--- /srv/rebuilderd/tmp/rebuilderd4iSKba/inputs/spooles-doc_2.2-14.3_all.deb +++ /srv/rebuilderd/tmp/rebuilderd4iSKba/out/spooles-doc_2.2-14.3_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-10-18 17:12:38.000000 debian-binary │ --rw-r--r-- 0 0 0 1944 2025-10-18 17:12:38.000000 control.tar.xz │ --rw-r--r-- 0 0 0 8099788 2025-10-18 17:12:38.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 1948 2025-10-18 17:12:38.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 8101908 2025-10-18 17:12:38.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: spooles-doc │ │ │ Source: spooles │ │ │ Version: 2.2-14.3 │ │ │ Architecture: all │ │ │ Maintainer: Debian Science Maintainers │ │ │ -Installed-Size: 8178 │ │ │ +Installed-Size: 8168 │ │ │ Suggests: libspooles2.2-dev │ │ │ Section: doc │ │ │ Priority: optional │ │ │ Homepage: http://www.netlib.org/linalg/spooles/ │ │ │ Description: SPOOLES numerical simulation pre- and post-processor documentation │ │ │ SPOOLES is a library for solving sparse real and complex linear systems of │ │ │ equations, written in the C language using object oriented design. │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -1,56 +1,56 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./usr/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./usr/share/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./usr/share/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ │ │ │ --rw-r--r-- 0 root (0) root (0) 151788 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/A2.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 151587 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/A2.ps.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 596035 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ASHCRAFC.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 312562 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/AllInOne.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 127678 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/BKL.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 155903 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/BPG.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 190152 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Chv.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 100755 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ChvList.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 94478 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ChvManager.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 120724 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Coords.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 115776 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DSTree.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 133884 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DV.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 117594 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DenseMtx.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 107380 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Drand.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 121423 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/EGraph.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 220804 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ETree.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 254385 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Eigen.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 179485 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/FrontMtx.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 275466 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/FrontTrees.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 184342 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/GPart.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 189968 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Graph.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 131813 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/I2Ohash.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 109753 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IIheap.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 121536 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IV.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 124486 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IVL.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 95466 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Ideq.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 204826 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/InpMtx.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 283291 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/LinSol.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 89246 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Lock.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 176307 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MPI.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 168483 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MSMD.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 163251 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MT.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 146319 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Network.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 143389 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/PatchAndGoInfo.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 124501 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Pencil.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 107045 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Perm.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 911089 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ReferenceManual.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 152874 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SemiImplMtx.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 134476 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SolveMap.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 175554 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtx.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 101437 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtxList.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 117635 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtxManager.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 120743 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SymbFac.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 167803 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Tree.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 190030 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Utilities.ps.gz │ │ │ --rw-r--r-- 0 root (0) root (0) 127761 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ZV.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 312123 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/AllInOne.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 127485 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/BKL.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 155728 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/BPG.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 189942 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Chv.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 100559 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ChvList.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 94286 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ChvManager.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 120532 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Coords.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 115570 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DSTree.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 133668 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DV.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 117381 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/DenseMtx.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 107203 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Drand.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 121209 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/EGraph.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 220555 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ETree.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 254050 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Eigen.