ │ +{release, │ │ │ + {"MYSYSTEM", "FIRST"}, │ │ │ + {erts, "5.10.4"}, │ │ │ + [{kernel, "2.16.4"}, │ │ │ + {stdlib, "1.19.4"}, │ │ │ + {sasl, "2.3.4"}, │ │ │ + {pea, "1.0"}]}.

          The listed applications are not only original Erlang/OTP applications but │ │ │ possibly also new applications that you have written (here exemplified by the │ │ │ application Pea (pea)).

          Step 2. Start Erlang/OTP from the directory where the mysystem.rel file │ │ │ resides:

          % erl -pa /home/user/target_system/myapps/pea-1.0/ebin

          The -pa argument prepends the path to the ebin directory for │ │ │ the Pea application to the code path.

          Step 3. Create the target system:

          1> target_system:create("mysystem").

          The function target_system:create/1 performs the following:

          1. Reads the file mysystem.rel and creates a new file plain.rel. │ │ │ The new file is identical to the original, except that it only │ │ │ lists the Kernel and STDLIB applications.

          2. From the files mysystem.rel and plain.rel creates the files │ │ │ mysystem.script, mysystem.boot, plain.script, and plain.boot │ │ │ @@ -242,25 +242,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating the Next Version │ │ │ │ │ │

            In this example the Pea application has been changed, and so are the │ │ │ applications ERTS, Kernel, STDLIB and SASL.

            Step 1. Create the file .rel:

            %% mysystem2.rel
            │ │ │ -{release,
            │ │ │ - {"MYSYSTEM", "SECOND"},
            │ │ │ - {erts, "6.0"},
            │ │ │ - [{kernel, "3.0"},
            │ │ │ -  {stdlib, "2.0"},
            │ │ │ -  {sasl, "2.4"},
            │ │ │ -  {pea, "2.0"}]}.

            Step 2. Create the application upgrade file (see │ │ │ +{release, │ │ │ + {"MYSYSTEM", "SECOND"}, │ │ │ + {erts, "6.0"}, │ │ │ + [{kernel, "3.0"}, │ │ │ + {stdlib, "2.0"}, │ │ │ + {sasl, "2.4"}, │ │ │ + {pea, "2.0"}]}.

          Step 2. Create the application upgrade file (see │ │ │ appup in SASL) for Pea, for example:

          %% pea.appup
          │ │ │ -{"2.0",
          │ │ │ - [{"1.0",[{load_module,pea_lib}]}],
          │ │ │ - [{"1.0",[{load_module,pea_lib}]}]}.

          Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ +{"2.0", │ │ │ + [{"1.0",[{load_module,pea_lib}]}], │ │ │ + [{"1.0",[{load_module,pea_lib}]}]}.

      Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ Erlang/OTP system, giving the path to the new version of Pea:

      % erl -pa /home/user/target_system/myapps/pea-2.0/ebin

      Step 4. Create the release upgrade file (see relup │ │ │ in SASL):

      1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],
      │ │ │      [{path,["/home/user/target_system/myapps/pea-1.0/ebin",
      │ │ │      "/my/old/erlang/lib/*/ebin"]}]).

      Here "mysystem" is the base release and "mysystem2" is the release to │ │ │ upgrade to.

      The path option is used for pointing out the old version of all applications. │ │ │ (The new versions are already in the code path - assuming of course that the │ │ │ Erlang node on which this is executed is running the correct version of │ │ │ @@ -292,21 +292,21 @@ │ │ │ {continue_after_restart,"FIRST",[]} │ │ │ heart: Tue Apr 1 12:15:10 2014: Erlang has closed. │ │ │ heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating. │ │ │ [End]

      The above return value and output after the call to │ │ │ release_handler:install_release/1 means that the release_handler has │ │ │ restarted the node by using heart. This is always done when the upgrade │ │ │ involves a change of the applications ERTS, Kernel, STDLIB, or SASL. For more │ │ │ -information, see Upgrade when Erlang/OTP has Changed.

      The node is accessible through a new pipe:

      % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

      List the available releases in the system:

      1> release_handler:which_releases().
      │ │ │ -[{"MYSYSTEM","SECOND",
      │ │ │ -  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │ -  current},
      │ │ │ - {"MYSYSTEM","FIRST",
      │ │ │ -  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ -  permanent}]

      Our new release, "SECOND", is now the current release, but we can also see that │ │ │ +information, see Upgrade when Erlang/OTP has Changed.

      The node is accessible through a new pipe:

      % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

      List the available releases in the system:

      1> release_handler:which_releases().
      │ │ │ +[{"MYSYSTEM","SECOND",
      │ │ │ +  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │ +  current},
      │ │ │ + {"MYSYSTEM","FIRST",
      │ │ │ +  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ +  permanent}]

      Our new release, "SECOND", is now the current release, but we can also see that │ │ │ our "FIRST" release is still permanent. This means that if the node would be │ │ │ restarted now, it would come up running the "FIRST" release again.

      Step 3. Make the new release permanent:

      2> release_handler:make_permanent("SECOND").

      Check the releases again:

      3> release_handler:which_releases().
      │ │ │  [{"MYSYSTEM","SECOND",
      │ │ │    ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │    permanent},
      │ │ │   {"MYSYSTEM","FIRST",
      │ │ │    ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ @@ -315,268 +315,268 @@
      │ │ │    
      │ │ │      
      │ │ │    
      │ │ │    Listing of target_system.erl
      │ │ │  
      │ │ │  

      This module can also be found in the examples directory of the SASL │ │ │ application.

      
      │ │ │ --module(target_system).
      │ │ │ --export([create/1, create/2, install/2]).
      │ │ │ +-module(target_system).
      │ │ │ +-export([create/1, create/2, install/2]).
      │ │ │  
      │ │ │  %% Note: RelFileName below is the *stem* without trailing .rel,
      │ │ │  %% .script etc.
      │ │ │  %%
      │ │ │  
      │ │ │  %% create(RelFileName)
      │ │ │  %%
      │ │ │ -create(RelFileName) ->
      │ │ │ -    create(RelFileName,[]).
      │ │ │ +create(RelFileName) ->
      │ │ │ +    create(RelFileName,[]).
      │ │ │  
      │ │ │ -create(RelFileName,SystoolsOpts) ->
      │ │ │ +create(RelFileName,SystoolsOpts) ->
      │ │ │      RelFile = RelFileName ++ ".rel",
      │ │ │ -    Dir = filename:dirname(RelFileName),
      │ │ │ -    PlainRelFileName = filename:join(Dir,"plain"),
      │ │ │ +    Dir = filename:dirname(RelFileName),
      │ │ │ +    PlainRelFileName = filename:join(Dir,"plain"),
      │ │ │      PlainRelFile = PlainRelFileName ++ ".rel",
      │ │ │ -    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
      │ │ │ -    {ok, [RelSpec]} = file:consult(RelFile),
      │ │ │ -    io:fwrite("Creating file: ~ts from ~ts ...~n",
      │ │ │ -              [PlainRelFile, RelFile]),
      │ │ │ -    {release,
      │ │ │ -     {RelName, RelVsn},
      │ │ │ -     {erts, ErtsVsn},
      │ │ │ -     AppVsns} = RelSpec,
      │ │ │ -    PlainRelSpec = {release,
      │ │ │ -                    {RelName, RelVsn},
      │ │ │ -                    {erts, ErtsVsn},
      │ │ │ -                    lists:filter(fun({kernel, _}) ->
      │ │ │ +    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
      │ │ │ +    {ok, [RelSpec]} = file:consult(RelFile),
      │ │ │ +    io:fwrite("Creating file: ~ts from ~ts ...~n",
      │ │ │ +              [PlainRelFile, RelFile]),
      │ │ │ +    {release,
      │ │ │ +     {RelName, RelVsn},
      │ │ │ +     {erts, ErtsVsn},
      │ │ │ +     AppVsns} = RelSpec,
      │ │ │ +    PlainRelSpec = {release,
      │ │ │ +                    {RelName, RelVsn},
      │ │ │ +                    {erts, ErtsVsn},
      │ │ │ +                    lists:filter(fun({kernel, _}) ->
      │ │ │                                           true;
      │ │ │ -                                    ({stdlib, _}) ->
      │ │ │ +                                    ({stdlib, _}) ->
      │ │ │                                           true;
      │ │ │ -                                    (_) ->
      │ │ │ +                                    (_) ->
      │ │ │                                           false
      │ │ │ -                                 end, AppVsns)
      │ │ │ -                   },
      │ │ │ -    {ok, Fd} = file:open(PlainRelFile, [write]),
      │ │ │ -    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
      │ │ │ -    file:close(Fd),
      │ │ │ -
      │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ -	      [PlainRelFileName,PlainRelFileName]),
      │ │ │ -    make_script(PlainRelFileName,SystoolsOpts),
      │ │ │ -
      │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ -              [RelFileName, RelFileName]),
      │ │ │ -    make_script(RelFileName,SystoolsOpts),
      │ │ │ +                                 end, AppVsns)
      │ │ │ +                   },
      │ │ │ +    {ok, Fd} = file:open(PlainRelFile, [write]),
      │ │ │ +    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
      │ │ │ +    file:close(Fd),
      │ │ │ +
      │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ +	      [PlainRelFileName,PlainRelFileName]),
      │ │ │ +    make_script(PlainRelFileName,SystoolsOpts),
      │ │ │ +
      │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ +              [RelFileName, RelFileName]),
      │ │ │ +    make_script(RelFileName,SystoolsOpts),
      │ │ │  
      │ │ │      TarFileName = RelFileName ++ ".tar.gz",
      │ │ │ -    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
      │ │ │ -    make_tar(RelFileName,SystoolsOpts),
      │ │ │ +    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
      │ │ │ +    make_tar(RelFileName,SystoolsOpts),
      │ │ │  
      │ │ │ -    TmpDir = filename:join(Dir,"tmp"),
      │ │ │ -    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
      │ │ │ -    file:make_dir(TmpDir),
      │ │ │ -
      │ │ │ -    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
      │ │ │ -    extract_tar(TarFileName, TmpDir),
      │ │ │ -
      │ │ │ -    TmpBinDir = filename:join([TmpDir, "bin"]),
      │ │ │ -    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
      │ │ │ -    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
      │ │ │ -              [ErtsBinDir]),
      │ │ │ -    file:delete(filename:join([ErtsBinDir, "erl"])),
      │ │ │ -    file:delete(filename:join([ErtsBinDir, "start"])),
      │ │ │ -
      │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
      │ │ │ -    file:make_dir(TmpBinDir),
      │ │ │ -
      │ │ │ -    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
      │ │ │ -              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
      │ │ │ -    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
      │ │ │ +    TmpDir = filename:join(Dir,"tmp"),
      │ │ │ +    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
      │ │ │ +    file:make_dir(TmpDir),
      │ │ │ +
      │ │ │ +    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
      │ │ │ +    extract_tar(TarFileName, TmpDir),
      │ │ │ +
      │ │ │ +    TmpBinDir = filename:join([TmpDir, "bin"]),
      │ │ │ +    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
      │ │ │ +    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
      │ │ │ +              [ErtsBinDir]),
      │ │ │ +    file:delete(filename:join([ErtsBinDir, "erl"])),
      │ │ │ +    file:delete(filename:join([ErtsBinDir, "start"])),
      │ │ │ +
      │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
      │ │ │ +    file:make_dir(TmpBinDir),
      │ │ │ +
      │ │ │ +    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
      │ │ │ +              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
      │ │ │ +    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
      │ │ │  
      │ │ │ -    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
      │ │ │ +    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
      │ │ │                "~ts to ~ts ...~n",
      │ │ │ -              [ErtsBinDir, TmpBinDir]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "epmd"]),
      │ │ │ -              filename:join([TmpBinDir, "epmd"]), [preserve]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "run_erl"]),
      │ │ │ -              filename:join([TmpBinDir, "run_erl"]), [preserve]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "to_erl"]),
      │ │ │ -              filename:join([TmpBinDir, "to_erl"]), [preserve]),
      │ │ │ +              [ErtsBinDir, TmpBinDir]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "epmd"]),
      │ │ │ +              filename:join([TmpBinDir, "epmd"]), [preserve]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "run_erl"]),
      │ │ │ +              filename:join([TmpBinDir, "run_erl"]), [preserve]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "to_erl"]),
      │ │ │ +              filename:join([TmpBinDir, "to_erl"]), [preserve]),
      │ │ │  
      │ │ │      %% This is needed if 'start' script created from 'start.src' shall
      │ │ │      %% be used as it points out this directory as log dir for 'run_erl'
      │ │ │ -    TmpLogDir = filename:join([TmpDir, "log"]),
      │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
      │ │ │ -    ok = file:make_dir(TmpLogDir),
      │ │ │ -
      │ │ │ -    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
      │ │ │ -    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
      │ │ │ -    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
      │ │ │ -    write_file(StartErlDataFile, StartErlData),
      │ │ │ -
      │ │ │ -    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
      │ │ │ -	      [TarFileName,TmpDir]),
      │ │ │ -    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
      │ │ │ +    TmpLogDir = filename:join([TmpDir, "log"]),
      │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
      │ │ │ +    ok = file:make_dir(TmpLogDir),
      │ │ │ +
      │ │ │ +    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
      │ │ │ +    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
      │ │ │ +    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
      │ │ │ +    write_file(StartErlDataFile, StartErlData),
      │ │ │ +
      │ │ │ +    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
      │ │ │ +	      [TarFileName,TmpDir]),
      │ │ │ +    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
      │ │ │      %% {ok, Cwd} = file:get_cwd(),
      │ │ │      %% file:set_cwd("tmp"),
      │ │ │      ErtsDir = "erts-"++ErtsVsn,
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
      │ │ │ -    erl_tar:close(Tar),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
      │ │ │ +    erl_tar:close(Tar),
      │ │ │      %% file:set_cwd(Cwd),
      │ │ │ -    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
      │ │ │ -    remove_dir_tree(TmpDir),
      │ │ │ +    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
      │ │ │ +    remove_dir_tree(TmpDir),
      │ │ │      ok.
      │ │ │  
      │ │ │  
      │ │ │ -install(RelFileName, RootDir) ->
      │ │ │ +install(RelFileName, RootDir) ->
      │ │ │      TarFile = RelFileName ++ ".tar.gz",
      │ │ │ -    io:fwrite("Extracting ~ts ...~n", [TarFile]),
      │ │ │ -    extract_tar(TarFile, RootDir),
      │ │ │ -    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
      │ │ │ -    {ok, StartErlData} = read_txt_file(StartErlDataFile),
      │ │ │ -    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
      │ │ │ -    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
      │ │ │ -    BinDir = filename:join([RootDir, "bin"]),
      │ │ │ -    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
      │ │ │ -              "form erl, start and start_erl ...\n"),
      │ │ │ -    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
      │ │ │ -                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
      │ │ │ -                      [preserve]),
      │ │ │ +    io:fwrite("Extracting ~ts ...~n", [TarFile]),
      │ │ │ +    extract_tar(TarFile, RootDir),
      │ │ │ +    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
      │ │ │ +    {ok, StartErlData} = read_txt_file(StartErlDataFile),
      │ │ │ +    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
      │ │ │ +    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
      │ │ │ +    BinDir = filename:join([RootDir, "bin"]),
      │ │ │ +    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
      │ │ │ +              "form erl, start and start_erl ...\n"),
      │ │ │ +    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
      │ │ │ +                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
      │ │ │ +                      [preserve]),
      │ │ │      %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
      │ │ │      %%! not have correct permissions, so the above 'preserve' option did not help
      │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
      │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
      │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
      │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
      │ │ │  
      │ │ │ -    io:fwrite("Creating the RELEASES file ...\n"),
      │ │ │ -    create_RELEASES(RootDir, filename:join([RootDir, "releases",
      │ │ │ -					    filename:basename(RelFileName)])).
      │ │ │ +    io:fwrite("Creating the RELEASES file ...\n"),
      │ │ │ +    create_RELEASES(RootDir, filename:join([RootDir, "releases",
      │ │ │ +					    filename:basename(RelFileName)])).
      │ │ │  
      │ │ │  %% LOCALS
      │ │ │  
      │ │ │  %% make_script(RelFileName,Opts)
      │ │ │  %%
      │ │ │ -make_script(RelFileName,Opts) ->
      │ │ │ -    systools:make_script(RelFileName, [no_module_tests,
      │ │ │ -				       {outdir,filename:dirname(RelFileName)}
      │ │ │ -				       |Opts]).
      │ │ │ +make_script(RelFileName,Opts) ->
      │ │ │ +    systools:make_script(RelFileName, [no_module_tests,
      │ │ │ +				       {outdir,filename:dirname(RelFileName)}
      │ │ │ +				       |Opts]).
      │ │ │  
      │ │ │  %% make_tar(RelFileName,Opts)
      │ │ │  %%
      │ │ │ -make_tar(RelFileName,Opts) ->
      │ │ │ -    RootDir = code:root_dir(),
      │ │ │ -    systools:make_tar(RelFileName, [{erts, RootDir},
      │ │ │ -				    {outdir,filename:dirname(RelFileName)}
      │ │ │ -				    |Opts]).
      │ │ │ +make_tar(RelFileName,Opts) ->
      │ │ │ +    RootDir = code:root_dir(),
      │ │ │ +    systools:make_tar(RelFileName, [{erts, RootDir},
      │ │ │ +				    {outdir,filename:dirname(RelFileName)}
      │ │ │ +				    |Opts]).
      │ │ │  
      │ │ │  %% extract_tar(TarFile, DestDir)
      │ │ │  %%
      │ │ │ -extract_tar(TarFile, DestDir) ->
      │ │ │ -    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
      │ │ │ +extract_tar(TarFile, DestDir) ->
      │ │ │ +    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
      │ │ │  
      │ │ │ -create_RELEASES(DestDir, RelFileName) ->
      │ │ │ -    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
      │ │ │ +create_RELEASES(DestDir, RelFileName) ->
      │ │ │ +    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
      │ │ │  
      │ │ │ -subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ -    lists:foreach(fun(Script) ->
      │ │ │ -                          subst_src_script(Script, SrcDir, DestDir,
      │ │ │ -                                           Vars, Opts)
      │ │ │ -                  end, Scripts).
      │ │ │ -
      │ │ │ -subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ -    subst_file(filename:join([SrcDir, Script ++ ".src"]),
      │ │ │ -               filename:join([DestDir, Script]),
      │ │ │ -               Vars, Opts).
      │ │ │ -
      │ │ │ -subst_file(Src, Dest, Vars, Opts) ->
      │ │ │ -    {ok, Conts} = read_txt_file(Src),
      │ │ │ -    NConts = subst(Conts, Vars),
      │ │ │ -    write_file(Dest, NConts),
      │ │ │ -    case lists:member(preserve, Opts) of
      │ │ │ +subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ +    lists:foreach(fun(Script) ->
      │ │ │ +                          subst_src_script(Script, SrcDir, DestDir,
      │ │ │ +                                           Vars, Opts)
      │ │ │ +                  end, Scripts).
      │ │ │ +
      │ │ │ +subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ +    subst_file(filename:join([SrcDir, Script ++ ".src"]),
      │ │ │ +               filename:join([DestDir, Script]),
      │ │ │ +               Vars, Opts).
      │ │ │ +
      │ │ │ +subst_file(Src, Dest, Vars, Opts) ->
      │ │ │ +    {ok, Conts} = read_txt_file(Src),
      │ │ │ +    NConts = subst(Conts, Vars),
      │ │ │ +    write_file(Dest, NConts),
      │ │ │ +    case lists:member(preserve, Opts) of
      │ │ │          true ->
      │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ -            file:write_file_info(Dest, FileInfo);
      │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ +            file:write_file_info(Dest, FileInfo);
      │ │ │          false ->
      │ │ │              ok
      │ │ │      end.
      │ │ │  
      │ │ │  %% subst(Str, Vars)
      │ │ │  %% Vars = [{Var, Val}]
      │ │ │  %% Var = Val = string()
      │ │ │  %% Substitute all occurrences of %Var% for Val in Str, using the list
      │ │ │  %% of variables in Vars.
      │ │ │  %%
      │ │ │ -subst(Str, Vars) ->
      │ │ │ -    subst(Str, Vars, []).
      │ │ │ +subst(Str, Vars) ->
      │ │ │ +    subst(Str, Vars, []).
      │ │ │  
      │ │ │ -subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([$%, C| Rest], Vars, Result) when  C == $_ ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([C| Rest], Vars, Result) ->
      │ │ │ -    subst(Rest, Vars, [C| Result]);
      │ │ │ -subst([], _Vars, Result) ->
      │ │ │ -    lists:reverse(Result).
      │ │ │ -
      │ │ │ -subst_var([$%| Rest], Vars, Result, VarAcc) ->
      │ │ │ -    Key = lists:reverse(VarAcc),
      │ │ │ -    case lists:keysearch(Key, 1, Vars) of
      │ │ │ -        {value, {Key, Value}} ->
      │ │ │ -            subst(Rest, Vars, lists:reverse(Value, Result));
      │ │ │ +subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([$%, C| Rest], Vars, Result) when  C == $_ ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([C| Rest], Vars, Result) ->
      │ │ │ +    subst(Rest, Vars, [C| Result]);
      │ │ │ +subst([], _Vars, Result) ->
      │ │ │ +    lists:reverse(Result).
      │ │ │ +
      │ │ │ +subst_var([$%| Rest], Vars, Result, VarAcc) ->
      │ │ │ +    Key = lists:reverse(VarAcc),
      │ │ │ +    case lists:keysearch(Key, 1, Vars) of
      │ │ │ +        {value, {Key, Value}} ->
      │ │ │ +            subst(Rest, Vars, lists:reverse(Value, Result));
      │ │ │          false ->
      │ │ │ -            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
      │ │ │ +            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
      │ │ │      end;
      │ │ │ -subst_var([C| Rest], Vars, Result, VarAcc) ->
      │ │ │ -    subst_var(Rest, Vars, Result, [C| VarAcc]);
      │ │ │ -subst_var([], Vars, Result, VarAcc) ->
      │ │ │ -    subst([], Vars, [VarAcc ++ [$%| Result]]).
      │ │ │ -
      │ │ │ -copy_file(Src, Dest) ->
      │ │ │ -    copy_file(Src, Dest, []).
      │ │ │ -
      │ │ │ -copy_file(Src, Dest, Opts) ->
      │ │ │ -    {ok,_} = file:copy(Src, Dest),
      │ │ │ -    case lists:member(preserve, Opts) of
      │ │ │ +subst_var([C| Rest], Vars, Result, VarAcc) ->
      │ │ │ +    subst_var(Rest, Vars, Result, [C| VarAcc]);
      │ │ │ +subst_var([], Vars, Result, VarAcc) ->
      │ │ │ +    subst([], Vars, [VarAcc ++ [$%| Result]]).
      │ │ │ +
      │ │ │ +copy_file(Src, Dest) ->
      │ │ │ +    copy_file(Src, Dest, []).
      │ │ │ +
      │ │ │ +copy_file(Src, Dest, Opts) ->
      │ │ │ +    {ok,_} = file:copy(Src, Dest),
      │ │ │ +    case lists:member(preserve, Opts) of
      │ │ │          true ->
      │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ -            file:write_file_info(Dest, FileInfo);
      │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ +            file:write_file_info(Dest, FileInfo);
      │ │ │          false ->
      │ │ │              ok
      │ │ │      end.
      │ │ │  
      │ │ │ -write_file(FName, Conts) ->
      │ │ │ -    Enc = file:native_name_encoding(),
      │ │ │ -    {ok, Fd} = file:open(FName, [write]),
      │ │ │ -    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
      │ │ │ -    file:close(Fd).
      │ │ │ -
      │ │ │ -read_txt_file(File) ->
      │ │ │ -    {ok, Bin} = file:read_file(File),
      │ │ │ -    {ok, binary_to_list(Bin)}.
      │ │ │ -
      │ │ │ -remove_dir_tree(Dir) ->
      │ │ │ -    remove_all_files(".", [Dir]).
      │ │ │ -
      │ │ │ -remove_all_files(Dir, Files) ->
      │ │ │ -    lists:foreach(fun(File) ->
      │ │ │ -                          FilePath = filename:join([Dir, File]),
      │ │ │ -                          case filelib:is_dir(FilePath) of
      │ │ │ +write_file(FName, Conts) ->
      │ │ │ +    Enc = file:native_name_encoding(),
      │ │ │ +    {ok, Fd} = file:open(FName, [write]),
      │ │ │ +    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
      │ │ │ +    file:close(Fd).
      │ │ │ +
      │ │ │ +read_txt_file(File) ->
      │ │ │ +    {ok, Bin} = file:read_file(File),
      │ │ │ +    {ok, binary_to_list(Bin)}.
      │ │ │ +
      │ │ │ +remove_dir_tree(Dir) ->
      │ │ │ +    remove_all_files(".", [Dir]).
      │ │ │ +
      │ │ │ +remove_all_files(Dir, Files) ->
      │ │ │ +    lists:foreach(fun(File) ->
      │ │ │ +                          FilePath = filename:join([Dir, File]),
      │ │ │ +                          case filelib:is_dir(FilePath) of
      │ │ │                                true ->
      │ │ │ -                                  {ok, DirFiles} = file:list_dir(FilePath),
      │ │ │ -                                  remove_all_files(FilePath, DirFiles),
      │ │ │ -                                  file:del_dir(FilePath);
      │ │ │ +                                  {ok, DirFiles} = file:list_dir(FilePath),
      │ │ │ +                                  remove_all_files(FilePath, DirFiles),
      │ │ │ +                                  file:del_dir(FilePath);
      │ │ │                                _ ->
      │ │ │ -                                  file:delete(FilePath)
      │ │ │ +                                  file:delete(FilePath)
      │ │ │                            end
      │ │ │ -                  end, Files).
      │ │ │ + end, Files).
      │ │ │ │ │ │ │ │ │
      │ │ │
      │ │ │ │ │ │ │ │ │ Representation of Floating Point Numbers │ │ │ │ │ │

      When working with floats you may not see what you expect when printing or doing │ │ │ arithmetic operations. This is because floats are represented by a fixed number │ │ │ of bits in a base-2 system while printed floats are represented with a base-10 │ │ │ system. Erlang uses 64-bit floats. Here are examples of this phenomenon:

      1> 0.1+0.2.
      │ │ │ -0.30000000000000004

      The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

      1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
      │ │ │ -  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
      │ │ │ -{3.602879701896397e16, true,
      │ │ │ - 3.602879701896397e16, false}.

      The value 36028797018963968 can be represented exactly as a float value but │ │ │ +0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ +  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ +{3.602879701896397e16, true,
    │ │ │ + 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ Erlang's pretty printer rounds 36028797018963968.0 to 3.602879701896397e16 │ │ │ (=36028797018963970.0) as all values in the range │ │ │ [36028797018963966.0, 36028797018963972.0] are represented by │ │ │ 36028797018963968.0.

    For more information about floats and issues with them see:

    If you need to work with exact decimal fractions, for instance to represent │ │ │ money, it is recommended to use a library that handles that, or work in │ │ │ cents instead of dollars or euros so that decimal fractions are not needed.

    Also note that Erlang's floats do not exactly match IEEE 754 floats, │ │ │ in that neither Inf nor NaN are supported in Erlang. Any │ │ │ @@ -237,52 +237,52 @@ │ │ │ by eight are called binaries.

    Examples:

    1> <<10,20>>.
    │ │ │  <<10,20>>
    │ │ │  2> <<"ABC">>.
    │ │ │  <<"ABC">>
    │ │ │  3> <<1:1,0:1>>.
    │ │ │  <<2:2>>

    The is_bitstring/1 BIF tests whether a │ │ │ term is a bit string, and the is_binary/1 │ │ │ -BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ +BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │  true
    │ │ │ -2> is_binary(<<1:1>>).
    │ │ │ +2> is_binary(<<1:1>>).
    │ │ │  false
    │ │ │ -3> is_binary(<<42>>).
    │ │ │ +3> is_binary(<<42>>).
    │ │ │  true
    │ │ │  

    For more examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Reference │ │ │

    │ │ │

    A term that is unique │ │ │ among connected nodes. A reference is created by calling the │ │ │ make_ref/0 BIF. The │ │ │ is_reference/1 BIF tests whether a term │ │ │ -is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ +is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │  #Ref<0.76482849.3801088007.198204>
    │ │ │ -2> is_reference(Ref).
    │ │ │ +2> is_reference(Ref).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ Fun │ │ │

    │ │ │

    A fun is a functional object. Funs make it possible to create an anonymous │ │ │ function and pass the function itself — not its name — as argument to other │ │ │ -functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ +functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -2> Fun1(2).
    │ │ │ +2> Fun1(2).
    │ │ │  3

    The is_function/1 and is_function/2 │ │ │ -BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ +BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │  #Fun<erl_eval.43.105768164>
    │ │ │ -2> is_function(F).
    │ │ │ +2> is_function(F).
    │ │ │  true
    │ │ │ -3> is_function(F, 0).
    │ │ │ +3> is_function(F, 0).
    │ │ │  true
    │ │ │ -4> is_function(F, 1).
    │ │ │ +4> is_function(F, 1).
    │ │ │  false

    Read more about funs in Fun Expressions. For more │ │ │ examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Port Identifier │ │ │

    │ │ │ @@ -300,94 +300,94 @@ │ │ │ for a new process after a while.

    The BIF self/0 returns the Pid of the calling process. When │ │ │ creating a new process, the parent │ │ │ process will be able to get the Pid of the child process either via the return │ │ │ value, as is the case when calling the spawn/3 BIF, or via │ │ │ a message, which is the case when calling the │ │ │ spawn_request/5 BIF. A Pid is typically used when │ │ │ when sending a process a signal. The │ │ │ -is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ --export([loop/0]).
    │ │ │ +is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ +-export([loop/0]).
    │ │ │  
    │ │ │ -loop() ->
    │ │ │ +loop() ->
    │ │ │      receive
    │ │ │          who_are_you ->
    │ │ │ -            io:format("I am ~p~n", [self()]),
    │ │ │ -            loop()
    │ │ │ +            io:format("I am ~p~n", [self()]),
    │ │ │ +            loop()
    │ │ │      end.
    │ │ │  
    │ │ │ -1> P = spawn(m, loop, []).
    │ │ │ +1> P = spawn(m, loop, []).
    │ │ │  <0.58.0>
    │ │ │  2> P ! who_are_you.
    │ │ │  I am <0.58.0>
    │ │ │  who_are_you

    Read more about processes in Processes.

    │ │ │ │ │ │ │ │ │ │ │ │ Tuple │ │ │

    │ │ │

    A tuple is a compound data type with a fixed number of terms:

    {Term1,...,TermN}

    Each term Term in the tuple is called an element. The number of elements is │ │ │ -said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ -{adam,24,{july,29}}
    │ │ │ -2> element(1,P).
    │ │ │ +said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ +{adam,24,{july,29}}
    │ │ │ +2> element(1,P).
    │ │ │  adam
    │ │ │ -3> element(3,P).
    │ │ │ -{july,29}
    │ │ │ -4> P2 = setelement(2,P,25).
    │ │ │ -{adam,25,{july,29}}
    │ │ │ -5> tuple_size(P).
    │ │ │ +3> element(3,P).
    │ │ │ +{july,29}
    │ │ │ +4> P2 = setelement(2,P,25).
    │ │ │ +{adam,25,{july,29}}
    │ │ │ +5> tuple_size(P).
    │ │ │  3
    │ │ │ -6> tuple_size({}).
    │ │ │ +6> tuple_size({}).
    │ │ │  0
    │ │ │ -7> is_tuple({a,b,c}).
    │ │ │ +7> is_tuple({a,b,c}).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ Map │ │ │

    │ │ │

    A map is a compound data type with a variable number of key-value associations:

    #{Key1 => Value1, ..., KeyN => ValueN}

    Each key-value association in the map is called an association pair. The key │ │ │ and value parts of the pair are called elements. The number of association │ │ │ -pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ -#{age => 24,date => {july,29},name => adam}
    │ │ │ -2> maps:get(name, M1).
    │ │ │ +pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ +#{age => 24,date => {july,29},name => adam}
    │ │ │ +2> maps:get(name, M1).
    │ │ │  adam
    │ │ │ -3> maps:get(date, M1).
    │ │ │ -{july,29}
    │ │ │ -4> M2 = maps:update(age, 25, M1).
    │ │ │ -#{age => 25,date => {july,29},name => adam}
    │ │ │ -5> map_size(M).
    │ │ │ +3> maps:get(date, M1).
    │ │ │ +{july,29}
    │ │ │ +4> M2 = maps:update(age, 25, M1).
    │ │ │ +#{age => 25,date => {july,29},name => adam}
    │ │ │ +5> map_size(M).
    │ │ │  3
    │ │ │ -6> map_size(#{}).
    │ │ │ +6> map_size(#{}).
    │ │ │  0

    A collection of maps processing functions are found in module maps │ │ │ in STDLIB.

    Read more about maps in Map Expressions.

    Change

    Maps were introduced as an experimental feature in Erlang/OTP R17. Their │ │ │ functionality was extended and became fully supported in Erlang/OTP 18.

    │ │ │ │ │ │ │ │ │ │ │ │ List │ │ │

    │ │ │

    A list is a compound data type with a variable number of terms.

    [Term1,...,TermN]

    Each term Term in the list is called an element. The number of elements is │ │ │ said to be the length of the list.

    Formally, a list is either the empty list [] or consists of a head (first │ │ │ element) and a tail (remainder of the list). The tail is also a list. The │ │ │ latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is │ │ │ equivalent with the list [Term1|[...|[TermN|[]]]].

    Example:

    [] is a list, thus
    [c|[]] is a list, thus
    [b|[c|[]]] is a list, thus
    [a|[b|[c|[]]]] is a list, or in short [a,b,c]

    A list where the tail is a list is sometimes called a proper list. It is │ │ │ allowed to have a list where the tail is not a list, for example, [a|b]. │ │ │ -However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ -[a,2,{c,4}]
    │ │ │ -2> [H|T] = L1.
    │ │ │ -[a,2,{c,4}]
    │ │ │ +However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ +[a,2,{c,4}]
    │ │ │ +2> [H|T] = L1.
    │ │ │ +[a,2,{c,4}]
    │ │ │  3> H.
    │ │ │  a
    │ │ │  4> T.
    │ │ │ -[2,{c,4}]
    │ │ │ -5> L2 = [d|T].
    │ │ │ -[d,2,{c,4}]
    │ │ │ -6> length(L1).
    │ │ │ +[2,{c,4}]
    │ │ │ +5> L2 = [d|T].
    │ │ │ +[d,2,{c,4}]
    │ │ │ +6> length(L1).
    │ │ │  3
    │ │ │ -7> length([]).
    │ │ │ +7> length([]).
    │ │ │  0

    A collection of list processing functions are found in module │ │ │ lists in STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ String │ │ │

    │ │ │ @@ -507,41 +507,41 @@ │ │ │ Record │ │ │ │ │ │

    A record is a data structure for storing a fixed number of elements. It has │ │ │ named fields and is similar to a struct in C. However, a record is not a true │ │ │ data type. Instead, record expressions are translated to tuple expressions │ │ │ during compilation. Therefore, record expressions are not understood by the │ │ │ shell unless special actions are taken. For details, see module shell │ │ │ -in STDLIB.

    Examples:

    -module(person).
    │ │ │ --export([new/2]).
    │ │ │ +in STDLIB.

    Examples:

    -module(person).
    │ │ │ +-export([new/2]).
    │ │ │  
    │ │ │ --record(person, {name, age}).
    │ │ │ +-record(person, {name, age}).
    │ │ │  
    │ │ │ -new(Name, Age) ->
    │ │ │ -    #person{name=Name, age=Age}.
    │ │ │ +new(Name, Age) ->
    │ │ │ +    #person{name=Name, age=Age}.
    │ │ │  
    │ │ │ -1> person:new(ernie, 44).
    │ │ │ -{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ +1> person:new(ernie, 44). │ │ │ +{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ found in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Boolean │ │ │

    │ │ │

    There is no Boolean data type in Erlang. Instead the atoms true and false │ │ │ are used to denote Boolean values. The is_boolean/1 │ │ │ BIF tests whether a term is a boolean.

    Examples:

    1> 2 =< 3.
    │ │ │  true
    │ │ │  2> true or false.
    │ │ │  true
    │ │ │ -3> is_boolean(true).
    │ │ │ +3> is_boolean(true).
    │ │ │  true
    │ │ │ -4> is_boolean(false).
    │ │ │ +4> is_boolean(false).
    │ │ │  true
    │ │ │ -5> is_boolean(ok).
    │ │ │ +5> is_boolean(ok).
    │ │ │  false

    │ │ │ │ │ │ │ │ │ │ │ │ Escape Sequences │ │ │

    │ │ │

    Within strings ("-delimited), quoted atoms, and the content of │ │ │ @@ -559,47 +559,47 @@ │ │ │ ~b or ~s sigils the escape sequences for normal │ │ │ strings, above, are used.

    Change

    Triple-quoted strings and sigils were introduced in Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ Type Conversions │ │ │

    │ │ │ -

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ +

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │  "hello"
    │ │ │ -2> list_to_atom("hello").
    │ │ │ +2> list_to_atom("hello").
    │ │ │  hello
    │ │ │ -3> binary_to_list(<<"hello">>).
    │ │ │ +3> binary_to_list(<<"hello">>).
    │ │ │  "hello"
    │ │ │ -4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ +4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │  "hello"
    │ │ │ -5> list_to_binary("hello").
    │ │ │ -<<104,101,108,108,111>>
    │ │ │ -6> float_to_list(7.0).
    │ │ │ +5> list_to_binary("hello").
    │ │ │ +<<104,101,108,108,111>>
    │ │ │ +6> float_to_list(7.0).
    │ │ │  "7.00000000000000000000e+00"
    │ │ │ -7> list_to_float("7.000e+00").
    │ │ │ +7> list_to_float("7.000e+00").
    │ │ │  7.0
    │ │ │ -8> integer_to_list(77).
    │ │ │ +8> integer_to_list(77).
    │ │ │  "77"
    │ │ │ -9> list_to_integer("77").
    │ │ │ +9> list_to_integer("77").
    │ │ │  77
    │ │ │ -10> tuple_to_list({a,b,c}).
    │ │ │ -[a,b,c]
    │ │ │ -11> list_to_tuple([a,b,c]).
    │ │ │ -{a,b,c}
    │ │ │ -12> term_to_binary({a,b,c}).
    │ │ │ -<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ -13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ -{a,b,c}
    │ │ │ -14> binary_to_integer(<<"77">>).
    │ │ │ +10> tuple_to_list({a,b,c}).
    │ │ │ +[a,b,c]
    │ │ │ +11> list_to_tuple([a,b,c]).
    │ │ │ +{a,b,c}
    │ │ │ +12> term_to_binary({a,b,c}).
    │ │ │ +<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ +13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ +{a,b,c}
    │ │ │ +14> binary_to_integer(<<"77">>).
    │ │ │  77
    │ │ │ -15> integer_to_binary(77).
    │ │ │ -<<"77">>
    │ │ │ -16> float_to_binary(7.0).
    │ │ │ -<<"7.00000000000000000000e+00">>
    │ │ │ -17> binary_to_float(<<"7.000e+00">>).
    │ │ │ +15> integer_to_binary(77).
    │ │ │ +<<"77">>
    │ │ │ +16> float_to_binary(7.0).
    │ │ │ +<<"7.00000000000000000000e+00">>
    │ │ │ +17> binary_to_float(<<"7.000e+00">>).
    │ │ │  7.0
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    -module(ch1).
    │ │ │ --export([start/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/0]).
    │ │ │ +respectively.

    -module(ch1).
    │ │ │ +-export([start/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/0]).
    │ │ │  
    │ │ │ -start() ->
    │ │ │ -    spawn(ch1, init, []).
    │ │ │ +start() ->
    │ │ │ +    spawn(ch1, init, []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    ch1 ! {self(), alloc},
    │ │ │ +alloc() ->
    │ │ │ +    ch1 ! {self(), alloc},
    │ │ │      receive
    │ │ │ -        {ch1, Res} ->
    │ │ │ +        {ch1, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    ch1 ! {free, Ch},
    │ │ │ +free(Ch) ->
    │ │ │ +    ch1 ! {free, Ch},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -    register(ch1, self()),
    │ │ │ -    Chs = channels(),
    │ │ │ -    loop(Chs).
    │ │ │ +init() ->
    │ │ │ +    register(ch1, self()),
    │ │ │ +    Chs = channels(),
    │ │ │ +    loop(Chs).
    │ │ │  
    │ │ │ -loop(Chs) ->
    │ │ │ +loop(Chs) ->
    │ │ │      receive
    │ │ │ -        {From, alloc} ->
    │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ -            From ! {ch1, Ch},
    │ │ │ -            loop(Chs2);
    │ │ │ -        {free, Ch} ->
    │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ -            loop(Chs2)
    │ │ │ -    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ --export([start/1]).
    │ │ │ --export([call/2, cast/2]).
    │ │ │ --export([init/1]).
    │ │ │ +        {From, alloc} ->
    │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ +            From ! {ch1, Ch},
    │ │ │ +            loop(Chs2);
    │ │ │ +        {free, Ch} ->
    │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ +            loop(Chs2)
    │ │ │ +    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ +-export([start/1]).
    │ │ │ +-export([call/2, cast/2]).
    │ │ │ +-export([init/1]).
    │ │ │  
    │ │ │ -start(Mod) ->
    │ │ │ -    spawn(server, init, [Mod]).
    │ │ │ +start(Mod) ->
    │ │ │ +    spawn(server, init, [Mod]).
    │ │ │  
    │ │ │ -call(Name, Req) ->
    │ │ │ -    Name ! {call, self(), Req},
    │ │ │ +call(Name, Req) ->
    │ │ │ +    Name ! {call, self(), Req},
    │ │ │      receive
    │ │ │ -        {Name, Res} ->
    │ │ │ +        {Name, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -cast(Name, Req) ->
    │ │ │ -    Name ! {cast, Req},
    │ │ │ +cast(Name, Req) ->
    │ │ │ +    Name ! {cast, Req},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init(Mod) ->
    │ │ │ -    register(Mod, self()),
    │ │ │ -    State = Mod:init(),
    │ │ │ -    loop(Mod, State).
    │ │ │ +init(Mod) ->
    │ │ │ +    register(Mod, self()),
    │ │ │ +    State = Mod:init(),
    │ │ │ +    loop(Mod, State).
    │ │ │  
    │ │ │ -loop(Mod, State) ->
    │ │ │ +loop(Mod, State) ->
    │ │ │      receive
    │ │ │ -        {call, From, Req} ->
    │ │ │ -            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ -            From ! {Mod, Res},
    │ │ │ -            loop(Mod, State2);
    │ │ │ -        {cast, Req} ->
    │ │ │ -            State2 = Mod:handle_cast(Req, State),
    │ │ │ -            loop(Mod, State2)
    │ │ │ -    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ --export([start/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ -
    │ │ │ -start() ->
    │ │ │ -    server:start(ch2).
    │ │ │ -
    │ │ │ -alloc() ->
    │ │ │ -    server:call(ch2, alloc).
    │ │ │ -
    │ │ │ -free(Ch) ->
    │ │ │ -    server:cast(ch2, {free, Ch}).
    │ │ │ +        {call, From, Req} ->
    │ │ │ +            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ +            From ! {Mod, Res},
    │ │ │ +            loop(Mod, State2);
    │ │ │ +        {cast, Req} ->
    │ │ │ +            State2 = Mod:handle_cast(Req, State),
    │ │ │ +            loop(Mod, State2)
    │ │ │ +    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ +-export([start/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ +
    │ │ │ +start() ->
    │ │ │ +    server:start(ch2).
    │ │ │ +
    │ │ │ +alloc() ->
    │ │ │ +    server:call(ch2, alloc).
    │ │ │ +
    │ │ │ +free(Ch) ->
    │ │ │ +    server:cast(ch2, {free, Ch}).
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -    channels().
    │ │ │ +init() ->
    │ │ │ +    channels().
    │ │ │  
    │ │ │ -handle_call(alloc, Chs) ->
    │ │ │ -    alloc(Chs). % => {Ch,Chs2}
    │ │ │ +handle_call(alloc, Chs) ->
    │ │ │ +    alloc(Chs). % => {Ch,Chs2}
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ the client functions. This means that the name can be changed without │ │ │ affecting them.
    • The protocol (messages sent to and received from the server) is also hidden. │ │ │ This is good programming practice and allows one to change the protocol │ │ │ without changing the code using the interface functions.
    • The functionality of server can be extended without having to change ch2 │ │ │ or any other callback module.

    In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1, │ │ │ and free/2 has been intentionally left out, as it is not relevant to the │ │ │ example. For completeness, one way to write these functions is given below. This │ │ │ is an example only, a realistic implementation must be able to handle situations │ │ │ -like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ -   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ +like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ +   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │  
    │ │ │ -alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ -   {H, {[H|Allocated], T}}.
    │ │ │ +alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ +   {H, {[H|Allocated], T}}.
    │ │ │  
    │ │ │ -free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ -   case lists:member(Ch, Alloc) of
    │ │ │ +free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ +   case lists:member(Ch, Alloc) of
    │ │ │        true ->
    │ │ │ -         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ +         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │        false ->
    │ │ │           Channels
    │ │ │     end.

    Code written without using behaviours can be more efficient, but the increased │ │ │ efficiency is at the expense of generality. The ability to manage all │ │ │ applications in the system in a consistent manner is important.

    Using behaviours also makes it easier to read and understand code written by │ │ │ other programmers. Improvised programming structures, while possibly more │ │ │ efficient, are always more difficult to understand.

    The server module corresponds, greatly simplified, to the Erlang/OTP behaviour │ │ │ gen_server.

    The standard Erlang/OTP behaviours are:

    • gen_server

      For implementing the server of a client-server relation

    • gen_statem

      For implementing state machines

    • gen_event

      For implementing event handling functionality

    • supervisor

      For implementing a supervisor in a supervision tree

    The compiler understands the module attribute -behaviour(Behaviour) and issues │ │ │ -warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  ...
    │ │ │  
    │ │ │ -3> c(chs3).
    │ │ │ +3> c(chs3).
    │ │ │  ./chs3.erl:10: Warning: undefined call-back function handle_call/3
    │ │ │ -{ok,chs3}

    │ │ │ +{ok,chs3}

    │ │ │ │ │ │ │ │ │ │ │ │ Applications │ │ │

    │ │ │

    Erlang/OTP comes with a number of components, each implementing some specific │ │ │ functionality. Components are with Erlang/OTP terminology called applications. │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/distributed.html │ │ │ @@ -142,25 +142,25 @@ │ │ │ │ │ │

    A node is an executing Erlang runtime system that has been given a name, using │ │ │ the command-line flag -name (long names) or │ │ │ -sname (short names).

    The format of the node name is an atom name@host. name is the name given by │ │ │ the user. host is the full host name if long names are used, or the first part │ │ │ of the host name if short names are used. Function node() │ │ │ returns the name of the node.

    Example:

    % erl -name dilbert
    │ │ │ -(dilbert@uab.ericsson.se)1> node().
    │ │ │ +(dilbert@uab.ericsson.se)1> node().
    │ │ │  'dilbert@uab.ericsson.se'
    │ │ │  
    │ │ │  % erl -sname dilbert
    │ │ │ -(dilbert@uab)1> node().
    │ │ │ +(dilbert@uab)1> node().
    │ │ │  dilbert@uab

    The node name can also be given in runtime by calling net_kernel:start/1.

    Example:

    % erl
    │ │ │ -1> node().
    │ │ │ +1> node().
    │ │ │  nonode@nohost
    │ │ │ -2> net_kernel:start([dilbert,shortnames]).
    │ │ │ -{ok,<0.102.0>}
    │ │ │ -(dilbert@uab)3> node().
    │ │ │ +2> net_kernel:start([dilbert,shortnames]).
    │ │ │ +{ok,<0.102.0>}
    │ │ │ +(dilbert@uab)3> node().
    │ │ │  dilbert@uab

    Note

    A node with a long node name cannot communicate with a node with a short node │ │ │ name.

    │ │ │ │ │ │ │ │ │ │ │ │ Node Connections │ │ │

    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/distributed_applications.html │ │ │ @@ -150,36 +150,36 @@ │ │ │ (within the time-out specified by sync_nodes_timeout).
  • sync_nodes_timeout = integer() | infinity - Specifies how many milliseconds │ │ │ to wait for the other nodes to start.

  • When started, the node waits for all nodes specified by sync_nodes_mandatory │ │ │ and sync_nodes_optional to come up. When all nodes are up, or when all │ │ │ mandatory nodes are up and the time specified by sync_nodes_timeout has │ │ │ elapsed, all applications start. If not all mandatory nodes are up, the node │ │ │ terminates.

    Example:

    An application myapp is to run at the node cp1@cave. If this node goes down, │ │ │ myapp is to be restarted at cp2@cave or cp3@cave. A system configuration │ │ │ -file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ -  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ -   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ -   {sync_nodes_timeout, 5000}
    │ │ │ -  ]
    │ │ │ - }
    │ │ │ -].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ +file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ +  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ +   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ +   {sync_nodes_timeout, 5000}
    │ │ │ +  ]
    │ │ │ + }
    │ │ │ +].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ except for the list of mandatory nodes, which is to be [cp1@cave, cp3@cave] │ │ │ for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.

    Note

    All involved nodes must have the same value for distributed and │ │ │ sync_nodes_timeout. Otherwise the system behavior is undefined.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Distributed Applications │ │ │

    │ │ │

    When all involved (mandatory) nodes have been started, the distributed │ │ │ application can be started by calling application:start(Application) at all │ │ │ of these nodes.

    A boot script (see Releases) can be used that │ │ │ automatically starts the application.

    The application is started at the first operational node that is listed in the │ │ │ list of nodes in the distributed configuration parameter. The application is │ │ │ started as usual. That is, an application master is created and calls the │ │ │ -application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ +application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ specifying the system configuration file:

    > erl -sname cp1 -config cp1
    │ │ │  > erl -sname cp2 -config cp2
    │ │ │  > erl -sname cp3 -config cp3

    When all nodes are operational, myapp can be started. This is achieved by │ │ │ calling application:start(myapp) at all three nodes. It is then started at │ │ │ cp1, as shown in the following figure:

    Application myapp - Situation 1

    Similarly, the application must be stopped by calling │ │ │ application:stop(Application) at all involved nodes.

    │ │ │ │ │ │ @@ -187,30 +187,30 @@ │ │ │ │ │ │ Failover │ │ │

    │ │ │

    If the node where the application is running goes down, the application is │ │ │ restarted (after the specified time-out) at the first operational node that is │ │ │ listed in the list of nodes in the distributed configuration parameter. This │ │ │ is called a failover.

    The application is started the normal way at the new node, that is, by the │ │ │ -application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ +application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ Included Applications). The application is then │ │ │ -instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ +instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ cp3, has the least number of running applications, but waits for 5 seconds for │ │ │ cp1 to restart. If cp1 does not restart and cp2 runs fewer applications │ │ │ than cp3, myapp is restarted on cp2.

    Application myapp - Situation 2

    Suppose now that cp2 goes also down and does not restart within 5 seconds. │ │ │ myapp is now restarted on cp3.

    Application myapp - Situation 3

    │ │ │ │ │ │ │ │ │ │ │ │ Takeover │ │ │

    │ │ │

    If a node is started, which has higher priority according to distributed than │ │ │ the node where a distributed application is running, the application is │ │ │ restarted at the new node and stopped at the old node. This is called a │ │ │ -takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ +takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ myapp, as the order between the cp2 and cp3 nodes is undefined.

    Application myapp - Situation 4

    However, if cp1 also restarts, the function application:takeover/2 moves │ │ │ myapp to cp1, as cp1 has a higher priority than cp3 for this │ │ │ application. In this case, Module:start({takeover, cp3@cave}, StartArgs) is │ │ │ executed at cp1 to start the application.

    Application myapp - Situation 5

    │ │ │
    │ │ │ │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/documentation.html │ │ │ @@ -112,23 +112,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ Documentation │ │ │ │ │ │ │ │ │

    Documentation in Erlang is done through the -moduledoc and -doc │ │ │ -attributes. For example:

    -module(arith).
    │ │ │ +attributes. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │  A module for basic arithmetic.
    │ │ │  """.
    │ │ │  
    │ │ │ --export([add/2]).
    │ │ │ +-export([add/2]).
    │ │ │  
    │ │ │  -doc "Adds two numbers.".
    │ │ │ -add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ +add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ or function declaration. It documents the overall purpose of the module.

    The -doc attribute always precedes the function or │ │ │ attribute it documents. The │ │ │ attributes that can be documented are │ │ │ user-defined types │ │ │ (-type and -opaque) and │ │ │ behaviour module attributes │ │ │ (-callback).

    By default the format used for documentation attributes is │ │ │ @@ -140,55 +140,55 @@ │ │ │ Documentation Attributes.

    -doc attributes have been available since Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ Documentation metadata │ │ │

    │ │ │

    It is possible to add metadata to the documentation entry. You do this by adding │ │ │ -a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ +a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │  A module for basic arithmetic.
    │ │ │  """.
    │ │ │ --moduledoc #{since => "1.0"}.
    │ │ │ +-moduledoc #{since => "1.0"}.
    │ │ │  
    │ │ │ --export([add/2]).
    │ │ │ +-export([add/2]).
    │ │ │  
    │ │ │  -doc "Adds two numbers.".
    │ │ │ --doc(#{since => "1.0"}).
    │ │ │ -add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ +-doc(#{since => "1.0"}). │ │ │ +add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ user. There can be multiple metadata documentation entries, in which case the │ │ │ maps will be merged with the latest taking precedence if there are duplicate │ │ │ keys. Example:

    -doc "Adds two numbers.".
    │ │ │ --doc #{since => "1.0", author => "Joe"}.
    │ │ │ --doc #{since => "2.0"}.
    │ │ │ -add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ +-doc #{since => "1.0", author => "Joe"}. │ │ │ +-doc #{since => "2.0"}. │ │ │ +add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ that only atoms are used for keys and │ │ │ strings for the values.

    │ │ │ │ │ │ │ │ │ │ │ │ External documentation files │ │ │

    │ │ │

    The -moduledoc and -doc can also be placed in external files. To do so use │ │ │ -doc {file, "path/to/doc.md"} to point to the documentation. The path used is │ │ │ relative to the file where the -doc attribute is located. For example:

    %% doc/add.md
    │ │ │  Adds two numbers.

    and

    %% src/arith.erl
    │ │ │ --doc({file, "../doc/add.md"}).
    │ │ │ -add(One, Two) -> One + Two.

    │ │ │ +-doc({file, "../doc/add.md"}). │ │ │ +add(One, Two) -> One + Two.

    │ │ │ │ │ │ │ │ │ │ │ │ Documenting a module │ │ │

    │ │ │

    The module description should include details on how to use the API and examples │ │ │ of the different functions working together. Here is a good place to use images │ │ │ and other diagrams to better show the usage of the module. Instead of writing a │ │ │ long text in the moduledoc attribute, it could be better to break it out into │ │ │ an external page.

    The moduledoc attribute should start with a short paragraph describing the │ │ │ -module and then go into greater details. For example:

    -module(arith).
    │ │ │ +module and then go into greater details. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │     A module for basic arithmetic.
    │ │ │  
    │ │ │     This module can be used to add and subtract values. For example:
    │ │ │  
    │ │ │     ```erlang
    │ │ │     1> arith:substract(arith:add(2, 3), 1).
    │ │ │ @@ -203,94 +203,94 @@
    │ │ │  

    There are three reserved metadata keys for -moduledoc:

    • since - Shows in which version of the application the module was added. │ │ │ If this is added, all functions, types, and callbacks within will also receive │ │ │ the same since value unless specified in the metadata of the function, type │ │ │ or callback.
    • deprecated - Shows a text in the documentation explaining that it is │ │ │ deprecated and what to use instead.
    • format - The format to use for all documentation in this module. The │ │ │ default is text/markdown. It should be written using the │ │ │ mime type │ │ │ -of the format.

    Example:

    -moduledoc {file, "../doc/arith.asciidoc"}.
    │ │ │ --moduledoc #{since => "0.1", format => "text/asciidoc"}.
    │ │ │ --moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

    │ │ │ +of the format.

    Example:

    -moduledoc {file, "../doc/arith.asciidoc"}.
    │ │ │ +-moduledoc #{since => "0.1", format => "text/asciidoc"}.
    │ │ │ +-moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

    │ │ │ │ │ │ │ │ │ │ │ │ Documenting functions, user-defined types, and callbacks │ │ │

    │ │ │

    Functions, types, and callbacks can be documented using the -doc attribute. │ │ │ Each entry should start with a short paragraph describing the purpose of entity, │ │ │ and then go into greater detail in needed.

    It is not recommended to include images or diagrams in this documentation as it │ │ │ is used by IDEs and c:h/1 to show the documentation to the user.

    For example:

    -doc """
    │ │ │  A number that can be used by the arith module.
    │ │ │  
    │ │ │  We use a special number here so that we know
    │ │ │  that this number comes from this module.
    │ │ │  """.
    │ │ │ --opaque number() :: {arith, erlang:number()}.
    │ │ │ +-opaque number() :: {arith, erlang:number()}.
    │ │ │  
    │ │ │  -doc """
    │ │ │  Adds two numbers.
    │ │ │  
    │ │ │  ### Example:
    │ │ │  
    │ │ │  ```
    │ │ │  1> arith:add(arith:number(1), arith:number(2)). {number, 3}
    │ │ │  ```
    │ │ │  """.
    │ │ │ --spec add(number(), number()) -> number().
    │ │ │ -add({number, One}, {number, Two}) -> {number, One + Two}.

    │ │ │ +-spec add(number(), number()) -> number(). │ │ │ +add({number, One}, {number, Two}) -> {number, One + Two}.

    │ │ │ │ │ │ │ │ │ │ │ │ Doc metadata │ │ │

    │ │ │

    There are four reserved metadata keys for -doc:

    • since => unicode:chardata() - Shows which version of the application the │ │ │ module was added.

    • deprecated => unicode:chardata() - Shows a text in the documentation │ │ │ explaining that it is deprecated and what to use instead. The compiler will │ │ │ automatically insert this key if there is a -deprecated attribute marking a │ │ │ function as deprecated.

    • equiv => unicode:chardata() | F/A | F(...) - Notes that this function is equivalent to │ │ │ another function in this module. The equivalence can be described using either │ │ │ -Func/Arity, Func(Args) or a unicode string. For example:

      -doc #{equiv => add/3}.
      │ │ │ -add(One, Two) -> add(One, Two, []).
      │ │ │ -add(One, Two, Options) -> ...

      or

      -doc #{equiv => add(One, Two, [])}.
      │ │ │ --spec add(One :: number(), Two :: number()) -> number().
      │ │ │ -add(One, Two) -> add(One, Two, []).
      │ │ │ -add(One, Two, Options) -> ...

      The entry into the EEP-48 doc chunk metadata is │ │ │ +Func/Arity, Func(Args) or a unicode string. For example:

      -doc #{equiv => add/3}.
      │ │ │ +add(One, Two) -> add(One, Two, []).
      │ │ │ +add(One, Two, Options) -> ...

      or

      -doc #{equiv => add(One, Two, [])}.
      │ │ │ +-spec add(One :: number(), Two :: number()) -> number().
      │ │ │ +add(One, Two) -> add(One, Two, []).
      │ │ │ +add(One, Two, Options) -> ...

      The entry into the EEP-48 doc chunk metadata is │ │ │ the value converted to a string.

    • exported => boolean() - A boolean/0 signifying if the entry is exported │ │ │ or not. This value is automatically set by the compiler and should not be set │ │ │ by the user.

    │ │ │ │ │ │ │ │ │ │ │ │ Doc signatures │ │ │

    │ │ │

    The doc signature is a short text shown to describe the function and its arguments. │ │ │ By default it is determined by looking at the names of the arguments in the │ │ │ --spec or function. For example:

    add(One, Two) -> One + Two.
    │ │ │ +-spec or function. For example:

    add(One, Two) -> One + Two.
    │ │ │  
    │ │ │ --spec sub(One :: integer(), Two :: integer()) -> integer().
    │ │ │ -sub(X, Y) -> X - Y.

    will have a signature of add(One, Two) and sub(One, Two).

    For types or callbacks, the signature is derived from the type or callback │ │ │ -specification. For example:

    -type number(Value) :: {number, Value}.
    │ │ │ +-spec sub(One :: integer(), Two :: integer()) -> integer().
    │ │ │ +sub(X, Y) -> X - Y.

    will have a signature of add(One, Two) and sub(One, Two).

    For types or callbacks, the signature is derived from the type or callback │ │ │ +specification. For example:

    -type number(Value) :: {number, Value}.
    │ │ │  %% signature will be `number(Value)`
    │ │ │  
    │ │ │ --opaque number() :: {number, number()}.
    │ │ │ +-opaque number() :: {number, number()}.
    │ │ │  %% signature will be `number()`
    │ │ │  
    │ │ │ --callback increment(In :: number()) -> Out.
    │ │ │ +-callback increment(In :: number()) -> Out.
    │ │ │  %% signature will be `increment(In)`
    │ │ │  
    │ │ │ --callback increment(In) -> Out when In :: number().
    │ │ │ +-callback increment(In) -> Out when In :: number().
    │ │ │  %% signature will be `increment(In)`

    If it is not possible to "easily" figure out a nice signature from the code, the │ │ │ MFA syntax is used instead. For example: add/2, number/1, increment/1

    It is possible to supply a custom signature by placing it as the first line of the │ │ │ -doc attribute. The provided signature must be in the form of a function │ │ │ declaration up until the ->. For example:

    -doc """
    │ │ │  add(One, Two)
    │ │ │  
    │ │ │  Adds two numbers.
    │ │ │  """.
    │ │ │ -add(A, B) -> A + B.

    Will create the signature add(One, Two). The signature will be removed from the │ │ │ +add(A, B) -> A + B.

    Will create the signature add(One, Two). The signature will be removed from the │ │ │ documentation string, so in the example above only the text "Adds two numbers" │ │ │ will be part of the documentation. This works for functions, types, and │ │ │ callbacks.

    │ │ │ │ │ │ │ │ │ │ │ │ Compiling and getting documentation │ │ │ @@ -375,21 +375,21 @@ │ │ │ Using ExDoc to generate HTML/ePub documentation │ │ │

    │ │ │

    ExDoc has built-in support to generate │ │ │ documentation from Markdown. The simplest way is by using the │ │ │ rebar3_ex_doc plugin. To set up a │ │ │ rebar3 project to use ExDoc to generate │ │ │ documentation add the following to your rebar3.config.

    %% Enable the plugin
    │ │ │ -{plugins, [rebar3_ex_doc]}.
    │ │ │ +{plugins, [rebar3_ex_doc]}.
    │ │ │  
    │ │ │ -{ex_doc, [
    │ │ │ -  {extras, ["README.md"]},
    │ │ │ -  {main, "README.md"},
    │ │ │ -  {source_url, "https://github.com/namespace/your_app"}
    │ │ │ -]}.

    When configured you can run rebar3 ex_doc to generate the │ │ │ +{ex_doc, [ │ │ │ + {extras, ["README.md"]}, │ │ │ + {main, "README.md"}, │ │ │ + {source_url, "https://github.com/namespace/your_app"} │ │ │ +]}.

    When configured you can run rebar3 ex_doc to generate the │ │ │ documentation to doc/index.html. For more details and options see │ │ │ the rebar3_ex_doc documentation.

    You can also download the │ │ │ release escript bundle from │ │ │ github and run it from the command line. The documentation for using the escript │ │ │ is found by running ex_doc --help.

    If you are writing documentation that will be using │ │ │ ExDoc to generate HTML/ePub it is highly │ │ │ recommended to read its documentation.

    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/drivers.html │ │ │ @@ -122,23 +122,23 @@ │ │ │ Drivers and Concurrency │ │ │ │ │ │

    The runtime system always takes a lock before running any code in a driver.

    By default, that lock is at the driver level, that is, if several ports have │ │ │ been opened to the same driver, only code for one port at the same time can be │ │ │ running.

    A driver can be configured to have one lock for each port instead.

    If a driver is used in a functional way (that is, holds no state, but only does │ │ │ some heavy calculation and returns a result), several ports with registered │ │ │ names can be opened beforehand, and the port to be used can be chosen based on │ │ │ -the scheduler ID as follows:

    -define(PORT_NAMES(),
    │ │ │ -	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
    │ │ │ +the scheduler ID as follows:

    -define(PORT_NAMES(),
    │ │ │ +	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
    │ │ │  	 some_driver_05, some_driver_06, some_driver_07, some_driver_08,
    │ │ │  	 some_driver_09, some_driver_10, some_driver_11, some_driver_12,
    │ │ │ -	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
    │ │ │ +	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
    │ │ │  
    │ │ │ -client_port() ->
    │ │ │ -    element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
    │ │ │ -	    ?PORT_NAMES()).

    As long as there are no more than 16 schedulers, there will never be any lock │ │ │ +client_port() -> │ │ │ + element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1, │ │ │ + ?PORT_NAMES()).

    As long as there are no more than 16 schedulers, there will never be any lock │ │ │ contention on the port lock for the driver.

    │ │ │ │ │ │ │ │ │ │ │ │ Avoiding Copying Binaries When Calling a Driver │ │ │

    │ │ │

    There are basically two ways to avoid copying a binary that is sent to a driver:

    • If the Data argument for port_control/3 is a │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_functions.html │ │ │ @@ -122,67 +122,67 @@ │ │ │ Pattern Matching │ │ │ │ │ │

      Pattern matching in function head as well as in case and receive clauses are │ │ │ optimized by the compiler. With a few exceptions, there is nothing to gain by │ │ │ rearranging clauses.

      One exception is pattern matching of binaries. The compiler does not rearrange │ │ │ clauses that match binaries. Placing the clause that matches against the empty │ │ │ binary last is usually slightly faster than placing it first.

      The following is a rather unnatural example to show another exception where │ │ │ -rearranging clauses is beneficial:

      DO NOT

      atom_map1(one) -> 1;
      │ │ │ -atom_map1(two) -> 2;
      │ │ │ -atom_map1(three) -> 3;
      │ │ │ -atom_map1(Int) when is_integer(Int) -> Int;
      │ │ │ -atom_map1(four) -> 4;
      │ │ │ -atom_map1(five) -> 5;
      │ │ │ -atom_map1(six) -> 6.

      The problem is the clause with the variable Int. As a variable can match │ │ │ +rearranging clauses is beneficial:

      DO NOT

      atom_map1(one) -> 1;
      │ │ │ +atom_map1(two) -> 2;
      │ │ │ +atom_map1(three) -> 3;
      │ │ │ +atom_map1(Int) when is_integer(Int) -> Int;
      │ │ │ +atom_map1(four) -> 4;
      │ │ │ +atom_map1(five) -> 5;
      │ │ │ +atom_map1(six) -> 6.

      The problem is the clause with the variable Int. As a variable can match │ │ │ anything, including the atoms four, five, and six, which the following │ │ │ clauses also match, the compiler must generate suboptimal code that executes as │ │ │ follows:

      • First, the input value is compared to one, two, and three (using a │ │ │ single instruction that does a binary search; thus, quite efficient even if │ │ │ there are many values) to select which one of the first three clauses to │ │ │ execute (if any).
      • If none of the first three clauses match, the fourth clause match as a │ │ │ variable always matches.
      • If the guard test is_integer(Int) succeeds, the fourth │ │ │ clause is executed.
      • If the guard test fails, the input value is compared to four, five, and │ │ │ six, and the appropriate clause is selected. (There is a function_clause │ │ │ -exception if none of the values matched.)

      Rewriting to either:

      DO

      atom_map2(one) -> 1;
      │ │ │ -atom_map2(two) -> 2;
      │ │ │ -atom_map2(three) -> 3;
      │ │ │ -atom_map2(four) -> 4;
      │ │ │ -atom_map2(five) -> 5;
      │ │ │ -atom_map2(six) -> 6;
      │ │ │ -atom_map2(Int) when is_integer(Int) -> Int.

      or:

      DO

      atom_map3(Int) when is_integer(Int) -> Int;
      │ │ │ -atom_map3(one) -> 1;
      │ │ │ -atom_map3(two) -> 2;
      │ │ │ -atom_map3(three) -> 3;
      │ │ │ -atom_map3(four) -> 4;
      │ │ │ -atom_map3(five) -> 5;
      │ │ │ -atom_map3(six) -> 6.

      gives slightly more efficient matching code.

      Another example:

      DO NOT

      map_pairs1(_Map, [], Ys) ->
      │ │ │ +exception if none of the values matched.)

    Rewriting to either:

    DO

    atom_map2(one) -> 1;
    │ │ │ +atom_map2(two) -> 2;
    │ │ │ +atom_map2(three) -> 3;
    │ │ │ +atom_map2(four) -> 4;
    │ │ │ +atom_map2(five) -> 5;
    │ │ │ +atom_map2(six) -> 6;
    │ │ │ +atom_map2(Int) when is_integer(Int) -> Int.

    or:

    DO

    atom_map3(Int) when is_integer(Int) -> Int;
    │ │ │ +atom_map3(one) -> 1;
    │ │ │ +atom_map3(two) -> 2;
    │ │ │ +atom_map3(three) -> 3;
    │ │ │ +atom_map3(four) -> 4;
    │ │ │ +atom_map3(five) -> 5;
    │ │ │ +atom_map3(six) -> 6.

    gives slightly more efficient matching code.

    Another example:

    DO NOT

    map_pairs1(_Map, [], Ys) ->
    │ │ │      Ys;
    │ │ │ -map_pairs1(_Map, Xs, []) ->
    │ │ │ +map_pairs1(_Map, Xs, []) ->
    │ │ │      Xs;
    │ │ │ -map_pairs1(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ -    [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

    The first argument is not a problem. It is variable, but it is a variable in │ │ │ +map_pairs1(Map, [X|Xs], [Y|Ys]) -> │ │ │ + [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

    The first argument is not a problem. It is variable, but it is a variable in │ │ │ all clauses. The problem is the variable in the second argument, Xs, in the │ │ │ middle clause. Because the variable can match anything, the compiler is not │ │ │ allowed to rearrange the clauses, but must generate code that matches them in │ │ │ the order written.

    If the function is rewritten as follows, the compiler is free to rearrange the │ │ │ -clauses:

    DO

    map_pairs2(_Map, [], Ys) ->
    │ │ │ +clauses:

    DO

    map_pairs2(_Map, [], Ys) ->
    │ │ │      Ys;
    │ │ │ -map_pairs2(_Map, [_|_]=Xs, [] ) ->
    │ │ │ +map_pairs2(_Map, [_|_]=Xs, [] ) ->
    │ │ │      Xs;
    │ │ │ -map_pairs2(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ -    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

    The compiler will generate code similar to this:

    DO NOT (already done by the compiler)

    explicit_map_pairs(Map, Xs0, Ys0) ->
    │ │ │ +map_pairs2(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ +    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

    The compiler will generate code similar to this:

    DO NOT (already done by the compiler)

    explicit_map_pairs(Map, Xs0, Ys0) ->
    │ │ │      case Xs0 of
    │ │ │ -	[X|Xs] ->
    │ │ │ +	[X|Xs] ->
    │ │ │  	    case Ys0 of
    │ │ │ -		[Y|Ys] ->
    │ │ │ -		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
    │ │ │ -		[] ->
    │ │ │ +		[Y|Ys] ->
    │ │ │ +		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
    │ │ │ +		[] ->
    │ │ │  		    Xs0
    │ │ │  	    end;
    │ │ │ -	[] ->
    │ │ │ +	[] ->
    │ │ │  	    Ys0
    │ │ │      end.

    This is slightly faster for probably the most common case that the input lists │ │ │ are not empty or very short. (Another advantage is that Dialyzer can deduce a │ │ │ better type for the Xs variable.)

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_processes.html │ │ │ @@ -119,45 +119,45 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating an Erlang Process │ │ │

    │ │ │

    An Erlang process is lightweight compared to threads and processes in operating │ │ │ systems.

    A newly spawned Erlang process uses 327 words of memory. The size can be found │ │ │ -as follows:

    Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +as follows:

    Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> Fun = fun() -> receive after infinity -> ok end end.
    │ │ │ +Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> Fun = fun() -> receive after infinity -> ok end end.
    │ │ │  #Fun<erl_eval.43.39164016>
    │ │ │ -2> {_,Bytes} = process_info(spawn(Fun), memory).
    │ │ │ -{memory,2616}
    │ │ │ -3> Bytes div erlang:system_info(wordsize).
    │ │ │ +2> {_,Bytes} = process_info(spawn(Fun), memory).
    │ │ │ +{memory,2616}
    │ │ │ +3> Bytes div erlang:system_info(wordsize).
    │ │ │  327

    The size includes 233 words for the heap area (which includes the stack). The │ │ │ garbage collector increases the heap as needed.

    The main (outer) loop for a process must be tail-recursive. Otherwise, the │ │ │ -stack grows until the process terminates.

    DO NOT

    loop() ->
    │ │ │ +stack grows until the process terminates.

    DO NOT

    loop() ->
    │ │ │    receive
    │ │ │ -     {sys, Msg} ->
    │ │ │ -         handle_sys_msg(Msg),
    │ │ │ -         loop();
    │ │ │ -     {From, Msg} ->
    │ │ │ -          Reply = handle_msg(Msg),
    │ │ │ +     {sys, Msg} ->
    │ │ │ +         handle_sys_msg(Msg),
    │ │ │ +         loop();
    │ │ │ +     {From, Msg} ->
    │ │ │ +          Reply = handle_msg(Msg),
    │ │ │            From ! Reply,
    │ │ │ -          loop()
    │ │ │ +          loop()
    │ │ │    end,
    │ │ │ -  io:format("Message is processed~n", []).

    The call to io:format/2 will never be executed, but a return address will │ │ │ + io:format("Message is processed~n", []).

    The call to io:format/2 will never be executed, but a return address will │ │ │ still be pushed to the stack each time loop/0 is called recursively. The │ │ │ -correct tail-recursive version of the function looks as follows:

    DO

    loop() ->
    │ │ │ +correct tail-recursive version of the function looks as follows:

    DO

    loop() ->
    │ │ │     receive
    │ │ │ -      {sys, Msg} ->
    │ │ │ -         handle_sys_msg(Msg),
    │ │ │ -         loop();
    │ │ │ -      {From, Msg} ->
    │ │ │ -         Reply = handle_msg(Msg),
    │ │ │ +      {sys, Msg} ->
    │ │ │ +         handle_sys_msg(Msg),
    │ │ │ +         loop();
    │ │ │ +      {From, Msg} ->
    │ │ │ +         Reply = handle_msg(Msg),
    │ │ │           From ! Reply,
    │ │ │ -         loop()
    │ │ │ +         loop()
    │ │ │   end.

    │ │ │ │ │ │ │ │ │ │ │ │ Initial Heap Size │ │ │

    │ │ │

    The default initial heap size of 233 words is quite conservative to support │ │ │ @@ -189,30 +189,30 @@ │ │ │ │ │ │ │ │ │ Receiving messages │ │ │ │ │ │

    The cost of receiving messages depends on how complicated the receive │ │ │ expression is. A simple expression that matches any message is very cheap │ │ │ because it retrieves the first message in the message queue:

    DO

    receive
    │ │ │ -    Message -> handle_msg(Message)
    │ │ │ +    Message -> handle_msg(Message)
    │ │ │  end.

    However, this is not always convenient: we can receive a message that we do not │ │ │ know how to handle at this point, so it is common to only match the messages we │ │ │ expect:

    receive
    │ │ │ -    {Tag, Message} -> handle_msg(Message)
    │ │ │ +    {Tag, Message} -> handle_msg(Message)
    │ │ │  end.

    While this is convenient it means that the entire message queue must be searched │ │ │ until it finds a matching message. This is very expensive for processes with │ │ │ long message queues, so there is an optimization for the common case of │ │ │ -sending a request and waiting for a response shortly after:

    DO

    MRef = monitor(process, Process),
    │ │ │ -Process ! {self(), MRef, Request},
    │ │ │ +sending a request and waiting for a response shortly after:

    DO

    MRef = monitor(process, Process),
    │ │ │ +Process ! {self(), MRef, Request},
    │ │ │  receive
    │ │ │ -    {MRef, Reply} ->
    │ │ │ -        erlang:demonitor(MRef, [flush]),
    │ │ │ -        handle_reply(Reply);
    │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ -        handle_error(Reason)
    │ │ │ +    {MRef, Reply} ->
    │ │ │ +        erlang:demonitor(MRef, [flush]),
    │ │ │ +        handle_reply(Reply);
    │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ +        handle_error(Reason)
    │ │ │  end.

    Since the compiler knows that the reference created by │ │ │ monitor/2 cannot exist before the call (since it is a globally │ │ │ unique identifier), and that the receive only matches messages that contain │ │ │ said reference, it will tell the emulator to search only the messages that │ │ │ arrived after the call to monitor/2.

    The above is a simple example where one is but guaranteed that the optimization │ │ │ will take, but what about more complicated code?

    │ │ │ │ │ │ @@ -228,101 +228,101 @@ │ │ │ efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference │ │ │ efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position │ │ │ efficiency_guide.erl:208: Warning: OPTIMIZED: all clauses match reference created by monitor/2 at efficiency_guide.erl:206 │ │ │ efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218 │ │ │ efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1

    To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ example:

    %% DO
    │ │ │ -simple_receive() ->
    │ │ │ +simple_receive() ->
    │ │ │  %% efficiency_guide.erl:194: Warning: INFO: not a selective receive, this is always fast
    │ │ │  receive
    │ │ │ -    Message -> handle_msg(Message)
    │ │ │ +    Message -> handle_msg(Message)
    │ │ │  end.
    │ │ │  
    │ │ │  %% DO NOT, unless Tag is known to be a suitable reference: see
    │ │ │  %% cross_function_receive/0 further down.
    │ │ │ -selective_receive(Tag, Message) ->
    │ │ │ +selective_receive(Tag, Message) ->
    │ │ │  %% efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
    │ │ │  receive
    │ │ │ -    {Tag, Message} -> handle_msg(Message)
    │ │ │ +    {Tag, Message} -> handle_msg(Message)
    │ │ │  end.
    │ │ │  
    │ │ │  %% DO
    │ │ │ -optimized_receive(Process, Request) ->
    │ │ │ +optimized_receive(Process, Request) ->
    │ │ │  %% efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
    │ │ │ -    MRef = monitor(process, Process),
    │ │ │ -    Process ! {self(), MRef, Request},
    │ │ │ +    MRef = monitor(process, Process),
    │ │ │ +    Process ! {self(), MRef, Request},
    │ │ │      %% efficiency_guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency_guide.erl:206
    │ │ │      receive
    │ │ │ -        {MRef, Reply} ->
    │ │ │ -        erlang:demonitor(MRef, [flush]),
    │ │ │ -        handle_reply(Reply);
    │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ -    handle_error(Reason)
    │ │ │ +        {MRef, Reply} ->
    │ │ │ +        erlang:demonitor(MRef, [flush]),
    │ │ │ +        handle_reply(Reply);
    │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ +    handle_error(Reason)
    │ │ │      end.
    │ │ │  
    │ │ │  %% DO
    │ │ │ -cross_function_receive() ->
    │ │ │ +cross_function_receive() ->
    │ │ │      %% efficiency_guide.erl:218: Warning: OPTIMIZED: reference used to mark a message queue position
    │ │ │ -    Ref = make_ref(),
    │ │ │ +    Ref = make_ref(),
    │ │ │      %% efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
    │ │ │ -    cross_function_receive(Ref).
    │ │ │ +    cross_function_receive(Ref).
    │ │ │  
    │ │ │ -cross_function_receive(Ref) ->
    │ │ │ +cross_function_receive(Ref) ->
    │ │ │      %% efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
    │ │ │      receive
    │ │ │ -        {Ref, Message} -> handle_msg(Message)
    │ │ │ +        {Ref, Message} -> handle_msg(Message)
    │ │ │      end.

    │ │ │ │ │ │ │ │ │ │ │ │ Literal Pool │ │ │

    │ │ │

    Constant Erlang terms (hereafter called literals) are kept in literal pools; │ │ │ each loaded module has its own pool. The following function does not build the │ │ │ tuple every time it is called (only to have it discarded the next time the │ │ │ garbage collector was run), but the tuple is located in the module's literal │ │ │ -pool:

    DO

    days_in_month(M) ->
    │ │ │ -    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

    If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ +pool:

    DO

    days_in_month(M) ->
    │ │ │ +    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

    If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ it is copied. The reason is that the module containing the literal can be │ │ │ unloaded in the future.

    When a literal is sent to another process, it is not copied. When a module │ │ │ holding a literal is unloaded, the literal will be copied to the heap of all │ │ │ processes that hold references to that literal.

    There also exists a global literal pool that is managed by the │ │ │ persistent_term module.

    By default, 1 GB of virtual address space is reserved for all literal pools (in │ │ │ BEAM code and persistent terms). The amount of virtual address space reserved │ │ │ for literals can be changed by using the │ │ │ +MIscs option when starting the emulator.

    Here is an example how the reserved virtual address space for literals can be │ │ │ raised to 2 GB (2048 MB):

    erl +MIscs 2048

    │ │ │ │ │ │ │ │ │ │ │ │ Loss of Sharing │ │ │

    │ │ │ -

    An Erlang term can have shared subterms. Here is a simple example:

    {SubTerm, SubTerm}

    Shared subterms are not preserved in the following cases:

    • When a term is sent to another process
    • When a term is passed as the initial process arguments in the spawn call
    • When a term is stored in an Ets table

    That is an optimization. Most applications do not send messages with shared │ │ │ -subterms.

    The following example shows how a shared subterm can be created:

    kilo_byte() ->
    │ │ │ -    kilo_byte(10, [42]).
    │ │ │ +

    An Erlang term can have shared subterms. Here is a simple example:

    {SubTerm, SubTerm}

    Shared subterms are not preserved in the following cases:

    • When a term is sent to another process
    • When a term is passed as the initial process arguments in the spawn call
    • When a term is stored in an Ets table

    That is an optimization. Most applications do not send messages with shared │ │ │ +subterms.

    The following example shows how a shared subterm can be created:

    kilo_byte() ->
    │ │ │ +    kilo_byte(10, [42]).
    │ │ │  
    │ │ │ -kilo_byte(0, Acc) ->
    │ │ │ +kilo_byte(0, Acc) ->
    │ │ │      Acc;
    │ │ │ -kilo_byte(N, Acc) ->
    │ │ │ -    kilo_byte(N-1, [Acc|Acc]).

    kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ +kilo_byte(N, Acc) -> │ │ │ + kilo_byte(N-1, [Acc|Acc]).

    kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ is called, the deep list can be converted to a binary of 1024 bytes:

    1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
    │ │ │  1024

    Using the erts_debug:size/1 BIF, it can be seen that the deep list only │ │ │ -requires 22 words of heap space:

    2> erts_debug:size(efficiency_guide:kilo_byte()).
    │ │ │ +requires 22 words of heap space:

    2> erts_debug:size(efficiency_guide:kilo_byte()).
    │ │ │  22

    Using the erts_debug:flat_size/1 BIF, the size of the deep list can be │ │ │ calculated if sharing is ignored. It becomes the size of the list when it has │ │ │ -been sent to another process or stored in an Ets table:

    3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
    │ │ │ +been sent to another process or stored in an Ets table:

    3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
    │ │ │  4094

    It can be verified that sharing will be lost if the data is inserted into an Ets │ │ │ -table:

    4> T = ets:new(tab, []).
    │ │ │ +table:

    4> T = ets:new(tab, []).
    │ │ │  #Ref<0.1662103692.2407923716.214181>
    │ │ │ -5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
    │ │ │ +5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
    │ │ │  true
    │ │ │ -6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
    │ │ │ +6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
    │ │ │  4094
    │ │ │ -7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
    │ │ │ +7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
    │ │ │  4094

    When the data has passed through an Ets table, erts_debug:size/1 and │ │ │ erts_debug:flat_size/1 return the same value. Sharing has been lost.

    It is possible to build an experimental variant of the runtime system that │ │ │ will preserve sharing when copying terms by giving the │ │ │ --enable-sharing-preserving option to the configure script.

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/erl_interface.html │ │ │ @@ -120,119 +120,119 @@ │ │ │ to read the port example in Ports before reading this section.

    │ │ │ │ │ │ │ │ │ │ │ │ Erlang Program │ │ │

    │ │ │

    The following example shows an Erlang program communicating with a C program │ │ │ -over a plain port with home made encoding:

    -module(complex1).
    │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ -
    │ │ │ -start(ExtPrg) ->
    │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ -stop() ->
    │ │ │ +over a plain port with home made encoding:

    -module(complex1).
    │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +
    │ │ │ +start(ExtPrg) ->
    │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ +stop() ->
    │ │ │      complex ! stop.
    │ │ │  
    │ │ │ -foo(X) ->
    │ │ │ -    call_port({foo, X}).
    │ │ │ -bar(Y) ->
    │ │ │ -    call_port({bar, Y}).
    │ │ │ +foo(X) ->
    │ │ │ +    call_port({foo, X}).
    │ │ │ +bar(Y) ->
    │ │ │ +    call_port({bar, Y}).
    │ │ │  
    │ │ │ -call_port(Msg) ->
    │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ +call_port(Msg) ->
    │ │ │ +    complex ! {call, self(), Msg},
    │ │ │      receive
    │ │ │ -	{complex, Result} ->
    │ │ │ +	{complex, Result} ->
    │ │ │  	    Result
    │ │ │      end.
    │ │ │  
    │ │ │ -init(ExtPrg) ->
    │ │ │ -    register(complex, self()),
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ -    loop(Port).
    │ │ │ +init(ExtPrg) ->
    │ │ │ +    register(complex, self()),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ +    loop(Port).
    │ │ │  
    │ │ │ -loop(Port) ->
    │ │ │ +loop(Port) ->
    │ │ │      receive
    │ │ │ -	{call, Caller, Msg} ->
    │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ +	{call, Caller, Msg} ->
    │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │  	    receive
    │ │ │ -		{Port, {data, Data}} ->
    │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ +		{Port, {data, Data}} ->
    │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │  	    end,
    │ │ │ -	    loop(Port);
    │ │ │ +	    loop(Port);
    │ │ │  	stop ->
    │ │ │ -	    Port ! {self(), close},
    │ │ │ +	    Port ! {self(), close},
    │ │ │  	    receive
    │ │ │ -		{Port, closed} ->
    │ │ │ -		    exit(normal)
    │ │ │ +		{Port, closed} ->
    │ │ │ +		    exit(normal)
    │ │ │  	    end;
    │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ -	    exit(port_terminated)
    │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ +	    exit(port_terminated)
    │ │ │      end.
    │ │ │  
    │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │  
    │ │ │ -decode([Int]) -> Int.

    There are two differences when using Erl_Interface on the C side compared to the │ │ │ +decode([Int]) -> Int.

    There are two differences when using Erl_Interface on the C side compared to the │ │ │ example in Ports, using only the plain port:

    • As Erl_Interface operates on the Erlang external term format, the port must be │ │ │ set to use binaries.
    • Instead of inventing an encoding/decoding scheme, the │ │ │ term_to_binary/1 and │ │ │ -binary_to_term/1 BIFs are to be used.

    That is:

    open_port({spawn, ExtPrg}, [{packet, 2}])

    is replaced with:

    open_port({spawn, ExtPrg}, [{packet, 2}, binary])

    And:

    Port ! {self(), {command, encode(Msg)}},
    │ │ │ +binary_to_term/1 BIFs are to be used.

    That is:

    open_port({spawn, ExtPrg}, [{packet, 2}])

    is replaced with:

    open_port({spawn, ExtPrg}, [{packet, 2}, binary])

    And:

    Port ! {self(), {command, encode(Msg)}},
    │ │ │  receive
    │ │ │ -  {Port, {data, Data}} ->
    │ │ │ -    Caller ! {complex, decode(Data)}
    │ │ │ -end

    is replaced with:

    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │ +  {Port, {data, Data}} ->
    │ │ │ +    Caller ! {complex, decode(Data)}
    │ │ │ +end

    is replaced with:

    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │  receive
    │ │ │ -  {Port, {data, Data}} ->
    │ │ │ -    Caller ! {complex, binary_to_term(Data)}
    │ │ │ -end

    The resulting Erlang program is as follows:

    -module(complex2).
    │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ -
    │ │ │ -start(ExtPrg) ->
    │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ -stop() ->
    │ │ │ +  {Port, {data, Data}} ->
    │ │ │ +    Caller ! {complex, binary_to_term(Data)}
    │ │ │ +end

    The resulting Erlang program is as follows:

    -module(complex2).
    │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +
    │ │ │ +start(ExtPrg) ->
    │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ +stop() ->
    │ │ │      complex ! stop.
    │ │ │  
    │ │ │ -foo(X) ->
    │ │ │ -    call_port({foo, X}).
    │ │ │ -bar(Y) ->
    │ │ │ -    call_port({bar, Y}).
    │ │ │ +foo(X) ->
    │ │ │ +    call_port({foo, X}).
    │ │ │ +bar(Y) ->
    │ │ │ +    call_port({bar, Y}).
    │ │ │  
    │ │ │ -call_port(Msg) ->
    │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ +call_port(Msg) ->
    │ │ │ +    complex ! {call, self(), Msg},
    │ │ │      receive
    │ │ │ -	{complex, Result} ->
    │ │ │ +	{complex, Result} ->
    │ │ │  	    Result
    │ │ │      end.
    │ │ │  
    │ │ │ -init(ExtPrg) ->
    │ │ │ -    register(complex, self()),
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
    │ │ │ -    loop(Port).
    │ │ │ +init(ExtPrg) ->
    │ │ │ +    register(complex, self()),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
    │ │ │ +    loop(Port).
    │ │ │  
    │ │ │ -loop(Port) ->
    │ │ │ +loop(Port) ->
    │ │ │      receive
    │ │ │ -	{call, Caller, Msg} ->
    │ │ │ -	    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │ +	{call, Caller, Msg} ->
    │ │ │ +	    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │  	    receive
    │ │ │ -		{Port, {data, Data}} ->
    │ │ │ -		    Caller ! {complex, binary_to_term(Data)}
    │ │ │ +		{Port, {data, Data}} ->
    │ │ │ +		    Caller ! {complex, binary_to_term(Data)}
    │ │ │  	    end,
    │ │ │ -	    loop(Port);
    │ │ │ +	    loop(Port);
    │ │ │  	stop ->
    │ │ │ -	    Port ! {self(), close},
    │ │ │ +	    Port ! {self(), close},
    │ │ │  	    receive
    │ │ │ -		{Port, closed} ->
    │ │ │ -		    exit(normal)
    │ │ │ +		{Port, closed} ->
    │ │ │ +		    exit(normal)
    │ │ │  	    end;
    │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ -	    exit(port_terminated)
    │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ +	    exit(port_terminated)
    │ │ │      end.

    Notice that calling complex2:foo/1 and complex2:bar/1 results in the tuple │ │ │ {foo,X} or {bar,Y} being sent to the complex process, which codes them as │ │ │ binaries and sends them to the port. This means that the C program must be able │ │ │ to handle these two tuples.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -362,27 +362,27 @@ │ │ │ -L/usr/local/otp/lib/erl_interface-3.9.2/lib \ │ │ │ complex.c erl_comm.c ei.c -lei -lpthread

    In Erlang/OTP R5B and later versions of OTP, the include and lib directories │ │ │ are situated under $OTPROOT/lib/erl_interface-VSN, where $OTPROOT is the │ │ │ root directory of the OTP installation (/usr/local/otp in the recent example) │ │ │ and VSN is the version of the Erl_interface application (3.2.1 in the recent │ │ │ example).

    In R4B and earlier versions of OTP, include and lib are situated under │ │ │ $OTPROOT/usr.

    Step 2. Start Erlang and compile the Erlang code:

    $ erl
    │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │  
    │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> c(complex2).
    │ │ │ -{ok,complex2}

    Step 3. Run the example:

    2> complex2:start("./extprg").
    │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> c(complex2).
    │ │ │ +{ok,complex2}

    Step 3. Run the example:

    2> complex2:start("./extprg").
    │ │ │  <0.34.0>
    │ │ │ -3> complex2:foo(3).
    │ │ │ +3> complex2:foo(3).
    │ │ │  4
    │ │ │ -4> complex2:bar(5).
    │ │ │ +4> complex2:bar(5).
    │ │ │  10
    │ │ │ -5> complex2:bar(352).
    │ │ │ +5> complex2:bar(352).
    │ │ │  704
    │ │ │ -6> complex2:stop().
    │ │ │ +6> complex2:stop().
    │ │ │  stop
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    logger_sasl_compatible to │ │ │ true. For more information, see │ │ │ SASL Error Logging in the SASL User's Guide.

    % erl -kernel logger_level info
    │ │ │ -Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
    │ │ │ +Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
    │ │ │  
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
    │ │ │      application: kernel
    │ │ │      started_at: nonode@nohost
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
    │ │ │      application: stdlib
    │ │ │      started_at: nonode@nohost
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
    │ │ │ -    supervisor: {local,kernel_safe_sup}
    │ │ │ -    started: [{pid,<0.74.0>},
    │ │ │ -              {id,disk_log_sup},
    │ │ │ -              {mfargs,{disk_log_sup,start_link,[]}},
    │ │ │ -              {restart_type,permanent},
    │ │ │ -              {shutdown,1000},
    │ │ │ -              {child_type,supervisor}]
    │ │ │ +    supervisor: {local,kernel_safe_sup}
    │ │ │ +    started: [{pid,<0.74.0>},
    │ │ │ +              {id,disk_log_sup},
    │ │ │ +              {mfargs,{disk_log_sup,start_link,[]}},
    │ │ │ +              {restart_type,permanent},
    │ │ │ +              {shutdown,1000},
    │ │ │ +              {child_type,supervisor}]
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
    │ │ │ -    supervisor: {local,kernel_safe_sup}
    │ │ │ -    started: [{pid,<0.75.0>},
    │ │ │ -              {id,disk_log_server},
    │ │ │ -              {mfargs,{disk_log_server,start_link,[]}},
    │ │ │ -              {restart_type,permanent},
    │ │ │ -              {shutdown,2000},
    │ │ │ -              {child_type,worker}]
    │ │ │ -Eshell V10.0  (abort with ^G)
    │ │ │ +    supervisor: {local,kernel_safe_sup}
    │ │ │ +    started: [{pid,<0.75.0>},
    │ │ │ +              {id,disk_log_server},
    │ │ │ +              {mfargs,{disk_log_server,start_link,[]}},
    │ │ │ +              {restart_type,permanent},
    │ │ │ +              {shutdown,2000},
    │ │ │ +              {child_type,worker}]
    │ │ │ +Eshell V10.0  (abort with ^G)
    │ │ │  1>
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ try expression can │ │ │ distinguish between the different classes, whereas the │ │ │ catch expression cannot. try and catch are described │ │ │ in Expressions.

    ClassOrigin
    errorRun-time error, for example, 1+a, or the process called error/1
    exitThe process called exit/1
    throwThe process called throw/1

    Table: Exception Classes.

    All of the above exceptions can also be generated by calling erlang:raise/3.

    An exception consists of its class, an exit reason (see │ │ │ Exit Reason), and a stack trace (which aids in finding │ │ │ the code location of the exception).

    The stack trace can be bound to a variable from within a try expression for │ │ │ any exception class, or as part of the exit reason when a run-time error is │ │ │ -caught by a catch. Example:

    > {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
    │ │ │ -[{shell,apply_fun,3,[]},
    │ │ │ - {erl_eval,do_apply,6,[]},
    │ │ │ - ...]
    │ │ │ -> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
    │ │ │ -[{shell,apply_fun,3,[]},
    │ │ │ - {erl_eval,do_apply,6,[]},
    │ │ │ - ...]

    │ │ │ +caught by a catch. Example:

    > {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
    │ │ │ +[{shell,apply_fun,3,[]},
    │ │ │ + {erl_eval,do_apply,6,[]},
    │ │ │ + ...]
    │ │ │ +> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
    │ │ │ +[{shell,apply_fun,3,[]},
    │ │ │ + {erl_eval,do_apply,6,[]},
    │ │ │ + ...]

    │ │ │ │ │ │ │ │ │ │ │ │ The call-stack back trace (stacktrace) │ │ │

    │ │ │

    The stack back-trace (stacktrace) is a list that │ │ │ contains {Module, Function, Arity, ExtraInfo} and/or {Fun, Arity, ExtraInfo} │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/events.html │ │ │ @@ -135,43 +135,43 @@ │ │ │ event handler.

    │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │

    │ │ │

    The callback module for the event handler writing error messages to the terminal │ │ │ -can look as follows:

    -module(terminal_logger).
    │ │ │ --behaviour(gen_event).
    │ │ │ +can look as follows:

    -module(terminal_logger).
    │ │ │ +-behaviour(gen_event).
    │ │ │  
    │ │ │ --export([init/1, handle_event/2, terminate/2]).
    │ │ │ +-export([init/1, handle_event/2, terminate/2]).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, []}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, []}.
    │ │ │  
    │ │ │ -handle_event(ErrorMsg, State) ->
    │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, State}.
    │ │ │ +handle_event(ErrorMsg, State) ->
    │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, State}.
    │ │ │  
    │ │ │ -terminate(_Args, _State) ->
    │ │ │ +terminate(_Args, _State) ->
    │ │ │      ok.

    The callback module for the event handler writing error messages to a file can │ │ │ -look as follows:

    -module(file_logger).
    │ │ │ --behaviour(gen_event).
    │ │ │ +look as follows:

    -module(file_logger).
    │ │ │ +-behaviour(gen_event).
    │ │ │  
    │ │ │ --export([init/1, handle_event/2, terminate/2]).
    │ │ │ +-export([init/1, handle_event/2, terminate/2]).
    │ │ │  
    │ │ │ -init(File) ->
    │ │ │ -    {ok, Fd} = file:open(File, read),
    │ │ │ -    {ok, Fd}.
    │ │ │ -
    │ │ │ -handle_event(ErrorMsg, Fd) ->
    │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, Fd}.
    │ │ │ +init(File) ->
    │ │ │ +    {ok, Fd} = file:open(File, read),
    │ │ │ +    {ok, Fd}.
    │ │ │ +
    │ │ │ +handle_event(ErrorMsg, Fd) ->
    │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, Fd}.
    │ │ │  
    │ │ │ -terminate(_Args, Fd) ->
    │ │ │ -    file:close(Fd).

    The code is explained in the next sections.

    │ │ │ +terminate(_Args, Fd) -> │ │ │ + file:close(Fd).

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting an Event Manager │ │ │

    │ │ │

    To start an event manager for handling errors, as described in the previous │ │ │ example, call the following function:

    gen_event:start_link({local, error_man})

    gen_event:start_link/1 spawns and links to a new event manager process.

    The argument, {local, error_man}, specifies the name under which the │ │ │ @@ -184,57 +184,57 @@ │ │ │ manager that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding an Event Handler │ │ │

    │ │ │

    The following example shows how to start an event manager and add an event │ │ │ -handler to it by using the shell:

    1> gen_event:start({local, error_man}).
    │ │ │ -{ok,<0.31.0>}
    │ │ │ -2> gen_event:add_handler(error_man, terminal_logger, []).
    │ │ │ +handler to it by using the shell:

    1> gen_event:start({local, error_man}).
    │ │ │ +{ok,<0.31.0>}
    │ │ │ +2> gen_event:add_handler(error_man, terminal_logger, []).
    │ │ │  ok

    This function sends a message to the event manager registered as error_man, │ │ │ telling it to add the event handler terminal_logger. The event manager calls │ │ │ the callback function terminal_logger:init([]), where the argument [] is the │ │ │ third argument to add_handler. init/1 is expected to return {ok, State}, │ │ │ -where State is the internal state of the event handler.

    init(_Args) ->
    │ │ │ -    {ok, []}.

    Here, init/1 does not need any input data and ignores its argument. For │ │ │ +where State is the internal state of the event handler.

    init(_Args) ->
    │ │ │ +    {ok, []}.

    Here, init/1 does not need any input data and ignores its argument. For │ │ │ terminal_logger, the internal state is not used. For file_logger, the │ │ │ -internal state is used to save the open file descriptor.

    init(File) ->
    │ │ │ -    {ok, Fd} = file:open(File, read),
    │ │ │ -    {ok, Fd}.

    │ │ │ +internal state is used to save the open file descriptor.

    init(File) ->
    │ │ │ +    {ok, Fd} = file:open(File, read),
    │ │ │ +    {ok, Fd}.

    │ │ │ │ │ │ │ │ │ │ │ │ Notifying about Events │ │ │

    │ │ │
    3> gen_event:notify(error_man, no_reply).
    │ │ │  ***Error*** no_reply
    │ │ │  ok

    error_man is the name of the event manager and no_reply is the event.

    The event is made into a message and sent to the event manager. When the event │ │ │ is received, the event manager calls handle_event(Event, State) for each │ │ │ installed event handler, in the same order as they were added. The function is │ │ │ expected to return a tuple {ok,State1}, where State1 is a new value for the │ │ │ -state of the event handler.

    In terminal_logger:

    handle_event(ErrorMsg, State) ->
    │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, State}.

    In file_logger:

    handle_event(ErrorMsg, Fd) ->
    │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, Fd}.

    │ │ │ +state of the event handler.

    In terminal_logger:

    handle_event(ErrorMsg, State) ->
    │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, State}.

    In file_logger:

    handle_event(ErrorMsg, Fd) ->
    │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, Fd}.

    │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Event Handler │ │ │

    │ │ │ -
    4> gen_event:delete_handler(error_man, terminal_logger, []).
    │ │ │ +
    4> gen_event:delete_handler(error_man, terminal_logger, []).
    │ │ │  ok

    This function sends a message to the event manager registered as error_man, │ │ │ telling it to delete the event handler terminal_logger. The event manager │ │ │ calls the callback function terminal_logger:terminate([], State), where the │ │ │ argument [] is the third argument to delete_handler. terminate/2 is to be │ │ │ the opposite of init/1 and do any necessary cleaning up. Its return value is │ │ │ -ignored.

    For terminal_logger, no cleaning up is necessary:

    terminate(_Args, _State) ->
    │ │ │ -    ok.

    For file_logger, the file descriptor opened in init must be closed:

    terminate(_Args, Fd) ->
    │ │ │ -    file:close(Fd).

    │ │ │ +ignored.

    For terminal_logger, no cleaning up is necessary:

    terminate(_Args, _State) ->
    │ │ │ +    ok.

    For file_logger, the file descriptor opened in init must be closed:

    terminate(_Args, Fd) ->
    │ │ │ +    file:close(Fd).

    │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

    │ │ │

    When an event manager is stopped, it gives each of the installed event handlers │ │ │ the chance to clean up by calling terminate/2, the same way as when deleting a │ │ │ @@ -249,33 +249,33 @@ │ │ │ this is done is defined by a shutdown strategy set in │ │ │ the supervisor.

    │ │ │ │ │ │ │ │ │ │ │ │ Standalone Event Managers │ │ │

    │ │ │ -

    An event manager can also be stopped by calling:

    1> gen_event:stop(error_man).
    │ │ │ +

    An event manager can also be stopped by calling:

    1> gen_event:stop(error_man).
    │ │ │  ok

    │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │

    │ │ │

    If the gen_event process is to be able to receive other messages │ │ │ than events, the callback function handle_info(Info, State) must be │ │ │ implemented to handle them. Examples of other messages are exit │ │ │ messages if the event manager is linked to other processes than the │ │ │ supervisor (for example via gen_event:add_sup_handler/3) and is │ │ │ -trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ +trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │      %% Code to handle exits here.
    │ │ │      ...
    │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │      %% Code to convert state (and more) during code change.
    │ │ │      ...
    │ │ │ -    {ok, NewState}.
    │ │ │ +
    {ok, NewState}.
    │ │ │
    │ │ │ │ │ │

    pattern matching. Erlang uses │ │ │ single assignment, that is, a variable can only be bound once.

    The anonymous variable is denoted by underscore (_) and can be used when a │ │ │ variable is required but its value can be ignored.

    Example:

    [H|_] = [1,2,3]

    Variables starting with underscore (_), for example, _Height, are normal │ │ │ variables, not anonymous. However, they are ignored by the compiler in the sense │ │ │ -that they do not generate warnings.

    Example:

    The following code:

    member(_, []) ->
    │ │ │ -    [].

    can be rewritten to be more readable:

    member(Elem, []) ->
    │ │ │ -    [].

    This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ -the code can be rewritten to:

    member(_Elem, []) ->
    │ │ │ -    [].

    Notice that since variables starting with an underscore are not anonymous, the │ │ │ -following example matches:

    {_,_} = {1,2}

    But this example fails:

    {_N,_N} = {1,2}

    The scope for a variable is its function clause. Variables bound in a branch of │ │ │ +that they do not generate warnings.

    Example:

    The following code:

    member(_, []) ->
    │ │ │ +    [].

    can be rewritten to be more readable:

    member(Elem, []) ->
    │ │ │ +    [].

    This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ +the code can be rewritten to:

    member(_Elem, []) ->
    │ │ │ +    [].

    Notice that since variables starting with an underscore are not anonymous, the │ │ │ +following example matches:

    {_,_} = {1,2}

    But this example fails:

    {_N,_N} = {1,2}

    The scope for a variable is its function clause. Variables bound in a branch of │ │ │ an if, case, or receive expression must be bound in all branches to have a │ │ │ value outside the expression. Otherwise they are regarded as unsafe outside │ │ │ the expression.

    For the try expression variable scoping is limited so that variables bound in │ │ │ the expression are always unsafe outside the expression.

    │ │ │ │ │ │ │ │ │ │ │ │ Patterns │ │ │

    │ │ │

    A pattern has the same structure as a term but can contain unbound variables.

    Example:

    Name1
    │ │ │ -[H|T]
    │ │ │ -{error,Reason}

    Patterns are allowed in clause heads, case expressions, │ │ │ +[H|T] │ │ │ +{error,Reason}

    Patterns are allowed in clause heads, case expressions, │ │ │ receive expressions, and │ │ │ match expressions.

    │ │ │ │ │ │ │ │ │ │ │ │ The Compound Pattern Operator │ │ │

    │ │ │

    If Pattern1 and Pattern2 are valid patterns, the following is also a valid │ │ │ pattern:

    Pattern1 = Pattern2

    When matched against a term, both Pattern1 and Pattern2 are matched against │ │ │ -the term. The idea behind this feature is to avoid reconstruction of terms.

    Example:

    f({connect,From,To,Number,Options}, To) ->
    │ │ │ -    Signal = {connect,From,To,Number,Options},
    │ │ │ +the term. The idea behind this feature is to avoid reconstruction of terms.

    Example:

    f({connect,From,To,Number,Options}, To) ->
    │ │ │ +    Signal = {connect,From,To,Number,Options},
    │ │ │      ...;
    │ │ │ -f(Signal, To) ->
    │ │ │ -    ignore.

    can instead be written as

    f({connect,_,To,_,_} = Signal, To) ->
    │ │ │ +f(Signal, To) ->
    │ │ │ +    ignore.

    can instead be written as

    f({connect,_,To,_,_} = Signal, To) ->
    │ │ │      ...;
    │ │ │ -f(Signal, To) ->
    │ │ │ +f(Signal, To) ->
    │ │ │      ignore.

    The compound pattern operator does not imply that its operands are matched in │ │ │ any particular order. That means that it is not legal to bind a variable in │ │ │ Pattern1 and use it in Pattern2, or vice versa.

    │ │ │ │ │ │ │ │ │ │ │ │ String Prefix in Patterns │ │ │

    │ │ │ -

    When matching strings, the following is a valid pattern:

    f("prefix" ++ Str) -> ...

    This is syntactic sugar for the equivalent, but harder to read:

    f([$p,$r,$e,$f,$i,$x | Str]) -> ...

    │ │ │ +

    When matching strings, the following is a valid pattern:

    f("prefix" ++ Str) -> ...

    This is syntactic sugar for the equivalent, but harder to read:

    f([$p,$r,$e,$f,$i,$x | Str]) -> ...

    │ │ │ │ │ │ │ │ │ │ │ │ Expressions in Patterns │ │ │

    │ │ │

    An arithmetic expression can be used within a pattern if it meets both of the │ │ │ -following two conditions:

    • It uses only numeric or bitwise operators.
    • Its value can be evaluated to a constant when complied.

    Example:

    case {Value, Result} of
    │ │ │ -    {?THRESHOLD+1, ok} -> ...

    │ │ │ +following two conditions:

    • It uses only numeric or bitwise operators.
    • Its value can be evaluated to a constant when complied.

    Example:

    case {Value, Result} of
    │ │ │ +    {?THRESHOLD+1, ok} -> ...

    │ │ │ │ │ │ │ │ │ │ │ │ The Match Operator │ │ │

    │ │ │

    The following matches Pattern against Expr:

    Pattern = Expr

    If the matching succeeds, any unbound variable in the pattern becomes bound and │ │ │ the value of Expr is returned.

    If multiple match operators are applied in sequence, they will be evaluated from │ │ │ -right to left.

    If the matching fails, a badmatch run-time error occurs.

    Examples:

    1> {A, B} = T = {answer, 42}.
    │ │ │ -{answer,42}
    │ │ │ +right to left.

    If the matching fails, a badmatch run-time error occurs.

    Examples:

    1> {A, B} = T = {answer, 42}.
    │ │ │ +{answer,42}
    │ │ │  2> A.
    │ │ │  answer
    │ │ │  3> B.
    │ │ │  42
    │ │ │  4> T.
    │ │ │ -{answer,42}
    │ │ │ -5> {C, D} = [1, 2].
    │ │ │ +{answer,42}
    │ │ │ +5> {C, D} = [1, 2].
    │ │ │  ** exception error: no match of right-hand side value [1,2]

    Because multiple match operators are evaluated from right to left, it means │ │ │ that:

    Pattern1 = Pattern2 = . . . = PatternN = Expression

    is equivalent to:

    Temporary = Expression,
    │ │ │  PatternN = Temporary,
    │ │ │     .
    │ │ │     .
    │ │ │     .,
    │ │ │  Pattern2 = Temporary,
    │ │ │ @@ -239,30 +239,30 @@
    │ │ │  can safely be skipped on a first reading.

    The = character is used to denote two similar but distinct operators: the │ │ │ match operator and the compound pattern operator. Which one is meant is │ │ │ determined by context.

    The compound pattern operator is used to construct a compound pattern from two │ │ │ patterns. Compound patterns are accepted everywhere a pattern is accepted. A │ │ │ compound pattern matches if all of its constituent patterns match. It is not │ │ │ legal for a pattern that is part of a compound pattern to use variables (as keys │ │ │ in map patterns or sizes in binary patterns) bound in other sub patterns of the │ │ │ -same compound pattern.

    Examples:

    1> fun(#{Key := Value} = #{key := Key}) -> Value end.
    │ │ │ +same compound pattern.

    Examples:

    1> fun(#{Key := Value} = #{key := Key}) -> Value end.
    │ │ │  * 1:7: variable 'Key' is unbound
    │ │ │ -2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}).
    │ │ │ -{{1,2},3}
    │ │ │ -3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>).
    │ │ │ -{42,43,10795}

    The match operator is allowed everywhere an expression is allowed. It is used │ │ │ +2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}). │ │ │ +{{1,2},3} │ │ │ +3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>). │ │ │ +{42,43,10795}

    The match operator is allowed everywhere an expression is allowed. It is used │ │ │ to match the value of an expression to a pattern. If multiple match operators │ │ │ -are applied in sequence, they will be evaluated from right to left.

    Examples:

    1> M = #{key => key2, key2 => value}.
    │ │ │ -#{key => key2,key2 => value}
    │ │ │ -2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
    │ │ │ +are applied in sequence, they will be evaluated from right to left.

    Examples:

    1> M = #{key => key2, key2 => value}.
    │ │ │ +#{key => key2,key2 => value}
    │ │ │ +2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
    │ │ │  value
    │ │ │ -3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
    │ │ │ +3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
    │ │ │  value
    │ │ │ -4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
    │ │ │ +4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
    │ │ │  * 1:12: variable 'Key' is unbound
    │ │ │ -5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
    │ │ │ +5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
    │ │ │  42

    The expression at prompt 2> first matches the value of variable M against │ │ │ pattern #{key := Key}, binding variable Key. It then matches the value of │ │ │ M against pattern #{Key := Value} using variable Key as the key, binding │ │ │ variable Value.

    The expression at prompt 3> matches expression (#{key := Key} = M) against │ │ │ pattern #{Key := Value}. The expression inside the parentheses is evaluated │ │ │ first. That is, M is matched against #{key := Key}, and then the value of │ │ │ M is matched against pattern #{Key := Value}. That is the same evaluation │ │ │ @@ -276,30 +276,30 @@ │ │ │ binding variable Y and creating a binary. The binary is then matched against │ │ │ pattern <<X:Y>> using the value of Y as the size of the segment.

    │ │ │ │ │ │ │ │ │ │ │ │ Function Calls │ │ │

    │ │ │ -
    ExprF(Expr1,...,ExprN)
    │ │ │ -ExprM:ExprF(Expr1,...,ExprN)

    In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ +

    ExprF(Expr1,...,ExprN)
    │ │ │ +ExprM:ExprF(Expr1,...,ExprN)

    In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ ExprM and ExprF must be an atom or an expression that evaluates to an atom. │ │ │ The function is said to be called by using the fully qualified function name. │ │ │ -This is often referred to as a remote or external function call.

    Example:

    lists:keyfind(Name, 1, List)

    In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ +This is often referred to as a remote or external function call.

    Example:

    lists:keyfind(Name, 1, List)

    In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ an atom or evaluate to a fun.

    If ExprF is an atom, the function is said to be called by using the │ │ │ implicitly qualified function name. If the function ExprF is locally │ │ │ defined, it is called. Alternatively, if ExprF is explicitly imported from the │ │ │ M module, M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared │ │ │ locally nor explicitly imported, ExprF must be the name of an automatically │ │ │ -imported BIF.

    Examples:

    handle(Msg, State)
    │ │ │ -spawn(m, init, [])

    Examples where ExprF is a fun:

    1> Fun1 = fun(X) -> X+1 end,
    │ │ │ -Fun1(3).
    │ │ │ +imported BIF.

    Examples:

    handle(Msg, State)
    │ │ │ +spawn(m, init, [])

    Examples where ExprF is a fun:

    1> Fun1 = fun(X) -> X+1 end,
    │ │ │ +Fun1(3).
    │ │ │  4
    │ │ │ -2> fun lists:append/2([1,2], [3,4]).
    │ │ │ -[1,2,3,4]
    │ │ │ +2> fun lists:append/2([1,2], [3,4]).
    │ │ │ +[1,2,3,4]
    │ │ │  3>

    Notice that when calling a local function, there is a difference between using │ │ │ the implicitly or fully qualified function name. The latter always refers to the │ │ │ latest version of the module. See │ │ │ Compilation and Code Loading and │ │ │ Function Evaluation.

    │ │ │ │ │ │ │ │ │ @@ -316,40 +316,40 @@ │ │ │ called instead. This is to avoid that future additions to the set of │ │ │ auto-imported BIFs do not silently change the behavior of old code.

    However, to avoid that old (pre R14) code changed its behavior when compiled │ │ │ with Erlang/OTP version R14A or later, the following restriction applies: If you │ │ │ override the name of a BIF that was auto-imported in OTP versions prior to R14A │ │ │ (ERTS version 5.8) and have an implicitly qualified call to that function in │ │ │ your code, you either need to explicitly remove the auto-import using a compiler │ │ │ directive, or replace the call with a fully qualified function call. Otherwise │ │ │ -you get a compilation error. See the following example:

    -export([length/1,f/1]).
    │ │ │ +you get a compilation error. See the following example:

    -export([length/1,f/1]).
    │ │ │  
    │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │  
    │ │ │ -length([]) ->
    │ │ │ +length([]) ->
    │ │ │      0;
    │ │ │ -length([H|T]) ->
    │ │ │ -    1 + length(T). %% Calls the local function length/1
    │ │ │ +length([H|T]) ->
    │ │ │ +    1 + length(T). %% Calls the local function length/1
    │ │ │  
    │ │ │ -f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
    │ │ │ +f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
    │ │ │                                    %% which is allowed in guards
    │ │ │      long.

    The same logic applies to explicitly imported functions from other modules, as │ │ │ to locally defined functions. It is not allowed to both import a function from │ │ │ -another module and have the function declared in the module at the same time:

    -export([f/1]).
    │ │ │ +another module and have the function declared in the module at the same time:

    -export([f/1]).
    │ │ │  
    │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │  
    │ │ │ --import(mod,[length/1]).
    │ │ │ +-import(mod,[length/1]).
    │ │ │  
    │ │ │ -f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
    │ │ │ +f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
    │ │ │                                     %% which is allowed in guards
    │ │ │  
    │ │ │ -    erlang:length(X);              %% Explicit call to erlang:length in body
    │ │ │ +    erlang:length(X);              %% Explicit call to erlang:length in body
    │ │ │  
    │ │ │ -f(X) ->
    │ │ │ -    length(X).                     %% mod:length/1 is called

    For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ +f(X) -> │ │ │ + length(X). %% mod:length/1 is called

    For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ name with a local function or explicit import is always allowed. However, if the │ │ │ -compile({no_auto_import,[F/A]) directive is not used, the compiler issues a │ │ │ warning whenever the function is called in the module using the implicitly │ │ │ qualified function name.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -361,40 +361,40 @@ │ │ │ ...; │ │ │ GuardSeqN -> │ │ │ BodyN │ │ │ end

    The branches of an if-expression are scanned sequentially until a guard │ │ │ sequence GuardSeq that evaluates to true is found. Then the corresponding │ │ │ Body (a sequence of expressions separated by ,) is evaluated.

    The return value of Body is the return value of the if expression.

    If no guard sequence is evaluated as true, an if_clause run-time error occurs. │ │ │ If necessary, the guard expression true can be used in the last branch, as │ │ │ -that guard sequence is always true.

    Example:

    is_greater_than(X, Y) ->
    │ │ │ +that guard sequence is always true.

    Example:

    is_greater_than(X, Y) ->
    │ │ │      if
    │ │ │          X > Y ->
    │ │ │              true;
    │ │ │          true -> % works as an 'else' branch
    │ │ │              false
    │ │ │      end

    │ │ │ │ │ │ │ │ │ │ │ │ Case │ │ │

    │ │ │
    case Expr of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    The expression Expr is evaluated and the patterns Pattern are sequentially │ │ │ matched against the result. If a match succeeds and the optional guard sequence │ │ │ GuardSeq is true, the corresponding Body is evaluated.

    The return value of Body is the return value of the case expression.

    If there is no matching pattern with a true guard sequence, a case_clause │ │ │ -run-time error occurs.

    Example:

    is_valid_signal(Signal) ->
    │ │ │ +run-time error occurs.

    Example:

    is_valid_signal(Signal) ->
    │ │ │      case Signal of
    │ │ │ -        {signal, _What, _From, _To} ->
    │ │ │ +        {signal, _What, _From, _To} ->
    │ │ │              true;
    │ │ │ -        {signal, _What, _To} ->
    │ │ │ +        {signal, _What, _To} ->
    │ │ │              true;
    │ │ │          _Else ->
    │ │ │              false
    │ │ │      end.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -412,57 +412,57 @@ │ │ │ the top-level of a maybe block. It matches the pattern Expr1 against │ │ │ Expr2. If the matching succeeds, any unbound variable in the pattern becomes │ │ │ bound. If the expression is the last expression in the maybe block, it also │ │ │ returns the value of Expr2. If the matching is unsuccessful, the rest of the │ │ │ expressions in the maybe block are skipped and the return value of the maybe │ │ │ block is Expr2.

    None of the variables bound in a maybe block must be used in the code that │ │ │ follows the block.

    Here is an example:

    maybe
    │ │ │ -    {ok, A} ?= a(),
    │ │ │ +    {ok, A} ?= a(),
    │ │ │      true = A >= 0,
    │ │ │ -    {ok, B} ?= b(),
    │ │ │ +    {ok, B} ?= b(),
    │ │ │      A + B
    │ │ │  end

    Let us first assume that a() returns {ok,42} and b() returns {ok,58}. │ │ │ With those return values, all of the match operators will succeed, and the │ │ │ return value of the maybe block is A + B, which is equal to 42 + 58 = 100.

    Now let us assume that a() returns error. The conditional match operator in │ │ │ {ok, A} ?= a() fails to match, and the return value of the maybe block is │ │ │ the value of the expression that failed to match, namely error. Similarly, if │ │ │ b() returns wrong, the return value of the maybe block is wrong.

    Finally, let us assume that a() returns {ok,-1}. Because true = A >= 0 uses │ │ │ the match operator =, a {badmatch,false} run-time error occurs when the │ │ │ -expression fails to match the pattern.

    The example can be written in a less succient way using nested case expressions:

    case a() of
    │ │ │ -    {ok, A} ->
    │ │ │ +expression fails to match the pattern.

    The example can be written in a less succient way using nested case expressions:

    case a() of
    │ │ │ +    {ok, A} ->
    │ │ │          true = A >= 0,
    │ │ │ -        case b() of
    │ │ │ -            {ok, B} ->
    │ │ │ +        case b() of
    │ │ │ +            {ok, B} ->
    │ │ │                  A + B;
    │ │ │              Other1 ->
    │ │ │                  Other1
    │ │ │          end;
    │ │ │      Other2 ->
    │ │ │          Other2
    │ │ │  end

    The maybe block can be augmented with else clauses:

    maybe
    │ │ │      Expr1,
    │ │ │      ...,
    │ │ │      ExprN
    │ │ │  else
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    If a conditional match operator fails, the failed expression is matched against │ │ │ the patterns in all clauses between the else and end keywords. If a match │ │ │ succeeds and the optional guard sequence GuardSeq is true, the corresponding │ │ │ Body is evaluated. The value returned from the body is the return value of the │ │ │ maybe block.

    If there is no matching pattern with a true guard sequence, an else_clause │ │ │ run-time error occurs.

    None of the variables bound in a maybe block must be used in the else │ │ │ clauses. None of the variables bound in the else clauses must be used in the │ │ │ code that follows the maybe block.

    Here is the previous example augmented with else clauses:

    maybe
    │ │ │ -    {ok, A} ?= a(),
    │ │ │ +    {ok, A} ?= a(),
    │ │ │      true = A >= 0,
    │ │ │ -    {ok, B} ?= b(),
    │ │ │ +    {ok, B} ?= b(),
    │ │ │      A + B
    │ │ │  else
    │ │ │      error -> error;
    │ │ │      wrong -> error
    │ │ │  end

    The else clauses translate the failing value from the conditional match │ │ │ operators to the value error. If the failing value is not one of the │ │ │ recognized values, a else_clause run-time error occurs.

    │ │ │ @@ -481,75 +481,75 @@ │ │ │ {Name,Node} (or a pid located at another node), also never fails.

    │ │ │ │ │ │ │ │ │ │ │ │ Receive │ │ │

    │ │ │
    receive
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    Fetches a received message present in the message queue of the process. The │ │ │ first message in the message queue is matched sequentially against the patterns │ │ │ from top to bottom. If no match was found, the matching sequence is repeated for │ │ │ the second message in the queue, and so on. Messages are queued in the │ │ │ order they were received. If a match │ │ │ succeeds, that is, if the Pattern matches and the optional guard sequence │ │ │ GuardSeq is true, then the message is removed from the message queue and the │ │ │ corresponding Body is evaluated. All other messages in the message queue │ │ │ remain unchanged.

    The return value of Body is the return value of the receive expression.

    receive never fails. The execution is suspended, possibly indefinitely, until │ │ │ a message arrives that matches one of the patterns and with a true guard │ │ │ -sequence.

    Example:

    wait_for_onhook() ->
    │ │ │ +sequence.

    Example:

    wait_for_onhook() ->
    │ │ │      receive
    │ │ │          onhook ->
    │ │ │ -            disconnect(),
    │ │ │ -            idle();
    │ │ │ -        {connect, B} ->
    │ │ │ -            B ! {busy, self()},
    │ │ │ -            wait_for_onhook()
    │ │ │ +            disconnect(),
    │ │ │ +            idle();
    │ │ │ +        {connect, B} ->
    │ │ │ +            B ! {busy, self()},
    │ │ │ +            wait_for_onhook()
    │ │ │      end.

    The receive expression can be augmented with a timeout:

    receive
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  after
    │ │ │      ExprT ->
    │ │ │          BodyT
    │ │ │  end

    receive...after works exactly as receive, except that if no matching message │ │ │ has arrived within ExprT milliseconds, then BodyT is evaluated instead. The │ │ │ return value of BodyT then becomes the return value of the receive...after │ │ │ expression. ExprT is to evaluate to an integer, or the atom infinity. The │ │ │ allowed integer range is from 0 to 4294967295, that is, the longest possible │ │ │ timeout is almost 50 days. With a zero value the timeout occurs immediately if │ │ │ there is no matching message in the message queue.

    The atom infinity will make the process wait indefinitely for a matching │ │ │ message. This is the same as not using a timeout. It can be useful for timeout │ │ │ -values that are calculated at runtime.

    Example:

    wait_for_onhook() ->
    │ │ │ +values that are calculated at runtime.

    Example:

    wait_for_onhook() ->
    │ │ │      receive
    │ │ │          onhook ->
    │ │ │ -            disconnect(),
    │ │ │ -            idle();
    │ │ │ -        {connect, B} ->
    │ │ │ -            B ! {busy, self()},
    │ │ │ -            wait_for_onhook()
    │ │ │ +            disconnect(),
    │ │ │ +            idle();
    │ │ │ +        {connect, B} ->
    │ │ │ +            B ! {busy, self()},
    │ │ │ +            wait_for_onhook()
    │ │ │      after
    │ │ │          60000 ->
    │ │ │ -            disconnect(),
    │ │ │ -            error()
    │ │ │ +            disconnect(),
    │ │ │ +            error()
    │ │ │      end.

    It is legal to use a receive...after expression with no branches:

    receive
    │ │ │  after
    │ │ │      ExprT ->
    │ │ │          BodyT
    │ │ │  end

    This construction does not consume any messages, only suspends execution in the │ │ │ -process for ExprT milliseconds. This can be used to implement simple timers.

    Example:

    timer() ->
    │ │ │ -    spawn(m, timer, [self()]).
    │ │ │ +process for ExprT milliseconds. This can be used to implement simple timers.

    Example:

    timer() ->
    │ │ │ +    spawn(m, timer, [self()]).
    │ │ │  
    │ │ │ -timer(Pid) ->
    │ │ │ +timer(Pid) ->
    │ │ │      receive
    │ │ │      after
    │ │ │          5000 ->
    │ │ │              Pid ! timeout
    │ │ │      end.

    For more information on timers in Erlang in general, see the │ │ │ Timers section of the │ │ │ Time and Time Correction in Erlang │ │ │ @@ -591,21 +591,21 @@ │ │ │ false │ │ │ 4> 0.0 =:= -0.0. │ │ │ false │ │ │ 5> 0.0 =:= +0.0. │ │ │ true │ │ │ 6> 1 > a. │ │ │ false │ │ │ -7> #{c => 3} > #{a => 1, b => 2}. │ │ │ +7> #{c => 3} > #{a => 1, b => 2}. │ │ │ false │ │ │ -8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ +8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ true │ │ │ -9> <<2:2>> < <<128>>. │ │ │ +9> <<2:2>> < <<128>>. │ │ │ true │ │ │ -10> <<3:2>> < <<128>>. │ │ │ +10> <<3:2>> < <<128>>. │ │ │ false

    Note

    Prior to OTP 27, the term equivalence operators considered 0.0 │ │ │ and -0.0 to be the same term.

    This was changed in OTP 27 but legacy code may have expected them to be │ │ │ considered the same. To help users catch errors that may arise from an │ │ │ upgrade, the compiler raises a warning when 0.0 is pattern-matched or used │ │ │ in a term equivalence test.

    If you need to match 0.0 specifically, the warning can be silenced by │ │ │ writing +0.0 instead, which produces the same term but makes the compiler │ │ │ interpret the match as being done on purpose.

    │ │ │ @@ -631,15 +631,15 @@ │ │ │ 0 │ │ │ 8> 2#10 bor 2#01. │ │ │ 3 │ │ │ 9> a + 10. │ │ │ ** exception error: an error occurred when evaluating an arithmetic expression │ │ │ in operator +/2 │ │ │ called as a + 10 │ │ │ -10> 1 bsl (1 bsl 64). │ │ │ +10> 1 bsl (1 bsl 64). │ │ │ ** exception error: a system limit has been reached │ │ │ in operator bsl/2 │ │ │ called as 1 bsl 18446744073709551616

    │ │ │ │ │ │ │ │ │ │ │ │ Boolean Expressions │ │ │ @@ -658,136 +658,136 @@ │ │ │ │ │ │ │ │ │ │ │ │ Short-Circuit Expressions │ │ │

    │ │ │
    Expr1 orelse Expr2
    │ │ │  Expr1 andalso Expr2

    Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if:

    • Expr1 evaluates to false in an orelse expression.

    or

    • Expr1 evaluates to true in an andalso expression.

    Returns either the value of Expr1 (that is, true or false) or the value of │ │ │ -Expr2 (if Expr2 is evaluated).

    Example 1:

    case A >= -1.0 andalso math:sqrt(A+1) > B of

    This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ -never evaluated.

    Example 2:

    OnlyOne = is_atom(L) orelse
    │ │ │ -         (is_list(L) andalso length(L) == 1),

    Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ -andalso and orelse are tail-recursive.

    Example 3 (tail-recursive function):

    all(Pred, [Hd|Tail]) ->
    │ │ │ -    Pred(Hd) andalso all(Pred, Tail);
    │ │ │ -all(_, []) ->
    │ │ │ +Expr2 (if Expr2 is evaluated).

    Example 1:

    case A >= -1.0 andalso math:sqrt(A+1) > B of

    This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ +never evaluated.

    Example 2:

    OnlyOne = is_atom(L) orelse
    │ │ │ +         (is_list(L) andalso length(L) == 1),

    Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ +andalso and orelse are tail-recursive.

    Example 3 (tail-recursive function):

    all(Pred, [Hd|Tail]) ->
    │ │ │ +    Pred(Hd) andalso all(Pred, Tail);
    │ │ │ +all(_, []) ->
    │ │ │      true.

    Change

    Before Erlang/OTP R13A, Expr2 was required to evaluate to a Boolean value, │ │ │ and as consequence, andalso and orelse were not tail-recursive.

    │ │ │ │ │ │ │ │ │ │ │ │ List Operations │ │ │

    │ │ │
    Expr1 ++ Expr2
    │ │ │  Expr1 -- Expr2

    The list concatenation operator ++ appends its second argument to its first │ │ │ and returns the resulting list.

    The list subtraction operator -- produces a list that is a copy of the first │ │ │ argument. The procedure is as follows: for each element in the second argument, │ │ │ -the first occurrence of this element (if any) is removed.

    Example:

    1> [1,2,3] ++ [4,5].
    │ │ │ -[1,2,3,4,5]
    │ │ │ -2> [1,2,3,2,1,2] -- [2,1,2].
    │ │ │ -[3,1,2]

    │ │ │ +the first occurrence of this element (if any) is removed.

    Example:

    1> [1,2,3] ++ [4,5].
    │ │ │ +[1,2,3,4,5]
    │ │ │ +2> [1,2,3,2,1,2] -- [2,1,2].
    │ │ │ +[3,1,2]

    │ │ │ │ │ │ │ │ │ │ │ │ Map Expressions │ │ │

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ Creating Maps │ │ │

    │ │ │

    Constructing a new map is done by letting an expression K be associated with │ │ │ -another expression V:

    #{K => V}

    New maps can include multiple associations at construction by listing every │ │ │ -association:

    #{K1 => V1, ..., Kn => Vn}

    An empty map is constructed by not associating any terms with each other:

    #{}

    All keys and values in the map are terms. Any expression is first evaluated and │ │ │ +another expression V:

    #{K => V}

    New maps can include multiple associations at construction by listing every │ │ │ +association:

    #{K1 => V1, ..., Kn => Vn}

    An empty map is constructed by not associating any terms with each other:

    #{}

    All keys and values in the map are terms. Any expression is first evaluated and │ │ │ then the resulting terms are used as key and value respectively.

    Keys and values are separated by the => arrow and associations are separated │ │ │ -by a comma (,).

    Examples:

    M0 = #{},                 % empty map
    │ │ │ -M1 = #{a => <<"hello">>}, % single association with literals
    │ │ │ -M2 = #{1 => 2, b => b},   % multiple associations with literals
    │ │ │ -M3 = #{k => {A,B}},       % single association with variables
    │ │ │ -M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

    Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ -map terms.

    If two matching keys are declared, the latter key takes precedence.

    Example:

    1> #{1 => a, 1 => b}.
    │ │ │ -#{1 => b }
    │ │ │ -2> #{1.0 => a, 1 => b}.
    │ │ │ -#{1 => b, 1.0 => a}

    The order in which the expressions constructing the keys (and their associated │ │ │ +by a comma (,).

    Examples:

    M0 = #{},                 % empty map
    │ │ │ +M1 = #{a => <<"hello">>}, % single association with literals
    │ │ │ +M2 = #{1 => 2, b => b},   % multiple associations with literals
    │ │ │ +M3 = #{k => {A,B}},       % single association with variables
    │ │ │ +M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

    Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ +map terms.

    If two matching keys are declared, the latter key takes precedence.

    Example:

    1> #{1 => a, 1 => b}.
    │ │ │ +#{1 => b }
    │ │ │ +2> #{1.0 => a, 1 => b}.
    │ │ │ +#{1 => b, 1.0 => a}

    The order in which the expressions constructing the keys (and their associated │ │ │ values) are evaluated is not defined. The syntactic order of the key-value pairs │ │ │ in the construction is of no relevance, except in the recently mentioned case of │ │ │ two matching keys.

    │ │ │ │ │ │ │ │ │ │ │ │ Updating Maps │ │ │

    │ │ │

    Updating a map has a similar syntax as constructing it.

    An expression defining the map to be updated is put in front of the expression │ │ │ -defining the keys to be updated and their respective values:

    M#{K => V}

    Here M is a term of type map and K and V are any expression.

    If key K does not match any existing key in the map, a new association is │ │ │ +defining the keys to be updated and their respective values:

    M#{K => V}

    Here M is a term of type map and K and V are any expression.

    If key K does not match any existing key in the map, a new association is │ │ │ created from key K to value V.

    If key K matches an existing key in map M, its associated value is replaced │ │ │ by the new value V. In both cases, the evaluated map expression returns a new │ │ │ -map.

    If M is not of type map, an exception of type badmap is raised.

    To only update an existing value, the following syntax is used:

    M#{K := V}

    Here M is a term of type map, V is an expression and K is an expression │ │ │ +map.

    If M is not of type map, an exception of type badmap is raised.

    To only update an existing value, the following syntax is used:

    M#{K := V}

    Here M is a term of type map, V is an expression and K is an expression │ │ │ that evaluates to an existing key in M.

    If key K does not match any existing keys in map M, an exception of type │ │ │ badkey is raised at runtime. If a matching key K is present in map M, │ │ │ its associated value is replaced by the new value V, and the evaluated map │ │ │ -expression returns a new map.

    If M is not of type map, an exception of type badmap is raised.

    Examples:

    M0 = #{},
    │ │ │ -M1 = M0#{a => 0},
    │ │ │ -M2 = M1#{a => 1, b => 2},
    │ │ │ -M3 = M2#{"function" => fun() -> f() end},
    │ │ │ -M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

    Here M0 is any map. It follows that M1 through M4 are maps as well.

    More examples:

    1> M = #{1 => a}.
    │ │ │ -#{1 => a }
    │ │ │ -2> M#{1.0 => b}.
    │ │ │ -#{1 => a, 1.0 => b}.
    │ │ │ -3> M#{1 := b}.
    │ │ │ -#{1 => b}
    │ │ │ -4> M#{1.0 := b}.
    │ │ │ +expression returns a new map.

    If M is not of type map, an exception of type badmap is raised.

    Examples:

    M0 = #{},
    │ │ │ +M1 = M0#{a => 0},
    │ │ │ +M2 = M1#{a => 1, b => 2},
    │ │ │ +M3 = M2#{"function" => fun() -> f() end},
    │ │ │ +M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

    Here M0 is any map. It follows that M1 through M4 are maps as well.

    More examples:

    1> M = #{1 => a}.
    │ │ │ +#{1 => a }
    │ │ │ +2> M#{1.0 => b}.
    │ │ │ +#{1 => a, 1.0 => b}.
    │ │ │ +3> M#{1 := b}.
    │ │ │ +#{1 => b}
    │ │ │ +4> M#{1.0 := b}.
    │ │ │  ** exception error: bad argument

    As in construction, the order in which the key and value expressions are │ │ │ evaluated is not defined. The syntactic order of the key-value pairs in the │ │ │ update is of no relevance, except in the case where two keys match. In that │ │ │ case, the latter value is used.

    │ │ │ │ │ │ │ │ │ │ │ │ Maps in Patterns │ │ │

    │ │ │ -

    Matching of key-value associations from maps is done as follows:

    #{K := V} = M

    Here M is any map. The key K must be a │ │ │ +

    Matching of key-value associations from maps is done as follows:

    #{K := V} = M

    Here M is any map. The key K must be a │ │ │ guard expression, with all variables already │ │ │ bound. V can be any pattern with either bound or unbound variables.

    If the variable V is unbound, it becomes bound to the value associated with │ │ │ the key K, which must exist in the map M. If the variable V is bound, it │ │ │ must match the value associated with K in M.

    Change

    Before Erlang/OTP 23, the expression defining the key K was restricted to be │ │ │ -either a single variable or a literal.

    Example:

    1> M = #{"tuple" => {1,2}}.
    │ │ │ -#{"tuple" => {1,2}}
    │ │ │ -2> #{"tuple" := {1,B}} = M.
    │ │ │ -#{"tuple" => {1,2}}
    │ │ │ +either a single variable or a literal.

    Example:

    1> M = #{"tuple" => {1,2}}.
    │ │ │ +#{"tuple" => {1,2}}
    │ │ │ +2> #{"tuple" := {1,B}} = M.
    │ │ │ +#{"tuple" => {1,2}}
    │ │ │  3> B.
    │ │ │ -2.

    This binds variable B to integer 2.

    Similarly, multiple values from the map can be matched:

    #{K1 := V1, ..., Kn := Vn} = M

    Here keys K1 through Kn are any expressions with literals or bound │ │ │ +2.

    This binds variable B to integer 2.

    Similarly, multiple values from the map can be matched:

    #{K1 := V1, ..., Kn := Vn} = M

    Here keys K1 through Kn are any expressions with literals or bound │ │ │ variables. If all key expressions evaluate successfully and all keys │ │ │ exist in map M, all variables in V1 .. Vn is matched to the │ │ │ associated values of their respective keys.

    If the matching conditions are not met the match fails.

    Note that when matching a map, only the := operator (not the =>) is allowed │ │ │ as a delimiter for the associations.

    The order in which keys are declared in matching has no relevance.

    Duplicate keys are allowed in matching and match each pattern associated to the │ │ │ -keys:

    #{K := V1, K := V2} = M

    The empty map literal (#{}) matches any map when used as a pattern:

    #{} = Expr

    This expression matches if the expression Expr is of type map, otherwise it │ │ │ -fails with an exception badmatch.

    Here the key to be retrieved is constructed from an expression:

    #{{tag,length(List)} := V} = Map

    List must be an already bound variable.

    Matching Syntax

    Matching of literals as keys are allowed in function heads:

    %% only start if not_started
    │ │ │ -handle_call(start, From, #{state := not_started} = S) ->
    │ │ │ +keys:

    #{K := V1, K := V2} = M

    The empty map literal (#{}) matches any map when used as a pattern:

    #{} = Expr

    This expression matches if the expression Expr is of type map, otherwise it │ │ │ +fails with an exception badmatch.

    Here the key to be retrieved is constructed from an expression:

    #{{tag,length(List)} := V} = Map

    List must be an already bound variable.

    Matching Syntax

    Matching of literals as keys are allowed in function heads:

    %% only start if not_started
    │ │ │ +handle_call(start, From, #{state := not_started} = S) ->
    │ │ │  ...
    │ │ │ -    {reply, ok, S#{state := start}};
    │ │ │ +    {reply, ok, S#{state := start}};
    │ │ │  
    │ │ │  %% only change if started
    │ │ │ -handle_call(change, From, #{state := start} = S) ->
    │ │ │ +handle_call(change, From, #{state := start} = S) ->
    │ │ │  ...
    │ │ │ -    {reply, ok, S#{state := changed}};

    │ │ │ + {reply, ok, S#{state := changed}};

    │ │ │ │ │ │ │ │ │ │ │ │ Maps in Guards │ │ │

    │ │ │

    Maps are allowed in guards as long as all subexpressions are valid guard │ │ │ expressions.

    The following guard BIFs handle maps:

    │ │ │ │ │ │ │ │ │ │ │ │ Bit Syntax Expressions │ │ │

    │ │ │

    The bit syntax operates on bit strings. A bit string is a sequence of bits │ │ │ -ordered from the most significant bit to the least significant bit.

    <<>>  % The empty bit string, zero length
    │ │ │ -<<E1>>
    │ │ │ -<<E1,...,En>>

    Each element Ei specifies a segment of the bit string. The segments are │ │ │ +ordered from the most significant bit to the least significant bit.

    <<>>  % The empty bit string, zero length
    │ │ │ +<<E1>>
    │ │ │ +<<E1,...,En>>

    Each element Ei specifies a segment of the bit string. The segments are │ │ │ ordered left to right from the most significant bit to the least significant bit │ │ │ of the bit string.

    Each segment specification Ei is a value, whose default type is integer, │ │ │ followed by an optional size expression and an optional type specifier list.

    Ei = Value |
    │ │ │       Value:Size |
    │ │ │       Value/TypeSpecifierList |
    │ │ │       Value:Size/TypeSpecifierList

    When used in a bit string construction, Value is an expression that is to │ │ │ evaluate to an integer, float, or bit string. If the expression is not a single │ │ │ @@ -798,34 +798,34 @@ │ │ │ guard expression that evaluates to an │ │ │ integer. All variables in the guard expression must be already bound.

    Change

    Before Erlang/OTP 23, Size was restricted to be an integer or a variable │ │ │ bound to an integer.

    The value of Size specifies the size of the segment in units (see below). The │ │ │ default value depends on the type (see below):

    • For integer it is 8.
    • For float it is 64.
    • For binary and bitstring it is the whole binary or bit string.

    In matching, the default value for a binary or bit string segment is only valid │ │ │ for the last element. All other bit string or binary elements in the matching │ │ │ must have a size specification.

    Binaries

    A bit string with a length that is a multiple of 8 bits is known as a binary, │ │ │ which is the most common and useful type of bit string.

    A binary has a canonical representation in memory. Here follows a sequence of │ │ │ -bytes where each byte's value is its sequence number:

    <<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

    Bit strings are a later generalization of binaries, so many texts and much │ │ │ -information about binaries apply just as well for bit strings.

    Example:

    1> <<A/binary, B/binary>> = <<"abcde">>.
    │ │ │ +bytes where each byte's value is its sequence number:

    <<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

    Bit strings are a later generalization of binaries, so many texts and much │ │ │ +information about binaries apply just as well for bit strings.

    Example:

    1> <<A/binary, B/binary>> = <<"abcde">>.
    │ │ │  * 1:3: a binary field without size is only allowed at the end of a binary pattern
    │ │ │ -2> <<A:3/binary, B/binary>> = <<"abcde">>.
    │ │ │ -<<"abcde">>
    │ │ │ +2> <<A:3/binary, B/binary>> = <<"abcde">>.
    │ │ │ +<<"abcde">>
    │ │ │  3> A.
    │ │ │ -<<"abc">>
    │ │ │ +<<"abc">>
    │ │ │  4> B.
    │ │ │ -<<"de">>

    For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ +<<"de">>

    For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ of the segment is implicitly determined by the type and value itself.

    TypeSpecifierList is a list of type specifiers, in any order, separated by │ │ │ hyphens (-). Default values are used for any omitted type specifiers.

    • Type= integer | float | binary | bytes | bitstring | bits | │ │ │ utf8 | utf16 | utf32 - The default is integer. bytes is a │ │ │ shorthand for binary and bits is a shorthand for bitstring. See below │ │ │ for more information about the utf types.

    • Signedness= signed | unsigned - Only matters for matching and when │ │ │ the type is integer. The default is unsigned.

    • Endianness= big | little | native - Specifies byte level (octet │ │ │ level) endianness (byte order). Native-endian means that the endianness is │ │ │ resolved at load time to be either big-endian or little-endian, depending on │ │ │ what is native for the CPU that the Erlang machine is run on. Endianness only │ │ │ matters when the Type is either integer, utf16, utf32, or float. The │ │ │ -default is big.

      <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
    • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ +default is big.

      <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
    • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ Defaults to 1 for integer, float, and bitstring, and to 8 for binary. │ │ │ For types bitstring, bits, and bytes, it is not allowed to specify a │ │ │ unit value different from the default value. No unit specifier must be given │ │ │ for the types utf8, utf16, and utf32.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -850,41 +850,41 @@ │ │ │ │ │ │ Binary segments │ │ │

    │ │ │

    In this section, the phrase "binary segment" refers to any one of the segment │ │ │ types binary, bitstring, bytes, and bits.

    See also the paragraphs about Binaries.

    When constructing binaries and no size is specified for a binary segment, the │ │ │ entire binary value is interpolated into the binary being constructed. However, │ │ │ the size in bits of the binary being interpolated must be evenly divisible by │ │ │ -the unit value for the segment; otherwise an exception is raised.

    For example, the following examples all succeed:

    1> <<(<<"abc">>)/bitstring>>.
    │ │ │ -<<"abc">>
    │ │ │ -2> <<(<<"abc">>)/binary-unit:1>>.
    │ │ │ -<<"abc">>
    │ │ │ -3> <<(<<"abc">>)/binary>>.
    │ │ │ -<<"abc">>

    The first two examples have a unit value of 1 for the segment, while the third │ │ │ +the unit value for the segment; otherwise an exception is raised.

    For example, the following examples all succeed:

    1> <<(<<"abc">>)/bitstring>>.
    │ │ │ +<<"abc">>
    │ │ │ +2> <<(<<"abc">>)/binary-unit:1>>.
    │ │ │ +<<"abc">>
    │ │ │ +3> <<(<<"abc">>)/binary>>.
    │ │ │ +<<"abc">>

    The first two examples have a unit value of 1 for the segment, while the third │ │ │ segment has a unit value of 8.

    Attempting to interpolate a bit string of size 1 into a binary segment with unit │ │ │ -8 (the default unit for binary) fails as shown in this example:

    1> <<(<<1:1>>)/binary>>.
    │ │ │ -** exception error: bad argument

    For the construction to succeed, the unit value of the segment must be 1:

    2> <<(<<1:1>>)/bitstring>>.
    │ │ │ -<<1:1>>
    │ │ │ -3> <<(<<1:1>>)/binary-unit:1>>.
    │ │ │ -<<1:1>>

    Similarly, when matching a binary segment with no size specified, the match │ │ │ +8 (the default unit for binary) fails as shown in this example:

    1> <<(<<1:1>>)/binary>>.
    │ │ │ +** exception error: bad argument

    For the construction to succeed, the unit value of the segment must be 1:

    2> <<(<<1:1>>)/bitstring>>.
    │ │ │ +<<1:1>>
    │ │ │ +3> <<(<<1:1>>)/binary-unit:1>>.
    │ │ │ +<<1:1>>

    Similarly, when matching a binary segment with no size specified, the match │ │ │ succeeds if and only if the size in bits of the rest of the binary is evenly │ │ │ -divisible by the unit value:

    1> <<_/binary-unit:16>> = <<"">>.
    │ │ │ -<<>>
    │ │ │ -2> <<_/binary-unit:16>> = <<"a">>.
    │ │ │ +divisible by the unit value:

    1> <<_/binary-unit:16>> = <<"">>.
    │ │ │ +<<>>
    │ │ │ +2> <<_/binary-unit:16>> = <<"a">>.
    │ │ │  ** exception error: no match of right hand side value <<"a">>
    │ │ │ -3> <<_/binary-unit:16>> = <<"ab">>.
    │ │ │ -<<"ab">>
    │ │ │ -4> <<_/binary-unit:16>> = <<"abc">>.
    │ │ │ +3> <<_/binary-unit:16>> = <<"ab">>.
    │ │ │ +<<"ab">>
    │ │ │ +4> <<_/binary-unit:16>> = <<"abc">>.
    │ │ │  ** exception error: no match of right hand side value <<"abc">>
    │ │ │ -5> <<_/binary-unit:16>> = <<"abcd">>.
    │ │ │ -<<"abcd">>

    When a size is explicitly specified for a binary segment, the segment size in │ │ │ +5> <<_/binary-unit:16>> = <<"abcd">>. │ │ │ +<<"abcd">>

    When a size is explicitly specified for a binary segment, the segment size in │ │ │ bits is the value of Size multiplied by the default or explicit unit value.

    When constructing binaries, the size of the binary being interpolated into the │ │ │ -constructed binary must be at least as large as the size of the binary segment.

    Examples:

    1> <<(<<"abc">>):2/binary>>.
    │ │ │ -<<"ab">>
    │ │ │ -2> <<(<<"a">>):2/binary>>.
    │ │ │ +constructed binary must be at least as large as the size of the binary segment.

    Examples:

    1> <<(<<"abc">>):2/binary>>.
    │ │ │ +<<"ab">>
    │ │ │ +2> <<(<<"a">>):2/binary>>.
    │ │ │  ** exception error: construction of binary failed
    │ │ │          *** segment 1 of type 'binary': the value <<"a">> is shorter than the size of the segment

    │ │ │ │ │ │ │ │ │ │ │ │ Unicode segments │ │ │

    │ │ │ @@ -900,78 +900,78 @@ │ │ │ range 0 through 16#D7FF or 16#E000 through 16#10FFFF. The match fails if the │ │ │ returned value falls outside those ranges.

    A segment of type utf8 matches 1-4 bytes in the bit string, if the bit string │ │ │ at the match position contains a valid UTF-8 sequence. (See RFC-3629 or the │ │ │ Unicode standard.)

    A segment of type utf16 can match 2 or 4 bytes in the bit string. The match │ │ │ fails if the bit string at the match position does not contain a legal UTF-16 │ │ │ encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

    A segment of type utf32 can match 4 bytes in the bit string in the same way as │ │ │ an integer segment matches 32 bits. The match fails if the resulting integer │ │ │ -is outside the legal ranges previously mentioned.

    Examples:

    1> Bin1 = <<1,17,42>>.
    │ │ │ -<<1,17,42>>
    │ │ │ -2> Bin2 = <<"abc">>.
    │ │ │ -<<97,98,99>>
    │ │ │ +is outside the legal ranges previously mentioned.

    Examples:

    1> Bin1 = <<1,17,42>>.
    │ │ │ +<<1,17,42>>
    │ │ │ +2> Bin2 = <<"abc">>.
    │ │ │ +<<97,98,99>>
    │ │ │  
    │ │ │ -3> Bin3 = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ -4> <<A,B,C:16>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +3> Bin3 = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │ +4> <<A,B,C:16>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  5> C.
    │ │ │  42
    │ │ │ -6> <<D:16,E,F>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +6> <<D:16,E,F>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  7> D.
    │ │ │  273
    │ │ │  8> F.
    │ │ │  42
    │ │ │ -9> <<G,H/binary>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +9> <<G,H/binary>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  10> H.
    │ │ │ -<<17,0,42>>
    │ │ │ -11> <<G,J/bitstring>> = <<1,17,42:12>>.
    │ │ │ -<<1,17,2,10:4>>
    │ │ │ +<<17,0,42>>
    │ │ │ +11> <<G,J/bitstring>> = <<1,17,42:12>>.
    │ │ │ +<<1,17,2,10:4>>
    │ │ │  12> J.
    │ │ │ -<<17,2,10:4>>
    │ │ │ +<<17,2,10:4>>
    │ │ │  
    │ │ │ -13> <<1024/utf8>>.
    │ │ │ -<<208,128>>
    │ │ │ +13> <<1024/utf8>>.
    │ │ │ +<<208,128>>
    │ │ │  
    │ │ │ -14> <<1:1,0:7>>.
    │ │ │ -<<128>>
    │ │ │ -15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>.
    │ │ │ -<<35,1:4>>

    Notice that bit string patterns cannot be nested.

    Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ +14> <<1:1,0:7>>. │ │ │ +<<128>> │ │ │ +15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>. │ │ │ +<<35,1:4>>

    Notice that bit string patterns cannot be nested.

    Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ error. The correct way is to write a space after =: "B = <<1>>.

    More examples are provided in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Fun Expressions │ │ │

    │ │ │
    fun
    │ │ │ -    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │ +    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │                Body1;
    │ │ │      ...;
    │ │ │ -    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │ +    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │                BodyK
    │ │ │  end

    A fun expression begins with the keyword fun and ends with the keyword end. │ │ │ Between them is to be a function declaration, similar to a │ │ │ regular function declaration, │ │ │ except that the function name is optional and is to be a variable, if any.

    Variables in a fun head shadow the function name and both shadow variables in │ │ │ the function clause surrounding the fun expression. Variables bound in a fun │ │ │ -body are local to the fun body.

    The return value of the expression is the resulting fun.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ +body are local to the fun body.

    The return value of the expression is the resulting fun.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -2> Fun1(2).
    │ │ │ +2> Fun1(2).
    │ │ │  3
    │ │ │ -3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
    │ │ │ +3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -4> Fun2(7).
    │ │ │ +4> Fun2(7).
    │ │ │  gt
    │ │ │ -5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
    │ │ │ +5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -6> Fun3(4).
    │ │ │ +6> Fun3(4).
    │ │ │  24

    The following fun expressions are also allowed:

    fun Name/Arity
    │ │ │  fun Module:Name/Arity

    In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must │ │ │ -specify an existing local function. The expression is syntactic sugar for:

    fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

    In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ +specify an existing local function. The expression is syntactic sugar for:

    fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

    In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ integer. Module, Name, and Arity can also be variables. A fun defined in │ │ │ this way refers to the function Name with arity Arity in the latest │ │ │ version of module Module. A fun defined in this way is not dependent on the │ │ │ code for the module in which it is defined.

    Change

    Before Erlang/OTP R15, Module, Name, and Arity were not allowed to be │ │ │ variables.

    More examples are provided in Programming Examples.

    │ │ │ │ │ │ │ │ │ @@ -981,35 +981,35 @@ │ │ │
    catch Expr

    Returns the value of Expr unless an exception is raised during the evaluation. In │ │ │ that case, the exception is caught. The return value depends on the class of the │ │ │ exception:

    Reason depends on the type of error that occurred, and Stack is the stack of │ │ │ recent function calls, see Exit Reasons.

    Examples:

    1> catch 1+2.
    │ │ │  3
    │ │ │  2> catch 1+a.
    │ │ │ -{'EXIT',{badarith,[...]}}

    The BIF throw(Any) can be used for non-local return from a │ │ │ -function. It must be evaluated within a catch, which returns the value Any.

    Example:

    3> catch throw(hello).
    │ │ │ +{'EXIT',{badarith,[...]}}

    The BIF throw(Any) can be used for non-local return from a │ │ │ +function. It must be evaluated within a catch, which returns the value Any.

    Example:

    3> catch throw(hello).
    │ │ │  hello

    If throw/1 is not evaluated within a catch, a nocatch run-time │ │ │ error occurs.

    Change

    Before Erlang/OTP 24, the catch operator had the lowest precedence, making │ │ │ -it necessary to add parentheses when combining it with the match operator:

    1> A = (catch 42).
    │ │ │ +it necessary to add parentheses when combining it with the match operator:

    1> A = (catch 42).
    │ │ │  42
    │ │ │  2> A.
    │ │ │  42

    Starting from Erlang/OTP 24, the parentheses can be omitted:

    1> A = catch 42.
    │ │ │  42
    │ │ │  2> A.
    │ │ │  42

    │ │ │ │ │ │ │ │ │ │ │ │ Try │ │ │

    │ │ │
    try Exprs
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    This is an enhancement of catch. It gives the │ │ │ possibility to:

    • Distinguish between different exception classes.
    • Choose to handle only the desired ones.
    • Passing the others on to an enclosing try or catch, or to default error │ │ │ handling.

    Notice that although the keyword catch is used in the try expression, there │ │ │ is not a catch expression within the try expression.

    It returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) │ │ │ unless an exception occurs during the evaluation. In that case the exception is │ │ │ caught and the patterns ExceptionPattern with the right exception class │ │ │ @@ -1019,47 +1019,47 @@ │ │ │ stack trace is bound to the variable when the corresponding ExceptionPattern │ │ │ matches.

    If an exception occurs during evaluation of Exprs but there is no matching │ │ │ ExceptionPattern of the right Class with a true guard sequence, the │ │ │ exception is passed on as if Exprs had not been enclosed in a try │ │ │ expression.

    If an exception occurs during evaluation of ExceptionBody, it is not caught.

    It is allowed to omit Class and Stacktrace. An omitted Class is shorthand │ │ │ for throw:

    try Exprs
    │ │ │  catch
    │ │ │ -    ExceptionPattern1 [when ExceptionGuardSeq1] ->
    │ │ │ +    ExceptionPattern1 [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │ -    ExceptionPatternN [when ExceptionGuardSeqN] ->
    │ │ │ +    ExceptionPatternN [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    The try expression can have an of section:

    try Exprs of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │      ...;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    If the evaluation of Exprs succeeds without an exception, the patterns │ │ │ Pattern are sequentially matched against the result in the same way as for a │ │ │ case expression, except that if the matching fails, a │ │ │ try_clause run-time error occurs instead of a case_clause.

    Only exceptions occurring during the evaluation of Exprs can be caught by the │ │ │ catch section. Exceptions occurring in a Body or due to a failed match are │ │ │ not caught.

    The try expression can also be augmented with an after section, intended to │ │ │ be used for cleanup with side effects:

    try Exprs of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │      ...;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  after
    │ │ │      AfterBody
    │ │ │  end

    AfterBody is evaluated after either Body or ExceptionBody, no matter which │ │ │ one. The evaluated value of AfterBody is lost; the return value of the try │ │ │ expression is the same with an after section as without.

    Even if an exception occurs during evaluation of Body or ExceptionBody, │ │ │ AfterBody is evaluated. In this case the exception is passed on after │ │ │ @@ -1082,40 +1082,40 @@ │ │ │ ExpressionBody │ │ │ after │ │ │ AfterBody │ │ │ end │ │ │ │ │ │ try Exprs after AfterBody end

    Next is an example of using after. This closes the file, even in the event of │ │ │ exceptions in file:read/2 or in binary_to_term/1. The │ │ │ -exceptions are the same as without the try...after...end expression:

    termize_file(Name) ->
    │ │ │ -    {ok,F} = file:open(Name, [read,binary]),
    │ │ │ +exceptions are the same as without the try...after...end expression:

    termize_file(Name) ->
    │ │ │ +    {ok,F} = file:open(Name, [read,binary]),
    │ │ │      try
    │ │ │ -        {ok,Bin} = file:read(F, 1024*1024),
    │ │ │ -        binary_to_term(Bin)
    │ │ │ +        {ok,Bin} = file:read(F, 1024*1024),
    │ │ │ +        binary_to_term(Bin)
    │ │ │      after
    │ │ │ -        file:close(F)
    │ │ │ +        file:close(F)
    │ │ │      end.

    Next is an example of using try to emulate catch Expr:

    try Expr
    │ │ │  catch
    │ │ │      throw:Term -> Term;
    │ │ │ -    exit:Reason -> {'EXIT',Reason};
    │ │ │ -    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
    │ │ │ +    exit:Reason -> {'EXIT',Reason};
    │ │ │ +    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
    │ │ │  end

    Variables bound in the various parts of these expressions have different scopes. │ │ │ Variables bound just after the try keyword are:

    • bound in the of section
    • unsafe in both the catch and after sections, as well as after the whole │ │ │ construct

    Variables bound in of section are:

    • unbound in the catch section
    • unsafe in both the after section, as well as after the whole construct

    Variables bound in the catch section are unsafe in the after section, as │ │ │ well as after the whole construct.

    Variables bound in the after section are unsafe after the whole construct.

    │ │ │ │ │ │ │ │ │ │ │ │ Parenthesized Expressions │ │ │

    │ │ │ -
    (Expr)

    Parenthesized expressions are useful to override │ │ │ +

    (Expr)

    Parenthesized expressions are useful to override │ │ │ operator precedences, for example, in arithmetic │ │ │ expressions:

    1> 1 + 2 * 3.
    │ │ │  7
    │ │ │ -2> (1 + 2) * 3.
    │ │ │ +2> (1 + 2) * 3.
    │ │ │  9

    │ │ │ │ │ │ │ │ │ │ │ │ Block Expressions │ │ │

    │ │ │
    begin
    │ │ │ @@ -1127,71 +1127,71 @@
    │ │ │    
    │ │ │      
    │ │ │    
    │ │ │    Comprehensions
    │ │ │  

    │ │ │

    Comprehensions provide a succinct notation for iterating over one or more terms │ │ │ and constructing a new term. Comprehensions come in three different flavors, │ │ │ -depending on the type of term they build.

    List comprehensions construct lists. They have the following syntax:

    [Expr || Qualifier1, . . ., QualifierN]

    Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ +depending on the type of term they build.

    List comprehensions construct lists. They have the following syntax:

    [Expr || Qualifier1, . . ., QualifierN]

    Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ generator or a filter.

    Bit string comprehensions construct bit strings or binaries. They have the │ │ │ -following syntax:

    << BitStringExpr || Qualifier1, . . ., QualifierN >>

    BitStringExpr is an expression that evaluates to a bit string. If │ │ │ +following syntax:

    << BitStringExpr || Qualifier1, . . ., QualifierN >>

    BitStringExpr is an expression that evaluates to a bit string. If │ │ │ BitStringExpr is a function call, it must be enclosed in parentheses. Each │ │ │ -Qualifier is either a generator or a filter.

    Map comprehensions construct maps. They have the following syntax:

    #{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

    Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ +Qualifier is either a generator or a filter.

    Map comprehensions construct maps. They have the following syntax:

    #{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

    Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ is either a generator or a filter.

    Change

    Map comprehensions and map generators were introduced in Erlang/OTP 26.

    There are three kinds of generators.

    A list generator has the following syntax:

    Pattern <- ListExpr

    where ListExpr is an expression that evaluates to a list of terms.

    A bit string generator has the following syntax:

    BitstringPattern <= BitStringExpr

    where BitStringExpr is an expression that evaluates to a bit string.

    A map generator has the following syntax:

    KeyPattern := ValuePattern <- MapExpression

    where MapExpr is an expression that evaluates to a map, or a map iterator │ │ │ obtained by calling maps:iterator/1 or maps:iterator/2.

    A filter is an expression that evaluates to true or false.

    The variables in the generator patterns shadow previously bound variables, │ │ │ including variables bound in a previous generator pattern.

    Variables bound in a generator expression are not visible outside the │ │ │ -expression:

    1> [{E,L} || E <- L=[1,2,3]].
    │ │ │ +expression:

    1> [{E,L} || E <- L=[1,2,3]].
    │ │ │  * 1:5: variable 'L' is unbound

    A list comprehension returns a list, where the list elements are the result │ │ │ of evaluating Expr for each combination of generator elements for which all │ │ │ filters are true.

    A bit string comprehension returns a bit string, which is created by │ │ │ concatenating the results of evaluating BitStringExpr for each combination of │ │ │ bit string generator elements for which all filters are true.

    A map comprehension returns a map, where the map elements are the result of │ │ │ evaluating KeyExpr and ValueExpr for each combination of generator elements │ │ │ for which all filters are true. If the key expressions are not unique, the last │ │ │ -occurrence is stored in the map.

    Examples:

    Multiplying each element in a list by two:

    1> [X*2 || X <- [1,2,3]].
    │ │ │ -[2,4,6]

    Multiplying each byte in a binary by two, returning a list:

    1> [X*2 || <<X>> <= <<1,2,3>>].
    │ │ │ -[2,4,6]

    Multiplying each byte in a binary by two:

    1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
    │ │ │ -<<2,4,6>>

    Multiplying each element in a list by two, returning a binary:

    1> << <<(X*2)>> || X <- [1,2,3] >>.
    │ │ │ -<<2,4,6>>

    Creating a mapping from an integer to its square:

    1> #{X => X*X || X <- [1,2,3]}.
    │ │ │ -#{1 => 1,2 => 4,3 => 9}

    Multiplying the value of each element in a map by two:

    1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
    │ │ │ -#{a => 2,b => 4,c => 6}

    Filtering a list, keeping odd numbers:

    1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
    │ │ │ -[1,3,5]

    Filtering a list, keeping only elements that match:

    1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
    │ │ │ -[{a,b},{1,2}]

    Combining elements from two list generators:

    1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
    │ │ │ -[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

    More examples are provided in │ │ │ +occurrence is stored in the map.

    Examples:

    Multiplying each element in a list by two:

    1> [X*2 || X <- [1,2,3]].
    │ │ │ +[2,4,6]

    Multiplying each byte in a binary by two, returning a list:

    1> [X*2 || <<X>> <= <<1,2,3>>].
    │ │ │ +[2,4,6]

    Multiplying each byte in a binary by two:

    1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
    │ │ │ +<<2,4,6>>

    Multiplying each element in a list by two, returning a binary:

    1> << <<(X*2)>> || X <- [1,2,3] >>.
    │ │ │ +<<2,4,6>>

    Creating a mapping from an integer to its square:

    1> #{X => X*X || X <- [1,2,3]}.
    │ │ │ +#{1 => 1,2 => 4,3 => 9}

    Multiplying the value of each element in a map by two:

    1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
    │ │ │ +#{a => 2,b => 4,c => 6}

    Filtering a list, keeping odd numbers:

    1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
    │ │ │ +[1,3,5]

    Filtering a list, keeping only elements that match:

    1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
    │ │ │ +[{a,b},{1,2}]

    Combining elements from two list generators:

    1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
    │ │ │ +[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

    More examples are provided in │ │ │ Programming Examples.

    When there are no generators, a comprehension returns either a term constructed │ │ │ from a single element (the result of evaluating Expr) if all filters are true, │ │ │ or a term constructed from no elements (that is, [] for list comprehension, │ │ │ -<<>> for a bit string comprehension, and #{} for a map comprehension).

    Example:

    1> [2 || is_integer(2)].
    │ │ │ -[2]
    │ │ │ -2> [x || is_integer(x)].
    │ │ │ -[]

    What happens when the filter expression does not evaluate to a boolean value │ │ │ +<<>> for a bit string comprehension, and #{} for a map comprehension).

    Example:

    1> [2 || is_integer(2)].
    │ │ │ +[2]
    │ │ │ +2> [x || is_integer(x)].
    │ │ │ +[]

    What happens when the filter expression does not evaluate to a boolean value │ │ │ depends on the expression:

    • If the expression is a guard expression, │ │ │ failure to evaluate or evaluating to a non-boolean value is equivalent to │ │ │ evaluating to false.
    • If the expression is not a guard expression and evaluates to a non-Boolean │ │ │ value Val, an exception {bad_filter, Val} is triggered at runtime. If the │ │ │ evaluation of the expression raises an exception, it is not caught by the │ │ │ -comprehension.

    Examples (using a guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ -[1,2,a,b,c,3,4]
    │ │ │ -2> [E || E <- List, E rem 2].
    │ │ │ -[]
    │ │ │ -3> [E || E <- List, E rem 2 =:= 0].
    │ │ │ -[2,4]

    Examples (using a non-guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ -[1,2,a,b,c,3,4]
    │ │ │ -2> FaultyIsEven = fun(E) -> E rem 2 end.
    │ │ │ +comprehension.

    Examples (using a guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ +[1,2,a,b,c,3,4]
    │ │ │ +2> [E || E <- List, E rem 2].
    │ │ │ +[]
    │ │ │ +3> [E || E <- List, E rem 2 =:= 0].
    │ │ │ +[2,4]

    Examples (using a non-guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ +[1,2,a,b,c,3,4]
    │ │ │ +2> FaultyIsEven = fun(E) -> E rem 2 end.
    │ │ │  #Fun<erl_eval.42.17316486>
    │ │ │ -3> [E || E <- List, FaultyIsEven(E)].
    │ │ │ +3> [E || E <- List, FaultyIsEven(E)].
    │ │ │  ** exception error: bad filter 1
    │ │ │ -4> IsEven = fun(E) -> E rem 2 =:= 0 end.
    │ │ │ +4> IsEven = fun(E) -> E rem 2 =:= 0 end.
    │ │ │  #Fun<erl_eval.42.17316486>
    │ │ │ -5> [E || E <- List, IsEven(E)].
    │ │ │ +5> [E || E <- List, IsEven(E)].
    │ │ │  ** exception error: an error occurred when evaluating an arithmetic expression
    │ │ │       in operator  rem/2
    │ │ │          called as a rem 2
    │ │ │ -6> [E || E <- List, is_integer(E), IsEven(E)].
    │ │ │ -[2,4]

    │ │ │ +6> [E || E <- List, is_integer(E), IsEven(E)]. │ │ │ +[2,4]

    │ │ │ │ │ │ │ │ │ │ │ │ Guard Sequences │ │ │

    │ │ │

    A guard sequence is a sequence of guards, separated by semicolon (;). The │ │ │ guard sequence is true if at least one of the guards is true. (The remaining │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/funs.html │ │ │ @@ -117,402 +117,402 @@ │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │

    │ │ │ -

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ -double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ -[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ -add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ -by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ -map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ -follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ -add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ +

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ +double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ +[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ +add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ +by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ +map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ +follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ +add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ arguments and returns a new list, obtained by applying F to each of the │ │ │ elements in L.

    The process of abstracting out the common features of a number of different │ │ │ programs is called procedural abstraction. Procedural abstraction can be used │ │ │ to write several different functions that have a similar structure, but differ │ │ │ in some minor detail. This is done as follows:

    1. Step 1. Write one function that represents the common features of these │ │ │ functions.
    2. Step 2. Parameterize the difference in terms of functions that are passed │ │ │ as arguments to the common function.

    │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │

    │ │ │

    This section illustrates procedural abstraction. Initially, the following two │ │ │ -examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ -    io:format(Stream, "~p~n", [H]),
    │ │ │ -    print_list(Stream, T);
    │ │ │ -print_list(Stream, []) ->
    │ │ │ -    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ +examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ +    io:format(Stream, "~p~n", [H]),
    │ │ │ +    print_list(Stream, T);
    │ │ │ +print_list(Stream, []) ->
    │ │ │ +    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │      Pid ! Msg,
    │ │ │ -    broadcast(Msg, Pids);
    │ │ │ -broadcast(_, []) ->
    │ │ │ +    broadcast(Msg, Pids);
    │ │ │ +broadcast(_, []) ->
    │ │ │      true.

    These two functions have a similar structure. They both iterate over a list and │ │ │ do something to each element in the list. The "something" is passed on as an │ │ │ -extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ -    F(H),
    │ │ │ -    foreach(F, T);
    │ │ │ -foreach(F, []) ->
    │ │ │ -    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ +extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ +    F(H),
    │ │ │ +    foreach(F, T);
    │ │ │ +foreach(F, []) ->
    │ │ │ +    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ calls Fun(X) for each element X in L and the processing occurs in the │ │ │ order that the elements were defined in L. map does not define the order in │ │ │ which its elements are processed.

    │ │ │ │ │ │ │ │ │ │ │ │ Syntax of Funs │ │ │

    │ │ │

    Funs are written with the following syntax (see │ │ │ -Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ +Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │          ...
    │ │ │      end

    This creates an anonymous function of N arguments and binds it to the variable │ │ │ F.

    Another function, FunctionName, written in the same module, can be passed as │ │ │ an argument, using the following syntax:

    F = fun FunctionName/Arity

    With this form of function reference, the function that is referred to does not │ │ │ need to be exported from the module.

    It is also possible to refer to a function defined in a different module, with │ │ │ -the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ --export([t1/0, t2/0]).
    │ │ │ --import(lists, [map/2]).
    │ │ │ +the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ +-export([t1/0, t2/0]).
    │ │ │ +-import(lists, [map/2]).
    │ │ │  
    │ │ │ -t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ +t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │  
    │ │ │ -t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ +t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │  
    │ │ │ -double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ -is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ -   apply(F, Args);
    │ │ │ -f(N, _) when is_integer(N) ->
    │ │ │ +double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ +is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ +   apply(F, Args);
    │ │ │ +f(N, _) when is_integer(N) ->
    │ │ │     N.

    Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve │ │ │ information about a fun, and the BIF erlang:fun_to_list/1 returns a textual │ │ │ representation of a fun. The check_process_code/2 │ │ │ BIF returns true if the process contains funs that depend on the old version │ │ │ of a module.

    │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings Within a Fun │ │ │

    │ │ │

    The scope rules for variables that occur in funs are as follows:

    • All variables that occur in the head of a fun are assumed to be "fresh" │ │ │ variables.
    • Variables that are defined before the fun, and that occur in function calls or │ │ │ -guard tests within the fun, have the values they had outside the fun.
    • Variables cannot be exported from a fun.

    The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ -    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ -    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ +guard tests within the fun, have the values they had outside the fun.

  • Variables cannot be exported from a fun.
  • The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ +    {ok, Stream} = file:open(File, write),
    │ │ │ +    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ +    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ variable Stream, which is used within the fun, gets its value from the │ │ │ file:open line.

    As any variable that occurs in the head of a fun is considered a new variable, │ │ │ -it is equally valid to write as follows:

    print_list(File, List) ->
    │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ -    foreach(fun(File) ->
    │ │ │ -                io:format(Stream,"~p~n",[File])
    │ │ │ -            end, List),
    │ │ │ -    file:close(Stream).

    Here, File is used as the new variable instead of X. This is not so wise │ │ │ +it is equally valid to write as follows:

    print_list(File, List) ->
    │ │ │ +    {ok, Stream} = file:open(File, write),
    │ │ │ +    foreach(fun(File) ->
    │ │ │ +                io:format(Stream,"~p~n",[File])
    │ │ │ +            end, List),
    │ │ │ +    file:close(Stream).

    Here, File is used as the new variable instead of X. This is not so wise │ │ │ because code in the fun body cannot refer to the variable File, which is │ │ │ defined outside of the fun. Compiling this example gives the following │ │ │ diagnostic:

    ./FileName.erl:Line: Warning: variable 'File'
    │ │ │        shadowed in 'fun'

    This indicates that the variable File, which is defined inside the fun, │ │ │ collides with the variable File, which is defined outside the fun.

    The rules for importing variables into a fun has the consequence that certain │ │ │ pattern matching operations must be moved into guard expressions and cannot be │ │ │ written in the head of the fun. For example, you might write the following code │ │ │ if you intend the first clause of F to be evaluated when the value of its │ │ │ -argument is Y:

    f(...) ->
    │ │ │ +argument is Y:

    f(...) ->
    │ │ │      Y = ...
    │ │ │ -    map(fun(X) when X == Y ->
    │ │ │ +    map(fun(X) when X == Y ->
    │ │ │               ;
    │ │ │ -           (_) ->
    │ │ │ +           (_) ->
    │ │ │               ...
    │ │ │ -        end, ...)
    │ │ │ -    ...

    instead of writing the following code:

    f(...) ->
    │ │ │ +        end, ...)
    │ │ │ +    ...

    instead of writing the following code:

    f(...) ->
    │ │ │      Y = ...
    │ │ │ -    map(fun(Y) ->
    │ │ │ +    map(fun(Y) ->
    │ │ │               ;
    │ │ │ -           (_) ->
    │ │ │ +           (_) ->
    │ │ │               ...
    │ │ │ -        end, ...)
    │ │ │ +        end, ...)
    │ │ │      ...

    │ │ │ │ │ │ │ │ │ │ │ │ Funs and Module Lists │ │ │

    │ │ │

    The following examples show a dialogue with the Erlang shell. All the higher │ │ │ order functions discussed are exported from the module lists.

    │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │

    │ │ │ -

    lists:map/2 takes a function of one argument and a list of terms:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ -map(F, [])    -> [].

    It returns the list obtained by applying the function to every argument in the │ │ │ +

    lists:map/2 takes a function of one argument and a list of terms:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ +map(F, [])    -> [].

    It returns the list obtained by applying the function to every argument in the │ │ │ list.

    When a new fun is defined in the shell, the value of the fun is printed as │ │ │ -Fun#<erl_eval>:

    > Double = fun(X) -> 2 * X end.
    │ │ │ +Fun#<erl_eval>:

    > Double = fun(X) -> 2 * X end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> lists:map(Double, [1,2,3,4,5]).
    │ │ │ -[2,4,6,8,10]

    │ │ │ +> lists:map(Double, [1,2,3,4,5]). │ │ │ +[2,4,6,8,10]

    │ │ │ │ │ │ │ │ │ │ │ │ any │ │ │

    │ │ │ -

    lists:any/2 takes a predicate P of one argument and a list of terms:

    any(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ +

    lists:any/2 takes a predicate P of one argument and a list of terms:

    any(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │          true  ->  true;
    │ │ │ -        false ->  any(Pred, T)
    │ │ │ +        false ->  any(Pred, T)
    │ │ │      end;
    │ │ │ -any(Pred, []) ->
    │ │ │ +any(Pred, []) ->
    │ │ │      false.

    A predicate is a function that returns true or false. any is true if │ │ │ there is a term X in the list such that P(X) is true.

    A predicate Big(X) is defined, which is true if its argument is greater that │ │ │ -10:

    > Big =  fun(X) -> if X > 10 -> true; true -> false end end.
    │ │ │ +10:

    > Big =  fun(X) -> if X > 10 -> true; true -> false end end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> lists:any(Big, [1,2,3,4]).
    │ │ │ +> lists:any(Big, [1,2,3,4]).
    │ │ │  false
    │ │ │ -> lists:any(Big, [1,2,3,12,5]).
    │ │ │ +> lists:any(Big, [1,2,3,12,5]).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ all │ │ │

    │ │ │ -

    lists:all/2 has the same arguments as any:

    all(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  ->  all(Pred, T);
    │ │ │ +

    lists:all/2 has the same arguments as any:

    all(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  ->  all(Pred, T);
    │ │ │          false ->  false
    │ │ │      end;
    │ │ │ -all(Pred, []) ->
    │ │ │ -    true.

    It is true if the predicate applied to all elements in the list is true.

    > lists:all(Big, [1,2,3,4,12,6]).
    │ │ │ +all(Pred, []) ->
    │ │ │ +    true.

    It is true if the predicate applied to all elements in the list is true.

    > lists:all(Big, [1,2,3,4,12,6]).
    │ │ │  false
    │ │ │ -> lists:all(Big, [12,13,14,15]).
    │ │ │ +> lists:all(Big, [12,13,14,15]).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │

    │ │ │ -

    lists:foreach/2 takes a function of one argument and a list of terms:

    foreach(F, [H|T]) ->
    │ │ │ -    F(H),
    │ │ │ -    foreach(F, T);
    │ │ │ -foreach(F, []) ->
    │ │ │ +

    lists:foreach/2 takes a function of one argument and a list of terms:

    foreach(F, [H|T]) ->
    │ │ │ +    F(H),
    │ │ │ +    foreach(F, T);
    │ │ │ +foreach(F, []) ->
    │ │ │      ok.