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 179323 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/FrontMtx.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 275120 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/FrontTrees.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 184117 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/GPart.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 189753 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Graph.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 131649 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/I2Ohash.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 109549 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IIheap.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 121338 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IV.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 124237 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/IVL.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 95266 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Ideq.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 204608 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/InpMtx.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 282964 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/LinSol.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 89057 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Lock.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 176116 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MPI.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 168331 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MSMD.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 163065 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/MT.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 146123 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Network.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 143172 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/PatchAndGoInfo.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 124316 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Pencil.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 106870 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Perm.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 910692 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ReferenceManual.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 152660 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SemiImplMtx.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 134294 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SolveMap.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 175586 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtx.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 101242 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtxList.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 117435 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SubMtxManager.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 120557 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/SymbFac.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 167626 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Tree.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 189822 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/Utilities.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 127536 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/ZV.ps.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 537 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/changelog.Debian.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 378 2018-12-19 22:56:58.000000 ./usr/share/doc/spooles-doc/copyright │ │ │ --rw-r--r-- 0 root (0) root (0) 188889 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/misc.ps.gz │ │ │ +-rw-r--r-- 0 root (0) root (0) 188680 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/misc.ps.gz │ │ │ -rw-r--r-- 0 root (0) root (0) 9600 2025-10-18 17:12:38.000000 ./usr/share/doc/spooles-doc/spooles.2.2.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-10-18 17:12:38.000000 ./usr/share/doc-base/ │ │ │ -rw-r--r-- 0 root (0) root (0) 430 2018-12-19 22:56:58.000000 ./usr/share/doc-base/spooles-doc.spooles │ │ ├── ./usr/share/doc/spooles-doc/A2.ps.gz │ │ │ ├── A2.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o A2.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2060,15 +2060,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2262,81 +2261,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4625,20 +4619,20 @@ │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 205[33 33 49[{}2 58.1154 /CMR7 rf /Fb 255[65{}1 │ │ │ │ 83.022 /CMSY10 rf /Fc 149[27 21[39 11[54 72[{}3 58.1154 │ │ │ │ /CMMI7 rf /Fd 173[74 77 81[{}2 99.6264 /CMMI12 rf /Fe │ │ │ │ 133[50 59 3[62 44 44 46 2[56 62 93 31 2[31 62 1[34 51 │ │ │ │ 62 50 1[54 11[86 1[62 3[84 88 106 3[42 6[80 9[56 56 56 │ │ │ │ 56 56 56 56 56 2[31 46[{}33 99.6264 /CMBX12 rf /Ff 139[32 │ │ │ │ -1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 │ │ │ │ -42 3[23 44[{}14 83.022 /CMSL10 rf /Fg 139[62 4[62 4[62 │ │ │ │ -4[62 1[62 62 32[62 14[62 50[{}8 119.552 /CMTT12 rf /Fh │ │ │ │ -136[55 1[45 28 34 35 1[42 42 47 68 21 38 1[25 42 38 1[38 │ │ │ │ -42 38 38 42 12[59 1[61 11[54 56 63 2[62 6[25 58[{}26 │ │ │ │ -83.022 /CMTI10 rf │ │ │ │ +1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 │ │ │ │ +3[23 44[{}13 83.022 /CMSL10 rf /Fg 139[62 4[62 4[62 4[62 │ │ │ │ +1[62 62 32[62 14[62 50[{}8 119.552 /CMTT12 rf /Fh 136[55 │ │ │ │ +1[45 28 34 35 1[42 42 47 68 21 38 1[25 42 38 1[38 42 │ │ │ │ +38 38 42 12[59 1[61 11[54 56 63 2[62 6[25 58[{}26 83.022 │ │ │ │ +/CMTI10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -4760,15 +4754,15 @@ │ │ │ │ 5204 y Fj(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g │ │ │ │ Fg(A2)f Fj(metho)t(ds)0 5407 y Fm(This)28 b(section)f(con)n(tains)f │ │ │ │ (brief)i(descriptions)f(including)h(protot)n(yp)r(es)e(of)i(all)f │ │ │ │ (metho)r(ds)h(that)g(b)r(elong)f(to)g(the)h Fl(A2)f Fm(ob)5 │ │ │ │ b(ject.)1929 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fm(2)p 125 100 1244 4 v │ │ │ │ -1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(18,)g(2025)p │ │ │ │ +1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2656 100 V 0 390 a Fe(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 573 y Fm(As)21 b(usual,)g(there)f(are)g(four)g(basic)g(metho)r(ds)g(to) │ │ │ │ h(supp)r(ort)f(ob)5 b(ject)20 b(creation,)h(setting)f(default)h │ │ │ │ (\014elds,)h(clearing)d(an)n(y)h(allo)r(cated)0 672 y(data,)27 │ │ │ │ b(and)h(free'ing)f(the)h(ob)5 b(ject.)101 889 y(1.)42 │ │ │ │ b Fl(A2)g(*)h(A2_new)f(\()h(void)f(\))h(;)208 1027 y │ │ │ │ Fm(This)28 b(metho)r(d)g(simply)h(allo)r(cates)e(storage)f(for)h(the)i │ │ │ │ @@ -4829,15 +4823,15 @@ │ │ │ │ 5270 y Fm(This)27 b(metho)r(d)h(returns)f(a)g(p)r(oin)n(ter)g(to)h(the) │ │ │ │ g(base)f(address)f(of)i(the)g(en)n(tries.)208 5407 y │ │ │ │ Fh(Err)l(or)i(che)l(cking:)38 b Fm(If)28 b Fl(mtx)f Fm(is)g │ │ │ │ Fl(NULL)p Fm(,)f(an)i(error)d(message)i(is)g(prin)n(ted)h(and)f(the)h │ │ │ │ (program)e(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1244 4 v 1410 100 a Fl(A2)27 │ │ │ │ -b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2617 100 V 1244 w Fm(3)101 390 y(6.)42 b Fl(double)f(*)i(A2_row)e(\()i │ │ │ │ (A2)g(*mtx,)e(int)i(irow)f(\))h(;)208 541 y Fm(This)27 │ │ │ │ b(metho)r(d)h(returns)f(a)g(p)r(oin)n(ter)g(to)h(the)g(leading)f │ │ │ │ (elemen)n(t)h(of)f(ro)n(w)g Fl(irow)p Fm(.)208 691 y │ │ │ │ Fh(Err)l(or)k(che)l(cking:)41 b Fm(If)29 b Fl(mtx)f Fm(or)g │ │ │ │ Fl(entries)e Fm(is)j Fl(NULL)p Fm(,)e(or)h(if)i Fl(irow)d │ │ │ │ Fm(is)i(not)f(in)i Fl([0,n1-1])p Fm(,)c(an)i(error)f(message)g(is)i │ │ │ │ @@ -4910,15 +4904,15 @@ │ │ │ │ Fm(,)f(or)h(if)g(the)h(matrix)f(is)g(not)h(complex,)f(or)f(if)i │ │ │ │ Fl(irow)e Fm(is)h(not)h(in)208 5407 y Fl([0,n1-1])p Fm(,)c(or)j(if)h │ │ │ │ Fl(jcol)e Fm(is)h(not)h(in)g Fl([0,n2-1])p Fm(,)c(an)j(error)f(message) │ │ │ │ g(is)i(prin)n(ted)f(and)h(the)g(program)d(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fm(4)p 125 100 1244 4 v │ │ │ │ -1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(18,)g(2025)p │ │ │ │ +1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2656 100 V 0 390 a Fe(1.2.3)112 b(Initialize)38 b(metho)s(ds)101 │ │ │ │ 574 y Fm(1.)k Fl(void)f(A2_init)g(\()i(A2)g(*mtx,)f(int)g(type,)f(int)i │ │ │ │ (n1,)f(int)h(n2,)f(int)g(inc1,)g(int)g(inc2,)861 674 │ │ │ │ y(double)f(*entries)g(\))i(;)208 812 y Fm(This)30 b(is)h(the)g(basic)f │ │ │ │ (initializer)h(metho)r(d.)47 b(W)-7 b(e)31 b(require)e(that)i │ │ │ │ Fl(mtx)f Fm(not)h(b)r(e)g Fl(NULL)p Fm(,)e Fl(type)g │ │ │ │ Fm(b)r(e)j(either)e Fl(SPOOLES)p 3702 812 27 4 v 29 w(REAL)208 │ │ │ │ @@ -5004,15 +4998,15 @@ │ │ │ │ Fm(If)30 b Fl(Q)p Fm(,)e Fl(A)g Fm(or)g Fl(workDV)e Fm(is)j │ │ │ │ Fl(NULL)p Fm(,)e(or)h(if)h Fl(msglvl)41 b(>)i(0)28 b │ │ │ │ Fm(and)h Fl(msgFile)d Fm(if)j Fl(NULL)p Fm(,)e(an)h(error)f(message)g │ │ │ │ (is)208 5407 y(prin)n(ted)g(and)g(the)h(program)e(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1244 4 v 1410 100 a Fl(A2)27 │ │ │ │ -b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2617 100 V 1244 w Fm(5)101 390 y(4.)42 b Fl(void)f(A2_applyQT)f(\()j │ │ │ │ (A2)g(*Y,)f(A2)h(*A,)f(A2)h(*X,)f(DV)h(*workDV,)d(int)j(msglvl,)d(FILE) │ │ │ │ i(*msgFile)f(\))i(;)208 522 y Fm(This)22 b(metho)r(d)h(computes)f │ │ │ │ Fk(Y)42 b Fm(=)22 b Fk(Q)1296 491 y Fc(T)1348 522 y Fk(X)29 │ │ │ │ b Fm(\(if)23 b(real\))f(or)f Fk(Y)42 b Fm(=)22 b Fk(Q)2077 │ │ │ │ 491 y Fc(H)2140 522 y Fk(X)29 b Fm(\(if)23 b(complex\),)g(where)f │ │ │ │ Fk(Q)g Fm(is)g(stored)g(in)g(Householder)208 621 y(v)n(ectors)d(inside) │ │ │ │ @@ -5082,15 +5076,15 @@ │ │ │ │ e Fl(irow)g Fm(of)i(the)g(matrix.)208 5308 y Fh(Err)l(or)d(che)l │ │ │ │ (cking:)36 b Fm(If)22 b Fl(mtx)f Fm(is)h Fl(NULL)p Fm(,)e(or)i │ │ │ │ Fl(irow)e Fm(is)i(not)g(in)g Fl([0,n1-1])p Fm(,)e(an)i(error)e(message) │ │ │ │ h(is)h(prin)n(ted)g(and)g(the)g(program)208 5407 y(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fm(6)p 125 100 1244 4 v │ │ │ │ -1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(18,)g(2025)p │ │ │ │ +1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2656 100 V 101 390 a Fm(9.)42 b Fl(double)f(A2_twoNormOfRow)c(\()43 │ │ │ │ b(A2)g(*mtx,)e(int)i(irow)f(\))h(;)208 521 y Fm(This)27 │ │ │ │ b(metho)r(d)h(returns)f(the)h(t)n(w)n(o-norm)e(of)h(ro)n(w)g │ │ │ │ Fl(irow)f Fm(of)h(the)h(matrix.)208 652 y Fh(Err)l(or)d(che)l(cking:)36 │ │ │ │ b Fm(If)22 b Fl(mtx)f Fm(is)h Fl(NULL)p Fm(,)e(or)i Fl(irow)e │ │ │ │ Fm(is)i(not)g(in)g Fl([0,n1-1])p Fm(,)e(an)i(error)e(message)h(is)h │ │ │ │ (prin)n(ted)g(and)g(the)g(program)208 751 y(exits.)60 │ │ │ │ @@ -5165,15 +5159,15 @@ │ │ │ │ (shift)g(the)g(base)f(of)h(the)f(en)n(tries)g(and)h(adjust)g │ │ │ │ (dimensions)f(of)g(the)h Fl(A2)f Fm(ob)5 b(ject.)208 │ │ │ │ 5407 y Fl(mtx\(0:n1-rowoff)o(-1,)o(0:)o(n2)o(-co)o(lo)o(ff-)o(1\))37 │ │ │ │ b(:=)43 b(mtx\(rowoff:n1-1)o(,co)o(lo)o(ff:)o(n2)o(-1)o(\))p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1244 4 v 1410 100 a Fl(A2)27 │ │ │ │ -b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2617 100 V 1244 w Fm(7)208 390 y Fh(Err)l(or)j(che)l(cking:)38 │ │ │ │ b Fm(If)28 b Fl(mtx)f Fm(is)g Fl(NULL)f Fm(an)i(error)d(message)h(is)i │ │ │ │ (prin)n(ted)f(and)h(the)g(program)d(exits.)101 551 y(3.)42 │ │ │ │ b Fl(int)g(A2_rowMajor)d(\()k(A2)g(*mtx)f(\))h(;)208 │ │ │ │ 682 y Fm(This)27 b(metho)r(d)h(returns)f(1)g(if)h(the)g(storage)e(is)i │ │ │ │ (ro)n(w)e(ma)5 b(jor,)26 b(otherwise)h(it)h(returns)f(zero.)208 │ │ │ │ 812 y Fh(Err)l(or)j(che)l(cking:)38 b Fm(If)28 b Fl(mtx)f │ │ │ │ @@ -5249,15 +5243,15 @@ │ │ │ │ Fl(row[])d Fm(v)n(ector.)208 5308 y Fh(Err)l(or)k(che)l(cking:)39 │ │ │ │ b Fm(If)27 b Fl(mtx)p Fm(,)f Fl(entries)e Fm(or)j Fl(row[])e │ │ │ │ Fm(are)h Fl(NULL)p Fm(,)f(or)h(if)i Fl(irow)d Fm(is)i(not)g(in)h │ │ │ │ Fl([0,n1-1])p Fm(,)c(an)i(error)g(message)f(is)208 5407 │ │ │ │ y(prin)n(ted)i(and)g(the)h(program)e(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fm(8)p 125 100 1244 4 v │ │ │ │ -1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(18,)g(2025)p │ │ │ │ +1409 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2656 100 V 60 390 a Fm(13.)41 b Fl(void)g(A2_setRowDV)f(\()j(A2)f │ │ │ │ (*mtx,)g(DV)h(rowDV,)e(int)h(irow)g(\))h(;)208 520 y │ │ │ │ Fm(This)27 b(metho)r(d)h(\014lls)g(ro)n(w)e Fl(irow)g │ │ │ │ Fm(of)i(the)g(matrix)f(with)h(the)g(en)n(tries)f(in)h(the)g │ │ │ │ Fl(rowDV)d Fm(ob)5 b(ject.)208 649 y Fh(Err)l(or)32 b(che)l(cking:)44 │ │ │ │ b Fm(If)31 b Fl(mtx)e Fm(or)h Fl(rowDV)e Fm(are)i Fl(NULL)p │ │ │ │ Fm(,)e(or)i(if)h(the)f(matrix)g(is)g(not)h(real,)f(or)f(if)i │ │ │ │ @@ -5334,15 +5328,15 @@ │ │ │ │ 5308 y Fh(Err)l(or)30 b(che)l(cking:)38 b Fm(If)28 b │ │ │ │ Fl(mtxA)e Fm(or)g Fl(mtxB)g Fm(is)i Fl(NULL)p Fm(,)d(or)i(if)h(the)g │ │ │ │ (matrices)e(are)h(not)g(of)h(the)f(same)g(t)n(yp)r(e,)h(an)f(error)f │ │ │ │ (message)208 5407 y(is)h(prin)n(ted)h(and)f(the)h(program)e(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 83 100 1244 4 v 1410 100 a Fl(A2)27 │ │ │ │ -b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2617 100 V 1244 w Fm(9)60 390 y(23.)41 b Fl(void)g(A2_sub)h(\()h(A2)g │ │ │ │ (*mtxA,)e(A2)h(*mtxB)g(\))h(;)208 523 y Fm(This)27 b(metho)r(d)h │ │ │ │ (subtracts)e(en)n(tries)h(in)h(matrix)e Fl(mtxB)g Fm(from)h(en)n(tries) │ │ │ │ g(in)g(matrix)g Fl(mtxA)p Fm(.)f(Note,)h Fl(mtxA)f Fm(and)h │ │ │ │ Fl(mtxB)f Fm(need)208 622 y(not)34 b(b)r(e)h(of)g(the)f(same)g(size,)i │ │ │ │ (the)f(leading)f Fl(min\(mtxA->n1,mtxB)o(->)o(n1\))28 │ │ │ │ b Fm(ro)n(ws)33 b(and)h Fl(min\(mtxA->n2,mtx)o(B->)o(n2)o(\))208 │ │ │ │ @@ -5431,15 +5425,15 @@ │ │ │ │ b Fl(1)g Fm(is)h(returned.)36 b(If)28 b(an)g(IO)f(error)f(is)h(encoun)n │ │ │ │ (tered)g(from)g Fl(fread)p Fm(,)f(zero)g(is)i(returned.)208 │ │ │ │ 5407 y Fh(Err)l(or)i(che)l(cking:)38 b Fm(If)28 b Fl(mtx)f │ │ │ │ Fm(or)g Fl(fp)f Fm(are)h Fl(NULL)p Fm(,)f(an)h(error)f(message)g(is)i │ │ │ │ (prin)n(ted)f(and)h(zero)e(is)i(returned.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fm(10)p 166 100 1224 4 │ │ │ │ -v 1388 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(18,)g(2025) │ │ │ │ +v 1388 w Fl(A2)27 b Ff(:)37 b Fh(DRAFT)27 b Ff(Octob)r(er)g(28,)g(2025) │ │ │ │ p 2677 100 V 101 390 a Fm(4.)42 b Fl(int)g(A2_writeToFile)c(\()43 │ │ │ │ b(A2)g(*mtx,)e(char)h(*fn)g(\))i(;)208 522 y Fm(This)31 │ │ │ │ b(metho)r(d)h(writes)f(a)g Fl(A2)g Fm(ob)5 b(ject)31 │ │ │ │ b(to)h(a)f(\014le.)49 b(It)32 b(tries)f(to)g(op)r(en)h(the)g(\014le)g │ │ │ │ (and)f(if)h(it)g(is)f(successful,)i(it)f(then)g(calls)208 │ │ │ │ 622 y Fl(A2)p 301 622 27 4 v 30 w(writeFromFormatt)o(edF)o(il)o(e\(\)) │ │ │ │ 24 b Fm(or)29 b Fl(A2)p 1600 622 V 31 w(writeFromBinaryF)o(ile)o(\(\))o │ │ │ │ @@ -5518,15 +5512,15 @@ │ │ │ │ 5144 y Fi(\210)42 b Fm(The)28 b Fl(ncol)e Fm(parameter)g(is)h(the)h(n)n │ │ │ │ (um)n(b)r(er)g(of)f(ro)n(ws.)307 5275 y Fi(\210)42 b │ │ │ │ Fm(The)28 b Fl(inc1)e Fm(parameter)g(is)h(the)h(ro)n(w)f(incremen)n(t.) │ │ │ │ 307 5407 y Fi(\210)42 b Fm(The)28 b Fl(inc2)e Fm(parameter)g(is)h(the)h │ │ │ │ (column)g(incremen)n(t.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 83 100 1224 4 v 1389 100 a Fl(A2)27 │ │ │ │ -b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Ff(:)37 b Fh(DRAFT)110 b Ff(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2596 100 V 1224 w Fm(11)307 390 y Fi(\210)42 b Fm(The)28 │ │ │ │ b Fl(seed)e Fm(parameter)g(is)h(a)h(random)e(n)n(um)n(b)r(er)i(seed.) │ │ │ │ 101 573 y(2.)42 b Fl(test_QR)e(msglvl)h(msgFile)g(type)h(nrow)g(ncol)g │ │ │ │ (inc1)g(inc2)g(seed)208 706 y Fm(This)22 b(driv)n(er)g(program)e(tests) │ │ │ │ j(the)g Fl(A2)p 1376 706 27 4 v 30 w(QRreduce\(\))c Fm(and)k │ │ │ │ Fl(A2)p 2110 706 V 30 w(QRreduce2\(\))18 b Fm(metho)r(ds)23 │ │ │ │ b(whic)n(h)g(reduce)f Fk(A)h Fm(to)g Fk(QR)g Fm(via)208 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ │ • A2 IS REAL(mtx) is 1 if mtx has real entries and 0 otherwise. │ │ │ │ │ • A2 IS COMPLEX(mtx) is 1 if mtx has complex entries and 0 otherwise. │ │ │ │ │ TheA2 copyEntriesToVector()methodusesthefollowingconstants: A2 STRICT LOWER,A2 LOWER,A2 DIAGONAL, │ │ │ │ │ A2 UPPER, A2 STRICT UPPER, A2 ALL ENTRIES, A2 BY ROWS and A2 BY COLUMNS. │ │ │ │ │ 1.2 Prototypes and descriptions of A2 methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the A2 object. │ │ │ │ │ 1 │ │ │ │ │ - 2 A2 : DRAFT October 18, 2025 │ │ │ │ │ + 2 A2 : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ Asusual, there are four basic methods to support object creation, setting default fields, clearing any allocated │ │ │ │ │ data, and free’ing the object. │ │ │ │ │ 1. A2 * A2_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the A2 structure and then sets the default fields by a call to │ │ │ │ │ A2 setDefaultFields(). │ │ │ │ │ 2. void A2_setDefaultFields ( A2 *mtx ) ; │ │ │ │ │ @@ -56,15 +56,15 @@ │ │ │ │ │ 4. int A2_inc2 ( A2 *mtx ) ; │ │ │ │ │ This method returns the secondary increment, the stride in memory (with respect to real or complex │ │ │ │ │ entries) between adjacent entries in the same row. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 5. double * A2_entries ( A2 *mtx ) ; │ │ │ │ │ This method returns a pointer to the base address of the entries. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - A2 : DRAFT October 18, 2025 3 │ │ │ │ │ + A2 : DRAFT October 28, 2025 3 │ │ │ │ │ 6. double * A2_row ( A2 *mtx, int irow ) ; │ │ │ │ │ This method returns a pointer to the leading element of row irow. │ │ │ │ │ Error checking: If mtx or entries is NULL, or if irow is not in [0,n1-1], an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 7. double * A2_column ( A2 *mtx, int jcol ) ; │ │ │ │ │ This method returns a pointer to the leading element of column jcol. │ │ │ │ │ Error checking: If mtx or entries is NULL, or if jcol is not in [0,n2-1], an error message is printed │ │ │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ or if jcol is not in [0,n2-1], an error message is printed and the program exits. │ │ │ │ │ 13. void A2_pointerToComplexEntry ( A2 *mtx, int irow, int jcol, │ │ │ │ │ double **ppReal, double **ppImag ) ; │ │ │ │ │ This method sets *ppReal to the pointer to the real part of the (irow,jcol) entry, and sets *ppImag │ │ │ │ │ to the pointer to the imaginary part of the (irow,jcol) entry. │ │ │ │ │ Error checking: If mtx, ppReal or ppImag is NULL, or if the matrix is not complex, or if irow is not in │ │ │ │ │ [0,n1-1], or if jcol is not in [0,n2-1], an error message is printed and the program exits. │ │ │ │ │ - 4 A2 : DRAFT October 18, 2025 │ │ │ │ │ + 4 A2 : DRAFT October 28, 2025 │ │ │ │ │ 1.2.3 Initialize methods │ │ │ │ │ 1. void A2_init ( A2 *mtx, int type, int n1, int n2, int inc1, int inc2, │ │ │ │ │ double *entries ) ; │ │ │ │ │ This is the basic initializer method. We require that mtx not be NULL, type be either SPOOLES REAL │ │ │ │ │ or SPOOLES COMPLEX, n1 and n2 both be positive, and both inc1 and inc2 both be positive and that │ │ │ │ │ one of them be equal to one. Also, we only initialize a full matrix, i.e., one of inc1 = 1 and inc2 = │ │ │ │ │ nrow or inc1 = ncol and inc2 = 1 must hold. │ │ │ │ │ @@ -134,15 +134,15 @@ │ │ │ │ │ Error checking: If A or workDV is NULL, or if msglvl > 0 and msgFile if NULL, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ 3. void A2_computeQ ( A2 *Q, A2 *A, DV *workDV, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method computes Q from the A = QR factorization computed in A2 QRreduce(). Note: A and Q │ │ │ │ │ must be column major. │ │ │ │ │ Error checking: If Q, A or workDV is NULL, or if msglvl > 0 and msgFile if NULL, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ - A2 : DRAFT October 18, 2025 5 │ │ │ │ │ + A2 : DRAFT October 28, 2025 5 │ │ │ │ │ 4. void A2_applyQT ( A2 *Y, A2 *A, A2 *X, DV *workDV, int msglvl, FILE *msgFile ) ; │ │ │ │ │ T H │ │ │ │ │ This method computes Y = Q X (if real) or Y = Q X (if complex), where Q is stored in Householder │ │ │ │ │ vectors inside A. We assume that A2 reduce() has been previously called with A as an argument. Since │ │ │ │ │ Y is computed column-by-column, X and Y can be the same A2 object. The workDV object is resized │ │ │ │ │ as necessary. Note: Y, A and X must be column major. │ │ │ │ │ Error checking: If Y, A, X or workDV is NULL, or if msglvl > 0 and msgFile if NULL, or if Y, A or X is │ │ │ │ │ @@ -174,15 +174,15 @@ │ │ │ │ │ This method returns the infinity-norm of column jcol of the matrix. │ │ │ │ │ Error checking: If mtx is NULL, or jcol is not in [0,n2-1], an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 8. double A2_oneNormOfRow ( A2 *mtx, int irow ) ; │ │ │ │ │ This method returns the one-norm of row irow of the matrix. │ │ │ │ │ Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 6 A2 : DRAFT October 18, 2025 │ │ │ │ │ + 6 A2 : DRAFT October 28, 2025 │ │ │ │ │ 9. double A2_twoNormOfRow ( A2 *mtx, int irow ) ; │ │ │ │ │ This method returns the two-norm of row irow of the matrix. │ │ │ │ │ Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 10. double A2_infinityNormOfRow ( A2 *mtx, int irow ) ; │ │ │ │ │ This method returns the infinity-norm of row irow of the matrix. │ │ │ │ │ Error checking: If mtx is NULL, or irow is not in [0,n1-1], an error message is printed and the program │ │ │ │ │ @@ -213,15 +213,15 @@ │ │ │ │ │ 1.2.7 Utility methods │ │ │ │ │ 1. int A2_sizeOf ( A2 *mtx ) ; │ │ │ │ │ This method returns the number of bytes owned by this object. │ │ │ │ │ Error checking: If mtx is NULL an error message is printed and the program exits. │ │ │ │ │ 2. void A2_shiftBase ( A2 *mtx, int rowoff, int coloff ) ; │ │ │ │ │ This method is used to shift the base of the entries and adjust dimensions of the A2 object. │ │ │ │ │ mtx(0:n1-rowoff-1,0:n2-coloff-1) := mtx(rowoff:n1-1,coloff:n2-1) │ │ │ │ │ - A2 : DRAFT October 18, 2025 7 │ │ │ │ │ + A2 : DRAFT October 28, 2025 7 │ │ │ │ │ Error checking: If mtx is NULL an error message is printed and the program exits. │ │ │ │ │ 3. int A2_rowMajor ( A2 *mtx ) ; │ │ │ │ │ This method returns 1 if the storage is row major, otherwise it returns zero. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int A2_columnMajor ( A2 *mtx ) ; │ │ │ │ │ This method returns 1 if the storage is column major, otherwise it returns zero. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -253,15 +253,15 @@ │ │ │ │ │ This method fills the colZV object with column jcol of the matrix. │ │ │ │ │ Error checking: If mtx or colZV are NULL, or if the matrix is not complex, or if jcol is not in [0,n2-1], │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 12. void A2_setRow ( A2 *mtx, double row[], int irow ) ; │ │ │ │ │ This method fills row irow of the matrix with the entries in the row[] vector. │ │ │ │ │ Error checking: If mtx, entries or row[] are NULL, or if irow is not in [0,n1-1], an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ - 8 A2 : DRAFT October 18, 2025 │ │ │ │ │ + 8 A2 : DRAFT October 28, 2025 │ │ │ │ │ 13. void A2_setRowDV ( A2 *mtx, DV rowDV, int irow ) ; │ │ │ │ │ This method fills row irow of the matrix with the entries in the rowDV object. │ │ │ │ │ Error checking: If mtx or rowDV are NULL, or if the matrix is not real, or if irow is not in [0,n1-1], │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 14. void A2_setRowZV ( A2 *mtx, ZV rowZV, int irow ) ; │ │ │ │ │ This method fills row irow of the matrix with the entries in the rowZV object. │ │ │ │ │ Error checking: If mtx or rowZV are NULL, or if the matrix is not complex, or if irow is not in [0,n1-1], │ │ │ │ │ @@ -294,15 +294,15 @@ │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 22. void A2_copy ( A2 *mtxA, A2 *mtxB ) ; │ │ │ │ │ This method copies entries from matrix mtxB into matrix mtxA. Note, mtxA and mtxB need not be of │ │ │ │ │ the same size, the leading min(mtxA->n1,mtxB->n1)rows and min(mtxA->n2,mtxB->n2)columns are │ │ │ │ │ copied. │ │ │ │ │ Error checking: If mtxA or mtxB is NULL, or if the matrices are not of the same type, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - A2 : DRAFT October 18, 2025 9 │ │ │ │ │ + A2 : DRAFT October 28, 2025 9 │ │ │ │ │ 23. void A2_sub ( A2 *mtxA, A2 *mtxB ) ; │ │ │ │ │ This method subtracts entries in matrix mtxB from entries in matrix mtxA. Note, mtxA and mtxB need │ │ │ │ │ not be of the same size, the leading min(mtxA->n1,mtxB->n1) rows and min(mtxA->n2,mtxB->n2) │ │ │ │ │ columns are subtracted. │ │ │ │ │ Error checking: If mtxA or mtxB is NULL, or if the matrices are not of the same type, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 24. void A2_swapRows ( A2 *mtx, int irow1, int irow2 ) ; │ │ │ │ │ @@ -335,15 +335,15 @@ │ │ │ │ │ This method reads a A2 object from a formatted file whose pointer is fp. If there are no errors in │ │ │ │ │ reading the data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 3. int A2_readFromBinaryFile ( A2 *mtx, FILE *fp ) ; │ │ │ │ │ This method reads a A2 object from a binary file whose pointer is fp. If there are no errors in reading │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 10 A2 : DRAFT October 18, 2025 │ │ │ │ │ + 10 A2 : DRAFT October 28, 2025 │ │ │ │ │ 4. int A2_writeToFile ( A2 *mtx, char *fn ) ; │ │ │ │ │ This method writes a A2 object to a file. It tries to open the file and if it is successful, it then calls │ │ │ │ │ A2 writeFromFormattedFile() or A2 writeFromBinaryFile(), closes the file and returns the value │ │ │ │ │ returned from the called routine. │ │ │ │ │ Error checking: If mtx or fn are NULL, or if fn is not of the form *.a2f (for a formatted file) or *.a2b │ │ │ │ │ (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 5. int A2_writeToFormattedFile ( A2 *mtx, FILE *fp ) ; │ │ │ │ │ @@ -374,15 +374,15 @@ │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ • The nrow parameter is the number of rows. │ │ │ │ │ • The ncol parameter is the number of rows. │ │ │ │ │ • The inc1 parameter is the row increment. │ │ │ │ │ • The inc2 parameter is the column increment. │ │ │ │ │ - A2 : DRAFT October 18, 2025 11 │ │ │ │ │ + A2 : DRAFT October 28, 2025 11 │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 2. test_QR msglvl msgFile type nrow ncol inc1 inc2 seed │ │ │ │ │ This driver program tests the A2 QRreduce()and A2 QRreduce2()methods which reduce A to QR via │ │ │ │ │ rank-1 and rank-2 updates. Use the script file do QR for testing. When msglvl > 1, the matrix A and │ │ │ │ │ matrices R1 and R2 (computed from A2 QRreduce()and A2 QRreduce2(),respectively) are printed to │ │ │ │ │ T T T T │ │ │ │ │ the message file. When the output file is loaded into matlab, the errors A A−R R and A A−R R │ │ ├── ./usr/share/doc/spooles-doc/AllInOne.ps.gz │ │ │ ├── AllInOne.ps │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o AllInOne.