    The function is applied to each argument in the list. foreach returns ok. It │ │ │ -is only used for its side-effect:

    > lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
    │ │ │ +is only used for its side-effect:

    > lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
    │ │ │  1
    │ │ │  2
    │ │ │  3
    │ │ │  4
    │ │ │  ok

    │ │ │ │ │ │ │ │ │ │ │ │ foldl │ │ │

    │ │ │ -

    lists:foldl/3 takes a function of two arguments, an accumulator and a list:

    foldl(F, Accu, [Hd|Tail]) ->
    │ │ │ -    foldl(F, F(Hd, Accu), Tail);
    │ │ │ -foldl(F, Accu, []) -> Accu.

    The function is called with two arguments. The first argument is the successive │ │ │ +

    lists:foldl/3 takes a function of two arguments, an accumulator and a list:

    foldl(F, Accu, [Hd|Tail]) ->
    │ │ │ +    foldl(F, F(Hd, Accu), Tail);
    │ │ │ +foldl(F, Accu, []) -> Accu.

    The function is called with two arguments. The first argument is the successive │ │ │ elements in the list. The second argument is the accumulator. The function must │ │ │ return a new accumulator, which is used the next time the function is called.

    If you have a list of lists L = ["I","like","Erlang"], then you can sum the │ │ │ -lengths of all the strings in L as follows:

    > L = ["I","like","Erlang"].
    │ │ │ -["I","like","Erlang"]
    │ │ │ -10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
    │ │ │ -11

    lists:foldl/3 works like a while loop in an imperative language:

    L =  ["I","like","Erlang"],
    │ │ │ +lengths of all the strings in L as follows:

    > L = ["I","like","Erlang"].
    │ │ │ +["I","like","Erlang"]
    │ │ │ +10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
    │ │ │ +11

    lists:foldl/3 works like a while loop in an imperative language:

    L =  ["I","like","Erlang"],
    │ │ │  Sum = 0,
    │ │ │ -while( L != []){
    │ │ │ -    Sum += length(head(L)),
    │ │ │ -    L = tail(L)
    │ │ │ +while( L != []){
    │ │ │ +    Sum += length(head(L)),
    │ │ │ +    L = tail(L)
    │ │ │  end

    │ │ │ │ │ │ │ │ │ │ │ │ mapfoldl │ │ │

    │ │ │ -

    lists:mapfoldl/3 simultaneously maps and folds over a list:

    mapfoldl(F, Accu0, [Hd|Tail]) ->
    │ │ │ -    {R,Accu1} = F(Hd, Accu0),
    │ │ │ -    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    │ │ │ -    {[R|Rs], Accu2};
    │ │ │ -mapfoldl(F, Accu, []) -> {[], Accu}.

    The following example shows how to change all letters in L to upper case and │ │ │ -then count them.

    First the change to upper case:

    > Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
    │ │ │ -(X) -> X
    │ │ │ +

    lists:mapfoldl/3 simultaneously maps and folds over a list:

    mapfoldl(F, Accu0, [Hd|Tail]) ->
    │ │ │ +    {R,Accu1} = F(Hd, Accu0),
    │ │ │ +    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    │ │ │ +    {[R|Rs], Accu2};
    │ │ │ +mapfoldl(F, Accu, []) -> {[], Accu}.

    The following example shows how to change all letters in L to upper case and │ │ │ +then count them.

    First the change to upper case:

    > Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
    │ │ │ +(X) -> X
    │ │ │  end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │  > Upcase_word =
    │ │ │ -fun(X) ->
    │ │ │ -lists:map(Upcase, X)
    │ │ │ +fun(X) ->
    │ │ │ +lists:map(Upcase, X)
    │ │ │  end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Upcase_word("Erlang").
    │ │ │ +> Upcase_word("Erlang").
    │ │ │  "ERLANG"
    │ │ │ -> lists:map(Upcase_word, L).
    │ │ │ -["I","LIKE","ERLANG"]

    Now, the fold and the map can be done at the same time:

    > lists:mapfoldl(fun(Word, Sum) ->
    │ │ │ -{Upcase_word(Word), Sum + length(Word)}
    │ │ │ -end, 0, L).
    │ │ │ -{["I","LIKE","ERLANG"],11}

    │ │ │ +> lists:map(Upcase_word, L). │ │ │ +["I","LIKE","ERLANG"]

    Now, the fold and the map can be done at the same time:

    > lists:mapfoldl(fun(Word, Sum) ->
    │ │ │ +{Upcase_word(Word), Sum + length(Word)}
    │ │ │ +end, 0, L).
    │ │ │ +{["I","LIKE","ERLANG"],11}

    │ │ │ │ │ │ │ │ │ │ │ │ filter │ │ │

    │ │ │

    lists:filter/2 takes a predicate of one argument and a list and returns all elements │ │ │ -in the list that satisfy the predicate:

    filter(F, [H|T]) ->
    │ │ │ -    case F(H) of
    │ │ │ -        true  -> [H|filter(F, T)];
    │ │ │ -        false -> filter(F, T)
    │ │ │ +in the list that satisfy the predicate:

    filter(F, [H|T]) ->
    │ │ │ +    case F(H) of
    │ │ │ +        true  -> [H|filter(F, T)];
    │ │ │ +        false -> filter(F, T)
    │ │ │      end;
    │ │ │ -filter(F, []) -> [].
    > lists:filter(Big, [500,12,2,45,6,7]).
    │ │ │ -[500,12,45]

    Combining maps and filters enables writing of very succinct code. For example, │ │ │ +filter(F, []) -> [].

    > lists:filter(Big, [500,12,2,45,6,7]).
    │ │ │ +[500,12,45]

    Combining maps and filters enables writing of very succinct code. For example, │ │ │ to define a set difference function diff(L1, L2) to be the difference between │ │ │ -the lists L1 and L2, the code can be written as follows:

    diff(L1, L2) ->
    │ │ │ -    filter(fun(X) -> not member(X, L2) end, L1).

    This gives the list of all elements in L1 that are not contained in L2.

    The AND intersection of the list L1 and L2 is also easily defined:

    intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

    │ │ │ +the lists L1 and L2, the code can be written as follows:

    diff(L1, L2) ->
    │ │ │ +    filter(fun(X) -> not member(X, L2) end, L1).

    This gives the list of all elements in L1 that are not contained in L2.

    The AND intersection of the list L1 and L2 is also easily defined:

    intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

    │ │ │ │ │ │ │ │ │ │ │ │ takewhile │ │ │

    │ │ │

    lists:takewhile/2 takes elements X from a list L as long as the predicate │ │ │ -P(X) is true:

    takewhile(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> [H|takewhile(Pred, T)];
    │ │ │ -        false -> []
    │ │ │ +P(X) is true:

    takewhile(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> [H|takewhile(Pred, T)];
    │ │ │ +        false -> []
    │ │ │      end;
    │ │ │ -takewhile(Pred, []) ->
    │ │ │ -    [].
    > lists:takewhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ -[200,500,45]

    │ │ │ +takewhile(Pred, []) -> │ │ │ + [].

    > lists:takewhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ +[200,500,45]

    │ │ │ │ │ │ │ │ │ │ │ │ dropwhile │ │ │

    │ │ │ -

    lists:dropwhile/2 is the complement of takewhile:

    dropwhile(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> dropwhile(Pred, T);
    │ │ │ -        false -> [H|T]
    │ │ │ +

    lists:dropwhile/2 is the complement of takewhile:

    dropwhile(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> dropwhile(Pred, T);
    │ │ │ +        false -> [H|T]
    │ │ │      end;
    │ │ │ -dropwhile(Pred, []) ->
    │ │ │ -    [].
    > lists:dropwhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ -[5,3,45,6]

    │ │ │ +dropwhile(Pred, []) -> │ │ │ + [].

    > lists:dropwhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ +[5,3,45,6]

    │ │ │ │ │ │ │ │ │ │ │ │ splitwith │ │ │

    │ │ │

    lists:splitwith/2 splits the list L into the two sublists {L1, L2}, where │ │ │ -L = takewhile(P, L) and L2 = dropwhile(P, L):

    splitwith(Pred, L) ->
    │ │ │ -    splitwith(Pred, L, []).
    │ │ │ +L = takewhile(P, L) and L2 = dropwhile(P, L):

    splitwith(Pred, L) ->
    │ │ │ +    splitwith(Pred, L, []).
    │ │ │  
    │ │ │ -splitwith(Pred, [H|T], L) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> splitwith(Pred, T, [H|L]);
    │ │ │ -        false -> {reverse(L), [H|T]}
    │ │ │ +splitwith(Pred, [H|T], L) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> splitwith(Pred, T, [H|L]);
    │ │ │ +        false -> {reverse(L), [H|T]}
    │ │ │      end;
    │ │ │ -splitwith(Pred, [], L) ->
    │ │ │ -    {reverse(L), []}.
    > lists:splitwith(Big, [200,500,45,5,3,45,6]).
    │ │ │ -{[200,500,45],[5,3,45,6]}

    │ │ │ +splitwith(Pred, [], L) -> │ │ │ + {reverse(L), []}.

    > lists:splitwith(Big, [200,500,45,5,3,45,6]).
    │ │ │ +{[200,500,45],[5,3,45,6]}

    │ │ │ │ │ │ │ │ │ │ │ │ Funs Returning Funs │ │ │

    │ │ │

    So far, only functions that take funs as arguments have been described. More │ │ │ powerful functions, that themselves return funs, can also be written. The │ │ │ following examples illustrate these type of functions.

    │ │ │ │ │ │ │ │ │ │ │ │ Simple Higher Order Functions │ │ │

    │ │ │

    Adder(X) is a function that given X, returns a new function G such that │ │ │ -G(K) returns K + X:

    > Adder = fun(X) -> fun(Y) -> X + Y end end.
    │ │ │ +G(K) returns K + X:

    > Adder = fun(X) -> fun(Y) -> X + Y end end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Add6 = Adder(6).
    │ │ │ +> Add6 = Adder(6).
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Add6(10).
    │ │ │ +> Add6(10).
    │ │ │  16

    │ │ │ │ │ │ │ │ │ │ │ │ Infinite Lists │ │ │

    │ │ │ -

    The idea is to write something like:

    -module(lazy).
    │ │ │ --export([ints_from/1]).
    │ │ │ -ints_from(N) ->
    │ │ │ -    fun() ->
    │ │ │ -            [N|ints_from(N+1)]
    │ │ │ -    end.

    Then proceed as follows:

    > XX = lazy:ints_from(1).
    │ │ │ +

    The idea is to write something like:

    -module(lazy).
    │ │ │ +-export([ints_from/1]).
    │ │ │ +ints_from(N) ->
    │ │ │ +    fun() ->
    │ │ │ +            [N|ints_from(N+1)]
    │ │ │ +    end.

    Then proceed as follows:

    > XX = lazy:ints_from(1).
    │ │ │  #Fun<lazy.0.29874839>
    │ │ │ -> XX().
    │ │ │ -[1|#Fun<lazy.0.29874839>]
    │ │ │ -> hd(XX()).
    │ │ │ +> XX().
    │ │ │ +[1|#Fun<lazy.0.29874839>]
    │ │ │ +> hd(XX()).
    │ │ │  1
    │ │ │ -> Y = tl(XX()).
    │ │ │ +> Y = tl(XX()).
    │ │ │  #Fun<lazy.0.29874839>
    │ │ │ -> hd(Y()).
    │ │ │ +> hd(Y()).
    │ │ │  2

    And so on. This is an example of "lazy embedding".

    │ │ │ │ │ │ │ │ │ │ │ │ Parsing │ │ │

    │ │ │ -

    The following examples show parsers of the following type:

    Parser(Toks) -> {ok, Tree, Toks1} | fail

    Toks is the list of tokens to be parsed. A successful parse returns │ │ │ +

    The following examples show parsers of the following type:

    Parser(Toks) -> {ok, Tree, Toks1} | fail

    Toks is the list of tokens to be parsed. A successful parse returns │ │ │ {ok, Tree, Toks1}.

    • Tree is a parse tree.
    • Toks1 is a tail of Tree that contains symbols encountered after the │ │ │ structure that was correctly parsed.

    An unsuccessful parse returns fail.

    The following example illustrates a simple, functional parser that parses the │ │ │ grammar:

    (a | b) & (c | d)

    The following code defines a function pconst(X) in the module funparse, │ │ │ -which returns a fun that parses a list of tokens:

    pconst(X) ->
    │ │ │ -    fun (T) ->
    │ │ │ +which returns a fun that parses a list of tokens:

    pconst(X) ->
    │ │ │ +    fun (T) ->
    │ │ │         case T of
    │ │ │ -           [X|T1] -> {ok, {const, X}, T1};
    │ │ │ +           [X|T1] -> {ok, {const, X}, T1};
    │ │ │             _      -> fail
    │ │ │         end
    │ │ │ -    end.

    This function can be used as follows:

    > P1 = funparse:pconst(a).
    │ │ │ +    end.

    This function can be used as follows:

    > P1 = funparse:pconst(a).
    │ │ │  #Fun<funparse.0.22674075>
    │ │ │ -> P1([a,b,c]).
    │ │ │ -{ok,{const,a},[b,c]}
    │ │ │ -> P1([x,y,z]).
    │ │ │ +> P1([a,b,c]).
    │ │ │ +{ok,{const,a},[b,c]}
    │ │ │ +> P1([x,y,z]).
    │ │ │  fail

    Next, the two higher order functions pand and por are defined. They combine │ │ │ -primitive parsers to produce more complex parsers.

    First pand:

    pand(P1, P2) ->
    │ │ │ -    fun (T) ->
    │ │ │ -        case P1(T) of
    │ │ │ -            {ok, R1, T1} ->
    │ │ │ -                case P2(T1) of
    │ │ │ -                    {ok, R2, T2} ->
    │ │ │ -                        {ok, {'and', R1, R2}};
    │ │ │ +primitive parsers to produce more complex parsers.

    First pand:

    pand(P1, P2) ->
    │ │ │ +    fun (T) ->
    │ │ │ +        case P1(T) of
    │ │ │ +            {ok, R1, T1} ->
    │ │ │ +                case P2(T1) of
    │ │ │ +                    {ok, R2, T2} ->
    │ │ │ +                        {ok, {'and', R1, R2}};
    │ │ │                      fail ->
    │ │ │                          fail
    │ │ │                  end;
    │ │ │              fail ->
    │ │ │                  fail
    │ │ │          end
    │ │ │      end.

    Given a parser P1 for grammar G1, and a parser P2 for grammar G2, │ │ │ pand(P1, P2) returns a parser for the grammar, which consists of sequences of │ │ │ tokens that satisfy G1, followed by sequences of tokens that satisfy G2.

    por(P1, P2) returns a parser for the language described by the grammar G1 or │ │ │ -G2:

    por(P1, P2) ->
    │ │ │ -    fun (T) ->
    │ │ │ -        case P1(T) of
    │ │ │ -            {ok, R, T1} ->
    │ │ │ -                {ok, {'or',1,R}, T1};
    │ │ │ +G2:

    por(P1, P2) ->
    │ │ │ +    fun (T) ->
    │ │ │ +        case P1(T) of
    │ │ │ +            {ok, R, T1} ->
    │ │ │ +                {ok, {'or',1,R}, T1};
    │ │ │              fail ->
    │ │ │ -                case P2(T) of
    │ │ │ -                    {ok, R1, T1} ->
    │ │ │ -                        {ok, {'or',2,R1}, T1};
    │ │ │ +                case P2(T) of
    │ │ │ +                    {ok, R1, T1} ->
    │ │ │ +                        {ok, {'or',2,R1}, T1};
    │ │ │                      fail ->
    │ │ │                          fail
    │ │ │                  end
    │ │ │          end
    │ │ │      end.

    The original problem was to parse the grammar (a | b) & (c | d). The following │ │ │ -code addresses this problem:

    grammar() ->
    │ │ │ -    pand(
    │ │ │ -         por(pconst(a), pconst(b)),
    │ │ │ -         por(pconst(c), pconst(d))).

    The following code adds a parser interface to the grammar:

    parse(List) ->
    │ │ │ -    (grammar())(List).

    The parser can be tested as follows:

    > funparse:parse([a,c]).
    │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
    │ │ │ -> funparse:parse([a,d]).
    │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
    │ │ │ -> funparse:parse([b,c]).
    │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
    │ │ │ -> funparse:parse([b,d]).
    │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
    │ │ │ -> funparse:parse([a,b]).
    │ │ │ +code addresses this problem:

    grammar() ->
    │ │ │ +    pand(
    │ │ │ +         por(pconst(a), pconst(b)),
    │ │ │ +         por(pconst(c), pconst(d))).

    The following code adds a parser interface to the grammar:

    parse(List) ->
    │ │ │ +    (grammar())(List).

    The parser can be tested as follows:

    > funparse:parse([a,c]).
    │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
    │ │ │ +> funparse:parse([a,d]).
    │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
    │ │ │ +> funparse:parse([b,c]).
    │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
    │ │ │ +> funparse:parse([b,d]).
    │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
    │ │ │ +> funparse:parse([a,b]).
    │ │ │  fail
    │ │ │ │ │ │ │ │ │

    │ │ │

    An example of a simple server written in plain Erlang is provided in │ │ │ Overview. The server can be reimplemented using │ │ │ -gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ +start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ +alloc() ->
    │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ +free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, channels()}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, channels()}.
    │ │ │  
    │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2}.
    │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2}.
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + Chs2 = free(Ch, Chs), │ │ │ + {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting a Gen_Server │ │ │

    │ │ │

    In the example in the previous section, gen_server is started by calling │ │ │ -ch3:start_link():

    start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ +ch3:start_link():

    start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ spawns and links to a new process, a gen_server.

    • The first argument, {local, ch3}, specifies the name. │ │ │ The gen_server is then locally registered as ch3.

      If the name is omitted, the gen_server is not registered. Instead its pid │ │ │ must be used. The name can also be given as {global, Name}, in which case │ │ │ the gen_server is registered using global:register_name/2.

    • The second argument, ch3, is the name of the callback module, which is │ │ │ the module where the callback functions are located.

      The interface functions (start_link/0, alloc/0, and free/1) are located │ │ │ in the same module as the callback functions (init/1, handle_call/3, and │ │ │ handle_cast/2). It is usually good programming practice to have the code │ │ │ corresponding to one process contained in a single module.

    • The third argument, [], is a term that is passed as is to the callback │ │ │ function init. Here, init does not need any indata and ignores the │ │ │ argument.

    • The fourth argument, [], is a list of options. See gen_server │ │ │ for the available options.

    If name registration succeeds, the new gen_server process calls the callback │ │ │ function ch3:init([]). init is expected to return {ok, State}, where │ │ │ State is the internal state of the gen_server. In this case, the state is │ │ │ -the available channels.

    init(_Args) ->
    │ │ │ -    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ +the available channels.

    init(_Args) ->
    │ │ │ +    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ gen_server has been initialized and is ready to receive requests.

    gen_server:start_link/4 must be used if the gen_server is part of │ │ │ a supervision tree, meaning that it was started by a supervisor. There │ │ │ is another function, gen_server:start/4, to start a standalone │ │ │ gen_server that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -221,32 +221,32 @@ │ │ │

    │ │ │

    The synchronous request alloc() is implemented using gen_server:call/2:

    alloc() ->
    │ │ │      gen_server:call(ch3, alloc).

    ch3 is the name of the gen_server and must agree with the name │ │ │ used to start it. alloc is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ When the request is received, the gen_server calls │ │ │ handle_call(Request, From, State), which is expected to return │ │ │ a tuple {reply,Reply,State1}. Reply is the reply that is to be sent back │ │ │ -to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ +to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ set of remaining available channels Chs2.

    Thus, the call ch3:alloc() returns the allocated channel Ch and the │ │ │ gen_server then waits for new requests, now with an updated list of │ │ │ available channels.

    │ │ │ │ │ │ │ │ │ │ │ │ Asynchronous Requests - Cast │ │ │

    │ │ │ -

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ +

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ cast, and thus free, then returns ok.

    When the request is received, the gen_server calls │ │ │ handle_cast(Request, State), which is expected to return a tuple │ │ │ -{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ +{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ +    Chs2 = free(Ch, Chs),
    │ │ │ +    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ The gen_server is now ready for new requests.

    │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

    │ │ │

    │ │ │ @@ -257,69 +257,69 @@ │ │ │

    │ │ │

    If the gen_server is part of a supervision tree, no stop function is needed. │ │ │ The gen_server is automatically terminated by its supervisor. Exactly how │ │ │ this is done is defined by a shutdown strategy │ │ │ set in the supervisor.

    If it is necessary to clean up before termination, the shutdown strategy │ │ │ must be a time-out value and the gen_server must be set to trap exit signals │ │ │ in function init. When ordered to shutdown, the gen_server then calls │ │ │ -the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ +the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │      ...,
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │      ...,
    │ │ │ -    {ok, State}.
    │ │ │ +    {ok, State}.
    │ │ │  
    │ │ │  ...
    │ │ │  
    │ │ │ -terminate(shutdown, State) ->
    │ │ │ +terminate(shutdown, State) ->
    │ │ │      %% Code for cleaning up here
    │ │ │      ...
    │ │ │      ok.

    │ │ │ │ │ │ │ │ │ │ │ │ Standalone Gen_Servers │ │ │

    │ │ │

    If the gen_server is not part of a supervision tree, a stop function │ │ │ can be useful, for example:

    ...
    │ │ │ -export([stop/0]).
    │ │ │ +export([stop/0]).
    │ │ │  ...
    │ │ │  
    │ │ │ -stop() ->
    │ │ │ -    gen_server:cast(ch3, stop).
    │ │ │ +stop() ->
    │ │ │ +    gen_server:cast(ch3, stop).
    │ │ │  ...
    │ │ │  
    │ │ │ -handle_cast(stop, State) ->
    │ │ │ -    {stop, normal, State};
    │ │ │ -handle_cast({free, Ch}, State) ->
    │ │ │ +handle_cast(stop, State) ->
    │ │ │ +    {stop, normal, State};
    │ │ │ +handle_cast({free, Ch}, State) ->
    │ │ │      ...
    │ │ │  
    │ │ │  ...
    │ │ │  
    │ │ │ -terminate(normal, State) ->
    │ │ │ +terminate(normal, State) ->
    │ │ │      ok.

    The callback function handling the stop request returns a tuple │ │ │ {stop,normal,State1}, where normal specifies that it is │ │ │ a normal termination and State1 is a new value for the state │ │ │ of the gen_server. This causes the gen_server to call │ │ │ terminate(normal, State1) and then it terminates gracefully.

    │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │

    │ │ │

    If the gen_server is to be able to receive other messages than requests, │ │ │ the callback function handle_info(Info, State) must be implemented │ │ │ to handle them. Examples of other messages are exit messages, │ │ │ if the gen_server is linked to other processes than the supervisor │ │ │ -and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ +and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │      %% Code to handle exits here.
    │ │ │      ...
    │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │      %% Code to convert state (and more) during code change.
    │ │ │      ...
    │ │ │ -    {ok, NewState}.
    │ │ │ +
    {ok, NewState}.
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Specifying Included Applications │ │ │

    │ │ │

    Which applications to include is defined by the included_applications key in │ │ │ -the .app file:

    {application, prim_app,
    │ │ │ - [{description, "Tree application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ -  {registered, [prim_app_server]},
    │ │ │ -  {included_applications, [incl_app]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {prim_app_cb,[]}},
    │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ - ]}.

    │ │ │ +the .app file:

    {application, prim_app,
    │ │ │ + [{description, "Tree application"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ +  {registered, [prim_app_server]},
    │ │ │ +  {included_applications, [incl_app]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {prim_app_cb,[]}},
    │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ + ]}.

    │ │ │ │ │ │ │ │ │ │ │ │ Synchronizing Processes during Startup │ │ │

    │ │ │

    The supervisor tree of an included application is started as part of the │ │ │ supervisor tree of the including application. If there is a need for │ │ │ synchronization between processes in the including and included applications, │ │ │ this can be achieved by using start phases.

    Start phases are defined by the start_phases key in the .app file as a list │ │ │ of tuples {Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a │ │ │ term.

    The value of the mod key of the including application must be set to │ │ │ {application_starter,[Module,StartArgs]}, where Module as usual is the │ │ │ application callback module. StartArgs is a term provided as argument to the │ │ │ -callback function Module:start/2:

    {application, prim_app,
    │ │ │ - [{description, "Tree application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ -  {registered, [prim_app_server]},
    │ │ │ -  {included_applications, [incl_app]},
    │ │ │ -  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ - ]}.
    │ │ │ +callback function Module:start/2:

    {application, prim_app,
    │ │ │ + [{description, "Tree application"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ +  {registered, [prim_app_server]},
    │ │ │ +  {included_applications, [incl_app]},
    │ │ │ +  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ + ]}.
    │ │ │  
    │ │ │ -{application, incl_app,
    │ │ │ - [{description, "Included application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
    │ │ │ -  {registered, []},
    │ │ │ -  {start_phases, [{go,[]}]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {incl_app_cb,[]}}
    │ │ │ - ]}.

    When starting a primary application with included applications, the primary │ │ │ +{application, incl_app, │ │ │ + [{description, "Included application"}, │ │ │ + {vsn, "1"}, │ │ │ + {modules, [incl_app_cb, incl_app_sup, incl_app_server]}, │ │ │ + {registered, []}, │ │ │ + {start_phases, [{go,[]}]}, │ │ │ + {applications, [kernel, stdlib, sasl]}, │ │ │ + {mod, {incl_app_cb,[]}} │ │ │ + ]}.

    When starting a primary application with included applications, the primary │ │ │ application is started the normal way, that is:

    • The application controller creates an application master for the application
    • The application master calls Module:start(normal, StartArgs) to start the │ │ │ top supervisor.

    Then, for the primary application and each included application in top-down, │ │ │ left-to-right order, the application master calls │ │ │ Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for the │ │ │ primary application, in that order. If a phase is not defined for an included │ │ │ application, the function is not called for this phase and application.

    The following requirements apply to the .app file for an included application:

    • The {mod, {Module,StartArgs}} option must be included. This option is used │ │ │ to find the callback module Module of the application. StartArgs is │ │ │ ignored, as Module:start/2 is called only for the primary application.
    • If the included application itself contains included applications, instead the │ │ │ {mod, {application_starter, [Module,StartArgs]}} option must be included.
    • The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set │ │ │ of specified phases must be a subset of the set of phases specified for the │ │ │ primary application.

    When starting prim_app as defined above, the application controller calls the │ │ │ following callback functions before application:start(prim_app) returns a │ │ │ -value:

    application:start(prim_app)
    │ │ │ - => prim_app_cb:start(normal, [])
    │ │ │ - => prim_app_cb:start_phase(init, normal, [])
    │ │ │ - => prim_app_cb:start_phase(go, normal, [])
    │ │ │ - => incl_app_cb:start_phase(go, normal, [])
    │ │ │ +value:

    application:start(prim_app)
    │ │ │ + => prim_app_cb:start(normal, [])
    │ │ │ + => prim_app_cb:start_phase(init, normal, [])
    │ │ │ + => prim_app_cb:start_phase(go, normal, [])
    │ │ │ + => incl_app_cb:start_phase(go, normal, [])
    │ │ │  ok
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Frequently Asked Questions │ │ │

    │ │ │
    • Q: So, now I can build Erlang using GCC on Windows?

      A: No, unfortunately not. You'll need Microsoft's Visual C++ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/list_comprehensions.html │ │ │ @@ -117,33 +117,33 @@ │ │ │ │ │ │

      │ │ │ │ │ │ │ │ │ │ │ │ Simple Examples │ │ │

      │ │ │ -

      This section starts with a simple example, showing a generator and a filter:

      > [X || X <- [1,2,a,3,4,b,5,6], X > 3].
      │ │ │ -[a,4,b,5,6]

      This is read as follows: The list of X such that X is taken from the list │ │ │ +

      This section starts with a simple example, showing a generator and a filter:

      > [X || X <- [1,2,a,3,4,b,5,6], X > 3].
      │ │ │ +[a,4,b,5,6]

      This is read as follows: The list of X such that X is taken from the list │ │ │ [1,2,a,...] and X is greater than 3.

      The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a │ │ │ filter.

      An additional filter, is_integer(X), can be added to │ │ │ -restrict the result to integers:

      > [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
      │ │ │ -[4,5,6]

      Generators can be combined. For example, the Cartesian product of two lists can │ │ │ -be written as follows:

      > [{X, Y} || X <- [1,2,3], Y <- [a,b]].
      │ │ │ -[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

      │ │ │ +restrict the result to integers:

      > [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
      │ │ │ +[4,5,6]

      Generators can be combined. For example, the Cartesian product of two lists can │ │ │ +be written as follows:

      > [{X, Y} || X <- [1,2,3], Y <- [a,b]].
      │ │ │ +[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

      │ │ │ │ │ │ │ │ │ │ │ │ Quick Sort │ │ │

      │ │ │ -

      The well-known quick sort routine can be written as follows:

      sort([]) -> [];
      │ │ │ -sort([_] = L) -> L;
      │ │ │ -sort([Pivot|T]) ->
      │ │ │ -    sort([ X || X <- T, X < Pivot]) ++
      │ │ │ -    [Pivot] ++
      │ │ │ -    sort([ X || X <- T, X >= Pivot]).

      The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ +

      The well-known quick sort routine can be written as follows:

      sort([]) -> [];
      │ │ │ +sort([_] = L) -> L;
      │ │ │ +sort([Pivot|T]) ->
      │ │ │ +    sort([ X || X <- T, X < Pivot]) ++
      │ │ │ +    [Pivot] ++
      │ │ │ +    sort([ X || X <- T, X >= Pivot]).

      The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ that are less than Pivot.

      [X || X <- T, X >= Pivot] is the list of all elements in T that are greater │ │ │ than or equal to Pivot.

      With the algorithm above, a list is sorted as follows:

      • A list with zero or one element is trivially sorted.
      • For lists with more than one element:
        1. The first element in the list is isolated as the pivot element.
        2. The remaining list is partitioned into two sublists, such that:
        • The first sublist contains all elements that are smaller than the pivot │ │ │ element.
        • The second sublist contains all elements that are greater than or equal to │ │ │ the pivot element.
        1. The sublists are recursively sorted by the same algorithm and the results │ │ │ are combined, resulting in a list consisting of:
        • All elements from the first sublist, that is all elements smaller than the │ │ │ pivot element, in sorted order.
        • The pivot element.
        • All elements from the second sublist, that is all elements greater than or │ │ │ equal to the pivot element, in sorted order.

      Note

      While the sorting algorithm as shown above serves as a nice example to │ │ │ @@ -151,93 +151,93 @@ │ │ │ lists module contains sorting functions that are implemented in a more │ │ │ efficient way.

      │ │ │ │ │ │ │ │ │ │ │ │ Permutations │ │ │

      │ │ │ -

      The following example generates all permutations of the elements in a list:

      perms([]) -> [[]];
      │ │ │ -perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

      This takes H from L in all possible ways. The result is the set of all lists │ │ │ +

      The following example generates all permutations of the elements in a list:

      perms([]) -> [[]];
      │ │ │ +perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

      This takes H from L in all possible ways. The result is the set of all lists │ │ │ [H|T], where T is the set of all possible permutations of L, with H │ │ │ -removed:

      > perms([b,u,g]).
      │ │ │ -[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

      │ │ │ +removed:

      > perms([b,u,g]).
      │ │ │ +[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

      │ │ │ │ │ │ │ │ │ │ │ │ Pythagorean Triplets │ │ │

      │ │ │

      Pythagorean triplets are sets of integers {A,B,C} such that │ │ │ A**2 + B**2 = C**2.

      The function pyth(N) generates a list of all integers {A,B,C} such that │ │ │ A**2 + B**2 = C**2 and where the sum of the sides is equal to, or less than, │ │ │ -N:

      pyth(N) ->
      │ │ │ -    [ {A,B,C} ||
      │ │ │ -        A <- lists:seq(1,N),
      │ │ │ -        B <- lists:seq(1,N),
      │ │ │ -        C <- lists:seq(1,N),
      │ │ │ +N:

      pyth(N) ->
      │ │ │ +    [ {A,B,C} ||
      │ │ │ +        A <- lists:seq(1,N),
      │ │ │ +        B <- lists:seq(1,N),
      │ │ │ +        C <- lists:seq(1,N),
      │ │ │          A+B+C =< N,
      │ │ │          A*A+B*B == C*C
      │ │ │ -    ].
      > pyth(3).
      │ │ │ -[].
      │ │ │ -> pyth(11).
      │ │ │ -[].
      │ │ │ -> pyth(12).
      │ │ │ -[{3,4,5},{4,3,5}]
      │ │ │ -> pyth(50).
      │ │ │ -[{3,4,5},
      │ │ │ - {4,3,5},
      │ │ │ - {5,12,13},
      │ │ │ - {6,8,10},
      │ │ │ - {8,6,10},
      │ │ │ - {8,15,17},
      │ │ │ - {9,12,15},
      │ │ │ - {12,5,13},
      │ │ │ - {12,9,15},
      │ │ │ - {12,16,20},
      │ │ │ - {15,8,17},
      │ │ │ - {16,12,20}]

      The following code reduces the search space and is more efficient:

      pyth1(N) ->
      │ │ │ -   [{A,B,C} ||
      │ │ │ -       A <- lists:seq(1,N-2),
      │ │ │ -       B <- lists:seq(A+1,N-1),
      │ │ │ -       C <- lists:seq(B+1,N),
      │ │ │ +    ].
      > pyth(3).
      │ │ │ +[].
      │ │ │ +> pyth(11).
      │ │ │ +[].
      │ │ │ +> pyth(12).
      │ │ │ +[{3,4,5},{4,3,5}]
      │ │ │ +> pyth(50).
      │ │ │ +[{3,4,5},
      │ │ │ + {4,3,5},
      │ │ │ + {5,12,13},
      │ │ │ + {6,8,10},
      │ │ │ + {8,6,10},
      │ │ │ + {8,15,17},
      │ │ │ + {9,12,15},
      │ │ │ + {12,5,13},
      │ │ │ + {12,9,15},
      │ │ │ + {12,16,20},
      │ │ │ + {15,8,17},
      │ │ │ + {16,12,20}]

      The following code reduces the search space and is more efficient:

      pyth1(N) ->
      │ │ │ +   [{A,B,C} ||
      │ │ │ +       A <- lists:seq(1,N-2),
      │ │ │ +       B <- lists:seq(A+1,N-1),
      │ │ │ +       C <- lists:seq(B+1,N),
      │ │ │         A+B+C =< N,
      │ │ │ -       A*A+B*B == C*C ].

      │ │ │ + A*A+B*B == C*C ].

      │ │ │ │ │ │ │ │ │ │ │ │ Simplifications With List Comprehensions │ │ │

      │ │ │

      As an example, list comprehensions can be used to simplify some of the functions │ │ │ -in lists.erl:

      append(L)   ->  [X || L1 <- L, X <- L1].
      │ │ │ -map(Fun, L) -> [Fun(X) || X <- L].
      │ │ │ -filter(Pred, L) -> [X || X <- L, Pred(X)].

      │ │ │ +in lists.erl:

      append(L)   ->  [X || L1 <- L, X <- L1].
      │ │ │ +map(Fun, L) -> [Fun(X) || X <- L].
      │ │ │ +filter(Pred, L) -> [X || X <- L, Pred(X)].

      │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings in List Comprehensions │ │ │

      │ │ │

      The scope rules for variables that occur in list comprehensions are as follows:

      • All variables that occur in a generator pattern are assumed to be "fresh" │ │ │ variables.
      • Any variables that are defined before the list comprehension, and that are │ │ │ used in filters, have the values they had before the list comprehension.
      • Variables cannot be exported from a list comprehension.

      As an example of these rules, suppose you want to write the function select, │ │ │ which selects certain elements from a list of tuples. Suppose you write │ │ │ select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting all │ │ │ tuples from L, where the first item is X.

      Compiling this gives the following diagnostic:

      ./FileName.erl:Line: Warning: variable 'X' shadowed in generate

      This diagnostic warns that the variable X in the pattern is not the same as │ │ │ -the variable X that occurs in the function head.

      Evaluating select gives the following result:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ -[1,2,3,7]

      This is not the wanted result. To achieve the desired effect, select must be │ │ │ -written as follows:

      select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

      The generator now contains unbound variables and the test has been moved into │ │ │ -the filter.

      This now works as expected:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ -[2,7]

      Also note that a variable in a generator pattern will shadow a variable with the │ │ │ -same name bound in a previous generator pattern. For example:

      > [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
      │ │ │ -[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

      A consequence of the rules for importing variables into a list comprehensions is │ │ │ +the variable X that occurs in the function head.

      Evaluating select gives the following result:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ +[1,2,3,7]

      This is not the wanted result. To achieve the desired effect, select must be │ │ │ +written as follows:

      select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

      The generator now contains unbound variables and the test has been moved into │ │ │ +the filter.

      This now works as expected:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ +[2,7]

      Also note that a variable in a generator pattern will shadow a variable with the │ │ │ +same name bound in a previous generator pattern. For example:

      > [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
      │ │ │ +[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

      A consequence of the rules for importing variables into a list comprehensions is │ │ │ that certain pattern matching operations must be moved into the filters and │ │ │ -cannot be written directly in the generators.

      To illustrate this, do not write as follows:

      f(...) ->
      │ │ │ +cannot be written directly in the generators.

      To illustrate this, do not write as follows:

      f(...) ->
      │ │ │      Y = ...
      │ │ │ -    [ Expression || PatternInvolving Y  <- Expr, ...]
      │ │ │ -    ...

      Instead, write as follows:

      f(...) ->
      │ │ │ +    [ Expression || PatternInvolving Y  <- Expr, ...]
      │ │ │ +    ...

      Instead, write as follows:

      f(...) ->
      │ │ │      Y = ...
      │ │ │ -    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
      │ │ │ +    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
      │ │ │      ...
      │ │ │ │ │ │ │ │ │
      │ │ │
      │ │ │ │ │ │ │ │ │ Creating a List │ │ │ │ │ │

      Lists can only be built starting from the end and attaching list elements at the │ │ │ beginning. If you use the ++ operator as follows, a new list is created that │ │ │ is a copy of the elements in List1, followed by List2:

      List1 ++ List2

      Looking at how lists:append/2 or ++ would be implemented in plain Erlang, │ │ │ -clearly the first list is copied:

      append([H|T], Tail) ->
      │ │ │ -    [H|append(T, Tail)];
      │ │ │ -append([], Tail) ->
      │ │ │ +clearly the first list is copied:

      append([H|T], Tail) ->
      │ │ │ +    [H|append(T, Tail)];
      │ │ │ +append([], Tail) ->
      │ │ │      Tail.

      When recursing and building a list, it is important to ensure that you attach │ │ │ the new elements to the beginning of the list. In this way, you will build one │ │ │ -list, not hundreds or thousands of copies of the growing result list.

      Let us first see how it is not to be done:

      DO NOT

      bad_fib(N) ->
      │ │ │ -    bad_fib(N, 0, 1, []).
      │ │ │ +list, not hundreds or thousands of copies of the growing result list.

      Let us first see how it is not to be done:

      DO NOT

      bad_fib(N) ->
      │ │ │ +    bad_fib(N, 0, 1, []).
      │ │ │  
      │ │ │ -bad_fib(0, _Current, _Next, Fibs) ->
      │ │ │ +bad_fib(0, _Current, _Next, Fibs) ->
      │ │ │      Fibs;
      │ │ │ -bad_fib(N, Current, Next, Fibs) ->
      │ │ │ -    bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

      Here more than one list is built. In each iteration step a new list is created │ │ │ +bad_fib(N, Current, Next, Fibs) -> │ │ │ + bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

      Here more than one list is built. In each iteration step a new list is created │ │ │ that is one element longer than the new previous list.

      To avoid copying the result in each iteration, build the list in reverse order │ │ │ -and reverse the list when you are done:

      DO

      tail_recursive_fib(N) ->
      │ │ │ -    tail_recursive_fib(N, 0, 1, []).
      │ │ │ +and reverse the list when you are done:

      DO

      tail_recursive_fib(N) ->
      │ │ │ +    tail_recursive_fib(N, 0, 1, []).
      │ │ │  
      │ │ │ -tail_recursive_fib(0, _Current, _Next, Fibs) ->
      │ │ │ -    lists:reverse(Fibs);
      │ │ │ -tail_recursive_fib(N, Current, Next, Fibs) ->
      │ │ │ -    tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

      │ │ │ +tail_recursive_fib(0, _Current, _Next, Fibs) -> │ │ │ + lists:reverse(Fibs); │ │ │ +tail_recursive_fib(N, Current, Next, Fibs) -> │ │ │ + tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

      │ │ │ │ │ │ │ │ │ │ │ │ List Comprehensions │ │ │

      │ │ │ -

      A list comprehension:

      [Expr(E) || E <- List]

      is basically translated to a local function:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ -    [Expr(E)|'lc^0'(Tail, Expr)];
      │ │ │ -'lc^0'([], _Expr) -> [].

      If the result of the list comprehension will obviously not be used, a list │ │ │ -will not be constructed. For example, in this code:

      [io:put_chars(E) || E <- List],
      │ │ │ +

      A list comprehension:

      [Expr(E) || E <- List]

      is basically translated to a local function:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ +    [Expr(E)|'lc^0'(Tail, Expr)];
      │ │ │ +'lc^0'([], _Expr) -> [].

      If the result of the list comprehension will obviously not be used, a list │ │ │ +will not be constructed. For example, in this code:

      [io:put_chars(E) || E <- List],
      │ │ │  ok.

      or in this code:

      case Var of
      │ │ │      ... ->
      │ │ │ -        [io:put_chars(E) || E <- List];
      │ │ │ +        [io:put_chars(E) || E <- List];
      │ │ │      ... ->
      │ │ │  end,
      │ │ │ -some_function(...),

      the value is not assigned to a variable, not passed to another function, and not │ │ │ +some_function(...),

      the value is not assigned to a variable, not passed to another function, and not │ │ │ returned. This means that there is no need to construct a list and the compiler │ │ │ -will simplify the code for the list comprehension to:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ -    Expr(E),
      │ │ │ -    'lc^0'(Tail, Expr);
      │ │ │ -'lc^0'([], _Expr) -> [].

      The compiler also understands that assigning to _ means that the value will │ │ │ -not be used. Therefore, the code in the following example will also be optimized:

      _ = [io:put_chars(E) || E <- List],
      │ │ │ +will simplify the code for the list comprehension to:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ +    Expr(E),
      │ │ │ +    'lc^0'(Tail, Expr);
      │ │ │ +'lc^0'([], _Expr) -> [].

      The compiler also understands that assigning to _ means that the value will │ │ │ +not be used. Therefore, the code in the following example will also be optimized:

      _ = [io:put_chars(E) || E <- List],
      │ │ │  ok.

      │ │ │ │ │ │ │ │ │ │ │ │ Deep and Flat Lists │ │ │

      │ │ │

      lists:flatten/1 builds an entirely new list. It is therefore expensive, and │ │ │ even more expensive than the ++ operator (which copies its left argument, │ │ │ but not its right argument).

      In the following situations it is unnecessary to call lists:flatten/1:

      • When sending data to a port. Ports understand deep lists so there is no reason │ │ │ to flatten the list before sending it to the port.
      • When calling BIFs that accept deep lists, such as │ │ │ list_to_binary/1 or │ │ │ iolist_to_binary/1.
      • When you know that your list is only one level deep. Use lists:append/1 │ │ │ -instead.

      Examples:

      DO

      port_command(Port, DeepList)

      DO NOT

      port_command(Port, lists:flatten(DeepList))

      A common way to send a zero-terminated string to a port is the following:

      DO NOT

      TerminatedStr = String ++ [0],
      │ │ │ -port_command(Port, TerminatedStr)

      Instead:

      DO

      TerminatedStr = [String, 0],
      │ │ │ -port_command(Port, TerminatedStr)

      DO

      1> lists:append([[1], [2], [3]]).
      │ │ │ -[1,2,3]

      DO NOT

      1> lists:flatten([[1], [2], [3]]).
      │ │ │ -[1,2,3]

      │ │ │ +instead.

    Examples:

    DO

    port_command(Port, DeepList)

    DO NOT

    port_command(Port, lists:flatten(DeepList))

    A common way to send a zero-terminated string to a port is the following:

    DO NOT

    TerminatedStr = String ++ [0],
    │ │ │ +port_command(Port, TerminatedStr)

    Instead:

    DO

    TerminatedStr = [String, 0],
    │ │ │ +port_command(Port, TerminatedStr)

    DO

    1> lists:append([[1], [2], [3]]).
    │ │ │ +[1,2,3]

    DO NOT

    1> lists:flatten([[1], [2], [3]]).
    │ │ │ +[1,2,3]

    │ │ │ │ │ │ │ │ │ │ │ │ Recursive List Functions │ │ │

    │ │ │

    There are two basic ways to write a function that traverses a list and │ │ │ produces a new list.

    The first way is writing a body-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ -add_42_body([H|T]) ->
    │ │ │ -    [H + 42 | add_42_body(T)];
    │ │ │ -add_42_body([]) ->
    │ │ │ -    [].

    The second way is writing a tail-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ -add_42_tail(List) ->
    │ │ │ -    add_42_tail(List, []).
    │ │ │ -
    │ │ │ -add_42_tail([H|T], Acc) ->
    │ │ │ -    add_42_tail(T, [H + 42 | Acc]);
    │ │ │ -add_42_tail([], Acc) ->
    │ │ │ -    lists:reverse(Acc).

    In early version of Erlang the tail-recursive function would typically │ │ │ +add_42_body([H|T]) -> │ │ │ + [H + 42 | add_42_body(T)]; │ │ │ +add_42_body([]) -> │ │ │ + [].

    The second way is writing a tail-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ +add_42_tail(List) ->
    │ │ │ +    add_42_tail(List, []).
    │ │ │ +
    │ │ │ +add_42_tail([H|T], Acc) ->
    │ │ │ +    add_42_tail(T, [H + 42 | Acc]);
    │ │ │ +add_42_tail([], Acc) ->
    │ │ │ +    lists:reverse(Acc).

    In early version of Erlang the tail-recursive function would typically │ │ │ be more efficient. In modern versions of Erlang, there is usually not │ │ │ much difference in performance between a body-recursive list function and │ │ │ tail-recursive function that reverses the list at the end. Therefore, │ │ │ concentrate on writing beautiful code and forget about the performance │ │ │ of your list functions. In the time-critical parts of your code, │ │ │ measure before rewriting your code.

    For a thorough discussion about tail and body recursion, see │ │ │ Erlang's Tail Recursion is Not a Silver Bullet.

    Note

    This section is about list functions that construct lists. A tail-recursive │ │ │ function that does not construct a list runs in constant space, while the │ │ │ corresponding body-recursive function uses stack space proportional to the │ │ │ length of the list.

    For example, a function that sums a list of integers, is not to be written as │ │ │ -follows:

    DO NOT

    recursive_sum([H|T]) -> H+recursive_sum(T);
    │ │ │ -recursive_sum([])    -> 0.

    Instead:

    DO

    sum(L) -> sum(L, 0).
    │ │ │ +follows:

    DO NOT

    recursive_sum([H|T]) -> H+recursive_sum(T);
    │ │ │ +recursive_sum([])    -> 0.

    Instead:

    DO

    sum(L) -> sum(L, 0).
    │ │ │  
    │ │ │ -sum([H|T], Sum) -> sum(T, Sum + H);
    │ │ │ -sum([], Sum)    -> Sum.
    │ │ │ +
    sum([H|T], Sum) -> sum(T, Sum + H); │ │ │ +sum([], Sum) -> Sum.
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ File Inclusion │ │ │

    │ │ │ -

    A file can be included as follows:

    -include(File).
    │ │ │ --include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ +

    A file can be included as follows:

    -include(File).
    │ │ │ +-include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ as is, at the position of the directive.

    Include files are typically used for record and macro definitions that are │ │ │ shared by several modules. It is recommended to use the file name extension │ │ │ .hrl for include files.

    File can start with a path component $VAR, for some string VAR. If that is │ │ │ the case, the value of the environment variable VAR as returned by │ │ │ os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false, │ │ │ $VAR is left as is.

    If the filename File is absolute (possibly after variable substitution), the │ │ │ include file with that name is included. Otherwise, the specified file is │ │ │ searched for in the following directories, and in this order:

    1. The current working directory
    2. The directory where the module is being compiled
    3. The directories given by the include option

    For details, see erlc in ERTS and │ │ │ -compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ --include("incdir/my_records.hrl").
    │ │ │ --include("/home/user/proj/my_records.hrl").
    │ │ │ --include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ +compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ +-include("incdir/my_records.hrl").
    │ │ │ +-include("/home/user/proj/my_records.hrl").
    │ │ │ +-include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ Instead, the first path component (possibly after variable substitution) is │ │ │ -assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ +assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ (latest) version of Kernel, and then the subdirectory include is searched for │ │ │ the file file.hrl.

    │ │ │ │ │ │ │ │ │ │ │ │ Defining and Using Macros │ │ │

    │ │ │ -

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ --define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ +

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ +-define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ macro.

    If a macro is used in several modules, it is recommended that the macro │ │ │ definition is placed in an include file.

    A macro is used as follows:

    ?Const
    │ │ │  ?Func(Arg1,...,ArgN)

    Macros are expanded during compilation. A simple macro ?Const is replaced with │ │ │ -Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ +Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │  ...
    │ │ │ -call(Request) ->
    │ │ │ -    server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ -    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ +call(Request) -> │ │ │ + server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ +    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ occurrences of a variable Var from the macro definition are replaced with the │ │ │ -corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ +corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │  ...
    │ │ │ -bar(X) ->
    │ │ │ -    ?MACRO1(a, b),
    │ │ │ -    ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ -    {a,a,b,b},
    │ │ │ -    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ +bar(X) -> │ │ │ + ?MACRO1(a, b), │ │ │ + ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ +    {a,a,b,b},
    │ │ │ +    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ definition is a valid Erlang syntactic form.

    To view the result of macro expansion, a module can be compiled with the 'P' │ │ │ option. compile:file(File, ['P']). This produces a listing of the parsed code │ │ │ after preprocessing and parse transforms, in the file File.P.

    │ │ │ │ │ │ │ │ │ │ │ │ Predefined Macros │ │ │ @@ -185,29 +185,29 @@ │ │ │ │ │ │ │ │ │ Macros Overloading │ │ │

    │ │ │

    It is possible to overload macros, except for predefined macros. An overloaded │ │ │ macro has more than one definition, each with a different number of arguments.

    Change

    Support for overloading of macros was added in Erlang 5.7.5/OTP R13B04.

    A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results │ │ │ in an error message if there is at least one definition of Func with │ │ │ -arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ --define(F1(A), A).
    │ │ │ --define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ +arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ +-define(F1(A), A).
    │ │ │ +-define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │      ?F0. % No, an empty list of arguments expected.
    │ │ │  
    │ │ │ -f1(A) ->
    │ │ │ -    ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ -    ?C().

    is expanded to

    f() ->
    │ │ │ -    m:f().

    │ │ │ +f1(A) -> │ │ │ + ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ +    ?C().

    is expanded to

    f() ->
    │ │ │ +    m:f().

    │ │ │ │ │ │ │ │ │ │ │ │ Removing a macro definition │ │ │

    │ │ │ -

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ +

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ │ │ │ │ │ │ │ │ Conditional Compilation │ │ │

    │ │ │

    The following macro directives support conditional compilation:

    • -ifdef(Macro). - Evaluate the following lines only if Macro is │ │ │ defined.

    • -ifndef(Macro). - Evaluate the following lines only if Macro is not │ │ │ @@ -219,43 +219,43 @@ │ │ │ true, and the Condition evaluates to true, the lines following the elif │ │ │ are evaluated instead.

    • -endif. - Specifies the end of a series of control flow directives.

    Note

    Macro directives cannot be used inside functions.

    Syntactically, the Condition in if and elif must be a │ │ │ guard expression. Other constructs (such as │ │ │ a case expression) result in a compilation error.

    As opposed to the standard guard expressions, an expression in an if and │ │ │ elif also supports calling the psuedo-function defined(Name), which tests │ │ │ whether the Name argument is the name of a previously defined macro. │ │ │ defined(Name) evaluates to true if the macro is defined and false │ │ │ -otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ +otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │  ...
    │ │ │  
    │ │ │ --ifdef(debug).
    │ │ │ --define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ +-ifdef(debug).
    │ │ │ +-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │  -else.
    │ │ │ --define(LOG(X), true).
    │ │ │ +-define(LOG(X), true).
    │ │ │  -endif.
    │ │ │  
    │ │ │  ...

    When trace output is desired, debug is to be defined when the module m is │ │ │ compiled:

    % erlc -Ddebug m.erl
    │ │ │  
    │ │ │  or
    │ │ │  
    │ │ │ -1> c(m, {d, debug}).
    │ │ │ -{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ -with some simple trace output.

    Example:

    -module(m)
    │ │ │ +1> c(m, {d, debug}).
    │ │ │ +{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ +with some simple trace output.

    Example:

    -module(m)
    │ │ │  ...
    │ │ │ --if(?OTP_RELEASE >= 25).
    │ │ │ +-if(?OTP_RELEASE >= 25).
    │ │ │  %% Code that will work in OTP 25 or higher
    │ │ │ --elif(?OTP_RELEASE >= 26).
    │ │ │ +-elif(?OTP_RELEASE >= 26).
    │ │ │  %% Code that will work in OTP 26 or higher
    │ │ │  -else.
    │ │ │  %% Code that will work in OTP 24 or lower.
    │ │ │  -endif.
    │ │ │  ...

    This code uses the OTP_RELEASE macro to conditionally select code depending on │ │ │ -release.

    Example:

    -module(m)
    │ │ │ +release.

    Example:

    -module(m)
    │ │ │  ...
    │ │ │ --if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ +-if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │  %% Debugging code that requires OTP 26 or later.
    │ │ │  -else.
    │ │ │  %% Non-debug code that works in any release.
    │ │ │  -endif.
    │ │ │  ...

    This code uses the OTP_RELEASE macro and defined(debug) to compile debug │ │ │ code only for OTP 26 or later.

    │ │ │ │ │ │ @@ -270,44 +270,44 @@ │ │ │ used. In practice this means it should appear before any -export(..) or record │ │ │ definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ -error() and -warning() directives │ │ │

    │ │ │ -

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ --export([version/0]).
    │ │ │ +

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ +-export([version/0]).
    │ │ │  
    │ │ │ --ifdef(VERSION).
    │ │ │ -version() -> ?VERSION.
    │ │ │ +-ifdef(VERSION).
    │ │ │ +version() -> ?VERSION.
    │ │ │  -else.
    │ │ │ --error("Macro VERSION must be defined.").
    │ │ │ -version() -> "".
    │ │ │ +-error("Macro VERSION must be defined.").
    │ │ │ +version() -> "".
    │ │ │  -endif.

    The error message will look like this:

    % erlc t.erl
    │ │ │ -t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ --export([version/0]).
    │ │ │ +t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ +-export([version/0]).
    │ │ │  
    │ │ │ --ifndef(VERSION).
    │ │ │ --warning("Macro VERSION not defined -- using default version.").
    │ │ │ --define(VERSION, "0").
    │ │ │ +-ifndef(VERSION).
    │ │ │ +-warning("Macro VERSION not defined -- using default version.").
    │ │ │ +-define(VERSION, "0").
    │ │ │  -endif.
    │ │ │ -version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ +version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │  t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

    Change

    The -error() and -warning() directives were added in Erlang/OTP 19.

    │ │ │ │ │ │ │ │ │ │ │ │ Stringifying Macro Arguments │ │ │

    │ │ │

    The construction ??Arg, where Arg is a macro argument, is expanded to a │ │ │ string containing the tokens of the argument. This is similar to the #arg │ │ │ -stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ +stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │  
    │ │ │ -?TESTCALL(myfunction(1,2)),
    │ │ │ -?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ -io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ +
    ?TESTCALL(myfunction(1,2)), │ │ │ +?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ +io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │
  • maps:get/3 function. If there are default │ │ │ values, sharing of keys between different instances of the map will be less │ │ │ effective, and it is not possible to match multiple elements having default │ │ │ values in one go.

  • To avoid having to deal with a map that may lack some keys, maps:merge/2 can │ │ │ -efficiently add multiple default values. For example:

    DefaultMap = #{shoe_size => 42, editor => emacs},
    │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)
  • │ │ │ +efficiently add multiple default values. For example:

    DefaultMap = #{shoe_size => 42, editor => emacs},
    │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Dictionaries │ │ │

    │ │ │

    Using a map as a dictionary implies the following usage pattern:

    • Keys are usually variables not known at compile-time.
    • There can be any number of elements in the map.
    • Usually, no more than one element is looked up or updated at once.

    Given that usage pattern, the difference in performance between using the map │ │ │ syntax and the maps module is usually small. Therefore, which one to use is │ │ │ @@ -167,18 +167,18 @@ │ │ │ choice.

    │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Sets │ │ │

    │ │ │

    Starting in OTP 24, the sets module has an option to represent sets as maps. │ │ │ -Examples:

    1> sets:new([{version,2}]).
    │ │ │ -#{}
    │ │ │ -2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ -#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ +Examples:

    1> sets:new([{version,2}]).
    │ │ │ +#{}
    │ │ │ +2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ +#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ few possible exceptions:

    • ordsets:intersection/2 can be more efficient than sets:intersection/2. If │ │ │ the intersection operation is frequently used and operations that operate on a │ │ │ single element in a set (such as is_element/2) are avoided, ordsets can │ │ │ be a better choice than sets.
    • If the intersection operation is frequently used and operations that operate │ │ │ on a single element in a set (such as is_element/2) must also be efficient, │ │ │ gb_sets can potentially be a better choice than sets.
    • If the elements of the set are integers in a fairly compact range, the set can │ │ │ be represented as an integer where each bit represents an element in the set. │ │ │ @@ -203,18 +203,18 @@ │ │ │ for the runtime system).

    • N - The number of elements in the map.

    • Keys - A tuple with keys of the map: {Key1,...,KeyN}. The keys are │ │ │ sorted.

    • Value1 - The value corresponding to the first key in the key tuple.

    • ValueN - The value corresponding to the last key in the key tuple.

    As an example, let us look at how the map #{a => foo, z => bar} is │ │ │ represented:

    01234
    FLATMAP2{a,z}foobar

    Table: #{a => foo, z => bar}

    Let us update the map: M#{q => baz}. The map now looks like this:

    012345
    FLATMAP3{a,q,z}foobazbar

    Table: #{a => foo, q => baz, z => bar}

    Finally, change the value of one element: M#{z := bird}. The map now looks │ │ │ like this:

    012345
    FLATMAP3{a,q,z}foobazbird

    Table: #{a => foo, q => baz, z => bird}

    When the value for an existing key is updated, the key tuple is not updated, │ │ │ allowing the key tuple to be shared with other instances of the map that have │ │ │ the same keys. In fact, the key tuple can be shared between all maps with the │ │ │ same keys with some care. To arrange that, define a function that returns a map. │ │ │ -For example:

    new() ->
    │ │ │ -    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ +For example:

    new() ->
    │ │ │ +    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ that the key tuple is shared when creating an instance of the map, always call │ │ │ -new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ +new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ keys are known at compile-time, the map is updated in one go, making the time to │ │ │ update a map essentially constant regardless of the number of keys updated. The │ │ │ same goes for matching. (When the keys are variables, one or more of the keys │ │ │ could be identical, so the operations need to be performed sequentially from │ │ │ left to right.)

    The memory size for a small map is the size of all keys and values plus 5 words. │ │ │ See Memory for more information about memory sizes.

    │ │ │ │ │ │ @@ -241,21 +241,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ Using the Map Syntax │ │ │

    │ │ │

    Using the map syntax is usually slightly more efficient than using the │ │ │ corresponding function in the maps module.

    The gain in efficiency for the map syntax is more noticeable for the following │ │ │ -operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ -Map3 = maps:update(y, Y, Map2),
    │ │ │ -Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ -right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ -left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ -Map3 = Map2#{Key2 := Y},
    │ │ │ -Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ +operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ +Map3 = maps:update(y, Y, Map2),
    │ │ │ +Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ +right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ +left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ +Map3 = Map2#{Key2 := Y},
    │ │ │ +Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ efficient than using the => operator for a small map.

    │ │ │ │ │ │ │ │ │ │ │ │ Using the Functions in the maps Module │ │ │

    │ │ │

    Here follows some notes about most of the functions in the maps module. For │ │ │ @@ -306,23 +306,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ maps:get/3 │ │ │ │ │ │

    As an optimization, the compiler will rewrite a call to maps:get/3 to Erlang │ │ │ code similar to the following:

    Result = case Map of
    │ │ │ -             #{Key := Value} -> Value;
    │ │ │ -             #{} -> Default
    │ │ │ +             #{Key := Value} -> Value;
    │ │ │ +             #{} -> Default
    │ │ │           end

    This is reasonably efficient, but if a small map is used as an alternative to │ │ │ using a record it is often better not to rely on default values as it prevents │ │ │ sharing of keys, which may in the end use more memory than what you save from │ │ │ not storing default values in the map.

    If default values are nevertheless required, instead of calling maps:get/3 │ │ │ multiple times, consider putting the default values in a map and merging that │ │ │ -map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ +map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ to, as long as the default map contains all the keys that will ever be used │ │ │ and not just the ones with default values. Whether this is faster than calling │ │ │ maps:get/3 multiple times depends on the size of the map and the number of │ │ │ default values.

    Change

    Before OTP 26.0 maps:get/3 was implemented by calling the function instead │ │ │ of rewriting it as an Erlang expression. It is now slightly faster but can no │ │ │ longer be traced.

    │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/modules.html │ │ │ @@ -118,20 +118,20 @@ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ Module Syntax │ │ │

    │ │ │

    Erlang code is divided into modules. A module consists of a sequence of │ │ │ -attributes and function declarations, each terminated by a period (.).

    Example:

    -module(m).          % module attribute
    │ │ │ --export([fact/1]).   % module attribute
    │ │ │ +attributes and function declarations, each terminated by a period (.).

    Example:

    -module(m).          % module attribute
    │ │ │ +-export([fact/1]).   % module attribute
    │ │ │  
    │ │ │ -fact(N) when N>0 ->  % beginning of function declaration
    │ │ │ -    N * fact(N-1);   %  |
    │ │ │ -fact(0) ->           %  |
    │ │ │ +fact(N) when N>0 ->  % beginning of function declaration
    │ │ │ +    N * fact(N-1);   %  |
    │ │ │ +fact(0) ->           %  |
    │ │ │      1.               % end of function declaration

    For a description of function declarations, see │ │ │ Function Declaration Syntax.

    │ │ │ │ │ │ │ │ │ │ │ │ Module Attributes │ │ │

    │ │ │ @@ -176,71 +176,71 @@ │ │ │ meaning.

    │ │ │ │ │ │ │ │ │ │ │ │ Behaviour Module Attribute │ │ │

    │ │ │

    It is possible to specify that the module is the callback module for a │ │ │ -behaviour:

    -behaviour(Behaviour).

    The atom Behaviour gives the name of the behaviour, which can be a │ │ │ +behaviour:

    -behaviour(Behaviour).

    The atom Behaviour gives the name of the behaviour, which can be a │ │ │ user-defined behaviour or one of the following OTP standard behaviours:

    • gen_server
    • gen_statem
    • gen_event
    • supervisor

    The spelling behavior is also accepted.

    The callback functions of the module can be specified either directly by the │ │ │ -exported function behaviour_info/1:

    behaviour_info(callbacks) -> Callbacks.

    or by a -callback attribute for each callback function:

    -callback Name(Arguments) -> Result.

    Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ +exported function behaviour_info/1:

    behaviour_info(callbacks) -> Callbacks.

    or by a -callback attribute for each callback function:

    -callback Name(Arguments) -> Result.

    Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ is to be preferred since the extra type information can be used by tools to │ │ │ produce documentation or find discrepancies.

    Read more about behaviours and callback modules in │ │ │ OTP Design Principles.

    │ │ │ │ │ │ │ │ │ │ │ │ Record Definitions │ │ │

    │ │ │ -

    The same syntax as for module attributes is used for record definitions:

    -record(Record, Fields).

    Record definitions are allowed anywhere in a module, also among the function │ │ │ +

    The same syntax as for module attributes is used for record definitions:

    -record(Record, Fields).

    Record definitions are allowed anywhere in a module, also among the function │ │ │ declarations. Read more in Records.

    │ │ │ │ │ │ │ │ │ │ │ │ Preprocessor │ │ │

    │ │ │

    The same syntax as for module attributes is used by the preprocessor, which │ │ │ -supports file inclusion, macros, and conditional compilation:

    -include("SomeFile.hrl").
    │ │ │ --define(Macro, Replacement).

    Read more in Preprocessor.

    │ │ │ +supports file inclusion, macros, and conditional compilation:

    -include("SomeFile.hrl").
    │ │ │ +-define(Macro, Replacement).

    Read more in Preprocessor.

    │ │ │ │ │ │ │ │ │ │ │ │ Setting File and Line │ │ │

    │ │ │

    The same syntax as for module attributes is used for changing the pre-defined │ │ │ -macros ?FILE and ?LINE:

    -file(File, Line).

    This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ +macros ?FILE and ?LINE:

    -file(File, Line).

    This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ source program is generated by another tool. It also indicates the │ │ │ correspondence of source files to lines of the original user-written file, from │ │ │ which the source program is produced.

    │ │ │ │ │ │ │ │ │ │ │ │ Types and function specifications │ │ │

    │ │ │

    A similar syntax as for module attributes is used for specifying types and │ │ │ -function specifications:

    -type my_type() :: atom() | integer().
    │ │ │ --spec my_function(integer()) -> integer().

    Read more in Types and Function specifications.

    The description is based on │ │ │ +function specifications:

    -type my_type() :: atom() | integer().
    │ │ │ +-spec my_function(integer()) -> integer().

    Read more in Types and Function specifications.

    The description is based on │ │ │ EEP8 - Types and function specifications, │ │ │ which is not to be further updated.

    │ │ │ │ │ │ │ │ │ │ │ │ Documentation attributes │ │ │

    │ │ │

    The module attribute -doc(Documentation) is used to provide user documentation │ │ │ -for a function/type/callback:

    -doc("Example documentation").
    │ │ │ -example() -> ok.

    The attribute should be placed just before the entity it documents.The │ │ │ +for a function/type/callback:

    -doc("Example documentation").
    │ │ │ +example() -> ok.

    The attribute should be placed just before the entity it documents.The │ │ │ parenthesis are optional around Documentation. The allowed values for │ │ │ Documentation are:

    • literal string or │ │ │ utf-8 encoded binary string - The string │ │ │ documenting the entity. Any literal string is allowed, so both │ │ │ triple quoted strings and │ │ │ sigils that translate to literal strings can be used. │ │ │ -The following examples are equivalent:

      -doc("Example \"docs\"").
      │ │ │ --doc(<<"Example \"docs\""/utf8>>).
      │ │ │ +The following examples are equivalent:

      -doc("Example \"docs\"").
      │ │ │ +-doc(<<"Example \"docs\""/utf8>>).
      │ │ │  -doc ~S/Example "docs"/.
      │ │ │  -doc """
      │ │ │     Example "docs"
      │ │ │     """
      │ │ │  -doc ~B|Example "docs"|.

      For clarity it is recommended to use either normal "strings" or triple │ │ │ quoted strings for documentation attributes.

    • {file, file:name/0 } - Read the contents of filename and use │ │ │ that as the documentation string.

    • false - Set the current entity as hidden, that is, it should not be │ │ │ @@ -253,15 +253,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ The feature directive │ │ │

    │ │ │

    While not a module attribute, but rather a directive (since it might affect │ │ │ syntax), there is the -feature(..) directive used for enabling and disabling │ │ │ -features.

    The syntax is similar to that of an attribute, but has two arguments:

    -feature(FeatureName, enable | disable).

    Note that the feature directive can only appear │ │ │ +features.

    The syntax is similar to that of an attribute, but has two arguments:

    -feature(FeatureName, enable | disable).

    Note that the feature directive can only appear │ │ │ in a prefix of the module.

    │ │ │ │ │ │ │ │ │ │ │ │ Comments │ │ │

    │ │ │

    Comments can be placed anywhere in a module except within strings and │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/nif.html │ │ │ @@ -133,26 +133,26 @@ │ │ │ Erlang Program │ │ │ │ │ │

    Even if all functions of a module are NIFs, an Erlang module is still needed for │ │ │ two reasons:

    • The NIF library must be explicitly loaded by Erlang code in the same module.
    • All NIFs of a module must have an Erlang implementation as well.

    Normally these are minimal stub implementations that throw an exception. But │ │ │ they can also be used as fallback implementations for functions that do not have │ │ │ native implementations on some architectures.

    NIF libraries are loaded by calling erlang:load_nif/2, with the name of the │ │ │ shared library as argument. The second argument can be any term that will be │ │ │ -passed on to the library and used for initialization:

    -module(complex6).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ --nifs([foo/1, bar/1]).
    │ │ │ --on_load(init/0).
    │ │ │ -
    │ │ │ -init() ->
    │ │ │ -    ok = erlang:load_nif("./complex6_nif", 0).
    │ │ │ -
    │ │ │ -foo(_X) ->
    │ │ │ -    erlang:nif_error(nif_library_not_loaded).
    │ │ │ -bar(_Y) ->
    │ │ │ -    erlang:nif_error(nif_library_not_loaded).

    Here, the directive on_load is used to get function init to be automatically │ │ │ +passed on to the library and used for initialization:

    -module(complex6).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +-nifs([foo/1, bar/1]).
    │ │ │ +-on_load(init/0).
    │ │ │ +
    │ │ │ +init() ->
    │ │ │ +    ok = erlang:load_nif("./complex6_nif", 0).
    │ │ │ +
    │ │ │ +foo(_X) ->
    │ │ │ +    erlang:nif_error(nif_library_not_loaded).
    │ │ │ +bar(_Y) ->
    │ │ │ +    erlang:nif_error(nif_library_not_loaded).

    Here, the directive on_load is used to get function init to be automatically │ │ │ called when the module is loaded. If init returns anything other than ok, │ │ │ such when the loading of the NIF library fails in this example, the module is │ │ │ unloaded and calls to functions within it, fail.

    Loading the NIF library overrides the stub implementations and cause calls to │ │ │ foo and bar to be dispatched to the NIF implementations instead.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -209,23 +209,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │

    │ │ │

    Step 1. Compile the C code:

    unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
    │ │ │  windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c

    Step 2: Start Erlang and compile the Erlang code:

    > erl
    │ │ │ -Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
    │ │ │ +Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
    │ │ │  
    │ │ │ -Eshell V5.7.5  (abort with ^G)
    │ │ │ -1> c(complex6).
    │ │ │ -{ok,complex6}

    Step 3: Run the example:

    3> complex6:foo(3).
    │ │ │ +Eshell V5.7.5  (abort with ^G)
    │ │ │ +1> c(complex6).
    │ │ │ +{ok,complex6}

    Step 3: Run the example:

    3> complex6:foo(3).
    │ │ │  4
    │ │ │ -4> complex6:bar(5).
    │ │ │ +4> complex6:bar(5).
    │ │ │  10
    │ │ │ -5> complex6:foo("not an integer").
    │ │ │ +5> complex6:foo("not an integer").
    │ │ │  ** exception error: bad argument
    │ │ │       in function  complex6:foo/1
    │ │ │          called as comlpex6:foo("not an integer")
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/opaques.html │ │ │ @@ -122,24 +122,24 @@ │ │ │ Opaque Type Aliases │ │ │ │ │ │

    The main use case for opacity in Erlang is to hide the implementation of a data │ │ │ type, enabling evolving the API while minimizing the risk of breaking consumers. │ │ │ The runtime does not check opacity. Dialyzer provides some opacity-checking, but │ │ │ the rest is up to convention.

    This document explains what Erlang opacity is (and the trade-offs involved) via │ │ │ the example of the sets:set() data type. This type was │ │ │ -defined in the sets module like this:

    -opaque set(Element) :: #set{segs :: segs(Element)}.

    OTP 24 changed the definition to the following in │ │ │ -this commit.

    -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

    And this change was safer and more backwards-compatible than if the type had │ │ │ +defined in the sets module like this:

    -opaque set(Element) :: #set{segs :: segs(Element)}.

    OTP 24 changed the definition to the following in │ │ │ +this commit.

    -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

    And this change was safer and more backwards-compatible than if the type had │ │ │ been defined with -type instead of -opaque. Here is why: when a module │ │ │ defines an -opaque, the contract is that only the defining module should rely │ │ │ on the definition of the type: no other modules should rely on the definition.

    This means that code that pattern-matched on set as a record/tuple technically │ │ │ broke the contract, and opted in to being potentially broken when the definition │ │ │ of set() changed. Before OTP 24, this code printed ok. In OTP 24 it may │ │ │ -error:

    case sets:new() of
    │ │ │ -    Set when is_tuple(Set) ->
    │ │ │ -        io:format("ok")
    │ │ │ +error:

    case sets:new() of
    │ │ │ +    Set when is_tuple(Set) ->
    │ │ │ +        io:format("ok")
    │ │ │  end.

    When working with an opaque defined in another module, here are some │ │ │ recommendations:

    • Don't examine the underlying type using pattern-matching, guards, or functions │ │ │ that reveal the type, such as tuple_size/1 .
    • Instead, use functions provided by the module for working with the type. For │ │ │ example, sets module provides sets:new/0, sets:add_element/2, │ │ │ sets:is_element/2, and so on.
    • sets:set(a) is a subtype of sets:set(a | b) and not the │ │ │ other way around. Generally, you can rely on the property that the_opaque(T) │ │ │ is a subtype of the_opaque(U) when T is a subtype of U.

    When defining your own opaques, here are some recommendations:

    • Since consumers are expected to not rely on the definition of the opaque type, │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/otp-patch-apply.html │ │ │ @@ -201,15 +201,15 @@ │ │ │ │ │ │ Sanity check │ │ │ │ │ │

      The application dependencies can be checked using the Erlang shell. │ │ │ Application dependencies are verified among installed applications by │ │ │ otp_patch_apply, but these are not necessarily those actually loaded. │ │ │ By calling system_information:sanity_check() one can validate │ │ │ -dependencies among applications actually loaded.

      1> system_information:sanity_check().
      │ │ │ +dependencies among applications actually loaded.

      1> system_information:sanity_check().
      │ │ │  ok

      Please take a look at the reference of sanity_check() for more │ │ │ information.

      │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/patterns.html │ │ │ @@ -128,18 +128,18 @@ │ │ │ succeeds, any unbound variables in the pattern become bound. If the matching │ │ │ fails, an exception is raised.

    Examples:

    1> X.
    │ │ │  ** 1:1: variable 'X' is unbound **
    │ │ │  2> X = 2.
    │ │ │  2
    │ │ │  3> X + 1.
    │ │ │  3
    │ │ │ -4> {X, Y} = {1, 2}.
    │ │ │ +4> {X, Y} = {1, 2}.
    │ │ │  ** exception error: no match of right hand side value {1,2}
    │ │ │ -5> {X, Y} = {2, 3}.
    │ │ │ -{2,3}
    │ │ │ +5> {X, Y} = {2, 3}.
    │ │ │ +{2,3}
    │ │ │  6> Y.
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/prog_ex_records.html │ │ │ @@ -122,105 +122,105 @@ │ │ │ Records and Tuples │ │ │ │ │ │

    The main advantage of using records rather than tuples is that fields in a │ │ │ record are accessed by name, whereas fields in a tuple are accessed by position. │ │ │ To illustrate these differences, suppose that you want to represent a person │ │ │ with the tuple {Name, Address, Phone}.

    To write functions that manipulate this data, remember the following:

    • The Name field is the first element of the tuple.
    • The Address field is the second element.
    • The Phone field is the third element.

    For example, to extract data from a variable P that contains such a tuple, you │ │ │ can write the following code and then use pattern matching to extract the │ │ │ -relevant fields:

    Name = element(1, P),
    │ │ │ -Address = element(2, P),
    │ │ │ +relevant fields:

    Name = element(1, P),
    │ │ │ +Address = element(2, P),
    │ │ │  ...

    Such code is difficult to read and understand, and errors occur if the numbering │ │ │ of the elements in the tuple is wrong. If the data representation of the fields │ │ │ is changed, by re-ordering, adding, or removing fields, all references to the │ │ │ person tuple must be checked and possibly modified.

    Records allow references to the fields by name, instead of by position. In the │ │ │ -following example, a record instead of a tuple is used to store the data:

    -record(person, {name, phone, address}).

    This enables references to the fields of the record by name. For example, if P │ │ │ +following example, a record instead of a tuple is used to store the data:

    -record(person, {name, phone, address}).

    This enables references to the fields of the record by name. For example, if P │ │ │ is a variable whose value is a person record, the following code access the │ │ │ name and address fields of the records:

    Name = P#person.name,
    │ │ │  Address = P#person.address,
    │ │ │ -...

    Internally, records are represented using tagged tuples:

    {person, Name, Phone, Address}

    │ │ │ +...

    Internally, records are represented using tagged tuples:

    {person, Name, Phone, Address}

    │ │ │ │ │ │ │ │ │ │ │ │ Defining a Record │ │ │

    │ │ │

    This following definition of a person is used in several examples in this │ │ │ section. Three fields are included, name, phone, and address. The default │ │ │ values for name and phone is "" and [], respectively. The default value for │ │ │ address is the atom undefined, since no default value is supplied for this │ │ │ -field:

    -record(person, {name = "", phone = [], address}).

    The record must be defined in the shell to enable use of the record syntax in │ │ │ -the examples:

    > rd(person, {name = "", phone = [], address}).
    │ │ │ +field:

    -record(person, {name = "", phone = [], address}).

    The record must be defined in the shell to enable use of the record syntax in │ │ │ +the examples:

    > rd(person, {name = "", phone = [], address}).
    │ │ │  person

    This is because record definitions are only available at compile time, not at │ │ │ runtime. For details on records in the shell, see the shell manual page in │ │ │ STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ Creating a Record │ │ │

    │ │ │ -

    A new person record is created as follows:

    > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
    │ │ │ -#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

    As the address field was omitted, its default value is used.

    From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ -special field _. _ means "all fields not explicitly specified".

    Example:

    > #person{name = "Jakob", _ = '_'}.
    │ │ │ -#person{name = "Jakob",phone = '_',address = '_'}

    It is primarily intended to be used in ets:match/2 and │ │ │ +

    A new person record is created as follows:

    > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
    │ │ │ +#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

    As the address field was omitted, its default value is used.

    From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ +special field _. _ means "all fields not explicitly specified".

    Example:

    > #person{name = "Jakob", _ = '_'}.
    │ │ │ +#person{name = "Jakob",phone = '_',address = '_'}

    It is primarily intended to be used in ets:match/2 and │ │ │ mnesia:match_object/3, to set record fields to the atom '_'. (This is a │ │ │ wildcard in ets:match/2.)

    │ │ │ │ │ │ │ │ │ │ │ │ Accessing a Record Field │ │ │

    │ │ │ -

    The following example shows how to access a record field:

    > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
    │ │ │ -#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
    │ │ │ +

    The following example shows how to access a record field:

    > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
    │ │ │ +#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
    │ │ │  > P#person.name.
    │ │ │  "Joe"

    │ │ │ │ │ │ │ │ │ │ │ │ Updating a Record │ │ │

    │ │ │ -

    The following example shows how to update a record:

    > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
    │ │ │ -#person{name = "Joe",phone = [1,2,3],address = "A street"}
    │ │ │ -> P2 = P1#person{name="Robert"}.
    │ │ │ -#person{name = "Robert",phone = [1,2,3],address = "A street"}

    │ │ │ +

    The following example shows how to update a record:

    > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
    │ │ │ +#person{name = "Joe",phone = [1,2,3],address = "A street"}
    │ │ │ +> P2 = P1#person{name="Robert"}.
    │ │ │ +#person{name = "Robert",phone = [1,2,3],address = "A street"}

    │ │ │ │ │ │ │ │ │ │ │ │ Type Testing │ │ │

    │ │ │

    The following example shows that the guard succeeds if P is record of type │ │ │ -person:

    foo(P) when is_record(P, person) -> a_person;
    │ │ │ -foo(_) -> not_a_person.

    │ │ │ +person:

    foo(P) when is_record(P, person) -> a_person;
    │ │ │ +foo(_) -> not_a_person.

    │ │ │ │ │ │ │ │ │ │ │ │ Pattern Matching │ │ │

    │ │ │

    Matching can be used in combination with records, as shown in the following │ │ │ -example:

    > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
    │ │ │ -#person{name = "Joe",phone = [0,0,7],address = "A street"}
    │ │ │ -> #person{name = Name} = P3, Name.
    │ │ │ +example:

    > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
    │ │ │ +#person{name = "Joe",phone = [0,0,7],address = "A street"}
    │ │ │ +> #person{name = Name} = P3, Name.
    │ │ │  "Joe"

    The following function takes a list of person records and searches for the │ │ │ -phone number of a person with a particular name:

    find_phone([#person{name=Name, phone=Phone} | _], Name) ->
    │ │ │ -    {found,  Phone};
    │ │ │ -find_phone([_| T], Name) ->
    │ │ │ -    find_phone(T, Name);
    │ │ │ -find_phone([], Name) ->
    │ │ │ +phone number of a person with a particular name:

    find_phone([#person{name=Name, phone=Phone} | _], Name) ->
    │ │ │ +    {found,  Phone};
    │ │ │ +find_phone([_| T], Name) ->
    │ │ │ +    find_phone(T, Name);
    │ │ │ +find_phone([], Name) ->
    │ │ │      not_found.

    The fields referred to in the pattern can be given in any order.

    │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │

    │ │ │

    The value of a field in a record can be an instance of a record. Retrieval of │ │ │ nested data can be done stepwise, or in a single step, as shown in the following │ │ │ -example:

    -record(name, {first = "Robert", last = "Ericsson"}).
    │ │ │ --record(person, {name = #name{}, phone}).
    │ │ │ +example:

    -record(name, {first = "Robert", last = "Ericsson"}).
    │ │ │ +-record(person, {name = #name{}, phone}).
    │ │ │  
    │ │ │ -demo() ->
    │ │ │ -  P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
    │ │ │ -  First = (P#person.name)#name.first.

    Here, demo() evaluates to "Robert".

    │ │ │ +demo() -> │ │ │ + P = #person{name= #name{first="Robert",last="Virding"}, phone=123}, │ │ │ + First = (P#person.name)#name.first.

    Here, demo() evaluates to "Robert".

    │ │ │ │ │ │ │ │ │ │ │ │ A Longer Example │ │ │

    │ │ │

    Comments are embedded in the following example:

    %% File: person.hrl
    │ │ │  
    │ │ │ @@ -230,48 +230,48 @@
    │ │ │  %%    name:  A string (default is undefined).
    │ │ │  %%    age:   An integer (default is undefined).
    │ │ │  %%    phone: A list of integers (default is []).
    │ │ │  %%    dict:  A dictionary containing various information
    │ │ │  %%           about the person.
    │ │ │  %%           A {Key, Value} list (default is the empty list).
    │ │ │  %%------------------------------------------------------------
    │ │ │ --record(person, {name, age, phone = [], dict = []}).
    -module(person).
    │ │ │ --include("person.hrl").
    │ │ │ --compile(export_all). % For test purposes only.
    │ │ │ +-record(person, {name, age, phone = [], dict = []}).
    -module(person).
    │ │ │ +-include("person.hrl").
    │ │ │ +-compile(export_all). % For test purposes only.
    │ │ │  
    │ │ │  %% This creates an instance of a person.
    │ │ │  %%   Note: The phone number is not supplied so the
    │ │ │  %%         default value [] will be used.
    │ │ │  
    │ │ │ -make_hacker_without_phone(Name, Age) ->
    │ │ │ -   #person{name = Name, age = Age,
    │ │ │ -           dict = [{computer_knowledge, excellent},
    │ │ │ -                   {drinks, coke}]}.
    │ │ │ +make_hacker_without_phone(Name, Age) ->
    │ │ │ +   #person{name = Name, age = Age,
    │ │ │ +           dict = [{computer_knowledge, excellent},
    │ │ │ +                   {drinks, coke}]}.
    │ │ │  
    │ │ │  %% This demonstrates matching in arguments
    │ │ │  
    │ │ │ -print(#person{name = Name, age = Age,
    │ │ │ -              phone = Phone, dict = Dict}) ->
    │ │ │ -  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
    │ │ │ -            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
    │ │ │ +print(#person{name = Name, age = Age,
    │ │ │ +              phone = Phone, dict = Dict}) ->
    │ │ │ +  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
    │ │ │ +            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
    │ │ │  
    │ │ │  %% Demonstrates type testing, selector, updating.
    │ │ │  
    │ │ │ -birthday(P) when is_record(P, person) ->
    │ │ │ -   P#person{age = P#person.age + 1}.
    │ │ │ +birthday(P) when is_record(P, person) ->
    │ │ │ +   P#person{age = P#person.age + 1}.
    │ │ │  
    │ │ │ -register_two_hackers() ->
    │ │ │ -   Hacker1 = make_hacker_without_phone("Joe", 29),
    │ │ │ -   OldHacker = birthday(Hacker1),
    │ │ │ +register_two_hackers() ->
    │ │ │ +   Hacker1 = make_hacker_without_phone("Joe", 29),
    │ │ │ +   OldHacker = birthday(Hacker1),
    │ │ │     % The central_register_server should have
    │ │ │     % an interface function for this.
    │ │ │ -   central_register_server ! {register_person, Hacker1},
    │ │ │ -   central_register_server ! {register_person,
    │ │ │ -             OldHacker#person{name = "Robert",
    │ │ │ -                              phone = [0,8,3,2,4,5,3,1]}}.
    │ │ │ +
    central_register_server ! {register_person, Hacker1}, │ │ │ + central_register_server ! {register_person, │ │ │ + OldHacker#person{name = "Robert", │ │ │ + phone = [0,8,3,2,4,5,3,1]}}.
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Header Files │ │ │

    │ │ │

    As shown above, some files have extension .hrl. These are header files that │ │ │ -are included in the .erl files by:

    -include("File_Name").

    for example:

    -include("mess_interface.hrl").

    In the case above the file is fetched from the same directory as all the other │ │ │ +are included in the .erl files by:

    -include("File_Name").

    for example:

    -include("mess_interface.hrl").

    In the case above the file is fetched from the same directory as all the other │ │ │ files in the messenger example. (manual).

    .hrl files can contain any valid Erlang code but are most often used for record │ │ │ and macro definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ Records │ │ │

    │ │ │ -

    A record is defined as:

    -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

    For example:

    -record(message_to,{to_name, message}).

    This is equivalent to:

    {message_to, To_Name, Message}

    Creating a record is best illustrated by an example:

    #message_to{message="hello", to_name=fred)

    This creates:

    {message_to, fred, "hello"}

    Notice that you do not have to worry about the order you assign values to the │ │ │ +

    A record is defined as:

    -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

    For example:

    -record(message_to,{to_name, message}).

    This is equivalent to:

    {message_to, To_Name, Message}

    Creating a record is best illustrated by an example:

    #message_to{message="hello", to_name=fred)

    This creates:

    {message_to, fred, "hello"}

    Notice that you do not have to worry about the order you assign values to the │ │ │ various parts of the records when you create it. The advantage of using records │ │ │ is that by placing their definitions in header files you can conveniently define │ │ │ interfaces that are easy to change. For example, if you want to add a new field │ │ │ to the record, you only have to change the code where the new field is used and │ │ │ not at every place the record is referred to. If you leave out a field when │ │ │ creating a record, it gets the value of the atom undefined. (manual)

    Pattern matching with records is very similar to creating records. For example, │ │ │ -inside a case or receive:

    #message_to{to_name=ToName, message=Message} ->

    This is the same as:

    {message_to, ToName, Message}

    │ │ │ +inside a case or receive:

    #message_to{to_name=ToName, message=Message} ->

    This is the same as:

    {message_to, ToName, Message}

    │ │ │ │ │ │ │ │ │ │ │ │ Macros │ │ │

    │ │ │

    Another thing that has been added to the messenger is a macro. The file │ │ │ mess_config.hrl contains the definition:

    %%% Configure the location of the server node,
    │ │ │ --define(server_node, messenger@super).

    This file is included in mess_server.erl:

    -include("mess_config.hrl").

    Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ -messenger@super.

    A macro is also used when spawning the server process:

    spawn(?MODULE, server, [])

    This is a standard macro (that is, defined by the system, not by the user). │ │ │ +-define(server_node, messenger@super).

    This file is included in mess_server.erl:

    -include("mess_config.hrl").

    Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ +messenger@super.

    A macro is also used when spawning the server process:

    spawn(?MODULE, server, [])

    This is a standard macro (that is, defined by the system, not by the user). │ │ │ ?MODULE is always replaced by the name of the current module (that is, the │ │ │ -module definition near the start of the file). There are more advanced ways │ │ │ of using macros with, for example, parameters.

    The three Erlang (.erl) files in the messenger example are individually │ │ │ compiled into object code file (.beam). The Erlang system loads and links │ │ │ these files into the system when they are referred to during execution of the │ │ │ code. In this case, they are simply put in our current working directory (that │ │ │ is, the place you have done "cd" to). There are ways of putting the .beam │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/ref_man_functions.html │ │ │ @@ -120,51 +120,51 @@ │ │ │ │ │ │ │ │ │ Function Declaration Syntax │ │ │ │ │ │

    A function declaration is a sequence of function clauses separated by │ │ │ semicolons, and terminated by a period (.).

    A function clause consists of a clause head and a clause body, separated by │ │ │ ->.

    A clause head consists of the function name, an argument list, and an optional │ │ │ -guard sequence beginning with the keyword when:

    Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │ +guard sequence beginning with the keyword when:

    Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │      Body1;
    │ │ │  ...;
    │ │ │ -Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │ +Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │      BodyK.

    The function name is an atom. Each argument is a pattern.

    The number of arguments N is the arity of the function. A function is │ │ │ uniquely defined by the module name, function name, and arity. That is, two │ │ │ functions with the same name and in the same module, but with different arities │ │ │ are two different functions.

    A function named f in module mod and with arity N is often denoted as │ │ │ mod:f/N.

    A clause body consists of a sequence of expressions separated by comma (,):

    Expr1,
    │ │ │  ...,
    │ │ │  ExprN

    Valid Erlang expressions and guard sequences are described in │ │ │ -Expressions.

    Example:

    fact(N) when N > 0 ->  % first clause head
    │ │ │ -    N * fact(N-1);     % first clause body
    │ │ │ +Expressions.

    Example:

    fact(N) when N > 0 ->  % first clause head
    │ │ │ +    N * fact(N-1);     % first clause body
    │ │ │  
    │ │ │ -fact(0) ->             % second clause head
    │ │ │ +fact(0) ->             % second clause head
    │ │ │      1.                 % second clause body

    │ │ │ │ │ │ │ │ │ │ │ │ Function Evaluation │ │ │

    │ │ │

    When a function M:F/N is called, first the code for the function is located. │ │ │ If the function cannot be found, an undef runtime error occurs. Notice that │ │ │ the function must be exported to be visible outside the module it is defined in.

    If the function is found, the function clauses are scanned sequentially until a │ │ │ clause is found that fulfills both of the following two conditions:

    1. The patterns in the clause head can be successfully matched against the given │ │ │ arguments.
    2. The guard sequence, if any, is true.

    If such a clause cannot be found, a function_clause runtime error occurs.

    If such a clause is found, the corresponding clause body is evaluated. That is, │ │ │ the expressions in the body are evaluated sequentially and the value of the last │ │ │ -expression is returned.

    Consider the function fact:

    -module(mod).
    │ │ │ --export([fact/1]).
    │ │ │ +expression is returned.

    Consider the function fact:

    -module(mod).
    │ │ │ +-export([fact/1]).
    │ │ │  
    │ │ │ -fact(N) when N > 0 ->
    │ │ │ -    N * fact(N - 1);
    │ │ │ -fact(0) ->
    │ │ │ +fact(N) when N > 0 ->
    │ │ │ +    N * fact(N - 1);
    │ │ │ +fact(0) ->
    │ │ │      1.

    Assume that you want to calculate the factorial for 1:

    1> mod:fact(1).

    Evaluation starts at the first clause. The pattern N is matched against │ │ │ argument 1. The matching succeeds and the guard (N > 0) is true, thus N is │ │ │ -bound to 1, and the corresponding body is evaluated:

    N * fact(N-1) => (N is bound to 1)
    │ │ │ -1 * fact(0)

    Now, fact(0) is called, and the function clauses are scanned │ │ │ +bound to 1, and the corresponding body is evaluated:

    N * fact(N-1) => (N is bound to 1)
    │ │ │ +1 * fact(0)

    Now, fact(0) is called, and the function clauses are scanned │ │ │ sequentially again. First, the pattern N is matched against 0. The │ │ │ matching succeeds, but the guard (N > 0) is false. Second, the │ │ │ pattern 0 is matched against the argument 0. The matching succeeds │ │ │ and the body is evaluated:

    1 * fact(0) =>
    │ │ │  1 * 1 =>
    │ │ │  1

    Evaluation has succeed and mod:fact(1) returns 1.

    If mod:fact/1 is called with a negative number as argument, no clause head │ │ │ matches. A function_clause runtime error occurs.

    │ │ │ @@ -173,17 +173,17 @@ │ │ │ │ │ │ Tail recursion │ │ │

    │ │ │

    If the last expression of a function body is a function call, a │ │ │ tail-recursive call is done. This is to ensure that no system │ │ │ resources, for example, call stack, are consumed. This means that an │ │ │ infinite loop using tail-recursive calls will not exhaust the call │ │ │ -stack and can (in principle) run forever.

    Example:

    loop(N) ->
    │ │ │ -    io:format("~w~n", [N]),
    │ │ │ -    loop(N+1).

    The earlier factorial example is a counter-example. It is not │ │ │ +stack and can (in principle) run forever.

    Example:

    loop(N) ->
    │ │ │ +    io:format("~w~n", [N]),
    │ │ │ +    loop(N+1).

    The earlier factorial example is a counter-example. It is not │ │ │ tail-recursive, since a multiplication is done on the result of the recursive │ │ │ call to fact(N-1).

    │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │

    │ │ │ @@ -191,17 +191,17 @@ │ │ │ system. BIFs do things that are difficult or impossible to implement │ │ │ in Erlang. Most of the BIFs belong to module erlang, but there │ │ │ are also BIFs belonging to a few other modules, for example lists │ │ │ and ets.

    The most commonly used BIFs belonging to erlang are auto-imported. They do │ │ │ not need to be prefixed with the module name. Which BIFs that are auto-imported │ │ │ is specified in the erlang module in ERTS. For example, standard-type │ │ │ conversion BIFs like atom_to_list and BIFs allowed in guards can be called │ │ │ -without specifying the module name.

    Examples:

    1> tuple_size({a,b,c}).
    │ │ │ +without specifying the module name.

    Examples:

    1> tuple_size({a,b,c}).
    │ │ │  3
    │ │ │ -2> atom_to_list('Erlang').
    │ │ │ +2> atom_to_list('Erlang').
    │ │ │  "Erlang"
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Process Creation │ │ │

    │ │ │ -

    A process is created by calling spawn():

    spawn(Module, Name, Args) -> pid()
    │ │ │ -  Module = Name = atom()
    │ │ │ -  Args = [Arg1,...,ArgN]
    │ │ │ -    ArgI = term()

    spawn() creates a new process and returns the pid.

    The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ +

    A process is created by calling spawn():

    spawn(Module, Name, Args) -> pid()
    │ │ │ +  Module = Name = atom()
    │ │ │ +  Args = [Arg1,...,ArgN]
    │ │ │ +    ArgI = term()

    spawn() creates a new process and returns the pid.

    The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ arguments are the elements of the (possible empty) Args argument list.

    There exist a number of different spawn BIFs:

    │ │ │ │ │ │ │ │ │ │ │ │ Registered Processes │ │ │

    │ │ │

    Besides addressing a process by using its pid, there are also BIFs for │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/ref_man_records.html │ │ │ @@ -123,17 +123,17 @@ │ │ │ │ │ │ │ │ │ Defining Records │ │ │ │ │ │

    A record definition consists of the name of the record, followed by the field │ │ │ names of the record. Record and field names must be atoms. Each field can be │ │ │ given an optional default value. If no default value is supplied, undefined is │ │ │ -used.

    -record(Name, {Field1 [= Expr1],
    │ │ │ +used.

    -record(Name, {Field1 [= Expr1],
    │ │ │                 ...
    │ │ │ -               FieldN [= ExprN]}).

    The default value for a field is an arbitrary expression, except that it must │ │ │ + FieldN [= ExprN]}).

    The default value for a field is an arbitrary expression, except that it must │ │ │ not use any variables.

    A record definition can be placed anywhere among the attributes and function │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ record.

    If a record is used in several modules, it is recommended that the record │ │ │ definition is placed in an include file.

    Change

    Starting from Erlang/OTP 26, records can be defined in the Erlang shell │ │ │ using the syntax described in this section. In earlier releases, it was │ │ │ necessary to use the shell built-in function rd/2.

    │ │ │ │ │ │ @@ -143,32 +143,32 @@ │ │ │

    │ │ │

    The following expression creates a new Name record where the value of each │ │ │ field FieldI is the value of evaluating the corresponding expression ExprI:

    #Name{Field1=Expr1, ..., FieldK=ExprK}

    The fields can be in any order, not necessarily the same order as in the record │ │ │ definition, and fields can be omitted. Omitted fields get their respective │ │ │ default value instead.

    If several fields are to be assigned the same value, the following construction │ │ │ can be used:

    #Name{Field1=Expr1, ..., FieldK=ExprK, _=ExprL}

    Omitted fields then get the value of evaluating ExprL instead of their default │ │ │ values. This feature is primarily intended to be used to create patterns for ETS │ │ │ -and Mnesia match functions.

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +and Mnesia match functions.

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -lookup(Name, Tab) ->
    │ │ │ -    ets:match_object(Tab, #person{name=Name, _='_'}).

    │ │ │ +lookup(Name, Tab) -> │ │ │ + ets:match_object(Tab, #person{name=Name, _='_'}).

    │ │ │ │ │ │ │ │ │ │ │ │ Accessing Record Fields │ │ │

    │ │ │
    Expr#Name.Field

    Returns the value of the specified field. Expr is to evaluate to a Name │ │ │ -record.

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +record.

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -get_person_name(Person) ->
    │ │ │ +get_person_name(Person) ->
    │ │ │      Person#person.name.

    The following expression returns the position of the specified field in the │ │ │ -tuple representation of the record:

    #Name.Field

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +tuple representation of the record:

    #Name.Field

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -lookup(Name, List) ->
    │ │ │ -    lists:keyfind(Name, #person.name, List).

    │ │ │ +lookup(Name, List) -> │ │ │ + lists:keyfind(Name, #person.name, List).

    │ │ │ │ │ │ │ │ │ │ │ │ Updating Records │ │ │

    │ │ │
    Expr#Name{Field1=Expr1, ..., FieldK=ExprK}

    Expr is to evaluate to a Name record. A copy of this record is returned, │ │ │ with the value of each specified field FieldI changed to the value of │ │ │ @@ -178,51 +178,51 @@ │ │ │ │ │ │ │ │ │ Records in Guards │ │ │ │ │ │

    Since record expressions are expanded to tuple expressions, creating │ │ │ records and accessing record fields are allowed in guards. However, │ │ │ all subexpressions (for initializing fields), must be valid guard │ │ │ -expressions as well.

    Examples:

    handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
    │ │ │ +expressions as well.

    Examples:

    handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
    │ │ │      ...
    │ │ │  
    │ │ │ -handle(Msg, State) when State#state.running =:= true ->
    │ │ │ -    ...

    There is also a type test BIF is_record(Term, RecordTag).

    Example:

    is_person(P) when is_record(P, person) ->
    │ │ │ +handle(Msg, State) when State#state.running =:= true ->
    │ │ │ +    ...

    There is also a type test BIF is_record(Term, RecordTag).

    Example:

    is_person(P) when is_record(P, person) ->
    │ │ │      true;
    │ │ │ -is_person(_P) ->
    │ │ │ +is_person(_P) ->
    │ │ │      false.

    │ │ │ │ │ │ │ │ │ │ │ │ Records in Patterns │ │ │

    │ │ │

    A pattern that matches a certain record is created in the same way as a record │ │ │ is created:

    #Name{Field1=Expr1, ..., FieldK=ExprK}

    In this case, one or more of Expr1 ... ExprK can be unbound variables.

    │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │

    │ │ │ -

    Assume the following record definitions:

    -record(nrec0, {name = "nested0"}).
    │ │ │ --record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
    │ │ │ --record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
    │ │ │ +

    Assume the following record definitions:

    -record(nrec0, {name = "nested0"}).
    │ │ │ +-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
    │ │ │ +-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
    │ │ │  
    │ │ │ -N2 = #nrec2{},

    Accessing or updating nested records can be written without parentheses:

    "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
    │ │ │ +N2 = #nrec2{},

    Accessing or updating nested records can be written without parentheses:

    "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
    │ │ │      N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},

    which is equivalent to:

    "nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
    │ │ │  N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},

    Change

    Before Erlang/OTP R14, parentheses were necessary when accessing or updating │ │ │ nested records.

    │ │ │ │ │ │ │ │ │ │ │ │ Internal Representation of Records │ │ │

    │ │ │

    Record expressions are translated to tuple expressions during compilation. A │ │ │ -record defined as:

    -record(Name, {Field1, ..., FieldN}).

    is internally represented by the tuple:

    {Name, Value1, ..., ValueN}

    Here each ValueI is the default value for FieldI.

    To each module using records, a pseudo function is added during compilation to │ │ │ -obtain information about records:

    record_info(fields, Record) -> [Field]
    │ │ │ -record_info(size, Record) -> Size

    Size is the size of the tuple representation, that is, one more than the │ │ │ +record defined as:

    -record(Name, {Field1, ..., FieldN}).

    is internally represented by the tuple:

    {Name, Value1, ..., ValueN}

    Here each ValueI is the default value for FieldI.

    To each module using records, a pseudo function is added during compilation to │ │ │ +obtain information about records:

    record_info(fields, Record) -> [Field]
    │ │ │ +record_info(size, Record) -> Size

    Size is the size of the tuple representation, that is, one more than the │ │ │ number of fields.

    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    gen_server, simple code replacement is not sufficient. │ │ │ Instead, it is necessary to:

    • Suspend the processes using the module (to avoid that they try to handle any │ │ │ requests before the code replacement is completed).
    • Ask them to transform the internal state format and switch to the new version │ │ │ of the module.
    • Remove the old version.
    • Resume the processes.

    This is called synchronized code replacement and for this the following │ │ │ -instructions are used:

    {update, Module, {advanced, Extra}}
    │ │ │ -{update, Module, supervisor}

    update with argument {advanced,Extra} is used when changing the internal │ │ │ +instructions are used:

    {update, Module, {advanced, Extra}}
    │ │ │ +{update, Module, supervisor}

    update with argument {advanced,Extra} is used when changing the internal │ │ │ state of a behaviour as described above. It causes behaviour processes to call │ │ │ the callback function code_change/3, passing the term Extra and some other │ │ │ information as arguments. See the manual pages for the respective behaviours and │ │ │ Appup Cookbook.

    update with argument supervisor is used when changing the start │ │ │ specification of a supervisor. See Appup Cookbook.

    When a module is to be updated, the release handler finds which processes that │ │ │ are using the module by traversing the supervision tree of each running │ │ │ -application and checking all the child specifications:

    {Id, StartFunc, Restart, Shutdown, Type, Modules}

    A process uses a module if the name is listed in Modules in the child │ │ │ +application and checking all the child specifications:

    {Id, StartFunc, Restart, Shutdown, Type, Modules}

    A process uses a module if the name is listed in Modules in the child │ │ │ specification for the process.

    If Modules=dynamic, which is the case for event managers, the event manager │ │ │ process informs the release handler about the list of currently installed event │ │ │ handlers (gen_event), and it is checked if the module name is in this list │ │ │ instead.

    The release handler suspends, asks for code change, and resumes processes by │ │ │ calling the functions sys:suspend/1,2, sys:change_code/4,5, and │ │ │ sys:resume/1,2, respectively.

    │ │ │ │ │ │ │ │ │ │ │ │ add_module and delete_module │ │ │

    │ │ │ -

    If a new module is introduced, the following instruction is used:

    {add_module, Module}

    This instruction loads module Module. When running Erlang in │ │ │ +

    If a new module is introduced, the following instruction is used:

    {add_module, Module}

    This instruction loads module Module. When running Erlang in │ │ │ embedded mode it is necessary to use this this instruction. It is not │ │ │ strictly required when running Erlang in interactive mode, since the │ │ │ -code server automatically searches for and loads unloaded modules.

    The opposite of add_module is delete_module, which unloads a module:

    {delete_module, Module}

    Any process, in any application, with Module as residence module, is │ │ │ +code server automatically searches for and loads unloaded modules.

    The opposite of add_module is delete_module, which unloads a module:

    {delete_module, Module}

    Any process, in any application, with Module as residence module, is │ │ │ killed when the instruction is evaluated. Therefore, the user must │ │ │ ensure that all such processes are terminated before deleting module │ │ │ Module to avoid a situation with failing supervisor restarts.

    │ │ │ │ │ │ │ │ │ │ │ │ Application Instructions │ │ │ @@ -341,60 +341,60 @@ │ │ │ .app file.
  • Each UpFromVsn is a previous version of the application to upgrade from.
  • Each DownToVsn is a previous version of the application to downgrade to.
  • Each Instructions is a list of release handling instructions.
  • UpFromVsn and DownToVsn can also be specified as regular expressions. For │ │ │ more information about the syntax and contents of the .appup file, see │ │ │ appup in SASL.

    Appup Cookbook includes examples of .appup files for │ │ │ typical upgrade/downgrade cases.

    Example: Consider the release ch_rel-1 from │ │ │ Releases. Assume you want to add a function │ │ │ available/0 to server ch3, which returns the number of available channels │ │ │ (when trying out the example, make the change in a copy of the original │ │ │ -directory, to ensure that the first version is still available):

    -module(ch3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +directory, to ensure that the first version is still available):

    -module(ch3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([available/0]).
    │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([available/0]).
    │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ +start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ +alloc() ->
    │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ +free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │  
    │ │ │ -available() ->
    │ │ │ -    gen_server:call(ch3, available).
    │ │ │ +available() ->
    │ │ │ +    gen_server:call(ch3, available).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, channels()}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, channels()}.
    │ │ │  
    │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2};
    │ │ │ -handle_call(available, _From, Chs) ->
    │ │ │ -    N = available(Chs),
    │ │ │ -    {reply, N, Chs}.
    │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2};
    │ │ │ +handle_call(available, _From, Chs) ->
    │ │ │ +    N = available(Chs),
    │ │ │ +    {reply, N, Chs}.
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    A new version of the ch_app.app file must now be created, where the version is │ │ │ -updated:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "2"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.

    To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + Chs2 = free(Ch, Chs), │ │ │ + {noreply, Chs2}.

    A new version of the ch_app.app file must now be created, where the version is │ │ │ +updated:

    {application, ch_app,
    │ │ │ + [{description, "Channel allocator"},
    │ │ │ +  {vsn, "2"},
    │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ +  {registered, [ch3]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {ch_app,[]}}
    │ │ │ + ]}.

    To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ you only need to load the new (old) version of the ch3 callback module. Create │ │ │ -the application upgrade file ch_app.appup in the ebin directory:

    {"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    │ │ │ +the application upgrade file ch_app.appup in the ebin directory:

    {"2",
    │ │ │ + [{"1", [{load_module, ch3}]}],
    │ │ │ + [{"1", [{load_module, ch3}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Release Upgrade File │ │ │

    │ │ │

    To define how to upgrade/downgrade between the new version and previous versions │ │ │ of a release, a release upgrade file, or in short .relup file, is to be │ │ │ @@ -405,22 +405,22 @@ │ │ │ are to be added and deleted, and which applications that must be upgraded and/or │ │ │ downgraded. The instructions for this are fetched from the .appup files and │ │ │ transformed into a single list of low-level instructions in the right order.

    If the relup file is relatively simple, it can be created manually. It is only │ │ │ to contain low-level instructions.

    For details about the syntax and contents of the release upgrade file, see │ │ │ relup in SASL.

    Example, continued from the previous section: You have a new version "2" of │ │ │ ch_app and an .appup file. A new version of the .rel file is also needed. │ │ │ This time the file is called ch_rel-2.rel and the release version string is │ │ │ -changed from "A" to "B":

    {release,
    │ │ │ - {"ch_rel", "B"},
    │ │ │ - {erts, "14.2.5"},
    │ │ │ - [{kernel, "9.2.4"},
    │ │ │ -  {stdlib, "5.2.3"},
    │ │ │ -  {sasl, "4.2.1"},
    │ │ │ -  {ch_app, "2"}]
    │ │ │ -}.

    Now the relup file can be generated:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
    │ │ │ +changed from "A" to "B":

    {release,
    │ │ │ + {"ch_rel", "B"},
    │ │ │ + {erts, "14.2.5"},
    │ │ │ + [{kernel, "9.2.4"},
    │ │ │ +  {stdlib, "5.2.3"},
    │ │ │ +  {sasl, "4.2.1"},
    │ │ │ +  {ch_app, "2"}]
    │ │ │ +}.

    Now the relup file can be generated:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
    │ │ │  ok

    This generates a relup file with instructions for how to upgrade from version │ │ │ "A" ("ch_rel-1") to version "B" ("ch_rel-2") and how to downgrade from version │ │ │ "B" to version "A".

    Both the old and new versions of the .app and .rel files must be in the code │ │ │ path, as well as the .appup and (new) .beam files. The code path can be │ │ │ extended by using the option path:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
    │ │ │  [{path,["../ch_rel-1",
    │ │ │  "../ch_rel-1/lib/ch_app-1/ebin"]}]).
    │ │ │ @@ -433,25 +433,25 @@
    │ │ │  

    When you have made a new version of a release, a release package can be created │ │ │ with this new version and transferred to the target environment.

    To install the new version of the release in runtime, the release │ │ │ handler is used. This is a process belonging to the SASL application, │ │ │ which handles unpacking, installation, and removal of release │ │ │ packages. The release_handler module communicates with this process.

    Assuming there is an operational target system with installation root directory │ │ │ $ROOT, the release package with the new version of the release is to be copied │ │ │ to $ROOT/releases.

    First, unpack the release package. The files are then extracted from the │ │ │ -package:

    release_handler:unpack_release(ReleaseName) => {ok, Vsn}
    • ReleaseName is the name of the release package except the .tar.gz │ │ │ +package:

      release_handler:unpack_release(ReleaseName) => {ok, Vsn}
      • ReleaseName is the name of the release package except the .tar.gz │ │ │ extension.
      • Vsn is the version of the unpacked release, as defined in its .rel file.

      A directory $ROOT/lib/releases/Vsn is created, where the .rel file, the boot │ │ │ script start.boot, the system configuration file sys.config, and relup are │ │ │ placed. For applications with new version numbers, the application directories │ │ │ are placed under $ROOT/lib. Unchanged applications are not affected.

      An unpacked release can be installed. The release handler then evaluates the │ │ │ -instructions in relup, step by step:

      release_handler:install_release(Vsn) => {ok, FromVsn, []}

      If an error occurs during the installation, the system is rebooted using the old │ │ │ +instructions in relup, step by step:

      release_handler:install_release(Vsn) => {ok, FromVsn, []}

      If an error occurs during the installation, the system is rebooted using the old │ │ │ version of the release. If installation succeeds, the system is afterwards using │ │ │ the new version of the release, but if anything happens and the system is │ │ │ rebooted, it starts using the previous version again.

      To be made the default version, the newly installed release must be made │ │ │ permanent, which means the previous version becomes old:

      release_handler:make_permanent(Vsn) => ok

      The system keeps information about which versions are old and permanent in the │ │ │ -files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

      To downgrade from Vsn to FromVsn, install_release must be called again:

      release_handler:install_release(FromVsn) => {ok, Vsn, []}

      An installed, but not permanent, release can be removed. Information about the │ │ │ +files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

      To downgrade from Vsn to FromVsn, install_release must be called again:

      release_handler:install_release(FromVsn) => {ok, Vsn, []}

      An installed, but not permanent, release can be removed. Information about the │ │ │ release is then deleted from $ROOT/releases/RELEASES and the release-specific │ │ │ code, that is, the new application directories and the $ROOT/releases/Vsn │ │ │ directory, are removed.

      release_handler:remove_release(Vsn) => ok

      │ │ │ │ │ │ │ │ │ │ │ │ Example (continued from the previous sections) │ │ │ @@ -462,17 +462,17 @@ │ │ │ is needed, the file is to contain the empty list:

      [].

      Step 2) Start the system as a simple target system. In reality, it is to be │ │ │ started as an embedded system. However, using erl with the correct boot script │ │ │ and config file is enough for illustration purposes:

      % cd $ROOT
      │ │ │  % bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
      │ │ │  ...

      $ROOT is the installation directory of the target system.

      Step 3) In another Erlang shell, generate start scripts and create a release │ │ │ package for the new version "B". Remember to include (a possible updated) │ │ │ sys.config and the relup file. For more information, see │ │ │ -Release Upgrade File.

      1> systools:make_script("ch_rel-2").
      │ │ │ +Release Upgrade File.

      1> systools:make_script("ch_rel-2").
      │ │ │  ok
      │ │ │ -2> systools:make_tar("ch_rel-2").
      │ │ │ +2> systools:make_tar("ch_rel-2").
      │ │ │  ok

      The new release package now also contains version "2" of ch_app and the │ │ │ relup file:

      % tar tf ch_rel-2.tar
      │ │ │  lib/kernel-9.2.4/ebin/kernel.app
      │ │ │  lib/kernel-9.2.4/ebin/application.beam
      │ │ │  ...
      │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
      │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
      │ │ │ @@ -485,31 +485,31 @@
      │ │ │  lib/ch_app-2/ebin/ch_sup.beam
      │ │ │  lib/ch_app-2/ebin/ch3.beam
      │ │ │  releases/B/start.boot
      │ │ │  releases/B/relup
      │ │ │  releases/B/sys.config
      │ │ │  releases/B/ch_rel-2.rel
      │ │ │  releases/ch_rel-2.rel

      Step 4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases │ │ │ -directory.

      Step 5) In the running target system, unpack the release package:

      1> release_handler:unpack_release("ch_rel-2").
      │ │ │ -{ok,"B"}

      The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ +directory.

      Step 5) In the running target system, unpack the release package:

      1> release_handler:unpack_release("ch_rel-2").
      │ │ │ +{ok,"B"}

      The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ ch_app-1. The kernel, stdlib, and sasl directories are not affected, as │ │ │ they have not changed.

      Under $ROOT/releases, a new directory B is created, containing │ │ │ -ch_rel-2.rel, start.boot, sys.config, and relup.

      Step 6) Check if the function ch3:available/0 is available:

      2> ch3:available().
      │ │ │ +ch_rel-2.rel, start.boot, sys.config, and relup.

      Step 6) Check if the function ch3:available/0 is available:

      2> ch3:available().
      │ │ │  ** exception error: undefined function ch3:available/0

      Step 7) Install the new release. The instructions in $ROOT/releases/B/relup │ │ │ are executed one by one, resulting in the new version of ch3 being loaded. The │ │ │ -function ch3:available/0 is now available:

      3> release_handler:install_release("B").
      │ │ │ -{ok,"A",[]}
      │ │ │ -4> ch3:available().
      │ │ │ +function ch3:available/0 is now available:

      3> release_handler:install_release("B").
      │ │ │ +{ok,"A",[]}
      │ │ │ +4> ch3:available().
      │ │ │  3
      │ │ │ -5> code:which(ch3).
      │ │ │ +5> code:which(ch3).
      │ │ │  ".../lib/ch_app-2/ebin/ch3.beam"
      │ │ │ -6> code:which(ch_sup).
      │ │ │ +6> code:which(ch_sup).
      │ │ │  ".../lib/ch_app-1/ebin/ch_sup.beam"

      Processes in ch_app for which code have not been updated, for example, the │ │ │ supervisor, are still evaluating code from ch_app-1.

      Step 8) If the target system is now rebooted, it uses version "A" again. The │ │ │ -"B" version must be made permanent, to be used when the system is rebooted.

      7> release_handler:make_permanent("B").
      │ │ │ +"B" version must be made permanent, to be used when the system is rebooted.

      7> release_handler:make_permanent("B").
      │ │ │  ok

      │ │ │ │ │ │ │ │ │ │ │ │ Updating Application Specifications │ │ │

      │ │ │

      When a new version of a release is installed, the application specifications are │ │ │ @@ -518,15 +518,15 @@ │ │ │ boot script is generated from the same .rel file as is used to build the │ │ │ release package itself.

      Specifically, the application configuration parameters are automatically updated │ │ │ according to (in increasing priority order):

      • The data in the boot script, fetched from the new application resource file │ │ │ App.app
      • The new sys.config
      • Command-line arguments -App Par Val

      This means that parameter values set in the other system configuration files and │ │ │ values set using application:set_env/3 are disregarded.

      When an installed release is made permanent, the system process init is set to │ │ │ point out the new sys.config.

      After the installation, the application controller compares the old and new │ │ │ configuration parameters for all running applications and call the callback │ │ │ -function:

      Module:config_change(Changed, New, Removed)
      • Module is the application callback module as defined by the mod key in the │ │ │ +function:

        Module:config_change(Changed, New, Removed)
        • Module is the application callback module as defined by the mod key in the │ │ │ .app file.
        • Changed and New are lists of {Par,Val} for all changed and added │ │ │ configuration parameters, respectively.
        • Removed is a list of all parameters Par that have been removed.

        The function is optional and can be omitted when implementing an application │ │ │ callback module.

        │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/release_structure.html │ │ │ @@ -136,37 +136,37 @@ │ │ │ │ │ │ │ │ │ │ │ │ Release Resource File │ │ │ │ │ │

    To define a release, create a release resource file, or in short a .rel │ │ │ file. In the file, specify the name and version of the release, which ERTS │ │ │ -version it is based on, and which applications it consists of:

    {release, {Name,Vsn}, {erts, EVsn},
    │ │ │ - [{Application1, AppVsn1},
    │ │ │ +version it is based on, and which applications it consists of:

    {release, {Name,Vsn}, {erts, EVsn},
    │ │ │ + [{Application1, AppVsn1},
    │ │ │     ...
    │ │ │ -  {ApplicationN, AppVsnN}]}.

    Name, Vsn, EVsn, and AppVsn are strings.

    The file must be named Rel.rel, where Rel is a unique name.

    Each Application (atom) and AppVsn is the name and version of an application │ │ │ + {ApplicationN, AppVsnN}]}.

    Name, Vsn, EVsn, and AppVsn are strings.

    The file must be named Rel.rel, where Rel is a unique name.

    Each Application (atom) and AppVsn is the name and version of an application │ │ │ included in the release. The minimal release based on Erlang/OTP consists of the │ │ │ Kernel and STDLIB applications, so these applications must be included in the │ │ │ list.

    If the release is to be upgraded, it must also include the SASL application.

    Here is an example showing the .app file for a release of ch_app from │ │ │ -the Applications section:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.

    The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ -applications are required by ch_app. The file is called ch_rel-1.rel:

    {release,
    │ │ │ - {"ch_rel", "A"},
    │ │ │ - {erts, "14.2.5"},
    │ │ │ - [{kernel, "9.2.4"},
    │ │ │ -  {stdlib, "5.2.3"},
    │ │ │ -  {sasl, "4.2.1"},
    │ │ │ -  {ch_app, "1"}]
    │ │ │ -}.

    │ │ │ +the Applications section:

    {application, ch_app,
    │ │ │ + [{description, "Channel allocator"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ +  {registered, [ch3]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {ch_app,[]}}
    │ │ │ + ]}.

    The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ +applications are required by ch_app. The file is called ch_rel-1.rel:

    {release,
    │ │ │ + {"ch_rel", "A"},
    │ │ │ + {erts, "14.2.5"},
    │ │ │ + [{kernel, "9.2.4"},
    │ │ │ +  {stdlib, "5.2.3"},
    │ │ │ +  {sasl, "4.2.1"},
    │ │ │ +  {ch_app, "1"}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Generating Boot Scripts │ │ │

    │ │ │

    systools in the SASL application includes tools to build and check │ │ │ releases. The functions read the .rel and .app files and perform │ │ │ @@ -190,17 +190,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Release Package │ │ │ │ │ │

    The systools:make_tar/1,2 function takes a │ │ │ .rel file as input and creates a zipped tar file with the code for │ │ │ -the specified applications, a release package:

    1> systools:make_script("ch_rel-1").
    │ │ │ +the specified applications, a release package:

    1> systools:make_script("ch_rel-1").
    │ │ │  ok
    │ │ │ -2> systools:make_tar("ch_rel-1").
    │ │ │ +2> systools:make_tar("ch_rel-1").
    │ │ │  ok

    The release package by default contains:

    • The .app files
    • The .rel file
    • The object code for all applications, structured according to the │ │ │ application directory structure
    • The binary boot script renamed to start.boot
    % tar tf ch_rel-1.tar
    │ │ │  lib/kernel-9.2.4/ebin/kernel.app
    │ │ │  lib/kernel-9.2.4/ebin/application.beam
    │ │ │  ...
    │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
    │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/robustness.html
    │ │ │ @@ -128,68 +128,68 @@
    │ │ │  
    │ │ │  

    Before improving the messenger program, let us look at some general principles, │ │ │ using the ping pong program as an example. Recall that when "ping" finishes, it │ │ │ tells "pong" that it has done so by sending the atom finished as a message to │ │ │ "pong" so that "pong" can also finish. Another way to let "pong" finish is to │ │ │ make "pong" exit if it does not receive a message from ping within a certain │ │ │ time. This can be done by adding a time-out to pong as shown in the │ │ │ -following example:

    -module(tut19).
    │ │ │ +following example:

    -module(tut19).
    │ │ │  
    │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(0, Pong_Node) ->
    │ │ │ -    io:format("ping finished~n", []);
    │ │ │ +ping(0, Pong_Node) ->
    │ │ │ +    io:format("ping finished~n", []);
    │ │ │  
    │ │ │ -ping(N, Pong_Node) ->
    │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ +ping(N, Pong_Node) ->
    │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ +pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      after 5000 ->
    │ │ │ -            io:format("Pong timed out~n", [])
    │ │ │ +            io:format("Pong timed out~n", [])
    │ │ │      end.
    │ │ │  
    │ │ │ -start_pong() ->
    │ │ │ -    register(pong, spawn(tut19, pong, [])).
    │ │ │ +start_pong() ->
    │ │ │ +    register(pong, spawn(tut19, pong, [])).
    │ │ │  
    │ │ │ -start_ping(Pong_Node) ->
    │ │ │ -    spawn(tut19, ping, [3, Pong_Node]).

    After this is compiled and the file tut19.beam is copied to the necessary │ │ │ +start_ping(Pong_Node) -> │ │ │ + spawn(tut19, ping, [3, Pong_Node]).

    After this is compiled and the file tut19.beam is copied to the necessary │ │ │ directories, the following is seen on (pong@kosken):

    (pong@kosken)1> tut19:start_pong().
    │ │ │  true
    │ │ │  Pong received ping
    │ │ │  Pong received ping
    │ │ │  Pong received ping
    │ │ │  Pong timed out

    And the following is seen on (ping@gollum):

    (ping@gollum)1> tut19:start_ping(pong@kosken).
    │ │ │  <0.36.0>
    │ │ │  Ping received pong
    │ │ │  Ping received pong
    │ │ │  Ping received pong
    │ │ │ -ping finished

    The time-out is set in:

    pong() ->
    │ │ │ +ping finished

    The time-out is set in:

    pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      after 5000 ->
    │ │ │ -            io:format("Pong timed out~n", [])
    │ │ │ +            io:format("Pong timed out~n", [])
    │ │ │      end.

    The time-out (after 5000) is started when receive is entered. The time-out │ │ │ is canceled if {ping,Ping_PID} is received. If {ping,Ping_PID} is not │ │ │ received, the actions following the time-out are done after 5000 milliseconds. │ │ │ after must be last in the receive, that is, preceded by all other message │ │ │ reception specifications in the receive. It is also possible to call a │ │ │ -function that returned an integer for the time-out:

    after pong_timeout() ->

    In general, there are better ways than using time-outs to supervise parts of a │ │ │ +function that returned an integer for the time-out:

    after pong_timeout() ->

    In general, there are better ways than using time-outs to supervise parts of a │ │ │ distributed Erlang system. Time-outs are usually appropriate to supervise │ │ │ external events, for example, if you have expected a message from some external │ │ │ system within a specified time. For example, a time-out can be used to log a │ │ │ user out of the messenger system if they have not accessed it for, say, ten │ │ │ minutes.

    │ │ │ │ │ │ │ │ │ @@ -209,96 +209,96 @@ │ │ │ something called a signal to all the processes it has links to.

    The signal carries information about the pid it was sent from and the exit │ │ │ reason.

    The default behaviour of a process that receives a normal exit is to ignore the │ │ │ signal.

    The default behaviour in the two other cases (that is, abnormal exit) above is │ │ │ to:

    • Bypass all messages to the receiving process.
    • Kill the receiving process.
    • Propagate the same error signal to the links of the killed process.

    In this way you can connect all processes in a transaction together using links. │ │ │ If one of the processes exits abnormally, all the processes in the transaction │ │ │ are killed. As it is often wanted to create a process and link to it at the same │ │ │ time, there is a special BIF, spawn_link that does the │ │ │ -same as spawn, but also creates a link to the spawned process.

    Now an example of the ping pong example using links to terminate "pong":

    -module(tut20).
    │ │ │ +same as spawn, but also creates a link to the spawned process.

    Now an example of the ping pong example using links to terminate "pong":

    -module(tut20).
    │ │ │  
    │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(N, Pong_Pid) ->
    │ │ │ -    link(Pong_Pid),
    │ │ │ -    ping1(N, Pong_Pid).
    │ │ │ +ping(N, Pong_Pid) ->
    │ │ │ +    link(Pong_Pid),
    │ │ │ +    ping1(N, Pong_Pid).
    │ │ │  
    │ │ │ -ping1(0, _) ->
    │ │ │ -    exit(ping);
    │ │ │ +ping1(0, _) ->
    │ │ │ +    exit(ping);
    │ │ │  
    │ │ │ -ping1(N, Pong_Pid) ->
    │ │ │ -    Pong_Pid ! {ping, self()},
    │ │ │ +ping1(N, Pong_Pid) ->
    │ │ │ +    Pong_Pid ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping1(N - 1, Pong_Pid).
    │ │ │ +    ping1(N - 1, Pong_Pid).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ +pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      end.
    │ │ │  
    │ │ │ -start(Ping_Node) ->
    │ │ │ -    PongPID = spawn(tut20, pong, []),
    │ │ │ -    spawn(Ping_Node, tut20, ping, [3, PongPID]).
    (s1@bill)3> tut20:start(s2@kosken).
    │ │ │ +start(Ping_Node) ->
    │ │ │ +    PongPID = spawn(tut20, pong, []),
    │ │ │ +    spawn(Ping_Node, tut20, ping, [3, PongPID]).
    (s1@bill)3> tut20:start(s2@kosken).
    │ │ │  Pong received ping
    │ │ │  <3820.41.0>
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong

    This is a slight modification of the ping pong program where both processes are │ │ │ spawned from the same start/1 function, and the "ping" process can be spawned │ │ │ on a separate node. Notice the use of the link BIF. "Ping" calls │ │ │ exit(ping) when it finishes and this causes an exit signal to be │ │ │ sent to "pong", which also terminates.

    It is possible to modify the default behaviour of a process so that it does not │ │ │ get killed when it receives abnormal exit signals. Instead, all signals are │ │ │ turned into normal messages on the format {'EXIT',FromPID,Reason} and added to │ │ │ -the end of the receiving process' message queue. This behaviour is set by:

    process_flag(trap_exit, true)

    There are several other process flags, see erlang(3). │ │ │ +the end of the receiving process' message queue. This behaviour is set by:

    process_flag(trap_exit, true)

    There are several other process flags, see erlang(3). │ │ │ Changing the default behaviour of a process in this way is usually not done in │ │ │ standard user programs, but is left to the supervisory programs in OTP. However, │ │ │ -the ping pong program is modified to illustrate exit trapping.

    -module(tut21).
    │ │ │ +the ping pong program is modified to illustrate exit trapping.

    -module(tut21).
    │ │ │  
    │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(N, Pong_Pid) ->
    │ │ │ -    link(Pong_Pid),
    │ │ │ -    ping1(N, Pong_Pid).
    │ │ │ +ping(N, Pong_Pid) ->
    │ │ │ +    link(Pong_Pid),
    │ │ │ +    ping1(N, Pong_Pid).
    │ │ │  
    │ │ │ -ping1(0, _) ->
    │ │ │ -    exit(ping);
    │ │ │ +ping1(0, _) ->
    │ │ │ +    exit(ping);
    │ │ │  
    │ │ │ -ping1(N, Pong_Pid) ->
    │ │ │ -    Pong_Pid ! {ping, self()},
    │ │ │ +ping1(N, Pong_Pid) ->
    │ │ │ +    Pong_Pid ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping1(N - 1, Pong_Pid).
    │ │ │ +    ping1(N - 1, Pong_Pid).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    pong1().
    │ │ │ +pong() ->
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    pong1().
    │ │ │  
    │ │ │ -pong1() ->
    │ │ │ +pong1() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong1();
    │ │ │ -        {'EXIT', From, Reason} ->
    │ │ │ -            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
    │ │ │ +            pong1();
    │ │ │ +        {'EXIT', From, Reason} ->
    │ │ │ +            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
    │ │ │      end.
    │ │ │  
    │ │ │ -start(Ping_Node) ->
    │ │ │ -    PongPID = spawn(tut21, pong, []),
    │ │ │ -    spawn(Ping_Node, tut21, ping, [3, PongPID]).
    (s1@bill)1> tut21:start(s2@gollum).
    │ │ │ +start(Ping_Node) ->
    │ │ │ +    PongPID = spawn(tut21, pong, []),
    │ │ │ +    spawn(Ping_Node, tut21, ping, [3, PongPID]).
    (s1@bill)1> tut21:start(s2@gollum).
    │ │ │  <3820.39.0>
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │ @@ -351,135 +351,135 @@
    │ │ │  %%% Started: messenger:client(Server_Node, Name)
    │ │ │  %%% To client: logoff
    │ │ │  %%% To client: {message_to, ToName, Message}
    │ │ │  %%%
    │ │ │  %%% Configuration: change the server_node() function to return the
    │ │ │  %%% name of the node where the messenger server runs
    │ │ │  
    │ │ │ --module(messenger).
    │ │ │ --export([start_server/0, server/0,
    │ │ │ -         logon/1, logoff/0, message/2, client/2]).
    │ │ │ +-module(messenger).
    │ │ │ +-export([start_server/0, server/0,
    │ │ │ +         logon/1, logoff/0, message/2, client/2]).
    │ │ │  
    │ │ │  %%% Change the function below to return the name of the node where the
    │ │ │  %%% messenger server runs
    │ │ │ -server_node() ->
    │ │ │ +server_node() ->
    │ │ │      messenger@super.
    │ │ │  
    │ │ │  %%% This is the server process for the "messenger"
    │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
    │ │ │ -server() ->
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    server([]).
    │ │ │ +server() ->
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    server([]).
    │ │ │  
    │ │ │ -server(User_List) ->
    │ │ │ +server(User_List) ->
    │ │ │      receive
    │ │ │ -        {From, logon, Name} ->
    │ │ │ -            New_User_List = server_logon(From, Name, User_List),
    │ │ │ -            server(New_User_List);
    │ │ │ -        {'EXIT', From, _} ->
    │ │ │ -            New_User_List = server_logoff(From, User_List),
    │ │ │ -            server(New_User_List);
    │ │ │ -        {From, message_to, To, Message} ->
    │ │ │ -            server_transfer(From, To, Message, User_List),
    │ │ │ -            io:format("list is now: ~p~n", [User_List]),
    │ │ │ -            server(User_List)
    │ │ │ +        {From, logon, Name} ->
    │ │ │ +            New_User_List = server_logon(From, Name, User_List),
    │ │ │ +            server(New_User_List);
    │ │ │ +        {'EXIT', From, _} ->
    │ │ │ +            New_User_List = server_logoff(From, User_List),
    │ │ │ +            server(New_User_List);
    │ │ │ +        {From, message_to, To, Message} ->
    │ │ │ +            server_transfer(From, To, Message, User_List),
    │ │ │ +            io:format("list is now: ~p~n", [User_List]),
    │ │ │ +            server(User_List)
    │ │ │      end.
    │ │ │  
    │ │ │  %%% Start the server
    │ │ │ -start_server() ->
    │ │ │ -    register(messenger, spawn(messenger, server, [])).
    │ │ │ +start_server() ->
    │ │ │ +    register(messenger, spawn(messenger, server, [])).
    │ │ │  
    │ │ │  %%% Server adds a new user to the user list
    │ │ │ -server_logon(From, Name, User_List) ->
    │ │ │ +server_logon(From, Name, User_List) ->
    │ │ │      %% check if logged on anywhere else
    │ │ │ -    case lists:keymember(Name, 2, User_List) of
    │ │ │ +    case lists:keymember(Name, 2, User_List) of
    │ │ │          true ->
    │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │              User_List;
    │ │ │          false ->
    │ │ │ -            From ! {messenger, logged_on},
    │ │ │ -            link(From),
    │ │ │ -            [{From, Name} | User_List]        %add user to the list
    │ │ │ +            From ! {messenger, logged_on},
    │ │ │ +            link(From),
    │ │ │ +            [{From, Name} | User_List]        %add user to the list
    │ │ │      end.
    │ │ │  
    │ │ │  %%% Server deletes a user from the user list
    │ │ │ -server_logoff(From, User_List) ->
    │ │ │ -    lists:keydelete(From, 1, User_List).
    │ │ │ +server_logoff(From, User_List) ->
    │ │ │ +    lists:keydelete(From, 1, User_List).
    │ │ │  
    │ │ │  
    │ │ │  %%% Server transfers a message between user
    │ │ │ -server_transfer(From, To, Message, User_List) ->
    │ │ │ +server_transfer(From, To, Message, User_List) ->
    │ │ │      %% check that the user is logged on and who he is
    │ │ │ -    case lists:keysearch(From, 1, User_List) of
    │ │ │ +    case lists:keysearch(From, 1, User_List) of
    │ │ │          false ->
    │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ -        {value, {_, Name}} ->
    │ │ │ -            server_transfer(From, Name, To, Message, User_List)
    │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ +        {value, {_, Name}} ->
    │ │ │ +            server_transfer(From, Name, To, Message, User_List)
    │ │ │      end.
    │ │ │  
    │ │ │  %%% If the user exists, send the message
    │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
    │ │ │      %% Find the receiver and send the message
    │ │ │ -    case lists:keysearch(To, 2, User_List) of
    │ │ │ +    case lists:keysearch(To, 2, User_List) of
    │ │ │          false ->
    │ │ │ -            From ! {messenger, receiver_not_found};
    │ │ │ -        {value, {ToPid, To}} ->
    │ │ │ -            ToPid ! {message_from, Name, Message},
    │ │ │ -            From ! {messenger, sent}
    │ │ │ +            From ! {messenger, receiver_not_found};
    │ │ │ +        {value, {ToPid, To}} ->
    │ │ │ +            ToPid ! {message_from, Name, Message},
    │ │ │ +            From ! {messenger, sent}
    │ │ │      end.
    │ │ │  
    │ │ │  %%% User Commands
    │ │ │ -logon(Name) ->
    │ │ │ -    case whereis(mess_client) of
    │ │ │ +logon(Name) ->
    │ │ │ +    case whereis(mess_client) of
    │ │ │          undefined ->
    │ │ │ -            register(mess_client,
    │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ +            register(mess_client,
    │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
    │ │ │          _ -> already_logged_on
    │ │ │      end.
    │ │ │  
    │ │ │ -logoff() ->
    │ │ │ +logoff() ->
    │ │ │      mess_client ! logoff.
    │ │ │  
    │ │ │ -message(ToName, Message) ->
    │ │ │ -    case whereis(mess_client) of % Test if the client is running
    │ │ │ +message(ToName, Message) ->
    │ │ │ +    case whereis(mess_client) of % Test if the client is running
    │ │ │          undefined ->
    │ │ │              not_logged_on;
    │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │               ok
    │ │ │  end.
    │ │ │  
    │ │ │  %%% The client process which runs on each user node
    │ │ │ -client(Server_Node, Name) ->
    │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ -    await_result(),
    │ │ │ -    client(Server_Node).
    │ │ │ +client(Server_Node, Name) ->
    │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ +    await_result(),
    │ │ │ +    client(Server_Node).
    │ │ │  
    │ │ │ -client(Server_Node) ->
    │ │ │ +client(Server_Node) ->
    │ │ │      receive
    │ │ │          logoff ->
    │ │ │ -            exit(normal);
    │ │ │ -        {message_to, ToName, Message} ->
    │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ -            await_result();
    │ │ │ -        {message_from, FromName, Message} ->
    │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ +            exit(normal);
    │ │ │ +        {message_to, ToName, Message} ->
    │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ +            await_result();
    │ │ │ +        {message_from, FromName, Message} ->
    │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │      end,
    │ │ │ -    client(Server_Node).
    │ │ │ +    client(Server_Node).
    │ │ │  
    │ │ │  %%% wait for a response from the server
    │ │ │ -await_result() ->
    │ │ │ +await_result() ->
    │ │ │      receive
    │ │ │ -        {messenger, stop, Why} -> % Stop the client
    │ │ │ -            io:format("~p~n", [Why]),
    │ │ │ -            exit(normal);
    │ │ │ -        {messenger, What} ->  % Normal response
    │ │ │ -            io:format("~p~n", [What])
    │ │ │ +        {messenger, stop, Why} -> % Stop the client
    │ │ │ +            io:format("~p~n", [Why]),
    │ │ │ +            exit(normal);
    │ │ │ +        {messenger, What} ->  % Normal response
    │ │ │ +            io:format("~p~n", [What])
    │ │ │      after 5000 ->
    │ │ │ -            io:format("No response from server~n", []),
    │ │ │ -            exit(timeout)
    │ │ │ +            io:format("No response from server~n", []),
    │ │ │ +            exit(timeout)
    │ │ │      end.

    The following changes are added:

    The messenger server traps exits. If it receives an exit signal, │ │ │ {'EXIT',From,Reason}, this means that a client process has terminated or is │ │ │ unreachable for one of the following reasons:

    • The user has logged off (the "logoff" message is removed).
    • The network connection to the client is broken.
    • The node on which the client process resides has gone down.
    • The client processes has done some illegal operation.

    If an exit signal is received as above, the tuple {From,Name} is deleted from │ │ │ the servers User_List using the server_logoff function. If the node on which │ │ │ the server runs goes down, an exit signal (automatically generated by the │ │ │ system) is sent to all of the client processes: │ │ │ {'EXIT',MessengerPID,noconnection} causing all the client processes to │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/seq_prog.html │ │ │ @@ -136,293 +136,293 @@ │ │ │ 7 │ │ │ 2>

    As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and │ │ │ that it correctly says that 2 + 5 is 7. If you make writing mistakes in the │ │ │ shell, you can delete with the backspace key, as in most shells. There are many │ │ │ more editing commands in the shell (see │ │ │ tty - A command line interface in ERTS User's Guide).

    (Notice that many line numbers given by the shell in the following examples are │ │ │ out of sequence. This is because this tutorial was written and code-tested in │ │ │ -separate sessions).

    Here is a bit more complex calculation:

    2> (42 + 77) * 66 / 3.
    │ │ │ +separate sessions).

    Here is a bit more complex calculation:

    2> (42 + 77) * 66 / 3.
    │ │ │  2618.0

    Notice the use of brackets, the multiplication operator *, and the division │ │ │ operator /, as in normal arithmetic (see │ │ │ Expressions).

    Press Control-C to shut down the Erlang system and the Erlang shell.

    The following output is shown:

    BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
    │ │ │         (v)ersion (k)ill (D)b-tables (d)istribution
    │ │ │  a
    │ │ │ -$

    Type a to leave the Erlang system.

    Another way to shut down the Erlang system is by entering halt/0:

    3> halt().
    │ │ │ +$

    Type a to leave the Erlang system.

    Another way to shut down the Erlang system is by entering halt/0:

    3> halt().
    │ │ │  $

    │ │ │ │ │ │ │ │ │ │ │ │ Modules and Functions │ │ │

    │ │ │

    A programming language is not much use if you only can run code from the shell. │ │ │ So here is a small Erlang program. Enter it into a file named tut.erl using a │ │ │ suitable text editor. The file name tut.erl is important, and also that it is │ │ │ in the same directory as the one where you started erl). If you are lucky your │ │ │ editor has an Erlang mode that makes it easier for you to enter and format your │ │ │ code nicely (see The Erlang mode for Emacs │ │ │ in Tools User's Guide), but you can manage perfectly well without. Here is the │ │ │ -code to enter:

    -module(tut).
    │ │ │ --export([double/1]).
    │ │ │ +code to enter:

    -module(tut).
    │ │ │ +-export([double/1]).
    │ │ │  
    │ │ │ -double(X) ->
    │ │ │ +double(X) ->
    │ │ │      2 * X.

    It is not hard to guess that this program doubles the value of numbers. The │ │ │ first two lines of the code are described later. Let us compile the program. │ │ │ -This can be done in an Erlang shell as follows, where c means compile:

    3> c(tut).
    │ │ │ -{ok,tut}

    The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ +This can be done in an Erlang shell as follows, where c means compile:

    3> c(tut).
    │ │ │ +{ok,tut}

    The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ that there is some mistake in the text that you entered. Additional error │ │ │ messages gives an idea to what is wrong so you can modify the text and then try │ │ │ -to compile the program again.

    Now run the program:

    4> tut:double(10).
    │ │ │ +to compile the program again.

    Now run the program:

    4> tut:double(10).
    │ │ │  20

    As expected, double of 10 is 20.

    Now let us get back to the first two lines of the code. Erlang programs are │ │ │ written in files. Each file contains an Erlang module. The first line of code │ │ │ -in the module is the module name (see Modules):

    -module(tut).

    Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ +in the module is the module name (see Modules):

    -module(tut).

    Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ line. The files which are used to store the module must have the same name as │ │ │ the module but with the extension .erl. In this case the file name is │ │ │ tut.erl. When using a function in another module, the syntax │ │ │ module_name:function_name(arguments) is used. So the following means call │ │ │ -function double in module tut with argument 10.

    4> tut:double(10).

    The second line says that the module tut contains a function called double, │ │ │ -which takes one argument (X in our example):

    -export([double/1]).

    The second line also says that this function can be called from outside the │ │ │ +function double in module tut with argument 10.

    4> tut:double(10).

    The second line says that the module tut contains a function called double, │ │ │ +which takes one argument (X in our example):

    -export([double/1]).

    The second line also says that this function can be called from outside the │ │ │ module tut. More about this later. Again, notice the . at the end of the │ │ │ line.

    Now for a more complicated example, the factorial of a number. For example, the │ │ │ -factorial of 4 is 4 3 2 * 1, which equals 24.

    Enter the following code in a file named tut1.erl:

    -module(tut1).
    │ │ │ --export([fac/1]).
    │ │ │ +factorial of 4 is 4  3  2 * 1, which equals 24.

    Enter the following code in a file named tut1.erl:

    -module(tut1).
    │ │ │ +-export([fac/1]).
    │ │ │  
    │ │ │ -fac(1) ->
    │ │ │ +fac(1) ->
    │ │ │      1;
    │ │ │ -fac(N) ->
    │ │ │ -    N * fac(N - 1).

    So this is a module, called tut1 that contains a function called fac>, which │ │ │ -takes one argument, N.

    The first part says that the factorial of 1 is 1.:

    fac(1) ->
    │ │ │ +fac(N) ->
    │ │ │ +    N * fac(N - 1).

    So this is a module, called tut1 that contains a function called fac>, which │ │ │ +takes one argument, N.

    The first part says that the factorial of 1 is 1.:

    fac(1) ->
    │ │ │      1;

    Notice that this part ends with a semicolon ; that indicates that there is │ │ │ more of the function fac> to come.

    The second part says that the factorial of N is N multiplied by the factorial of │ │ │ -N - 1:

    fac(N) ->
    │ │ │ -    N * fac(N - 1).

    Notice that this part ends with a . saying that there are no more parts of │ │ │ -this function.

    Compile the file:

    5> c(tut1).
    │ │ │ -{ok,tut1}

    And now calculate the factorial of 4.

    6> tut1:fac(4).
    │ │ │ +N - 1:

    fac(N) ->
    │ │ │ +    N * fac(N - 1).

    Notice that this part ends with a . saying that there are no more parts of │ │ │ +this function.

    Compile the file:

    5> c(tut1).
    │ │ │ +{ok,tut1}

    And now calculate the factorial of 4.

    6> tut1:fac(4).
    │ │ │  24

    Here the function fac> in module tut1 is called with argument 4.

    A function can have many arguments. Let us expand the module tut1 with the │ │ │ -function to multiply two numbers:

    -module(tut1).
    │ │ │ --export([fac/1, mult/2]).
    │ │ │ +function to multiply two numbers:

    -module(tut1).
    │ │ │ +-export([fac/1, mult/2]).
    │ │ │  
    │ │ │ -fac(1) ->
    │ │ │ +fac(1) ->
    │ │ │      1;
    │ │ │ -fac(N) ->
    │ │ │ -    N * fac(N - 1).
    │ │ │ +fac(N) ->
    │ │ │ +    N * fac(N - 1).
    │ │ │  
    │ │ │ -mult(X, Y) ->
    │ │ │ +mult(X, Y) ->
    │ │ │      X * Y.

    Notice that it is also required to expand the -export line with the │ │ │ -information that there is another function mult with two arguments.

    Compile:

    7> c(tut1).
    │ │ │ -{ok,tut1}

    Try out the new function mult:

    8> tut1:mult(3,4).
    │ │ │ +information that there is another function mult with two arguments.

    Compile:

    7> c(tut1).
    │ │ │ +{ok,tut1}

    Try out the new function mult:

    8> tut1:mult(3,4).
    │ │ │  12

    In this example the numbers are integers and the arguments in the functions in │ │ │ the code N, X, and Y are called variables. Variables must start with a │ │ │ capital letter (see Variables). Examples of │ │ │ variables are Number, ShoeSize, and Age.

    │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │

    │ │ │

    Atom is another data type in Erlang. Atoms start with a small letter (see │ │ │ Atom), for example, charles, centimeter, and │ │ │ inch. Atoms are simply names, nothing else. They are not like variables, which │ │ │ can have a value.

    Enter the next program in a file named tut2.erl). It can be useful for │ │ │ -converting from inches to centimeters and conversely:

    -module(tut2).
    │ │ │ --export([convert/2]).
    │ │ │ +converting from inches to centimeters and conversely:

    -module(tut2).
    │ │ │ +-export([convert/2]).
    │ │ │  
    │ │ │ -convert(M, inch) ->
    │ │ │ +convert(M, inch) ->
    │ │ │      M / 2.54;
    │ │ │  
    │ │ │ -convert(N, centimeter) ->
    │ │ │ -    N * 2.54.

    Compile:

    9> c(tut2).
    │ │ │ -{ok,tut2}

    Test:

    10> tut2:convert(3, inch).
    │ │ │ +convert(N, centimeter) ->
    │ │ │ +    N * 2.54.

    Compile:

    9> c(tut2).
    │ │ │ +{ok,tut2}

    Test:

    10> tut2:convert(3, inch).
    │ │ │  1.1811023622047243
    │ │ │ -11> tut2:convert(7, centimeter).
    │ │ │ +11> tut2:convert(7, centimeter).
    │ │ │  17.78

    Notice the introduction of decimals (floating point numbers) without any │ │ │ explanation. Hopefully you can cope with that.

    Let us see what happens if something other than centimeter or inch is │ │ │ -entered in the convert function:

    12> tut2:convert(3, miles).
    │ │ │ +entered in the convert function:

    12> tut2:convert(3, miles).
    │ │ │  ** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

    The two parts of the convert function are called its clauses. As shown, │ │ │ miles is not part of either of the clauses. The Erlang system cannot match │ │ │ either of the clauses so an error message function_clause is returned. The │ │ │ shell formats the error message nicely, but the error tuple is saved in the │ │ │ -shell's history list and can be output by the shell command v/1:

    13> v(12).
    │ │ │ -{'EXIT',{function_clause,[{tut2,convert,
    │ │ │ -                                [3,miles],
    │ │ │ -                                [{file,"tut2.erl"},{line,4}]},
    │ │ │ -                          {erl_eval,do_apply,6,
    │ │ │ -                                    [{file,"erl_eval.erl"},{line,677}]},
    │ │ │ -                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
    │ │ │ -                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
    │ │ │ -                          {shell,eval_loop,3,
    │ │ │ -                                 [{file,"shell.erl"},{line,627}]}]}}

    │ │ │ +shell's history list and can be output by the shell command v/1:

    13> v(12).
    │ │ │ +{'EXIT',{function_clause,[{tut2,convert,
    │ │ │ +                                [3,miles],
    │ │ │ +                                [{file,"tut2.erl"},{line,4}]},
    │ │ │ +                          {erl_eval,do_apply,6,
    │ │ │ +                                    [{file,"erl_eval.erl"},{line,677}]},
    │ │ │ +                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
    │ │ │ +                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
    │ │ │ +                          {shell,eval_loop,3,
    │ │ │ +                                 [{file,"shell.erl"},{line,627}]}]}}

    │ │ │ │ │ │ │ │ │ │ │ │ Tuples │ │ │

    │ │ │ -

    Now the tut2 program is hardly good programming style. Consider:

    tut2:convert(3, inch).

    Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ +

    Now the tut2 program is hardly good programming style. Consider:

    tut2:convert(3, inch).

    Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ is to be converted to inches? Erlang has a way to group things together to make │ │ │ things more understandable. These are called tuples and are surrounded by │ │ │ curly brackets, { and }.

    So, {inch,3} denotes 3 inches and {centimeter,5} denotes 5 centimeters. Now │ │ │ let us write a new program that converts centimeters to inches and conversely. │ │ │ -Enter the following code in a file called tut3.erl):

    -module(tut3).
    │ │ │ --export([convert_length/1]).
    │ │ │ +Enter the following code in a file called tut3.erl):

    -module(tut3).
    │ │ │ +-export([convert_length/1]).
    │ │ │  
    │ │ │ -convert_length({centimeter, X}) ->
    │ │ │ -    {inch, X / 2.54};
    │ │ │ -convert_length({inch, Y}) ->
    │ │ │ -    {centimeter, Y * 2.54}.

    Compile and test:

    14> c(tut3).
    │ │ │ -{ok,tut3}
    │ │ │ -15> tut3:convert_length({inch, 5}).
    │ │ │ -{centimeter,12.7}
    │ │ │ -16> tut3:convert_length(tut3:convert_length({inch, 5})).
    │ │ │ -{inch,5.0}

    Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ +convert_length({centimeter, X}) -> │ │ │ + {inch, X / 2.54}; │ │ │ +convert_length({inch, Y}) -> │ │ │ + {centimeter, Y * 2.54}.

    Compile and test:

    14> c(tut3).
    │ │ │ +{ok,tut3}
    │ │ │ +15> tut3:convert_length({inch, 5}).
    │ │ │ +{centimeter,12.7}
    │ │ │ +16> tut3:convert_length(tut3:convert_length({inch, 5})).
    │ │ │ +{inch,5.0}

    Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ reassuringly get back to the original value. That is, the argument to a function │ │ │ can be the result of another function. Consider how line 16 (above) works. The │ │ │ argument given to the function {inch,5} is first matched against the first │ │ │ head clause of convert_length, that is, convert_length({centimeter,X}). It │ │ │ can be seen that {centimeter,X} does not match {inch,5} (the head is the bit │ │ │ before the ->). This having failed, let us try the head of the next clause │ │ │ that is, convert_length({inch,Y}). This matches, and Y gets the value 5.

    Tuples can have more than two parts, in fact as many parts as you want, and │ │ │ contain any valid Erlang term. For example, to represent the temperature of │ │ │ -various cities of the world:

    {moscow, {c, -10}}
    │ │ │ -{cape_town, {f, 70}}
    │ │ │ -{paris, {f, 28}}

    Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ +various cities of the world:

    {moscow, {c, -10}}
    │ │ │ +{cape_town, {f, 70}}
    │ │ │ +{paris, {f, 28}}

    Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ element. In the tuple {moscow,{c,-10}}, element 1 is moscow and element 2 │ │ │ is {c,-10}. Here c represents Celsius and f Fahrenheit.

    │ │ │ │ │ │ │ │ │ │ │ │ Lists │ │ │

    │ │ │

    Whereas tuples group things together, it is also needed to represent lists of │ │ │ things. Lists in Erlang are surrounded by square brackets, [ and ]. For │ │ │ -example, a list of the temperatures of various cities in the world can be:

    [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
    │ │ │ - {paris, {f, 28}}, {london, {f, 36}}]

    Notice that this list was so long that it did not fit on one line. This does not │ │ │ +example, a list of the temperatures of various cities in the world can be:

    [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
    │ │ │ + {paris, {f, 28}}, {london, {f, 36}}]

    Notice that this list was so long that it did not fit on one line. This does not │ │ │ matter, Erlang allows line breaks at all "sensible places" but not, for example, │ │ │ in the middle of atoms, integers, and others.

    A useful way of looking at parts of lists, is by using |. This is best │ │ │ -explained by an example using the shell:

    17> [First |TheRest] = [1,2,3,4,5].
    │ │ │ -[1,2,3,4,5]
    │ │ │ +explained by an example using the shell:

    17> [First |TheRest] = [1,2,3,4,5].
    │ │ │ +[1,2,3,4,5]
    │ │ │  18> First.
    │ │ │  1
    │ │ │  19> TheRest.
    │ │ │ -[2,3,4,5]

    To separate the first elements of the list from the rest of the list, | is │ │ │ -used. First has got value 1 and TheRest has got the value [2,3,4,5].

    Another example:

    20> [E1, E2 | R] = [1,2,3,4,5,6,7].
    │ │ │ -[1,2,3,4,5,6,7]
    │ │ │ +[2,3,4,5]

    To separate the first elements of the list from the rest of the list, | is │ │ │ +used. First has got value 1 and TheRest has got the value [2,3,4,5].

    Another example:

    20> [E1, E2 | R] = [1,2,3,4,5,6,7].
    │ │ │ +[1,2,3,4,5,6,7]
    │ │ │  21> E1.
    │ │ │  1
    │ │ │  22> E2.
    │ │ │  2
    │ │ │  23> R.
    │ │ │ -[3,4,5,6,7]

    Here you see the use of | to get the first two elements from the list. If you │ │ │ +[3,4,5,6,7]

    Here you see the use of | to get the first two elements from the list. If you │ │ │ try to get more elements from the list than there are elements in the list, an │ │ │ error is returned. Notice also the special case of the list with no elements, │ │ │ -[]:

    24> [A, B | C] = [1, 2].
    │ │ │ -[1,2]
    │ │ │ +[]:

    24> [A, B | C] = [1, 2].
    │ │ │ +[1,2]
    │ │ │  25> A.
    │ │ │  1
    │ │ │  26> B.
    │ │ │  2
    │ │ │  27> C.
    │ │ │ -[]

    In the previous examples, new variable names are used, instead of reusing the │ │ │ +[]

    In the previous examples, new variable names are used, instead of reusing the │ │ │ old ones: First, TheRest, E1, E2, R, A, B, and C. The reason for │ │ │ this is that a variable can only be given a value once in its context (scope). │ │ │ More about this later.

    The following example shows how to find the length of a list. Enter the │ │ │ -following code in a file named tut4.erl:

    -module(tut4).
    │ │ │ +following code in a file named tut4.erl:

    -module(tut4).
    │ │ │  
    │ │ │ --export([list_length/1]).
    │ │ │ +-export([list_length/1]).
    │ │ │  
    │ │ │ -list_length([]) ->
    │ │ │ +list_length([]) ->
    │ │ │      0;
    │ │ │ -list_length([First | Rest]) ->
    │ │ │ -    1 + list_length(Rest).

    Compile and test:

    28> c(tut4).
    │ │ │ -{ok,tut4}
    │ │ │ -29> tut4:list_length([1,2,3,4,5,6,7]).
    │ │ │ -7

    Explanation:

    list_length([]) ->
    │ │ │ -    0;

    The length of an empty list is obviously 0.

    list_length([First | Rest]) ->
    │ │ │ -    1 + list_length(Rest).

    The length of a list with the first element First and the remaining elements │ │ │ +list_length([First | Rest]) -> │ │ │ + 1 + list_length(Rest).

    Compile and test:

    28> c(tut4).
    │ │ │ +{ok,tut4}
    │ │ │ +29> tut4:list_length([1,2,3,4,5,6,7]).
    │ │ │ +7

    Explanation:

    list_length([]) ->
    │ │ │ +    0;

    The length of an empty list is obviously 0.

    list_length([First | Rest]) ->
    │ │ │ +    1 + list_length(Rest).

    The length of a list with the first element First and the remaining elements │ │ │ Rest is 1 + the length of Rest.

    (Advanced readers only: This is not tail recursive, there is a better way to │ │ │ write this function.)

    In general, tuples are used where "records" or "structs" are used in other │ │ │ languages. Also, lists are used when representing things with varying sizes, │ │ │ that is, where linked lists are used in other languages.

    Erlang does not have a string data type. Instead, strings can be represented by │ │ │ lists of Unicode characters. This implies for example that the list [97,98,99] │ │ │ is equivalent to "abc". The Erlang shell is "clever" and guesses what list you │ │ │ -mean and outputs it in what it thinks is the most appropriate form, for example:

    30> [97,98,99].
    │ │ │ +mean and outputs it in what it thinks is the most appropriate form, for example:

    30> [97,98,99].
    │ │ │  "abc"

    │ │ │ │ │ │ │ │ │ │ │ │ Maps │ │ │

    │ │ │

    Maps are a set of key to value associations. These associations are encapsulated │ │ │ -with #{ and }. To create an association from "key" to value 42:

    > #{ "key" => 42 }.
    │ │ │ -#{"key" => 42}

    Let us jump straight into the deep end with an example using some interesting │ │ │ +with #{ and }. To create an association from "key" to value 42:

    > #{ "key" => 42 }.
    │ │ │ +#{"key" => 42}

    Let us jump straight into the deep end with an example using some interesting │ │ │ features.

    The following example shows how to calculate alpha blending using maps to │ │ │ -reference color and alpha channels. Enter the code in a file named color.erl):

    -module(color).
    │ │ │ +reference color and alpha channels. Enter the code in a file named color.erl):

    -module(color).
    │ │ │  
    │ │ │ --export([new/4, blend/2]).
    │ │ │ +-export([new/4, blend/2]).
    │ │ │  
    │ │ │ --define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
    │ │ │ +-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
    │ │ │  
    │ │ │ -new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.
    │ │ │ -
    │ │ │ -blend(Src,Dst) ->
    │ │ │ -    blend(Src,Dst,alpha(Src,Dst)).
    │ │ │ -
    │ │ │ -blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ -    Dst#{
    │ │ │ -        red   := red(Src,Dst) / Alpha,
    │ │ │ -        green := green(Src,Dst) / Alpha,
    │ │ │ -        blue  := blue(Src,Dst) / Alpha,
    │ │ │ +new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.
    │ │ │ +
    │ │ │ +blend(Src,Dst) ->
    │ │ │ +    blend(Src,Dst,alpha(Src,Dst)).
    │ │ │ +
    │ │ │ +blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ +    Dst#{
    │ │ │ +        red   := red(Src,Dst) / Alpha,
    │ │ │ +        green := green(Src,Dst) / Alpha,
    │ │ │ +        blue  := blue(Src,Dst) / Alpha,
    │ │ │          alpha := Alpha
    │ │ │ -    };
    │ │ │ -blend(_,Dst,_) ->
    │ │ │ -    Dst#{
    │ │ │ +    };
    │ │ │ +blend(_,Dst,_) ->
    │ │ │ +    Dst#{
    │ │ │          red   := 0.0,
    │ │ │          green := 0.0,
    │ │ │          blue  := 0.0,
    │ │ │          alpha := 0.0
    │ │ │ -    }.
    │ │ │ +    }.
    │ │ │  
    │ │ │ -alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ -    SA + DA*(1.0 - SA).
    │ │ │ +alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ +    SA + DA*(1.0 - SA).
    │ │ │  
    │ │ │ -red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
    │ │ │ -green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
    │ │ │ -blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

    Compile and test:

    > c(color).
    │ │ │ -{ok,color}
    │ │ │ -> C1 = color:new(0.3,0.4,0.5,1.0).
    │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ -> C2 = color:new(1.0,0.8,0.1,0.3).
    │ │ │ -#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
    │ │ │ -> color:blend(C1,C2).
    │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ -> color:blend(C2,C1).
    │ │ │ -#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

    This example warrants some explanation:

    -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

    First a macro is_channel is defined to help with the guard tests. This is only │ │ │ +red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ +green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ +blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA).

    Compile and test:

    > c(color).
    │ │ │ +{ok,color}
    │ │ │ +> C1 = color:new(0.3,0.4,0.5,1.0).
    │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ +> C2 = color:new(1.0,0.8,0.1,0.3).
    │ │ │ +#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
    │ │ │ +> color:blend(C1,C2).
    │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ +> color:blend(C2,C1).
    │ │ │ +#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

    This example warrants some explanation:

    -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

    First a macro is_channel is defined to help with the guard tests. This is only │ │ │ here for convenience and to reduce syntax cluttering. For more information about │ │ │ -macros, see The Preprocessor.

    new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.

    The function new/4 creates a new map term and lets the keys red, green, │ │ │ +macros, see The Preprocessor.

    new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.

    The function new/4 creates a new map term and lets the keys red, green, │ │ │ blue, and alpha be associated with an initial value. In this case, only │ │ │ float values between and including 0.0 and 1.0 are allowed, as ensured by the │ │ │ ?is_channel/1 macro for each argument. Only the => operator is allowed when │ │ │ creating a new map.

    By calling blend/2 on any color term created by new/4, the resulting color │ │ │ -can be calculated as determined by the two map terms.

    The first thing blend/2 does is to calculate the resulting alpha channel:

    alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ -    SA + DA*(1.0 - SA).

    The value associated with key alpha is fetched for both arguments using the │ │ │ +can be calculated as determined by the two map terms.

    The first thing blend/2 does is to calculate the resulting alpha channel:

    alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ +    SA + DA*(1.0 - SA).

    The value associated with key alpha is fetched for both arguments using the │ │ │ := operator. The other keys in the map are ignored, only the key alpha is │ │ │ -required and checked for.

    This is also the case for functions red/2, blue/2, and green/2.

    red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

    The difference here is that a check is made for two keys in each map argument. │ │ │ -The other keys are ignored.

    Finally, let us return the resulting color in blend/3:

    blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ -    Dst#{
    │ │ │ -        red   := red(Src,Dst) / Alpha,
    │ │ │ -        green := green(Src,Dst) / Alpha,
    │ │ │ -        blue  := blue(Src,Dst) / Alpha,
    │ │ │ +required and checked for.

    This is also the case for functions red/2, blue/2, and green/2.

    red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ +    SV*SA + DV*DA*(1.0 - SA).

    The difference here is that a check is made for two keys in each map argument. │ │ │ +The other keys are ignored.

    Finally, let us return the resulting color in blend/3:

    blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ +    Dst#{
    │ │ │ +        red   := red(Src,Dst) / Alpha,
    │ │ │ +        green := green(Src,Dst) / Alpha,
    │ │ │ +        blue  := blue(Src,Dst) / Alpha,
    │ │ │          alpha := Alpha
    │ │ │ -    };

    The Dst map is updated with new channel values. The syntax for updating an │ │ │ + };

    The Dst map is updated with new channel values. The syntax for updating an │ │ │ existing key with a new value is with the := operator.

    │ │ │ │ │ │ │ │ │ │ │ │ Standard Modules and Manual Pages │ │ │

    │ │ │

    Erlang has many standard modules to help you do things. For example, the module │ │ │ @@ -442,24 +442,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ Writing Output to a Terminal │ │ │

    │ │ │

    It is nice to be able to do formatted output in examples, so the next example │ │ │ shows a simple way to use the io:format/2 function. Like all other exported │ │ │ -functions, you can test the io:format/2 function in the shell:

    31> io:format("hello world~n", []).
    │ │ │ +functions, you can test the io:format/2 function in the shell:

    31> io:format("hello world~n", []).
    │ │ │  hello world
    │ │ │  ok
    │ │ │ -32> io:format("this outputs one Erlang term: ~w~n", [hello]).
    │ │ │ +32> io:format("this outputs one Erlang term: ~w~n", [hello]).
    │ │ │  this outputs one Erlang term: hello
    │ │ │  ok
    │ │ │ -33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
    │ │ │ +33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
    │ │ │  this outputs two Erlang terms: helloworld
    │ │ │  ok
    │ │ │ -34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
    │ │ │ +34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
    │ │ │  this outputs two Erlang terms: hello world
    │ │ │  ok

    The function io:format/2 (that is, format with two arguments) takes two lists. │ │ │ The first one is nearly always a list written between " ". This list is printed │ │ │ out as it is, except that each ~w is replaced by a term taken in order from the │ │ │ second list. Each ~n is replaced by a new line. The io:format/2 function │ │ │ itself returns the atom ok if everything goes as planned. Like other functions │ │ │ in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a │ │ │ @@ -473,34 +473,34 @@ │ │ │ A Larger Example │ │ │ │ │ │

    Now for a larger example to consolidate what you have learnt so far. Assume that │ │ │ you have a list of temperature readings from a number of cities in the world. │ │ │ Some of them are in Celsius and some in Fahrenheit (as in the previous list). │ │ │ First let us convert them all to Celsius, then let us print the data neatly.

    %% This module is in file tut5.erl
    │ │ │  
    │ │ │ --module(tut5).
    │ │ │ --export([format_temps/1]).
    │ │ │ +-module(tut5).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │  %% Only this function is exported
    │ │ │ -format_temps([])->                        % No output for an empty list
    │ │ │ +format_temps([])->                        % No output for an empty list
    │ │ │      ok;
    │ │ │ -format_temps([City | Rest]) ->
    │ │ │ -    print_temp(convert_to_celsius(City)),
    │ │ │ -    format_temps(Rest).
    │ │ │ -
    │ │ │ -convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
    │ │ │ -    {Name, {c, Temp}};
    │ │ │ -convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
    │ │ │ -    {Name, {c, (Temp - 32) * 5 / 9}}.
    │ │ │ -
    │ │ │ -print_temp({Name, {c, Temp}}) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]).
    35> c(tut5).
    │ │ │ -{ok,tut5}
    │ │ │ -36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +format_temps([City | Rest]) ->
    │ │ │ +    print_temp(convert_to_celsius(City)),
    │ │ │ +    format_temps(Rest).
    │ │ │ +
    │ │ │ +convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
    │ │ │ +    {Name, {c, Temp}};
    │ │ │ +convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
    │ │ │ +    {Name, {c, (Temp - 32) * 5 / 9}}.
    │ │ │ +
    │ │ │ +print_temp({Name, {c, Temp}}) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]).
    35> c(tut5).
    │ │ │ +{ok,tut5}
    │ │ │ +36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  ok

    Before looking at how this program works, notice that a few comments are added │ │ │ to the code. A comment starts with a %-character and goes on to the end of the │ │ │ @@ -528,28 +528,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ Matching, Guards, and Scope of Variables │ │ │ │ │ │

    It can be useful to find the maximum and minimum temperature in lists like this. │ │ │ Before extending the program to do this, let us look at functions for finding │ │ │ -the maximum value of the elements in a list:

    -module(tut6).
    │ │ │ --export([list_max/1]).
    │ │ │ +the maximum value of the elements in a list:

    -module(tut6).
    │ │ │ +-export([list_max/1]).
    │ │ │  
    │ │ │ -list_max([Head|Rest]) ->
    │ │ │ -   list_max(Rest, Head).
    │ │ │ +list_max([Head|Rest]) ->
    │ │ │ +   list_max(Rest, Head).
    │ │ │  
    │ │ │ -list_max([], Res) ->
    │ │ │ +list_max([], Res) ->
    │ │ │      Res;
    │ │ │ -list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ -    list_max(Rest, Head);
    │ │ │ -list_max([Head|Rest], Result_so_far)  ->
    │ │ │ -    list_max(Rest, Result_so_far).
    37> c(tut6).
    │ │ │ -{ok,tut6}
    │ │ │ -38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
    │ │ │ +list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ +    list_max(Rest, Head);
    │ │ │ +list_max([Head|Rest], Result_so_far)  ->
    │ │ │ +    list_max(Rest, Result_so_far).
    37> c(tut6).
    │ │ │ +{ok,tut6}
    │ │ │ +38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
    │ │ │  7

    First notice that two functions have the same name, list_max. However, each of │ │ │ these takes a different number of arguments (parameters). In Erlang these are │ │ │ regarded as completely different functions. Where you need to distinguish │ │ │ between these functions, you write Name/Arity, where Name is the function name │ │ │ and Arity is the number of arguments, in this case list_max/1 and │ │ │ list_max/2.

    In this example you walk through a list "carrying" a value, in this case │ │ │ Result_so_far. list_max/1 simply assumes that the max value of the list is │ │ │ @@ -578,180 +578,180 @@ │ │ │ 5 │ │ │ 40> M = 6. │ │ │ ** exception error: no match of right hand side value 6 │ │ │ 41> M = M + 1. │ │ │ ** exception error: no match of right hand side value 6 │ │ │ 42> N = M + 1. │ │ │ 6

    The use of the match operator is particularly useful for pulling apart Erlang │ │ │ -terms and creating new ones.

    43> {X, Y} = {paris, {f, 28}}.
    │ │ │ -{paris,{f,28}}
    │ │ │ +terms and creating new ones.

    43> {X, Y} = {paris, {f, 28}}.
    │ │ │ +{paris,{f,28}}
    │ │ │  44> X.
    │ │ │  paris
    │ │ │  45> Y.
    │ │ │ -{f,28}

    Here X gets the value paris and Y the value {f,28}.

    If you try to do the same again with another city, an error is returned:

    46> {X, Y} = {london, {f, 36}}.
    │ │ │ +{f,28}

    Here X gets the value paris and Y the value {f,28}.

    If you try to do the same again with another city, an error is returned:

    46> {X, Y} = {london, {f, 36}}.
    │ │ │  ** exception error: no match of right hand side value {london,{f,36}}

    Variables can also be used to improve the readability of programs. For example, │ │ │ -in function list_max/2 above, you can write:

    list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ +in function list_max/2 above, you can write:

    list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │      New_result_far = Head,
    │ │ │ -    list_max(Rest, New_result_far);

    This is possibly a little clearer.

    │ │ │ + list_max(Rest, New_result_far);

    This is possibly a little clearer.

    │ │ │ │ │ │ │ │ │ │ │ │ More About Lists │ │ │

    │ │ │ -

    Remember that the | operator can be used to get the head of a list:

    47> [M1|T1] = [paris, london, rome].
    │ │ │ -[paris,london,rome]
    │ │ │ +

    Remember that the | operator can be used to get the head of a list:

    47> [M1|T1] = [paris, london, rome].
    │ │ │ +[paris,london,rome]
    │ │ │  48> M1.
    │ │ │  paris
    │ │ │  49> T1.
    │ │ │ -[london,rome]

    The | operator can also be used to add a head to a list:

    50> L1 = [madrid | T1].
    │ │ │ -[madrid,london,rome]
    │ │ │ +[london,rome]

    The | operator can also be used to add a head to a list:

    50> L1 = [madrid | T1].
    │ │ │ +[madrid,london,rome]
    │ │ │  51> L1.
    │ │ │ -[madrid,london,rome]

    Now an example of this when working with lists - reversing the order of a list:

    -module(tut8).
    │ │ │ +[madrid,london,rome]

    Now an example of this when working with lists - reversing the order of a list:

    -module(tut8).
    │ │ │  
    │ │ │ --export([reverse/1]).
    │ │ │ +-export([reverse/1]).
    │ │ │  
    │ │ │ -reverse(List) ->
    │ │ │ -    reverse(List, []).
    │ │ │ +reverse(List) ->
    │ │ │ +    reverse(List, []).
    │ │ │  
    │ │ │ -reverse([Head | Rest], Reversed_List) ->
    │ │ │ -    reverse(Rest, [Head | Reversed_List]);
    │ │ │ -reverse([], Reversed_List) ->
    │ │ │ -    Reversed_List.
    52> c(tut8).
    │ │ │ -{ok,tut8}
    │ │ │ -53> tut8:reverse([1,2,3]).
    │ │ │ -[3,2,1]

    Consider how Reversed_List is built. It starts as [], then successively the │ │ │ +reverse([Head | Rest], Reversed_List) -> │ │ │ + reverse(Rest, [Head | Reversed_List]); │ │ │ +reverse([], Reversed_List) -> │ │ │ + Reversed_List.

    52> c(tut8).
    │ │ │ +{ok,tut8}
    │ │ │ +53> tut8:reverse([1,2,3]).
    │ │ │ +[3,2,1]

    Consider how Reversed_List is built. It starts as [], then successively the │ │ │ heads are taken off of the list to be reversed and added to the the │ │ │ -Reversed_List, as shown in the following:

    reverse([1|2,3], []) =>
    │ │ │ -    reverse([2,3], [1|[]])
    │ │ │ +Reversed_List, as shown in the following:

    reverse([1|2,3], []) =>
    │ │ │ +    reverse([2,3], [1|[]])
    │ │ │  
    │ │ │ -reverse([2|3], [1]) =>
    │ │ │ -    reverse([3], [2|[1])
    │ │ │ +reverse([2|3], [1]) =>
    │ │ │ +    reverse([3], [2|[1])
    │ │ │  
    │ │ │ -reverse([3|[]], [2,1]) =>
    │ │ │ -    reverse([], [3|[2,1]])
    │ │ │ +reverse([3|[]], [2,1]) =>
    │ │ │ +    reverse([], [3|[2,1]])
    │ │ │  
    │ │ │ -reverse([], [3,2,1]) =>
    │ │ │ -    [3,2,1]

    The module lists contains many functions for manipulating lists, for example, │ │ │ +reverse([], [3,2,1]) => │ │ │ + [3,2,1]

    The module lists contains many functions for manipulating lists, for example, │ │ │ for reversing them. So before writing a list-manipulating function it is a good │ │ │ idea to check if one not already is written for you (see the lists manual │ │ │ page in STDLIB).

    Now let us get back to the cities and temperatures, but take a more structured │ │ │ -approach this time. First let us convert the whole list to Celsius as follows:

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ +approach this time. First let us convert the whole list to Celsius as follows:

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    convert_list_to_c(List_of_cities).
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    convert_list_to_c(List_of_cities).
    │ │ │  
    │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].

    Test the function:

    54> c(tut7).
    │ │ │ -{ok, tut7}.
    │ │ │ -55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {cape_town,{c,21.11111111111111}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2.2222222222222223}},
    │ │ │ - {london,{c,2.2222222222222223}}]

    Explanation:

    format_temps(List_of_cities) ->
    │ │ │ -    convert_list_to_c(List_of_cities).

    Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) -> │ │ │ + Converted_City = {Name, {c, (F -32)* 5 / 9}}, │ │ │ + [Converted_City | convert_list_to_c(Rest)]; │ │ │ + │ │ │ +convert_list_to_c([City | Rest]) -> │ │ │ + [City | convert_list_to_c(Rest)]; │ │ │ + │ │ │ +convert_list_to_c([]) -> │ │ │ + [].

    Test the function:

    54> c(tut7).
    │ │ │ +{ok, tut7}.
    │ │ │ +55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {cape_town,{c,21.11111111111111}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2.2222222222222223}},
    │ │ │ + {london,{c,2.2222222222222223}}]

    Explanation:

    format_temps(List_of_cities) ->
    │ │ │ +    convert_list_to_c(List_of_cities).

    Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ off the head of the List_of_cities, converts it to Celsius if needed. The | │ │ │ -operator is used to add the (maybe) converted to the converted rest of the list:

    [Converted_City | convert_list_to_c(Rest)];

    or:

    [City | convert_list_to_c(Rest)];

    This is done until the end of the list is reached, that is, the list is empty:

    convert_list_to_c([]) ->
    │ │ │ -    [].

    Now when the list is converted, a function to print it is added:

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ -
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ -    print_temp(Converted_List).
    │ │ │ -
    │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].
    │ │ │ -
    │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ -    print_temp(Rest);
    │ │ │ -print_temp([]) ->
    │ │ │ -    ok.
    56> c(tut7).
    │ │ │ -{ok,tut7}
    │ │ │ -57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +operator is used to add the (maybe) converted to the converted rest of the list:

    [Converted_City | convert_list_to_c(Rest)];

    or:

    [City | convert_list_to_c(Rest)];

    This is done until the end of the list is reached, that is, the list is empty:

    convert_list_to_c([]) ->
    │ │ │ +    [].

    Now when the list is converted, a function to print it is added:

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │ +
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ +    print_temp(Converted_List).
    │ │ │ +
    │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ +    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([City | Rest]) ->
    │ │ │ +    [City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([]) ->
    │ │ │ +    [].
    │ │ │ +
    │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ +    print_temp(Rest);
    │ │ │ +print_temp([]) ->
    │ │ │ +    ok.
    56> c(tut7).
    │ │ │ +{ok,tut7}
    │ │ │ +57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  ok

    Now a function has to be added to find the cities with the maximum and minimum │ │ │ temperatures. The following program is not the most efficient way of doing this │ │ │ as you walk through the list of cities four times. But it is better to first │ │ │ strive for clarity and correctness and to make programs efficient only if │ │ │ -needed.

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ +needed.

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ -    print_temp(Converted_List),
    │ │ │ -    {Max_city, Min_city} = find_max_and_min(Converted_List),
    │ │ │ -    print_max_and_min(Max_city, Min_city).
    │ │ │ -
    │ │ │ -convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].
    │ │ │ -
    │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ -    print_temp(Rest);
    │ │ │ -print_temp([]) ->
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ +    print_temp(Converted_List),
    │ │ │ +    {Max_city, Min_city} = find_max_and_min(Converted_List),
    │ │ │ +    print_max_and_min(Max_city, Min_city).
    │ │ │ +
    │ │ │ +convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
    │ │ │ +    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
    │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([City | Rest]) ->
    │ │ │ +    [City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([]) ->
    │ │ │ +    [].
    │ │ │ +
    │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ +    print_temp(Rest);
    │ │ │ +print_temp([]) ->
    │ │ │      ok.
    │ │ │  
    │ │ │ -find_max_and_min([City | Rest]) ->
    │ │ │ -    find_max_and_min(Rest, City, City).
    │ │ │ +find_max_and_min([City | Rest]) ->
    │ │ │ +    find_max_and_min(Rest, City, City).
    │ │ │  
    │ │ │ -find_max_and_min([{Name, {c, Temp}} | Rest],
    │ │ │ -         {Max_Name, {c, Max_Temp}},
    │ │ │ -         {Min_Name, {c, Min_Temp}}) ->
    │ │ │ +find_max_and_min([{Name, {c, Temp}} | Rest],
    │ │ │ +         {Max_Name, {c, Max_Temp}},
    │ │ │ +         {Min_Name, {c, Min_Temp}}) ->
    │ │ │      if
    │ │ │          Temp > Max_Temp ->
    │ │ │ -            Max_City = {Name, {c, Temp}};           % Change
    │ │ │ +            Max_City = {Name, {c, Temp}};           % Change
    │ │ │          true ->
    │ │ │ -            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
    │ │ │ +            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
    │ │ │      end,
    │ │ │      if
    │ │ │           Temp < Min_Temp ->
    │ │ │ -            Min_City = {Name, {c, Temp}};           % Change
    │ │ │ +            Min_City = {Name, {c, Temp}};           % Change
    │ │ │          true ->
    │ │ │ -            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
    │ │ │ +            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
    │ │ │      end,
    │ │ │ -    find_max_and_min(Rest, Max_City, Min_City);
    │ │ │ +    find_max_and_min(Rest, Max_City, Min_City);
    │ │ │  
    │ │ │ -find_max_and_min([], Max_City, Min_City) ->
    │ │ │ -    {Max_City, Min_City}.
    │ │ │ +find_max_and_min([], Max_City, Min_City) ->
    │ │ │ +    {Max_City, Min_City}.
    │ │ │  
    │ │ │ -print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
    │ │ │ -    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
    │ │ │ -    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
    58> c(tut7).
    │ │ │ -{ok, tut7}
    │ │ │ -59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
    │ │ │ +    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
    │ │ │ +    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
    58> c(tut7).
    │ │ │ +{ok, tut7}
    │ │ │ +59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  Max temperature was 21.11111111111111 c in cape_town
    │ │ │  Min temperature was -10 c in moscow
    │ │ │ @@ -773,88 +773,88 @@
    │ │ │          Action 4
    │ │ │  end

    Notice that there is no ; before end. Conditions do the same as guards, that │ │ │ is, tests that succeed or fail. Erlang starts at the top and tests until it │ │ │ finds a condition that succeeds. Then it evaluates (performs) the action │ │ │ following the condition and ignores all other conditions and actions before the │ │ │ end. If no condition matches, a run-time failure occurs. A condition that │ │ │ always succeeds is the atom true. This is often used last in an if, meaning, │ │ │ -do the action following the true if all other conditions have failed.