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2704,15 +2704,14 @@ │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 46 /period put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 61 /equal put │ │ │ │ dup 65 /A put │ │ │ │ dup 66 /B put │ │ │ │ dup 67 /C put │ │ │ │ @@ -2924,206 +2923,202 @@ │ │ │ │ CE25A158AED63B8FE391030C518692F2EF74DC514FD192BCC93C02373CE75137 │ │ │ │ 334A9C960EFF02B687E7B8F18FE2D9EAD2EBBEA3A459D8476AF51AF6C85E1166 │ │ │ │ 08A0A6190D8FA8252F5D38820C6950A8B323B1B8648E3AFEB827678CDE87C535 │ │ │ │ EBB201D3A169CD9DCC4C3C256A0960D963F3C6659BBF4D2971663D0AB84621F1 │ │ │ │ 5C186C0550483EA00066C08F2E907B838F2863B986BBD637B6F56676655CD30C │ │ │ │ 3EDEEAF952BDF9914D3AED6D1A55395BCAB30DB575B37DD1D9B0D4C10D271EAE │ │ │ │ A248414EE7723314B838B57BE9F0C73CF62AF0D75DF2671311BE7799F05E418C │ │ │ │ -4F35990248F427F070142CB26352246E6DA832A2EC9BB5203728D93B66D9F1C0 │ │ │ │ -DFCA15F1985FD959F5F979B61EC08E9F58EBD803A2B70582D3912A65E9802A40 │ │ │ │ -4B979FC03B366C41216FC6BC6F510323F4AD1A29CDA6A8014520B4E705569755 │ │ │ │ -7EC4E55D4438D8F630BA83107BD2ADA5E8DF1D1ADB0ACEED0F3F0E509AA0435C │ │ │ │ -32930C938E6993DF163688A56199376F59FA3BC063BC60F6007FA4EE17DDCC46 │ │ │ │ -2F448ECC5CB4EFF937AFAC4B4E72EE284C44A92B809DECF6D028ED6A6FBC2B24 │ │ │ │ -BE5C2A4BE0A8105900CEAF3C9155F86BD2CEDE02799D369ABEF2C0CEE3F76052 │ │ │ │ -BDC4974AAC613CE93DB193AC0DE0803DA514A732415AE14395CD77D0E0AB4FB0 │ │ │ │ -A5D45E9DF2B23A54896A369E689E0BC204A137ABB64CE36C6A0008C8AA466CC4 │ │ │ │ -C5FF87F0D4EF0DD17B9B0C553C58F695CF12542AD51C109E413D3F843852C47B │ │ │ │ -2E17C2D80AEBEB4D687BE2B4D907BD7D04677A4F09CC10FDD2107931ACD34599 │ │ │ │ -F1C21912E2E71563089F07E3E47AE0964E8B3D94B8E1A67CB21D5890C62C37FF │ │ │ │ -A57F5C0397213E0247C7B2D328EA3F6ECA99BB782756D596236CFBDFDB7BC080 │ │ │ │ -E23055AFBE6BF6A4A06E36C3F7AB68B4F0491FDE392C9193B9119E343BCF8B4E │ │ │ │ -872AD612D041A745C53E374F79D781EA47A126EDFB985D6E81F48AC85A14E956 │ │ │ │ -30DADC1717A6782634E1993326CC83B2901D9C1AA0DFF308436555FD030246AC │ │ │ │ -6878334EA6408EDBBC9566B808584B3283272EDBE3ECDC5A7A952160588DB168 │ │ │ │ -63A806DD922A8B77EEDFB07F13001802DFE72A21FD97D60F364B48EF64E5D5E7 │ │ │ │ -166A3DE6E5D755DFA658D2A5F5B3E40543D71DEBBCC1289C37AEC02040480922 │ │ │ │ -CB262EF7DACA4FE1A96494080EB9EC06920C67A323E14CEECB9CB5ADC6440F31 │ │ │ │ -A938513C1D0A565A3942EB68EC5AAB0C440A6FDC9D19E85397F6250C60DD0EFC │ │ │ │ -7487630E12AB34C0E2C0377DB81A0BFFAC5AAB5223F713AD9C7BE361375395EE │ │ │ │ -5D6D18E9F2BD227EB579926D7426E9CEC9EE58A0F3DDD05BEEE40F010002F4D7 │ │ │ │ -1C07D6EB6290301A09A75010C5DF49DBF71BB07AE06312CF477B3855CAF98DBE │ │ │ │ -B78A482301A5AB0EE6E9D98FB64FB5CCC1E6394A473B8118FECBA6DAFE170D8D │ │ │ │ -4FF6DB95AB3BC66FA484C4E637205C8C2E954CD4D85129ECA1BCFA31546E9BA2 │ │ │ │ -AAEE4423157C222F1B831B9C5D56E54D469FBB89A4125F3778B1881C05CB7E1D │ │ │ │ -B8A0BE575E5BAE73131662CFFFE1EC825489B819EB7B54CA1A9F63C8C24E4B53 │ │ │ │ -C274C20395004C2ADF52706FFE9EDEC1E613147459117275E8152C8709424AC5 │ │ │ │ -8CAA360623309FAAFA5D4E40DCF83801EB4EA5852513F97297EF782CD79A5579 │ │ │ │ -8B7AFBA34AC3E22AA1A832507E6842E4375C55A107B2CB6F8CF56B9BE4EC7F5A │ │ │ │ -EA389FE8EE9AE0A8AA75DEEC58E6EA2C404BC272657E9F45EB6B3D089F196142 │ │ │ │ -01D90985762717F5426F7148BB8FA70965CF1BDB223EE1DBC7F510581ABDCC3D │ │ │ │ -527217F69D454E05E0E71CB29F326395853BD839BA57416D36058B06F3AABB12 │ │ │ │ -1C00CCC1507D3657AE3A398AA7045C087251D87EA0A4F098278CB5BE5CF3D2D4 │ │ │ │ -3FB4FB29CD4796D95E95AD6309E0D77C8EAFA9C56B22D504BD50A05AFA0DFD0B │ │ │ │ -143085B634968BD896E982E834F748D2DCF08DFB56B3DB6A0862842729BB8BA5 │ │ │ │ -1D35D2F38725D6B68B37F6E518B03B4144135028C2CFF9AF42D9C3090D3C6899 │ │ │ │ -ECCF19241CF389D8650002C19836AC3EED45C0310C87CD8E403C3A8D5774E825 │ │ │ │ -74783C8E950082DEE9D8E5E6036EE84D3028DAB33432E777312EB3EA76BF9D32 │ │ │ │ -8BDF0D25AA998D6948465732D234D10CC35AAE73105DFA58305BFB1B3EC13250 │ │ │ │ -60E81F43529410D6EF14AF9C8BB929D28504F41C0E5AD878C973F71413B76CB1 │ │ │ │ -16CC1C2FC66C920D4B6AA53C388F590620840098E68B231324672B3E38A5B229 │ │ │ │ -27B9BA72072A6C72991072DB267DA1913F3282929E3E687C444776F13ADB1638 │ │ │ │ -3F54D5DD19AB3A07B64CBAE87CA09A0F5F0A066A36F0C8548E959F4527CB608C │ │ │ │ -6102128D55CCDEEF321AB964E824A7C9994B9C142E6FFA720507F328C0150223 │ │ │ │ -539BA0FCEC43945055E45410B2865C74995FD7537949A871F36E39C8CB3F0EC5 │ │ │ │ -E467E76128408F68F252348AEF081BB6F8F39B3F20FCFDE7ED4F629A33BA77B4 │ │ │ │ -1FD23AB170FB8BBD6BACC849D7E3DE9755152C093ECD46FF20439E657BD02177 │ │ │ │ -B30494A6C60D5DF598FEA637E09776A95803769D9AD69367D38B8A2B8F010172 │ │ │ │ -B9CB92B3C488ECEBE64885855E833BB4348ECCA17B9993C6860975B0806009B7 │ │ │ │ -EC36CE5DC555CE532EB50ECC70A8CEBC1C9EB20DA7A8D10244D666AFE99B5E81 │ │ │ │ -0D76D7DEC7DF5BA3483AF8765AC1258B478403061F74CB39CEDAD0F4C817FADA │ │ │ │ -B9EFA1415E9686B6B691ECBE5AEEFD822D6A22918B90ABC6DB04AA895ECB823C │ │ │ │ -AC45513B2A99DB32572C267E085C36939B5764C8A93CF0D306F7BA6BB4E4D885 │ │ │ │ -8FBD00FBE85BD7A2889040791EDF9ED2E4D4BB802BD4B29DB2A2EDE241DCA421 │ │ │ │ -0DF0C59520B0F33103DC65EFB382D8D126E81AD7FF799AA0D1ADAD97E1E502B2 │ │ │ │ -08BE152CB3AA71ADE9BC2B027443533ECF7497CD08B3DE67E4F21A52A9CC4EBF │ │ │ │ -AAE8F0BFDB326E2AAA1B07AC3364B5E0D8C0FD9327D78FEB9ED1D4560F112A6D │ │ │ │ -1BF3DF8E5AC4F5517B2D994B0F82C23A913D51E2607C0BE0C11C8905611E63AE │ │ │ │ -5741B1D9CB38B059968AE21F48CC1AE0E457E7FB350EEE8077AB14165486A583 │ │ │ │ -56B141A31117E1578EE36F2260445FC318537A2EFE42C3243C9314918909405D │ │ │ │ -C51FD3D924FCF7410017498DBFEB43149DF180F17CD773814CE7F32531521D98 │ │ │ │ -A9D8B1899AA84BCB46DCC563A66B9D13D613EE6EE8C3EF1B600FCF467D15FAB3 │ │ │ │ -B9F8213D1E0E0F8D85A70AAFD43B465D2092C86D5BA23CC0073FA6B1E770C860 │ │ │ │ -7A1EA761124D05CF3D87F24F9D209D78E01D77260FA813389F8E81641F1F21E7 │ │ │ │ -2CC837C674547F8A325A5B2F2EC53CA8A0C6CCD0435EED629D7A4B90FEE27C20 │ │ │ │ -839AB30E9CEB3F4C42F48DBBC564F137216AC66C5391260D028F2B5A3B38BAAB │ │ │ │ -6310444D39D5D82798028478B2F95DE874CBD58437978EA4ADF6FF1EA1A20D1B │ │ │ │ -D76166BC0EA652FF4489ED2D85E750CF620EBDBA1C511DDF789030533654B0BC │ │ │ │ -50CFCC64B976E4655A183566AB0D40A534E1AD3A8B9E011072187D56ED1D8307 │ │ │ │ -4F34A71ABDFCE5446F044E3AB75052D033536997D324EFE2A47048E6E5164BA4 │ │ │ │ -F58B896E330CCEF7CF0AE9FBFAD22E586C2A7474998016239DB46593AD8DAE94 │ │ │ │ -A199EBC1FA02ACB5A49805AE19BA3770B7B7D844A4F43867388DE020E61C2377 │ │ │ │ -A1CBD577C157BB5901E82F990EAE0A97E17103562428E96AFBE276B949C61AF3 │ │ │ │ -0AA1784CE461B626F19FC0571FA5A7BC4EBF7E18974878C02328BD3084EEC08A │ │ │ │ -5E29A95DA21E08F507515F88C60E23450B594CDBE1FF247F257DC66FCFC42A93 │ │ │ │ -E61C470D4AFE46231FE39CA4AE61B87C8FB35C66EA232D80D140A1A525BFE890 │ │ │ │ -59BF3854294DA62F57F8C06E6699E36F9299B26BAB883F8A2777F9366E260832 │ │ │ │ -4741889F690765864F5C577E7CC93FBEA77E6FDB140B79FB6E481B78E65131A0 │ │ │ │ -2CA5F449544AD736D10D46A5BEE417E4AE6F8C876DC0543F332DEDF228451D7F │ │ │ │ -B0E8A8D3AA0E793A7B53F3B6689AC526E3416034B812B5EF7D65367637405AD6 │ │ │ │ -4818D973F81D9F2A88FCF455F1993C7E7E617ADC94481A6AEF54D401D6BA8B10 │ │ │ │ -662C0597AB16CB3B9518D1A9482E452E3B9297ED8842890F182CE72EBFD3337D │ │ │ │ -5B78D30B26586F0168BA33A25707C2F3809B9AA1D62B0CF65FB0CF7412DBA543 │ │ │ │ -926161E6FA242CC1BE5ABDAA876CDCAB7E093A1A346B0DA8BFC3688D9C9FD49A │ │ │ │ -40E338526846A6D1FEA75FAF86939F2521B59C09852D460AFB29A7B31E9E83F2 │ │ │ │ -B948943D774E1B98C9DCF047494198677712106D4B22986B3EC1D6CB765F6D34 │ │ │ │ -B62639CF0E9CA3AFC41C9715E852D868EAABB61DD905B1C059AD7886EDDDCB8C │ │ │ │ -F4D2F2C044AA5A3234B4D5F27687838E47F71B378DEB09A30541B0FF58D2E3A8 │ │ │ │ -46375C300B4C57D5209B1D771E7E582946907BD38BE514BB5EAEE9BF47D16B66 │ │ │ │ -BF3731A2606B09131148991AFBFE1B4096D5F5461A8F02D2021E3C83667441D2 │ │ │ │ -CC0A54A2F70504CD045D41E9D0EE8372C2229859EBF2A5412CDB91F1833DDEFB │ │ │ │ -1BC4994FD6F05AF5D88C428505F61309E79F5F03CFBE81F725EAADA9C4803BBD │ │ │ │ -D63BD487B9FF053FEA27804249BEE8FF0C2507FD239C696CB39EB5EE84A2E360 │ │ │ │ -8F446545A0F03F2FDC08AA640EA503F83B21AE16CD939CF7AF4120016D08B772 │ │ │ │ -F15D96245CAD533B09D802EAC0D8EE0AD2D4776273200030D47889CC55750E44 │ │ │ │ -AC67EC17C844AD2173FC01171BD825AF9AA39D7611BF0B021C2D813DA16EFDB2 │ │ │ │ -3DA3CE82976D159AAD78E8FD3D3E76D8A14BC70B22B08A0ED3BF59C04A5062F3 │ │ │ │ -EE7937BD183E4E4BCF994A48E722148C2CF28774EFC7E377B832FFA7C858354A │ │ │ │ -2CCCACBFDB84044066ABA0349902D565C7A71D2D9CDF491958B550863EF8734D │ │ │ │ -C456E6A5A7C60620836BD40FF2576EAD786931152E7A950505550B380DBCCB39 │ │ │ │ -D4D122F83E62C2F4E716BDDCFCA4E89F9AB633A019D4322C0C4D4ADACBE9B85D │ │ │ │ -957662ECE105BBE6EAC36D582FADF7F380F3F8B02294B893745C68592BFD1149 │ │ │ │ -F6784DA9DBEEE2760068D9B93299BABA33DB1D480CAD6B0E12B9100E715D9ACC │ │ │ │ -6F35C39DA56871561F277EC617A90921E378F9308218CF02AE4665E76A7FE431 │ │ │ │ -B53633B393DEA1E0BF38AFB7836916B5206E0B38196C5E3823DB7F888E55D101 │ │ │ │ -88609614131EEA9A4BF8362D276F316C9667C5416E66B1550B90D9E0CA0E5CB7 │ │ │ │ -FE645A564EBF21BFBFE2FC6F31EBA1766CB8E63D0E41B0A7408CE3D974A8D67B │ │ │ │ -16416812F2D6D36F246249B09E80402B169985802A6937381D8A92E5B582399B │ │ │ │ -61DAA33B7E4A47093ACB2D3EC5EDCBE61202D7C3EF839D6FC4B9BDEF71F37225 │ │ │ │ -748663C615FCAB2290BD9AAA5F4E54670BFB6C43106880D800FF2403F3A9C605 │ │ │ │ -39323CCF27439C5F3C6BEE582086533D4A08B9DB4E553DCCF1DFC815613095E4 │ │ │ │ -EAECAF56E1D359B378BE546BAEF71A5A6DAD2A1047458E48E4D2961FE7F3A3E8 │ │ │ │ -6C96555042ADFEB7A5A0F81D0FF9D6C7346BA5910F57331C9A3A6543CBE76495 │ │ │ │ -98B03FCDBA618B358467B288EB71320C3D4B838F8CDEA29E0041821CAA67EAD8 │ │ │ │ -7F6E3C5D6C2C34F865CA02D8AE55BE4F495230FFD4F1E647BE73F40E0DCA1771 │ │ │ │ -BCA92E5B1680CF275063CB236996174904B2D83C294C9B071DFF708EC1ED4D15 │ │ │ │ -DDC38E8B22C19ECBBAB4CFB7322925CBE78DE3F28A6CE8DC632A2F1A67BE7C3D │ │ │ │ -60AAC510C15E3349B87A1640D97AFB7204BBA6C7C24CE1C6C08D07DCCD1F3624 │ │ │ │ -A980F6903DA5B13BB715CC9737D407BB857D79B2BBE06EA2E9219B5C980413F7 │ │ │ │ -DD1F423685764608C9F2C8C6B950157DAEA0987392F5B09FDA2E50B445D26686 │ │ │ │ -A8CA9945B39280BF7EAAFE62EFDDFC25112AFA729A55E2D8417E5187970B8137 │ │ │ │ -0E3D1DCBB4047199CD75492E53A13D713E158F759364A59BD732A178948A095B │ │ │ │ -FA4A26ED19FBF165B7770650CF260A3894D45EE8F0F34C3FE1AC8FD280DF588D │ │ │ │ -F93B6925BD0FF069FF299B1277F8138C4EDE992854DA173FF6C66C4A38E57D63 │ │ │ │ -17235A0970596612EFDD8D65E20E209B565D5C8828B4097D234DC5D4F617E289 │ │ │ │ -0F0B1777B1D5F6FD87FCCCB76748AD4D226BF337C097CDC22FD29E21D73E88FD │ │ │ │ -3DF5ECB6F32D6D78E15A668B881D78772B88A7A3D32AC1348AB37DB3FEC0172F │ │ │ │ -D848A92E3F5D2AA544D082BE6D41FF94B47ED0A27D365FD58B9667AB29E123D2 │ │ │ │ -9A6C582F38B61D8C85E15B9D5254AC3361364A61F5285E1B586ABC7F53D687DF │ │ │ │ -403D97233FA4C8F2AAFF4834773772155A2E016C5583361761D9EC304DA89D72 │ │ │ │ -0BB67160F43C2DD04FC035146A4A1D071A94D66926BDD453FF14C5E84265B1CB │ │ │ │ -AE0BC08543C13800E3D74A9B545FBB0D749F1C3C8296350CA4382200B2F539CF │ │ │ │ -F39410FC948ECB29991FD4B110F3EB0900BB0B1E2782CB95D4A2A0ADD6ED6C62 │ │ │ │ -60263034B4E32F57AEC14EA3E281D69B3F020317B7DBA5260292047DB0A1CF4B │ │ │ │ -5BC52CDC85A385F7AAEAF6E8791FB324C22ABD16F3390904708B98B11438C130 │ │ │ │ -730A6D7EE8EEC05CB7D585A58DFDE1A8954DFD64981AB12B1AFBA252FD0088BC │ │ │ │ -A81E63BA59B9200891BFFB0B74F51F57D143E47AB3F40AF4CF686ACE0604E26B │ │ │ │ -B9FD34D93BA5CA1284685B79B209BB5C68BEA19F706D6F247B1662DD851832E8 │ │ │ │ -372ABADED51F3BDAFEC2577E4119AD559F700980BA6F10E8B5955CCA5F8D0D7F │ │ │ │ -CB01F01350516D615C683C0ABAFD2AEF1A14A0185CEF6C7F2380188383098B4C │ │ │ │ -5A06CA75AE20A751E32EB8C7D77B40714703B364BF515FCD997783EF0A83BCA0 │ │ │ │ -E28E839521DAF911DBD4744572B9FA43E2AF6EF28C646C4D1FEFA4CC6AE1BC1D │ │ │ │ -C7342B17A12E59FA4EC0735F69A3744EA471FE52AF35F1331D85FF70AB81A3D6 │ │ │ │ -CC3E039B7C2B4D117D869ADF10ED38732E4A3268D68683BDD0283258B9C9E455 │ │ │ │ -C295C55F9CA56724818EFABC508498CBACC22453FBC48F515C83C04B8AF0A9A7 │ │ │ │ -A90B4AE2B96A5A32A5DA16F5D73B78D4F43590C9C9FC18A765C18B73EE90D8F0 │ │ │ │ -4F700BB975DFF63EE467E7C3CBC344C5CF46C043F4AD5EBBE7B2FDE702FFDAA5 │ │ │ │ -72DAA53368025F1A840D5FCC243D7C6A015953D80BB07A06BB6DF926A8C81ECD │ │ │ │ -1019996AACF1BFA196C37126A4583700582F822E4A342F2CD979BBF08C2849BD │ │ │ │ -DF73E95F6672118808B46637229630D3FFE0885EC788C5BAA6905A96840245A4 │ │ │ │ -052747EE69B016711182B7CDF17A1DB54D8998827962DC00087BE749A170C811 │ │ │ │ -EFD547DD9C41849CA6A6A0A70F3B1573E7CA97B1FCB791BCA86C202C1018A7EC │ │ │ │ -98B99B8EB46996323022F92CC72ADD744DADCB1FCE72C848952B89EBBC4CD616 │ │ │ │ -552A8B7CEBA660B7E0D303C1AB9EBA0E3A0B55E8D215C52445B713DF3FDEEA49 │ │ │ │ -E3208A926C5362CAD8A40B648351AF48064EDC8E0DCDFB38E4C63D912C7CFB5C │ │ │ │ -70824C189E6E613F14EE34744C2027323A969D9870732BEDAABEA9F739118AB4 │ │ │ │ -944A71CDF79CD930594750126BD582DD762D6096D85409CC9A82BF45211E87D4 │ │ │ │ -507538D858574DED7DC4205BA452600036AD7B9FC2A697D2AC3CEB4E2BD3A72E │ │ │ │ -BBB50A82F97FD9DB72720E8DB7D3ED127239FF7DC73DB02D9509A9BCBF91CBFE │ │ │ │ -B9C1BE6523AC5F46E99A59130B99E140EC3236FA167B371EBF6880E5E3ADB8F7 │ │ │ │ -4F076599DDF3983FE4C3EB1F02D7E938E216F5BE5B63EDB7F175027A24B54288 │ │ │ │ -B65971756BA49D0F9A5A63AA4C34928E524F9438AF0CA310FD076830EBE0DD65 │ │ │ │ -A1F0283CEFDEC541ADE1B87AC7C8504F2C62F96B293715A41FD179F484A70C26 │ │ │ │ -9B649356EBF838CE1E19A6F691D8ABF081CB531457C011D2E87789209E7DA0C2 │ │ │ │ -7B1950FC863ED6284D662180A4D11B3AC9A08FD78AE1036C86BE31573C1E1386 │ │ │ │ -F2791BBB3AF7254922731C2B3F2B93AB8BB7AC3247ED2E24833F239624F42D53 │ │ │ │ -CA81650212F8BDB9C44E7C18C32CD1EA1D0D34F6E639860D1D06AF0C100B19F0 │ │ │ │ -3FA740023D9AE9E3BA22C5E96496E83D327A07A8C7AD8234C5FC5A90AF988F74 │ │ │ │ -C13F38BA264FF127AF2A829656E49E045AB0EE68020C6B71C09C3CD91A1CB1D0 │ │ │ │ -2B9DCC329EA07305BA375A7663320221BDDF950C85A35319C491A0FA8993E8F2 │ │ │ │ -3A53A40F35A8B515416C5D4CDCA5488C09E3A80103EF300CC1241112BEFD8979 │ │ │ │ -155F7ECC22530CF399F3C89BD5AFFA5405D04B05AA2487A4D1E28019B278143F │ │ │ │ -C498C0C332A009D7C515BF2320868F19C698002E0FF3F41AB1455C1E91BCA11D │ │ │ │ -3389DBC3B59272E5A32D4B9FE2F4D74C1997CD509B53D263AE1FF4E684F130A1 │ │ │ │ -D64E0CE6C19D2E5CF49E1A68CCEA65A70F23806CEAFC05CBF03793F63937FC7E │ │ │ │ -ECC93B1EE85BFA7AB0856E914FCAFFA9D72FEDFD6458472A18D20409D831EC5D │ │ │ │ -53B41F467DFD386D47B84B02F8995F47350AD7C417385EF7C0782CA03AF6D297 │ │ │ │ -B4C16E01313DAC87127E1D17F8A3903FA857F5EA2EDB2B3806A85E6311CB246F │ │ │ │ -7F283EE1DEF5A7E4880893B23C7FD61373B0445F5DEF232EC01F4991D79AE67C │ │ │ │ -1B415C581C979389C508111BB13C77CA635F34313988E0301BF1A4C43DBDF6C9 │ │ │ │ -D3B8E8424289053EA1C3A5A1511E771A1FA8DEA40CCA88017FB29FAE09D68DA9 │ │ │ │ -3250095B19CAAF15D70EA981334A1B2AC6B409F3B5446A061A8D57716E6B043F │ │ │ │ -5F47D96D1FD5E91EE2DAEBF3B4859351D3AF76F4754E5A401250C0C454CBDF09 │ │ │ │ -8CBCC341B48B2710A7C7010C80983E0E03B9FE479350B20DC2EB1D3520A739E7 │ │ │ │ -2431308B382C90493C0E571D89219BEE7F9C98268C833461CFBA900E69B80B9B │ │ │ │ -FA24DDEAFC2C7A5B9558E6448822B96D321BA78A3B0D69DEC10DD3E0C5090B24 │ │ │ │ -E91210BD2CBB00CE627FE0A519BA4AC9706F8CEBBA3ACF80A7F862C038B03822 │ │ │ │ -412021EFB2489F67D09B2D389770A304020B2707E248DCA2DD381518E8475E70 │ │ │ │ -2B850D341F1AE35BA7E704BFE1549710146DFB9034DFBD52161A0B2B6F5E8254 │ │ │ │ -9B3DDAD3854C97C2C5A6B0 │ │ │ │ +4F35990248F427F070142CB26352246E6DA9C0856FB984D6ED2FA9A137B58793 │ │ │ │ +C77C1AD1520BD33DEBC86665C2FEB82AD03AF0677CDE38E278D99906286469CD │ │ │ │ +53C5C85E30E7BC0DD381CFE39B1AB9D997C18590B2DCC7CE7416C3803316E6F4 │ │ │ │ +A3C45C9739AB7645E6D6F93D24CCA546A15410446C7A73ECC2C3746743554BFD │ │ │ │ +7B4F5FF07F7AC4620F19FEA0FDD3B1C8FA732C8091007B7A9F37C45D3142BDB2 │ │ │ │ +380D5A8FF2DA537F2CC9D3AC9ED69D15F816E3E9EC49135C494165727536C3C0 │ │ │ │ +CD3EB2AE0466FD76E31617C09CDE030940B6D35742A408FAC86D1E35E865508D │ │ │ │ +DA6CFCD4D3A88192CED54CD3C5A2D15DE3114C76A3208BB9E8C2FB7471254365 │ │ │ │ +38A34B2781E45090C85D3F32ED60D84615477D8BE58188036B854623E577DCE2 │ │ │ │ +8130D4976EFA5E1DF1ED224C3F4730C703BF324069DC3581774453F66DA9A93A │ │ │ │ +B0FFF04D5B737230B54076D762C486C4BA47C0483B9850633073293505547869 │ │ │ │ +77C6EBC3CDA00D3120CDE0DD15372FE1A8E308836064740309835B518BCFECA4 │ │ │ │ +EBC5794D0B579107C944B91F52D8FAE00638702601832B960E2FE3CD26FD7BAC │ │ │ │ +05354D453A3F02B390C5C9CC1770603DBBC8113145DD32037F777729383CBCE7 │ │ │ │ +BF8DEE963CEB46F4347B7BA2E382581C8B743A48B12E0A1FB67005069D60BC3C │ │ │ │ +72E177129B5FF265CF813313A28A193D6E0C9AF69F04397DAC7F24646489354F │ │ │ │ +08CA358CD36B9E64DE3215A6149D5C8565581C3ADB3527EC3388A51F0C3DBC05 │ │ │ │ +2A9B23D4BADC132EE5C89AD6791C8681AB5428DCFC1D8C26E4E4426D0590BCDE │ │ │ │ +A2BFE79FB2492966A181443B0CCA218A57247144A6CFD72A04DF6992890C6B79 │ │ │ │ +E0290662785B899D55850B2ABD04192C61C76F0D0D177042CBD2130261AB77B2 │ │ │ │ +0C1F7B19A609C251ED6379981D56FE4473FC6BAD2CC9BA12B877B064DE2FD573 │ │ │ │ +6A38830561F733ED1CE4AFA53584E65A37E2919C0E1F6E19B1C114DA17B3FA78 │ │ │ │ +2938A89BCF29B26FB008286449C51B0385B67877EE4E5E53AEB9F3DFA6A4CB6A │ │ │ │ +8F5755EA09921F0556CEF7A7729F170A2626CC5CCE76D574CD83D88597B38934 │ │ │ │ +C7AAC26B8BD9D712DDD02F1BAED581369BBAB7F4B069A5F3D5A39D4C53240207 │ │ │ │ +E6AEBD7E9B05FB8FEEF516E4ACEEA3A3264226A21142CCB35EB4A350E259FD6A │ │ │ │ +C2ECBD6BB34E935454D6523DB8B95E99D9896AFAECA5B3C2450C167A728670FD │ │ │ │ +F241EB378CC016E2D0A765F5241AB19C141D1F19EDCC2E8F2A67101ABFA97847 │ │ │ │ +D261D3F565C8E6BC119C84292468B3751141BA113CBB997BD4E7368F87E4967A │ │ │ │ +85AB28AC6AEE85B644F29D81C5788797F172BC29EABBF38DDFA77AB23CDEBCCE │ │ │ │ +94FBF049A49E4C5B9C680C0F29310B3A6168363F26989FA0B2813B4926FAF3A1 │ │ │ │ +37352D4A3DAABEEE20F881B1549514E94B1ECE96EFB7DC91429F517B1E8B9428 │ │ │ │ +24818A24F79FBD90751EEA243DE6A5F506127E3158242D8A646D70B2CB35293D │ │ │ │ +F53689E34CCF592E82E7928E2B8FE6905E54712532BB4C85F4D3400BAC212039 │ │ │ │ +E913F6CE1DAE5F02EF37777C63B28EFCA3C2334AC812554021D78B2C06F38DA5 │ │ │ │ +A297AD57649BBD76F463D3EB085862CC4D89E25D90F29D7CFE9B50362D1AC2B9 │ │ │ │ +99D58634E254A127309384AAA460689D82012484AF7649C347DB4A57C86F6C83 │ │ │ │ +6A6D5246B80C678DD64DFA729110B2AE32890D9E1D4F0010B478A0F7DA0550AB │ │ │ │ +0447BA5B4276DC9D0E21494705D30671444F56491ACAE41D62BEBC110601AEB6 │ │ │ │ +E9724DF998B77F172B8BED3B2582F4BED10C6C8F79CD9A56A91089F1ED03955F │ │ │ │ +DE619A93D334FA1CB709616543C92E0719694948C4073E277264F3A7F88BE59F │ │ │ │ +19C1C26F8A11CB9D2D3330ADFD728B3A31EC4FF13F9344E1B3809F0AA4B5FC15 │ │ │ │ +2C4D873FC6F6A2F03467E41561C56AC8F97C98D786DC88E95EF69884CBF803C5 │ │ │ │ +C29192DB949CC284E156D11408C4C3204EB7C72CF5049B35DFD615F2522CEBCA │ │ │ │ +61E4AFDADB83857B9621CDD816E80E0F3925024589C225BD493E791B629D7096 │ │ │ │ +9758497A39395B4EB5C4C635F6629B4BF780551E2F2DEC195D43DD298F75BB11 │ │ │ │ +DBBE5A90070D6B2663BF198CFB940935ED2FD7D88BE573041105267400438ABA │ │ │ │ +30F03A5D147CE78A0D297B84AA111698E2D3A28EB28F78662E9D1B2DF854A3DD │ │ │ │ +106FB92A2F083EA580CD135CC43C3ABC9EA3297D3B8DB73F467053F57602BDBC │ │ │ │ +F38573EACAB1A5E4EACAE1AB45212809D7E236359C953E399CCB2F6ADC5EBE65 │ │ │ │ +8F1FEB30B1814C9E91FE7B04104A46431B8364FD85672126C7765BDD190107FB │ │ │ │ +EA5962F7F41585B4B97B4F7220615D27373F0DDBB6D426C9D16890608A9FF660 │ │ │ │ +C96DEFB0AA953DA1418A833B0F43D7F0C8D307675EE7B20DA68D9D98ABD279A4 │ │ │ │ +692E3ED59349702BF60EF4C269CCA017F9BEAACE01ADCA2077294E09F12FD7E0 │ │ │ │ +C656DF57C9B70E4CC7691EFA0F61A2008F5785ED1268257CB65218BC570FBCA3 │ │ │ │ +85FE9E6372A7E9788FFEE6C4B4079D8897E12A2D9DD8C53E3F15BD86C139C08A │ │ │ │ +82FC504AEB9B1706F0E672CFA434FCCDC2F3625DBCE623C0746713F9CD2E6354 │ │ │ │ +958A3E78C0E415035112ED270F3261AEC234A7ECC1D7034C3F05A36FD1B075F3 │ │ │ │ +520B8C0FA582FB3F42408C1000C20FEB41B28DCE2F02CD7D0A10B511AB530F44 │ │ │ │ +9ECAD012A946911FBBD282D46E107BD04E0966976EFB76272085AE6CE4AF9133 │ │ │ │ +4B428810C9C832BBF718A66CEC857134A5B63E265CCC12AA2BA7121FF3DC5ED0 │ │ │ │ +6F27E251F1C984EFCB4556AE25429AA85D816C5D1A5B8BF51BD4595D04175D7B │ │ │ │ +B7369C9C2549DF3F6504F15ADBC4A3E1D1847BBF21E5D0EC389A349CED73FBD2 │ │ │ │ +809D3363884B0FDD2BF6E2F24C43A9F25CCA647C98F9FFF1298DE1835FF37C02 │ │ │ │ +DA51A842D7CCE4D233689C9A8F6983CC8538C1ABBA120B180F65C942B8B51918 │ │ │ │ +1DBD0CE3ADE485F42218D0115C59C7A6AB7BC009CBFDC142CEFEB73B07813218 │ │ │ │ +3468AE8D3DC91DEF32EDE5FAC324DE0CD836E5E7F3A7D1071A72BBB22E35708C │ │ │ │ +C385EDF42482A1CD1EF3C50D81910FC4972225BDC3EBE733A1D8B64569C66DAC │ │ │ │ +C965E379E0138CD2BB1632B1BF7490B4A67EA8D7BE8CB7BE4938B5C40E51B3AD │ │ │ │ +47AEAC95A9B5E55FC64A2D175CFDA8AB6EC379B6F7B3039C578C2F18D31C2F5E │ │ │ │ +019ABDFCB9B7140587C52F80E2421A1FAC43C4E0D49571D35CBC7DABA76543BB │ │ │ │ +ADE57A91CE29A5766F91DC03F0588543C028DFA89182F89B2F9F7AC9C1DDC71B │ │ │ │ +2275BDBA1F53609348215DB829DD38B2C4003B21BC6BBCE7DDE7239FC1BF44D3 │ │ │ │ +AD89214A32AA52202540132BAEC84CD442F41C26A931363866565ABD0AD29899 │ │ │ │ +02475E6CE9C73214B62CBC803A2A8775E936AD9A4C947202289C6CC873C84207 │ │ │ │ +8FD5B68EF71309DF30471A60E1C633F1CD539F26E871A2A82D680567EAA7C5E7 │ │ │ │ +F7D83DA063B3A45E1FC073383508F10A6BC49C6BDE1EBF65287EC13B162D8C96 │ │ │ │ +E8682E79884ECC6F304045090022208E07085345EF536AD3ED6F11C13FA453C2 │ │ │ │ +438803065AC3120F267382EDDAA8AE87CDC2FC2E651E6C9BC6754D4E918C81C4 │ │ │ │ +6426B89E1D00579CBBC6E9631A4BA5F6022EC34C514B71E6180F9A65D5413CEC │ │ │ │ +7FEC198E76EF3B512C3FACB0DF2AA5C334DABB7400EACCAF6A8E482AC0A3BD4B │ │ │ │ +FC5FA29349340D9D9A05035731123D7D9642AD342A3C7C366736824EAA736791 │ │ │ │ +F7235C27AA12C7596AE3FCCD0D848101DD3577685C5C3B93A97EE76ADDECAB43 │ │ │ │ +DE9395C6BB1400F1B506E5EC5478C0F7798D4C22255A8974D430CF30207811C3 │ │ │ │ +DCE3B06CC3403F5F3B539E69811AF4C556F64ABF61F3825AD2F866256323B4BE │ │ │ │ +E5E9973FAC5285B44CC0630C9FA6375B1CEF432D6FABA13800EE8AC7720C2547 │ │ │ │ +E10D70FF357F449F8EDA6360D2C1FADE08D44BEEC779D6CB170755779CDD7B1C │ │ │ │ +63CD066174AD77FF296AB17296A3AC0C73D679A8D98BF3605D078CD036D999CC │ │ │ │ +2C6171451046AB613AE24A8F0832A45A0AC85946EA2A5A417E41F968342B8620 │ │ │ │ +3BF0F53B9019613F61E29D76AA340682E880C04148C4A3C009225CF22864EEC0 │ │ │ │ +A26AAD2332717DE079617E83EC72F64C942D5BA644DCD53A664B163E7AD549F9 │ │ │ │ +5FEAF521150DB3C9AB9162602B621CD0BFA8495678EB417B44C4F5DEECCF936D │ │ │ │ +87BC38906A906868AD098F4E6B8E051624CBE1887E9D9B15E78CA0783AF3119B │ │ │ │ +4EC12FF05C1BA850ABE15083507D1FAE9FDFB0BEA6BBB857F057F93C6CE4FA4F │ │ │ │ +0471523F8DD10E7023F5CB5999D9812BD7B717638B313E40408D326861B8462A │ │ │ │ +49A42AD6F3C49B81B346FE2FD643706C9282AD69E67F4BACF5AB20E7C7EF9AAE │ │ │ │ +74A2B27BFAC7A0158EDD86A536BFF12FC7AF432169BC8D4F9D55C17A809749A9 │ │ │ │ +78CD2CB6A249ED39E39A399125089C3C4C2F40516AEC969C33DBC3EF66EB6A84 │ │ │ │ +237969031CACECFDE91E47B5E88A2856DDAFBD57324A751D4972F7995CC6FAE1 │ │ │ │ +633E8C6458C81A21C2AAA0C82E3A32C4AA75BB5F6C5471B2124E3A9E5510F935 │ │ │ │ +4875B4A1E511DF04AB6C6E6BAF81D5121C5BAF02D5559B1CCA844C6338A3E3E3 │ │ │ │ +44AB3BE7430F668D671EFAD8A4D3FCEDC8E5BD782BC4E3BA5A2963BFC0CE6E67 │ │ │ │ +057B38B300E4DF81C49A786930C4D4A2064E8D6408851F72F87FE28E6E3B6F5E │ │ │ │ +02523C7F0431DB1676E468A25CC7F9E7F7B18BAAFE8384EFDE124CD3A5A3D037 │ │ │ │ +912BCF0FC0CD83D967060FB562C1BAAE83F1EA996FB0777927CB2A708A14E1A9 │ │ │ │ +2E9DA38FB60C7363ED4E9AEF527636072A3E9C9A9CFAAD80155A04FE45F7676D │ │ │ │ +210E6C938A915FAD4F036067E15C35F2EF2E2C2546FA02D3A55BFE635D5960BE │ │ │ │ +8D8B6FBEF7C6861A6049A69BDC6D81A91D4221694EC48CB03CF1EA6AB44FB77D │ │ │ │ +917CEE763F35C8D93EAEB6E8E5CEF2D82EBB61F3B7C518BBC2F91646F9D0D485 │ │ │ │ +FDB766E10E7415F1EB4105C18622F992B92DF1AC6DD73930B2CE5A8EDBD929D9 │ │ │ │ +F29E214B17DB1BA12AB26302D0E2A0EE28A233B28BEA0E303D4CC330CEE5D692 │ │ │ │ +8FCEA50E5AF717E9353EAC8DE7748356B17AF788FDFF37ACDE04B7B1255BDFCF │ │ │ │ +D4F3C4EBC89BEFB6A004B0EC0E81D2AA8E413C43D54BE00CA5C761C8E4A164F3 │ │ │ │ +582DD97193D6FD2EDC98BF56F42D7B3512811BF3E6A14F05BCDD6E08212B2EF9 │ │ │ │ +9EB46DD875B0A86676613F0133D576C898A73D3D5F65F8A5AF3278FDD23F69FF │ │ │ │ +1347FE90B4A9220ACCFD32621D6DFECC74DAD0DFEF443B987472CB9F7DFA844D │ │ │ │ +765B2E79700F59B54B2C5DE23055A08091EF841A73391CDD1232D3F68C92E495 │ │ │ │ +689BC086C238B38A341C3A95DDCCF10CE060A8A97B8A410E9F0C82C0F90EE023 │ │ │ │ +E5D23235287F72006A1E9041D872A297FB9C2B933F1AB01895B6B2D650C99861 │ │ │ │ +9317F61D241BCFE733A130B6173000C3728932CD55849A00CB06F62B819D0724 │ │ │ │ +CDC1243203C0623D8A4C12B6C8FC9E2DD94E22FC4C0A974F538D56198355E8F2 │ │ │ │ +A703763FFF39AA34BF1E7973BD88559FE9F059C90B4ED1A175A95D67E1580110 │ │ │ │ +259AB640B696EA297A661DB20368183CB81A655CDABDF362516874C6AA36CE23 │ │ │ │ +FFF2DA10ADB90AECF64F658ABD98506BF3EC4C0204F3DF7631F5BC5313787A6D │ │ │ │ +AC73F230C184CED99F5AB9A9B689B1D36C4ADCBE2C1CA559D0783E2C0BB4C189 │ │ │ │ +ACF3D29942567661B175C87C71E58A533D7828953055E0A50A942D77F4B0D85D │ │ │ │ +8F1F93AE4755119CC1019F0BD726F413610B49D0633906A37B04F19BF27D8685 │ │ │ │ +63897243B58EAB465D57AD7446B2D94E89442305181EF8D60623DC17C63D907F │ │ │ │ +0EBB2FA7D2B1C11BD56072636BF4760DEAD0BA4121E77D61877F9131CAD804E1 │ │ │ │ +75F326510246B7CB0E8FFDF33F562B35716B282F736AEE1AEFCCA0BE83DDAD6E │ │ │ │ +C43985804BA3E56E6389D81B41A73D6BE9A58A553F147B758D5A7633BBE3D044 │ │ │ │ +C5CDDFF034EE488F83A041FEB3998A6235E53F9931EAEA82D3A519D6F440A970 │ │ │ │ +146677396754C3190525B606AF0BD63F243918E2A620295843090E21DCE48D8F │ │ │ │ +B09681C2AB43D1C871A8A9F688753477A353C157ECDBC38BD9DF683E4CA75521 │ │ │ │ +24D371060B9A8A315016F0159A9B17718A94B4486EAC3CD75A7973A446C90E76 │ │ │ │ +AE4B3ABE76023BE5C0647529101E4411ECC6C0065362FF3165E07DBB59ABFA7F │ │ │ │ +B8067DD2EA7653317D210426053FC7DBF813A96D33D043C3110F529A3AFF49FD │ │ │ │ +3E3BB10B5B94DC5929CE10B227BD42451DAF30E8887672A9C52B2FA6E9F8F308 │ │ │ │ +2E98991763427B307BCF85A3ED4BCD9C230EB3B89D67A747A95D341672CABDAE │ │ │ │ +C1EED9077475C7A826E4A5E9995EB3C0EEA99DA5D73CFE2CEA4D1616AEAB89BC │ │ │ │ +FE33A1F9017D32BB03F29448C2996462E85D918C402FEE283180E51F1800FFB0 │ │ │ │ +1DA2291EE8D14CF020DA9154770B4B484E4C00227F5EF818C33D2FB2652FCED4 │ │ │ │ +73DD5EE90BB3E71875128F1894B5EFA0C3A5417B14251EB989666787248F34B2 │ │ │ │ +E72DBBACC324FBAC285E3482EE66FDE59DA92DDEA9CFDC23EA4AD328493F51AB │ │ │ │ +2864FF9D01B38A859BBD3E1A9F2C538C1B49CF921BB83865FB94B4F58BDBC36D │ │ │ │ +7FFCBA8C362E0350278CEDA3B5D99FBDA2081DAFEE7CCE4C1F51771593E99E42 │ │ │ │ +5536820590C6ADD5244D8C3069993913CE05C441587765FC1CC75BCDF620511A │ │ │ │ +45CCE8D242C34195DA8F4C058FCD44EE4F659B5D5A815E4C58F1F3E0655B6BE2 │ │ │ │ +0C501AC84CFEA7A9C184FDB6A1E168D468121A83D6689D7CF705054866A724A4 │ │ │ │ +D53EF2A4175A94D25FA5DC2AD9070FCBF2F325EF7954055F62624A3F4AE2F69B │ │ │ │ +3CE130A7A6AE1645215768F55613FB507EBD514B6DAF8A7B6C93BE168A59984A │ │ │ │ +338B29D2303D7590F3443AD4C660FBF10527344B311A156039ADC85ECDE09448 │ │ │ │ +1C6A0C8D92E6FF956CDC327814AB4428DB599FF0A1DCB5546C782E3844B05450 │ │ │ │ +9699EC85E3EE901BDF2CFE982D8F27F7EADF05A765DFB010E066020FE3E3DCCB │ │ │ │ +152DCEC7000A87193456E48AEE994541DC045971629409B4877A706AE44154F0 │ │ │ │ +5A394E185954232500CDA7E8F7BA55741EE8D55E97800D934B5D69A778B2E477 │ │ │ │ +F9C1170BB5B1D917911B4D8ACB409E4B22CC21D2D6E1470DA258D42305DA1501 │ │ │ │ +2CE577E0FA692C240A5C718213717F831260CD56088BDFC041B0100568530A6F │ │ │ │ +6E9DAD2633B9D5C45A822AE0D6E6AFD5173B7D9EAEAC9AEACAB43ECB4B67C0F0 │ │ │ │ +789BE1DA54BE91784BD2023963F1FF3F6801E37F1D8EEA71B37A926AB86B4A05 │ │ │ │ +D2E569F055D8DD1AA43C1601BE6D480380188490C8FF3F345B3010A43B41546C │ │ │ │ +270205E4FD2B3FDFB8CA86448845F57653969BC1602DECDB9975320E0767BC8D │ │ │ │ +27E5083C4DCFF4FD6DEE60997C6F16A7B0FBDB3031939A7E07AE6CCEED5FA4FC │ │ │ │ +2D8CC7839A775E35A8CCA599BF2B3EFAE6C3FDCB0480C1738B27F6CD591C99A9 │ │ │ │ +7F19E646911FABD6A8EC2D7AE5668CAD3EC07D42E2B5FDF4CC33504589E3ED21 │ │ │ │ +58EBF94ABA9872003BA8C02973E1B4EE52D44773B50D919BED6ED799102EEA38 │ │ │ │ +4178C7DEC12AD0E12154BD492F67195DB5B0350CA6FB6EEA33437AF346F717C3 │ │ │ │ +38836D0B803925D36E56F33AD21AA81D95A61436C191D0917DA681DBBCC609CD │ │ │ │ +4C8BA579AF34FA7A9992158D7A3108A3E072B297A1A10B0A0E247783E62029AF │ │ │ │ +737771807ED0576C385D9062B96F97231C2764047CCF01377AC82DC5C6E98D83 │ │ │ │ +15D95C3F4E7BD7EC21F92EA414A02F43D2AE6A9D3C1E386AC9FA007E3BC3606E │ │ │ │ +328D4A29A14799439AC3E30BB3D4FD10B88B754BD85CA2D915806FD41397BA3F │ │ │ │ +2B315029CC944FF5954A318A0F84281423741AB6551597AA987BD1D2BAA38729 │ │ │ │ +FDD576BE604CDEB276CF6E43E32DE1D53EFD611B357AE8E3C5F4438FBF238A9D │ │ │ │ +D3A205946B911B0D896A2A14371C334A9780003FBCDFCAC06B208661D034CBAA │ │ │ │ +DCA3B1B2F74ECE5DA82CD1C533B80A7379EA365558D69AF804713FEEC13EDD6E │ │ │ │ +8C977A819934C85D3963E2F31AFF109E6C2267B2032FD29DD6E9549823A8A3F3 │ │ │ │ +92086A7983BF7ADE4389339AA0A34C1BCE802B0AD5782525E691ABACB9DA338A │ │ │ │ +7626895CB4489D98A867A431AA0B174F6FB1F70DAC27E9524C9C3E72B3CE4951 │ │ │ │ +B0FD2F964457493D25114EA21B460034B0775FF0303D0F578695EA29095C3378 │ │ │ │ +99C877793F88438F63F3552109497E8B3F3CDFF7E73B837B76AADE106F515B79 │ │ │ │ +6B76867708E72B0A419D7BDB54301F485308E0C7564614C9237E7359A1AF6229 │ │ │ │ +88EE491D3EE6A73368E973F1FF4A7FDA8483E748D93C9B450A824D5CD4AA1DC5 │ │ │ │ +DD8B7A26218AFAD654D9A88E44ED16B5EFCC07985FC714EA85490953A99AA239 │ │ │ │ +3245A5BF6C500389E46F00E6C9011B4A682A7E4381120FE20847261F946B1070 │ │ │ │ +20182565EEBB8EE8C9F3791224A30F9A63237AC0DE668B9A571DAF8B4BE0EFA1 │ │ │ │ +464B3AD3133C80983F882A4920B30F014D20E2C16F5C2B756414E83DAC246571 │ │ │ │ +9493B38625F644 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5897,15 +5892,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 76 /L put │ │ │ │ dup 79 /O put │ │ │ │ dup 83 /S put │ │ │ │ dup 97 /a put │ │ │ │ @@ -6104,160 +6098,155 @@ │ │ │ │ 60F5C3F629F7BC5A27C207D70DE63FBE0E023452097D5B7AA5B2CAC668D4D075 │ │ │ │ 1A0F70683E96AE35A6BA0B59619C215A7012568991AFC0C35789DD0ECE45C649 │ │ │ │ F44580845F0FA422868CFCC8029513235C0286B76196E350498845EA934DF289 │ │ │ │ 1D0C954B079BD2977384B96D8460B4F50EE635A4C8F7A3B6866F93CA641F3F2C │ │ │ │ C93ECCD6BBCD792189A12FC9366BA7134EFD67A22B4FD62465250E0BA6B7C627 │ │ │ │ 73E8F50E379328B7FABA341B0D50F9A2CFB055E01DDF6BBCF6FE4114BC36C10B │ │ │ │ E581D76A84EA12995506C33DAE9035683FBD5F54AA1545992B94B8ED946E5866 │ │ │ │ -2F2CF265A1746F4CA4BCDE2B5A6A0581B5048E525632BD98773C51234C74C9E4 │ │ │ │ -3FFE8183B78BB6491565243F75C44DEB866762A77F5FF33D9DE3CBACE7032FA4 │ │ │ │ -941B2C01D19A90916C527C7397A60033D80ACC4DBAF3D9D5E711ED7637FACA48 │ │ │ │ -A8A003C2362DC0527FE2B1DE9354E29F3F6FF87048D6CD383655CEAE33DC8C95 │ │ │ │ -F9947B900002DC5B6AA24D688435EC168CEF7FEC5F16F1CEEDFE02901C86D798 │ │ │ │ -8D5059731AB103D10ED79FBD6FC88EF2EEE37B615DC1FDD5E4C24263F17BA4C4 │ │ │ │ -DC5F170E85DE1E17BED08AE9E0FE2F9EFCF3BC182B250B7C1551A0E6A61D359D │ │ │ │ -FA5F83216227D0E0D1B82C4AF54AE5F63BC2FFD9FA654C744F747BFCD3F239A5 │ │ │ │ -C3A9B80274907213D06E31BB5859EFF5CC5A49B2F3FAF41A77E3B6176FAC016B │ │ │ │ -A372D5CF659CB8BCC343AB75D77A006245582EA57F8941D9550870D53C810674 │ │ │ │ -5B4DF9328D248F1F5A5F0A4478E2D002AD3D463CB3F6CC19B1DB4C00C1C960F1 │ │ │ │ -1ACD7A0D9C7334EBA770808728C3FD074EE2EF28FCC75C95D0064CB5989764A3 │ │ │ │ -9FDEF9735212D74B315D1475ADA9534360AE5F7A4B968EA165B9916F9919AD95 │ │ │ │ -E355CDBD25186ADCC432DB7B59143C3D1C182D66B5DDB3D859C941D1F73D5251 │ │ │ │ -634B8213B032991B4970F3772FB838AB5CB56A9F7318107B18E3E5E2FF8C53D6 │ │ │ │ -5DAE352E92649491C1266807C4C8124933067D9E820B695ACC07A222D7407C45 │ │ │ │ -CF5021447E682A932A9034F8EBBDB892B5D80598BD7F27C8C4D9044D67420370 │ │ │ │ -9F05A701A74EF53D4B061E65BB237CB38E166A0C306D264F47FBF7C9AD1AC058 │ │ │ │ -42BEE87D6A6A8AD3A2470F9C899566B653B86D3A883B61AA4E6E72C128BB1DB4 │ │ │ │ -CD608BBCDFD3D8FE7A74E85A688E8C4E0CE69E8F486CE33DCBDD93E5605C631F │ │ │ │ -7D59FA051F9EB8564F42E8F10CF4E8377730BA0221660BE7404F6C802D42FD1A │ │ │ │ -C44922ED7AD3AE7B424E0F5FD2D03BD8BD344AD011CD6C19C41A802D9FD190BB │ │ │ │ -F5A741F606ED9D5AFBD56CD31B41B8732DE69EFBD55CDE0A667309A1D17F19A8 │ │ │ │ -6706C3D32CDDE9BF96D78CE88C36F6B88EA2AD408EF11B4D27BF740568D56FE7 │ │ │ │ -03F27E720F24720AF8625559FA20E3728F859CB4D2719DF19A0A6D24D18BE4ED │ │ │ │ -6BD1D8502EE0C7655A7F8D01097CED6DF99D00E2F47D7E32919995319ECA09CA │ │ │ │ -A830479D9CC04FAE908B94B1C7DC49724FF9148D9481301B5008C88CD19385DB │ │ │ │ -C1B9D91665297258C70BFECD374226B6AA60E6F0218244CF935951AB08ED8A4E │ │ │ │ -39B4887C000F6F7CC933B2D3C29D49B3F285568A07DD7D678E4D0A6D6674B2C1 │ │ │ │ -7C4459A0F6BB62EB8E00C5D2C35BB9F074CE990EAB74B14D4B10EF067F323C42 │ │ │ │ -68222473C31A44ACBF2E8C69CA38F027378101354E704B9E9594473205945013 │ │ │ │ -E50A38CABE21B166246FEED926836406E9CB90D31471B70BFB8723A5FEDC8944 │ │ │ │ -0A5BAEAA9DC3D0AB4E73FFB5CEBAC80037BD780BAD8A2F409D23A31F1AEB036A │ │ │ │ -4D4C7A71B1CDC81EE40A205F43EF968A26E1AB2F0231E2D361BFAA7BB17295E5 │ │ │ │ -2B0D6506012EBD587E7D73A2D4478A0399C08BF39461BADF1A1A4D6B029615BA │ │ │ │ -B4FB9A4C921144DBB4B5066DA5854184271024FD3CBA2665106F0E16275C9F53 │ │ │ │ -DC5832FCCCA08279EB8372B0762F624C97307BEF4179E719D6674DBB486C393D │ │ │ │ -039FE67B9B2780D9167951EE77160E31BA2C0631E3CED32453F1E21EAEE4E948 │ │ │ │ -D8AE4B627A5492964F618048FF2CC591D60D66532D7EBE7E9AE719AA2AFED67B │ │ │ │ -6339F2909B18FBC29FB79440ED4D3ABB847B733BB64AF5591B6A2E43422F156F │ │ │ │ -50BF567FE84D05F393D90EC686444509C38F628C9AC719D51331C50966043501 │ │ │ │ -EF11ACF4BFAD643705C35E573C6AAA83ED1BA71E6D096D90E34A6FD3A56FA823 │ │ │ │ -63A3023D4F0E8BE3C9DFD3E32580AF5BC2C7D5E06F2567C21CA804F6FE05615E │ │ │ │ -D8773A890EFB2AF1DB37E85CFF4D2DB7FDE90F1AB20160B2A918BEF7EA5EBA6A │ │ │ │ -7081C00F8A6857E67718E45A8D22FC0C5DF8C4D3D7A3713FE3D95C46A3A988D3 │ │ │ │ -78581E052EA85FBF1BC63B04CE55EF8B2E06EC76E27C6E9AECA84C73BDE07CCF │ │ │ │ -2FA01A47B658E745A246E543C85962B6E451344558C25A96919B0623C47B6143 │ │ │ │ -0F31398A3CC501630719A2C0AFCAC422353557673B557FC7FE38046A216538CA │ │ │ │ -428AEFA5299FD10CDBB944E92057710DD31C8D4818184CE252F5FA1DF1202444 │ │ │ │ -BF4E57649EB1C7934E3BFD2772E7200FC12B603B5ACBBFF321DA18BF678CCF14 │ │ │ │ -F1