    The following is a short program to show the workings of if.

    -module(tut9).
    │ │ │ --export([test_if/2]).
    │ │ │ +do the action following the true if all other conditions have failed.

    The following is a short program to show the workings of if.

    -module(tut9).
    │ │ │ +-export([test_if/2]).
    │ │ │  
    │ │ │ -test_if(A, B) ->
    │ │ │ +test_if(A, B) ->
    │ │ │      if
    │ │ │          A == 5 ->
    │ │ │ -            io:format("A == 5~n", []),
    │ │ │ +            io:format("A == 5~n", []),
    │ │ │              a_equals_5;
    │ │ │          B == 6 ->
    │ │ │ -            io:format("B == 6~n", []),
    │ │ │ +            io:format("B == 6~n", []),
    │ │ │              b_equals_6;
    │ │ │          A == 2, B == 3 ->                      %That is A equals 2 and B equals 3
    │ │ │ -            io:format("A == 2, B == 3~n", []),
    │ │ │ +            io:format("A == 2, B == 3~n", []),
    │ │ │              a_equals_2_b_equals_3;
    │ │ │          A == 1 ; B == 7 ->                     %That is A equals 1 or B equals 7
    │ │ │ -            io:format("A == 1 ; B == 7~n", []),
    │ │ │ +            io:format("A == 1 ; B == 7~n", []),
    │ │ │              a_equals_1_or_b_equals_7
    │ │ │ -    end.

    Testing this program gives:

    60> c(tut9).
    │ │ │ -{ok,tut9}
    │ │ │ -61> tut9:test_if(5,33).
    │ │ │ +    end.

    Testing this program gives:

    60> c(tut9).
    │ │ │ +{ok,tut9}
    │ │ │ +61> tut9:test_if(5,33).
    │ │ │  A == 5
    │ │ │  a_equals_5
    │ │ │ -62> tut9:test_if(33,6).
    │ │ │ +62> tut9:test_if(33,6).
    │ │ │  B == 6
    │ │ │  b_equals_6
    │ │ │ -63> tut9:test_if(2, 3).
    │ │ │ +63> tut9:test_if(2, 3).
    │ │ │  A == 2, B == 3
    │ │ │  a_equals_2_b_equals_3
    │ │ │ -64> tut9:test_if(1, 33).
    │ │ │ +64> tut9:test_if(1, 33).
    │ │ │  A == 1 ; B == 7
    │ │ │  a_equals_1_or_b_equals_7
    │ │ │ -65> tut9:test_if(33, 7).
    │ │ │ +65> tut9:test_if(33, 7).
    │ │ │  A == 1 ; B == 7
    │ │ │  a_equals_1_or_b_equals_7
    │ │ │ -66> tut9:test_if(33, 33).
    │ │ │ +66> tut9:test_if(33, 33).
    │ │ │  ** exception error: no true branch found when evaluating an if expression
    │ │ │       in function  tut9:test_if/2 (tut9.erl, line 5)

    Notice that tut9:test_if(33,33) does not cause any condition to succeed. This │ │ │ leads to the run time error if_clause, here nicely formatted by the shell. See │ │ │ Guard Sequences for details of the many guard tests │ │ │ available.

    case is another construct in Erlang. Recall that the convert_length function │ │ │ -was written as:

    convert_length({centimeter, X}) ->
    │ │ │ -    {inch, X / 2.54};
    │ │ │ -convert_length({inch, Y}) ->
    │ │ │ -    {centimeter, Y * 2.54}.

    The same program can also be written as:

    -module(tut10).
    │ │ │ --export([convert_length/1]).
    │ │ │ +was written as:

    convert_length({centimeter, X}) ->
    │ │ │ +    {inch, X / 2.54};
    │ │ │ +convert_length({inch, Y}) ->
    │ │ │ +    {centimeter, Y * 2.54}.

    The same program can also be written as:

    -module(tut10).
    │ │ │ +-export([convert_length/1]).
    │ │ │  
    │ │ │ -convert_length(Length) ->
    │ │ │ +convert_length(Length) ->
    │ │ │      case Length of
    │ │ │ -        {centimeter, X} ->
    │ │ │ -            {inch, X / 2.54};
    │ │ │ -        {inch, Y} ->
    │ │ │ -            {centimeter, Y * 2.54}
    │ │ │ -    end.
    67> c(tut10).
    │ │ │ -{ok,tut10}
    │ │ │ -68> tut10:convert_length({inch, 6}).
    │ │ │ -{centimeter,15.24}
    │ │ │ -69> tut10:convert_length({centimeter, 2.5}).
    │ │ │ -{inch,0.984251968503937}

    Both case and if have return values, that is, in the above example case │ │ │ + {centimeter, X} -> │ │ │ + {inch, X / 2.54}; │ │ │ + {inch, Y} -> │ │ │ + {centimeter, Y * 2.54} │ │ │ + end.

    67> c(tut10).
    │ │ │ +{ok,tut10}
    │ │ │ +68> tut10:convert_length({inch, 6}).
    │ │ │ +{centimeter,15.24}
    │ │ │ +69> tut10:convert_length({centimeter, 2.5}).
    │ │ │ +{inch,0.984251968503937}

    Both case and if have return values, that is, in the above example case │ │ │ returned either {inch,X/2.54} or {centimeter,Y*2.54}. The behaviour of │ │ │ case can also be modified by using guards. The following example clarifies │ │ │ this. It tells us the length of a month, given the year. The year must be known, │ │ │ -since February has 29 days in a leap year.

    -module(tut11).
    │ │ │ --export([month_length/2]).
    │ │ │ +since February has 29 days in a leap year.

    -module(tut11).
    │ │ │ +-export([month_length/2]).
    │ │ │  
    │ │ │ -month_length(Year, Month) ->
    │ │ │ +month_length(Year, Month) ->
    │ │ │      %% All years divisible by 400 are leap
    │ │ │      %% Years divisible by 100 are not leap (except the 400 rule above)
    │ │ │      %% Years divisible by 4 are leap (except the 100 rule above)
    │ │ │      Leap = if
    │ │ │ -        trunc(Year / 400) * 400 == Year ->
    │ │ │ +        trunc(Year / 400) * 400 == Year ->
    │ │ │              leap;
    │ │ │ -        trunc(Year / 100) * 100 == Year ->
    │ │ │ +        trunc(Year / 100) * 100 == Year ->
    │ │ │              not_leap;
    │ │ │ -        trunc(Year / 4) * 4 == Year ->
    │ │ │ +        trunc(Year / 4) * 4 == Year ->
    │ │ │              leap;
    │ │ │          true ->
    │ │ │              not_leap
    │ │ │      end,
    │ │ │      case Month of
    │ │ │          sep -> 30;
    │ │ │          apr -> 30;
    │ │ │ @@ -865,152 +865,152 @@
    │ │ │          jan -> 31;
    │ │ │          mar -> 31;
    │ │ │          may -> 31;
    │ │ │          jul -> 31;
    │ │ │          aug -> 31;
    │ │ │          oct -> 31;
    │ │ │          dec -> 31
    │ │ │ -    end.
    70> c(tut11).
    │ │ │ -{ok,tut11}
    │ │ │ -71> tut11:month_length(2004, feb).
    │ │ │ +    end.
    70> c(tut11).
    │ │ │ +{ok,tut11}
    │ │ │ +71> tut11:month_length(2004, feb).
    │ │ │  29
    │ │ │ -72> tut11:month_length(2003, feb).
    │ │ │ +72> tut11:month_length(2003, feb).
    │ │ │  28
    │ │ │ -73> tut11:month_length(1947, aug).
    │ │ │ +73> tut11:month_length(1947, aug).
    │ │ │  31

    │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │

    │ │ │

    BIFs are functions that for some reason are built-in to the Erlang virtual │ │ │ machine. BIFs often implement functionality that is impossible or is too │ │ │ inefficient to implement in Erlang. Some BIFs can be called using the function │ │ │ name only but they are by default belonging to the erlang module. For example, │ │ │ the call to the BIF trunc below is equivalent to a call to erlang:trunc.

    As shown, first it is checked if a year is leap. If a year is divisible by 400, │ │ │ it is a leap year. To determine this, first divide the year by 400 and use the │ │ │ BIF trunc (more about this later) to cut off any decimals. Then multiply by │ │ │ 400 again and see if the same value is returned again. For example, year 2004:

    2004 / 400 = 5.01
    │ │ │ -trunc(5.01) = 5
    │ │ │ +trunc(5.01) = 5
    │ │ │  5 * 400 = 2000

    2000 is not the same as 2004, so 2004 is not divisible by 400. Year 2000:

    2000 / 400 = 5.0
    │ │ │ -trunc(5.0) = 5
    │ │ │ +trunc(5.0) = 5
    │ │ │  5 * 400 = 2000

    That is, a leap year. The next two trunc-tests evaluate if the year is │ │ │ divisible by 100 or 4 in the same way. The first if returns leap or │ │ │ not_leap, which lands up in the variable Leap. This variable is used in the │ │ │ guard for feb in the following case that tells us how long the month is.

    This example showed the use of trunc. It is easier to use the Erlang operator │ │ │ rem that gives the remainder after division, for example:

    74> 2004 rem 400.
    │ │ │ -4

    So instead of writing:

    trunc(Year / 400) * 400 == Year ->
    │ │ │ +4

    So instead of writing:

    trunc(Year / 400) * 400 == Year ->
    │ │ │      leap;

    it can be written:

    Year rem 400 == 0 ->
    │ │ │      leap;

    There are many other BIFs such as trunc. Only a few BIFs can be used in │ │ │ guards, and you cannot use functions you have defined yourself in guards. (see │ │ │ Guard Sequences) (For advanced readers: This is to │ │ │ ensure that guards do not have side effects.) Let us play with a few of these │ │ │ -functions in the shell:

    75> trunc(5.6).
    │ │ │ +functions in the shell:

    75> trunc(5.6).
    │ │ │  5
    │ │ │ -76> round(5.6).
    │ │ │ +76> round(5.6).
    │ │ │  6
    │ │ │ -77> length([a,b,c,d]).
    │ │ │ +77> length([a,b,c,d]).
    │ │ │  4
    │ │ │ -78> float(5).
    │ │ │ +78> float(5).
    │ │ │  5.0
    │ │ │ -79> is_atom(hello).
    │ │ │ +79> is_atom(hello).
    │ │ │  true
    │ │ │ -80> is_atom("hello").
    │ │ │ +80> is_atom("hello").
    │ │ │  false
    │ │ │ -81> is_tuple({paris, {c, 30}}).
    │ │ │ +81> is_tuple({paris, {c, 30}}).
    │ │ │  true
    │ │ │ -82> is_tuple([paris, {c, 30}]).
    │ │ │ +82> is_tuple([paris, {c, 30}]).
    │ │ │  false

    All of these can be used in guards. Now for some BIFs that cannot be used in │ │ │ -guards:

    83> atom_to_list(hello).
    │ │ │ +guards:

    83> atom_to_list(hello).
    │ │ │  "hello"
    │ │ │ -84> list_to_atom("goodbye").
    │ │ │ +84> list_to_atom("goodbye").
    │ │ │  goodbye
    │ │ │ -85> integer_to_list(22).
    │ │ │ +85> integer_to_list(22).
    │ │ │  "22"

    These three BIFs do conversions that would be difficult (or impossible) to do in │ │ │ Erlang.

    │ │ │ │ │ │ │ │ │ │ │ │ Higher-Order Functions (Funs) │ │ │

    │ │ │

    Erlang, like most modern functional programming languages, has higher-order │ │ │ -functions. Here is an example using the shell:

    86> Xf = fun(X) -> X * 2 end.
    │ │ │ +functions. Here is an example using the shell:

    86> Xf = fun(X) -> X * 2 end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -87> Xf(5).
    │ │ │ +87> Xf(5).
    │ │ │  10

    Here is defined a function that doubles the value of a number and assigned this │ │ │ function to a variable. Thus Xf(5) returns value 10. Two useful functions when │ │ │ -working with lists are foreach and map, which are defined as follows:

    foreach(Fun, [First|Rest]) ->
    │ │ │ -    Fun(First),
    │ │ │ -    foreach(Fun, Rest);
    │ │ │ -foreach(Fun, []) ->
    │ │ │ +working with lists are foreach and map, which are defined as follows:

    foreach(Fun, [First|Rest]) ->
    │ │ │ +    Fun(First),
    │ │ │ +    foreach(Fun, Rest);
    │ │ │ +foreach(Fun, []) ->
    │ │ │      ok.
    │ │ │  
    │ │ │ -map(Fun, [First|Rest]) ->
    │ │ │ -    [Fun(First)|map(Fun,Rest)];
    │ │ │ -map(Fun, []) ->
    │ │ │ -    [].

    These two functions are provided in the standard module lists. foreach takes │ │ │ +map(Fun, [First|Rest]) -> │ │ │ + [Fun(First)|map(Fun,Rest)]; │ │ │ +map(Fun, []) -> │ │ │ + [].

    These two functions are provided in the standard module lists. foreach takes │ │ │ a list and applies a fun to every element in the list. map creates a new list │ │ │ by applying a fun to every element in a list. Going back to the shell, map is │ │ │ -used and a fun to add 3 to every element of a list:

    88> Add_3 = fun(X) -> X + 3 end.
    │ │ │ +used and a fun to add 3 to every element of a list:

    88> Add_3 = fun(X) -> X + 3 end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -89> lists:map(Add_3, [1,2,3]).
    │ │ │ -[4,5,6]

    Let us (again) print the temperatures in a list of cities:

    90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
    │ │ │ -[City, X, Temp]) end.
    │ │ │ +89> lists:map(Add_3, [1,2,3]).
    │ │ │ +[4,5,6]

    Let us (again) print the temperatures in a list of cities:

    90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
    │ │ │ +[City, X, Temp]) end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          c -10
    │ │ │  cape_town       f 70
    │ │ │  stockholm       c -4
    │ │ │  paris           f 28
    │ │ │  london          f 36
    │ │ │  ok

    Let us now define a fun that can be used to go through a list of cities and │ │ │ -temperatures and transform them all to Celsius.

    -module(tut13).
    │ │ │ +temperatures and transform them all to Celsius.

    -module(tut13).
    │ │ │  
    │ │ │ --export([convert_list_to_c/1]).
    │ │ │ +-export([convert_list_to_c/1]).
    │ │ │  
    │ │ │ -convert_to_c({Name, {f, Temp}}) ->
    │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
    │ │ │ -convert_to_c({Name, {c, Temp}}) ->
    │ │ │ -    {Name, {c, Temp}}.
    │ │ │ -
    │ │ │ -convert_list_to_c(List) ->
    │ │ │ -    lists:map(fun convert_to_c/1, List).
    92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {cape_town,{c,21}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2}},
    │ │ │ - {london,{c,2}}]

    The convert_to_c function is the same as before, but here it is used as a fun:

    lists:map(fun convert_to_c/1, List)

    When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ + {Name, {c, Temp}}. │ │ │ + │ │ │ +convert_list_to_c(List) -> │ │ │ + lists:map(fun convert_to_c/1, List).

    92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {cape_town,{c,21}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2}},
    │ │ │ + {london,{c,2}}]

    The convert_to_c function is the same as before, but here it is used as a fun:

    lists:map(fun convert_to_c/1, List)

    When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ Function/Arity (remember that Arity = number of arguments). So in the │ │ │ map-call lists:map(fun convert_to_c/1, List) is written. As shown, │ │ │ convert_list_to_c becomes much shorter and easier to understand.

    The standard module lists also contains a function sort(Fun, List) where │ │ │ Fun is a fun with two arguments. This fun returns true if the first argument │ │ │ is less than the second argument, or else false. Sorting is added to the │ │ │ -convert_list_to_c:

    -module(tut13).
    │ │ │ +convert_list_to_c:

    -module(tut13).
    │ │ │  
    │ │ │ --export([convert_list_to_c/1]).
    │ │ │ +-export([convert_list_to_c/1]).
    │ │ │  
    │ │ │ -convert_to_c({Name, {f, Temp}}) ->
    │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
    │ │ │ -convert_to_c({Name, {c, Temp}}) ->
    │ │ │ -    {Name, {c, Temp}}.
    │ │ │ -
    │ │ │ -convert_list_to_c(List) ->
    │ │ │ -    New_list = lists:map(fun convert_to_c/1, List),
    │ │ │ -    lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
    │ │ │ -                       Temp1 < Temp2 end, New_list).
    93> c(tut13).
    │ │ │ -{ok,tut13}
    │ │ │ -94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2}},
    │ │ │ - {london,{c,2}},
    │ │ │ - {cape_town,{c,21}}]

    In sort the fun is used:

    fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

    Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ + {Name, {c, Temp}}. │ │ │ + │ │ │ +convert_list_to_c(List) -> │ │ │ + New_list = lists:map(fun convert_to_c/1, List), │ │ │ + lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> │ │ │ + Temp1 < Temp2 end, New_list).

    93> c(tut13).
    │ │ │ +{ok,tut13}
    │ │ │ +94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2}},
    │ │ │ + {london,{c,2}},
    │ │ │ + {cape_town,{c,21}}]

    In sort the fun is used:

    fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

    Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ shorthand for a variable that gets a value, but the value is ignored. This can │ │ │ be used anywhere suitable, not just in funs. Temp1 < Temp2 returns true if │ │ │ Temp1 is less than Temp2.

    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/spec_proc.html │ │ │ @@ -123,72 +123,72 @@ │ │ │ │ │ │ │ │ │ │ │ │ Simple Debugging │ │ │ │ │ │

    The sys module has functions for simple debugging of processes implemented │ │ │ using behaviours. The code_lock example from │ │ │ -gen_statem Behaviour is used to illustrate this:

    Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +gen_statem Behaviour is used to illustrate this:

    Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> code_lock:start_link([1,2,3,4]).
    │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> code_lock:start_link([1,2,3,4]).
    │ │ │  Lock
    │ │ │ -{ok,<0.90.0>}
    │ │ │ -2> sys:statistics(code_lock, true).
    │ │ │ +{ok,<0.90.0>}
    │ │ │ +2> sys:statistics(code_lock, true).
    │ │ │  ok
    │ │ │ -3> sys:trace(code_lock, true).
    │ │ │ +3> sys:trace(code_lock, true).
    │ │ │  ok
    │ │ │ -4> code_lock:button(1).
    │ │ │ -*DBG* code_lock receive cast {button,1} in state locked
    │ │ │ +4> code_lock:button(1).
    │ │ │ +*DBG* code_lock receive cast {button,1} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,1} in state locked
    │ │ │ -5> code_lock:button(2).
    │ │ │ -*DBG* code_lock receive cast {button,2} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,1} in state locked
    │ │ │ +5> code_lock:button(2).
    │ │ │ +*DBG* code_lock receive cast {button,2} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,2} in state locked
    │ │ │ -6> code_lock:button(3).
    │ │ │ -*DBG* code_lock receive cast {button,3} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,2} in state locked
    │ │ │ +6> code_lock:button(3).
    │ │ │ +*DBG* code_lock receive cast {button,3} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,3} in state locked
    │ │ │ -7> code_lock:button(4).
    │ │ │ -*DBG* code_lock receive cast {button,4} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,3} in state locked
    │ │ │ +7> code_lock:button(4).
    │ │ │ +*DBG* code_lock receive cast {button,4} in state locked
    │ │ │  ok
    │ │ │  Unlock
    │ │ │ -*DBG* code_lock consume cast {button,4} in state locked => open
    │ │ │ -*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
    │ │ │ +*DBG* code_lock consume cast {button,4} in state locked => open
    │ │ │ +*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
    │ │ │  *DBG* code_lock receive state_timeout lock in state open
    │ │ │  Lock
    │ │ │  *DBG* code_lock consume state_timeout lock in state open => locked
    │ │ │ -8> sys:statistics(code_lock, get).
    │ │ │ -{ok,[{start_time,{{2024,5,3},{8,11,1}}},
    │ │ │ -     {current_time,{{2024,5,3},{8,11,48}}},
    │ │ │ -     {reductions,4098},
    │ │ │ -     {messages_in,5},
    │ │ │ -     {messages_out,0}]}
    │ │ │ -9> sys:statistics(code_lock, false).
    │ │ │ +8> sys:statistics(code_lock, get).
    │ │ │ +{ok,[{start_time,{{2024,5,3},{8,11,1}}},
    │ │ │ +     {current_time,{{2024,5,3},{8,11,48}}},
    │ │ │ +     {reductions,4098},
    │ │ │ +     {messages_in,5},
    │ │ │ +     {messages_out,0}]}
    │ │ │ +9> sys:statistics(code_lock, false).
    │ │ │  ok
    │ │ │ -10> sys:trace(code_lock, false).
    │ │ │ +10> sys:trace(code_lock, false).
    │ │ │  ok
    │ │ │ -11> sys:get_status(code_lock).
    │ │ │ -{status,<0.90.0>,
    │ │ │ -        {module,gen_statem},
    │ │ │ -        [[{'$initial_call',{code_lock,init,1}},
    │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
    │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
    │ │ │ -         running,<0.88.0>,[],
    │ │ │ -         [{header,"Status for state machine code_lock"},
    │ │ │ -          {data,[{"Status",running},
    │ │ │ -                 {"Parent",<0.88.0>},
    │ │ │ -                 {"Modules",[code_lock]},
    │ │ │ -                 {"Time-outs",{0,[]}},
    │ │ │ -                 {"Logged Events",[]},
    │ │ │ -                 {"Postponed",[]}]},
    │ │ │ -          {data,[{"State",
    │ │ │ -                  {locked,#{code => [1,2,3,4],
    │ │ │ -                            length => 4,buttons => []}}}]}]]}

    │ │ │ +11> sys:get_status(code_lock). │ │ │ +{status,<0.90.0>, │ │ │ + {module,gen_statem}, │ │ │ + [[{'$initial_call',{code_lock,init,1}}, │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ + running,<0.88.0>,[], │ │ │ + [{header,"Status for state machine code_lock"}, │ │ │ + {data,[{"Status",running}, │ │ │ + {"Parent",<0.88.0>}, │ │ │ + {"Modules",[code_lock]}, │ │ │ + {"Time-outs",{0,[]}}, │ │ │ + {"Logged Events",[]}, │ │ │ + {"Postponed",[]}]}, │ │ │ + {data,[{"State", │ │ │ + {locked,#{code => [1,2,3,4], │ │ │ + length => 4,buttons => []}}}]}]]}

    │ │ │ │ │ │ │ │ │ │ │ │ Special Processes │ │ │

    │ │ │

    This section describes how to write a process that complies to the OTP design │ │ │ principles, without using a standard behaviour. Such a process is to:

    System messages are messages with a special meaning, used in the supervision │ │ │ @@ -198,238 +198,238 @@ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │

    Here follows the simple server from │ │ │ Overview, │ │ │ -implemented using sys and proc_lib to fit into a supervision tree:

    -module(ch4).
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/1]).
    │ │ │ --export([system_continue/3, system_terminate/4,
    │ │ │ +implemented using sys and proc_lib to fit into a supervision tree:

    -module(ch4).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/1]).
    │ │ │ +-export([system_continue/3, system_terminate/4,
    │ │ │           write_debug/3,
    │ │ │ -         system_get_state/1, system_replace_state/2]).
    │ │ │ +         system_get_state/1, system_replace_state/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    proc_lib:start_link(ch4, init, [self()]).
    │ │ │ +start_link() ->
    │ │ │ +    proc_lib:start_link(ch4, init, [self()]).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    ch4 ! {self(), alloc},
    │ │ │ +alloc() ->
    │ │ │ +    ch4 ! {self(), alloc},
    │ │ │      receive
    │ │ │ -        {ch4, Res} ->
    │ │ │ +        {ch4, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    ch4 ! {free, Ch},
    │ │ │ +free(Ch) ->
    │ │ │ +    ch4 ! {free, Ch},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init(Parent) ->
    │ │ │ -    register(ch4, self()),
    │ │ │ -    Chs = channels(),
    │ │ │ -    Deb = sys:debug_options([]),
    │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ -    loop(Chs, Parent, Deb).
    │ │ │ +init(Parent) ->
    │ │ │ +    register(ch4, self()),
    │ │ │ +    Chs = channels(),
    │ │ │ +    Deb = sys:debug_options([]),
    │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ +    loop(Chs, Parent, Deb).
    │ │ │  
    │ │ │ -loop(Chs, Parent, Deb) ->
    │ │ │ +loop(Chs, Parent, Deb) ->
    │ │ │      receive
    │ │ │ -        {From, alloc} ->
    │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {in, alloc, From}),
    │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ -            From ! {ch4, Ch},
    │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
    │ │ │ -            loop(Chs2, Parent, Deb3);
    │ │ │ -        {free, Ch} ->
    │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {in, {free, Ch}}),
    │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ -            loop(Chs2, Parent, Deb2);
    │ │ │ -
    │ │ │ -        {system, From, Request} ->
    │ │ │ -            sys:handle_system_msg(Request, From, Parent,
    │ │ │ -                                  ch4, Deb, Chs)
    │ │ │ +        {From, alloc} ->
    │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {in, alloc, From}),
    │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ +            From ! {ch4, Ch},
    │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
    │ │ │ +            loop(Chs2, Parent, Deb3);
    │ │ │ +        {free, Ch} ->
    │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {in, {free, Ch}}),
    │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ +            loop(Chs2, Parent, Deb2);
    │ │ │ +
    │ │ │ +        {system, From, Request} ->
    │ │ │ +            sys:handle_system_msg(Request, From, Parent,
    │ │ │ +                                  ch4, Deb, Chs)
    │ │ │      end.
    │ │ │  
    │ │ │ -system_continue(Parent, Deb, Chs) ->
    │ │ │ -    loop(Chs, Parent, Deb).
    │ │ │ +system_continue(Parent, Deb, Chs) ->
    │ │ │ +    loop(Chs, Parent, Deb).
    │ │ │  
    │ │ │ -system_terminate(Reason, _Parent, _Deb, _Chs) ->
    │ │ │ -    exit(Reason).
    │ │ │ +system_terminate(Reason, _Parent, _Deb, _Chs) ->
    │ │ │ +    exit(Reason).
    │ │ │  
    │ │ │ -system_get_state(Chs) ->
    │ │ │ -    {ok, Chs}.
    │ │ │ +system_get_state(Chs) ->
    │ │ │ +    {ok, Chs}.
    │ │ │  
    │ │ │ -system_replace_state(StateFun, Chs) ->
    │ │ │ -    NChs = StateFun(Chs),
    │ │ │ -    {ok, NChs, NChs}.
    │ │ │ +system_replace_state(StateFun, Chs) ->
    │ │ │ +    NChs = StateFun(Chs),
    │ │ │ +    {ok, NChs, NChs}.
    │ │ │  
    │ │ │ -write_debug(Dev, Event, Name) ->
    │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

    As it is not relevant to the example, the channel handling functions have been │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

    As it is not relevant to the example, the channel handling functions have been │ │ │ omitted. To compile this example, the │ │ │ implementation of channel handling │ │ │ needs to be added to the module.

    Here is an example showing how the debugging functions in the sys │ │ │ module can be used for ch4:

    % erl
    │ │ │ -Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> ch4:start_link().
    │ │ │ -{ok,<0.90.0>}
    │ │ │ -2> sys:statistics(ch4, true).
    │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> ch4:start_link().
    │ │ │ +{ok,<0.90.0>}
    │ │ │ +2> sys:statistics(ch4, true).
    │ │ │  ok
    │ │ │ -3> sys:trace(ch4, true).
    │ │ │ +3> sys:trace(ch4, true).
    │ │ │  ok
    │ │ │ -4> ch4:alloc().
    │ │ │ -ch4 event = {in,alloc,<0.88.0>}
    │ │ │ -ch4 event = {out,{ch4,1},<0.88.0>}
    │ │ │ +4> ch4:alloc().
    │ │ │ +ch4 event = {in,alloc,<0.88.0>}
    │ │ │ +ch4 event = {out,{ch4,1},<0.88.0>}
    │ │ │  1
    │ │ │ -5> ch4:free(ch1).
    │ │ │ -ch4 event = {in,{free,ch1}}
    │ │ │ +5> ch4:free(ch1).
    │ │ │ +ch4 event = {in,{free,ch1}}
    │ │ │  ok
    │ │ │ -6> sys:statistics(ch4, get).
    │ │ │ -{ok,[{start_time,{{2024,5,3},{8,26,13}}},
    │ │ │ -     {current_time,{{2024,5,3},{8,26,49}}},
    │ │ │ -     {reductions,202},
    │ │ │ -     {messages_in,2},
    │ │ │ -     {messages_out,1}]}
    │ │ │ -7> sys:statistics(ch4, false).
    │ │ │ +6> sys:statistics(ch4, get).
    │ │ │ +{ok,[{start_time,{{2024,5,3},{8,26,13}}},
    │ │ │ +     {current_time,{{2024,5,3},{8,26,49}}},
    │ │ │ +     {reductions,202},
    │ │ │ +     {messages_in,2},
    │ │ │ +     {messages_out,1}]}
    │ │ │ +7> sys:statistics(ch4, false).
    │ │ │  ok
    │ │ │ -8> sys:trace(ch4, false).
    │ │ │ +8> sys:trace(ch4, false).
    │ │ │  ok
    │ │ │ -9> sys:get_status(ch4).
    │ │ │ -{status,<0.90.0>,
    │ │ │ -        {module,ch4},
    │ │ │ -        [[{'$initial_call',{ch4,init,1}},
    │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
    │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
    │ │ │ -         running,<0.88.0>,[],
    │ │ │ -         {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

    │ │ │ +9> sys:get_status(ch4). │ │ │ +{status,<0.90.0>, │ │ │ + {module,ch4}, │ │ │ + [[{'$initial_call',{ch4,init,1}}, │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ + running,<0.88.0>,[], │ │ │ + {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

    │ │ │ │ │ │ │ │ │ │ │ │ Starting the Process │ │ │

    │ │ │

    A function in the proc_lib module is to be used to start the process. Several │ │ │ functions are available, for example, │ │ │ proc_lib:spawn_link/3,4 │ │ │ for asynchronous start and │ │ │ proc_lib:start_link/3,4,5 for synchronous start.

    Information necessary for a process within a supervision tree, such as │ │ │ details on ancestors and the initial call, is stored when a process │ │ │ is started through one of these functions.

    If the process terminates with a reason other than normal or shutdown, a │ │ │ crash report is generated. For more information about the crash report, see │ │ │ Logging in Kernel User's Guide.

    In the example, synchronous start is used. The process starts by calling │ │ │ -ch4:start_link():

    start_link() ->
    │ │ │ -    proc_lib:start_link(ch4, init, [self()]).

    ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ +ch4:start_link():

    start_link() ->
    │ │ │ +    proc_lib:start_link(ch4, init, [self()]).

    ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ name, a function name, and an argument list as arguments. It then │ │ │ spawns a new process and establishes a link. The new process starts │ │ │ by executing the given function, here ch4:init(Pid), where Pid is │ │ │ the pid of the parent process (obtained by the call to │ │ │ self() in the call to proc_lib:start_link/3).

    All initialization, including name registration, is done in init/1. The new │ │ │ -process has to acknowledge that it has been started to the parent:

    init(Parent) ->
    │ │ │ +process has to acknowledge that it has been started to the parent:

    init(Parent) ->
    │ │ │      ...
    │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ -    loop(...).

    proc_lib:start_link/3 is synchronous and does not return until │ │ │ + proc_lib:init_ack(Parent, {ok, self()}), │ │ │ + loop(...).

    proc_lib:start_link/3 is synchronous and does not return until │ │ │ proc_lib:init_ack/1,2 or │ │ │ proc_lib:init_fail/2,3 has been called, │ │ │ or the process has exited.

    │ │ │ │ │ │ │ │ │ │ │ │ Debugging │ │ │

    │ │ │

    To support the debug facilities in sys, a debug structure is needed. The │ │ │ -Deb term is initialized using sys:debug_options/1:

    init(Parent) ->
    │ │ │ +Deb term is initialized using sys:debug_options/1:

    init(Parent) ->
    │ │ │      ...
    │ │ │ -    Deb = sys:debug_options([]),
    │ │ │ +    Deb = sys:debug_options([]),
    │ │ │      ...
    │ │ │ -    loop(Chs, Parent, Deb).

    sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ + loop(Chs, Parent, Deb).

    sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ example means that debugging is initially disabled. For information about the │ │ │ possible options, see sys in STDLIB.

    For each system event to be logged or traced, the following function │ │ │ -is to be called:

    sys:handle_debug(Deb, Func, Info, Event) => Deb1

    The arguments have the follow meaning:

    • Deb is the debug structure as returned from sys:debug_options/1.
    • Func is a fun specifying a (user-defined) function used to format trace │ │ │ +is to be called:

      sys:handle_debug(Deb, Func, Info, Event) => Deb1

      The arguments have the follow meaning:

      • Deb is the debug structure as returned from sys:debug_options/1.
      • Func is a fun specifying a (user-defined) function used to format trace │ │ │ output. For each system event, the format function is called as │ │ │ Func(Dev, Event, Info), where:
        • Dev is the I/O device to which the output is to be printed. See io │ │ │ in STDLIB.
        • Event and Info are passed as-is from the call to sys:handle_debug/4.
      • Info is used to pass more information to Func. It can be any term, and it │ │ │ is passed as-is.
      • Event is the system event. It is up to the user to define what a system │ │ │ event is and how it is to be represented. Typically, at least incoming and │ │ │ outgoing messages are considered system events and represented by the tuples │ │ │ {in,Msg[,From]} and {out,Msg,To[,State]}, respectively.

      sys:handle_debug/4 returns an updated debug structure Deb1.

      In the example, sys:handle_debug/4 is called for each incoming and │ │ │ outgoing message. The format function Func is the function │ │ │ -ch4:write_debug/3, which prints the message using io:format/3.

      loop(Chs, Parent, Deb) ->
      │ │ │ +ch4:write_debug/3, which prints the message using io:format/3.

      loop(Chs, Parent, Deb) ->
      │ │ │      receive
      │ │ │ -        {From, alloc} ->
      │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {in, alloc, From}),
      │ │ │ -            {Ch, Chs2} = alloc(Chs),
      │ │ │ -            From ! {ch4, Ch},
      │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ -            loop(Chs2, Parent, Deb3);
      │ │ │ -        {free, Ch} ->
      │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {in, {free, Ch}}),
      │ │ │ -            Chs2 = free(Ch, Chs),
      │ │ │ -            loop(Chs2, Parent, Deb2);
      │ │ │ +        {From, alloc} ->
      │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {in, alloc, From}),
      │ │ │ +            {Ch, Chs2} = alloc(Chs),
      │ │ │ +            From ! {ch4, Ch},
      │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ +            loop(Chs2, Parent, Deb3);
      │ │ │ +        {free, Ch} ->
      │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {in, {free, Ch}}),
      │ │ │ +            Chs2 = free(Ch, Chs),
      │ │ │ +            loop(Chs2, Parent, Deb2);
      │ │ │          ...
      │ │ │      end.
      │ │ │  
      │ │ │ -write_debug(Dev, Event, Name) ->
      │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

      │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

      │ │ │ │ │ │ │ │ │ │ │ │ Handling System Messages │ │ │

      │ │ │

      System messages are received as:

      {system, From, Request}

      The content and meaning of these messages are not to be interpreted by the │ │ │ -process. Instead the following function is to be called:

      sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

      The arguments have the following meaning:

      • Request and From from the received system message are to be │ │ │ +process. Instead the following function is to be called:

        sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

        The arguments have the following meaning:

        • Request and From from the received system message are to be │ │ │ passed as-is to the call to sys:handle_system_msg/6.
        • Parent is the pid of the parent process.
        • Module is the name of the module implementing the speciall process.
        • Deb is the debug structure.
        • State is a term describing the internal state and is passed on to │ │ │ Module:system_continue/3, Module:system_terminate/4/ │ │ │ Module:system_get_state/1, and Module:system_replace_state/2.

        sys:handle_system_msg/6 does not return. It handles the system │ │ │ message and eventually calls either of the following functions:

        • Module:system_continue(Parent, Deb, State) - if process execution is to │ │ │ continue.

        • Module:system_terminate(Reason, Parent, Deb, State) - if the │ │ │ process is to terminate.

        While handling the system message, sys:handle_system_msg/6 can call │ │ │ one of the following functions:

        • Module:system_get_state(State) - if the process is to return its state.

        • Module:system_replace_state(StateFun, State) - if the process is │ │ │ to replace its state using the fun StateFun fun. See sys:replace_state/3 │ │ │ for more information.

        • system_code_change(Misc, Module, OldVsn, Extra) - if the process is to │ │ │ perform a code change.

        A process in a supervision tree is expected to terminate with the same reason as │ │ │ -its parent.

        In the example, system messages are handed by the following code:

        loop(Chs, Parent, Deb) ->
        │ │ │ +its parent.

        In the example, system messages are handed by the following code:

        loop(Chs, Parent, Deb) ->
        │ │ │      receive
        │ │ │          ...
        │ │ │  
        │ │ │ -        {system, From, Request} ->
        │ │ │ -            sys:handle_system_msg(Request, From, Parent,
        │ │ │ -                                  ch4, Deb, Chs)
        │ │ │ +        {system, From, Request} ->
        │ │ │ +            sys:handle_system_msg(Request, From, Parent,
        │ │ │ +                                  ch4, Deb, Chs)
        │ │ │      end.
        │ │ │  
        │ │ │ -system_continue(Parent, Deb, Chs) ->
        │ │ │ -    loop(Chs, Parent, Deb).
        │ │ │ +system_continue(Parent, Deb, Chs) ->
        │ │ │ +    loop(Chs, Parent, Deb).
        │ │ │  
        │ │ │ -system_terminate(Reason, Parent, Deb, Chs) ->
        │ │ │ -    exit(Reason).
        │ │ │ +system_terminate(Reason, Parent, Deb, Chs) ->
        │ │ │ +    exit(Reason).
        │ │ │  
        │ │ │ -system_get_state(Chs) ->
        │ │ │ -    {ok, Chs, Chs}.
        │ │ │ +system_get_state(Chs) ->
        │ │ │ +    {ok, Chs, Chs}.
        │ │ │  
        │ │ │ -system_replace_state(StateFun, Chs) ->
        │ │ │ -    NChs = StateFun(Chs),
        │ │ │ -    {ok, NChs, NChs}.

        If a special process is configured to trap exits, it must take notice │ │ │ +system_replace_state(StateFun, Chs) -> │ │ │ + NChs = StateFun(Chs), │ │ │ + {ok, NChs, NChs}.

        If a special process is configured to trap exits, it must take notice │ │ │ of 'EXIT' messages from its parent process and terminate using the │ │ │ -same exit reason once the parent process has terminated.

        Here is an example:

        init(Parent) ->
        │ │ │ +same exit reason once the parent process has terminated.

        Here is an example:

        init(Parent) ->
        │ │ │      ...,
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │      ...,
        │ │ │ -    loop(Parent).
        │ │ │ +    loop(Parent).
        │ │ │  
        │ │ │ -loop(Parent) ->
        │ │ │ +loop(Parent) ->
        │ │ │      receive
        │ │ │          ...
        │ │ │ -        {'EXIT', Parent, Reason} ->
        │ │ │ +        {'EXIT', Parent, Reason} ->
        │ │ │              %% Clean up here, if needed.
        │ │ │ -            exit(Reason);
        │ │ │ +            exit(Reason);
        │ │ │          ...
        │ │ │      end.

        │ │ │ │ │ │ │ │ │ │ │ │ User-Defined Behaviours │ │ │

        │ │ │ @@ -448,71 +448,71 @@ │ │ │ function. Note that the -optional_callbacks attribute is to be used together │ │ │ with the -callback attribute; it cannot be combined with the │ │ │ behaviour_info() function described below.

        Tools that need to know about optional callback functions can call │ │ │ Behaviour:behaviour_info(optional_callbacks) to get a list of all optional │ │ │ callback functions.

        Note

        We recommend using the -callback attribute rather than the │ │ │ behaviour_info() function. The reason is that the extra type information can │ │ │ be used by tools to produce documentation or find discrepancies.

        As an alternative to the -callback and -optional_callbacks attributes you │ │ │ -may directly implement and export behaviour_info():

        behaviour_info(callbacks) ->
        │ │ │ -    [{Name1, Arity1},...,{NameN, ArityN}].

        where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ +may directly implement and export behaviour_info():

        behaviour_info(callbacks) ->
        │ │ │ +    [{Name1, Arity1},...,{NameN, ArityN}].

        where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ This function is otherwise automatically generated by the compiler using the │ │ │ -callback attributes.

        When the compiler encounters the module attribute -behaviour(Behaviour). in a │ │ │ module Mod, it calls Behaviour:behaviour_info(callbacks) and compares the │ │ │ result with the set of functions actually exported from Mod, and issues a │ │ │ warning if any callback function is missing.

        Example:

        %% User-defined behaviour module
        │ │ │ --module(simple_server).
        │ │ │ --export([start_link/2, init/3, ...]).
        │ │ │ +-module(simple_server).
        │ │ │ +-export([start_link/2, init/3, ...]).
        │ │ │  
        │ │ │ --callback init(State :: term()) -> 'ok'.
        │ │ │ --callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
        │ │ │ --callback terminate() -> 'ok'.
        │ │ │ --callback format_state(State :: term()) -> term().
        │ │ │ +-callback init(State :: term()) -> 'ok'.
        │ │ │ +-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
        │ │ │ +-callback terminate() -> 'ok'.
        │ │ │ +-callback format_state(State :: term()) -> term().
        │ │ │  
        │ │ │ --optional_callbacks([format_state/1]).
        │ │ │ +-optional_callbacks([format_state/1]).
        │ │ │  
        │ │ │  %% Alternatively you may define:
        │ │ │  %%
        │ │ │  %% -export([behaviour_info/1]).
        │ │ │  %% behaviour_info(callbacks) ->
        │ │ │  %%     [{init,1},
        │ │ │  %%      {handle_req,2},
        │ │ │  %%      {terminate,0}].
        │ │ │  
        │ │ │ -start_link(Name, Module) ->
        │ │ │ -    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
        │ │ │ +start_link(Name, Module) ->
        │ │ │ +    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
        │ │ │  
        │ │ │ -init(Parent, Name, Module) ->
        │ │ │ -    register(Name, self()),
        │ │ │ +init(Parent, Name, Module) ->
        │ │ │ +    register(Name, self()),
        │ │ │      ...,
        │ │ │ -    Dbg = sys:debug_options([]),
        │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
        │ │ │ -    loop(Parent, Module, Deb, ...).
        │ │ │ +    Dbg = sys:debug_options([]),
        │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
        │ │ │ +    loop(Parent, Module, Deb, ...).
        │ │ │  
        │ │ │ -...

        In a callback module:

        -module(db).
        │ │ │ --behaviour(simple_server).
        │ │ │ +...

        In a callback module:

        -module(db).
        │ │ │ +-behaviour(simple_server).
        │ │ │  
        │ │ │ --export([init/1, handle_req/2, terminate/0]).
        │ │ │ +-export([init/1, handle_req/2, terminate/0]).
        │ │ │  
        │ │ │  ...

        The contracts specified with -callback attributes in behaviour modules can be │ │ │ further refined by adding -spec attributes in callback modules. This can be │ │ │ useful as -callback contracts are usually generic. The same callback module │ │ │ -with contracts for the callbacks:

        -module(db).
        │ │ │ --behaviour(simple_server).
        │ │ │ +with contracts for the callbacks:

        -module(db).
        │ │ │ +-behaviour(simple_server).
        │ │ │  
        │ │ │ --export([init/1, handle_req/2, terminate/0]).
        │ │ │ +-export([init/1, handle_req/2, terminate/0]).
        │ │ │  
        │ │ │ --record(state, {field1 :: [atom()], field2 :: integer()}).
        │ │ │ +-record(state, {field1 :: [atom()], field2 :: integer()}).
        │ │ │  
        │ │ │ --type state()   :: #state{}.
        │ │ │ --type request() :: {'store', term(), term()};
        │ │ │ -                   {'lookup', term()}.
        │ │ │ +-type state()   :: #state{}.
        │ │ │ +-type request() :: {'store', term(), term()};
        │ │ │ +                   {'lookup', term()}.
        │ │ │  
        │ │ │  ...
        │ │ │  
        │ │ │ --spec handle_req(request(), state()) -> {'ok', term()}.
        │ │ │ +-spec handle_req(request(), state()) -> {'ok', term()}.
        │ │ │  
        │ │ │  ...

        Each -spec contract is to be a subtype of the respective -callback contract.

        │ │ │ │ │ │ │ │ │
        │ │ │
        │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/statem.html │ │ │ @@ -124,15 +124,15 @@ │ │ │ │ │ │

        Established Automata Theory does not deal much with how a state transition │ │ │ is triggered, but assumes that the output is a function of the input │ │ │ (and the state) and that they are some kind of values.

        For an Event-Driven State Machine, the input is an event that triggers │ │ │ a state transition and the output is actions executed during │ │ │ the state transition. Analogously to the mathematical model │ │ │ of a Finite State Machine, it can be described as a set of relations │ │ │ -of the following form:

        State(S) x Event(E) -> Actions(A), State(S')

        These relations are interpreted as follows: if we are in state S, │ │ │ +of the following form:

        State(S) x Event(E) -> Actions(A), State(S')

        These relations are interpreted as follows: if we are in state S, │ │ │ and event E occurs, we are to perform actions A, and make a transition │ │ │ to state S'. Notice that S' can be equal to S, │ │ │ and that A can be empty.

        In gen_statem we define a state change as a state transition in which the │ │ │ new state S' is different from the current state S, where "different" means │ │ │ Erlang's strict inequality: =/= also known as "does not match". gen_statem │ │ │ does more things during state changes than during other state transitions.

        As A and S' depend only on S and E, the kind of state machine described │ │ │ here is a Mealy machine (see, for example, the Wikipedia article │ │ │ @@ -405,20 +405,20 @@ │ │ │ │ │ │ State Enter Calls │ │ │ │ │ │

        The gen_statem behaviour can, if this is enabled, regardless of callback │ │ │ mode, automatically call the state callback │ │ │ with special arguments whenever the state changes, so you can write │ │ │ state enter actions near the rest of the state transition rules. │ │ │ -It typically looks like this:

        StateName(enter, OldState, Data) ->
        │ │ │ +It typically looks like this:

        StateName(enter, OldState, Data) ->
        │ │ │      ... code for state enter actions here ...
        │ │ │ -    {keep_state, NewData};
        │ │ │ -StateName(EventType, EventContent, Data) ->
        │ │ │ +    {keep_state, NewData};
        │ │ │ +StateName(EventType, EventContent, Data) ->
        │ │ │      ... code for actions here ...
        │ │ │ -    {next_state, NewStateName, NewData}.

        Since the state enter call is not an event there are restrictions on the │ │ │ + {next_state, NewStateName, NewData}.

        Since the state enter call is not an event there are restrictions on the │ │ │ allowed return value and state transition actions. │ │ │ You must not change the state, postpone this non-event, │ │ │ insert any events, or change the │ │ │ callback module.

        The first state that is entered after gen_statem:init/1 will get │ │ │ a state enter call with OldState equal to the current state.

        You may repeat the state enter call using the {repeat_state,...} return │ │ │ value from the state callback. In this case │ │ │ OldState will also be equal to the current state.

        Depending on how your state machine is specified, this can be a very useful │ │ │ @@ -499,72 +499,72 @@ │ │ │ │ │ │ locked --> check_code : {button, Button}\n* Collect Buttons │ │ │ check_code --> locked : Incorrect code │ │ │ check_code --> open : Correct code\n* do_unlock()\n* Clear Buttons\n* Set state_timeout 10 s │ │ │ │ │ │ open --> open : {button, Digit} │ │ │ open --> locked : state_timeout\n* do_lock()

        This code lock state machine can be implemented using gen_statem with │ │ │ -the following callback module:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock).
        │ │ │ +the following callback module:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock).
        │ │ │  
        │ │ │ --export([start_link/1]).
        │ │ │ --export([button/1]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([locked/3,open/3]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ -
        │ │ │ -button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ -
        │ │ │ -init(Code) ->
        │ │ │ -    do_lock(),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ -
        │ │ │ -callback_mode() ->
        │ │ │ -    state_functions.
        locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +-export([start_link/1]).
        │ │ │ +-export([button/1]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([locked/3,open/3]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ +
        │ │ │ +button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ +
        │ │ │ +init(Code) ->
        │ │ │ +    do_lock(),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.
        │ │ │ +
        │ │ │ +callback_mode() ->
        │ │ │ +    state_functions.
        locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ -    end.
        open(state_timeout, lock,  Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {next_state, open, Data}.
        do_lock() ->
        │ │ │ -    io:format("Lock~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Unlock~n", []).
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ +    end.
        open(state_timeout, lock,  Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {next_state, open, Data}.
        do_lock() ->
        │ │ │ +    io:format("Lock~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Unlock~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        The code is explained in the next sections.

        │ │ │ │ │ │ │ │ │ │ │ │ Starting gen_statem │ │ │

        │ │ │

        In the example in the previous section, gen_statem is started by calling │ │ │ -code_lock:start_link(Code):

        start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

        start_link/1 calls function gen_statem:start_link/4, │ │ │ +code_lock:start_link(Code):

        start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

        start_link/1 calls function gen_statem:start_link/4, │ │ │ which spawns and links to a new process, a gen_statem.

        • The first argument, {local,?NAME}, specifies the name. In this case, the │ │ │ gen_statem is locally registered as code_lock through the macro ?NAME.

          If the name is omitted, the gen_statem is not registered. Instead its pid │ │ │ must be used. The name can also be specified as {global, Name}, then the │ │ │ gen_statem is registered using global:register_name/2 in Kernel.

        • The second argument, ?MODULE, is the name of the callback module, │ │ │ that is, the module where the callback functions are located, │ │ │ which is this module.

          The interface functions (start_link/1 and button/1) are located in the │ │ │ same module as the callback functions (init/1, locked/3, and open/3). │ │ │ @@ -574,184 +574,184 @@ │ │ │ see gen_statem:start_link/3.

        If name registration succeeds, the new gen_statem process calls callback │ │ │ function code_lock:init(Code). This function is expected to return │ │ │ {ok, State, Data}, where State is the initial state of the gen_statem, │ │ │ in this case locked; assuming that the door is locked to begin with. │ │ │ Data is the internal server data of the gen_statem. Here the server data │ │ │ is a map() with key code that stores the correct │ │ │ button sequence, key length store its length, and key buttons │ │ │ -that stores the collected buttons up to the same length.

        init(Code) ->
        │ │ │ -    do_lock(),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.

        Function gen_statem:start_link/3,4 │ │ │ +that stores the collected buttons up to the same length.

        init(Code) ->
        │ │ │ +    do_lock(),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.

        Function gen_statem:start_link/3,4 │ │ │ is synchronous. It does not return until the gen_statem is initialized │ │ │ and is ready to receive events.

        Function gen_statem:start_link/3,4 │ │ │ must be used if the gen_statem is part of a supervision tree, that is, │ │ │ started by a supervisor. Function, │ │ │ gen_statem:start/3,4 can be used to start │ │ │ a standalone gen_statem, meaning it is not part of a supervision tree.

        Function Module:callback_mode/0 selects │ │ │ the CallbackMode for the callback module, │ │ │ in this case state_functions. │ │ │ -That is, each state has its own handler function:

        callback_mode() ->
        │ │ │ +That is, each state has its own handler function:

        callback_mode() ->
        │ │ │      state_functions.

        │ │ │ │ │ │ │ │ │ │ │ │ Handling Events │ │ │

        │ │ │

        The function notifying the code lock about a button event is implemented using │ │ │ -gen_statem:cast/2:

        button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).

        The first argument is the name of the gen_statem and must agree with │ │ │ +gen_statem:cast/2:

        button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).

        The first argument is the name of the gen_statem and must agree with │ │ │ the name used to start it. So, we use the same macro ?NAME as when starting. │ │ │ {button, Button} is the event content.

        The event is sent to the gen_statem. When the event is received, the │ │ │ gen_statem calls StateName(cast, Event, Data), which is expected │ │ │ to return a tuple {next_state, NewStateName, NewData}, or │ │ │ {next_state, NewStateName, NewData, Actions}. StateName is the name │ │ │ of the current state and NewStateName is the name of the next state. │ │ │ NewData is a new value for the server data of the gen_statem, │ │ │ -and Actions is a list of actions to be performed by the gen_statem engine.

        locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +and Actions is a list of actions to be performed by the gen_statem engine.

        locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │      end.

        In state locked, when a button is pressed, it is collected with the │ │ │ previously pressed buttons up to the length of the correct code, then │ │ │ compared with the correct code. Depending on the result, the door is │ │ │ either unlocked and the gen_statem goes to state open, or the door │ │ │ remains in state locked.

        When changing to state open, the collected buttons are reset, the lock │ │ │ -unlocked, and a state time-out for 10 seconds is started.

        open(cast, {button,_}, Data) ->
        │ │ │ -    {next_state, open, Data}.

        In state open, a button event is ignored by staying in the same state. │ │ │ +unlocked, and a state time-out for 10 seconds is started.

        open(cast, {button,_}, Data) ->
        │ │ │ +    {next_state, open, Data}.

        In state open, a button event is ignored by staying in the same state. │ │ │ This can also be done by returning {keep_state, Data}, or in this case │ │ │ since Data is unchanged, by returning keep_state_and_data.

        │ │ │ │ │ │ │ │ │ │ │ │ State Time-Outs │ │ │

        │ │ │

        When a correct code has been given, the door is unlocked and the following │ │ │ -tuple is returned from locked/2:

        {next_state, open, Data#{buttons := []},
        │ │ │ - [{state_timeout,10_000,lock}]}; % Time in milliseconds

        10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ +tuple is returned from locked/2:

        {next_state, open, Data#{buttons := []},
        │ │ │ + [{state_timeout,10_000,lock}]}; % Time in milliseconds

        10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ a time-out occurs. Then, StateName(state_timeout, lock, Data) is called. │ │ │ The time-out occurs when the door has been in state open for 10 seconds. │ │ │ -After that the door is locked again:

        open(state_timeout, lock,  Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};

        The timer for a state time-out is automatically canceled when │ │ │ +After that the door is locked again:

        open(state_timeout, lock,  Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};

        The timer for a state time-out is automatically canceled when │ │ │ the state machine does a state change.

        You can restart, cancel, or update a state time-out. See section │ │ │ Time-Outs for details.

        │ │ │ │ │ │ │ │ │ │ │ │ All State Events │ │ │

        │ │ │

        Sometimes events can arrive in any state of the gen_statem. It is convenient │ │ │ to handle these in a common state handler function that all state functions │ │ │ call for events not specific to the state.

        Consider a code_length/0 function that returns the length │ │ │ of the correct code. We dispatch all events that are not state-specific │ │ │ to the common function handle_common/3:

        ...
        │ │ │ --export([button/1,code_length/0]).
        │ │ │ +-export([button/1,code_length/0]).
        │ │ │  ...
        │ │ │  
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        │ │ │  
        │ │ │  ...
        │ │ │ -locked(...) -> ... ;
        │ │ │ -locked(EventType, EventContent, Data) ->
        │ │ │ -    handle_common(EventType, EventContent, Data).
        │ │ │ +locked(...) -> ... ;
        │ │ │ +locked(EventType, EventContent, Data) ->
        │ │ │ +    handle_common(EventType, EventContent, Data).
        │ │ │  
        │ │ │  ...
        │ │ │ -open(...) -> ... ;
        │ │ │ -open(EventType, EventContent, Data) ->
        │ │ │ -    handle_common(EventType, EventContent, Data).
        │ │ │ -
        │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.

        Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

        ...
        │ │ │ --export([button/1,code_length/0]).
        │ │ │ +open(...) -> ... ;
        │ │ │ +open(EventType, EventContent, Data) ->
        │ │ │ +    handle_common(EventType, EventContent, Data).
        │ │ │ +
        │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.

        Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

        ...
        │ │ │ +-export([button/1,code_length/0]).
        │ │ │  ...
        │ │ │  
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        │ │ │  
        │ │ │ --define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │ +-define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │  %%
        │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        │ │ │  
        │ │ │  ...
        │ │ │ -locked(...) -> ... ;
        │ │ │ +locked(...) -> ... ;
        │ │ │  ?HANDLE_COMMON.
        │ │ │  
        │ │ │  ...
        │ │ │ -open(...) -> ... ;
        │ │ │ +open(...) -> ... ;
        │ │ │  ?HANDLE_COMMON.

        This example uses gen_statem:call/2, which waits for a reply from the server. │ │ │ The reply is sent with a {reply, From, Reply} tuple in an action list in the │ │ │ {keep_state, ...} tuple that retains the current state. This return form is │ │ │ convenient when you want to stay in the current state but do not know or care │ │ │ about what it is.

        If the common state callback needs to know the current state a function │ │ │ -handle_common/4 can be used instead:

        -define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

        │ │ │ +handle_common/4 can be used instead:

        -define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

        │ │ │ │ │ │ │ │ │ │ │ │ One State Callback │ │ │

        │ │ │

        If callback mode handle_event_function is used, │ │ │ all events are handled in │ │ │ Module:handle_event/4 and we can │ │ │ (but do not have to) use an event-centered approach where we first branch │ │ │ depending on event and then depending on state:

        ...
        │ │ │ --export([handle_event/4]).
        │ │ │ +-export([handle_event/4]).
        │ │ │  
        │ │ │  ...
        │ │ │ -callback_mode() ->
        │ │ │ +callback_mode() ->
        │ │ │      handle_event_function.
        │ │ │  
        │ │ │ -handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
        │ │ │ +handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
        │ │ │      case State of
        │ │ │  	locked ->
        │ │ │ -            #{length := Length, buttons := Buttons} = Data,
        │ │ │ +            #{length := Length, buttons := Buttons} = Data,
        │ │ │              NewButtons =
        │ │ │                  if
        │ │ │ -                    length(Buttons) < Length ->
        │ │ │ +                    length(Buttons) < Length ->
        │ │ │                          Buttons;
        │ │ │                      true ->
        │ │ │ -                        tl(Buttons)
        │ │ │ -                end ++ [Button],
        │ │ │ +                        tl(Buttons)
        │ │ │ +                end ++ [Button],
        │ │ │              if
        │ │ │                  NewButtons =:= Code -> % Correct
        │ │ │ -                    do_unlock(),
        │ │ │ -                    {next_state, open, Data#{buttons := []},
        │ │ │ -                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +                    do_unlock(),
        │ │ │ +                    {next_state, open, Data#{buttons := []},
        │ │ │ +                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │                  true -> % Incomplete | Incorrect
        │ │ │ -                    {keep_state, Data#{buttons := NewButtons}}
        │ │ │ +                    {keep_state, Data#{buttons := NewButtons}}
        │ │ │              end;
        │ │ │  	open ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_event(state_timeout, lock, open, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -handle_event(
        │ │ │ -  {call,From}, code_length, _State, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        │ │ │ +handle_event(state_timeout, lock, open, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +handle_event(
        │ │ │ +  {call,From}, code_length, _State, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        │ │ │  
        │ │ │  ...

        │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

        │ │ │ @@ -763,59 +763,59 @@ │ │ │ │ │ │

        If the gen_statem is part of a supervision tree, no stop function is needed. │ │ │ The gen_statem is automatically terminated by its supervisor. Exactly how │ │ │ this is done is defined by a shutdown strategy │ │ │ set in the supervisor.

        If it is necessary to clean up before termination, the shutdown strategy │ │ │ must be a time-out value and the gen_statem must in function init/1 │ │ │ set itself to trap exit signals by calling │ │ │ -process_flag(trap_exit, true):

        init(Args) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    do_lock(),
        │ │ │ +process_flag(trap_exit, true):

        init(Args) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    do_lock(),
        │ │ │      ...

        When ordered to shut down, the gen_statem then calls callback function │ │ │ terminate(shutdown, State, Data).

        In this example, function terminate/3 locks the door if it is open, │ │ │ so we do not accidentally leave the door open │ │ │ -when the supervision tree terminates:

        terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +when the supervision tree terminates:

        terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Standalone gen_statem │ │ │

        │ │ │

        If the gen_statem is not part of a supervision tree, it can be stopped │ │ │ using gen_statem:stop/1, preferably through │ │ │ an API function:

        ...
        │ │ │ --export([start_link/1,stop/0]).
        │ │ │ +-export([start_link/1,stop/0]).
        │ │ │  
        │ │ │  ...
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).

        This makes the gen_statem call callback function terminate/3 just like │ │ │ +stop() -> │ │ │ + gen_statem:stop(?NAME).

        This makes the gen_statem call callback function terminate/3 just like │ │ │ for a supervised server and waits for the process to terminate.

        │ │ │ │ │ │ │ │ │ │ │ │ Event Time-Outs │ │ │

        │ │ │

        A time-out feature inherited from gen_statem's predecessor gen_fsm, │ │ │ is an event time-out, that is, if an event arrives the timer is canceled. │ │ │ You get either an event or a time-out, but not both.

        It is ordered by the │ │ │ transition action {timeout, Time, EventContent}, │ │ │ or just an integer Time, even without the enclosing actions list (the latter │ │ │ is a form inherited from gen_fsm).

        This type of time-out is useful, for example, to act on inactivity. │ │ │ Let's restart the code sequence if no button is pressed for say 30 seconds:

        ...
        │ │ │  
        │ │ │ -locked(timeout, _, Data) ->
        │ │ │ -    {next_state, locked, Data#{buttons := []}};
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(timeout, _, Data) ->
        │ │ │ +    {next_state, locked, Data#{buttons := []}};
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons},
        │ │ │ -             30_000} % Time in milliseconds
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons},
        │ │ │ +             30_000} % Time in milliseconds
        │ │ │  ...

        Whenever we receive a button event we start an event time-out of 30 seconds, │ │ │ and if we get an event type of timeout we reset the remaining │ │ │ code sequence.

        An event time-out is canceled by any other event so you either get │ │ │ some other event or the time-out event. Therefore, canceling, │ │ │ restarting, or updating an event time-out is neither possible nor │ │ │ necessary. Whatever event you act on has already canceled │ │ │ the event time-out, so there is never a running event time-out │ │ │ @@ -834,30 +834,30 @@ │ │ │ another, maybe cancel the time-out without changing states, or perhaps run │ │ │ multiple time-outs in parallel. All this can be accomplished with │ │ │ generic time-outs. They may look a little │ │ │ bit like event time-outs but contain │ │ │ a name to allow for any number of them simultaneously and they are │ │ │ not automatically canceled.

        Here is how to accomplish the state time-out in the previous example │ │ │ by instead using a generic time-out named for example open:

        ...
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
        │ │ │  ...
        │ │ │  
        │ │ │ -open({timeout,open}, lock, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state,locked,Data};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data};
        │ │ │ +open({timeout,open}, lock, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state,locked,Data};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data};
        │ │ │  ...

        Specific generic time-outs can just as state time-outs │ │ │ be restarted or canceled by setting it to a new time or infinity.

        In this particular case we do not need to cancel the time-out since │ │ │ the time-out event is the only possible reason to do a state change │ │ │ from open to locked.

        Instead of bothering with when to cancel a time-out, a late time-out event │ │ │ can be handled by ignoring it if it arrives in a state │ │ │ where it is known to be late.

        You can restart, cancel, or update a generic time-out. │ │ │ See section Time-Outs for details.

        │ │ │ @@ -869,32 +869,32 @@ │ │ │

        The most versatile way to handle time-outs is to use Erlang Timers; see │ │ │ erlang:start_timer/3,4. Most time-out tasks │ │ │ can be performed with the time-out features in gen_statem, │ │ │ but an example of one that cannot is if you should need the return value │ │ │ from erlang:cancel_timer(Tref), that is, │ │ │ the remaining time of the timer.

        Here is how to accomplish the state time-out in the previous example │ │ │ by instead using an Erlang Timer:

        ...
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ +	    do_unlock(),
        │ │ │  	    Tref =
        │ │ │ -                 erlang:start_timer(
        │ │ │ -                     10_000, self(), lock), % Time in milliseconds
        │ │ │ -            {next_state, open, Data#{buttons := [], timer => Tref}};
        │ │ │ +                 erlang:start_timer(
        │ │ │ +                     10_000, self(), lock), % Time in milliseconds
        │ │ │ +            {next_state, open, Data#{buttons := [], timer => Tref}};
        │ │ │  ...
        │ │ │  
        │ │ │ -open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state,locked,maps:remove(timer, Data)};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data};
        │ │ │ +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state,locked,maps:remove(timer, Data)};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data};
        │ │ │  ...

        Removing the timer key from the map when we do a state change to locked │ │ │ is not strictly necessary since we can only get into state open │ │ │ with an updated timer map value. But it can be nice to not have │ │ │ outdated values in the state Data.

        If you need to cancel a timer because of some other event, you can use │ │ │ erlang:cancel_timer(Tref). Note that no time-out │ │ │ message will arrive after this (because the timer has been │ │ │ explicitly canceled), unless you have already postponed one earlier │ │ │ @@ -910,16 +910,16 @@ │ │ │ Postponing Events │ │ │

        │ │ │

        If you want to ignore a particular event in the current state and handle it │ │ │ in a future state, you can postpone the event. A postponed event │ │ │ is retried after a state change, that is, OldState =/= NewState.

        Postponing is ordered by the │ │ │ transition action postpone.

        In this example, instead of ignoring button events while in the open state, │ │ │ we can postpone them handle them later in the locked state:

        ...
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data,[postpone]};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data,[postpone]};
        │ │ │  ...

        Since a postponed event is only retried after a state change, you have to │ │ │ think about where to keep a state data item. You can keep it in the server │ │ │ Data or in the State itself, for example by having two more or less │ │ │ identical states to keep a boolean value, or by using a complex state (see │ │ │ section Complex State) with │ │ │ callback mode │ │ │ handle_event_function. If a change │ │ │ @@ -940,55 +940,55 @@ │ │ │ │ │ │ │ │ │ │ │ │ Selective Receive │ │ │ │ │ │

        Erlang's selective receive statement is often used to describe simple state │ │ │ machine examples in straightforward Erlang code. The following is a possible │ │ │ -implementation of the first example:

        -module(code_lock).
        │ │ │ --define(NAME, code_lock_1).
        │ │ │ --export([start_link/1,button/1]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    spawn(
        │ │ │ -      fun () ->
        │ │ │ -	      true = register(?NAME, self()),
        │ │ │ -	      do_lock(),
        │ │ │ -	      locked(Code, length(Code), [])
        │ │ │ -      end).
        │ │ │ +implementation of the first example:

        -module(code_lock).
        │ │ │ +-define(NAME, code_lock_1).
        │ │ │ +-export([start_link/1,button/1]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    spawn(
        │ │ │ +      fun () ->
        │ │ │ +	      true = register(?NAME, self()),
        │ │ │ +	      do_lock(),
        │ │ │ +	      locked(Code, length(Code), [])
        │ │ │ +      end).
        │ │ │  
        │ │ │ -button(Button) ->
        │ │ │ -    ?NAME ! {button,Button}.
        locked(Code, Length, Buttons) ->
        │ │ │ +button(Button) ->
        │ │ │ +    ?NAME ! {button,Button}.
        locked(Code, Length, Buttons) ->
        │ │ │      receive
        │ │ │ -        {button,Button} ->
        │ │ │ +        {button,Button} ->
        │ │ │              NewButtons =
        │ │ │                  if
        │ │ │ -                    length(Buttons) < Length ->
        │ │ │ +                    length(Buttons) < Length ->
        │ │ │                          Buttons;
        │ │ │                      true ->
        │ │ │ -                        tl(Buttons)
        │ │ │ -                end ++ [Button],
        │ │ │ +                        tl(Buttons)
        │ │ │ +                end ++ [Button],
        │ │ │              if
        │ │ │                  NewButtons =:= Code -> % Correct
        │ │ │ -                    do_unlock(),
        │ │ │ -		    open(Code, Length);
        │ │ │ +                    do_unlock(),
        │ │ │ +		    open(Code, Length);
        │ │ │                  true -> % Incomplete | Incorrect
        │ │ │ -                    locked(Code, Length, NewButtons)
        │ │ │ +                    locked(Code, Length, NewButtons)
        │ │ │              end
        │ │ │ -    end.
        open(Code, Length) ->
        │ │ │ +    end.
        open(Code, Length) ->
        │ │ │      receive
        │ │ │      after 10_000 -> % Time in milliseconds
        │ │ │ -	    do_lock(),
        │ │ │ -	    locked(Code, Length, [])
        │ │ │ +	    do_lock(),
        │ │ │ +	    locked(Code, Length, [])
        │ │ │      end.
        │ │ │  
        │ │ │ -do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).

        The selective receive in this case causes open to implicitly postpone any │ │ │ +do_lock() -> │ │ │ + io:format("Locked~n", []). │ │ │ +do_unlock() -> │ │ │ + io:format("Open~n", []).

        The selective receive in this case causes open to implicitly postpone any │ │ │ events to the locked state.

        A catch-all receive should never be used from a gen_statem behaviour │ │ │ (or from any gen_* behaviour), as the receive statement is within │ │ │ the gen_* engine itself. sys-compatible behaviours must respond to │ │ │ system messages and therefore do that in their engine receive loop, │ │ │ passing non-system messages to the callback module. Using a catch-all │ │ │ receive can result in system messages being discarded, which in turn │ │ │ can lead to unexpected behaviour. If a selective receive must be used, │ │ │ @@ -1011,40 +1011,40 @@ │ │ │ section), especially if only one or a few states have state enter actions, │ │ │ this is a perfect use case for the built in │ │ │ state enter calls.

        You return a list containing state_enter from your │ │ │ callback_mode/0 function and the │ │ │ gen_statem engine will call your state callback once with an event │ │ │ (enter, OldState, ...) whenever it does a state change. Then you │ │ │ just need to handle these event-like calls in all states.

        ...
        │ │ │ -init(Code) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length = length(Code)},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ -
        │ │ │ -callback_mode() ->
        │ │ │ -    [state_functions,state_enter].
        │ │ │ -
        │ │ │ -locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state,Data#{buttons => []}};
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +init(Code) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length = length(Code)},
        │ │ │ +    {ok, locked, Data}.
        │ │ │ +
        │ │ │ +callback_mode() ->
        │ │ │ +    [state_functions,state_enter].
        │ │ │ +
        │ │ │ +locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state,Data#{buttons => []}};
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  ...
        │ │ │  
        │ │ │ -open(enter, _OldState, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -open(state_timeout, lock, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ +open(enter, _OldState, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +open(state_timeout, lock, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │  ...

        You can repeat the state enter code by returning one of │ │ │ {repeat_state, ...},{repeat_state_and_data, _}, │ │ │ or repeat_state_and_data that otherwise behaves exactly like their │ │ │ keep_state siblings. See the type │ │ │ state_callback_result() │ │ │ in the Reference Manual.

        │ │ │ │ │ │ @@ -1066,44 +1066,44 @@ │ │ │ to dispatch pre-processed events as internal events to the main state │ │ │ machine.

        Using internal events also can make it easier to synchronize the state │ │ │ machines.

        A variant of this is to use a complex state with │ │ │ one state callback, modeling the state │ │ │ with, for example, a tuple {MainFSMState, SubFSMState}.

        To illustrate this we make up an example where the buttons instead generate │ │ │ down and up (press and release) events, and the lock responds │ │ │ to an up event only after the corresponding down event.

        ...
        │ │ │ --export([down/1, up/1]).
        │ │ │ +-export([down/1, up/1]).
        │ │ │  ...
        │ │ │ -down(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ +down(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
        │ │ │  
        │ │ │ -up(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ +up(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
        │ │ │  
        │ │ │  ...
        │ │ │  
        │ │ │ -locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state,Data#{buttons => []}};
        │ │ │ -locked(
        │ │ │ -  internal, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ -...
        handle_common(cast, {down,Button}, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_common(cast, {up,Button}, Data) ->
        │ │ │ +locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state,Data#{buttons => []}};
        │ │ │ +locked(
        │ │ │ +  internal, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +...
        handle_common(cast, {down,Button}, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_common(cast, {up,Button}, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state,maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}}]};
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state,maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}}]};
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │  ...
        │ │ │  
        │ │ │ -open(internal, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data,[postpone]};
        │ │ │ +open(internal, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data,[postpone]};
        │ │ │  ...

        If you start this program with code_lock:start([17]) you can unlock with │ │ │ code_lock:down(17), code_lock:up(17).

        │ │ │ │ │ │ │ │ │ │ │ │ Example Revisited │ │ │

        │ │ │ @@ -1131,152 +1131,152 @@ │ │ │ Also, the state diagram does not show that the code_length/0 call │ │ │ must be handled in every state.

        │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: state_functions │ │ │

        │ │ │ -

        Using state functions:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock_2).
        │ │ │ +

        Using state functions:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock_2).
        │ │ │  
        │ │ │ --export([start_link/1,stop/0]).
        │ │ │ --export([down/1,up/1,code_length/0]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([locked/3,open/3]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).
        │ │ │ -
        │ │ │ -down(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ -up(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        init(Code) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ +-export([start_link/1,stop/0]).
        │ │ │ +-export([down/1,up/1,code_length/0]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([locked/3,open/3]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ +stop() ->
        │ │ │ +    gen_statem:stop(?NAME).
        │ │ │ +
        │ │ │ +down(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ +up(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        init(Code) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.
        │ │ │  
        │ │ │ -callback_mode() ->
        │ │ │ -    [state_functions,state_enter].
        │ │ │ +callback_mode() ->
        │ │ │ +    [state_functions,state_enter].
        │ │ │  
        │ │ │ --define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │ +-define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │  %%
        │ │ │ -handle_common(cast, {down,Button}, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_common(cast, {up,Button}, Data) ->
        │ │ │ +handle_common(cast, {down,Button}, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_common(cast, {up,Button}, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state, maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}}]};
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state, maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}}]};
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_common({call,From}, code_length, #{code := Code}) ->
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -locked(state_timeout, button, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -locked(
        │ │ │ -  internal, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_common({call,From}, code_length, #{code := Code}) ->
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +locked(state_timeout, button, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +locked(
        │ │ │ +  internal, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        │ │ │ -?HANDLE_COMMON.
        open(enter, _OldState, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -open(state_timeout, lock, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -open(internal, {button,_}, _) ->
        │ │ │ -    {keep_state_and_data, [postpone]};
        │ │ │ +?HANDLE_COMMON.
        open(enter, _OldState, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +open(state_timeout, lock, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +open(internal, {button,_}, _) ->
        │ │ │ +    {keep_state_and_data, [postpone]};
        │ │ │  ?HANDLE_COMMON.
        │ │ │  
        │ │ │ -do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).
        │ │ │ +do_lock() ->
        │ │ │ +    io:format("Locked~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Open~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: handle_event_function │ │ │

        │ │ │

        This section describes what to change in the example to use one │ │ │ handle_event/4 function. The previously used approach to first branch │ │ │ depending on event does not work that well here because of │ │ │ -the state enter calls, so this example first branches depending on state:

        -export([handle_event/4]).
        callback_mode() ->
        │ │ │ -    [handle_event_function,state_enter].
        %%
        │ │ │ +the state enter calls, so this example first branches depending on state:

        -export([handle_event/4]).
        callback_mode() ->
        │ │ │ +    [handle_event_function,state_enter].
        %%
        │ │ │  %% State: locked
        │ │ │ -handle_event(enter, _OldState, locked, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(state_timeout, button, locked, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(
        │ │ │ -  internal, {button,Button}, locked,
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_event(enter, _OldState, locked, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(state_timeout, button, locked, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(
        │ │ │ +  internal, {button,Button}, locked,
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, open, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -handle_event(state_timeout, lock, open, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -handle_event(internal, {button,_}, open, _) ->
        │ │ │ -    {keep_state_and_data,[postpone]};
        %% Common events
        │ │ │ -handle_event(cast, {down,Button}, _State, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_event(cast, {up,Button}, _State, Data) ->
        │ │ │ +handle_event(enter, _OldState, open, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +handle_event(state_timeout, lock, open, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +handle_event(internal, {button,_}, open, _) ->
        │ │ │ +    {keep_state_and_data,[postpone]};
        %% Common events
        │ │ │ +handle_event(cast, {down,Button}, _State, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_event(cast, {up,Button}, _State, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state, maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}},
        │ │ │ -              {state_timeout,30_000,button}]}; % Time in milliseconds
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state, maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}},
        │ │ │ +              {state_timeout,30_000,button}]}; % Time in milliseconds
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_event({call,From}, code_length, _State, #{length := Length}) ->
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{reply,From,Length}]}.

        Notice that postponing buttons from the open state to the locked state │ │ │ +handle_event({call,From}, code_length, _State, #{length := Length}) -> │ │ │ + {keep_state_and_data, │ │ │ + [{reply,From,Length}]}.

        Notice that postponing buttons from the open state to the locked state │ │ │ seems like a strange thing to do for a code lock, but it at least │ │ │ illustrates event postponing.

        │ │ │ │ │ │ │ │ │ │ │ │ Filter the State │ │ │

        │ │ │ @@ -1286,30 +1286,30 @@ │ │ │ and which digits that remain to unlock.

        This state data can be regarded as sensitive, and maybe not what you want │ │ │ in the error log because of some unpredictable event.

        Another reason to filter the state can be that the state is too large to print, │ │ │ as it fills the error log with uninteresting details.

        To avoid this, you can format the internal state that gets in the error log │ │ │ and gets returned from sys:get_status/1,2 │ │ │ by implementing function │ │ │ Module:format_status/2, │ │ │ for example like this:

        ...
        │ │ │ --export([init/1,terminate/3,format_status/2]).
        │ │ │ +-export([init/1,terminate/3,format_status/2]).
        │ │ │  ...
        │ │ │  
        │ │ │ -format_status(Opt, [_PDict,State,Data]) ->
        │ │ │ +format_status(Opt, [_PDict,State,Data]) ->
        │ │ │      StateData =
        │ │ │ -	{State,
        │ │ │ -	 maps:filter(
        │ │ │ -	   fun (code, _) -> false;
        │ │ │ -	       (_, _) -> true
        │ │ │ +	{State,
        │ │ │ +	 maps:filter(
        │ │ │ +	   fun (code, _) -> false;
        │ │ │ +	       (_, _) -> true
        │ │ │  	   end,
        │ │ │ -	   Data)},
        │ │ │ +	   Data)},
        │ │ │      case Opt of
        │ │ │  	terminate ->
        │ │ │  	    StateData;
        │ │ │  	normal ->
        │ │ │ -	    [{data,[{"State",StateData}]}]
        │ │ │ +	    [{data,[{"State",StateData}]}]
        │ │ │      end.

        It is not mandatory to implement a │ │ │ Module:format_status/2 function. │ │ │ If you do not, a default implementation is used that does the same │ │ │ as this example function without filtering the Data term, that is, │ │ │ StateData = {State, Data}, in this example containing sensitive information.

        │ │ │ │ │ │ │ │ │ @@ -1322,104 +1322,104 @@ │ │ │ like a tuple.

        One reason to use this is when you have a state item that when changed │ │ │ should cancel the state time-out, or one that affects │ │ │ the event handling in combination with postponing events. We will go for │ │ │ the latter and complicate the previous example by introducing │ │ │ a configurable lock button (this is the state item in question), │ │ │ which in the open state immediately locks the door, and an API function │ │ │ set_lock_button/1 to set the lock button.

        Suppose now that we call set_lock_button while the door is open, │ │ │ -and we have already postponed a button event that was the new lock button:

        1> code_lock:start_link([a,b,c], x).
        │ │ │ -{ok,<0.666.0>}
        │ │ │ -2> code_lock:button(a).
        │ │ │ +and we have already postponed a button event that was the new lock button:

        1> code_lock:start_link([a,b,c], x).
        │ │ │ +{ok,<0.666.0>}
        │ │ │ +2> code_lock:button(a).
        │ │ │  ok
        │ │ │ -3> code_lock:button(b).
        │ │ │ +3> code_lock:button(b).
        │ │ │  ok
        │ │ │ -4> code_lock:button(c).
        │ │ │ +4> code_lock:button(c).
        │ │ │  ok
        │ │ │  Open
        │ │ │ -5> code_lock:button(y).
        │ │ │ +5> code_lock:button(y).
        │ │ │  ok
        │ │ │ -6> code_lock:set_lock_button(y).
        │ │ │ +6> code_lock:set_lock_button(y).
        │ │ │  x
        │ │ │  % What should happen here?  Immediate lock or nothing?

        We could say that the button was pressed too early so it should not be │ │ │ recognized as the lock button. Or we can make the lock button part of │ │ │ the state so when we then change the lock button in the locked state, │ │ │ the change becomes a state change and all postponed events are retried, │ │ │ therefore the lock is immediately locked!

        We define the state as {StateName, LockButton}, where StateName │ │ │ -is as before and LockButton is the current lock button:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock_3).
        │ │ │ +is as before and LockButton is the current lock button:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock_3).
        │ │ │  
        │ │ │ --export([start_link/2,stop/0]).
        │ │ │ --export([button/1,set_lock_button/1]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([handle_event/4]).
        │ │ │ -
        │ │ │ -start_link(Code, LockButton) ->
        │ │ │ -    gen_statem:start_link(
        │ │ │ -        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).
        │ │ │ -
        │ │ │ -button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ -set_lock_button(LockButton) ->
        │ │ │ -    gen_statem:call(?NAME, {set_lock_button,LockButton}).
        init({Code,LockButton}) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, {locked,LockButton}, Data}.
        │ │ │ +-export([start_link/2,stop/0]).
        │ │ │ +-export([button/1,set_lock_button/1]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([handle_event/4]).
        │ │ │ +
        │ │ │ +start_link(Code, LockButton) ->
        │ │ │ +    gen_statem:start_link(
        │ │ │ +        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
        │ │ │ +stop() ->
        │ │ │ +    gen_statem:stop(?NAME).
        │ │ │ +
        │ │ │ +button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ +set_lock_button(LockButton) ->
        │ │ │ +    gen_statem:call(?NAME, {set_lock_button,LockButton}).
        init({Code,LockButton}) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, {locked,LockButton}, Data}.
        │ │ │  
        │ │ │ -callback_mode() ->
        │ │ │ -    [handle_event_function,state_enter].
        │ │ │ +callback_mode() ->
        │ │ │ +    [handle_event_function,state_enter].
        │ │ │  
        │ │ │  %% State: locked
        │ │ │ -handle_event(enter, _OldState, {locked,_}, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(state_timeout, button, {locked,_}, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(
        │ │ │ -  cast, {button,Button}, {locked,LockButton},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_event(enter, _OldState, {locked,_}, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(state_timeout, button, {locked,_}, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(
        │ │ │ +  cast, {button,Button}, {locked,LockButton},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, {open,LockButton}, Data};
        │ │ │ +            {next_state, {open,LockButton}, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -handle_event(state_timeout, lock, {open,LockButton}, Data) ->
        │ │ │ -    {next_state, {locked,LockButton}, Data};
        │ │ │ -handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
        │ │ │ -    {next_state, {locked,LockButton}, Data};
        │ │ │ -handle_event(cast, {button,_}, {open,_}, _Data) ->
        │ │ │ -    {keep_state_and_data,[postpone]};
        %%
        │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +handle_event(state_timeout, lock, {open,LockButton}, Data) ->
        │ │ │ +    {next_state, {locked,LockButton}, Data};
        │ │ │ +handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
        │ │ │ +    {next_state, {locked,LockButton}, Data};
        │ │ │ +handle_event(cast, {button,_}, {open,_}, _Data) ->
        │ │ │ +    {keep_state_and_data,[postpone]};
        %%
        │ │ │  %% Common events
        │ │ │ -handle_event(
        │ │ │ -  {call,From}, {set_lock_button,NewLockButton},
        │ │ │ -  {StateName,OldLockButton}, Data) ->
        │ │ │ -    {next_state, {StateName,NewLockButton}, Data,
        │ │ │ -     [{reply,From,OldLockButton}]}.
        do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).
        │ │ │ +handle_event(
        │ │ │ +  {call,From}, {set_lock_button,NewLockButton},
        │ │ │ +  {StateName,OldLockButton}, Data) ->
        │ │ │ +    {next_state, {StateName,NewLockButton}, Data,
        │ │ │ +     [{reply,From,OldLockButton}]}.
        do_lock() ->
        │ │ │ +    io:format("Locked~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Open~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Hibernation │ │ │

        │ │ │

        If you have many servers in one node and they have some state(s) in their │ │ │ @@ -1428,19 +1428,19 @@ │ │ │ footprint of a server can be minimized by hibernating it through │ │ │ proc_lib:hibernate/3.

        Note

        It is rather costly to hibernate a process; see erlang:hibernate/3. It is │ │ │ not something you want to do after every event.

        We can in this example hibernate in the {open, _} state, │ │ │ because what normally occurs in that state is that the state time-out │ │ │ after a while triggers a transition to {locked, _}:

        ...
        │ │ │  %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}, % Time in milliseconds
        │ │ │ -      hibernate]};
        │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}, % Time in milliseconds
        │ │ │ +      hibernate]};
        │ │ │  ...

        The atom hibernate in the action list on the │ │ │ last line when entering the {open, _} state is the only change. If any event │ │ │ arrives in the {open, _}, state, we do not bother to rehibernate, │ │ │ so the server stays awake after any event.

        To change that we would need to insert action hibernate in more places. │ │ │ For example, the state-independent set_lock_button operation │ │ │ would have to use hibernate but only in the {open, _} state, │ │ │ which would clutter the code.

        Another not uncommon scenario is to use the │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/sup_princ.html │ │ │ @@ -128,48 +128,48 @@ │ │ │ the order specified by this list, and are terminated in the reverse order.

        │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │

        │ │ │

        The callback module for a supervisor starting the server from │ │ │ -gen_server Behaviour can look as follows:

        -module(ch_sup).
        │ │ │ --behaviour(supervisor).
        │ │ │ +gen_server Behaviour can look as follows:

        -module(ch_sup).
        │ │ │ +-behaviour(supervisor).
        │ │ │  
        │ │ │ --export([start_link/0]).
        │ │ │ --export([init/1]).
        │ │ │ +-export([start_link/0]).
        │ │ │ +-export([init/1]).
        │ │ │  
        │ │ │ -start_link() ->
        │ │ │ -    supervisor:start_link(ch_sup, []).
        │ │ │ +start_link() ->
        │ │ │ +    supervisor:start_link(ch_sup, []).
        │ │ │  
        │ │ │ -init(_Args) ->
        │ │ │ -    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
        │ │ │ -    ChildSpecs = [#{id => ch3,
        │ │ │ -                    start => {ch3, start_link, []},
        │ │ │ +init(_Args) ->
        │ │ │ +    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
        │ │ │ +    ChildSpecs = [#{id => ch3,
        │ │ │ +                    start => {ch3, start_link, []},
        │ │ │                      restart => permanent,
        │ │ │                      shutdown => brutal_kill,
        │ │ │                      type => worker,
        │ │ │ -                    modules => [ch3]}],
        │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

        The SupFlags variable in the return value from init/1 represents the │ │ │ + modules => [ch3]}], │ │ │ + {ok, {SupFlags, ChildSpecs}}.

        The SupFlags variable in the return value from init/1 represents the │ │ │ supervisor flags.

        The ChildSpecs variable in the return value from init/1 is a list of │ │ │ child specifications.

        │ │ │ │ │ │ │ │ │ │ │ │ Supervisor Flags │ │ │

        │ │ │ -

        This is the type definition for the supervisor flags:

        sup_flags() = #{strategy => strategy(),           % optional
        │ │ │ -                intensity => non_neg_integer(),   % optional
        │ │ │ -                period => pos_integer(),          % optional
        │ │ │ -                auto_shutdown => auto_shutdown()} % optional
        │ │ │ -    strategy() = one_for_all
        │ │ │ +

        This is the type definition for the supervisor flags:

        sup_flags() = #{strategy => strategy(),           % optional
        │ │ │ +                intensity => non_neg_integer(),   % optional
        │ │ │ +                period => pos_integer(),          % optional
        │ │ │ +                auto_shutdown => auto_shutdown()} % optional
        │ │ │ +    strategy() = one_for_all
        │ │ │                 | one_for_one
        │ │ │                 | rest_for_one
        │ │ │                 | simple_one_for_one
        │ │ │ -    auto_shutdown() = never
        │ │ │ +    auto_shutdown() = never
        │ │ │                      | any_significant
        │ │ │                      | all_significant

        │ │ │ │ │ │ │ │ │ │ │ │ @@ -408,28 +408,28 @@ │ │ │ exhaust the Maximum Restart Intensity of the │ │ │ parent supervisor.

        │ │ │ │ │ │ │ │ │ │ │ │ Child Specification │ │ │

        │ │ │ -

        The type definition for a child specification is as follows:

        child_spec() = #{id => child_id(),             % mandatory
        │ │ │ -                 start => mfargs(),            % mandatory
        │ │ │ -                 restart => restart(),         % optional
        │ │ │ -                 significant => significant(), % optional
        │ │ │ -                 shutdown => shutdown(),       % optional
        │ │ │ -                 type => worker(),             % optional
        │ │ │ -                 modules => modules()}         % optional
        │ │ │ -    child_id() = term()
        │ │ │ -    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
        │ │ │ -    modules() = [module()] | dynamic
        │ │ │ -    restart() = permanent | transient | temporary
        │ │ │ -    significant() = boolean()
        │ │ │ -    shutdown() = brutal_kill | timeout()
        │ │ │ -    worker() = worker | supervisor
        • id is used to identify the child specification internally by the supervisor.

          The id key is mandatory.

          Note that this identifier occasionally has been called "name". As far as │ │ │ +

          The type definition for a child specification is as follows:

          child_spec() = #{id => child_id(),             % mandatory
          │ │ │ +                 start => mfargs(),            % mandatory
          │ │ │ +                 restart => restart(),         % optional
          │ │ │ +                 significant => significant(), % optional
          │ │ │ +                 shutdown => shutdown(),       % optional
          │ │ │ +                 type => worker(),             % optional
          │ │ │ +                 modules => modules()}         % optional
          │ │ │ +    child_id() = term()
          │ │ │ +    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
          │ │ │ +    modules() = [module()] | dynamic
          │ │ │ +    restart() = permanent | transient | temporary
          │ │ │ +    significant() = boolean()
          │ │ │ +    shutdown() = brutal_kill | timeout()
          │ │ │ +    worker() = worker | supervisor
          • id is used to identify the child specification internally by the supervisor.

            The id key is mandatory.

            Note that this identifier occasionally has been called "name". As far as │ │ │ possible, the terms "identifier" or "id" are now used but in order to keep │ │ │ backwards compatibility, some occurrences of "name" can still be found, for │ │ │ example in error messages.

          • start defines the function call used to start the child process. It is a │ │ │ module-function-arguments tuple used as apply(M, F, A).

            It is to be (or result in) a call to any of the following:

            The start key is mandatory.

          • restart defines when a terminated child process is to be │ │ │ restarted.

            • A permanent child process is always restarted.
            • A temporary child process is never restarted (not even when the supervisor │ │ │ restart strategy is rest_for_one or one_for_all and a sibling death │ │ │ @@ -457,53 +457,53 @@ │ │ │ supervisor, the default value infinity will be used.

            • type specifies whether the child process is a supervisor or a worker.

              The type key is optional. If it is not given, the default value worker │ │ │ will be used.

            • modules has to be a list consisting of a single element. The value │ │ │ of that element depends on the behaviour of the process:

              • If the child process is a gen_event, the element has to be the atom │ │ │ dynamic.
              • Otherwise, the element should be Module, where Module is the │ │ │ name of the callback module.

              This information is used by the release handler during upgrades and │ │ │ downgrades; see Release Handling.

              The modules key is optional. If it is not given, it defaults to [M], where │ │ │ M comes from the child's start {M,F,A}.

            Example: The child specification to start the server ch3 in the previous │ │ │ -example look as follows:

            #{id => ch3,
            │ │ │ -  start => {ch3, start_link, []},
            │ │ │ +example look as follows:

            #{id => ch3,
            │ │ │ +  start => {ch3, start_link, []},
            │ │ │    restart => permanent,
            │ │ │    shutdown => brutal_kill,
            │ │ │    type => worker,
            │ │ │ -  modules => [ch3]}

            or simplified, relying on the default values:

            #{id => ch3,
            │ │ │ +  modules => [ch3]}

            or simplified, relying on the default values:

            #{id => ch3,
            │ │ │    start => {ch3, start_link, []},
            │ │ │    shutdown => brutal_kill}

            Example: A child specification to start the event manager from the chapter about │ │ │ -gen_event:

            #{id => error_man,
            │ │ │ -  start => {gen_event, start_link, [{local, error_man}]},
            │ │ │ -  modules => dynamic}

            Both server and event manager are registered processes which can be expected to │ │ │ +gen_event:

            #{id => error_man,
            │ │ │ +  start => {gen_event, start_link, [{local, error_man}]},
            │ │ │ +  modules => dynamic}

            Both server and event manager are registered processes which can be expected to │ │ │ be always accessible. Thus they are specified to be permanent.

            ch3 does not need to do any cleaning up before termination. Thus, no shutdown │ │ │ time is needed, but brutal_kill is sufficient. error_man can need some time │ │ │ for the event handlers to clean up, thus the shutdown time is set to 5000 ms │ │ │ -(which is the default value).

            Example: A child specification to start another supervisor:

            #{id => sup,
            │ │ │ -  start => {sup, start_link, []},
            │ │ │ +(which is the default value).

            Example: A child specification to start another supervisor:

            #{id => sup,
            │ │ │ +  start => {sup, start_link, []},
            │ │ │    restart => transient,
            │ │ │ -  type => supervisor} % will cause default shutdown=>infinity

            │ │ │ + type => supervisor} % will cause default shutdown=>infinity

            │ │ │ │ │ │ │ │ │ │ │ │ Starting a Supervisor │ │ │

            │ │ │

            In the previous example, the supervisor is started by calling │ │ │ -ch_sup:start_link():

            start_link() ->
            │ │ │ -    supervisor:start_link(ch_sup, []).

            ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ +ch_sup:start_link():

            start_link() ->
            │ │ │ +    supervisor:start_link(ch_sup, []).

            ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ links to a new process, a supervisor.

            • The first argument, ch_sup, is the name of the callback module, that is, the │ │ │ module where the init callback function is located.
            • The second argument, [], is a term that is passed as is to the callback │ │ │ function init. Here, init does not need any data and ignores the argument.

            In this case, the supervisor is not registered. Instead its pid must be used. A │ │ │ name can be specified by calling │ │ │ supervisor:start_link({local, Name}, Module, Args) │ │ │ or │ │ │ supervisor:start_link({global, Name}, Module, Args).

            The new supervisor process calls the callback function ch_sup:init([]). init │ │ │ -has to return {ok, {SupFlags, ChildSpecs}}:

            init(_Args) ->
            │ │ │ -    SupFlags = #{},
            │ │ │ -    ChildSpecs = [#{id => ch3,
            │ │ │ -                    start => {ch3, start_link, []},
            │ │ │ -                    shutdown => brutal_kill}],
            │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

            Subsequently, the supervisor starts its child processes according to the child │ │ │ +has to return {ok, {SupFlags, ChildSpecs}}:

            init(_Args) ->
            │ │ │ +    SupFlags = #{},
            │ │ │ +    ChildSpecs = [#{id => ch3,
            │ │ │ +                    start => {ch3, start_link, []},
            │ │ │ +                    shutdown => brutal_kill}],
            │ │ │ +    {ok, {SupFlags, ChildSpecs}}.

            Subsequently, the supervisor starts its child processes according to the child │ │ │ specifications in the start specification. In this case there is a single child │ │ │ process, called ch3.

            supervisor:start_link/3 is synchronous. It does not return until all child │ │ │ processes have been started.

            │ │ │ │ │ │ │ │ │ │ │ │ Adding a Child Process │ │ │ @@ -532,31 +532,31 @@ │ │ │ │ │ │ │ │ │ Simplified one_for_one Supervisors │ │ │

            │ │ │

            A supervisor with restart strategy simple_one_for_one is a simplified │ │ │ one_for_one supervisor, where all child processes are dynamically added │ │ │ instances of the same process.

            The following is an example of a callback module for a simple_one_for_one │ │ │ -supervisor:

            -module(simple_sup).
            │ │ │ --behaviour(supervisor).
            │ │ │ +supervisor:

            -module(simple_sup).
            │ │ │ +-behaviour(supervisor).
            │ │ │  
            │ │ │ --export([start_link/0]).
            │ │ │ --export([init/1]).
            │ │ │ +-export([start_link/0]).
            │ │ │ +-export([init/1]).
            │ │ │  
            │ │ │ -start_link() ->
            │ │ │ -    supervisor:start_link(simple_sup, []).
            │ │ │ +start_link() ->
            │ │ │ +    supervisor:start_link(simple_sup, []).
            │ │ │  
            │ │ │ -init(_Args) ->
            │ │ │ -    SupFlags = #{strategy => simple_one_for_one,
            │ │ │ +init(_Args) ->
            │ │ │ +    SupFlags = #{strategy => simple_one_for_one,
            │ │ │                   intensity => 0,
            │ │ │ -                 period => 1},
            │ │ │ -    ChildSpecs = [#{id => call,
            │ │ │ -                    start => {call, start_link, []},
            │ │ │ -                    shutdown => brutal_kill}],
            │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

            When started, the supervisor does not start any child │ │ │ + period => 1}, │ │ │ + ChildSpecs = [#{id => call, │ │ │ + start => {call, start_link, []}, │ │ │ + shutdown => brutal_kill}], │ │ │ + {ok, {SupFlags, ChildSpecs}}.

            When started, the supervisor does not start any child │ │ │ processes. Instead, all child processes need to be added dynamically by │ │ │ calling supervisor:start_child(Sup, List).

            Sup is the pid, or name, of the supervisor. List is an arbitrary list of │ │ │ terms, which are added to the list of arguments specified in the child │ │ │ specification. If the start function is specified as {M, F, A}, the child │ │ │ process is started by calling apply(M, F, A++List).

            For example, adding a child to simple_sup above:

            supervisor:start_child(Pid, [id1])

            The result is that the child process is started by calling │ │ │ apply(call, start_link, []++[id1]), or actually:

            call:start_link(id1)

            A child under a simple_one_for_one supervisor can be terminated with the │ │ │ following:

            supervisor:terminate_child(Sup, Pid)

            Sup is the pid, or name, of the supervisor and Pid is the pid of the child.

            Because a simple_one_for_one supervisor can have many children, it shuts them │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/tablesdatabases.html │ │ │ @@ -146,73 +146,73 @@ │ │ │ │ │ │ │ │ │ Deleting an Element │ │ │

        │ │ │

        The delete operation is considered successful if the element was not present │ │ │ in the table. Hence all attempts to check that the element is present in the │ │ │ Ets/Mnesia table before deletion are unnecessary. Here follows an example for │ │ │ -Ets tables:

        DO

        ets:delete(Tab, Key),

        DO NOT

        case ets:lookup(Tab, Key) of
        │ │ │ -    [] ->
        │ │ │ +Ets tables:

        DO

        ets:delete(Tab, Key),

        DO NOT

        case ets:lookup(Tab, Key) of
        │ │ │ +    [] ->
        │ │ │          ok;
        │ │ │ -    [_|_] ->
        │ │ │ -        ets:delete(Tab, Key)
        │ │ │ +    [_|_] ->
        │ │ │ +        ets:delete(Tab, Key)
        │ │ │  end,

        │ │ │ │ │ │ │ │ │ │ │ │ Fetching Data │ │ │

        │ │ │

        Do not fetch data that you already have.

        Consider that you have a module that handles the abstract data type Person. │ │ │ You export the interface function print_person/1, which uses the internal │ │ │ functions print_name/1, print_age/1, and print_occupation/1.

        Note

        If the function print_name/1, and so on, had been interface functions, the │ │ │ situation would have been different, as you do not want the user of the │ │ │ interface to know about the internal data representation.

        DO

        %%% Interface function
        │ │ │ -print_person(PersonId) ->
        │ │ │ +print_person(PersonId) ->
        │ │ │      %% Look up the person in the named table person,
        │ │ │ -    case ets:lookup(person, PersonId) of
        │ │ │ -        [Person] ->
        │ │ │ -            print_name(Person),
        │ │ │ -            print_age(Person),
        │ │ │ -            print_occupation(Person);
        │ │ │ -        [] ->
        │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │ +    case ets:lookup(person, PersonId) of
        │ │ │ +        [Person] ->
        │ │ │ +            print_name(Person),
        │ │ │ +            print_age(Person),
        │ │ │ +            print_occupation(Person);
        │ │ │ +        [] ->
        │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │      end.
        │ │ │  
        │ │ │  %%% Internal functions
        │ │ │ -print_name(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
        │ │ │ +print_name(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.name]).
        │ │ │  
        │ │ │ -print_age(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
        │ │ │ +print_age(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.age]).
        │ │ │  
        │ │ │ -print_occupation(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

        DO NOT

        %%% Interface function
        │ │ │ -print_person(PersonId) ->
        │ │ │ +print_occupation(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.occupation]).

        DO NOT

        %%% Interface function
        │ │ │ +print_person(PersonId) ->
        │ │ │      %% Look up the person in the named table person,
        │ │ │ -    case ets:lookup(person, PersonId) of
        │ │ │ -        [Person] ->
        │ │ │ -            print_name(PersonID),
        │ │ │ -            print_age(PersonID),
        │ │ │ -            print_occupation(PersonID);
        │ │ │ -        [] ->
        │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │ +    case ets:lookup(person, PersonId) of
        │ │ │ +        [Person] ->
        │ │ │ +            print_name(PersonID),
        │ │ │ +            print_age(PersonID),
        │ │ │ +            print_occupation(PersonID);
        │ │ │ +        [] ->
        │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │      end.
        │ │ │  
        │ │ │  %%% Internal functions
        │ │ │ -print_name(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
        │ │ │ -
        │ │ │ -print_age(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
        │ │ │ -
        │ │ │ -print_occupation(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

        │ │ │ +print_name(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.name]). │ │ │ + │ │ │ +print_age(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.age]). │ │ │ + │ │ │ +print_occupation(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.occupation]).

        │ │ │ │ │ │ │ │ │ │ │ │ Non-Persistent Database Storage │ │ │

        │ │ │

        For non-persistent database storage, prefer Ets tables over Mnesia │ │ │ local_content tables. Even the Mnesia dirty_write operations carry a fixed │ │ │ @@ -226,38 +226,38 @@ │ │ │ │ │ │

        Assuming an Ets table that uses idno as key and contains the following:

        [#person{idno = 1, name = "Adam",  age = 31, occupation = "mailman"},
        │ │ │   #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
        │ │ │   #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
        │ │ │   #person{idno = 4, name = "Carl",  age = 25, occupation = "mailman"}]

        If you must return all data stored in the Ets table, you can use │ │ │ ets:tab2list/1. However, usually you are only interested in a subset of the │ │ │ information in which case ets:tab2list/1 is expensive. If you only want to │ │ │ -extract one field from each record, for example, the age of every person, then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +extract one field from each record, for example, the age of every person, then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name='_',
        │ │ │                            age='$1',
        │ │ │ -                          occupation = '_'},
        │ │ │ -                [],
        │ │ │ -                ['$1']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:map(fun(X) -> X#person.age end, TabList),

        If you are only interested in the age of all persons named "Bryan", then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +                          occupation = '_'},
        │ │ │ +                [],
        │ │ │ +                ['$1']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:map(fun(X) -> X#person.age end, TabList),

        If you are only interested in the age of all persons named "Bryan", then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name="Bryan",
        │ │ │                            age='$1',
        │ │ │ -                          occupation = '_'},
        │ │ │ -                [],
        │ │ │ -                ['$1']}])

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:foldl(fun(X, Acc) -> case X#person.name of
        │ │ │ +                          occupation = '_'},
        │ │ │ +                [],
        │ │ │ +                ['$1']}])

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:foldl(fun(X, Acc) -> case X#person.name of
        │ │ │                                  "Bryan" ->
        │ │ │ -                                    [X#person.age|Acc];
        │ │ │ +                                    [X#person.age|Acc];
        │ │ │                                   _ ->
        │ │ │                                       Acc
        │ │ │                             end
        │ │ │ -             end, [], TabList)

        If you need all information stored in the Ets table about persons named "Bryan", │ │ │ -then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +             end, [], TabList)

        If you need all information stored in the Ets table about persons named "Bryan", │ │ │ +then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name="Bryan",
        │ │ │                            age='_',
        │ │ │ -                          occupation = '_'}, [], ['$_']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

        │ │ │ + occupation = '_'}, [], ['$_']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

        │ │ │ │ │ │ │ │ │ │ │ │ ordered_set Tables │ │ │

        │ │ │

        If the data in the table is to be accessed so that the order of the keys in the │ │ │ table is significant, the table type ordered_set can be used instead of the │ │ │ @@ -293,20 +293,20 @@ │ │ │ Clearly, the second table would have to be kept consistent with the master │ │ │ table. Mnesia can do this for you, but a home-brew index table can be very │ │ │ efficient compared to the overhead involved in using Mnesia.

        An index table for the table in the previous examples would have to be a bag (as │ │ │ keys would appear more than once) and can have the following contents:

        [#index_entry{name="Adam", idno=1},
        │ │ │   #index_entry{name="Bryan", idno=2},
        │ │ │   #index_entry{name="Bryan", idno=3},
        │ │ │   #index_entry{name="Carl", idno=4}]

        Given this index table, a lookup of the age fields for all persons named │ │ │ -"Bryan" can be done as follows:

        MatchingIDs = ets:lookup(IndexTable,"Bryan"),
        │ │ │ -lists:map(fun(#index_entry{idno = ID}) ->
        │ │ │ -                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
        │ │ │ +"Bryan" can be done as follows:

        MatchingIDs = ets:lookup(IndexTable,"Bryan"),
        │ │ │ +lists:map(fun(#index_entry{idno = ID}) ->
        │ │ │ +                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
        │ │ │                   Age
        │ │ │            end,
        │ │ │ -          MatchingIDs),

        Notice that this code does not use ets:match/2, but instead uses the │ │ │ + MatchingIDs),

        Notice that this code does not use ets:match/2, but instead uses the │ │ │ ets:lookup/2 call. The lists:map/2 call is only used to traverse the idnos │ │ │ matching the name "Bryan" in the table; thus the number of lookups in the master │ │ │ table is minimized.

        Keeping an index table introduces some overhead when inserting records in the │ │ │ table. The number of operations gained from the table must therefore be compared │ │ │ against the number of operations inserting objects in the table. However, notice │ │ │ that the gain is significant when the key can be used to lookup elements.

        │ │ │ │ │ │ @@ -321,51 +321,51 @@ │ │ │ Secondary Index │ │ │

        │ │ │

        If you frequently do lookups on a field that is not the key of the table, you │ │ │ lose performance using mnesia:select() or │ │ │ mnesia:match_object() as these function traverse │ │ │ the whole table. Instead, you can create a secondary index and use │ │ │ mnesia:index_read/3 to get faster access at the expense of using more │ │ │ -memory.

        Example:

        -record(person, {idno, name, age, occupation}).
        │ │ │ +memory.

        Example:

        -record(person, {idno, name, age, occupation}).
        │ │ │          ...
        │ │ │ -{atomic, ok} =
        │ │ │ -mnesia:create_table(person, [{index,[#person.age]},
        │ │ │ -                              {attributes,
        │ │ │ -                                    record_info(fields, person)}]),
        │ │ │ -{atomic, ok} = mnesia:add_table_index(person, age),
        │ │ │ +{atomic, ok} =
        │ │ │ +mnesia:create_table(person, [{index,[#person.age]},
        │ │ │ +                              {attributes,
        │ │ │ +                                    record_info(fields, person)}]),
        │ │ │ +{atomic, ok} = mnesia:add_table_index(person, age),
        │ │ │  ...
        │ │ │  
        │ │ │  PersonsAge42 =
        │ │ │ -     mnesia:dirty_index_read(person, 42, #person.age),

        │ │ │ + mnesia:dirty_index_read(person, 42, #person.age),

        │ │ │ │ │ │ │ │ │ │ │ │ Transactions │ │ │

        │ │ │

        Using transactions is a way to guarantee that the distributed Mnesia database │ │ │ remains consistent, even when many different processes update it in parallel. │ │ │ However, if you have real-time requirements it is recommended to use dirtry │ │ │ operations instead of transactions. When using dirty operations, you lose the │ │ │ consistency guarantee; this is usually solved by only letting one process update │ │ │ the table. Other processes must send update requests to that process.

        Example:

        ...
        │ │ │  %% Using transaction
        │ │ │  
        │ │ │ -Fun = fun() ->
        │ │ │ -          [mnesia:read({Table, Key}),
        │ │ │ -           mnesia:read({Table2, Key2})]
        │ │ │ +Fun = fun() ->
        │ │ │ +          [mnesia:read({Table, Key}),
        │ │ │ +           mnesia:read({Table2, Key2})]
        │ │ │        end,
        │ │ │  
        │ │ │ -{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
        │ │ │ +{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
        │ │ │  ...
        │ │ │  
        │ │ │  %% Same thing using dirty operations
        │ │ │  ...
        │ │ │  
        │ │ │ -Result1 = mnesia:dirty_read({Table, Key}),
        │ │ │ -Result2 = mnesia:dirty_read({Table2, Key2}),
        │ │ │ +
        Result1 = mnesia:dirty_read({Table, Key}), │ │ │ +Result2 = mnesia:dirty_read({Table2, Key2}),
        │ │ │ │ │ │ │ │ │
        │ │ │
        │ │ │ │ │ │

        map/0 type.

        For convenience, the following types are also built-in. They can be thought as │ │ │ predefined aliases for the type unions also shown in the table.

        Built-in typeDefined as
        term/0any/0
        binary/0<<_:_*8>>
        nonempty_binary/0<<_:8, _:_*8>>
        bitstring/0<<_:_*1>>
        nonempty_bitstring/0<<_:1, _:_*1>>
        boolean/0'false' | 'true'
        byte/00..255
        char/00..16#10ffff
        nil/0[]
        number/0integer/0 | float/0
        list/0[any()]
        maybe_improper_list/0maybe_improper_list(any(), any())
        nonempty_list/0nonempty_list(any())
        string/0[char()]
        nonempty_string/0[char(),...]
        iodata/0iolist() | binary()
        iolist/0maybe_improper_list(byte() | binary() | iolist(), binary() | [])
        map/0#{any() => any()}
        function/0fun()
        module/0atom/0
        mfa/0{module(),atom(),arity()}
        arity/00..255
        identifier/0pid() | port() | reference()
        node/0atom/0
        timeout/0'infinity' | non_neg_integer()
        no_return/0none/0

        Table: Built-in types, predefined aliases

        In addition, the following three built-in types exist and can be thought as │ │ │ defined below, though strictly their "type definition" is not valid syntax │ │ │ according to the type language defined above.

        Built-in typeCan be thought defined by the syntax
        non_neg_integer/00..
        pos_integer/01..
        neg_integer/0..-1

        Table: Additional built-in types

        Note

        The following built-in list types also exist, but they are expected to be │ │ │ -rarely used. Hence, they have long names:

        nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
        │ │ │ -nonempty_improper_list(Type1, Type2)
        │ │ │ -nonempty_maybe_improper_list(Type1, Type2)

        where the last two types define the set of Erlang terms one would expect.

        Also for convenience, record notation is allowed to be used. Records are │ │ │ -shorthands for the corresponding tuples:

        Record :: #Erlang_Atom{}
        │ │ │ -        | #Erlang_Atom{Fields}

        Records are extended to possibly contain type information. This is described in │ │ │ +rarely used. Hence, they have long names:

        nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
        │ │ │ +nonempty_improper_list(Type1, Type2)
        │ │ │ +nonempty_maybe_improper_list(Type1, Type2)

        where the last two types define the set of Erlang terms one would expect.

        Also for convenience, record notation is allowed to be used. Records are │ │ │ +shorthands for the corresponding tuples:

        Record :: #Erlang_Atom{}
        │ │ │ +        | #Erlang_Atom{Fields}

        Records are extended to possibly contain type information. This is described in │ │ │ Type Information in Record Declarations.

        │ │ │ │ │ │ │ │ │ │ │ │ Redefining built-in types │ │ │

        │ │ │

        Change

        Starting from Erlang/OTP 26, it is permitted to define a type having the same │ │ │ name as a built-in type.

        It is recommended to avoid deliberately reusing built-in names because it can be │ │ │ confusing. However, when an Erlang/OTP release introduces a new type, code that │ │ │ happened to define its own type having the same name will continue to work.

        As an example, imagine that the Erlang/OTP 42 release introduces a new type │ │ │ -gadget() defined like this:

        -type gadget() :: {'gadget', reference()}.

        Further imagine that some code has its own (different) definition of gadget(), │ │ │ -for example:

        -type gadget() :: #{}.

        Since redefinitions are allowed, the code will still compile (but with a │ │ │ +gadget() defined like this:

        -type gadget() :: {'gadget', reference()}.

        Further imagine that some code has its own (different) definition of gadget(), │ │ │ +for example:

        -type gadget() :: #{}.

        Since redefinitions are allowed, the code will still compile (but with a │ │ │ warning), and Dialyzer will not emit any additional warnings.

        │ │ │ │ │ │ │ │ │ │ │ │ Type Declarations of User-Defined Types │ │ │

        │ │ │

        As seen, the basic syntax of a type is an atom followed by closed parentheses. │ │ │ New types are declared using -type and -opaque attributes as in the │ │ │ -following:

        -type my_struct_type() :: Type.
        │ │ │ --opaque my_opaq_type() :: Type.

        The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ +following:

        -type my_struct_type() :: Type.
        │ │ │ +-opaque my_opaq_type() :: Type.

        The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ type as defined in the previous section. A current restriction is that Type │ │ │ can contain only predefined types, or user-defined types which are either of the │ │ │ following:

        • Module-local type, that is, with a definition that is present in the code of │ │ │ the module
        • Remote type, that is, type defined in, and exported by, other modules; more │ │ │ about this soon.

        For module-local types, the restriction that their definition exists in the │ │ │ module is enforced by the compiler and results in a compilation error. (A │ │ │ similar restriction currently exists for records.)

        Type declarations can also be parameterized by including type variables between │ │ │ the parentheses. The syntax of type variables is the same as Erlang variables, │ │ │ that is, starts with an upper-case letter. These variables is to │ │ │ -appear on the RHS of the definition. A concrete example follows:

        -type orddict(Key, Val) :: [{Key, Val}].

        A module can export some types to declare that other modules are allowed to │ │ │ -refer to them as remote types. This declaration has the following form:

        -export_type([T1/A1, ..., Tk/Ak]).

        Here the Tis are atoms (the name of the type) and the Ais are their arguments.

        Example:

        -export_type([my_struct_type/0, orddict/2]).

        Assuming that these types are exported from module 'mod', you can refer to │ │ │ -them from other modules using remote type expressions like the following:

        mod:my_struct_type()
        │ │ │ -mod:orddict(atom(), term())

        It is not allowed to refer to types that are not declared as exported.

        Types declared as opaque represent sets of terms whose structure is not │ │ │ +appear on the RHS of the definition. A concrete example follows:

        -type orddict(Key, Val) :: [{Key, Val}].

        A module can export some types to declare that other modules are allowed to │ │ │ +refer to them as remote types. This declaration has the following form:

        -export_type([T1/A1, ..., Tk/Ak]).

        Here the Tis are atoms (the name of the type) and the Ais are their arguments.

        Example:

        -export_type([my_struct_type/0, orddict/2]).

        Assuming that these types are exported from module 'mod', you can refer to │ │ │ +them from other modules using remote type expressions like the following:

        mod:my_struct_type()
        │ │ │ +mod:orddict(atom(), term())

        It is not allowed to refer to types that are not declared as exported.

        Types declared as opaque represent sets of terms whose structure is not │ │ │ supposed to be visible from outside of their defining module. That is, only the │ │ │ module defining them is allowed to depend on their term structure. Consequently, │ │ │ such types do not make much sense as module local - module local types are not │ │ │ accessible by other modules anyway - and is always to be exported.

        Read more on Opaques

        │ │ │ │ │ │ │ │ │ │ │ │ Type Information in Record Declarations │ │ │

        │ │ │

        The types of record fields can be specified in the declaration of the record. │ │ │ -The syntax for this is as follows:

        -record(rec, {field1 :: Type1, field2, field3 :: Type3}).

        For fields without type annotations, their type defaults to any(). That is, the │ │ │ -previous example is a shorthand for the following:

        -record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

        In the presence of initial values for fields, the type must be declared after │ │ │ -the initialization, as follows:

        -record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

        The initial values for fields are to be compatible with (that is, a member of) │ │ │ +The syntax for this is as follows:

        -record(rec, {field1 :: Type1, field2, field3 :: Type3}).

        For fields without type annotations, their type defaults to any(). That is, the │ │ │ +previous example is a shorthand for the following:

        -record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

        In the presence of initial values for fields, the type must be declared after │ │ │ +the initialization, as follows:

        -record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

        The initial values for fields are to be compatible with (that is, a member of) │ │ │ the corresponding types. This is checked by the compiler and results in a │ │ │ compilation error if a violation is detected.

        Change

        Before Erlang/OTP 19, for fields without initial values, the singleton type │ │ │ 'undefined' was added to all declared types. In other words, the following │ │ │ -two record declarations had identical effects:

        -record(rec, {f1 = 42 :: integer(),
        │ │ │ -             f2      :: float(),
        │ │ │ -             f3      :: 'a' | 'b'}).
        │ │ │ +two record declarations had identical effects:

        -record(rec, {f1 = 42 :: integer(),
        │ │ │ +             f2      :: float(),
        │ │ │ +             f3      :: 'a' | 'b'}).
        │ │ │  
        │ │ │ --record(rec, {f1 = 42 :: integer(),
        │ │ │ -              f2      :: 'undefined' | float(),
        │ │ │ -              f3      :: 'undefined' | 'a' | 'b'}).

        This is no longer the case. If you require 'undefined' in your record field │ │ │ +-record(rec, {f1 = 42 :: integer(), │ │ │ + f2 :: 'undefined' | float(), │ │ │ + f3 :: 'undefined' | 'a' | 'b'}).

        This is no longer the case. If you require 'undefined' in your record field │ │ │ type, you must explicitly add it to the typespec, as in the 2nd example.

        Any record, containing type information or not, once defined, can be used as a │ │ │ type using the following syntax:

        #rec{}

        In addition, the record fields can be further specified when using a record type │ │ │ by adding type information about the field as follows:

        #rec{some_field :: Type}

        Any unspecified fields are assumed to have the type in the original record │ │ │ declaration.

        Note

        When records are used to create patterns for ETS and Mnesia match functions, │ │ │ -Dialyzer may need some help not to emit bad warnings. For example:

        -type height() :: pos_integer().
        │ │ │ --record(person, {name :: string(), height :: height()}).
        │ │ │ +Dialyzer may need some help not to emit bad warnings. For example:

        -type height() :: pos_integer().
        │ │ │ +-record(person, {name :: string(), height :: height()}).
        │ │ │  
        │ │ │ -lookup(Name, Tab) ->
        │ │ │ -    ets:match_object(Tab, #person{name = Name, _ = '_'}).

        Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ +lookup(Name, Tab) -> │ │ │ + ets:match_object(Tab, #person{name = Name, _ = '_'}).

        Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ height.

        The recommended way of dealing with this is to declare the smallest record │ │ │ field types to accommodate all your needs, and then create refinements as │ │ │ -needed. The modified example:

        -record(person, {name :: string(), height :: height() | '_'}).
        │ │ │ +needed. The modified example:

        -record(person, {name :: string(), height :: height() | '_'}).
        │ │ │  
        │ │ │ --type person() :: #person{height :: height()}.

        In specifications and type declarations the type person() is to be preferred │ │ │ +-type person() :: #person{height :: height()}.

        In specifications and type declarations the type person() is to be preferred │ │ │ before #person{}.

        │ │ │ │ │ │ │ │ │ │ │ │ Specifications for Functions │ │ │

        │ │ │

        A specification (or contract) for a function is given using the -spec │ │ │ attribute. The general format is as follows:

        -spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.

        An implementation of the function with the same name Function must exist in │ │ │ the current module, and the arity of the function must match the number of │ │ │ arguments, otherwise the compilation fails.

        The following longer format with module name is also valid as long as Module │ │ │ is the name of the current module. This can be useful for documentation │ │ │ purposes.

        -spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.

        Also, for documentation purposes, argument names can be given:

        -spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.

        A function specification can be overloaded. That is, it can have several types, │ │ │ -separated by a semicolon (;). For example:

        -spec foo(T1, T2) -> T3;
        │ │ │ -         (T4, T5) -> T6.

        A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ +separated by a semicolon (;). For example:

        -spec foo(T1, T2) -> T3;
        │ │ │ +         (T4, T5) -> T6.

        A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ the domains of the argument types cannot overlap. For example, the following │ │ │ -specification results in a warning:

        -spec foo(pos_integer()) -> pos_integer();
        │ │ │ -         (integer()) -> integer().

        Type variables can be used in specifications to specify relations for the input │ │ │ +specification results in a warning:

        -spec foo(pos_integer()) -> pos_integer();
        │ │ │ +         (integer()) -> integer().

        Type variables can be used in specifications to specify relations for the input │ │ │ and output arguments of a function. For example, the following specification │ │ │ defines the type of a polymorphic identity function:

        -spec id(X) -> X.

        Notice that the above specification does not restrict the input and output type │ │ │ in any way. These types can be constrained by guard-like subtype constraints and │ │ │ -provide bounded quantification:

        -spec id(X) -> X when X :: tuple().

        Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ +provide bounded quantification:

        -spec id(X) -> X when X :: tuple().

        Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ constraint that can be used in the when part of a -spec attribute.

        Note

        The above function specification uses multiple occurrences of the same type │ │ │ variable. That provides more type information than the following function │ │ │ -specification, where the type variables are missing:

        -spec id(tuple()) -> tuple().

        The latter specification says that the function takes some tuple and returns │ │ │ +specification, where the type variables are missing:

        -spec id(tuple()) -> tuple().

        The latter specification says that the function takes some tuple and returns │ │ │ some tuple. The specification with the X type variable specifies that the │ │ │ function takes a tuple and returns the same tuple.

        However, it is up to the tools that process the specifications to choose │ │ │ whether to take this extra information into account or not.

        The scope of a :: constraint is the (...) -> RetType specification after │ │ │ which it appears. To avoid confusion, it is suggested that different variables │ │ │ are used in different constituents of an overloaded contract, as shown in the │ │ │ -following example:

        -spec foo({X, integer()}) -> X when X :: atom();
        │ │ │ -         ([Y]) -> Y when Y :: number().

        Some functions in Erlang are not meant to return; either because they define │ │ │ +following example:

        -spec foo({X, integer()}) -> X when X :: atom();
        │ │ │ +         ([Y]) -> Y when Y :: number().

        Some functions in Erlang are not meant to return; either because they define │ │ │ servers or because they are used to throw exceptions, as in the following │ │ │ -function:

        my_error(Err) -> throw({error, Err}).

        For such functions, it is recommended to use the special no_return/0 type │ │ │ +function:

        my_error(Err) -> throw({error, Err}).

        For such functions, it is recommended to use the special no_return/0 type │ │ │ for their "return", through a contract of the following form:

        -spec my_error(term()) -> no_return().

        Note

        Erlang uses the shorthand version _ as an anonymous type variable equivalent │ │ │ to term/0 or any/0. For example, the following function

        -spec Function(string(), _) -> string().

        is equivalent to:

        -spec Function(string(), any()) -> string().
        │ │ │
        │ │ │ │ │ │
        │ │ │
        │ │ ├── ./usr/share/doc/erlang-doc/html/doc/upcoming_incompatibilities.html │ │ │ @@ -149,45 +149,45 @@ │ │ │ occurrences of maybe without quotes.

        │ │ │ │ │ │ │ │ │ │ │ │ 0.0 and -0.0 will no longer be exactly equal │ │ │

        │ │ │

        Currently, the floating point numbers 0.0 and -0.0 have distinct internal │ │ │ -representations. That can be seen if they are converted to binaries:

        1> <<0.0/float>>.
        │ │ │ -<<0,0,0,0,0,0,0,0>>
        │ │ │ -2> <<-0.0/float>>.
        │ │ │ -<<128,0,0,0,0,0,0,0>>

        However, when they are matched against each other or compared using the =:= │ │ │ +representations. That can be seen if they are converted to binaries:

        1> <<0.0/float>>.
        │ │ │ +<<0,0,0,0,0,0,0,0>>
        │ │ │ +2> <<-0.0/float>>.
        │ │ │ +<<128,0,0,0,0,0,0,0>>

        However, when they are matched against each other or compared using the =:= │ │ │ operator, they are considered to be equal. Thus, 0.0 =:= -0.0 currently │ │ │ returns true.

        In Erlang/OTP 27, 0.0 =:= -0.0 will return false, and matching 0.0 against │ │ │ -0.0 will fail. When used as map keys, 0.0 and -0.0 will be considered to │ │ │ be distinct.

        The == operator will continue to return true for 0.0 == -0.0.

        To help to find code that might need to be revised, in OTP 27 there will be a │ │ │ new compiler warning when matching against 0.0 or comparing to that value │ │ │ using the =:= operator. The warning can be suppressed by matching against │ │ │ +0.0 instead of 0.0.

        We plan to introduce the same warning in OTP 26.1, but by default it will be │ │ │ disabled.

        │ │ │ │ │ │ │ │ │ │ │ │ Singleton type variables will become a compile-time error │ │ │

        │ │ │ -

        Before Erlang/OTP 26, the compiler would silenty accept the following spec:

        -spec f(Opts) -> term() when
        │ │ │ -    Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │ -f(_) -> error.

        In OTP 26, the compiler emits a warning pointing out that the type variable │ │ │ -Unknown is unbound:

        t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
        │ │ │ +

        Before Erlang/OTP 26, the compiler would silenty accept the following spec:

        -spec f(Opts) -> term() when
        │ │ │ +    Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │ +f(_) -> error.

        In OTP 26, the compiler emits a warning pointing out that the type variable │ │ │ +Unknown is unbound:

        t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
        │ │ │  %    6|     Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │  %     |                  ^

        In OTP 27, that warning will become an error.

        │ │ │ │ │ │ │ │ │ │ │ │ Escripts will be compiled by default │ │ │

        │ │ │

        Escripts will be compiled by default instead of interpreted. That means that the │ │ │ compiler application must be available.

        The old behavior of interpreting escripts can be restored by adding the │ │ │ -following line to the script file:

        -mode(interpret).

        In OTP 28, support for interpreting an escript will be removed.

        │ │ │ +following line to the script file:

        -mode(interpret).

        In OTP 28, support for interpreting an escript will be removed.

        │ │ │ │ │ │ │ │ │ │ │ │ -code_path_choice will default to strict │ │ │

        │ │ │

        This command line option controls if paths given in the command line, boot │ │ │ scripts, and the code server should be interpreted as is strict or relaxed.

        OTP 26 and earlier defaults to relaxed, which means -pa myapp/ebin would │ │ │ @@ -231,18 +231,18 @@ │ │ │ " │ │ │ String Content │ │ │ " │ │ │ %% │ │ │ %% In OTP 27 it is instead interpreted as a │ │ │ %% Triple-Quoted String equivalent to │ │ │ "String Content"

        """"
        │ │ │ -++ foo() ++
        │ │ │ +++ foo() ++
        │ │ │  """"
        │ │ │  %% Became
        │ │ │ -"" ++ foo() ++ ""
        │ │ │ +"" ++ foo() ++ ""
        │ │ │  %%
        │ │ │  %% In OTP 27 it is instead interpreted as a
        │ │ │  %% Triple-Quoted String (triple-or-more) equivalent to
        │ │ │  "++ foo() ++"

        From Erlang/OTP 26.1 up to 27.0 the compiler issues a warning for a sequence of │ │ │ 3 or more double-quote characters since that is almost certainly a mistake or │ │ │ something like a result of bad automatic code generation. If a users gets that │ │ │ warning, the code should be corrected for example by inserting appropriate │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/.build │ │ │ @@ -42,15 +42,15 @@ │ │ │ dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ dist/remixicon-NKANDIL5.woff2 │ │ │ -dist/search_data-2EF91EE2.js │ │ │ +dist/search_data-A22E82DE.js │ │ │ dist/sidebar_items-EAF8F760.js │ │ │ driver.html │ │ │ driver_entry.html │ │ │ epmd_cmd.html │ │ │ erl_cmd.html │ │ │ erl_dist_protocol.html │ │ │ erl_driver.html │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/alt_dist.html │ │ │ @@ -237,50 +237,50 @@ │ │ │ uds_dist example using a port driver written in C, erl_uds_dist is written │ │ │ entirely in Erlang.

        │ │ │ │ │ │ │ │ │ │ │ │ Exported Callback Functions │ │ │

        │ │ │ -

        The following functions are mandatory:

        • listen(Name) ->
          │ │ │ -  {ok, {Listen, Address, Creation}} | {error, Error}
          │ │ │ -listen(Name,Host) ->
          │ │ │ -  {ok, {Listen, Address, Creation}} | {error, Error}

          listen/2 is called once in order to listen for incoming connection requests. │ │ │ +

          The following functions are mandatory:

          • listen(Name) ->
            │ │ │ +  {ok, {Listen, Address, Creation}} | {error, Error}
            │ │ │ +listen(Name,Host) ->
            │ │ │ +  {ok, {Listen, Address, Creation}} | {error, Error}

            listen/2 is called once in order to listen for incoming connection requests. │ │ │ The call is made when the distribution is brought up. The argument Name is │ │ │ the part of the node name before the @ sign in the full node name. It can be │ │ │ either an atom or a string. The argument Host is the part of the node name │ │ │ after the @ sign in the full node name. It is always a string.

            The return value consists of a Listen handle (which is later passed to the │ │ │ accept/1 callback), Address which is a │ │ │ #net_address{} record with information about the address for the node (the │ │ │ #net_address{} record is defined in kernel/include/net_address.hrl), and │ │ │ Creation which (currently) is an integer 1, 2, or 3.

            If epmd is to be used for node discovery, you typically want │ │ │ to use the erl_epmd module (part of the kernel application) in order to │ │ │ -register the listen port with epmd and retrieve Creation to use.

          • address() ->
            │ │ │ +register the listen port with epmd and retrieve Creation to use.

          • address() ->
            │ │ │    Address

            address/0 is called in order to get the Address part of the │ │ │ listen/2 function without creating a listen socket. │ │ │ -All fields except address have to be set in the returned record

            Example:

            address() ->
            │ │ │ -    {ok, Host} = inet:gethostname(),
            │ │ │ -    #net_address{ host = Host, protocol = tcp, family = inet6 }.
          • accept(Listen) ->
            │ │ │ +All fields except address have to be set in the returned record

            Example:

            address() ->
            │ │ │ +    {ok, Host} = inet:gethostname(),
            │ │ │ +    #net_address{ host = Host, protocol = tcp, family = inet6 }.
          • accept(Listen) ->
            │ │ │    AcceptorPid

            accept/1 should spawn a process that accepts connections. This process │ │ │ should preferably execute on max priority. The process identifier of this │ │ │ process should be returned.

            The Listen argument will be the same as the Listen handle part of the │ │ │ return value of the listen/1 callback above. │ │ │ accept/1 is called only once when the distribution protocol is started.

            The caller of this function is a representative for net_kernel (this may or │ │ │ may not be the process registered as net_kernel) and is in this document │ │ │ identified as Kernel. When a connection has been accepted by the acceptor │ │ │ process, it needs to inform Kernel about the accepted connection. This is │ │ │ -done by passing a message on the form:

            Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

            DistController is either the process or port identifier of the distribution │ │ │ +done by passing a message on the form:

            Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

            DistController is either the process or port identifier of the distribution │ │ │ controller for the connection. The distribution controller should be created │ │ │ by the acceptor processes when a new connection is accepted. Its job is to │ │ │ dispatch traffic on the connection.

            Kernel responds with one of the following messages:

            • {Kernel, controller, SupervisorPid} - The request was accepted and │ │ │ SupervisorPid is the process identifier of the connection supervisor │ │ │ process (which is created in the │ │ │ accept_connection/5 callback).

            • {Kernel, unsupported_protocol} - The request was rejected. This is a │ │ │ fatal error. The acceptor process should terminate.

            When an accept sequence has been completed the acceptor process is expected to │ │ │ -continue accepting further requests.

          • accept_connection(AcceptorPid, DistCtrl, MyNode, Allowed, SetupTime) ->
            │ │ │ +continue accepting further requests.

          • accept_connection(AcceptorPid, DistCtrl, MyNode, Allowed, SetupTime) ->
            │ │ │    ConnectionSupervisorPid

            accept_connection/5 should spawn a process that will perform the Erlang │ │ │ distribution handshake for the connection. If the handshake successfully │ │ │ completes it should continue to function as a connection supervisor. This │ │ │ process should preferably execute on max priority and should be linked to │ │ │ the caller. The dist_util:net_ticker_spawn_options() function can be called │ │ │ to get spawn options suitable for this process which can be passed directly to │ │ │ erlang:spawn_opt/4. dist_util:net_ticker_spawn_options() will by default │ │ │ @@ -294,15 +294,15 @@ │ │ │ dist_util:handshake_other_started(HsData).

          • Allowed - To be passed along to │ │ │ dist_util:handshake_other_started(HsData).

          • SetupTime - Time used for creating a setup timer by a call to │ │ │ dist_util:start_timer(SetupTime). The timer should be passed along to │ │ │ dist_util:handshake_other_started(HsData).

          The created process should provide callbacks and other information needed for │ │ │ the handshake in a #hs_data{} record and call │ │ │ dist_util:handshake_other_started(HsData) with this record.

          dist_util:handshake_other_started(HsData) will perform the handshake and if │ │ │ the handshake successfully completes this process will then continue in a │ │ │ -connection supervisor loop as long as the connection is up.

        • setup(Node, Type, MyNode, LongOrShortNames, SetupTime) ->
          │ │ │ +connection supervisor loop as long as the connection is up.

        • setup(Node, Type, MyNode, LongOrShortNames, SetupTime) ->
          │ │ │    ConnectionSupervisorPid

          setup/5 should spawn a process that connects to Node. When connection has │ │ │ been established it should perform the Erlang distribution handshake for the │ │ │ connection. If the handshake successfully completes it should continue to │ │ │ function as a connection supervisor. This process should preferably execute on │ │ │ max priority and should be linked to the caller. The │ │ │ dist_util:net_ticker_spawn_options() function can be called to get spawn │ │ │ options suitable for this process which can be passed directly to │ │ │ @@ -320,23 +320,23 @@ │ │ │ may not be the process registered as net_kernel) and is in this document │ │ │ identified as Kernel.

          This function should, besides spawning the connection supervisor, also create │ │ │ a distribution controller. The distribution controller is either a process or │ │ │ a port which is responsible for dispatching traffic.

          The created process should provide callbacks and other information needed for │ │ │ the handshake in a #hs_data{} record and call │ │ │ dist_util:handshake_we_started(HsData) with this record.

          dist_util:handshake_we_started(HsData) will perform the handshake and the │ │ │ handshake successfully completes this process will then continue in a │ │ │ -connection supervisor loop as long as the connection is up.

        • close(Listen) ->
          │ │ │ -  void()

          Called in order to close the Listen handle that originally was passed from │ │ │ -the listen/1 callback.

        • select(NodeName) ->
          │ │ │ -  boolean()

          Return true if the host name part of the NodeName is valid for use with │ │ │ -this protocol; otherwise, false.

        There are also two optional functions that may be exported:

        • setopts(Listen, Opts) ->
          │ │ │ -  ok | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ +connection supervisor loop as long as the connection is up.

        • close(Listen) ->
          │ │ │ +  void()

          Called in order to close the Listen handle that originally was passed from │ │ │ +the listen/1 callback.

        • select(NodeName) ->
          │ │ │ +  boolean()

          Return true if the host name part of the NodeName is valid for use with │ │ │ +this protocol; otherwise, false.

        There are also two optional functions that may be exported:

        • setopts(Listen, Opts) ->
          │ │ │ +  ok | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ listen/1 callback. The argument Opts is a list of │ │ │ -options to set on future connections.

        • getopts(Listen, Opts) ->
          │ │ │ -  {ok, OptionValues} | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ +options to set on future connections.

        • getopts(Listen, Opts) ->
          │ │ │ +  {ok, OptionValues} | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ listen/1 callback. The argument Opts is a list of │ │ │ options to read for future connections.

        │ │ │ │ │ │ │ │ │ │ │ │ The #hs_data{} Record │ │ │

        │ │ │ @@ -350,44 +350,44 @@ │ │ │ accept_connection/5.

      • other_node - Name of the other node. This field │ │ │ is only mandatory when this node initiates the connection. That is, when │ │ │ connection is set up via setup/5.

      • this_node - The node name of this node.

      • socket - The identifier of the distribution │ │ │ controller.

      • timer - The timer created using │ │ │ dist_util:start_timer/1.

      • allowed - Information passed as Allowed to │ │ │ accept_connection/5. This field is only mandatory when the remote node │ │ │ initiated the connection. That is, when the connection is set up via │ │ │ -accept_connection/5.

      • f_send - A fun with the following signature:

        fun (DistCtrlr, Data) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Data │ │ │ -is io data to pass to the other side.

        Only used during handshake phase.

      • f_recv - A fun with the following signature:

        fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

        where DistCtrlr is the identifier of the distribution controller. If │ │ │ +accept_connection/5.

      • f_send - A fun with the following signature:

        fun (DistCtrlr, Data) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Data │ │ │ +is io data to pass to the other side.

        Only used during handshake phase.

      • f_recv - A fun with the following signature:

        fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

        where DistCtrlr is the identifier of the distribution controller. If │ │ │ Length is 0, all available bytes should be returned. If Length > 0, │ │ │ exactly Length bytes should be returned, or an error; possibly discarding │ │ │ less than Length bytes of data when the connection is closed from the other │ │ │ side. It is used for passive receive of data from the other end.

        Only used during handshake phase.

      • f_setopts_pre_nodeup - A fun with the │ │ │ -following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ +following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ just before the distribution channel is taken up for normal traffic.

        Only used during handshake phase.

      • f_setopts_post_nodeup - A fun with │ │ │ -the following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ -just after distribution channel has been taken up for normal traffic.

        Only used during handshake phase.

      • f_getll - A fun with the following signature:

        fun (DistCtrlr) -> ID

        where DistCtrlr is the identifier of the distribution controller and ID is │ │ │ +the following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ +just after distribution channel has been taken up for normal traffic.

        Only used during handshake phase.

      • f_getll - A fun with the following signature:

        fun (DistCtrlr) -> ID

        where DistCtrlr is the identifier of the distribution controller and ID is │ │ │ the identifier of the low level entity that handles the connection (often │ │ │ -DistCtrlr itself).

        Only used during handshake phase.

      • f_address - A fun with the following signature:

        fun (DistCtrlr, Node) -> NetAddress

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ +DistCtrlr itself).

        Only used during handshake phase.

      • f_address - A fun with the following signature:

        fun (DistCtrlr, Node) -> NetAddress

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ the node name of the node on the other end, and NetAddress is a │ │ │ #net_address{} record with information about the address for the Node on │ │ │ the other end of the connection. The #net_address{} record is defined in │ │ │ -kernel/include/net_address.hrl.

        Only used during handshake phase.

      • mf_tick - A fun with the following signature:

        fun (DistCtrlr) -> void()

        where DistCtrlr is the identifier of the distribution controller. This │ │ │ +kernel/include/net_address.hrl.

        Only used during handshake phase.

      • mf_tick - A fun with the following signature:

        fun (DistCtrlr) -> void()

        where DistCtrlr is the identifier of the distribution controller. This │ │ │ function should send information over the connection that is not interpreted │ │ │ by the other end while increasing the statistics of received packets on the │ │ │ other end. This is usually implemented by sending an empty packet.

        Note

        It is of vital importance that this operation does not block the caller for │ │ │ -a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • mf_getstat - A fun with the following signature:

        fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

        where DistCtrlr is the identifier of the distribution controller, Received │ │ │ +a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • mf_getstat - A fun with the following signature:

        fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

        where DistCtrlr is the identifier of the distribution controller, Received │ │ │ is received packets, Sent is sent packets, and PendSend is amount of data │ │ │ in queue to be sent (typically in bytes, but dist_util only checks whether │ │ │ the value is non-zero to know there is data in queue) or a boolean/0 │ │ │ indicating whether there are packets in queue to be sent.

        Note

        It is of vital importance that this operation does not block the caller for │ │ │ a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • request_type - The request Type as passed to │ │ │ setup/5. This is only mandatory when the connection has │ │ │ -been initiated by this node. That is, the connection is set up via setup/5.

      • mf_setopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ -is a list of options to set on the connection.

        This function is optional. Used when connection is up.

      • mf_getopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ +been initiated by this node. That is, the connection is set up via setup/5.

      • mf_setopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ +is a list of options to set on the connection.

        This function is optional. Used when connection is up.

      • mf_getopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ is a list of options to read for the connection.

        This function is optional. Used when connection is up.

      • f_handshake_complete - A fun with the │ │ │ -following signature:

        fun (DistCtrlr, Node, DHandle) -> void()

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ +following signature:

        fun (DistCtrlr, Node, DHandle) -> void()

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ the node name of the node connected at the other end, and DHandle is a │ │ │ distribution handle needed by a distribution controller process when calling │ │ │ the following BIFs:

        This function is called when the handshake has completed and the distribution │ │ │ channel is up. The distribution controller can begin dispatching traffic over │ │ │ the channel. This function is optional.

        Only used during handshake phase.

      • add_flags - │ │ │ Distribution flags to add to the connection. │ │ │ Currently all (non obsolete) flags will automatically be enabled.

        This flag field is optional.

      • reject_flags - │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/automaticyieldingofccode.html │ │ │ @@ -209,17 +209,17 @@ │ │ │ they have to follow certain restrictions. The convention for making │ │ │ this clear is to have a comment above the function that explains that │ │ │ the function is transformed by YCF (see maps_values_1_helper in │ │ │ erl_map.c for an example). If only the transformed version of the │ │ │ function is used, the convention is to "comment out" the source for the │ │ │ function by surrounding it with the following #ifdef (this way, one │ │ │ will not get warnings about unused functions):

        #ifdef INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS
        │ │ │ -void my_fun() {
        │ │ │ +void my_fun() {
        │ │ │      ...
        │ │ │ -}
        │ │ │ +}
        │ │ │  #endif /* INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS */

        While editing the function one can define │ │ │ INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS so that one can see errors │ │ │ and warnings in the non-transformed source.

        │ │ │ │ │ │ │ │ │ │ │ │ Where to Place YCF Transformed Functions │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/beam_makeops.html │ │ │ @@ -151,17 +151,17 @@ │ │ │ The loader translates generic instructions to specific instructions. │ │ │ In general, for each generic instruction, there exists a family of │ │ │ specific instructions. The OTP 20 release has 389 specific │ │ │ instructions.

      • The implementation of specific instructions for the traditional │ │ │ BEAM interpreter. For the BeamAsm JIT introduced │ │ │ in OTP 24, the implementation of instructions are defined in emitter │ │ │ functions written in C++.

      Generic instructions have typed operands. Here are a few examples of │ │ │ -operands for move/2:

      {move,{atom,id},{x,5}}.
      │ │ │ -{move,{x,3},{x,0}}.
      │ │ │ -{move,{x,2},{y,1}}.

      When those instructions are loaded, the loader rewrites them │ │ │ +operands for move/2:

      {move,{atom,id},{x,5}}.
      │ │ │ +{move,{x,3},{x,0}}.
      │ │ │ +{move,{x,2},{y,1}}.

      When those instructions are loaded, the loader rewrites them │ │ │ to specific instructions:

      move_cx id 5
      │ │ │  move_xx 3 0
      │ │ │  move_xy 2 1

      Corresponding to each generic instruction, there is a family of │ │ │ specific instructions. The types that an instance of a specific │ │ │ instruction can handle are encoded in the instruction names. For │ │ │ example, move_xy takes an X register number as the first operand and │ │ │ a Y register number as the second operand. move_cx takes a tagged │ │ │ @@ -185,17 +185,17 @@ │ │ │ move c x

    Each specific instructions is defined by following the name of the │ │ │ instruction with the types for each operand. An operand type is a │ │ │ single letter. For example, x means an X register, y │ │ │ means a Y register, and c is a "constant" (a tagged term such as │ │ │ an integer, an atom, or a literal).

    Now let's look at the implementation of the move instruction. There │ │ │ are multiple files containing implementations of instructions in the │ │ │ erts/emulator/beam/emu directory. The move instruction is defined │ │ │ -in instrs.tab. It looks like this:

    move(Src, Dst) {
    │ │ │ +in instrs.tab.  It looks like this:

    move(Src, Dst) {
    │ │ │      $Dst = $Src;
    │ │ │ -}

    The implementation for an instruction largely follows the C syntax, │ │ │ +}

    The implementation for an instruction largely follows the C syntax, │ │ │ except that the variables in the function head don't have any types. │ │ │ The $ before an identifier denotes a macro expansion. Thus, │ │ │ $Src will expand to the code to pick up the source operand for │ │ │ the instruction and $Dst to the code for the destination register.

    We will look at the code for each specific instruction in turn. To │ │ │ make the code easier to understand, let's first look at the memory │ │ │ layout for the instruction {move,{atom,id},{x,5}}:

         +--------------------+--------------------+
    │ │ │  I -> |                 40 |       &&lb_move_cx |
    │ │ │ @@ -204,61 +204,61 @@
    │ │ │       +--------------------+--------------------+

    This example and all other examples in the document assumes a 64-bit │ │ │ architecture, and furthermore that pointers to C code fit in 32 bits.

    I in the BEAM virtual machine is the instruction pointer. When BEAM │ │ │ executes an instruction, I points to the first word of the │ │ │ instruction.

    &&lb_move_cx is the address to C code that implements move_cx. It │ │ │ is stored in the lower 32 bits of the word. In the upper 32 bits is │ │ │ the byte offset to the X register; the register number 5 has been │ │ │ multiplied by the word size size 8.

    In the next word the tagged atom id is stored.

    With that background, we can look at the generated code for move_cx │ │ │ -in beam_hot.h:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +in beam_hot.h:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    We will go through each line in turn.

    • OpCase(move_cx): defines a label for the instruction. The │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    We will go through each line in turn.

    • OpCase(move_cx): defines a label for the instruction. The │ │ │ OpCase() macro is defined in beam_emu.c. It will expand this line │ │ │ to lb_move_cx:.

    • BeamInstr next_pf = BeamCodeAddr(I[2]); fetches the pointer to │ │ │ code for the next instruction to be executed. The BeamCodeAddr() │ │ │ macro extracts the pointer from the lower 32 bits of the instruction │ │ │ word.

    • xb(BeamExtraData(I[0])) = I[1]; is the expansion of $Dst = $Src. │ │ │ BeamExtraData() is a macro that will extract the upper 32 bits from │ │ │ the instruction word. In this example, it will return 40 which is the │ │ │ byte offset for X register 5. The xb() macro will cast a byte │ │ │ pointer to an Eterm pointer and dereference it. The I[1] on │ │ │ the right-hand side of the = fetches an Erlang term (the atom id in │ │ │ this case).

    • I += 2 advances the instruction pointer to the next │ │ │ instruction.

    • In a debug-compiled emulator, ASSERT(VALID_INSTR(next_pf)); makes │ │ │ sure that next_pf is a valid instruction (that is, that it points │ │ │ -within the process_main() function in beam_emu.c).

    • GotoPF(next_pf); transfers control to the next instruction.

    Now let's look at the implementation of move_xx:

    OpCase(move_xx):
    │ │ │ -{
    │ │ │ -  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │ +within the process_main() function in beam_emu.c).

  • GotoPF(next_pf); transfers control to the next instruction.

  • Now let's look at the implementation of move_xx:

    OpCase(move_xx):
    │ │ │ +{
    │ │ │ +  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    We will go through the lines that are new or have changed compared to │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    We will go through the lines that are new or have changed compared to │ │ │ move_cx.

    • Eterm tmp_packed1 = BeamExtraData(I[0]); picks up both X register │ │ │ numbers packed into the upper 32 bits of the instruction word.

    • BeamInstr next_pf = BeamCodeAddr(I[1]); pre-fetches the address of │ │ │ the next instruction. Note that because both X registers operands fits │ │ │ into the instruction word, the next instruction is in the very next │ │ │ word.

    • xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK); │ │ │ copies the source to the destination. (For a 64-bit architecture, │ │ │ BEAM_TIGHT_SHIFT is 16 and BEAM_TIGHT_MASK is 0xFFFF.)

    • I += 1; advances the instruction pointer to the next instruction.

    move_xy is almost identical to move_xx. The only difference is │ │ │ the use of the yb() macro instead of xb() to reference the │ │ │ -destination register:

    OpCase(move_xy):
    │ │ │ -{
    │ │ │ -  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  yb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │ +destination register:

    OpCase(move_xy):
    │ │ │ +{
    │ │ │ +  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  yb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    │ │ │ │ │ │ │ │ │ │ │ │ Transformation rules │ │ │

    │ │ │

    Next let's look at how we can do some optimizations using transformation │ │ │ rules. For simple instructions such as move/2, the instruction dispatch │ │ │ @@ -271,21 +271,21 @@ │ │ │ with an uppercase letter just as in Erlang. A pattern variable may be │ │ │ followed = and one or more type letters to constrain the match to │ │ │ one of those types. The variables that are bound on the left-hand side can │ │ │ be used on the right-hand side.

    We will also need to define a specific instruction and an implementation:

    # In ops.tab
    │ │ │  move2 x y x y
    │ │ │  
    │ │ │  // In instrs.tab
    │ │ │ -move2(S1, D1, S2, D2) {
    │ │ │ +move2(S1, D1, S2, D2) {
    │ │ │      Eterm V1, V2;
    │ │ │      V1 = $S1;
    │ │ │      V2 = $S2;
    │ │ │      $D1 = V1;
    │ │ │      $D2 = V2;
    │ │ │ -}

    When the loader has found a match and replaced the matched instructions, │ │ │ +}

    When the loader has found a match and replaced the matched instructions, │ │ │ it will match the new instructions against the transformation rules. │ │ │ Because of that, we can define the rule for a move3/6 instruction │ │ │ as follows:

    move2 X1=x Y1=y X2=x Y2=y | move X3=x Y3=y =>
    │ │ │        move3 X1 Y1 X2 Y2 X3 Y3

    (For readability, a long transformation line can be broken after | │ │ │ and => operators.)

    It would also be possible to define it like this:

    move X1=x Y1=y | move X2=x Y2=y | move X3=x Y3=y =>
    │ │ │       move3 X1 Y1 X2 Y2 X3 Y3

    but in that case it must be defined before the rule for move2/4 │ │ │ because the first matching rule will be applied.

    One must be careful not to create infinite loops. For example, if we │ │ │ @@ -433,29 +433,29 @@ │ │ │ i_bs_get_integer_32 x f? x │ │ │ %endif

    The specific instruction i_bs_get_integer_32 will only be defined │ │ │ on a 64-bit machine.

    The condition can be inverted by using %unless instead of %if:

    %unless NO_FPE_SIGNALS
    │ │ │  fcheckerror p => i_fcheckerror
    │ │ │  i_fcheckerror
    │ │ │  fclearerror
    │ │ │  %endif

    It is also possible to add an %else clause:

    %if ARCH_64
    │ │ │ -BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ -    Uint64 res = ($A) * ($B);
    │ │ │ -    if (res / $B != $A) {
    │ │ │ +BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ +    Uint64 res = ($A) * ($B);
    │ │ │ +    if (res / $B != $A) {
    │ │ │          $Fail;
    │ │ │ -    }
    │ │ │ +    }
    │ │ │      $Dst = res;
    │ │ │ -}
    │ │ │ +}
    │ │ │  %else
    │ │ │ -BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ -    Uint64 res = (Uint64)($A) * (Uint64)($B);
    │ │ │ -    if ((res >> (8*sizeof(Uint))) != 0) {
    │ │ │ +BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ +    Uint64 res = (Uint64)($A) * (Uint64)($B);
    │ │ │ +    if ((res >> (8*sizeof(Uint))) != 0) {
    │ │ │          $Fail;
    │ │ │ -    }
    │ │ │ +    }
    │ │ │      $Dst = res;
    │ │ │ -}
    │ │ │ +}
    │ │ │  %endif

    Symbols that are defined in directives

    The following symbols are always defined.

    • ARCH_64 - is 1 for a 64-bit machine, and 0 otherwise.
    • ARCH_32 - is 1 for 32-bit machine, and 0 otherwise.

    The Makefile for building the emulator currently defines the │ │ │ following symbols by using the -D option on the command line for │ │ │ beam_makeops.

    • USE_VM_PROBES - 1 if the runtime system is compiled to use VM │ │ │ probes (support for dtrace or systemtap), 0 otherwise.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -676,15 +676,15 @@ │ │ │ match both source and destination registers. As an operand in a specific │ │ │ instruction, it must only be used for a destination register.)

  • o - Overflow. An untagged integer that does not fit in a machine word.

  • Predicates

    If the constraints described so far is not enough, additional │ │ │ constraints can be implemented in C and be called as a guard function │ │ │ on the left-hand side of the transformation. If the guard function returns │ │ │ a non-zero value, the matching of the rule will continue, otherwise │ │ │ the match will fail. Such guard functions are hereafter called │ │ │ predicates.

    The most commonly used guard constraints is equal(). It can be used │ │ │ -to remove a redundant move instructio like this:

    move R1 R2 | equal(R1, R2) => _

    or remove a redundant is_eq_exact instruction like this:

    is_eq_exact Lbl Src1 Src2 | equal(Src1, Src2) => _

    At the time of writing, all predicates are defined in files named │ │ │ +to remove a redundant move instructio like this:

    move R1 R2 | equal(R1, R2) => _

    or remove a redundant is_eq_exact instruction like this:

    is_eq_exact Lbl Src1 Src2 | equal(Src1, Src2) => _

    At the time of writing, all predicates are defined in files named │ │ │ predicates.tab in several directories. In predicates.tab directly │ │ │ in $ERL_TOP/erts/emulator/beam, predicates that are used by both the │ │ │ traditinal emulator and the JIT implementations are contained. │ │ │ Predicates only used by the emulator can be found in │ │ │ emu/predicates.tab.

    │ │ │ │ │ │ │ │ │ @@ -692,41 +692,41 @@ │ │ │ A very brief note on implementation of predicates │ │ │

    │ │ │

    It is outside the scope for this document to describe in detail how │ │ │ predicates are implemented because it requires knowledge of the │ │ │ internal loader data structures, but here is quick look at the │ │ │ implementation of a simple predicate called literal_is_map().

    Here is first an example how it is used:

    ismap Fail Lit=q | literal_is_map(Lit) =>

    If the Lit operand is a literal, then the literal_is_map() │ │ │ predicate is called to determine whether it is a map literal. │ │ │ -If it is, the instruction is not needed and can be removed.

    literal_is_map() is implemented like this (in emu/predicates.tab):

    pred.literal_is_map(Lit) {
    │ │ │ +If it is, the instruction is not needed and can be removed.

    literal_is_map() is implemented like this (in emu/predicates.tab):

    pred.literal_is_map(Lit) {
    │ │ │      Eterm term;
    │ │ │  
    │ │ │ -    ASSERT(Lit.type == TAG_q);
    │ │ │ -    term = beamfile_get_literal(&S->beam, Lit.val);
    │ │ │ -    return is_map(term);
    │ │ │ -}

    The pred. prefix tells beam_makeops that this function is a │ │ │ + ASSERT(Lit.type == TAG_q); │ │ │ + term = beamfile_get_literal(&S->beam, Lit.val); │ │ │ + return is_map(term); │ │ │ +}

    The pred. prefix tells beam_makeops that this function is a │ │ │ predicate. Without the prefix, it would have been interpreted as the │ │ │ implementation of an instruction (described in Defining the │ │ │ implementation).

    Predicate functions have a magic variabled called S, which is a │ │ │ pointer to a state struct. In the example, │ │ │ beamfile_get_literal(&S->beam, Lit.val); is used to retrieve the actual term │ │ │ for the literal.

    At the time of writing, the expanded C code generated by │ │ │ -beam_makeops looks like this:

    static int literal_is_map(LoaderState* S, BeamOpArg Lit) {
    │ │ │ +beam_makeops looks like this:

    static int literal_is_map(LoaderState* S, BeamOpArg Lit) {
    │ │ │    Eterm term;
    │ │ │  
    │ │ │ -  ASSERT(Lit.type == TAG_q);
    │ │ │ -  term = S->literals[Lit.val].term;
    │ │ │ -  return is_map(term);;
    │ │ │ -}

    Handling instructions with variable number of operands

    Some instructions, such as select_val/3, essentially has a variable │ │ │ + ASSERT(Lit.type == TAG_q); │ │ │ + term = S->literals[Lit.val].term; │ │ │ + return is_map(term);; │ │ │ +}

    Handling instructions with variable number of operands

    Some instructions, such as select_val/3, essentially has a variable │ │ │ number of operands. Such instructions have a {list,[...]} operand │ │ │ -as their last operand in the BEAM assembly code. For example:

    {select_val,{x,0},
    │ │ │ -            {f,1},
    │ │ │ -            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ +as their last operand in the BEAM assembly code. For example:

    {select_val,{x,0},
    │ │ │ +            {f,1},
    │ │ │ +            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ value is the number of elements in the list, followed by each element in │ │ │ the list. The instruction above would be translated to the following │ │ │ -generic instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    To match a variable number of arguments we need to use the special │ │ │ +generic instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    To match a variable number of arguments we need to use the special │ │ │ operand type * like this:

    select_val Src=aiq Fail=f Size=u List=* =>
    │ │ │      i_const_select_val Src Fail Size List

    This transformation renames a select_val/3 instruction │ │ │ with a constant source operand to i_const_select_val/3.

    Constructing new instructions on the right-hand side

    The most common operand on the right-hand side is a variable that was │ │ │ bound while matching the pattern on the left-hand side. For example:

    trim N Remaining => i_trim N

    An operand can also be a type letter to construct an operand of that │ │ │ type. Each type has a default value. For example, the type x has │ │ │ the default value 1023, which is the highest X register. That makes │ │ │ x on the right-hand side a convenient shortcut for a temporary X │ │ │ @@ -746,53 +746,53 @@ │ │ │ transformation rule.

    • u - Construct an untagged integer. The default value is 0.

    • x - X register. The default value is 1023. That makes x convenient to │ │ │ use as a temporary X register.

    • y - Y register. The default value is 0.

    • l - Floating point register number. The default value is 0.

    • i - Tagged literal integer. The default value is 0.

    • a - Tagged atom. The default value is the empty atom (am_Empty).

    • p - Zero failure label.

    • n - NIL ([], the empty list).

    Function call on the right-hand side

    Transformations that are not possible to describe with the rule │ │ │ language as described here can be implemented as a generator function │ │ │ in C and called from the right-hand side of a transformation. The left-hand │ │ │ side of the transformation will perform the match and bind operands to │ │ │ variables. The variables can then be passed to a generator function │ │ │ on the right-hand side. For example:

    bif2 Fail=j u$bif:erlang:element/2 Index=s Tuple=xy Dst=d =>
    │ │ │ -    element(Jump, Index, Tuple, Dst)

    This transformation rule matches a call to the BIF element/2. │ │ │ + element(Jump, Index, Tuple, Dst)

    This transformation rule matches a call to the BIF element/2. │ │ │ The operands will be captured and the generator function element() will │ │ │ be called.

    The element() generator will produce one of two instructions │ │ │ depending on Index. If Index is an integer in the range from 1 up │ │ │ to the maximum tuple size, the instruction i_fast_element/2 will be │ │ │ produced, otherwise the instruction i_element/4 will be produced. │ │ │ The corresponding specific instructions are:

    i_fast_element xy j? I d
    │ │ │  i_element xy j? s d

    The i_fast_element/2 instruction is faster because the tuple is │ │ │ already an untagged integer. It also knows that the index is at least │ │ │ 1, so it does not have to test for that. The i_element/4 │ │ │ instruction will have to fetch the index from a register, test that it │ │ │ is an integer, and untag the integer.

    At the time of writing, all generators functions were defined in files │ │ │ named generators.tab in several directories (in the same directories │ │ │ as the predicates.tab files).

    It is outside the scope of this document to describe in detail how │ │ │ generator functions are written, but here is the implementation of │ │ │ -element():

    gen.element(Fail, Index, Tuple, Dst) {
    │ │ │ +element():

    gen.element(Fail, Index, Tuple, Dst) {
    │ │ │      BeamOp* op;
    │ │ │  
    │ │ │ -    $NewBeamOp(S, op);
    │ │ │ +    $NewBeamOp(S, op);
    │ │ │  
    │ │ │ -    if (Index.type == TAG_i && Index.val > 0 &&
    │ │ │ +    if (Index.type == TAG_i && Index.val > 0 &&
    │ │ │          Index.val <= ERTS_MAX_TUPLE_SIZE &&
    │ │ │ -        (Tuple.type == TAG_x || Tuple.type == TAG_y)) {
    │ │ │ -        $BeamOpNameArity(op, i_fast_element, 4);
    │ │ │ -        op->a[0] = Tuple;
    │ │ │ -        op->a[1] = Fail;
    │ │ │ -        op->a[2].type = TAG_u;
    │ │ │ -        op->a[2].val = Index.val;
    │ │ │ -        op->a[3] = Dst;
    │ │ │ -    } else {
    │ │ │ -        $BeamOpNameArity(op, i_element, 4);
    │ │ │ -        op->a[0] = Tuple;
    │ │ │ -        op->a[1] = Fail;
    │ │ │ -        op->a[2] = Index;
    │ │ │ -        op->a[3] = Dst;
    │ │ │ -    }
    │ │ │ +        (Tuple.type == TAG_x || Tuple.type == TAG_y)) {
    │ │ │ +        $BeamOpNameArity(op, i_fast_element, 4);
    │ │ │ +        op->a[0] = Tuple;
    │ │ │ +        op->a[1] = Fail;
    │ │ │ +        op->a[2].type = TAG_u;
    │ │ │ +        op->a[2].val = Index.val;
    │ │ │ +        op->a[3] = Dst;
    │ │ │ +    } else {
    │ │ │ +        $BeamOpNameArity(op, i_element, 4);
    │ │ │ +        op->a[0] = Tuple;
    │ │ │ +        op->a[1] = Fail;
    │ │ │ +        op->a[2] = Index;
    │ │ │ +        op->a[3] = Dst;
    │ │ │ +    }
    │ │ │  
    │ │ │      return op;
    │ │ │ -}

    The gen. prefix tells beam_makeops that this function is a │ │ │ +}

    The gen. prefix tells beam_makeops that this function is a │ │ │ generator. Without the prefix, it would have been interpreted as the │ │ │ implementation of an instruction (described in Defining the │ │ │ implementation).

    Generator functions have a magic variabled called S, which is a │ │ │ pointer to a state struct. In the example, S is used in the invocation │ │ │ of the NewBeamOp macro.

    │ │ │ │ │ │ │ │ │ @@ -814,473 +814,473 @@ │ │ │ msg_instrs.tab │ │ │ select_instrs.tab │ │ │ trace_instrs.tab

    There is also a file that only contains macro definitions:

    macros.tab

    The syntax of each file is similar to C code. In fact, most of │ │ │ the contents is C code, interspersed with macro invocations.

    To allow Emacs to auto-indent the code, each file starts with the │ │ │ following line:

    // -*- c -*-

    To avoid messing up the indentation, all comments are written │ │ │ as C++ style comments (//) instead of #. Note that a comment │ │ │ must start at the beginning of a line.

    The meat of an instruction definition file are macro definitions. │ │ │ -We have seen this macro definition before:

    move(Src, Dst) {
    │ │ │ +We have seen this macro definition before:

    move(Src, Dst) {
    │ │ │      $Dst = $Src;
    │ │ │ -}

    A macro definitions must start at the beginning of the line (no spaces │ │ │ +}

    A macro definitions must start at the beginning of the line (no spaces │ │ │ allowed), the opening curly bracket must be on the same line, and the │ │ │ finishing curly bracket must be at the beginning of a line. It is │ │ │ recommended that the macro body is properly indented.

    As a convention, the macro arguments in the head all start with an │ │ │ uppercase letter. In the body, the macro arguments can be expanded │ │ │ by preceding them with $.

    A macro definition whose name and arity matches a family of │ │ │ specific instructions is assumed to be the implementation of that │ │ │ instruction.

    A macro can also be invoked from within another macro. For example, │ │ │ move_deallocate_return/2 avoids repeating code by invoking │ │ │ -$deallocate_return() as a macro:

    move_deallocate_return(Src, Deallocate) {
    │ │ │ -    x(0) = $Src;
    │ │ │ -    $deallocate_return($Deallocate);
    │ │ │ -}

    Here is the definition of deallocate_return/1:

    deallocate_return(Deallocate) {
    │ │ │ +$deallocate_return() as a macro:

    move_deallocate_return(Src, Deallocate) {
    │ │ │ +    x(0) = $Src;
    │ │ │ +    $deallocate_return($Deallocate);
    │ │ │ +}

    Here is the definition of deallocate_return/1:

    deallocate_return(Deallocate) {
    │ │ │      //| -no_next
    │ │ │      int words_to_pop = $Deallocate;
    │ │ │ -    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ -    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ -    CHECK_TERM(x(0));
    │ │ │ +    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ +    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ +    CHECK_TERM(x(0));
    │ │ │      DispatchReturn;
    │ │ │ -}

    The expanded code for move_deallocate_return will look this:

    OpCase(move_deallocate_return_cQ):
    │ │ │ -{
    │ │ │ -  x(0) = I[1];
    │ │ │ -  do {
    │ │ │ -    int words_to_pop = Qb(BeamExtraData(I[0]));
    │ │ │ -    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ -    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ -    CHECK_TERM(x(0));
    │ │ │ +}

    The expanded code for move_deallocate_return will look this:

    OpCase(move_deallocate_return_cQ):
    │ │ │ +{
    │ │ │ +  x(0) = I[1];
    │ │ │ +  do {
    │ │ │ +    int words_to_pop = Qb(BeamExtraData(I[0]));
    │ │ │ +    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ +    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ +    CHECK_TERM(x(0));
    │ │ │      DispatchReturn;
    │ │ │ -  } while (0);
    │ │ │ -}

    When expanding macros, beam_makeops wraps the expansion in a │ │ │ + } while (0); │ │ │ +}

    When expanding macros, beam_makeops wraps the expansion in a │ │ │ do/while wrapper unless beam_makeops can clearly see that no │ │ │ wrapper is needed. In this case, the wrapper is needed.

    Note that arguments for macros cannot be complex expressions, because │ │ │ the arguments are split on ,. For example, the following would │ │ │ not work because beam_makeops would split the expression into │ │ │ -two arguments:

    $deallocate_return(get_deallocation(y, $Deallocate));

    Code generation directives

    Within macro definitions, // comments are in general not treated │ │ │ +two arguments:

    $deallocate_return(get_deallocation(y, $Deallocate));

    Code generation directives

    Within macro definitions, // comments are in general not treated │ │ │ specially. They will be copied to the file with the generated code │ │ │ along with the rest of code in the body.

    However, there is an exception. Within a macro definition, a line that │ │ │ starts with whitespace followed by //| is treated specially. The │ │ │ rest of the line is assumed to contain directives to control code │ │ │ generation.

    Currently, two code generation directives are recognized:

    The -no_prefetch directive

    To see what -no_prefetch does, let's first look at the default code │ │ │ -generation. Here is the code generated for move_cx:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +generation.  Here is the code generated for move_cx:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    Note that the very first thing done is to fetch the address to the │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    Note that the very first thing done is to fetch the address to the │ │ │ next instruction. The reason is that it usually improves performance.

    Just as a demonstration, we can add a -no_prefetch directive to │ │ │ -the move/2 instruction:

    move(Src, Dst) {
    │ │ │ +the move/2 instruction:

    move(Src, Dst) {
    │ │ │      //| -no_prefetch
    │ │ │      $Dst = $Src;
    │ │ │ -}

    We can see that the prefetch is no longer done:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +}

    We can see that the prefetch is no longer done:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(*I));
    │ │ │ -  Goto(*I);
    │ │ │ -}

    When would we want to turn off the prefetch in practice?

    In instructions that will not always execute the next instruction. │ │ │ -For example:

    is_atom(Fail, Src) {
    │ │ │ -    if (is_not_atom($Src)) {
    │ │ │ -        $FAIL($Fail);
    │ │ │ -    }
    │ │ │ -}
    │ │ │ +  ASSERT(VALID_INSTR(*I));
    │ │ │ +  Goto(*I);
    │ │ │ +}

    When would we want to turn off the prefetch in practice?

    In instructions that will not always execute the next instruction. │ │ │ +For example:

    is_atom(Fail, Src) {
    │ │ │ +    if (is_not_atom($Src)) {
    │ │ │ +        $FAIL($Fail);
    │ │ │ +    }
    │ │ │ +}
    │ │ │  
    │ │ │  // From macros.tab
    │ │ │ -FAIL(Fail) {
    │ │ │ +FAIL(Fail) {
    │ │ │      //| -no_prefetch
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I);
    │ │ │ -}

    is_atom/2 may either execute the next instruction (if the second │ │ │ -operand is an atom) or branch to the failure label.

    The generated code looks like this:

    OpCase(is_atom_fx):
    │ │ │ -{
    │ │ │ -  if (is_not_atom(xb(I[1]))) {
    │ │ │ -    ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -    I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -    Goto(*I);;
    │ │ │ -  }
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I);
    │ │ │ +}

    is_atom/2 may either execute the next instruction (if the second │ │ │ +operand is an atom) or branch to the failure label.

    The generated code looks like this:

    OpCase(is_atom_fx):
    │ │ │ +{
    │ │ │ +  if (is_not_atom(xb(I[1]))) {
    │ │ │ +    ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +    I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +    Goto(*I);;
    │ │ │ +  }
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(*I));
    │ │ │ -  Goto(*I);
    │ │ │ -}
    The -no_next directive

    Next we will look at when the -no_next directive can be used. Here │ │ │ -is the jump/1 instruction:

    jump(Fail) {
    │ │ │ -    $JUMP($Fail);
    │ │ │ -}
    │ │ │ +  ASSERT(VALID_INSTR(*I));
    │ │ │ +  Goto(*I);
    │ │ │ +}
    The -no_next directive

    Next we will look at when the -no_next directive can be used. Here │ │ │ +is the jump/1 instruction:

    jump(Fail) {
    │ │ │ +    $JUMP($Fail);
    │ │ │ +}
    │ │ │  
    │ │ │  // From macros.tab
    │ │ │ -JUMP(Fail) {
    │ │ │ +JUMP(Fail) {
    │ │ │      //| -no_next
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I);
    │ │ │ -}

    The generated code looks like this:

    OpCase(jump_f):
    │ │ │ -{
    │ │ │ -  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -  Goto(*I);;
    │ │ │ -}

    If we remove the -no_next directive, the code would look like this:

    OpCase(jump_f):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -  Goto(*I);;
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I);
    │ │ │ +}

    The generated code looks like this:

    OpCase(jump_f):
    │ │ │ +{
    │ │ │ +  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +  Goto(*I);;
    │ │ │ +}

    If we remove the -no_next directive, the code would look like this:

    OpCase(jump_f):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +  Goto(*I);;
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    In the end, the C compiler will probably optimize this code to the │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    In the end, the C compiler will probably optimize this code to the │ │ │ same native code as the first version, but the first version is certainly │ │ │ much easier to read for human readers.

    Macros in the macros.tab file

    The file macros.tab contains many useful macros. When implementing │ │ │ new instructions it is good practice to look through macros.tab to │ │ │ see if any of existing macros can be used rather than re-inventing │ │ │ the wheel.

    We will describe a few of the most useful macros here.

    The GC_REGEXP definition

    The following line defines a regular expression that will recognize │ │ │ a call to a function that does a garbage collection:

     GC_REGEXP=erts_garbage_collect|erts_gc|GcBifFunction;

    The purpose is that beam_makeops can verify that an instruction │ │ │ that does a garbage collection and has an d operand uses the │ │ │ $REFRESH_GEN_DEST() macro.

    If you need to define a new function that does garbage collection, │ │ │ you should give it the prefix erts_gc_. If that is not possible │ │ │ you should update the regular expression so that it will match your │ │ │ -new function.

    FAIL(Fail)

    Branch to $Fail. Will suppress prefetch (-no_prefetch). Typical use:

    is_nonempty_list(Fail, Src) {
    │ │ │ -    if (is_not_list($Src)) {
    │ │ │ -        $FAIL($Fail);
    │ │ │ -    }
    │ │ │ -}
    JUMP(Fail)

    Branch to $Fail. Suppresses generation of dispatch of the next │ │ │ -instruction (-no_next). Typical use:

    jump(Fail) {
    │ │ │ -    $JUMP($Fail);
    │ │ │ -}
    GC_TEST(NeedStack, NeedHeap, Live)

    $GC_TEST(NeedStack, NeedHeap, Live) tests that given amount of │ │ │ +new function.

    FAIL(Fail)

    Branch to $Fail. Will suppress prefetch (-no_prefetch). Typical use:

    is_nonempty_list(Fail, Src) {
    │ │ │ +    if (is_not_list($Src)) {
    │ │ │ +        $FAIL($Fail);
    │ │ │ +    }
    │ │ │ +}
    JUMP(Fail)

    Branch to $Fail. Suppresses generation of dispatch of the next │ │ │ +instruction (-no_next). Typical use:

    jump(Fail) {
    │ │ │ +    $JUMP($Fail);
    │ │ │ +}
    GC_TEST(NeedStack, NeedHeap, Live)

    $GC_TEST(NeedStack, NeedHeap, Live) tests that given amount of │ │ │ stack space and heap space is available. If not it will do a │ │ │ -garbage collection. Typical use:

    test_heap(Nh, Live) {
    │ │ │ -    $GC_TEST(0, $Nh, $Live);
    │ │ │ -}
    AH(NeedStack, NeedHeap, Live)

    AH(NeedStack, NeedHeap, Live) allocates a stack frame and │ │ │ +garbage collection. Typical use:

    test_heap(Nh, Live) {
    │ │ │ +    $GC_TEST(0, $Nh, $Live);
    │ │ │ +}
    AH(NeedStack, NeedHeap, Live)

    AH(NeedStack, NeedHeap, Live) allocates a stack frame and │ │ │ optionally additional heap space.

    Pre-defined macros and variables

    beam_makeops defines several built-in macros and pre-bound variables.

    The NEXT_INSTRUCTION pre-bound variable

    The NEXT_INSTRUCTION is a pre-bound variable that is available in │ │ │ -all instructions. It expands to the address of the next instruction.

    Here is an example:

    i_call(CallDest) {
    │ │ │ +all instructions.  It expands to the address of the next instruction.

    Here is an example:

    i_call(CallDest) {
    │ │ │      //| -no_next
    │ │ │ -    $SAVE_CONTINUATION_POINTER($NEXT_INSTRUCTION);
    │ │ │ -    $DISPATCH_REL($CallDest);
    │ │ │ -}

    When calling a function, the return address is first stored in E[0] │ │ │ + $SAVE_CONTINUATION_POINTER($NEXT_INSTRUCTION); │ │ │ + $DISPATCH_REL($CallDest); │ │ │ +}

    When calling a function, the return address is first stored in E[0] │ │ │ (using the $SAVE_CONTINUATION_POINTER() macro), and then control is │ │ │ -transferred to the callee. Here is the generated code:

    OpCase(i_call_f):
    │ │ │ -{
    │ │ │ -    ASSERT(VALID_INSTR(*(I+2)));
    │ │ │ -    *E = (BeamInstr) (I+2);;
    │ │ │ +transferred to the callee.  Here is the generated code:

    OpCase(i_call_f):
    │ │ │ +{
    │ │ │ +    ASSERT(VALID_INSTR(*(I+2)));
    │ │ │ +    *E = (BeamInstr) (I+2);;
    │ │ │  
    │ │ │      /* ... dispatch code intentionally left out ... */
    │ │ │ -}

    We can see that that $NEXT_INSTRUCTION has been expanded to I+2. │ │ │ +}

    We can see that that $NEXT_INSTRUCTION has been expanded to I+2. │ │ │ That makes sense since the size of the i_call_f/1 instruction is │ │ │ two words.

    The IP_ADJUSTMENT pre-bound variable

    $IP_ADJUSTMENT is usually 0. In a few combined instructions │ │ │ (described below) it can be non-zero. It is used like this │ │ │ -in macros.tab:

    SET_I_REL(Offset) {
    │ │ │ -    ASSERT(VALID_INSTR(*(I + ($Offset) + $IP_ADJUSTMENT)));
    │ │ │ +in macros.tab:

    SET_I_REL(Offset) {
    │ │ │ +    ASSERT(VALID_INSTR(*(I + ($Offset) + $IP_ADJUSTMENT)));
    │ │ │      I += $Offset + $IP_ADJUSTMENT;
    │ │ │ -}

    Avoid using IP_ADJUSTMENT directly. Use SET_I_REL() or │ │ │ +}

    Avoid using IP_ADJUSTMENT directly. Use SET_I_REL() or │ │ │ one of the macros that invoke such as FAIL() or JUMP() │ │ │ defined in macros.tab.

    Pre-defined macro functions

    The IF() macro

    $IF(Expr, IfTrue, IfFalse) evaluates Expr, which must be a valid │ │ │ Perl expression (which for simple numeric expressions have the same │ │ │ syntax as C). If Expr evaluates to 0, the entire IF() expression will be │ │ │ replaced with IfFalse, otherwise it will be replaced with IfTrue.

    See the description of OPERAND_POSITION() for an example.

    The OPERAND_POSITION() macro

    $OPERAND_POSITION(Expr) returns the position for Expr, if │ │ │ Expr is an operand that is not packed. The first operand is │ │ │ -at position 1.

    Returns 0 otherwise.

    This macro could be used like this in order to share code:

    FAIL(Fail) {
    │ │ │ +at position 1.

    Returns 0 otherwise.

    This macro could be used like this in order to share code:

    FAIL(Fail) {
    │ │ │      //| -no_prefetch
    │ │ │ -    $IF($OPERAND_POSITION($Fail) == 1 && $IP_ADJUSTMENT == 0,
    │ │ │ +    $IF($OPERAND_POSITION($Fail) == 1 && $IP_ADJUSTMENT == 0,
    │ │ │          goto common_jump,
    │ │ │ -        $DO_JUMP($Fail));
    │ │ │ -}
    │ │ │ +        $DO_JUMP($Fail));
    │ │ │ +}
    │ │ │  
    │ │ │ -DO_JUMP(Fail) {
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I));
    │ │ │ -}
    │ │ │ +DO_JUMP(Fail) {
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I));
    │ │ │ +}
    │ │ │  
    │ │ │  // In beam_emu.c:
    │ │ │  common_jump:
    │ │ │ -   I += I[1];
    │ │ │ -   Goto(*I));

    The $REFRESH_GEN_DEST() macro

    When a specific instruction has a d operand, early during execution │ │ │ + I += I[1]; │ │ │ + Goto(*I));

    The $REFRESH_GEN_DEST() macro

    When a specific instruction has a d operand, early during execution │ │ │ of the instruction, a pointer will be initialized to point to the X or │ │ │ Y register in question.

    If there is a garbage collection before the result is stored, │ │ │ the stack will move and if the d operand referred to a Y │ │ │ register, the pointer will no longer be valid. (Y registers are │ │ │ stored on the stack.)

    In those circumstances, $REFRESH_GEN_DEST() must be invoked │ │ │ to set up the pointer again. beam_makeops will notice │ │ │ if there is a call to a function that does a garbage collection and │ │ │ $REFRESH_GEN_DEST() is not called.

    Here is a complete example. The new_map instruction is defined │ │ │ -like this:

    new_map d t I

    It is implemented like this:

    new_map(Dst, Live, N) {
    │ │ │ +like this:

    new_map d t I

    It is implemented like this:

    new_map(Dst, Live, N) {
    │ │ │      Eterm res;
    │ │ │  
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    res = erts_gc_new_map(c_p, reg, $Live, $N, $NEXT_INSTRUCTION);
    │ │ │ +    res = erts_gc_new_map(c_p, reg, $Live, $N, $NEXT_INSTRUCTION);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    $REFRESH_GEN_DEST();
    │ │ │ +    $REFRESH_GEN_DEST();
    │ │ │      $Dst = res;
    │ │ │ -    $NEXT($NEXT_INSTRUCTION+$N);
    │ │ │ -}

    If we have forgotten the $REFRESH_GEN_DEST() there would be a message │ │ │ -similar to this:

    pointer to destination register is invalid after GC -- use $REFRESH_GEN_DEST()
    │ │ │ -... from the body of new_map at beam/map_instrs.tab(30)

    Variable number of operands

    Here follows an example of how to handle an instruction with a variable number │ │ │ + $NEXT($NEXT_INSTRUCTION+$N); │ │ │ +}

    If we have forgotten the $REFRESH_GEN_DEST() there would be a message │ │ │ +similar to this:

    pointer to destination register is invalid after GC -- use $REFRESH_GEN_DEST()
    │ │ │ +... from the body of new_map at beam/map_instrs.tab(30)

    Variable number of operands

    Here follows an example of how to handle an instruction with a variable number │ │ │ of operands for the interpreter. Here is the instruction definition in emu/ops.tab:

    put_tuple2 xy I *

    For the interpreter, the * is optional, because it does not effect code generation │ │ │ in any way. However, it is recommended to include it to make it clear for human readers │ │ │ that there is a variable number of operands.

    Use the $NEXT_INSTRUCTION macro to obtain a pointer to the first of the variable │ │ │ -operands.

    Here is the implementation:

    put_tuple2(Dst, Arity) {
    │ │ │ +operands.

    Here is the implementation:

    put_tuple2(Dst, Arity) {
    │ │ │  Eterm* hp = HTOP;
    │ │ │  Eterm arity = $Arity;
    │ │ │ -Eterm* dst_ptr = &($Dst);
    │ │ │ +Eterm* dst_ptr = &($Dst);
    │ │ │  
    │ │ │  //| -no_next
    │ │ │ -ASSERT(arity != 0);
    │ │ │ -*hp++ = make_arityval(arity);
    │ │ │ +ASSERT(arity != 0);
    │ │ │ +*hp++ = make_arityval(arity);
    │ │ │  
    │ │ │  /*
    │ │ │   * The $NEXT_INSTRUCTION macro points just beyond the fixed
    │ │ │   * operands. In this case it points to the descriptor of
    │ │ │   * the first element to be put into the tuple.
    │ │ │   */
    │ │ │  I = $NEXT_INSTRUCTION;
    │ │ │ -do {
    │ │ │ +do {
    │ │ │      Eterm term = *I++;
    │ │ │ -    switch (loader_tag(term)) {
    │ │ │ +    switch (loader_tag(term)) {
    │ │ │      case LOADER_X_REG:
    │ │ │ -    *hp++ = x(loader_x_reg_index(term));
    │ │ │ +    *hp++ = x(loader_x_reg_index(term));
    │ │ │      break;
    │ │ │      case LOADER_Y_REG:
    │ │ │ -    *hp++ = y(loader_y_reg_index(term));
    │ │ │ +    *hp++ = y(loader_y_reg_index(term));
    │ │ │      break;
    │ │ │      default:
    │ │ │      *hp++ = term;
    │ │ │      break;
    │ │ │ -    }
    │ │ │ -} while (--arity != 0);
    │ │ │ -*dst_ptr = make_tuple(HTOP);
    │ │ │ +    }
    │ │ │ +} while (--arity != 0);
    │ │ │ +*dst_ptr = make_tuple(HTOP);
    │ │ │  HTOP = hp;
    │ │ │ -ASSERT(VALID_INSTR(* (Eterm *)I));
    │ │ │ -Goto(*I);
    │ │ │ -}

    Combined instructions

    Problem: For frequently executed instructions we want to use │ │ │ +ASSERT(VALID_INSTR(* (Eterm *)I)); │ │ │ +Goto(*I); │ │ │ +}

    Combined instructions

    Problem: For frequently executed instructions we want to use │ │ │ "fast" operands types such as x and y, as opposed to s or S. │ │ │ To avoid an explosion in code size, we want to share most of the │ │ │ implementation between the instructions. Here are the specific │ │ │ instructions for i_increment/5:

    i_increment r W t d
    │ │ │  i_increment x W t d
    │ │ │ -i_increment y W t d

    The i_increment instruction is implemented like this:

    i_increment(Source, IncrementVal, Live, Dst) {
    │ │ │ +i_increment y W t d

    The i_increment instruction is implemented like this:

    i_increment(Source, IncrementVal, Live, Dst) {
    │ │ │      Eterm increment_reg_source = $Source;
    │ │ │      Eterm increment_val = $IncrementVal;
    │ │ │      Uint live;
    │ │ │      Eterm result;
    │ │ │  
    │ │ │ -    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ -        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ -        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ -            $Dst = make_small(i);
    │ │ │ -            $NEXT0();
    │ │ │ -        }
    │ │ │ -    }
    │ │ │ +    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ +        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ +        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ +            $Dst = make_small(i);
    │ │ │ +            $NEXT0();
    │ │ │ +        }
    │ │ │ +    }
    │ │ │      live = $Live;
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    reg[live] = increment_reg_val;
    │ │ │ -    reg[live+1] = make_small(increment_val);
    │ │ │ -    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │ +    reg[live] = increment_reg_val;
    │ │ │ +    reg[live+1] = make_small(increment_val);
    │ │ │ +    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    ERTS_HOLE_CHECK(c_p);
    │ │ │ -    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ -        $REFRESH_GEN_DEST();
    │ │ │ +    ERTS_HOLE_CHECK(c_p);
    │ │ │ +    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ +        $REFRESH_GEN_DEST();
    │ │ │          $Dst = result;
    │ │ │ -        $NEXT0();
    │ │ │ -    }
    │ │ │ -    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │ +        $NEXT0();
    │ │ │ +    }
    │ │ │ +    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │      goto find_func_info;
    │ │ │ -}

    There will be three almost identical copies of the code. Given the │ │ │ +}

    There will be three almost identical copies of the code. Given the │ │ │ size of the code, that could be too high cost to pay.

    To avoid the three copies of the code, we could use only one specific │ │ │ instruction:

    i_increment S W t d

    (The same implementation as above will work.)

    That reduces the code size, but is slower because S means that │ │ │ there will be extra code to test whether the operand refers to an X │ │ │ register or a Y register.

    Solution: We can use "combined instructions". Combined │ │ │ instructions are combined from instruction fragments. The │ │ │ bulk of the code can be shared.

    Here we will show how i_increment can be implemented as a combined │ │ │ instruction. We will show each individual fragment first, and then │ │ │ show how to connect them together. First we will need a variable that │ │ │ -we can store the value fetched from the register in:

    increment.head() {
    │ │ │ +we can store the value fetched from the register in:

    increment.head() {
    │ │ │      Eterm increment_reg_val;
    │ │ │ -}

    The name increment is the name of the group that the fragment │ │ │ +}

    The name increment is the name of the group that the fragment │ │ │ belongs to. Note that it does not need to have the same │ │ │ name as the instruction. The group name is followed by . and │ │ │ the name of the fragment. The name head is pre-defined. │ │ │ The code in it will be placed at the beginning of a block, so │ │ │ that all fragments in the group can access it.

    Next we define the fragment that will pick up the value from the │ │ │ -register from the first operand:

    increment.fetch(Src) {
    │ │ │ +register from the first operand:

    increment.fetch(Src) {
    │ │ │      increment_reg_val = $Src;
    │ │ │ -}

    We call this fragment fetch. This fragment will be duplicated three │ │ │ -times, one for each value of the first operand (r, x, and y).

    Next we define the main part of the code that do the actual incrementing.

    increment.execute(IncrementVal, Live, Dst) {
    │ │ │ +}

    We call this fragment fetch. This fragment will be duplicated three │ │ │ +times, one for each value of the first operand (r, x, and y).

    Next we define the main part of the code that do the actual incrementing.

    increment.execute(IncrementVal, Live, Dst) {
    │ │ │      Eterm increment_val = $IncrementVal;
    │ │ │      Uint live;
    │ │ │      Eterm result;
    │ │ │  
    │ │ │ -    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ -        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ -        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ -            $Dst = make_small(i);
    │ │ │ -            $NEXT0();
    │ │ │ -        }
    │ │ │ -    }
    │ │ │ +    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ +        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ +        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ +            $Dst = make_small(i);
    │ │ │ +            $NEXT0();
    │ │ │ +        }
    │ │ │ +    }
    │ │ │      live = $Live;
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    reg[live] = increment_reg_val;
    │ │ │ -    reg[live+1] = make_small(increment_val);
    │ │ │ -    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │ +    reg[live] = increment_reg_val;
    │ │ │ +    reg[live+1] = make_small(increment_val);
    │ │ │ +    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    ERTS_HOLE_CHECK(c_p);
    │ │ │ -    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ -        $REFRESH_GEN_DEST();
    │ │ │ +    ERTS_HOLE_CHECK(c_p);
    │ │ │ +    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ +        $REFRESH_GEN_DEST();
    │ │ │          $Dst = result;
    │ │ │ -        $NEXT0();
    │ │ │ -    }
    │ │ │ -    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │ +        $NEXT0();
    │ │ │ +    }
    │ │ │ +    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │      goto find_func_info;
    │ │ │ -}

    We call this fragment execute. It will handle the three remaining │ │ │ +}

    We call this fragment execute. It will handle the three remaining │ │ │ operands (W t d). There will only be one copy of this fragment.

    Now that we have defined the fragments, we need to inform │ │ │ beam_makeops how they should be connected:

    i_increment := increment.fetch.execute;

    To the left of the := is the name of the specific instruction that │ │ │ should be implemented by the fragments, in this case i_increment. │ │ │ To the right of := is the name of the group with the fragments, │ │ │ followed by a .. Then the name of the fragments in the group are │ │ │ listed in the order they should be executed. Note that the head │ │ │ fragment is not listed.

    The line ends in ; (to avoid messing up the indentation in Emacs).

    (Note that in practice the := line is usually placed before the │ │ │ -fragments.)

    The generated code looks like this:

    {
    │ │ │ +fragments.)

    The generated code looks like this:

    {
    │ │ │    Eterm increment_reg_val;
    │ │ │ -  OpCase(i_increment_rWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = r(0);
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_rWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = r(0);
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │ -  OpCase(i_increment_xWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = xb(BeamExtraData(I[0]));
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_xWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = xb(BeamExtraData(I[0]));
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │ -  OpCase(i_increment_yWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = yb(BeamExtraData(I[0]));
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_yWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = yb(BeamExtraData(I[0]));
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │    increment__execute:
    │ │ │ -  {
    │ │ │ -    // Here follows the code from increment.execute()
    │ │ │ +  {
    │ │ │ +    // Here follows the code from increment.execute()
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}
    Some notes about combined instructions

    The operands that are different must be at │ │ │ +}

    Some notes about combined instructions

    The operands that are different must be at │ │ │ the beginning of the instruction. All operands in the last │ │ │ fragment must have the same operands in all variants of │ │ │ the specific instruction.

    As an example, the following specific instructions cannot be │ │ │ implemented as a combined instruction:

    i_times j? t x x d
    │ │ │  i_times j? t x y d
    │ │ │  i_times j? t s s d

    We would have to change the order of the operands so that the │ │ │ two operands that are different are placed first:

    i_times x x j? t d
    │ │ │  i_times x y j? t d
    │ │ │  i_times s s j? t d

    We can then define:

    i_times := times.fetch.execute;
    │ │ │  
    │ │ │ -times.head {
    │ │ │ +times.head {
    │ │ │      Eterm op1, op2;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -times.fetch(Src1, Src2) {
    │ │ │ +times.fetch(Src1, Src2) {
    │ │ │      op1 = $Src1;
    │ │ │      op2 = $Src2;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -times.execute(Fail, Live, Dst) {
    │ │ │ +times.execute(Fail, Live, Dst) {
    │ │ │      // Multiply op1 and op2.
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}

    Several instructions can share a group. As an example, the following │ │ │ +}

    Several instructions can share a group. As an example, the following │ │ │ instructions have different names, but in the end they all create a │ │ │ binary. The last two operands are common for all of them:

    i_bs_init_fail       xy j? t? x
    │ │ │  i_bs_init_fail_heap s I j? t? x
    │ │ │  i_bs_init                W t? x
    │ │ │  i_bs_init_heap         W I t? x

    The instructions are defined like this (formatted with extra │ │ │ spaces for clarity):

    i_bs_init_fail_heap := bs_init . fail_heap . verify . execute;
    │ │ │  i_bs_init_fail      := bs_init . fail      . verify . execute;
    │ │ │  i_bs_init           := bs_init .           .  plain . execute;
    │ │ │  i_bs_init_heap      := bs_init .               heap . execute;

    Note that the first two instruction have three fragments, while the │ │ │ -other two only have two fragments. Here are the fragments:

    bs_init_bits.head() {
    │ │ │ +other two only have two fragments.  Here are the fragments:

    bs_init_bits.head() {
    │ │ │      Eterm num_bits_term;
    │ │ │      Uint num_bits;
    │ │ │      Uint alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.plain(NumBits) {
    │ │ │ +bs_init_bits.plain(NumBits) {
    │ │ │      num_bits = $NumBits;
    │ │ │      alloc = 0;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.heap(NumBits, Alloc) {
    │ │ │ +bs_init_bits.heap(NumBits, Alloc) {
    │ │ │      num_bits = $NumBits;
    │ │ │      alloc = $Alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.fail(NumBitsTerm) {
    │ │ │ +bs_init_bits.fail(NumBitsTerm) {
    │ │ │      num_bits_term = $NumBitsTerm;
    │ │ │      alloc = 0;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.fail_heap(NumBitsTerm, Alloc) {
    │ │ │ +bs_init_bits.fail_heap(NumBitsTerm, Alloc) {
    │ │ │      num_bits_term = $NumBitsTerm;
    │ │ │      alloc = $Alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.verify(Fail) {
    │ │ │ +bs_init_bits.verify(Fail) {
    │ │ │      // Verify the num_bits_term, fail using $FAIL
    │ │ │      // if there is a problem.
    │ │ │  .
    │ │ │  .
    │ │ │  .
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.execute(Live, Dst) {
    │ │ │ +bs_init_bits.execute(Live, Dst) {
    │ │ │     // Long complicated code to a create a binary.
    │ │ │     .
    │ │ │     .
    │ │ │     .
    │ │ │ -}

    The full definitions of those instructions can be found in bs_instrs.tab. │ │ │ +}

    The full definitions of those instructions can be found in bs_instrs.tab. │ │ │ The generated code can be found in beam_warm.h.

    │ │ │ │ │ │ │ │ │ │ │ │ Code generation for BeamAsm │ │ │

    │ │ │

    For the BeamAsm runtime system, the implementation of each instruction is defined │ │ │ by emitter functions written in C++ that emit the assembly code for each instruction. │ │ │ There is one emitter function for each family of specific instructions.

    Take for example the move instruction. In beam/asm/ops.tab there is a │ │ │ -single specific instruction for move defined like this:

    move s d

    The implementation is found in beam/asm/instr_common.cpp:

    void BeamModuleAssembler::emit_move(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ -    mov_arg(Dst, Src);
    │ │ │ -}

    The mov_arg() helper function will handle all combinations of source and destination │ │ │ -operands. For example, the instruction {move,{x,1},{y,1}} will be translated like this:

    mov rdi, qword [rbx+8]
    │ │ │ -mov qword [rsp+8], rdi

    while {move,{integer,42},{x,0}} will be translated like this:

    mov qword [rbx], 687

    It is possible to define more than one specific instruction, but there will still be │ │ │ +single specific instruction for move defined like this:

    move s d

    The implementation is found in beam/asm/instr_common.cpp:

    void BeamModuleAssembler::emit_move(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ +    mov_arg(Dst, Src);
    │ │ │ +}

    The mov_arg() helper function will handle all combinations of source and destination │ │ │ +operands. For example, the instruction {move,{x,1},{y,1}} will be translated like this:

    mov rdi, qword [rbx+8]
    │ │ │ +mov qword [rsp+8], rdi

    while {move,{integer,42},{x,0}} will be translated like this:

    mov qword [rbx], 687

    It is possible to define more than one specific instruction, but there will still be │ │ │ only one emitter function. For example:

    fload S l
    │ │ │  fload q l

    By defining fload like this, the source operand must be a X register, Y register, or │ │ │ a literal. If not, the loading will be aborted. If the instruction instead had been │ │ │ defined like this:

    fload s l

    attempting to load an invalid instruction such as {fload,{atom,clearly_bad},{fr,0}} │ │ │ would cause a crash (either at load time or when the instruction was executed).

    Regardless on how many specific instructions there are in the family, │ │ │ -only a single emit_fload() function is allowed:

    void BeamModuleAssembler::emit_fload(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ +only a single emit_fload() function is allowed:

    void BeamModuleAssembler::emit_fload(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}

    Handling a variable number of operands

    Here follows an example of how an instruction with a variable number │ │ │ +}

    Handling a variable number of operands

    Here follows an example of how an instruction with a variable number │ │ │ of operands could be handled. One such instructions is │ │ │ -select_val/3. Here is an example how it can look like in BEAM code:

    {select_val,{x,0},
    │ │ │ -            {f,1},
    │ │ │ -            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ +select_val/3. Here is an example how it can look like in BEAM code:

    {select_val,{x,0},
    │ │ │ +            {f,1},
    │ │ │ +            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ value is the number of elements in the list, followed by each element in │ │ │ the list. The instruction above would be translated to the following │ │ │ -instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    A definition of a specific instruction for that instruction would look │ │ │ +instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    A definition of a specific instruction for that instruction would look │ │ │ like this:

    select_val s f I *

    The * as the last operand will make sure that the variable operands │ │ │ are passed in as a Span of ArgVal (will be std::span in C++20 onwards). │ │ │ -Here is the emitter function:

    void BeamModuleAssembler::emit_select_val(const ArgVal &Src,
    │ │ │ +Here is the emitter function:

    void BeamModuleAssembler::emit_select_val(const ArgVal &Src,
    │ │ │                                            const ArgVal &Fail,
    │ │ │                                            const ArgVal &Size,
    │ │ │ -                                          const Span<ArgVal> &args) {
    │ │ │ -    ASSERT(Size.getValue() == args.size());
    │ │ │ +                                          const Span<ArgVal> &args) {
    │ │ │ +    ASSERT(Size.getValue() == args.size());
    │ │ │         .
    │ │ │         .
    │ │ │         .
    │ │ │ -}
    │ │ │ +
    }
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    beam_makeops. The transformations │ │ │ used in BeamAsm are much simpler than the interpreter's, as most of the │ │ │ transformations for the interpreter are done only to eliminate the instruction │ │ │ dispatch overhead.

    Then each instruction is encoded using the C++ functions in the │ │ │ -jit/$ARCH/instr_*.cpp files. For example:

    void BeamModuleAssembler::emit_is_nonempty_list(const ArgVal &Fail, const ArgVal &Src) {
    │ │ │ -  a.test(getArgRef(Src), imm(_TAG_PRIMARY_MASK - TAG_PRIMARY_LIST));
    │ │ │ -  a.jne(labels[Fail.getLabel()]);
    │ │ │ -}

    asmjit provides a fairly straightforward │ │ │ +jit/$ARCH/instr_*.cpp files. For example:

    void BeamModuleAssembler::emit_is_nonempty_list(const ArgVal &Fail, const ArgVal &Src) {
    │ │ │ +  a.test(getArgRef(Src), imm(_TAG_PRIMARY_MASK - TAG_PRIMARY_LIST));
    │ │ │ +  a.jne(labels[Fail.getLabel()]);
    │ │ │ +}

    asmjit provides a fairly straightforward │ │ │ mapping from a C++ function call to the x86 assembly instruction. The above │ │ │ instruction tests if the value in the Src register is a non-empty list and if │ │ │ it is not then it jumps to the fail label.

    For comparison, the interpreter has 8 combinations and specializations of │ │ │ this implementation to minimize the instruction dispatch overhead for │ │ │ common patterns.

    The original register allocation done by the Erlang compiler is used to manage the │ │ │ liveness of values and the physical registers are statically allocated to keep │ │ │ the necessary process state. At the moment this is the static register │ │ │ -allocation on x86-64:

    rbx: ErtsSchedulerRegisters struct (contains x/float registers and some metadata)
    │ │ │ +allocation on x86-64:

    rbx: ErtsSchedulerRegisters struct (contains x/float registers and some metadata)
    │ │ │  rbp: Current frame pointer when `perf` support is enabled, otherwise this
    │ │ │       is an optional save slot for the Erlang stack pointer when executing C
    │ │ │       code.
    │ │ │  r12: Active code index
    │ │ │  r13: Current running process
    │ │ │  r14: Remaining reductions
    │ │ │  r15: Erlang heap pointer

    Note that all of these are callee save registers under the System V and Windows │ │ │ @@ -183,21 +183,21 @@ │ │ │ shared and only the arguments to the instructions vary. Using as little memory as │ │ │ possible has many advantages; less memory is used, loading time decreases, │ │ │ higher cache hit-rate.

    In BeamAsm we need to achieve something similar since the load-time of a module │ │ │ scales almost linearly with the amount of memory it uses. Early BeamAsm prototypes │ │ │ used about double the amount of memory for code as the interpreter, while current │ │ │ versions use about 10% more. How was this achieved?

    In BeamAsm we heavily use shared code fragments to try to emit as much code as │ │ │ possible as global shared fragments instead of duplicating the code unnecessarily. │ │ │ -For instance, the return instruction looks something like this:

    Label yield = a.newLabel();
    │ │ │ +For instance, the return instruction looks something like this:

    Label yield = a.newLabel();
    │ │ │  
    │ │ │  /* Decrement reduction counter */
    │ │ │ -a.dec(FCALLS);
    │ │ │ +a.dec(FCALLS);
    │ │ │  /* If FCALLS < 0, jump to the yield-on-return fragment */
    │ │ │ -a.jl(resolve_fragment(ga->get_dispatch_return()));
    │ │ │ -a.ret();

    The code above is not exactly what is emitted, but close enough. The thing to note │ │ │ +a.jl(resolve_fragment(ga->get_dispatch_return())); │ │ │ +a.ret();

    The code above is not exactly what is emitted, but close enough. The thing to note │ │ │ is that the code for doing the context switch is never emitted. Instead, we jump │ │ │ to a global fragment that all return instructions share. This greatly reduces │ │ │ the amount of code that has to be emitted for each module.

    │ │ │ │ │ │ │ │ │ │ │ │ Running Erlang code │ │ │ @@ -239,43 +239,43 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running C code │ │ │

    │ │ │

    As Erlang stacks can be very small, we have to switch over to a different stack │ │ │ when we need to execute C code (which may expect a much larger stack). This is │ │ │ -done through emit_enter_runtime and emit_leave_runtime, for example:

    mov_arg(ARG4, NumFree);
    │ │ │ +done through emit_enter_runtime and emit_leave_runtime, for example:

    mov_arg(ARG4, NumFree);
    │ │ │  
    │ │ │  /* Move to the C stack and swap out our current reductions, stack-, and
    │ │ │   * heap pointer to the process structure. */
    │ │ │ -emit_enter_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │ +emit_enter_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │  
    │ │ │ -a.mov(ARG1, c_p);
    │ │ │ -load_x_reg_array(ARG2);
    │ │ │ -make_move_patch(ARG3, lambdas[Fun.getValue()].patches);
    │ │ │ +a.mov(ARG1, c_p);
    │ │ │ +load_x_reg_array(ARG2);
    │ │ │ +make_move_patch(ARG3, lambdas[Fun.getValue()].patches);
    │ │ │  
    │ │ │  /* Call `new_fun`, asserting that we're on the C stack. */
    │ │ │ -runtime_call<4>(new_fun);
    │ │ │ +runtime_call<4>(new_fun);
    │ │ │  
    │ │ │  /* Move back to the C stack, and read the updated values from the process
    │ │ │   * structure */
    │ │ │ -emit_leave_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │ +emit_leave_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │  
    │ │ │ -a.mov(getXRef(0), RET);

    All combinations of the Update constants are legal, but the ones given to │ │ │ +a.mov(getXRef(0), RET);

    All combinations of the Update constants are legal, but the ones given to │ │ │ emit_leave_runtime must be the same as those given to emit_enter_runtime.

    │ │ │ │ │ │ │ │ │ │ │ │ Tracing and NIF Loading │ │ │

    │ │ │

    To make tracing and NIF loading work there needs to be a way to intercept │ │ │ any function call. In the interpreter, this is done by rewriting the loaded │ │ │ BEAM code, but this is more complicated in BeamAsm as we want to have a fast │ │ │ and compact way to do this. This is solved by emitting the code below at the │ │ │ -start of each function (x86 variant below):

      0x0: short jmp 6 (address 0x8)
    │ │ │ +start of each function (x86 variant below):

      0x0: short jmp 6 (address 0x8)
    │ │ │    0x2: nop
    │ │ │    0x3: relative near call to shared breakpoint fragment
    │ │ │    0x8: actual code for function

    When code starts to execute it will simply see the short jmp 6 instruction │ │ │ which skips the prologue and starts to execute the code directly.

    When we want to enable a certain breakpoint we set the jmp target to be 1, │ │ │ which means it will land on the call to the shared breakpoint fragment. This │ │ │ fragment checks the current breakpoint_flag stored in the ErtsCodeInfo of │ │ │ this function, and then calls erts_call_nif_early and │ │ │ @@ -289,31 +289,31 @@ │ │ │ Updating code │ │ │ │ │ │

    Because many environments enforce W^X it's not always possible to write │ │ │ directly to the code pages. Because of this we map code twice: once with an │ │ │ executable page and once with a writable page. Since they're backed by the │ │ │ same memory, writes to the writable page appear magically in the executable │ │ │ one.

    The erts_writable_code_ptr function can be used to get writable pointers │ │ │ -given a module instance, provided that it has been unsealed first:

    for (i = 0; i < n; i++) {
    │ │ │ +given a module instance, provided that it has been unsealed first:

    for (i = 0; i < n; i++) {
    │ │ │      const ErtsCodeInfo* ci_exec;
    │ │ │      ErtsCodeInfo* ci_rw;
    │ │ │      void *w_ptr;
    │ │ │  
    │ │ │ -    erts_unseal_module(&modp->curr);
    │ │ │ +    erts_unseal_module(&modp->curr);
    │ │ │  
    │ │ │ -    ci_exec = code_hdr->functions[i];
    │ │ │ -    w_ptr = erts_writable_code_ptr(&modp->curr, ci_exec);
    │ │ │ -    ci_rw = (ErtsCodeInfo*)w_ptr;
    │ │ │ +    ci_exec = code_hdr->functions[i];
    │ │ │ +    w_ptr = erts_writable_code_ptr(&modp->curr, ci_exec);
    │ │ │ +    ci_rw = (ErtsCodeInfo*)w_ptr;
    │ │ │  
    │ │ │ -    uninstall_breakpoint(ci_rw, ci_exec);
    │ │ │ -    consolidate_bp_data(modp, ci_rw, 1);
    │ │ │ -    ASSERT(ci_rw->gen_bp == NULL);
    │ │ │ +    uninstall_breakpoint(ci_rw, ci_exec);
    │ │ │ +    consolidate_bp_data(modp, ci_rw, 1);
    │ │ │ +    ASSERT(ci_rw->gen_bp == NULL);
    │ │ │  
    │ │ │ -    erts_seal_module(&modp->curr);
    │ │ │ -}

    Without the module instance there's no reliable way to figure out the writable │ │ │ + erts_seal_module(&modp->curr); │ │ │ +}

    Without the module instance there's no reliable way to figure out the writable │ │ │ address of a code page, and we rely on address space layout randomization │ │ │ (ASLR) to make it difficult to guess. On some platforms, security is further │ │ │ enhanced by protecting the writable area from writes until the module has been │ │ │ unsealed by erts_unseal_module.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -393,15 +393,15 @@ │ │ │ perf script > out.perf │ │ │ ## run stackcollapse │ │ │ stackcollapse-perf.pl out.perf > out.folded │ │ │ ## Create the svg │ │ │ flamegraph.pl out.folded > out.svg

    We get a graph that would look something like this:

    Linux Perf FlameGraph: dialyzer PLT build

    You can view a larger version here. It contains │ │ │ the same information, but it is easier to share with others as it does │ │ │ not need the symbols in the executable.

    Using the same data we can also produce a graph where the scheduler profile data │ │ │ -has been merged by using sed:

    ## Strip [0-9]+_ and/or _[0-9]+ from all scheduler names
    │ │ │ +has been merged by using sed:

    ## Strip [0-9]+_ and/or _[0-9]+ from all scheduler names
    │ │ │  ## scheduler names changed in OTP26, hence two expressions
    │ │ │  sed -e 's/^[0-9]\+_//' -e 's/^erts_\([^_]\+\)_[0-9]\+/erts_\1/' out.folded > out.folded_sched
    │ │ │  ## Create the svg
    │ │ │  flamegraph.pl out.folded_sched > out_sched.svg

    Linux Perf FlameGraph: dialyzer PLT build

    You can view a larger version here. │ │ │ There are many different transformations that you can do to make the graph show │ │ │ you what you want.

    │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/codeloading.html │ │ │ @@ -163,16 +163,16 @@ │ │ │ only be done by one loader process at a time. A second loader process │ │ │ trying to enter finishing phase will be suspended until the first │ │ │ loader is done. This will only block the process, the scheduler is │ │ │ free to schedule other work while the second loader is waiting. (See │ │ │ erts_try_seize_code_load_permission and │ │ │ erts_release_code_load_permission).

    The ability to prepare several modules in parallel is not currently │ │ │ used as almost all code loading is serialized by the code_server │ │ │ -process. The BIF interface is however prepared for this.

      erlang:prepare_loading(Module, Code) -> LoaderState
    │ │ │ -  erlang:finish_loading([LoaderState])

    The idea is that prepare_loading could be called in parallel for │ │ │ +process. The BIF interface is however prepared for this.

      erlang:prepare_loading(Module, Code) -> LoaderState
    │ │ │ +  erlang:finish_loading([LoaderState])

    The idea is that prepare_loading could be called in parallel for │ │ │ different modules and returns a "magic binary" containing the internal │ │ │ state of each prepared module. Function finish_loading could take a │ │ │ list of such states and do the finishing of all of them in one go.

    Currently we use the legacy BIF erlang:load_module which is now │ │ │ implemented in Erlang by calling the above two functions in │ │ │ sequence. Function finish_loading is limited to only accepts a list │ │ │ with one module state as we do not yet use the multi module loading │ │ │ feature.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/crash_dump.html │ │ │ @@ -401,21 +401,21 @@ │ │ │ put/2 and get/1 thing) is non-empty.

    The raw memory information can be decoded by the Crashdump Viewer tool. You can │ │ │ then see the stack dump, the message queue (if any), and the dictionary (if │ │ │ any).

    The stack dump is a dump of the Erlang process stack. Most of the live data │ │ │ (that is, variables currently in use) are placed on the stack; thus this can be │ │ │ interesting. One has to "guess" what is what, but as the information is │ │ │ symbolic, thorough reading of this information can be useful. As an example, we │ │ │ can find the state variable of the Erlang primitive loader online (5) and │ │ │ -(6) in the following example:

    (1)  3cac44   Return addr 0x13BF58 (<terminate process normally>)
    │ │ │ -(2)  y(0)     ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin",
    │ │ │ -(3)            "/view/siri_r10_dev/clearcase/otp/erts/lib/stdlib/ebin"]
    │ │ │ -(4)  y(1)     <0.1.0>
    │ │ │ -(5)  y(2)     {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.9000327>,
    │ │ │ -(6)            #Fun<erl_prim_loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl_prim_loader.9.10708760>}
    │ │ │ -(7)  y(3)     infinity

    When interpreting the data for a process, it is helpful to know that anonymous │ │ │ +(6) in the following example:

    (1)  3cac44   Return addr 0x13BF58 (<terminate process normally>)
    │ │ │ +(2)  y(0)     ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin",
    │ │ │ +(3)            "/view/siri_r10_dev/clearcase/otp/erts/lib/stdlib/ebin"]
    │ │ │ +(4)  y(1)     <0.1.0>
    │ │ │ +(5)  y(2)     {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.9000327>,
    │ │ │ +(6)            #Fun<erl_prim_loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl_prim_loader.9.10708760>}
    │ │ │ +(7)  y(3)     infinity

    When interpreting the data for a process, it is helpful to know that anonymous │ │ │ function objects (funs) are given the following:

    • A name constructed from the name of the function in which they are created
    • A number (starting with 0) indicating the number of that fun within that │ │ │ function

    │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/driver.html │ │ │ @@ -364,41 +364,41 @@ │ │ │

    Before a driver can be called from Erlang, it must be loaded and opened. Loading │ │ │ is done using the erl_ddll module (the erl_ddll driver that loads dynamic │ │ │ driver is actually a driver itself). If loading is successful, the port can be │ │ │ opened with open_port/2. The port name must match the name of │ │ │ the shared library and the name in the driver entry structure.

    When the port has been opened, the driver can be called. In the pg_sync │ │ │ example, we do not have any data from the port, only the return value from the │ │ │ port_control/3.

    The following code is the Erlang part of the synchronous postgres driver, │ │ │ -pg_sync.erl:

    -module(pg_sync).
    │ │ │ +pg_sync.erl:

    -module(pg_sync).
    │ │ │  
    │ │ │ --define(DRV_CONNECT, 1).
    │ │ │ --define(DRV_DISCONNECT, 2).
    │ │ │ --define(DRV_SELECT, 3).
    │ │ │ +-define(DRV_CONNECT, 1).
    │ │ │ +-define(DRV_DISCONNECT, 2).
    │ │ │ +-define(DRV_SELECT, 3).
    │ │ │  
    │ │ │ --export([connect/1, disconnect/1, select/2]).
    │ │ │ +-export([connect/1, disconnect/1, select/2]).
    │ │ │  
    │ │ │ -connect(ConnectStr) ->
    │ │ │ -    case erl_ddll:load_driver(".", "pg_sync") of
    │ │ │ +connect(ConnectStr) ->
    │ │ │ +    case erl_ddll:load_driver(".", "pg_sync") of
    │ │ │          ok -> ok;
    │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ -        E -> exit({error, E})
    │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ +        E -> exit({error, E})
    │ │ │      end,
    │ │ │ -    Port = open_port({spawn, ?MODULE}, []),
    │ │ │ -    case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
    │ │ │ -        ok -> {ok, Port};
    │ │ │ +    Port = open_port({spawn, ?MODULE}, []),
    │ │ │ +    case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
    │ │ │ +        ok -> {ok, Port};
    │ │ │          Error -> Error
    │ │ │      end.
    │ │ │  
    │ │ │ -disconnect(Port) ->
    │ │ │ -    R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
    │ │ │ -    port_close(Port),
    │ │ │ +disconnect(Port) ->
    │ │ │ +    R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
    │ │ │ +    port_close(Port),
    │ │ │      R.
    │ │ │  
    │ │ │ -select(Port, Query) ->
    │ │ │ -    binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

    The API is simple:

    • connect/1 loads the driver, opens it, and logs on to the database, returning │ │ │ +select(Port, Query) -> │ │ │ + binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

    The API is simple:

    • connect/1 loads the driver, opens it, and logs on to the database, returning │ │ │ the Erlang port if successful.
    • select/2 sends a query to the driver and returns the result.
    • disconnect/1 closes the database connection and the driver. (However, it │ │ │ does not unload it.)

    The connection string is to be a connection string for postgres.

    The driver is loaded with erl_ddll:load_driver/2. If this is successful, or if │ │ │ it is already loaded, it is opened. This will call the start function in the │ │ │ driver.

    We use the port_control/3 function for all calls into the │ │ │ driver. The result from the driver is returned immediately and converted to │ │ │ terms by calling binary_to_term/1. (We trust that the │ │ │ terms returned from the driver are well-formed, otherwise the binary_to_term/1 │ │ │ @@ -536,51 +536,51 @@ │ │ │ successful, or error if it is not. If the connection is not yet established, we │ │ │ simply return; ready_io is called again.

    If we have a result from a connect, indicated by having data in the x buffer, │ │ │ we no longer need to select on output (ready_output), so we remove this by │ │ │ calling driver_select.

    If we are not connecting, we wait for results from a PQsendQuery, so we get │ │ │ the result and return it. The encoding is done with the same functions as in the │ │ │ earlier example.

    Error handling is to be added here, for example, checking that the socket is │ │ │ still open, but this is only a simple example.

    The Erlang part of the asynchronous driver consists of the sample file │ │ │ -pg_async.erl.

    -module(pg_async).
    │ │ │ +pg_async.erl.

    -module(pg_async).
    │ │ │  
    │ │ │ --define(DRV_CONNECT, $C).
    │ │ │ --define(DRV_DISCONNECT, $D).
    │ │ │ --define(DRV_SELECT, $S).
    │ │ │ +-define(DRV_CONNECT, $C).
    │ │ │ +-define(DRV_DISCONNECT, $D).
    │ │ │ +-define(DRV_SELECT, $S).
    │ │ │  
    │ │ │ --export([connect/1, disconnect/1, select/2]).
    │ │ │ +-export([connect/1, disconnect/1, select/2]).
    │ │ │  
    │ │ │ -connect(ConnectStr) ->
    │ │ │ -    case erl_ddll:load_driver(".", "pg_async") of
    │ │ │ +connect(ConnectStr) ->
    │ │ │ +    case erl_ddll:load_driver(".", "pg_async") of
    │ │ │          ok -> ok;
    │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ -        _ -> exit({error, could_not_load_driver})
    │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ +        _ -> exit({error, could_not_load_driver})
    │ │ │      end,
    │ │ │ -    Port = open_port({spawn, ?MODULE}, [binary]),
    │ │ │ -    port_control(Port, ?DRV_CONNECT, ConnectStr),
    │ │ │ -    case return_port_data(Port) of
    │ │ │ +    Port = open_port({spawn, ?MODULE}, [binary]),
    │ │ │ +    port_control(Port, ?DRV_CONNECT, ConnectStr),
    │ │ │ +    case return_port_data(Port) of
    │ │ │          ok ->
    │ │ │ -            {ok, Port};
    │ │ │ +            {ok, Port};
    │ │ │          Error ->
    │ │ │              Error
    │ │ │      end.
    │ │ │  
    │ │ │ -disconnect(Port) ->
    │ │ │ -    port_control(Port, ?DRV_DISCONNECT, ""),
    │ │ │ -    R = return_port_data(Port),
    │ │ │ -    port_close(Port),
    │ │ │ +disconnect(Port) ->
    │ │ │ +    port_control(Port, ?DRV_DISCONNECT, ""),
    │ │ │ +    R = return_port_data(Port),
    │ │ │ +    port_close(Port),
    │ │ │      R.
    │ │ │  
    │ │ │ -select(Port, Query) ->
    │ │ │ -    port_control(Port, ?DRV_SELECT, Query),
    │ │ │ -    return_port_data(Port).
    │ │ │ +select(Port, Query) ->
    │ │ │ +    port_control(Port, ?DRV_SELECT, Query),
    │ │ │ +    return_port_data(Port).
    │ │ │  
    │ │ │ -return_port_data(Port) ->
    │ │ │ +return_port_data(Port) ->
    │ │ │      receive
    │ │ │ -        {Port, {data, Data}} ->
    │ │ │ -            binary_to_term(Data)
    │ │ │ +        {Port, {data, Data}} ->
    │ │ │ +            binary_to_term(Data)
    │ │ │      end.

    The Erlang code is slightly different, as we do not return the result │ │ │ synchronously from port_control/3, instead we get it from driver_output as │ │ │ data in the message queue. The function return_port_data above receives data │ │ │ from the port. As the data is in binary format, we use │ │ │ binary_to_term/1 to convert it to an Erlang term. Notice │ │ │ that the driver is opened in binary mode (open_port/2 is │ │ │ called with option [binary]). This means that data sent from the driver to the │ │ │ @@ -677,59 +677,59 @@ │ │ │ *rp++ = ERL_DRV_LIST; │ │ │ *rp++ = n+1; │ │ │ driver_output_term(port, result, result_n); │ │ │ delete[] result; │ │ │ delete d; │ │ │ }

    This driver is called like the others from Erlang. However, as we use │ │ │ driver_output_term, there is no need to call binary_to_term/1. The Erlang code │ │ │ -is in the sample file next_perm.erl.

    The input is changed into a list of integers and sent to the driver.

    -module(next_perm).
    │ │ │ +is in the sample file next_perm.erl.

    The input is changed into a list of integers and sent to the driver.

    -module(next_perm).
    │ │ │  
    │ │ │ --export([next_perm/1, prev_perm/1, load/0, all_perm/1]).
    │ │ │ +-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).
    │ │ │  
    │ │ │ -load() ->
    │ │ │ -    case whereis(next_perm) of
    │ │ │ +load() ->
    │ │ │ +    case whereis(next_perm) of
    │ │ │          undefined ->
    │ │ │ -            case erl_ddll:load_driver(".", "next_perm") of
    │ │ │ +            case erl_ddll:load_driver(".", "next_perm") of
    │ │ │                  ok -> ok;
    │ │ │ -                {error, already_loaded} -> ok;
    │ │ │ -                E -> exit(E)
    │ │ │ +                {error, already_loaded} -> ok;
    │ │ │ +                E -> exit(E)
    │ │ │              end,
    │ │ │ -            Port = open_port({spawn, "next_perm"}, []),
    │ │ │ -            register(next_perm, Port);
    │ │ │ +            Port = open_port({spawn, "next_perm"}, []),
    │ │ │ +            register(next_perm, Port);
    │ │ │          _ ->
    │ │ │              ok
    │ │ │      end.
    │ │ │  
    │ │ │ -list_to_integer_binaries(L) ->
    │ │ │ -    [<<I:32/integer-native>> || I <- L].
    │ │ │ +list_to_integer_binaries(L) ->
    │ │ │ +    [<<I:32/integer-native>> || I <- L].
    │ │ │  
    │ │ │ -next_perm(L) ->
    │ │ │ -    next_perm(L, 1).
    │ │ │ +next_perm(L) ->
    │ │ │ +    next_perm(L, 1).
    │ │ │  
    │ │ │ -prev_perm(L) ->
    │ │ │ -    next_perm(L, 2).
    │ │ │ +prev_perm(L) ->
    │ │ │ +    next_perm(L, 2).
    │ │ │  
    │ │ │ -next_perm(L, Nxt) ->
    │ │ │ -    load(),
    │ │ │ -    B = list_to_integer_binaries(L),
    │ │ │ -    port_control(next_perm, Nxt, B),
    │ │ │ +next_perm(L, Nxt) ->
    │ │ │ +    load(),
    │ │ │ +    B = list_to_integer_binaries(L),
    │ │ │ +    port_control(next_perm, Nxt, B),
    │ │ │      receive
    │ │ │          Result ->
    │ │ │              Result
    │ │ │      end.
    │ │ │  
    │ │ │ -all_perm(L) ->
    │ │ │ -    New = prev_perm(L),
    │ │ │ -    all_perm(New, L, [New]).
    │ │ │ +all_perm(L) ->
    │ │ │ +    New = prev_perm(L),
    │ │ │ +    all_perm(New, L, [New]).
    │ │ │  
    │ │ │ -all_perm(L, L, Acc) ->
    │ │ │ +all_perm(L, L, Acc) ->
    │ │ │      Acc;
    │ │ │ -all_perm(L, Orig, Acc) ->
    │ │ │ -    New = prev_perm(L),
    │ │ │ -    all_perm(New, Orig, [New | Acc]).
    │ │ │ +
    all_perm(L, Orig, Acc) -> │ │ │ + New = prev_perm(L), │ │ │ + all_perm(New, Orig, [New | Acc]).
    │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ init.

    The init process itself interprets some of these flags, the init flags. It │ │ │ also stores any remaining flags, the user flags. The latter can be retrieved │ │ │ by calling init:get_argument/1.

    A small number of "-" flags exist, which now actually are emulator flags, see │ │ │ the description below.

  • Plain arguments are not interpreted in any way. They are also stored by the │ │ │ init process and can be retrieved by calling init:get_plain_arguments/0. │ │ │ Plain arguments can occur before the first flag, or after a -- flag. Also, │ │ │ the -extra flag causes everything that follows to become plain arguments.

  • Examples:

    % erl +W w -sname arnie +R 9 -s my_init -extra +bertie
    │ │ │ -(arnie@host)1> init:get_argument(sname).
    │ │ │ -{ok,[["arnie"]]}
    │ │ │ -(arnie@host)2> init:get_plain_arguments().
    │ │ │ -["+bertie"]

    Here +W w and +R 9 are emulator flags. -s my_init is an init flag, │ │ │ +(arnie@host)1> init:get_argument(sname). │ │ │ +{ok,[["arnie"]]} │ │ │ +(arnie@host)2> init:get_plain_arguments(). │ │ │ +["+bertie"]

    Here +W w and +R 9 are emulator flags. -s my_init is an init flag, │ │ │ interpreted by init. -sname arnie is a user flag, stored by init. It is │ │ │ read by Kernel and causes the Erlang runtime system to become distributed. │ │ │ Finally, everything after -extra (that is, +bertie) is considered as plain │ │ │ arguments.

    % erl -myflag 1
    │ │ │ -1> init:get_argument(myflag).
    │ │ │ -{ok,[["1"]]}
    │ │ │ -2> init:get_plain_arguments().
    │ │ │ -[]

    Here the user flag -myflag 1 is passed to and stored by the init process. It │ │ │ +1> init:get_argument(myflag). │ │ │ +{ok,[["1"]]} │ │ │ +2> init:get_plain_arguments(). │ │ │ +[]

    Here the user flag -myflag 1 is passed to and stored by the init process. It │ │ │ is a user-defined flag, presumably used by some user-defined application.

    │ │ │ │ │ │ │ │ │ │ │ │ Flags │ │ │

    │ │ │

    In the following list, init flags are marked "(init flag)". Unless otherwise │ │ │ @@ -700,15 +700,15 @@ │ │ │ processes) into a smaller set of schedulers when schedulers frequently run │ │ │ out of work. When disabled, the frequency with which schedulers run out of │ │ │ work is not taken into account by the load balancing logic.

    +scl false is similar to +sub true, but +sub true │ │ │ also balances scheduler utilization between schedulers.

  • +sct CpuTopology - Sets a user-defined CPU topology. │ │ │ The user-defined CPU topology overrides │ │ │ any automatically detected CPU topology. The CPU topology is used when │ │ │ binding schedulers to logical processors. This option must be before │ │ │ -+sbt on the command-line.

    <Id> = integer(); when 0 =< <Id> =< 65535
    │ │ │ ++sbt on the command-line.

    <Id> = integer(); when 0 =< <Id> =< 65535
    │ │ │  <IdRange> = <Id>-<Id>
    │ │ │  <IdOrIdRange> = <Id> | <IdRange>
    │ │ │  <IdList> = <IdOrIdRange>,<IdOrIdRange> | <IdOrIdRange>
    │ │ │  <LogicalIds> = L<IdList>
    │ │ │  <ThreadIds> = T<IdList> | t<IdList>
    │ │ │  <CoreIds> = C<IdList> | c<IdList>
    │ │ │  <ProcessorIds> = P<IdList> | p<IdList>
    │ │ │ @@ -733,30 +733,30 @@
    │ │ │  node.
  • <LogicalIds><ThreadIds><CoreIds><NodeIds><ProcessorIds>, that is, thread │ │ │ is part of a core that is part of a NUMA node, which is part of a │ │ │ processor.
  • A CPU topology can consist of both processor external, and processor │ │ │ internal NUMA nodes as long as each logical processor belongs to only one │ │ │ NUMA node. If <ProcessorIds> is omitted, its default position is before │ │ │ <NodeIds>. That is, the default is processor external NUMA nodes.

    If a list of identifiers is used in an <IdDefs>:

    • <LogicalIds> must be a list of identifiers.
    • At least one other identifier type besides <LogicalIds> must also have a │ │ │ list of identifiers.
    • All lists of identifiers must produce the same number of identifiers.

    A simple example. A single quad core processor can be described as follows:

    % erl +sct L0-3c0-3
    │ │ │ -1> erlang:system_info(cpu_topology).
    │ │ │ -[{processor,[{core,{logical,0}},
    │ │ │ -             {core,{logical,1}},
    │ │ │ -             {core,{logical,2}},
    │ │ │ -             {core,{logical,3}}]}]

    A more complicated example with two quad core processors, each processor in │ │ │ +1> erlang:system_info(cpu_topology). │ │ │ +[{processor,[{core,{logical,0}}, │ │ │ + {core,{logical,1}}, │ │ │ + {core,{logical,2}}, │ │ │ + {core,{logical,3}}]}]

    A more complicated example with two quad core processors, each processor in │ │ │ its own NUMA node. The ordering of logical processors is a bit weird. This │ │ │ to give a better example of identifier lists:

    % erl +sct L0-1,3-2c0-3p0N0:L7,4,6-5c0-3p1N1
    │ │ │ -1> erlang:system_info(cpu_topology).
    │ │ │ -[{node,[{processor,[{core,{logical,0}},
    │ │ │ -                    {core,{logical,1}},
    │ │ │ -                    {core,{logical,3}},
    │ │ │ -                    {core,{logical,2}}]}]},
    │ │ │ - {node,[{processor,[{core,{logical,7}},
    │ │ │ -                    {core,{logical,4}},
    │ │ │ -                    {core,{logical,6}},
    │ │ │ -                    {core,{logical,5}}]}]}]

    As long as real identifiers are correct, it is OK to pass a CPU topology │ │ │ +1> erlang:system_info(cpu_topology). │ │ │ +[{node,[{processor,[{core,{logical,0}}, │ │ │ + {core,{logical,1}}, │ │ │ + {core,{logical,3}}, │ │ │ + {core,{logical,2}}]}]}, │ │ │ + {node,[{processor,[{core,{logical,7}}, │ │ │ + {core,{logical,4}}, │ │ │ + {core,{logical,6}}, │ │ │ + {core,{logical,5}}]}]}]

    As long as real identifiers are correct, it is OK to pass a CPU topology │ │ │ that is not a correct description of the CPU topology. When used with care │ │ │ this can be very useful. This to trick the emulator to bind its schedulers │ │ │ as you want. For example, if you want to run multiple Erlang runtime systems │ │ │ on the same machine, you want to reduce the number of schedulers used and │ │ │ manipulate the CPU topology so that they bind to different logical CPUs. An │ │ │ example, with two Erlang runtime systems on a quad core machine:

    % erl +sct L0-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
    │ │ │  % erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

    In this example, each runtime system have two schedulers each online, and │ │ │ @@ -923,18 +923,18 @@ │ │ │ │ │ │

    The standard Erlang/OTP system can be reconfigured to change the default │ │ │ behavior on startup.

    • The .erlang startup file - When Erlang/OTP is started, the system │ │ │ searches for a file named .erlang in the │ │ │ user's home directory and then │ │ │ filename:basedir(user_config, "erlang").

      If an .erlang file is found, it is assumed to contain valid Erlang │ │ │ expressions. These expressions are evaluated as if they were input to the │ │ │ -shell.

      A typical .erlang file contains a set of search paths, for example:

      io:format("executing user profile in $HOME/.erlang\n",[]).
      │ │ │ -code:add_path("/home/calvin/test/ebin").
      │ │ │ -code:add_path("/home/hobbes/bigappl-1.2/ebin").
      │ │ │ -io:format(".erlang rc finished\n",[]).
    • user_default and shell_default - Functions in the shell that are not │ │ │ +shell.

      A typical .erlang file contains a set of search paths, for example:

      io:format("executing user profile in $HOME/.erlang\n",[]).
      │ │ │ +code:add_path("/home/calvin/test/ebin").
      │ │ │ +code:add_path("/home/hobbes/bigappl-1.2/ebin").
      │ │ │ +io:format(".erlang rc finished\n",[]).
    • user_default and shell_default - Functions in the shell that are not │ │ │ prefixed by a module name are assumed to be functional objects (funs), │ │ │ built-in functions (BIFs), or belong to the module user_default or │ │ │ shell_default.

      To include private shell commands, define them in a module user_default and │ │ │ add the following argument as the first line in the .erlang file:

      code:load_abs("..../user_default").
    • erl - If the contents of .erlang are changed and a private version of │ │ │ user_default is defined, the Erlang/OTP environment can be customized. More │ │ │ powerful changes can be made by supplying command-line arguments in the │ │ │ startup script erl. For more information, see init.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_dist_protocol.html │ │ │ @@ -252,32 +252,32 @@ │ │ │ --- │ │ │ sequenceDiagram │ │ │ participant client as Client (or Node) │ │ │ participant EPMD │ │ │ │ │ │ client ->> EPMD: NAMES_REQ │ │ │ EPMD -->> client: NAMES_RESP

    1
    110

    Table: NAMES_REQ (110)

    The response for a NAMES_REQ is as follows:

    4
    EPMDPortNoNodeInfo*

    Table: NAMES_RESP

    NodeInfo is a string written for each active node. When all NodeInfo has │ │ │ -been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("name ~ts at port ~p~n", [NodeName, Port]).

    │ │ │ +been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("name ~ts at port ~p~n", [NodeName, Port]).

    │ │ │ │ │ │ │ │ │ │ │ │ Dump All Data from EPMD │ │ │

    │ │ │

    This request is not really used, it is to be regarded as a debug feature.

    ---
    │ │ │  title: Dump All Data from EPMD
    │ │ │  ---
    │ │ │  sequenceDiagram
    │ │ │      participant client as Client (or Node)
    │ │ │      participant EPMD
    │ │ │      
    │ │ │      client ->> EPMD: DUMP_REQ
    │ │ │      EPMD -->> client: DUMP_RESP
    1
    100

    Table: DUMP_REQ

    The response for a DUMP_REQ is as follows:

    4
    EPMDPortNoNodeInfo*

    Table: DUMP_RESP

    NodeInfo is a string written for each node kept in the EPMD. When all │ │ │ -NodeInfo has been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("active name     ~ts at port ~p, fd = ~p~n",
    │ │ │ -          [NodeName, Port, Fd]).

    or

    io:format("old/unused name ~ts at port ~p, fd = ~p ~n",
    │ │ │ -          [NodeName, Port, Fd]).

    │ │ │ +NodeInfo has been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("active name     ~ts at port ~p, fd = ~p~n",
    │ │ │ +          [NodeName, Port, Fd]).

    or

    io:format("old/unused name ~ts at port ~p, fd = ~p ~n",
    │ │ │ +          [NodeName, Port, Fd]).

    │ │ │ │ │ │ │ │ │ │ │ │ Kill EPMD │ │ │

    │ │ │

    This request kills the running EPMD. It is almost never used.

    ---
    │ │ │  title: Kill EPMD
    │ │ │ @@ -407,54 +407,54 @@
    │ │ │  received from A is correct and generates a digest from the challenge
    │ │ │  received from A. The digest is then sent to A. The message is as follows:

    116
    'a'Digest

    Table: The challenge_ack message

    Digest is the digest calculated by B for A's challenge.

  • 7) check - A checks the digest from B and the connection is up.

  • │ │ │ │ │ │ │ │ │ │ │ │ Semigraphic View │ │ │

    │ │ │ -
    A (initiator)                                      B (acceptor)
    │ │ │ +
    A (initiator)                                      B (acceptor)
    │ │ │  
    │ │ │  TCP connect ------------------------------------>
    │ │ │                                                     TCP accept
    │ │ │  
    │ │ │  send_name -------------------------------------->
    │ │ │                                                     recv_name
    │ │ │  
    │ │ │    <---------------------------------------------- send_status
    │ │ │  recv_status
    │ │ │ -(if status was 'alive'
    │ │ │ +(if status was 'alive'
    │ │ │   send_status - - - - - - - - - - - - - - - - - ->
    │ │ │ -                                                   recv_status)
    │ │ │ +                                                   recv_status)
    │ │ │  
    │ │ │ -                          (ChB)                      ChB = gen_challenge()
    │ │ │ +                          (ChB)                      ChB = gen_challenge()
    │ │ │    <---------------------------------------------- send_challenge
    │ │ │  recv_challenge
    │ │ │  
    │ │ │ -(if old send_name
    │ │ │ +(if old send_name
    │ │ │   send_complement - - - - - - - - - - - - - - - ->
    │ │ │ -                                                   recv_complement)
    │ │ │ +                                                   recv_complement)
    │ │ │  
    │ │ │ -ChA = gen_challenge(),
    │ │ │ -OCA = out_cookie(B),
    │ │ │ -DiA = gen_digest(ChB, OCA)
    │ │ │ -                          (ChA, DiA)
    │ │ │ +ChA = gen_challenge(),
    │ │ │ +OCA = out_cookie(B),
    │ │ │ +DiA = gen_digest(ChB, OCA)
    │ │ │ +                          (ChA, DiA)
    │ │ │  send_challenge_reply --------------------------->
    │ │ │                                                     recv_challenge_reply
    │ │ │ -                                                   ICB = in_cookie(A),
    │ │ │ +                                                   ICB = in_cookie(A),
    │ │ │                                                     check:
    │ │ │ -                                                   DiA == gen_digest (ChB, ICB)?
    │ │ │ +                                                   DiA == gen_digest (ChB, ICB)?
    │ │ │                                                     - if OK:
    │ │ │ -                                                    OCB = out_cookie(A),
    │ │ │ -                                                    DiB = gen_digest (ChA, OCB)
    │ │ │ -                          (DiB)
    │ │ │ +                                                    OCB = out_cookie(A),
    │ │ │ +                                                    DiB = gen_digest (ChA, OCB)
    │ │ │ +                          (DiB)
    │ │ │    <----------------------------------------------- send_challenge_ack
    │ │ │  recv_challenge_ack                                  DONE
    │ │ │ -ICA = in_cookie(B),                                - else:
    │ │ │ +ICA = in_cookie(B),                                - else:
    │ │ │  check:                                              CLOSE
    │ │ │ -DiB == gen_digest(ChA, ICA)?
    │ │ │ +DiB == gen_digest(ChA, ICA)?
    │ │ │  - if OK:
    │ │ │   DONE
    │ │ │  - else:
    │ │ │   CLOSE

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_ext_dist.html │ │ │ @@ -436,15 +436,15 @@ │ │ │ │ │ │ SMALL_BIG_EXT │ │ │

    │ │ │
    111n
    110nSignd(0) ... d(n-1)

    Bignums are stored in unary form with a Sign byte, that is, 0 if the bignum is │ │ │ positive and 1 if it is negative. The digits are stored with the least │ │ │ significant byte stored first. To calculate the integer, the following formula │ │ │ can be used:

    B = 256
    │ │ │ -(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

    │ │ │ +(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

    │ │ │ │ │ │ │ │ │ │ │ │ LARGE_BIG_EXT │ │ │

    │ │ │
    141n
    111nSignd(0) ... d(n-1)

    Same as SMALL_BIG_EXT except that the length │ │ │ field is an unsigned 4 byte integer.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_nif.html │ │ │ @@ -161,27 +161,27 @@ │ │ │ } │ │ │ │ │ │ static ErlNifFunc nif_funcs[] = │ │ │ { │ │ │ {"hello", 0, hello} │ │ │ }; │ │ │ │ │ │ -ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

    The Erlang module can look as follows:

    -module(niftest).
    │ │ │ +ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

    The Erlang module can look as follows:

    -module(niftest).
    │ │ │  
    │ │ │ --export([init/0, hello/0]).
    │ │ │ +-export([init/0, hello/0]).
    │ │ │  
    │ │ │ --nifs([hello/0]).
    │ │ │ +-nifs([hello/0]).
    │ │ │  
    │ │ │ --on_load(init/0).
    │ │ │ +-on_load(init/0).
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -      erlang:load_nif("./niftest", 0).
    │ │ │ +init() ->
    │ │ │ +      erlang:load_nif("./niftest", 0).
    │ │ │  
    │ │ │ -hello() ->
    │ │ │ -      erlang:nif_error("NIF library not loaded").

    Compile and test can look as follows (on Linux):

    $> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL_ROOT/usr/include/
    │ │ │ +hello() ->
    │ │ │ +      erlang:nif_error("NIF library not loaded").

    Compile and test can look as follows (on Linux):

    $> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL_ROOT/usr/include/
    │ │ │  $> erl
    │ │ │  
    │ │ │  1> c(niftest).
    │ │ │  {ok,niftest}
    │ │ │  2> niftest:hello().
    │ │ │  "Hello world!"

    In the example above the on_load │ │ │ directive is used get function init called automatically when the module is │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7/doc/html/erl_prim_loader.html │ │ │ @@ -398,15 +398,15 @@ │ │ │ when Filename :: string(), FileInfo :: file:file_info().

    │ │ │ │ │ │ │ │ │ │ │ │

    Retrieves information about a file.

    Returns {ok, FileInfo} if successful, otherwise error. FileInfo is a │ │ │ record file_info, defined in the Kernel include file │ │ │ file.hrl. Include the following directive in the module from which the │ │ │ -function is called:

    -include_lib("kernel/include/file.hrl").

    For more information about the record see file:read_file_info/2.

    Filename can also be a file in an archive, for example, │ │ │ +function is called:

    -include_lib("kernel/include/file.hrl").

    For more information about the record see file:read_file_info/2.

    Filename can also be a file in an archive, for example, │ │ │ $OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin/mnesia. For information │ │ │ about archive files, see code.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Combines two previously computed adler32 checksums.

    This computation requires the size of the data object for the second checksum │ │ │ -to be known.

    The following code:

    Y = erlang:adler32(Data1),
    │ │ │ -Z = erlang:adler32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:adler32(Data1),
    │ │ │ -Y = erlang:adler32(Data2),
    │ │ │ -Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).
    │ │ │ +to be known.

    The following code:

    Y = erlang:adler32(Data1),
    │ │ │ +Z = erlang:adler32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:adler32(Data1),
    │ │ │ +Y = erlang:adler32(Data2),
    │ │ │ +Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -6934,16 +6934,16 @@ │ │ │ │ │ │ │ │ │

    Continues computing the crc32 checksum by combining the previous checksum, │ │ │ -OldCrc, with the checksum of Data.

    The following code:

    X = erlang:crc32(Data1),
    │ │ │ -Y = erlang:crc32(X,Data2).

    assigns the same value to Y as this:

    Y = erlang:crc32([Data1,Data2]).
    │ │ │ +OldCrc, with the checksum of Data.

    The following code:

    X = erlang:crc32(Data1),
    │ │ │ +Y = erlang:crc32(X,Data2).

    assigns the same value to Y as this:

    Y = erlang:crc32([Data1,Data2]).
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Combines two previously computed crc32 checksums.

    This computation requires the size of the data object for the second checksum │ │ │ -to be known.

    The following code:

    Y = erlang:crc32(Data1),
    │ │ │ -Z = erlang:crc32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:crc32(Data1),
    │ │ │ -Y = erlang:crc32(Data2),
    │ │ │ -Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).
    │ │ │ +to be known.

    The following code:

    Y = erlang:crc32(Data1),
    │ │ │ +Z = erlang:crc32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:crc32(Data1),
    │ │ │ +Y = erlang:crc32(Data2),
    │ │ │ +Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8129,19 +8129,19 @@ │ │ │ the Info map in the returned result will contain the key node_type │ │ │ associated with the value NodeTypeInfo. Currently the following node types │ │ │ exist:

    Example:

    (a@localhost)1> nodes([this, connected], #{connection_id=>true, node_type=>true}).
    │ │ │ -[{c@localhost,#{connection_id => 13892108,node_type => hidden}},
    │ │ │ - {b@localhost,#{connection_id => 3067553,node_type => visible}},
    │ │ │ - {a@localhost,#{connection_id => undefined,node_type => this}}]
    │ │ │ -(a@localhost)2>
    │ │ │ +process.

    Example:

    (a@localhost)1> nodes([this, connected], #{connection_id=>true, node_type=>true}).
    │ │ │ +[{c@localhost,#{connection_id => 13892108,node_type => hidden}},
    │ │ │ + {b@localhost,#{connection_id => 3067553,node_type => visible}},
    │ │ │ + {a@localhost,#{connection_id => undefined,node_type => this}}]
    │ │ │ +(a@localhost)2>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8237,17 +8237,17 @@ │ │ │ │ │ │
    -spec abs(Float) -> float() when Float :: float();
    │ │ │           (Int) -> non_neg_integer() when Int :: integer().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns an integer or float that is the arithmetical absolute value of Float │ │ │ -or Int.

    For example:

    > abs(-3.33).
    │ │ │ +or Int.

    For example:

    > abs(-3.33).
    │ │ │  3.33
    │ │ │ -> abs(-3).
    │ │ │ +> abs(-3).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a new tuple that has one element more than Tuple1, and contains the │ │ │ elements in Tuple1 followed by Term as the last element.

    Semantically equivalent to │ │ │ list_to_tuple(tuple_to_list(Tuple1) ++ [Term]), but much │ │ │ -faster.

    For example:

    > erlang:append_element({one, two}, three).
    │ │ │ -{one,two,three}
    │ │ │ +faster.

    For example:

    > erlang:append_element({one, two}, three).
    │ │ │ +{one,two,three}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Atom.

    If Encoding is latin1, one byte exists for each character in the text │ │ │ representation. If Encoding is utf8 or unicode, the characters are encoded │ │ │ using UTF-8 where characters may require multiple bytes.

    Change

    As from Erlang/OTP 20, atoms can contain any Unicode character and │ │ │ atom_to_binary(Atom, latin1) may fail if the text │ │ │ -representation for Atom contains a Unicode character > 255.

    Example:

    > atom_to_binary('Erlang', latin1).
    │ │ │ -<<"Erlang">>
    │ │ │ +representation for Atom contains a Unicode character > 255.

    Example:

    > atom_to_binary('Erlang', latin1).
    │ │ │ +<<"Erlang">>
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8363,17 +8363,17 @@ │ │ │
    │ │ │ │ │ │
    -spec atom_to_list(Atom) -> string() when Atom :: atom().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a list of unicode code points corresponding to the text representation │ │ │ -of Atom.

    For example:

    > atom_to_list('Erlang').
    │ │ │ -"Erlang"
    > atom_to_list('你好').
    │ │ │ -[20320,22909]

    See unicode for how to convert the resulting list to different formats.

    │ │ │ +of Atom.

    For example:

    > atom_to_list('Erlang').
    │ │ │ +"Erlang"
    > atom_to_list('你好').
    │ │ │ +[20320,22909]

    See unicode for how to convert the resulting list to different formats.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8400,19 +8400,19 @@ │ │ │
    -spec binary_part(Subject, PosLen) -> binary()
    │ │ │                       when
    │ │ │                           Subject :: binary(),
    │ │ │                           PosLen :: {Start :: non_neg_integer(), Length :: integer()}.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Extracts the part of the binary described by PosLen.

    Negative length can be used to extract bytes at the end of a binary.

    For example:

    1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
    │ │ │ -2> binary_part(Bin,{byte_size(Bin), -5}).
    │ │ │ -<<6,7,8,9,10>>

    Failure: badarg if PosLen in any way references outside the binary.

    Start is zero-based, that is:

    1> Bin = <<1,2,3>>
    │ │ │ -2> binary_part(Bin,{0,2}).
    │ │ │ -<<1,2>>

    For details about the PosLen semantics, see binary.

    │ │ │ +

    Extracts the part of the binary described by PosLen.

    Negative length can be used to extract bytes at the end of a binary.

    For example:

    1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
    │ │ │ +2> binary_part(Bin,{byte_size(Bin), -5}).
    │ │ │ +<<6,7,8,9,10>>

    Failure: badarg if PosLen in any way references outside the binary.

    Start is zero-based, that is:

    1> Bin = <<1,2,3>>
    │ │ │ +2> binary_part(Bin,{0,2}).
    │ │ │ +<<1,2>>

    For details about the PosLen semantics, see binary.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │

    Note

    The number of characters that are permitted in an atom name is limited. The │ │ │ default limits can be found in the │ │ │ Efficiency Guide (section System Limits).

    Note

    There is configurable limit on how many atoms that can exist and atoms are not │ │ │ garbage collected. Therefore, it is recommended to consider whether │ │ │ binary_to_existing_atom/2 is a better option │ │ │ than binary_to_atom/2. The default limits can be found │ │ │ -in Efficiency Guide (section System Limits).

    Examples:

    > binary_to_atom(<<"Erlang">>, latin1).
    │ │ │ -'Erlang'
    > binary_to_atom(<<1024/utf8>>, utf8).
    │ │ │ +in Efficiency Guide (section System Limits).

    Examples:

    > binary_to_atom(<<"Erlang">>, latin1).
    │ │ │ +'Erlang'
    > binary_to_atom(<<1024/utf8>>, utf8).
    │ │ │  'Ѐ'
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8613,15 +8613,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_float(Binary) -> float() when Binary :: binary().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the float whose text representation is Binary.

    For example:

    > binary_to_float(<<"2.2017764e+0">>).
    │ │ │ +

    Returns the float whose text representation is Binary.

    For example:

    > binary_to_float(<<"2.2017764e+0">>).
    │ │ │  2.2017764

    The float string format is the same as the format for │ │ │ Erlang float literals except for that underscores │ │ │ are not permitted.

    Failure: badarg if Binary contains a bad representation of a float.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8646,15 +8646,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_integer(Binary) -> integer() when Binary :: binary().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation is Binary.

    For example:

    > binary_to_integer(<<"123">>).
    │ │ │ +

    Returns an integer whose text representation is Binary.

    For example:

    > binary_to_integer(<<"123">>).
    │ │ │  123

    binary_to_integer/1 accepts the same string formats │ │ │ as list_to_integer/1.

    Failure: badarg if Binary contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -8678,15 +8678,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_integer(Binary, Base) -> integer() when Binary :: binary(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation in base Base is Binary.

    For example:

    > binary_to_integer(<<"3FF">>, 16).
    │ │ │ +

    Returns an integer whose text representation in base Base is Binary.

    For example:

    > binary_to_integer(<<"3FF">>, 16).
    │ │ │  1023

    binary_to_integer/2 accepts the same string formats │ │ │ as list_to_integer/2.

    Failure: badarg if Binary contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -8771,17 +8771,17 @@ │ │ │ │ │ │
    -spec binary_to_term(Binary) -> term() when Binary :: ext_binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns an Erlang term that is the result of decoding binary object Binary, │ │ │ which must be encoded according to the │ │ │ -Erlang external term format.

    > Bin = term_to_binary(hello).
    │ │ │ -<<131,100,0,5,104,101,108,108,111>>
    │ │ │ -> hello = binary_to_term(Bin).
    │ │ │ +Erlang external term format.

    > Bin = term_to_binary(hello).
    │ │ │ +<<131,100,0,5,104,101,108,108,111>>
    │ │ │ +> hello = binary_to_term(Bin).
    │ │ │  hello

    Warning

    When decoding binaries from untrusted sources, the untrusted source may submit │ │ │ data in a way to create resources, such as atoms and remote references, that │ │ │ cannot be garbage collected and lead to Denial of Service attack. In such │ │ │ cases, consider using binary_to_term/2 with the safe │ │ │ option.

    See also term_to_binary/1 and binary_to_term/2.

    │ │ │
    │ │ │ │ │ │ @@ -8820,30 +8820,30 @@ │ │ │

    Equivalent to binary_to_term(Binary), but can be configured to │ │ │ fit special purposes.

    The allowed options are:

    • safe - Use this option when receiving binaries from an untrusted source.

      When enabled, it prevents decoding data that can be used to attack the Erlang │ │ │ runtime. In the event of receiving unsafe data, decoding fails with a badarg │ │ │ error.

      This prevents creation of new atoms directly, creation of new atoms indirectly │ │ │ (as they are embedded in certain structures, such as process identifiers, │ │ │ refs, and funs), and creation of new external function references. None of │ │ │ those resources are garbage collected, so unchecked creation of them can │ │ │ -exhaust available memory.

      > binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │ +exhaust available memory.

      > binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │  ** exception error: bad argument
      │ │ │  > hello.
      │ │ │  hello
      │ │ │ -> binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │ +> binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │  hello

      Warning

      The safe option ensures the data is safely processed by the Erlang runtime │ │ │ but it does not guarantee the data is safe to your application. You must │ │ │ always validate data from untrusted sources. If the binary is stored or │ │ │ transits through untrusted sources, you should also consider │ │ │ cryptographically signing it.

    • used - Changes the return value to {Term, Used} where Used is the │ │ │ -number of bytes actually read from Binary.

      > Input = <<131,100,0,5,"hello","world">>.
      │ │ │ -<<131,100,0,5,104,101,108,108,111,119,111,114,108,100>>
      │ │ │ -> {Term, Used} = binary_to_term(Input, [used]).
      │ │ │ -{hello, 9}
      │ │ │ -> split_binary(Input, Used).
      │ │ │ -{<<131,100,0,5,104,101,108,108,111>>, <<"world">>}

    Failure: badarg if safe is specified and unsafe data is decoded.

    See also term_to_binary/1, binary_to_term/1, and list_to_existing_atom/1.

    │ │ │ +number of bytes actually read from Binary.

    > Input = <<131,100,0,5,"hello","world">>.
    │ │ │ +<<131,100,0,5,104,101,108,108,111,119,111,114,108,100>>
    │ │ │ +> {Term, Used} = binary_to_term(Input, [used]).
    │ │ │ +{hello, 9}
    │ │ │ +> split_binary(Input, Used).
    │ │ │ +{<<131,100,0,5,104,101,108,108,111>>, <<"world">>}

    Failure: badarg if safe is specified and unsafe data is decoded.

    See also term_to_binary/1, binary_to_term/1, and list_to_existing_atom/1.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8865,17 +8865,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns an integer that is the size in bits of Bitstring.

    For example:

    > bit_size(<<433:16,3:3>>).
    │ │ │ +

    Returns an integer that is the size in bits of Bitstring.

    For example:

    > bit_size(<<433:16,3:3>>).
    │ │ │  19
    │ │ │ -> bit_size(<<1,2,3>>).
    │ │ │ +> bit_size(<<1,2,3>>).
    │ │ │  24
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8897,17 +8897,17 @@ │ │ │ │ │ │ │ │ │

    Returns a list of integers corresponding to the bytes of Bitstring.

    If the number of bits in the binary is not divisible by 8, the last element of │ │ │ -the list is a bitstring containing the remaining 1-7 bits.

    For example:

    > bitstring_to_list(<<433:16>>).
    │ │ │ -[1,177]
    > bitstring_to_list(<<433:16,3:3>>).
    │ │ │ -[1,177,<<3:3>>]
    │ │ │ +the list is a bitstring containing the remaining 1-7 bits.

    For example:

    > bitstring_to_list(<<433:16>>).
    │ │ │ +[1,177]
    > bitstring_to_list(<<433:16,3:3>>).
    │ │ │ +[1,177,<<3:3>>]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns an integer that is the number of bytes needed to contain Bitstring. │ │ │ That is, if the number of bits in Bitstring is not divisible by 8, the │ │ │ -resulting number of bytes is rounded up.

    For example:

    > byte_size(<<433:16,3:3>>).
    │ │ │ +resulting number of bytes is rounded up.

    For example:

    > byte_size(<<433:16,3:3>>).
    │ │ │  3
    │ │ │ -> byte_size(<<1,2,3>>).
    │ │ │ +> byte_size(<<1,2,3>>).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8966,15 +8966,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec ceil(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the smallest integer not less than Number.

    For example:

    > ceil(5.5).
    │ │ │ +

    Returns the smallest integer not less than Number.

    For example:

    > ceil(5.5).
    │ │ │  6
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9074,18 +9074,18 @@ │ │ │ RFC2732 .

    Options:

    • {packet_size, integer() >= 0} - Sets the maximum allowed size of the │ │ │ packet body. If the packet header indicates that the length of the packet is │ │ │ longer than the maximum allowed length, the packet is considered invalid. │ │ │ Defaults to 0, which means no size limit.

    • {line_length, integer() >= 0} - For packet type line, lines longer │ │ │ than the indicated length are truncated.

      Option line_length also applies to http* packet types as an alias for │ │ │ option packet_size if packet_size itself is not set. This use is only │ │ │ intended for backward compatibility.

    • {line_delimiter, 0 =< byte() =< 255} - For packet type line, sets the │ │ │ -delimiting byte. Default is the latin-1 character $\n.

    Examples:

    > erlang:decode_packet(1,<<3,"abcd">>,[]).
    │ │ │ -{ok,<<"abc">>,<<"d">>}
    │ │ │ -> erlang:decode_packet(1,<<5,"abcd">>,[]).
    │ │ │ -{more,6}
    │ │ │ +delimiting byte. Default is the latin-1 character $\n.

    Examples:

    > erlang:decode_packet(1,<<3,"abcd">>,[]).
    │ │ │ +{ok,<<"abc">>,<<"d">>}
    │ │ │ +> erlang:decode_packet(1,<<5,"abcd">>,[]).
    │ │ │ +{more,6}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9106,16 +9106,16 @@ │ │ │ │ │ │ │ │ │ -

    Returns a new tuple with element at Index removed from tuple Tuple1.

    For example:

    > erlang:delete_element(2, {one, two, three}).
    │ │ │ -{one,three}
    │ │ │ +

    Returns a new tuple with element at Index removed from tuple Tuple1.

    For example:

    > erlang:delete_element(2, {one, two, three}).
    │ │ │ +{one,three}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9165,15 +9165,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec element(N, Tuple) -> term() when N :: pos_integer(), Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the Nth element (numbering from 1) of Tuple.

    For example:

    > element(2, {a, b, c}).
    │ │ │ +

    Returns the Nth element (numbering from 1) of Tuple.

    For example:

    > element(2, {a, b, c}).
    │ │ │  b
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9195,18 +9195,18 @@ │ │ │ │ │ │ │ │ │

    Calculates, without doing the encoding, the maximum byte size for a term encoded │ │ │ -in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term)),
    │ │ │ -> Size2 = erlang:external_size(Term),
    │ │ │ +in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term)),
    │ │ │ +> Size2 = erlang:external_size(Term),
    │ │ │  > true = Size1 =< Size2.
    │ │ │ -true

    This is equivalent to a call to:

    erlang:external_size(Term, [])
    │ │ │ +
    true

    This is equivalent to a call to:

    erlang:external_size(Term, [])
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Calculates, without doing the encoding, the maximum byte size for a term encoded │ │ │ -in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term, Options)),
    │ │ │ -> Size2 = erlang:external_size(Term, Options),
    │ │ │ +in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term, Options)),
    │ │ │ +> Size2 = erlang:external_size(Term, Options),
    │ │ │  > true = Size1 =< Size2.
    │ │ │  true

    Option {minor_version, Version} specifies how floats are encoded. For a │ │ │ detailed description, see term_to_binary/2.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9269,15 +9269,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec float(Number) -> float() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a float by converting Number to a float.

    For example:

    > float(55).
    │ │ │ +

    Returns a float by converting Number to a float.

    For example:

    > float(55).
    │ │ │  55.0

    Note

    If used on the top level in a guard, it tests whether the argument is a │ │ │ floating point number; for clarity, use is_float/1 instead.

    When float/1 is used in an expression in a guard, such as │ │ │ 'float(A) == 4.0', it converts a number as described earlier.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9340,26 +9340,26 @@ │ │ │ {decimals, Decimals :: 0..253} | │ │ │ {scientific, Decimals :: 0..249} | │ │ │ compact | short.
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Float using fixed │ │ │ -decimal point formatting.

    Options behaves in the same way as float_to_list/2.

    For example:

    > float_to_binary(7.12, [{decimals, 4}]).
    │ │ │ -<<"7.1200">>
    │ │ │ -> float_to_binary(7.12, [{decimals, 4}, compact]).
    │ │ │ -<<"7.12">>
    │ │ │ -> float_to_binary(7.12, [{scientific, 3}]).
    │ │ │ -<<"7.120e+00">>
    │ │ │ -> float_to_binary(7.12, [short]).
    │ │ │ -<<"7.12">>
    │ │ │ -> float_to_binary(0.1+0.2, [short]).
    │ │ │ -<<"0.30000000000000004">>
    │ │ │ -> float_to_binary(0.1+0.2)
    │ │ │ -<<"3.00000000000000044409e-01">>
    │ │ │ +decimal point formatting.

    Options behaves in the same way as float_to_list/2.

    For example:

    > float_to_binary(7.12, [{decimals, 4}]).
    │ │ │ +<<"7.1200">>
    │ │ │ +> float_to_binary(7.12, [{decimals, 4}, compact]).
    │ │ │ +<<"7.12">>
    │ │ │ +> float_to_binary(7.12, [{scientific, 3}]).
    │ │ │ +<<"7.120e+00">>
    │ │ │ +> float_to_binary(7.12, [short]).
    │ │ │ +<<"7.12">>
    │ │ │ +> float_to_binary(0.1+0.2, [short]).
    │ │ │ +<<"0.30000000000000004">>
    │ │ │ +> float_to_binary(0.1+0.2)
    │ │ │ +<<"3.00000000000000044409e-01">>
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9427,25 +9427,25 @@ │ │ │ are truncated. This option is only meaningful together with option decimals.
  • If option scientific is specified, the float is formatted using scientific │ │ │ notation with Decimals digits of precision.
  • If option short is specified, the float is formatted with the smallest │ │ │ number of digits that still guarantees that │ │ │ F =:= list_to_float(float_to_list(F, [short])). When the float is inside the │ │ │ range (-2⁵³, 2⁵³), the notation that yields the smallest number of characters │ │ │ is used (scientific notation or normal decimal notation). Floats outside the │ │ │ range (-2⁵³, 2⁵³) are always formatted using scientific notation to avoid │ │ │ -confusing results when doing arithmetic operations.
  • If Options is [], the function behaves as float_to_list/1.
  • Examples:

    > float_to_list(7.12, [{decimals, 4}]).
    │ │ │ +confusing results when doing arithmetic operations.
  • If Options is [], the function behaves as float_to_list/1.
  • Examples:

    > float_to_list(7.12, [{decimals, 4}]).
    │ │ │  "7.1200"
    │ │ │ -> float_to_list(7.12, [{decimals, 4}, compact]).
    │ │ │ +> float_to_list(7.12, [{decimals, 4}, compact]).
    │ │ │  "7.12"
    │ │ │ -> float_to_list(7.12, [{scientific, 3}]).
    │ │ │ +> float_to_list(7.12, [{scientific, 3}]).
    │ │ │  "7.120e+00"
    │ │ │ -> float_to_list(7.12, [short]).
    │ │ │ +> float_to_list(7.12, [short]).
    │ │ │  "7.12"
    │ │ │ -> float_to_list(0.1+0.2, [short]).
    │ │ │ +> float_to_list(0.1+0.2, [short]).
    │ │ │  "0.30000000000000004"
    │ │ │ -> float_to_list(0.1+0.2)
    │ │ │ +> float_to_list(0.1+0.2)
    │ │ │  "3.00000000000000044409e-01"

    In the last example, float_to_list(0.1+0.2) evaluates to │ │ │ "3.00000000000000044409e-01". The reason for this is explained in │ │ │ Representation of Floating Point Numbers.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9472,15 +9472,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec floor(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the largest integer not greater than Number.

    For example:

    > floor(-10.5).
    │ │ │ +

    Returns the largest integer not greater than Number.

    For example:

    > floor(-10.5).
    │ │ │  -11
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9600,25 +9600,25 @@ │ │ │ named module, index and uniq in the result of │ │ │ erlang:fun_info(Fun).

  • uncompiled code - All funs created from fun expressions in uncompiled code │ │ │ with the same arity are mapped to the same list by │ │ │ fun_to_list/1.

  • Note

    Generally, one can not use fun_to_list/1 to check if two │ │ │ funs are equal as fun_to_list/1 does not take the fun's │ │ │ environment into account. See erlang:fun_info/1 for how to │ │ │ get the environment of a fun.

    Change

    The output of fun_to_list/1 can differ between Erlang │ │ │ -implementations and may change in future versions.

    Examples:

    -module(test).
    │ │ │ --export([add/1, add2/0, fun_tuple/0]).
    │ │ │ -add(A) -> fun(B) -> A + B end.
    │ │ │ -add2() -> fun add/1.
    │ │ │ -fun_tuple() -> {fun() -> 1 end, fun() -> 1 end}.
    > {fun test:add/1, test:add2()}.
    │ │ │ -{fun test:add/1,#Fun<test.1.107738983>}

    Explanation: fun test:add/1 is upgradable but test:add2() is not upgradable.

    > {test:add(1), test:add(42)}.
    │ │ │ -{#Fun<test.0.107738983>,#Fun<test.0.107738983>}

    Explanation: test:add(1) and test:add(42) has the same string representation │ │ │ -as the environment is not taken into account.

    >test:fun_tuple().
    │ │ │ -{#Fun<test.2.107738983>,#Fun<test.3.107738983>}

    Explanation: The string representations differ because the funs come from │ │ │ -different fun expressions.

    > {fun() -> 1 end, fun() -> 1 end}. >
    │ │ │ -{#Fun<erl_eval.45.97283095>,#Fun<erl_eval.45.97283095>}

    Explanation: All funs created from fun expressions of this form in uncompiled │ │ │ +implementations and may change in future versions.

    Examples:

    -module(test).
    │ │ │ +-export([add/1, add2/0, fun_tuple/0]).
    │ │ │ +add(A) -> fun(B) -> A + B end.
    │ │ │ +add2() -> fun add/1.
    │ │ │ +fun_tuple() -> {fun() -> 1 end, fun() -> 1 end}.
    > {fun test:add/1, test:add2()}.
    │ │ │ +{fun test:add/1,#Fun<test.1.107738983>}

    Explanation: fun test:add/1 is upgradable but test:add2() is not upgradable.

    > {test:add(1), test:add(42)}.
    │ │ │ +{#Fun<test.0.107738983>,#Fun<test.0.107738983>}

    Explanation: test:add(1) and test:add(42) has the same string representation │ │ │ +as the environment is not taken into account.

    >test:fun_tuple().
    │ │ │ +{#Fun<test.2.107738983>,#Fun<test.3.107738983>}

    Explanation: The string representations differ because the funs come from │ │ │ +different fun expressions.

    > {fun() -> 1 end, fun() -> 1 end}. >
    │ │ │ +{#Fun<erl_eval.45.97283095>,#Fun<erl_eval.45.97283095>}

    Explanation: All funs created from fun expressions of this form in uncompiled │ │ │ code with the same arity are mapped to the same list by │ │ │ fun_to_list/1.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -9642,16 +9642,16 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec hd(List) -> Head when List :: nonempty_maybe_improper_list(), Head :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the head of List, that is, the first element.

    It works with improper lists.

    Examples:

    > hd([1,2,3,4,5]).
    │ │ │ -1
    > hd([first, second, third, so_on | improper_end]).
    │ │ │ +

    Returns the head of List, that is, the first element.

    It works with improper lists.

    Examples:

    > hd([1,2,3,4,5]).
    │ │ │ +1
    > hd([first, second, third, so_on | improper_end]).
    │ │ │  first

    Failure: badarg if List is an empty list [].

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a new tuple with element Term inserted at position Index in tuple │ │ │ Tuple1. All elements from position Index and upwards are pushed one step │ │ │ -higher in the new tuple Tuple2.

    For example:

    > erlang:insert_element(2, {one, two, three}, new).
    │ │ │ -{one,new,two,three}
    │ │ │ +higher in the new tuple Tuple2.

    For example:

    > erlang:insert_element(2, {one, two, three}, new).
    │ │ │ +{one,new,two,three}
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9707,16 +9707,16 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns a binary corresponding to the text representation of Integer.

    For example:

    > integer_to_binary(77).
    │ │ │ -<<"77">>
    │ │ │ +

    Returns a binary corresponding to the text representation of Integer.

    For example:

    > integer_to_binary(77).
    │ │ │ +<<"77">>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9739,16 +9739,16 @@ │ │ │
    │ │ │ │ │ │
    -spec integer_to_binary(Integer, Base) -> binary() when Integer :: integer(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Integer in base │ │ │ -Base.

    For example:

    > integer_to_binary(1023, 16).
    │ │ │ -<<"3FF">>
    │ │ │ +Base.

    For example:

    > integer_to_binary(1023, 16).
    │ │ │ +<<"3FF">>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9768,15 +9768,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns a string corresponding to the text representation of Integer.

    For example:

    > integer_to_list(77).
    │ │ │ +

    Returns a string corresponding to the text representation of Integer.

    For example:

    > integer_to_list(77).
    │ │ │  "77"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9798,15 +9798,15 @@ │ │ │
    │ │ │ │ │ │
    -spec integer_to_list(Integer, Base) -> string() when Integer :: integer(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a string corresponding to the text representation of Integer in base │ │ │ -Base.

    For example:

    > integer_to_list(1023, 16).
    │ │ │ +Base.

    For example:

    > integer_to_list(1023, 16).
    │ │ │  "3FF"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9828,15 +9828,15 @@ │ │ │ │ │ │ │ │ │

    Returns an integer, that is the size in bytes, of the binary that would be the │ │ │ -result of iolist_to_binary(Item).

    For example:

    > iolist_size([1,2|<<3,4>>]).
    │ │ │ +result of iolist_to_binary(Item).

    For example:

    > iolist_size([1,2|<<3,4>>]).
    │ │ │  4
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9858,22 +9858,22 @@ │ │ │
    │ │ │ │ │ │
    -spec iolist_to_binary(IoListOrBinary) -> binary() when IoListOrBinary :: iolist() | binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a binary that is made from the integers and binaries in │ │ │ -IoListOrBinary.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ -> iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │ +IoListOrBinary.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │ +> iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9899,31 +9899,31 @@ │ │ │ │ │ │

    Returns an iovec that is made from the integers and binaries in │ │ │ IoListOrBinary. This function is useful when you want to flatten an iolist but │ │ │ you do not need a single binary. This can be useful for passing the data to nif │ │ │ functions such as enif_inspect_iovec or do │ │ │ more efficient message passing. The advantage of using this function over │ │ │ iolist_to_binary/1 is that it does not have to copy │ │ │ -off-heap binaries.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ +off-heap binaries.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │  %% If you pass small binaries and integers it works as iolist_to_binary
    │ │ │ -> erlang:iolist_to_iovec([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -[<<1,2,3,1,2,3,4,5,4,6>>]
    │ │ │ +> erlang:iolist_to_iovec([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +[<<1,2,3,1,2,3,4,5,4,6>>]
    │ │ │  %% If you pass larger binaries, they are split and returned in a form
    │ │ │  %% optimized for calling the C function writev.
    │ │ │ -> erlang:iolist_to_iovec([<<1>>,<<2:8096>>,<<3:8096>>]).
    │ │ │ -[<<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    │ │ │ -   0,...>>,
    │ │ │ - <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    │ │ │ -   ...>>,
    │ │ │ - <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...>>]
    │ │ │ +>
    erlang:iolist_to_iovec([<<1>>,<<2:8096>>,<<3:8096>>]). │ │ │ +[<<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, │ │ │ + 0,...>>, │ │ │ + <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, │ │ │ + ...>>, │ │ │ + <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...>>]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10253,19 +10253,19 @@ │ │ │
    │ │ │ │ │ │
    -spec is_map_key(Key, Map) -> boolean() when Key :: term(), Map :: map().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns true if map Map contains Key and returns false if it does not │ │ │ -contain the Key.

    The call fails with a {badmap,Map} exception if Map is not a map.

    Example:

    > Map = #{"42" => value}.
    │ │ │ -#{"42" => value}
    │ │ │ -> is_map_key("42",Map).
    │ │ │ +contain the Key.

    The call fails with a {badmap,Map} exception if Map is not a map.

    Example:

    > Map = #{"42" => value}.
    │ │ │ +#{"42" => value}
    │ │ │ +> is_map_key("42",Map).
    │ │ │  true
    │ │ │ -> is_map_key(value,Map).
    │ │ │ +> is_map_key(value,Map).
    │ │ │  false
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10508,15 +10508,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec length(List) -> non_neg_integer() when List :: [term()].
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the length of List.

    For example:

    > length([1,2,3,4,5,6,7,8,9]).
    │ │ │ +

    Returns the length of List.

    For example:

    > length([1,2,3,4,5,6,7,8,9]).
    │ │ │  9
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10546,15 +10546,15 @@ │ │ │ Unicode characters above 255.

    Note

    The number of characters that are permitted in an atom name is limited. The │ │ │ default limits can be found in the │ │ │ efficiency guide (section System Limits).

    Note

    There is a configurable limit │ │ │ on how many atoms that can exist and atoms are not │ │ │ garbage collected. Therefore, it is recommended to consider if │ │ │ list_to_existing_atom/1 is a better option than │ │ │ list_to_atom/1. The default limits can be found in the │ │ │ -Efficiency Guide (section System Limits).

    Example:

    > list_to_atom("Erlang").
    │ │ │ +Efficiency Guide (section System Limits).

    Example:

    > list_to_atom("Erlang").
    │ │ │  'Erlang'
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10575,22 +10575,22 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_binary(IoList) -> binary() when IoList :: iolist().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a binary that is made from the integers and binaries in IoList.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ -> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │ +

    Returns a binary that is made from the integers and binaries in IoList.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │ +> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a bitstring that is made from the integers and bitstrings in │ │ │ BitstringList. (The last tail in BitstringList is allowed to be a │ │ │ -bitstring.)

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6,7:4>>.
    │ │ │ -<<6,7:4>>
    │ │ │ -> list_to_bitstring([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6,7:4>>
    │ │ │ +bitstring.)

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6,7:4>>.
    │ │ │ +<<6,7:4>>
    │ │ │ +> list_to_bitstring([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6,7:4>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10683,15 +10683,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_float(String) -> float() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the float whose text representation is String.

    For example:

    > list_to_float("2.2017764e+0").
    │ │ │ +

    Returns the float whose text representation is String.

    For example:

    > list_to_float("2.2017764e+0").
    │ │ │  2.2017764

    The float string format is the same as the format for │ │ │ Erlang float literals except for that underscores │ │ │ are not permitted.

    Failure: badarg if String contains a bad representation of a float.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10714,17 +10714,17 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_integer(String) -> integer() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation is String.

    For example:

    > list_to_integer("123").
    │ │ │ -123
    > list_to_integer("-123").
    │ │ │ --123
    > list_to_integer("+123234982304982309482093833234234").
    │ │ │ +

    Returns an integer whose text representation is String.

    For example:

    > list_to_integer("123").
    │ │ │ +123
    > list_to_integer("-123").
    │ │ │ +-123
    > list_to_integer("+123234982304982309482093833234234").
    │ │ │  123234982304982309482093833234234

    String must contain at least one digit character and can have an optional │ │ │ prefix consisting of a single "+" or "-" character (that is, String must │ │ │ match the regular expression "^[+-]?[0-9]+$").

    Failure: badarg if String contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10747,19 +10747,19 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_integer(String, Base) -> integer() when String :: string(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation in base Base is String.

    For example:

    > list_to_integer("3FF", 16).
    │ │ │ -1023
    > list_to_integer("+3FF", 16).
    │ │ │ -1023
    > list_to_integer("3ff", 16).
    │ │ │ -1023
    > list_to_integer("3fF", 16).
    │ │ │ -1023
    > list_to_integer("-3FF", 16).
    │ │ │ +

    Returns an integer whose text representation in base Base is String.

    For example:

    > list_to_integer("3FF", 16).
    │ │ │ +1023
    > list_to_integer("+3FF", 16).
    │ │ │ +1023
    > list_to_integer("3ff", 16).
    │ │ │ +1023
    > list_to_integer("3fF", 16).
    │ │ │ +1023
    > list_to_integer("-3FF", 16).
    │ │ │  -1023

    For example, when Base is 16, String must match the regular expression │ │ │ "^[+-]?([0-9]|[A-F]|[a-f])+$".

    Failure: badarg if String contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -10781,15 +10781,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_pid(String) -> pid() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a process identifier whose text representation is a String.

    For example:

    > list_to_pid("<0.4.1>").
    │ │ │ +

    Returns a process identifier whose text representation is a String.

    For example:

    > list_to_pid("<0.4.1>").
    │ │ │  <0.4.1>

    Failure: badarg if String contains a bad representation of a process │ │ │ identifier.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10814,15 +10814,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_port(String) -> port() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a port identifier whose text representation is a String.

    For example:

    > list_to_port("#Port<0.4>").
    │ │ │ +

    Returns a port identifier whose text representation is a String.

    For example:

    > list_to_port("#Port<0.4>").
    │ │ │  #Port<0.4>

    Failure: badarg if String contains a bad representation of a port │ │ │ identifier.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10847,15 +10847,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_ref(String) -> reference() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a reference whose text representation is a String.

    For example:

    > list_to_ref("#Ref<0.4192537678.4073193475.71181>").
    │ │ │ +

    Returns a reference whose text representation is a String.

    For example:

    > list_to_ref("#Ref<0.4192537678.4073193475.71181>").
    │ │ │  #Ref<0.4192537678.4073193475.71181>

    Failure: badarg if String contains a bad representation of a reference.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -10877,16 +10877,16 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_tuple(List) -> tuple() when List :: [term()].
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a tuple corresponding to List, for example

    > list_to_tuple([share, ['Ericsson_B', 163]]).
    │ │ │ -{share, ['Ericsson_B', 163]}

    List can contain any Erlang terms.

    │ │ │ +

    Returns a tuple corresponding to List, for example

    > list_to_tuple([share, ['Ericsson_B', 163]]).
    │ │ │ +{share, ['Ericsson_B', 163]}

    List can contain any Erlang terms.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10936,16 +10936,16 @@ │ │ │
    │ │ │ │ │ │
    -spec make_tuple(Arity, InitialValue) -> tuple() when Arity :: arity(), InitialValue :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Creates a new tuple of the specified Arity, where all elements are │ │ │ -InitialValue.

    For example:

    > erlang:make_tuple(4, []).
    │ │ │ -{[],[],[],[]}
    │ │ │ +InitialValue.

    For example:

    > erlang:make_tuple(4, []).
    │ │ │ +{[],[],[],[]}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Creates a tuple of size Arity, where each element has value DefaultValue, │ │ │ and then fills in values from InitList.

    Each list element in InitList must be a two-tuple, where the first element is │ │ │ a position in the newly created tuple and the second element is any term. If a │ │ │ position occurs more than once in the list, the term corresponding to the last │ │ │ -occurrence is used.

    For example:

    > erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
    │ │ │ -{[],aa,[],[],zz}
    │ │ │ +occurrence is used.

    For example:

    > erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
    │ │ │ +{[],aa,[],[],zz}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns value Value associated with Key if Map contains Key.

    The call fails with a {badmap,Map} exception if Map is not a map, or with a │ │ │ {badkey,Key} exception if no value is associated with Key.

    Example:

    > Key = 1337,
    │ │ │ -  Map = #{42 => value_two,1337 => "value one","a" => 1},
    │ │ │ -  map_get(Key,Map).
    │ │ │ +  Map = #{42 => value_two,1337 => "value one","a" => 1},
    │ │ │ +  map_get(Key,Map).
    │ │ │  "value one"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11040,15 +11040,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns an integer, which is the number of key-value pairs in Map.

    For example:

    > map_size(#{a=>1, b=>2, c=>3}).
    │ │ │ +

    Returns an integer, which is the number of key-value pairs in Map.

    For example:

    > map_size(#{a=>1, b=>2, c=>3}).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the largest of Term1 and Term2. If the terms compare equal with the │ │ │ == operator, Term1 is returned.

    The Expressions section contains │ │ │ -descriptions of the == operator and how terms are ordered.

    Examples:

    > max(1, 2).
    │ │ │ -2
    > max(1.0, 1).
    │ │ │ -1.0
    > max(1, 1.0).
    │ │ │ -1
    > max("abc", "b").
    │ │ │ +descriptions of the == operator and how terms are ordered.

    Examples:

    > max(1, 2).
    │ │ │ +2
    > max(1.0, 1).
    │ │ │ +1.0
    > max(1, 1.0).
    │ │ │ +1
    > max("abc", "b").
    │ │ │  "b"

    Change

    Allowed in guards tests from Erlang/OTP 26.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the smallest of Term1 and Term2. If the terms compare equal with the │ │ │ == operator, Term1 is returned.

    The Expressions section contains │ │ │ -descriptions of the == operator and how terms are ordered.

    Examples:

    > min(1, 2).
    │ │ │ -1
    > min(1.0, 1).
    │ │ │ -1.0
    > min(1, 1.0).
    │ │ │ -1
    > min("abc", "b").
    │ │ │ +descriptions of the == operator and how terms are ordered.

    Examples:

    > min(1, 2).
    │ │ │ +1
    > min(1.0, 1).
    │ │ │ +1.0
    > min(1, 1.0).
    │ │ │ +1
    > min("abc", "b").
    │ │ │  "abc"

    Change

    Allowed in guards tests from Erlang/OTP 26.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11276,15 +11276,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec pid_to_list(Pid) -> string() when Pid :: pid().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a string corresponding to the text representation of Pid.

    For example:

    > erlang:pid_to_list(self()).
    │ │ │ +

    Returns a string corresponding to the text representation of Pid.

    For example:

    > erlang:pid_to_list(self()).
    │ │ │  "<0.85.0>"

    Note

    The creation for the node is not included in the list │ │ │ representation of Pid. This means that processes in different incarnations │ │ │ of a node with a specific name can get the same list representation.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11367,18 +11367,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec round(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer by rounding Number.

    For example:

    round(42.1).
    │ │ │ -42
    round(5.5).
    │ │ │ -6
    round(-5.5).
    │ │ │ --6
    round(36028797018963969.0).
    │ │ │ +

    Returns an integer by rounding Number.

    For example:

    round(42.1).
    │ │ │ +42
    round(5.5).
    │ │ │ +6
    round(-5.5).
    │ │ │ +-6
    round(36028797018963969.0).
    │ │ │  36028797018963968

    In the last example, round(36028797018963969.0) evaluates to │ │ │ 36028797018963968. The reason for this is that the number │ │ │ 36028797018963969.0 cannot be represented exactly as a float value. Instead, │ │ │ the float literal is represented as 36028797018963968.0, which is the closest │ │ │ number that can be represented exactly as a float value. See │ │ │ Representation of Floating Point Numbers │ │ │ for additional information.

    │ │ │ @@ -11408,16 +11408,16 @@ │ │ │
    -spec setelement(Index, Tuple1, Value) -> Tuple2
    │ │ │                      when Index :: pos_integer(), Tuple1 :: tuple(), Tuple2 :: tuple(), Value :: term().
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a tuple that is a copy of argument Tuple1 with the element specified │ │ │ by integer argument Index (the first element is the element with index 1) │ │ │ -replaced by argument Value.

    For example:

    > setelement(2, {10, green, bottles}, red).
    │ │ │ -{10,red,bottles}
    │ │ │ +replaced by argument Value.

    For example:

    > setelement(2, {10, green, bottles}, red).
    │ │ │ +{10,red,bottles}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -11440,17 +11440,17 @@ │ │ │
    │ │ │ │ │ │
    -spec size(Item) -> non_neg_integer() when Item :: tuple() | binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns the number of elements in a tuple or the number of bytes in a binary or │ │ │ -bitstring.

    For example:

    > size({morni, mulle, bwange}).
    │ │ │ +bitstring.

    For example:

    > size({morni, mulle, bwange}).
    │ │ │  3
    │ │ │ -> size(<<11, 22, 33>>).
    │ │ │ +> size(<<11, 22, 33>>).
    │ │ │  3

    For bitstrings, the number of whole bytes is returned. That is, if the number of │ │ │ bits in the bitstring is not divisible by 8, the resulting number of bytes is │ │ │ rounded down.

    See also tuple_size/1, byte_size/1, and bit_size/1.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11474,23 +11474,23 @@ │ │ │
    │ │ │ │ │ │
    -spec split_binary(Bin, Pos) -> {binary(), binary()} when Bin :: binary(), Pos :: non_neg_integer().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a tuple containing the binaries that are the result of splitting Bin │ │ │ -into two parts at position Pos.

    This is not a destructive operation. After the operation, there are three binaries altogether.

    For example:

    > B = list_to_binary("0123456789").
    │ │ │ -<<"0123456789">>
    │ │ │ -> byte_size(B).
    │ │ │ +into two parts at position Pos.

    This is not a destructive operation. After the operation, there are three binaries altogether.

    For example:

    > B = list_to_binary("0123456789").
    │ │ │ +<<"0123456789">>
    │ │ │ +> byte_size(B).
    │ │ │  10
    │ │ │ -> {B1, B2} = split_binary(B,3).
    │ │ │ -{<<"012">>,<<"3456789">>}
    │ │ │ -> byte_size(B1).
    │ │ │ +> {B1, B2} = split_binary(B,3).
    │ │ │ +{<<"012">>,<<"3456789">>}
    │ │ │ +> byte_size(B1).
    │ │ │  3
    │ │ │ -> byte_size(B2).
    │ │ │ +> byte_size(B2).
    │ │ │  7
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary data object that is the result of encoding Term according to │ │ │ the Erlang external term format.

    This can be used for various purposes, for example, writing a term to a file in │ │ │ an efficient way, or sending an Erlang term to some type of communications │ │ │ -channel not supported by distributed Erlang.

    > Bin = term_to_binary(hello).
    │ │ │ -<<131,100,0,5,104,101,108,108,111>>
    │ │ │ -> hello = binary_to_term(Bin).
    │ │ │ +channel not supported by distributed Erlang.

    > Bin = term_to_binary(hello).
    │ │ │ +<<131,100,0,5,104,101,108,108,111>>
    │ │ │ +> hello = binary_to_term(Bin).
    │ │ │  hello

    See also binary_to_term/1.

    Note

    There is no guarantee that this function will return the same encoded │ │ │ representation for the same term.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -11741,18 +11741,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec tl(List) -> Tail when List :: nonempty_maybe_improper_list(), Tail :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the tail of List, that is, the list minus the first element

    It works with improper lists.

    Examples:

    > tl([geesties, guilies, beasties]).
    │ │ │ -[guilies, beasties]
    > tl([geesties]).
    │ │ │ -[]
    > tl([geesties, guilies, beasties | improper_end]).
    │ │ │ -[guilies, beasties | improper_end]
    > tl([geesties | improper_end]).
    │ │ │ +

    Returns the tail of List, that is, the list minus the first element

    It works with improper lists.

    Examples:

    > tl([geesties, guilies, beasties]).
    │ │ │ +[guilies, beasties]
    > tl([geesties]).
    │ │ │ +[]
    > tl([geesties, guilies, beasties | improper_end]).
    │ │ │ +[guilies, beasties | improper_end]
    > tl([geesties | improper_end]).
    │ │ │  improper_end

    Failure: badarg if List is an empty list [].

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11775,18 +11775,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec trunc(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Truncates the decimals of Number.

    For example:

    > trunc(5.7).
    │ │ │ -5
    > trunc(-5.7).
    │ │ │ --5
    > trunc(5).
    │ │ │ -5
    > trunc(36028797018963969.0).
    │ │ │ +

    Truncates the decimals of Number.

    For example:

    > trunc(5.7).
    │ │ │ +5
    > trunc(-5.7).
    │ │ │ +-5
    > trunc(5).
    │ │ │ +5
    > trunc(36028797018963969.0).
    │ │ │  36028797018963968

    In the last example, trunc(36028797018963969.0) evaluates to │ │ │ 36028797018963968. The reason for this is that the number │ │ │ 36028797018963969.0 cannot be represented exactly as a float value. Instead, │ │ │ the float literal is represented as 36028797018963968.0, which is the closest │ │ │ number that can be represented exactly as a float value. See │ │ │ Representation of Floating Point Numbers │ │ │ for additional information.

    │ │ │ @@ -11815,15 +11815,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec tuple_size(Tuple) -> non_neg_integer() when Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer that is the number of elements in Tuple.

    For example:

    > tuple_size({morni, mulle, bwange}).
    │ │ │ +

    Returns an integer that is the number of elements in Tuple.

    For example:

    > tuple_size({morni, mulle, bwange}).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11845,16 +11845,16 @@ │ │ │
    │ │ │ │ │ │
    -spec tuple_to_list(Tuple) -> [term()] when Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a list corresponding to Tuple. Tuple can contain any Erlang terms. │ │ │ -Example:

    > tuple_to_list({share, {'Ericsson_B', 163}}).
    │ │ │ -[share,{'Ericsson_B',163}]
    │ │ │ +Example:

    > tuple_to_list({share, {'Ericsson_B', 163}}).
    │ │ │ +[share,{'Ericsson_B',163}]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -12009,35 +12009,35 @@ │ │ │ │ │ │

    Create an alias which can be used when sending messages to the process that │ │ │ created the alias. When the alias has been deactivated, messages sent using the │ │ │ alias will be dropped. An alias can be deactivated using unalias/1.

    Currently available options for alias/1:

    • explicit_unalias - The alias can only be deactivated via a call to │ │ │ unalias/1. This is also the default behaviour if no options │ │ │ are passed or if alias/0 is called.

    • reply - The alias will be automatically deactivated when a reply message │ │ │ sent via the alias is received. The alias can also still be deactivated via a │ │ │ -call to unalias/1.

    Example:

    server() ->
    │ │ │ +call to unalias/1.

    Example:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, AliasReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │ +        {request, AliasReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPid, Request) ->
    │ │ │ -    AliasReqId = alias([reply]),
    │ │ │ -    ServerPid ! {request, AliasReqId, Request},
    │ │ │ +client(ServerPid, Request) ->
    │ │ │ +    AliasReqId = alias([reply]),
    │ │ │ +    ServerPid ! {request, AliasReqId, Request},
    │ │ │      %% Alias will be automatically deactivated if we receive a reply
    │ │ │      %% since we used the 'reply' option...
    │ │ │      receive
    │ │ │ -        {reply, AliasReqId, Result} -> Result
    │ │ │ +        {reply, AliasReqId, Result} -> Result
    │ │ │      after 5000 ->
    │ │ │ -            unalias(AliasReqId),
    │ │ │ +            unalias(AliasReqId),
    │ │ │              %% Flush message queue in case the reply arrived
    │ │ │              %% just before the alias was deactivated...
    │ │ │ -            receive {reply, AliasReqId, Result} -> Result
    │ │ │ -            after 0 -> exit(timeout)
    │ │ │ +            receive {reply, AliasReqId, Result} -> Result
    │ │ │ +            after 0 -> exit(timeout)
    │ │ │              end
    │ │ │      end.

    Note that both the server and the client in this example must be executing on at │ │ │ least OTP 24 systems in order for this to work.

    For more information on process aliases see the │ │ │ Process Aliases section of │ │ │ the Erlang Reference Manual.

    │ │ │
    │ │ │ │ │ │ @@ -12096,17 +12096,17 @@ │ │ │
    -spec apply(Module, Function, Args) -> term()
    │ │ │                 when Module :: module(), Function :: atom(), Args :: [term()].
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the result of applying Function in Module to Args. The applied │ │ │ function must be exported from Module. The arity of the function is the length │ │ │ -of Args.

    For example:

    > apply(lists, reverse, [[a, b, c]]).
    │ │ │ -[c,b,a]
    │ │ │ -> apply(erlang, atom_to_list, ['Erlang']).
    │ │ │ +of Args.

    For example:

    > apply(lists, reverse, [[a, b, c]]).
    │ │ │ +[c,b,a]
    │ │ │ +> apply(erlang, atom_to_list, ['Erlang']).
    │ │ │  "Erlang"

    If the number of arguments are known at compile time, the call is better written │ │ │ as Module:Function(Arg1, Arg2, ..., ArgN).

    Failure: error_handler:undefined_function/3 is called if the applied function │ │ │ is not exported. The error handler can be redefined (see process_flag/2). If │ │ │ error_handler is undefined, or if the user has redefined the default │ │ │ error_handler so the replacement module is undefined, an error with reason │ │ │ undef is generated.

    │ │ │ │ │ │ @@ -12213,17 +12213,17 @@ │ │ │ when MonitorRef :: reference(), OptionList :: [Option], Option :: flush | info.
    │ │ │ │ │ │ │ │ │ │ │ │

    The returned value is true unless info is part of OptionList.

    demonitor(MonitorRef, []) is equivalent to │ │ │ demonitor(MonitorRef).

    Options:

    • flush - Removes (one) {_, MonitorRef, _, _, _} message, if there is │ │ │ one, from the caller message queue after monitoring has been stopped.

      Calling demonitor(MonitorRef, [flush]) is equivalent to the │ │ │ -following, but more efficient:

      demonitor(MonitorRef),
      │ │ │ +following, but more efficient:

      demonitor(MonitorRef),
      │ │ │  receive
      │ │ │ -    {_, MonitorRef, _, _, _} ->
      │ │ │ +    {_, MonitorRef, _, _, _} ->
      │ │ │          true
      │ │ │  after 0 ->
      │ │ │          true
      │ │ │  end
    • info - The returned value is one of the following:

      • true - The monitor was found and removed. In this case, no 'DOWN' │ │ │ message corresponding to this monitor has been delivered and will not be │ │ │ delivered.

      • false - The monitor was not found and could not be removed. This │ │ │ probably because someone already has placed a 'DOWN' message corresponding │ │ │ @@ -12252,18 +12252,18 @@ │ │ │ │ │ │

        │ │ │ │ │ │
        -spec erase() -> [{Key, Val}] when Key :: term(), Val :: term().
        │ │ │ │ │ │
        │ │ │ │ │ │ -

        Returns the process dictionary and deletes it.

        For example:

        > put(key1, {1, 2, 3}),
        │ │ │ -put(key2, [a, b, c]),
        │ │ │ -erase().
        │ │ │ -[{key1,{1,2,3}},{key2,[a,b,c]}]
        │ │ │ +

        Returns the process dictionary and deletes it.

        For example:

        > put(key1, {1, 2, 3}),
        │ │ │ +put(key2, [a, b, c]),
        │ │ │ +erase().
        │ │ │ +[{key1,{1,2,3}},{key2,[a,b,c]}]
        │ │ │ │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Returns the value Val associated with Key and deletes it from the process │ │ │ dictionary. Returns undefined if no value is associated with Key.

        The average time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

        For example:

        > put(key1, {merry, lambs, are, playing}),
        │ │ │ -X = erase(key1),
        │ │ │ -{X, erase(key1)}.
        │ │ │ -{{merry,lambs,are,playing},undefined}
        │ │ │ +items in the process dictionary.

        For example:

        > put(key1, {merry, lambs, are, playing}),
        │ │ │ +X = erase(key1),
        │ │ │ +{X, erase(key1)}.
        │ │ │ +{{merry,lambs,are,playing},undefined}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Raises an exception of class error with the reason Reason.

        As evaluating this function causes an exception to be thrown, it has no return value.

        The intent of the exception class error is to signal that an unexpected error │ │ │ has happened (for example, a function is called with a parameter that has an │ │ │ incorrect type). See the guide about │ │ │ errors and error handling for additional information. │ │ │ -Example:

        > catch error(foobar).
        │ │ │ -{'EXIT',{foobar,[{shell,apply_fun,3,
        │ │ │ -                        [{file,"shell.erl"},{line,906}]},
        │ │ │ -                 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,677}]},
        │ │ │ -                 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,430}]},
        │ │ │ -                 {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
        │ │ │ -                 {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
        │ │ │ -                 {shell,eval_loop,3,[{file,"shell.erl"},{line,627}]}]}}
        │ │ │ +Example:

        > catch error(foobar).
        │ │ │ +{'EXIT',{foobar,[{shell,apply_fun,3,
        │ │ │ +                        [{file,"shell.erl"},{line,906}]},
        │ │ │ +                 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,677}]},
        │ │ │ +                 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,430}]},
        │ │ │ +                 {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
        │ │ │ +                 {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
        │ │ │ +                 {shell,eval_loop,3,[{file,"shell.erl"},{line,627}]}]}}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12365,21 +12365,21 @@ │ │ │ none.

        If Args is a list, it is used to provide the arguments for the current │ │ │ function in the stack back-trace. If it is none, the arity of the calling │ │ │ function is used in the stacktrace. As evaluating this function causes an │ │ │ exception to be raised, it has no return value.

        The intent of the exception class error is to signal that an unexpected error │ │ │ has happened (for example, a function is called with a parameter that has an │ │ │ incorrect type). See the guide about │ │ │ errors and error handling for additional information. │ │ │ -Example:

        test.erl:

        -module(test).
        │ │ │ --export([example_fun/2]).
        │ │ │ +Example:

        test.erl:

        -module(test).
        │ │ │ +-export([example_fun/2]).
        │ │ │  
        │ │ │ -example_fun(A1, A2) ->
        │ │ │ -    erlang:error(my_error, [A1, A2]).

        Erlang shell:

        6> c(test).
        │ │ │ -{ok,test}
        │ │ │ -7> test:example_fun(arg1,"this is the second argument").
        │ │ │ +example_fun(A1, A2) ->
        │ │ │ +    erlang:error(my_error, [A1, A2]).

        Erlang shell:

        6> c(test).
        │ │ │ +{ok,test}
        │ │ │ +7> test:example_fun(arg1,"this is the second argument").
        │ │ │  ** exception error: my_error
        │ │ │       in function  test:example_fun/2
        │ │ │           called as test:example_fun(arg1,"this is the second argument")
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ @@ -12456,18 +12456,18 @@ │ │ │ │ │ │ │ │ │ │ │ │

        Raises an exception of class exit with exit reason Reason.

        As evaluating this function causes an exception to be raised, it has no return value.

        The intent of the exception class exit is that the current process should be │ │ │ stopped (for example when a message telling a process to stop is received).

        This function differ from error/1,2,3 by causing an exception of │ │ │ a different class and by having a reason that does not include the list of │ │ │ functions from the call stack.

        See the guide about errors and error handling for │ │ │ -additional information.

        Example:

        > exit(foobar).
        │ │ │ +additional information.

        Example:

        > exit(foobar).
        │ │ │  ** exception exit: foobar
        │ │ │ -> catch exit(foobar).
        │ │ │ -{'EXIT',foobar}

        Note

        If a process calls exit(kill) and does not catch the exception, │ │ │ +> catch exit(foobar). │ │ │ +{'EXIT',foobar}

        Note

        If a process calls exit(kill) and does not catch the exception, │ │ │ it will terminate with exit reason kill and also emit exit signals with exit │ │ │ reason kill (not killed) to all linked processes. Such exit signals with │ │ │ exit reason kill can be trapped by the linked processes. Note that this │ │ │ means that signals with exit reason kill behave differently depending on how │ │ │ they are sent because the signal will be untrappable if a process sends such a │ │ │ signal to another process with erlang:exit/2.

        │ │ │
        │ │ │ @@ -12660,19 +12660,19 @@ │ │ │
        │ │ │ │ │ │
        -spec get() -> [{Key, Val}] when Key :: term(), Val :: term().
        │ │ │ │ │ │
        │ │ │ │ │ │

        Returns the process dictionary as a list of {Key, Val} tuples. The items in │ │ │ -the returned list can be in any order.

        For example:

        > put(key1, merry),
        │ │ │ -put(key2, lambs),
        │ │ │ -put(key3, {are, playing}),
        │ │ │ -get().
        │ │ │ -[{key1,merry},{key2,lambs},{key3,{are,playing}}]
        │ │ │ +the returned list can be in any order.

        For example:

        > put(key1, merry),
        │ │ │ +put(key2, lambs),
        │ │ │ +put(key3, {are, playing}),
        │ │ │ +get().
        │ │ │ +[{key1,merry},{key2,lambs},{key3,{are,playing}}]
        │ │ │ │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Returns the value Val associated with Key in the process dictionary, or │ │ │ undefined if Key does not exist.

        The expected time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

        For example:

        > put(key1, merry),
        │ │ │ -put(key2, lambs),
        │ │ │ -put({any, [valid, term]}, {are, playing}),
        │ │ │ -get({any, [valid, term]}).
        │ │ │ -{are,playing}
        │ │ │ +items in the process dictionary.

        For example:

        > put(key1, merry),
        │ │ │ +put(key2, lambs),
        │ │ │ +put({any, [valid, term]}, {are, playing}),
        │ │ │ +get({any, [valid, term]}).
        │ │ │ +{are,playing}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12730,19 +12730,19 @@ │ │ │ │ │ │ │ │ │

        Returns a list of all keys present in the process dictionary. The items in the │ │ │ -returned list can be in any order.

        For example:

        > put(dog, {animal,1}),
        │ │ │ -put(cow, {animal,2}),
        │ │ │ -put(lamb, {animal,3}),
        │ │ │ -get_keys().
        │ │ │ -[dog,cow,lamb]
        │ │ │ +returned list can be in any order.

        For example:

        > put(dog, {animal,1}),
        │ │ │ +put(cow, {animal,2}),
        │ │ │ +put(lamb, {animal,3}),
        │ │ │ +get_keys().
        │ │ │ +[dog,cow,lamb]
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12763,22 +12763,22 @@ │ │ │ │ │ │ │ │ │

        Returns a list of keys that are associated with the value Val in the process │ │ │ -dictionary. The items in the returned list can be in any order.

        For example:

        > put(mary, {1, 2}),
        │ │ │ -put(had, {1, 2}),
        │ │ │ -put(a, {1, 2}),
        │ │ │ -put(little, {1, 2}),
        │ │ │ -put(dog, {1, 3}),
        │ │ │ -put(lamb, {1, 2}),
        │ │ │ -get_keys({1, 2}).
        │ │ │ -[mary,had,a,little,lamb]
        │ │ │ +dictionary. The items in the returned list can be in any order.

        For example:

        > put(mary, {1, 2}),
        │ │ │ +put(had, {1, 2}),
        │ │ │ +put(a, {1, 2}),
        │ │ │ +put(little, {1, 2}),
        │ │ │ +put(dog, {1, 3}),
        │ │ │ +put(lamb, {1, 2}),
        │ │ │ +get_keys({1, 2}).
        │ │ │ +[mary,had,a,little,lamb]
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12925,17 +12925,17 @@ │ │ │

        Pid must refer to a process at the local node.

        Returns true if the process exists and is alive, that is, is not exiting and │ │ │ has not exited. Otherwise returns false.

        If process P1 calls is_process_alive(P2Pid) it is │ │ │ guaranteed that all signals, sent from P1 to P2 (P2 is the process with │ │ │ identifier P2Pid) before the call, will be delivered to P2 before the │ │ │ aliveness of P2 is checked. This guarantee means that one can use │ │ │ is_process_alive/1 to let a process P1 wait until a │ │ │ process P2, which has got an exit signal with reason kill from P1, is │ │ │ -killed.

        For example:

        exit(P2Pid, kill),
        │ │ │ +killed.

        For example:

        exit(P2Pid, kill),
        │ │ │  % P2 might not be killed
        │ │ │ -is_process_alive(P2Pid),
        │ │ │ +is_process_alive(P2Pid),
        │ │ │  % P2 is not alive (the call above always return false)

        See the documentation about signals │ │ │ and erlang:exit/2 for more information about signals and exit │ │ │ signals.

        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ @@ -13016,24 +13016,24 @@ │ │ │
        -spec monitor(process, monitor_process_identifier()) -> MonitorRef when MonitorRef :: reference();
        │ │ │               (port, monitor_port_identifier()) -> MonitorRef when MonitorRef :: reference();
        │ │ │               (time_offset, clock_service) -> MonitorRef when MonitorRef :: reference().
        │ │ │ │ │ │ │ │ │ │ │ │

        Sends a monitor request of type Type to the entity identified by Item.

        If the monitored entity does not exist or it changes monitored state, the caller │ │ │ -of monitor/2 is notified by a message on the following format:

        {Tag, MonitorRef, Type, Object, Info}

        Note

        The monitor request is an asynchronous signal. That is, it takes time before │ │ │ +of monitor/2 is notified by a message on the following format:

        {Tag, MonitorRef, Type, Object, Info}

        Note

        The monitor request is an asynchronous signal. That is, it takes time before │ │ │ the signal reaches its destination.

        Type can be one of the following atoms: process, port or time_offset.

        A process or port monitor is triggered only once, after that it is removed │ │ │ from both monitoring process and the monitored entity. Monitors are fired when │ │ │ the monitored process or port terminates, does not exist at the moment of │ │ │ creation, or if the connection to it is lost. If the connection to it is lost, │ │ │ we do not know if it still exists. The monitoring is also turned off when │ │ │ demonitor/1 is called.

        A process or port monitor by name resolves the RegisteredName to pid/0 │ │ │ or port/0 only once at the moment of monitor instantiation, later changes to │ │ │ the name registration will not affect the existing monitor.

        When a process or port monitor is triggered, a 'DOWN' message is sent that │ │ │ -has the following pattern:

        {'DOWN', MonitorRef, Type, Object, Info}

        In the monitor message MonitorRef and Type are the same as described │ │ │ +has the following pattern:

        {'DOWN', MonitorRef, Type, Object, Info}

        In the monitor message MonitorRef and Type are the same as described │ │ │ earlier, and:

        • Object - The monitored entity, which triggered the event. When │ │ │ monitoring a process or a local port, Object will be equal to the pid/0 │ │ │ or port/0 that was being monitored. When monitoring process or port by │ │ │ name, Object will have format {RegisteredName, Node} where │ │ │ RegisteredName is the name which has been used with │ │ │ monitor/2 call and Node is local or remote node name (for │ │ │ ports monitored by name, Node is always local node name).

        • Info - Either the exit reason of the process, noproc (process or port │ │ │ @@ -13069,15 +13069,15 @@ │ │ │ offset is changed when the runtime system detects that the │ │ │ OS system time has changed. The runtime │ │ │ system does, however, not detect this immediately when it occurs. A task │ │ │ checking the time offset is scheduled to execute at least once a minute, so │ │ │ under normal operation this is to be detected within a minute, but during │ │ │ heavy load it can take longer time.

          The monitor is not automatically removed after it has been triggered. That │ │ │ is, repeated changes of the time offset trigger the monitor repeatedly.

          When the monitor is triggered a 'CHANGE' message is sent to the monitoring │ │ │ -process. A 'CHANGE' message has the following pattern:

          {'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

          where MonitorRef, Type, and Item are the same as described above, and │ │ │ +process. A 'CHANGE' message has the following pattern:

          {'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

          where MonitorRef, Type, and Item are the same as described above, and │ │ │ NewTimeOffset is the new time offset.

          When the 'CHANGE' message has been received you are guaranteed not to │ │ │ retrieve the old time offset when calling │ │ │ erlang:time_offset/0. Notice that you can observe the │ │ │ change of the time offset when calling erlang:time_offset/0 before you get │ │ │ the 'CHANGE' message.

          Available since OTP 18.0.

        Making several calls to monitor/2 for the same Item and/or │ │ │ Type is not an error; it results in as many independent monitoring instances.

        The monitor functionality is expected to be extended. That is, other Types and │ │ │ Items are expected to be supported in a future release.

        Note

        If or when monitor/2 is extended, other possible values for │ │ │ @@ -13133,78 +13133,78 @@ │ │ │ via the alias is received. When a reply message is received via the alias │ │ │ the monitor will also be automatically removed. This is useful in │ │ │ client/server scenarios when a client monitors the server and will get the │ │ │ reply via the alias. Once the response is received both the alias and the │ │ │ monitor will be automatically removed regardless of whether the response is │ │ │ a reply or a 'DOWN' message. The alias can also still be deactivated via a │ │ │ call to unalias/1. Note that if the alias is removed using │ │ │ -the unalias/1 BIF, the monitor will still be left active.

      Example:

      server() ->
      │ │ │ +the unalias/1 BIF, the monitor will still be left active.

    Example:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, AliasReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │ +        {request, AliasReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPid, Request) ->
    │ │ │ -    AliasMonReqId = monitor(process, ServerPid, [{alias, reply_demonitor}]),
    │ │ │ -    ServerPid ! {request, AliasMonReqId, Request},
    │ │ │ +client(ServerPid, Request) ->
    │ │ │ +    AliasMonReqId = monitor(process, ServerPid, [{alias, reply_demonitor}]),
    │ │ │ +    ServerPid ! {request, AliasMonReqId, Request},
    │ │ │      %% Alias as well as monitor will be automatically deactivated if we
    │ │ │      %% receive a reply or a 'DOWN' message since we used 'reply_demonitor'
    │ │ │      %% as unalias option...
    │ │ │      receive
    │ │ │ -        {reply, AliasMonReqId, Result} ->
    │ │ │ +        {reply, AliasMonReqId, Result} ->
    │ │ │              Result;
    │ │ │ -        {'DOWN', AliasMonReqId, process, ServerPid, ExitReason} ->
    │ │ │ -            error(ExitReason)
    │ │ │ +        {'DOWN', AliasMonReqId, process, ServerPid, ExitReason} ->
    │ │ │ +            error(ExitReason)
    │ │ │      end.

    Note that both the server and the client in this example must be executing on │ │ │ at least OTP 24 systems in order for this to work.

    For more information on process aliases see the │ │ │ Process Aliases section │ │ │ of the Erlang Reference Manual.

  • {tag, UserDefinedTag} - Replace the default Tag with UserDefinedTag │ │ │ in the monitor message delivered when the │ │ │ monitor is triggered. For example, when monitoring a process, the 'DOWN' tag │ │ │ in the down message will be replaced by UserDefinedTag.

    An example of how the {tag, UserDefinedTag} option can be used in order to │ │ │ enable the new │ │ │ selective receive optimization, │ │ │ -introduced in OTP 24, when making multiple requests to different servers:

    server() ->
    │ │ │ +introduced in OTP 24, when making multiple requests to different servers:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, From, ReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            From ! {reply, self(), ReqId, Result}
    │ │ │ +        {request, From, ReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            From ! {reply, self(), ReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPids, Request) when is_list(ServerPids) ->
    │ │ │ -    ReqId = make_ref(),
    │ │ │ -    lists:foreach(fun (ServerPid) ->
    │ │ │ -                          _ = monitor(process, ServerPid,
    │ │ │ -                                      [{tag, {'DOWN', ReqId}}]),
    │ │ │ -                          ServerPid ! {request, self(), ReqId, Request}
    │ │ │ +client(ServerPids, Request) when is_list(ServerPids) ->
    │ │ │ +    ReqId = make_ref(),
    │ │ │ +    lists:foreach(fun (ServerPid) ->
    │ │ │ +                          _ = monitor(process, ServerPid,
    │ │ │ +                                      [{tag, {'DOWN', ReqId}}]),
    │ │ │ +                          ServerPid ! {request, self(), ReqId, Request}
    │ │ │                    end,
    │ │ │ -                  ServerPids),
    │ │ │ -    receive_replies(ReqId, length(ServerPids), []).
    │ │ │ +                  ServerPids),
    │ │ │ +    receive_replies(ReqId, length(ServerPids), []).
    │ │ │  
    │ │ │ -receive_replies(_ReqId, 0, Acc) ->
    │ │ │ +receive_replies(_ReqId, 0, Acc) ->
    │ │ │      Acc;
    │ │ │ -receive_replies(ReqId, N, Acc) ->
    │ │ │ +receive_replies(ReqId, N, Acc) ->
    │ │ │      %% The compiler will detect that we match on the 'ReqId'
    │ │ │      %% reference in all clauses, and will enable the selective
    │ │ │      %% receive optimization which makes the receive able to
    │ │ │      %% skip past all messages present in the message queue at
    │ │ │      %% the time when the 'ReqId' reference was created...
    │ │ │      Res = receive
    │ │ │ -              {reply, ServerPid, ReqId, Result} ->
    │ │ │ +              {reply, ServerPid, ReqId, Result} ->
    │ │ │                    %% Here we typically would have deactivated the
    │ │ │                    %% monitor by a call to demonitor(Mon, [flush]) but
    │ │ │                    %% we ignore this in this example for simplicity...
    │ │ │ -                  {ok, ServerPid, Result};
    │ │ │ -              {{'DOWN', ReqId}, _Mon, process, ServerPid, ExitReason} ->
    │ │ │ -                  {error, ServerPid, ExitReason}
    │ │ │ +                  {ok, ServerPid, Result};
    │ │ │ +              {{'DOWN', ReqId}, _Mon, process, ServerPid, ExitReason} ->
    │ │ │ +                  {error, ServerPid, ExitReason}
    │ │ │            end,
    │ │ │ -    receive_replies(ReqId, N-1, [Res | Acc]).

    In order for this example to work as intended, the client must be executing on │ │ │ + receive_replies(ReqId, N-1, [Res | Acc]).

    In order for this example to work as intended, the client must be executing on │ │ │ at least an OTP 24 system, but the servers may execute on older systems.

  • │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -13910,15 +13910,15 @@ │ │ │ (sensitive, Boolean) -> OldBoolean when Boolean :: boolean(), OldBoolean :: boolean(); │ │ │ ({monitor_nodes, term()}, term()) -> term(); │ │ │ (monitor_nodes, term()) -> term().
    │ │ │ │ │ │ │ │ │ │ │ │

    Sets the process flag indicated to the specified value. Returns the previous value │ │ │ -of the flag.

    Flag is one of the following:

    • process_flag(async_dist, boolean())

      Enable or disable fully asynchronous distributed signaling for the calling │ │ │ +of the flag.

      Flag is one of the following:

      • process_flag(async_dist, boolean())

        Enable or disable fully asynchronous distributed signaling for the calling │ │ │ process. When disabled, which is the default, the process sending a distributed │ │ │ signal will block in the send operation if the buffer for the distribution │ │ │ channel reach the distribution buffer busy limit. The │ │ │ process will remain blocked until the buffer shrinks enough. This might in some │ │ │ cases take a substantial amount of time. When async_dist is enabled, send │ │ │ operations of distributed signals will always buffer the signal on the outgoing │ │ │ distribution channel and then immediately return. That is, these send operations │ │ │ @@ -13935,22 +13935,22 @@ │ │ │ caller.

        The async_dist flag can also be set on a new process when spawning it using │ │ │ the spawn_opt() BIF with the option │ │ │ {async_dist, Enable}. The default │ │ │ async_dist flag to use on newly spawned processes can be set by passing the │ │ │ command line argument +pad <boolean> when starting the │ │ │ runtime system. If the +pad <boolean> command line argument is not passed, the │ │ │ default value of the async_dist flag will be false.

        You can inspect the state of the async_dist process flag of a process by │ │ │ -calling process_info(Pid, async_dist).

      • process_flag(trap_exit, boolean())

        When trap_exit is set to true, exit signals arriving to a process are │ │ │ +calling process_info(Pid, async_dist).

      • process_flag(trap_exit, boolean())

        When trap_exit is set to true, exit signals arriving to a process are │ │ │ converted to {'EXIT', From, Reason} messages, which can be received as │ │ │ ordinary messages. If trap_exit is set to false, the process exits if it │ │ │ receives an exit signal other than normal and the exit signal is propagated to │ │ │ -its linked processes. Application processes are normally not to trap exits.

        See also exit/2.

      • process_flag(error_handler, module())

        Used by a process to redefine the error_handler for undefined function calls and │ │ │ +its linked processes. Application processes are normally not to trap exits.

        See also exit/2.

      • process_flag(error_handler, module())

        Used by a process to redefine the error_handler for undefined function calls and │ │ │ undefined registered processes. Use this flag with substantial caution, as code │ │ │ -auto-loading depends on the correct operation of the error handling module.

      • process_flag(fullsweep_after,  non_neg_integer())

        Changes the maximum number of generational collections before forcing a │ │ │ -fullsweep for the calling process.

      • process_flag(min_heap_size, non_neg_integer())

        Changes the minimum heap size for the calling process.

      • process_flag(min_bin_vheap_size, non_neg_integer())

        Changes the minimum binary virtual heap size for the calling process.

      • process_flag(max_heap_size, max_heap_size())

        This flag sets the maximum heap size for the calling process. If MaxHeapSize │ │ │ +auto-loading depends on the correct operation of the error handling module.

      • process_flag(fullsweep_after,  non_neg_integer())

        Changes the maximum number of generational collections before forcing a │ │ │ +fullsweep for the calling process.

      • process_flag(min_heap_size, non_neg_integer())

        Changes the minimum heap size for the calling process.

      • process_flag(min_bin_vheap_size, non_neg_integer())

        Changes the minimum binary virtual heap size for the calling process.

      • process_flag(max_heap_size, max_heap_size())

        This flag sets the maximum heap size for the calling process. If MaxHeapSize │ │ │ is an integer, the system default values for kill and error_logger are used.

        For details on how the heap grows, see │ │ │ Sizing the heap in the ERTS internal │ │ │ documentation.

        • size - The maximum size in words of the process. If set to zero, the │ │ │ heap size limit is disabled. badarg is be thrown if the value is smaller │ │ │ than min_heap_size. The size check │ │ │ is only done when a garbage collection is triggered.

          size is the entire heap of the process when garbage collection is triggered. │ │ │ This includes all generational heaps, the process stack, any │ │ │ @@ -13978,27 +13978,27 @@ │ │ │ of it is referred by the process.

          If include_shared_binaries is not defined in the map, the system default is │ │ │ used. The default system default is false. It can be changed by either the │ │ │ option +hmaxib in erl, or │ │ │ erlang:system_flag(max_heap_size, MaxHeapSize).

        The heap size of a process is quite hard to predict, especially the amount of │ │ │ memory that is used during the garbage collection. When contemplating using this │ │ │ option, it is recommended to first run it in production with kill set to │ │ │ false and inspect the log events to see what the normal peak sizes of the │ │ │ -processes in the system is and then tune the value accordingly.

      • process_flag(message_queue_data, message_queue_data())

        Determines how messages in the message queue are stored, as follows:

        • off_heap - All messages in the message queue will be stored outside │ │ │ +processes in the system is and then tune the value accordingly.

        • process_flag(message_queue_data, message_queue_data())

          Determines how messages in the message queue are stored, as follows:

          • off_heap - All messages in the message queue will be stored outside │ │ │ the process heap. This implies that no messages in the message queue will be │ │ │ part of a garbage collection of the process.

          • on_heap - All messages in the message queue will eventually be placed on │ │ │ the process heap. They can, however, be temporarily stored off the heap. This │ │ │ is how messages have always been stored up until ERTS 8.0.

          The default value of the message_queue_data process flag is determined by the │ │ │ command-line argument +hmqd in erl.

          If the process may potentially accumulate a large number of messages in its │ │ │ queue it is recommended to set the flag value to off_heap. This is due to the │ │ │ fact that the garbage collection of a process that has a large number of │ │ │ messages stored on the heap can become extremely expensive and the process can │ │ │ consume large amounts of memory. The performance of the actual message passing │ │ │ is, however, generally better when the flag value is on_heap.

          Changing the flag value causes any existing messages to be moved. The move │ │ │ operation is initiated, but not necessarily completed, by the time the function │ │ │ -returns.

        • process_flag(priority, priority_level())

          Sets the process priority. Level is an atom. Four priority levels exist: │ │ │ +returns.

        • process_flag(priority, priority_level())

          Sets the process priority. Level is an atom. Four priority levels exist: │ │ │ low, normal, high, and max. Default is normal.

          Note

          Priority level max is reserved for internal use in the Erlang runtime │ │ │ system, and is not to be used by others.

          Internally in each priority level, processes are scheduled in a round robin │ │ │ fashion.

          Execution of processes on priority normal and low are interleaved. Processes │ │ │ on priority low are selected for execution less frequently than processes on │ │ │ priority normal.

          When runnable processes on priority high exist, no processes on priority low │ │ │ or normal are selected for execution. Notice however that this does not mean │ │ │ that no processes on priority low or normal can run when processes are │ │ │ @@ -14019,24 +14019,24 @@ │ │ │ process during the call. Even if this is not the case with one version of the │ │ │ code that you have no control over, it can be the case in a future version of │ │ │ it. This can, for example, occur if a high priority process triggers code │ │ │ loading, as the code server runs on priority normal.

          Other priorities than normal are normally not needed. When other priorities │ │ │ are used, use them with care, especially priority high. A process on │ │ │ priority high is only to perform work for short periods. Busy looping for long │ │ │ periods in a high priority process causes most likely problems, as important │ │ │ -OTP servers run on priority normal.

        • process_flag(save_calls, 0..10000)

          N must be an integer in the interval 0..10000. If N > 0, call saving is made │ │ │ +OTP servers run on priority normal.

        • process_flag(save_calls, 0..10000)

          N must be an integer in the interval 0..10000. If N > 0, call saving is made │ │ │ active for the process. This means that information about the N most recent │ │ │ global function calls, BIF calls, sends, and receives made by the process are │ │ │ saved in a list, which can be retrieved with │ │ │ process_info(Pid, last_calls). A global function call is │ │ │ one in which the module of the function is explicitly mentioned. Only a fixed │ │ │ amount of information is saved, as follows:

          • A tuple {Module, Function, Arity} for function calls
          • The atoms send, 'receive', and timeout for sends and receives │ │ │ ('receive' when a message is received and timeout when a receive times │ │ │ out)

          If N = 0, call saving is disabled for the process, which is the default. │ │ │ -Whenever the size of the call saving list is set, its contents are reset.

        • process_flag(sensitive, boolean())

          Sets or clears flag sensitive for the current process. When a process has been │ │ │ +Whenever the size of the call saving list is set, its contents are reset.

        • process_flag(sensitive, boolean())

          Sets or clears flag sensitive for the current process. When a process has been │ │ │ marked as sensitive by calling │ │ │ process_flag(sensitive, true), features in the runtime │ │ │ system that can be used for examining the data or inner working of the process │ │ │ are silently disabled.

          Features that are disabled include (but are not limited to) the following:

          • Tracing. Trace flags can still be set for the process, but no trace messages │ │ │ of any kind are generated. (If flag sensitive is turned off, trace messages │ │ │ are again generated if any trace flags are set.)
          • Sequential tracing. The sequential trace token is propagated as usual, but no │ │ │ sequential trace messages are generated.

          process_info/1,2 cannot be used to read out the message queue or the process │ │ │ @@ -14280,16 +14280,16 @@ │ │ │ │ │ │ │ │ │ │ │ │

          Returns a list of process identifiers corresponding to all the processes │ │ │ currently existing on the local node.

          Notice that an exiting process exists, but is not alive. That is, │ │ │ is_process_alive/1 returns false for an exiting │ │ │ process, but its process identifier is part of the result returned from │ │ │ -processes/0.

          Example:

          > processes().
          │ │ │ -[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]
          │ │ │ +processes/0.

          Example:

          > processes().
          │ │ │ +[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]
          │ │ │ │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Adds a new Key to the process dictionary, associated with the value Val, and │ │ │ returns undefined. If Key exists, the old value is deleted and replaced by │ │ │ Val, and the function returns the old value.

          The average time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

          For example:

          > X = put(name, walrus), Y = put(name, carpenter),
          │ │ │ -Z = get(name),
          │ │ │ -{X, Y, Z}.
          │ │ │ -{undefined,walrus,carpenter}

          Note

          The values stored when put is evaluated within the scope of a catch are │ │ │ +items in the process dictionary.

          For example:

          > X = put(name, walrus), Y = put(name, carpenter),
          │ │ │ +Z = get(name),
          │ │ │ +{X, Y, Z}.
          │ │ │ +{undefined,walrus,carpenter}

          Note

          The values stored when put is evaluated within the scope of a catch are │ │ │ not retracted if a throw is evaluated, or if an error occurs.

          │ │ │
          │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Registers the name RegName with a process identifier (pid) or a port │ │ │ identifier in the │ │ │ name registry. │ │ │ RegName, which must be an atom, can be used instead of the pid or port │ │ │ identifier in send operator (RegName ! Message) and most other BIFs that take │ │ │ -a pid or port identifies as an argument.

          For example:

          > register(db, Pid).
          │ │ │ +a pid or port identifies as an argument.

          For example:

          > register(db, Pid).
          │ │ │  true

          The registered name is considered a │ │ │ Directly Visible Erlang Resource │ │ │ and is automatically unregistered when the process terminates.

          Failures:

          • badarg - If PidOrPort is not an existing local process or port.

          • badarg - If RegName is already in use.

          • badarg - If the process or port is already registered (already has a │ │ │ name).

          • badarg - If RegName is the atom undefined.

          │ │ │
          │ │ │ │ │ │
          │ │ │ @@ -14427,16 +14427,16 @@ │ │ │ │ │ │
          │ │ │ │ │ │
          -spec registered() -> [RegName] when RegName :: atom().
          │ │ │ │ │ │
          │ │ │ │ │ │ -

          Returns a list of names that have been registered using register/2.

          For example:

          > registered().
          │ │ │ -[code_server, file_server, init, user, my_db]
          │ │ │ +

          Returns a list of names that have been registered using register/2.

          For example:

          > registered().
          │ │ │ +[code_server, file_server, init, user, my_db]
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ @@ -14491,15 +14491,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

          Returns the process identifier of the calling process.

          For example:

          > self().
          │ │ │ +

          Returns the process identifier of the calling process.

          For example:

          > self().
          │ │ │  <0.26.0>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -14741,15 +14741,15 @@ │ │ │

          Returns the process identifier of a new process started by the application of │ │ │ Module:Function to Args.

          error_handler:undefined_function(Module, Function, Args) is │ │ │ evaluated by the new process if Module:Function/Arity does not exist │ │ │ (where Arity is the length of Args). The error handler can be redefined │ │ │ (see process_flag/2). If │ │ │ error_handler is undefined, or the user has redefined the default │ │ │ error_handler and its replacement is undefined, a failure with reason undef │ │ │ -occurs.

          Example:

          > spawn(speed, regulator, [high_speed, thin_cut]).
          │ │ │ +occurs.

          Example:

          > spawn(speed, regulator, [high_speed, thin_cut]).
          │ │ │  <0.13.1>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Raises an exception of class throw. Intended to be used to do non-local │ │ │ returns from functions.

          If evaluated within a catch expression, the │ │ │ -catch expression returns value Any.

          For example:

          > catch throw({hello, there}).
          │ │ │ -        {hello,there}

          If evaluated within a try-block of a │ │ │ +catch expression returns value Any.

          For example:

          > catch throw({hello, there}).
          │ │ │ +        {hello,there}

          If evaluated within a try-block of a │ │ │ try expression, the value Any can be caught │ │ │ within the catch block.

          For example:

          try
          │ │ │ -    throw({my_exception, "Something happened"})
          │ │ │ +    throw({my_exception, "Something happened"})
          │ │ │  catch
          │ │ │ -    throw:{my_exception, Desc} ->
          │ │ │ -        io:format(standard_error, "Error: ~s~n", [Desc])
          │ │ │ +    throw:{my_exception, Desc} ->
          │ │ │ +        io:format(standard_error, "Error: ~s~n", [Desc])
          │ │ │  end

          Failure: nocatch if not caught by an exception handler.

          See the guide about errors and error handling for │ │ │ additional information.

          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ @@ -15774,17 +15774,17 @@ │ │ │ trapping exits, an │ │ │ {'EXIT', Id, ExitReason} message due to the link may have been placed in the │ │ │ message queue of the caller before the unlink(Id) call │ │ │ completed. Also note that the {'EXIT', Id, ExitReason} message may be the │ │ │ result of the link, but may also be the result of the unlikee sending the caller │ │ │ an exit signal by calling the exit/2 BIF. Therefore, it may or may not be │ │ │ appropriate to clean up the message queue after a call to │ │ │ -unlink(Id) as follows, when trapping exits:

          unlink(Id),
          │ │ │ +unlink(Id) as follows, when trapping exits:

          unlink(Id),
          │ │ │  receive
          │ │ │ -    {'EXIT', Id, _} ->
          │ │ │ +    {'EXIT', Id, _} ->
          │ │ │          true
          │ │ │  after 0 ->
          │ │ │          true
          │ │ │  end

          The link removal is performed asynchronously. If such a link does not exist, │ │ │ nothing is done. A detailed description of the │ │ │ link protocol can be found in the │ │ │ Distribution Protocol chapter of the ERTS User's Guide.

          Note

          For some important information about distributed signals, see the │ │ │ @@ -15815,15 +15815,15 @@ │ │ │ │ │ │

          -spec unregister(RegName) -> true when RegName :: atom().
          │ │ │ │ │ │
          │ │ │ │ │ │

          Removes the registered name RegName associated with a │ │ │ process identifier or a port identifier from the │ │ │ -name registry.

          For example:

          > unregister(db).
          │ │ │ +name registry.

          For example:

          > unregister(db).
          │ │ │  true

          Keep in mind that you can still receive signals associated with the registered │ │ │ name after it has been unregistered as the sender may have looked up the name │ │ │ before sending to it.

          Users are advised not to unregister system processes.

          Failure: badarg if RegName is not a registered name.

          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15849,15 +15849,15 @@ │ │ │
          -spec whereis(RegName) -> pid() | port() | undefined when RegName :: atom().
          │ │ │ │ │ │ │ │ │ │ │ │

          Returns the process identifier or port identifier with the │ │ │ registered name RegName from the │ │ │ name registry. Returns │ │ │ -undefined if the name is not registered.

          For example:

          > whereis(db).
          │ │ │ +undefined if the name is not registered.

          For example:

          > whereis(db).
          │ │ │  <0.43.0>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15924,15 +15924,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

          Equivalent to calling halt(0, []).

          For example:

          > halt().
          │ │ │ +

          Equivalent to calling halt(0, []).

          For example:

          > halt().
          │ │ │  os_prompt%
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15955,15 +15955,15 @@ │ │ │ │ │ │
          -spec halt(Status :: non_neg_integer()) -> no_return();
          │ │ │            (Abort :: abort) -> no_return();
          │ │ │            (CrashDumpSlogan :: string()) -> no_return().
          │ │ │ │ │ │
          │ │ │ │ │ │ -

          Equivalent to calling halt(HaltType, []).

          For example:

          > halt(17).
          │ │ │ +

          Equivalent to calling halt(HaltType, []).

          For example:

          > halt(17).
          │ │ │  os_prompt% echo $?
          │ │ │  17
          │ │ │  os_prompt%
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15990,15 +15990,15 @@ │ │ │ │ │ │
          -spec halt(Status :: non_neg_integer(), Options :: halt_options()) -> no_return();
          │ │ │            (Abort :: abort, Options :: halt_options()) -> no_return();
          │ │ │            (CrashDumpSlogan :: string(), Options :: halt_options()) -> no_return().
          │ │ │ │ │ │ │ │ │ │ │ │ -

          Halt the runtime system.

          • halt(Status :: non_neg_integer(), Options :: halt_options())

            Halt the runtime system with status code Status.

            Note

            On many platforms, the OS supports only status codes 0-255. A too large │ │ │ +

            Halt the runtime system.

            • halt(Status :: non_neg_integer(), Options :: halt_options())

              Halt the runtime system with status code Status.

              Note

              On many platforms, the OS supports only status codes 0-255. A too large │ │ │ status code is truncated by clearing the high bits.

              Currently the following options are valid:

              • {flush, EnableFlushing} - If EnableFlushing equals │ │ │ true, which also is the default behavior, the runtime system will perform │ │ │ the following operations before terminating:

                • Flush all outstanding output.
                • Send all Erlang ports exit signals and wait for them to exit.
                • Wait for all async threads to complete all outstanding async jobs.
                • Call all installed NIF on halt callbacks.
                • Wait for all ongoing │ │ │ NIF calls with the delay halt setting enabled │ │ │ to return.
                • Call all installed atexit/on_exit callbacks.

                If EnableFlushing equals false, the runtime system will terminate │ │ │ immediately without performing any of the above listed operations.

                Change

                Runtime systems prior to OTP 26.0 called all installed atexit/on_exit │ │ │ callbacks also when flush was disabled, but as of OTP 26.0 this is no │ │ │ @@ -16007,18 +16007,18 @@ │ │ │ termination of the runtime system. Timeout is in milliseconds. The default │ │ │ value is determined by the the erl +zhft <Timeout> │ │ │ command line flag.

                If flushing has been ongoing for Timeout milliseconds, flushing operations │ │ │ will be interrupted and the runtime system will immediately be terminated │ │ │ with the exit code 255. If flushing is not enabled, the timeout will have │ │ │ no effect on the system.

                See also the erl +zhft <Timeout> command line flag. │ │ │ Note that the shortest timeout set by the command line flag and the │ │ │ -flush_timeout option will be the actual timeout value in effect.

                Since: OTP 27.0

            • halt(Abort :: abort, Options :: halt_options())

              Halt the Erlang runtime system by aborting and produce a core dump if core │ │ │ +flush_timeout option will be the actual timeout value in effect.

              Since: OTP 27.0

          • halt(Abort :: abort, Options :: halt_options())

            Halt the Erlang runtime system by aborting and produce a core dump if core │ │ │ dumping has been enabled in the environment that the runtime system is │ │ │ executing in.

            Note

            The {flush, boolean()} option will be ignored, and │ │ │ -flushing will be disabled.

          • halt(CrashDumpSlogan :: string(), Options :: halt_options())

            Halt the Erlang runtime system and generate an │ │ │ +flushing will be disabled.

        • halt(CrashDumpSlogan :: string(), Options :: halt_options())

          Halt the Erlang runtime system and generate an │ │ │ Erlang crash dump. The string CrashDumpSlogan will be used │ │ │ as slogan in the Erlang crash dump created. The slogan will be trunkated if │ │ │ CrashDumpSlogan is longer than 1023 characters.

          Note

          The {flush, boolean()} option will be ignored, and │ │ │ flushing will be disabled.

          Change

          Behavior changes compared to earlier versions:

          • Before OTP 24.2, the slogan was truncated if CrashDumpSlogan was longer │ │ │ than 200 characters. Now it will be truncated if longer than 1023 │ │ │ characters.
          • Before OTP 20.1, only code points in the range 0-255 were accepted in the │ │ │ slogan. Now any Unicode string is valid.
        │ │ │ @@ -16195,19 +16195,19 @@ │ │ │ (wall_clock) -> {Total_Wallclock_Time, Wallclock_Time_Since_Last_Call} │ │ │ when │ │ │ Total_Wallclock_Time :: non_neg_integer(), │ │ │ Wallclock_Time_Since_Last_Call :: non_neg_integer().
    │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns statistics about the current system.

    The possible flags are:

    • statistics(active_tasks) -> [non_neg_integer()]

      Returns the same as │ │ │ +

      Returns statistics about the current system.

      The possible flags are:

      • statistics(active_tasks) -> [non_neg_integer()]

        Returns the same as │ │ │ statistics(active_tasks_all) with │ │ │ the exception that no information about the dirty IO run queue and its │ │ │ associated schedulers is part of the result. That is, only tasks that are │ │ │ -expected to be CPU bound are part of the result.

        Available since OTP 18.3

      • statistics(active_tasks_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of active processes and │ │ │ +expected to be CPU bound are part of the result.

        Available since OTP 18.3

      • statistics(active_tasks_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of active processes and │ │ │ ports on each run queue and its associated schedulers. That is, the number of │ │ │ processes and ports that are ready to run, or are currently running. Values for │ │ │ normal run queues and their associated schedulers are located first in the │ │ │ resulting list. The first element corresponds to scheduler number 1 and so on. │ │ │ If support for dirty schedulers exist, an element with the value for the dirty │ │ │ CPU run queue and its associated dirty CPU schedulers follow and then as last │ │ │ element the value for the dirty IO run queue and its associated dirty IO │ │ │ @@ -16221,44 +16221,44 @@ │ │ │ migrate to other normal run queues. This has to be taken into account when │ │ │ evaluating the result.

        See also │ │ │ statistics(total_active_tasks), │ │ │ statistics(run_queue_lengths), │ │ │ statistics(run_queue_lengths_all), │ │ │ statistics(total_run_queue_lengths), │ │ │ and │ │ │ -statistics(total_run_queue_lengths_all).

        Available since OTP 20.0

      • statistics(context_switches) -> {non_neg_integer(), 0}

        Returns the total number of context switches since the system started.

      • statistics(exact_reductions) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns the number of exact reductions.

        Note

        statistics(exact_reductions) is a more expensive operation │ │ │ -than statistics(reductions).

      • statistics(garbage_collection) ->
        │ │ │ -  { NumerOfGCs :: non_neg_integer(), WordsReclaimed :: non_neg_integer(), 0}

        Returns information about garbage collection, for example:

        > statistics(garbage_collection).
        │ │ │ -{85,23961,0}

        This information can be invalid for some implementations.

      • statistics(io) -> {{input, non_neg_integer()}, {output, non_neg_integer()}}

        Returns Input, which is the total number of bytes received through ports, and │ │ │ -Output, which is the total number of bytes output to ports.

      • statistics(microstate_accounting) -> [MSAcc_Thread]

        Microstate accounting can be used to measure how much time the Erlang runtime │ │ │ +statistics(total_run_queue_lengths_all).

        Available since OTP 20.0

      • statistics(context_switches) -> {non_neg_integer(), 0}

        Returns the total number of context switches since the system started.

      • statistics(exact_reductions) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns the number of exact reductions.

        Note

        statistics(exact_reductions) is a more expensive operation │ │ │ +than statistics(reductions).

      • statistics(garbage_collection) ->
        │ │ │ +  { NumerOfGCs :: non_neg_integer(), WordsReclaimed :: non_neg_integer(), 0}

        Returns information about garbage collection, for example:

        > statistics(garbage_collection).
        │ │ │ +{85,23961,0}

        This information can be invalid for some implementations.

      • statistics(io) -> {{input, non_neg_integer()}, {output, non_neg_integer()}}

        Returns Input, which is the total number of bytes received through ports, and │ │ │ +Output, which is the total number of bytes output to ports.

      • statistics(microstate_accounting) -> [MSAcc_Thread]

        Microstate accounting can be used to measure how much time the Erlang runtime │ │ │ system spends doing various tasks. It is designed to be as lightweight as │ │ │ possible, but some overhead exists when this is enabled. Microstate accounting │ │ │ is meant to be a profiling tool to help finding performance bottlenecks. To │ │ │ start/stop/reset microstate accounting, use system flag │ │ │ microstate_accounting.

        statistics(microstate_accounting) returns a list of maps │ │ │ representing some of the OS threads within ERTS. Each map contains type and │ │ │ id fields that can be used to identify what thread it is, and also a counters │ │ │ field that contains data about how much time has been spent in the various │ │ │ -states.

        Example:

        > erlang:statistics(microstate_accounting).
        │ │ │ -[#{counters => #{aux => 1899182914,
        │ │ │ +states.

        Example:

        > erlang:statistics(microstate_accounting).
        │ │ │ +[#{counters => #{aux => 1899182914,
        │ │ │                   check_io => 2605863602,
        │ │ │                   emulator => 45731880463,
        │ │ │                   gc => 1512206910,
        │ │ │                   other => 5421338456,
        │ │ │                   port => 221631,
        │ │ │ -                 sleep => 5150294100},
        │ │ │ +                 sleep => 5150294100},
        │ │ │     id => 1,
        │ │ │ -   type => scheduler}|...]

        The time unit is the same as returned by os:perf_counter/0. So, to convert it │ │ │ -to milliseconds, you can do something like this:

        lists:map(
        │ │ │ -  fun(#{ counters := Cnt } = M) ->
        │ │ │ -         MsCnt = maps:map(fun(_K, PerfCount) ->
        │ │ │ -                                    erlang:convert_time_unit(PerfCount, perf_counter, 1000)
        │ │ │ -                           end, Cnt),
        │ │ │ -         M#{ counters := MsCnt }
        │ │ │ -  end, erlang:statistics(microstate_accounting)).

        Notice that these values are not guaranteed to be the exact time spent in each │ │ │ + type => scheduler}|...]

        The time unit is the same as returned by os:perf_counter/0. So, to convert it │ │ │ +to milliseconds, you can do something like this:

        lists:map(
        │ │ │ +  fun(#{ counters := Cnt } = M) ->
        │ │ │ +         MsCnt = maps:map(fun(_K, PerfCount) ->
        │ │ │ +                                    erlang:convert_time_unit(PerfCount, perf_counter, 1000)
        │ │ │ +                           end, Cnt),
        │ │ │ +         M#{ counters := MsCnt }
        │ │ │ +  end, erlang:statistics(microstate_accounting)).

        Notice that these values are not guaranteed to be the exact time spent in each │ │ │ state. This is because of various optimisation done to keep the overhead as │ │ │ small as possible.

        MSAcc_Thread_Types:

        • scheduler - The main execution threads that do most of the work. See │ │ │ erl +S for more details.

        • dirty_cpu_scheduler - The threads for long running cpu intensive work. │ │ │ See erl +SDcpu for more details.

        • dirty_io_scheduler - The threads for long running I/O work. See │ │ │ erl +SDio for more details.

        • async - Async threads are used by various linked-in drivers (mainly the │ │ │ file drivers) do offload non-CPU intensive work. See │ │ │ erl +A for more details.

        • aux - Takes care of any work that is not specifically assigned to a │ │ │ @@ -16282,28 +16282,28 @@ │ │ │ states this time is part of the gc state.

        • nif - Time spent in NIFs. Without extra states this time is part of the │ │ │ emulator state.

        • send - Time spent sending messages (processes only). Without extra │ │ │ states this time is part of the emulator state.

        • timers - Time spent managing timers. Without extra states this time is │ │ │ part of the other state.

        The utility module msacc can be used to more easily analyse these │ │ │ statistics.

        Returns undefined if system flag │ │ │ microstate_accounting is │ │ │ turned off.

        The list of thread information is unsorted and can appear in different order │ │ │ -between calls.

        Note

        The threads and states are subject to change without any prior notice.

        Available since OTP 19.0

      • statistics(reductions) -> {Reductions :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about reductions, for example:

        > statistics(reductions).
        │ │ │ -{2046,11}

        Change

        As from ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions │ │ │ +between calls.

        Note

        The threads and states are subject to change without any prior notice.

        Available since OTP 19.0

      • statistics(reductions) -> {Reductions :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about reductions, for example:

        > statistics(reductions).
        │ │ │ +{2046,11}

        Change

        As from ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions │ │ │ performed in current time slices of currently scheduled processes. If an exact │ │ │ value is wanted, use │ │ │ -statistics(exact_reductions).

      • statistics(run_queue) -> non_neg_integer()

        Returns the total length of all normal and dirty CPU run queues. That is, queued │ │ │ +statistics(exact_reductions).

      • statistics(run_queue) -> non_neg_integer()

        Returns the total length of all normal and dirty CPU run queues. That is, queued │ │ │ work that is expected to be CPU bound. The information is gathered atomically. │ │ │ That is, the result is a consistent snapshot of the state, but this operation is │ │ │ much more expensive compared to │ │ │ statistics(total_run_queue_lengths), │ │ │ -especially when a large amount of schedulers is used.

      • statistics(run_queue_lengths) -> [non_neg_integer()]

        Returns the same as │ │ │ +especially when a large amount of schedulers is used.

      • statistics(run_queue_lengths) -> [non_neg_integer()]

        Returns the same as │ │ │ statistics(run_queue_lengths_all) │ │ │ with the exception that no information about the dirty IO run queue is part of │ │ │ the result. That is, only run queues with work that is expected to be CPU bound │ │ │ -is part of the result.

        Available since OTP 18.3

      • statistics(run_queue_lengths_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of processes and ports │ │ │ +is part of the result.

        Available since OTP 18.3

      • statistics(run_queue_lengths_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of processes and ports │ │ │ ready to run for each run queue. Values for normal run queues are located first │ │ │ in the resulting list. The first element corresponds to the normal run queue of │ │ │ scheduler number 1 and so on. If support for dirty schedulers exist, values for │ │ │ the dirty CPU run queue and the dirty IO run queue follow (in that order) at the │ │ │ end. The information is not gathered atomically. That is, the result is not │ │ │ necessarily a consistent snapshot of the state, but instead quite efficiently │ │ │ gathered.

        Note

        Each normal scheduler has one run queue that it manages. If dirty schedulers │ │ │ @@ -16315,21 +16315,21 @@ │ │ │ evaluating the result.

        See also │ │ │ statistics(run_queue_lengths), │ │ │ statistics(total_run_queue_lengths_all), │ │ │ statistics(total_run_queue_lengths), │ │ │ statistics(active_tasks), │ │ │ statistics(active_tasks_all), and │ │ │ statistics(total_active_tasks), │ │ │ -statistics(total_active_tasks_all).

        Available since OTP 20.0

      • statistics(runtime) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about runtime, in milliseconds.

        This is the sum of the runtime for all threads in the Erlang runtime system and │ │ │ +statistics(total_active_tasks_all).

        Available since OTP 20.0

      • statistics(runtime) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about runtime, in milliseconds.

        This is the sum of the runtime for all threads in the Erlang runtime system and │ │ │ can therefore be greater than the wall clock time.

        Warning

        This value might wrap due to limitations in the underlying functionality │ │ │ -provided by the operating system that is used.

        Example:

        > statistics(runtime).
        │ │ │ -{1690,1620}
      • statistics(scheduler_wall_time) ->
        │ │ │ -  [{Id :: pos_integer,
        │ │ │ -    ActiveTime :: non_neg_integer(),
        │ │ │ -    TotalTime :: non_neg_integer()}] |
        │ │ │ +provided by the operating system that is used.

        Example:

        > statistics(runtime).
        │ │ │ +{1690,1620}
      • statistics(scheduler_wall_time) ->
        │ │ │ +  [{Id :: pos_integer,
        │ │ │ +    ActiveTime :: non_neg_integer(),
        │ │ │ +    TotalTime :: non_neg_integer()}] |
        │ │ │    undefined

        Returns information describing how much time │ │ │ normal and │ │ │ dirty CPU schedulers in the │ │ │ system have been busy. This value is normally a better indicator of how much │ │ │ load an Erlang node is under instead of looking at the CPU utilization provided │ │ │ by tools such as top or sysstat. This is because scheduler_wall_time also │ │ │ includes time where the scheduler is waiting for some other reasource (such as │ │ │ @@ -16361,60 +16361,60 @@ │ │ │ Dirty CPU schedulers will have scheduler identifiers in the range │ │ │ erlang:system_info(schedulers) < SchedulerId =< erlang:system_info(schedulers) +erlang:system_info(dirty_cpu_schedulers).

        Note

        The different types of schedulers handle specific types of jobs. Every job is │ │ │ assigned to a specific scheduler type. Jobs can migrate between different │ │ │ schedulers of the same type, but never between schedulers of different types. │ │ │ This fact has to be taken under consideration when evaluating the result │ │ │ returned.

        You can use scheduler_wall_time to calculate scheduler utilization. First you │ │ │ take a sample of the values returned by │ │ │ -erlang:statistics(scheduler_wall_time).

        > erlang:system_flag(scheduler_wall_time, true).
        │ │ │ +erlang:statistics(scheduler_wall_time).

        > erlang:system_flag(scheduler_wall_time, true).
        │ │ │  false
        │ │ │ -> Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │ +> Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │  ok

        Some time later the user takes another snapshot and calculates scheduler │ │ │ -utilization per scheduler, for example:

        > Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │ +utilization per scheduler, for example:

        > Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │  ok
        │ │ │ -> lists:map(fun({{I, A0, T0}, {I, A1, T1}}) ->
        │ │ │ -        {I, (A1 - A0)/(T1 - T0)} end, lists:zip(Ts0,Ts1)).
        │ │ │ -[{1,0.9743474730177548},
        │ │ │ - {2,0.9744843782751444},
        │ │ │ - {3,0.9995902361669045},
        │ │ │ - {4,0.9738012596572161},
        │ │ │ - {5,0.9717956667018103},
        │ │ │ - {6,0.9739235846420741},
        │ │ │ - {7,0.973237033077876},
        │ │ │ - {8,0.9741297293248656}]

        Using the same snapshots to calculate a total scheduler utilization:

        > {A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
        │ │ │ -        {Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0,Ts1)),
        │ │ │ +> lists:map(fun({{I, A0, T0}, {I, A1, T1}}) ->
        │ │ │ +        {I, (A1 - A0)/(T1 - T0)} end, lists:zip(Ts0,Ts1)).
        │ │ │ +[{1,0.9743474730177548},
        │ │ │ + {2,0.9744843782751444},
        │ │ │ + {3,0.9995902361669045},
        │ │ │ + {4,0.9738012596572161},
        │ │ │ + {5,0.9717956667018103},
        │ │ │ + {6,0.9739235846420741},
        │ │ │ + {7,0.973237033077876},
        │ │ │ + {8,0.9741297293248656}]

        Using the same snapshots to calculate a total scheduler utilization:

        > {A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
        │ │ │ +        {Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0,Ts1)),
        │ │ │    TotalSchedulerUtilization = A/T.
        │ │ │  0.9769136803764825

        Total scheduler utilization will equal 1.0 when all schedulers have been │ │ │ active all the time between the two measurements.

        Another (probably more) useful value is to calculate total scheduler utilization │ │ │ -weighted against maximum amount of available CPU time:

        > WeightedSchedulerUtilization = (TotalSchedulerUtilization
        │ │ │ -                                  * (erlang:system_info(schedulers)
        │ │ │ -                                     + erlang:system_info(dirty_cpu_schedulers)))
        │ │ │ -                                 / erlang:system_info(logical_processors_available).
        │ │ │ +weighted against maximum amount of available CPU time:

        > WeightedSchedulerUtilization = (TotalSchedulerUtilization
        │ │ │ +                                  * (erlang:system_info(schedulers)
        │ │ │ +                                     + erlang:system_info(dirty_cpu_schedulers)))
        │ │ │ +                                 / erlang:system_info(logical_processors_available).
        │ │ │  0.9769136803764825

        This weighted scheduler utilization will reach 1.0 when schedulers are active │ │ │ the same amount of time as maximum available CPU time. If more schedulers exist │ │ │ than available logical processors, this value may be greater than 1.0.

        As of ERTS version 9.0, the Erlang runtime system will as default have more │ │ │ schedulers than logical processors. This due to the dirty schedulers.

        Note

        scheduler_wall_time is by default disabled. To enable it, use │ │ │ -erlang:system_flag(scheduler_wall_time, true).

        Available since OTP R15B01

      • statistics(scheduler_wall_time_all) ->
        │ │ │ -  [{Id :: pos_integer,
        │ │ │ -    ActiveTime :: non_neg_integer(),
        │ │ │ -    TotalTime :: non_neg_integer()}] |
        │ │ │ +erlang:system_flag(scheduler_wall_time, true).

        Available since OTP R15B01

      • statistics(scheduler_wall_time_all) ->
        │ │ │ +  [{Id :: pos_integer,
        │ │ │ +    ActiveTime :: non_neg_integer(),
        │ │ │ +    TotalTime :: non_neg_integer()}] |
        │ │ │    undefined

        Equivalent to │ │ │ statistics(scheduler_wall_time), │ │ │ except that it also include information about all dirty I/O schedulers.

        Dirty IO schedulers will have scheduler identifiers in the range │ │ │ erlang:system_info(schedulers)+erlang:system_info(dirty_cpu_schedulers)< SchedulerId =< erlang:system_info(schedulers) + erlang:system_info(dirty_cpu_schedulers) +erlang:system_info(dirty_io_schedulers).

        Note

        Note that work executing on dirty I/O schedulers are expected to mainly wait │ │ │ for I/O. That is, when you get high scheduler utilization on dirty I/O │ │ │ -schedulers, CPU utilization is not expected to be high due to this work.

        Available since OTP 20.0

      • statistics(total_active_tasks) -> non_neg_integer()

        Equivalent to calling │ │ │ +schedulers, CPU utilization is not expected to be high due to this work.

        Available since OTP 20.0

      • statistics(total_active_tasks) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(active_tasks)), │ │ │ -but more efficient.

        Available since OTP 18.3

      • statistics(total_active_tasks_all) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 18.3

      • statistics(total_active_tasks_all) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(active_tasks_all)), │ │ │ -but more efficient.

        Available since OTP 20.0

      • statistics(total_run_queue_lengths) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 20.0

      • statistics(total_run_queue_lengths) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(run_queue_lengths)), │ │ │ -but more efficient.

        Available since OTP 18.3

      • statistics(total_run_queue_lengths_all) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 18.3

      • statistics(total_run_queue_lengths_all) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(run_queue_lengths_all)), │ │ │ -but more efficient.

        Available since OTP 20.0

      • statistics(wall_clock) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about wall clock. wall_clock can be used in the same │ │ │ +but more efficient.

        Available since OTP 20.0

      • statistics(wall_clock) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about wall clock. wall_clock can be used in the same │ │ │ manner as runtime, except that real time is measured as opposed to runtime or │ │ │ CPU time.

      │ │ │ │ │ │ │ │ │
      │ │ │ │ │ │
      │ │ │ @@ -16478,65 +16478,65 @@ │ │ │ when │ │ │ Tracer :: pid() | port() | {module(), term()} | false, │ │ │ PrevTracer :: pid() | port() | {module(), term()} | false; │ │ │ (reset_seq_trace, true) -> true.
    │ │ │ │ │ │ │ │ │ │ │ │ -

    Sets a system flag to the given value.

    The possible flags to set are:

    • system_flag(backtrace_depths, non_neg_integer()) -> non_neg_integer()

      Sets the maximum depth of call stack back-traces in the exit reason element of │ │ │ +

      Sets a system flag to the given value.

      The possible flags to set are:

      • system_flag(backtrace_depths, non_neg_integer()) -> non_neg_integer()

        Sets the maximum depth of call stack back-traces in the exit reason element of │ │ │ 'EXIT' tuples. The flag also limits the stacktrace depth returned by │ │ │ -process_info/2 item current_stacktrace.

        Returns the old value of the flag.

      • system_flag(cpu_topology, cpu_topology()) -> cpu_topology()

        Warning

        This argument is deprecated. Instead of using this argument, use │ │ │ +process_info/2 item current_stacktrace.

        Returns the old value of the flag.

      • system_flag(cpu_topology, cpu_topology()) -> cpu_topology()

        Warning

        This argument is deprecated. Instead of using this argument, use │ │ │ command-line argument +sct in erl.

        When this argument is removed, a final CPU topology to use is determined at │ │ │ emulator boot time.

        Sets the user-defined CpuTopology. The user-defined CPU topology overrides any │ │ │ automatically detected CPU topology. By passing undefined as CpuTopology, │ │ │ the system reverts to the CPU topology automatically detected. The returned │ │ │ value equals the value returned from erlang:system_info(cpu_topology) before │ │ │ the change was made.

        Returns the old value of the flag.

        The CPU topology is used when binding schedulers to logical processors. If │ │ │ schedulers are already bound when the CPU topology is changed, the schedulers │ │ │ are sent a request to rebind according to the new CPU topology.

        The user-defined CPU topology can also be set by passing command-line argument │ │ │ +sct to erl.

        For information on type CpuTopology and more, see │ │ │ erlang:system_info(cpu_topology) as │ │ │ well as command-line flags +sct and │ │ │ -+sbt in erl.

      • system_flag(dirty_cpu_schedulers_online, pos_integer()) -> pos_integer()

        Sets the number of dirty CPU schedulers online. Range is │ │ │ ++sbt in erl.

      • system_flag(dirty_cpu_schedulers_online, pos_integer()) -> pos_integer()

        Sets the number of dirty CPU schedulers online. Range is │ │ │ 1 <= DirtyCPUSchedulersOnline <= N, where N is the smallest of the return │ │ │ values of erlang:system_info(dirty_cpu_schedulers) and │ │ │ erlang:system_info(schedulers_online).

        Returns the old value of the flag.

        The number of dirty CPU schedulers online can change if the number of schedulers │ │ │ online changes. For example, if 12 schedulers and 6 dirty CPU schedulers are │ │ │ online, and system_flag/2 is used to set the number of │ │ │ schedulers online to 6, then the number of dirty CPU schedulers online is │ │ │ automatically decreased by half as well, down to 3. Similarly, the number of │ │ │ dirty CPU schedulers online increases proportionally to increases in the number │ │ │ of schedulers online.

        For more information, see │ │ │ erlang:system_info(dirty_cpu_schedulers) │ │ │ and │ │ │ -erlang:system_info(dirty_cpu_schedulers_online).

        Available since OTP 17.0

      • system_flag(erts_alloc, {Alloc :: atom(), F :: atom(), V :: integer()}) ->
        │ │ │ +erlang:system_info(dirty_cpu_schedulers_online).

        Available since OTP 17.0

      • system_flag(erts_alloc, {Alloc :: atom(), F :: atom(), V :: integer()}) ->
        │ │ │    ok | notsup

        Sets system flags for erts_alloc(3). Alloc is the allocator │ │ │ to affect, for example binary_alloc. F is the flag to change and V is the │ │ │ new value.

        Only a subset of all erts_alloc flags can be changed at run time. This subset │ │ │ -is currently only the flag sbct.

        Returns ok if the flag was set or notsup if not supported by erts_alloc.

        Available since OTP 20.2.3

      • system_flag(fullsweep_after, non_neg_integer()) -> non_neg_integer()

        Sets system flag fullsweep_after. Number is a non-negative integer │ │ │ +is currently only the flag sbct.

        Returns ok if the flag was set or notsup if not supported by erts_alloc.

        Available since OTP 20.2.3

      • system_flag(fullsweep_after, non_neg_integer()) -> non_neg_integer()

        Sets system flag fullsweep_after. Number is a non-negative integer │ │ │ indicating how many times generational garbage collections can be done without │ │ │ forcing a fullsweep collection. The value applies to new processes, while │ │ │ processes already running are not affected.

        Returns the old value of the flag.

        In low-memory systems (especially without virtual memory), setting the value to │ │ │ 0 can help to conserve memory.

        This value can also be set through (OS) environment variable │ │ │ -ERL_FULLSWEEP_AFTER.

      • system_flag(microstate_accounting, true | false | reset) -> boolean()

        Turns on/off microstate accounting measurements. When passing reset, all │ │ │ +ERL_FULLSWEEP_AFTER.

      • system_flag(microstate_accounting, true |
        
        TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes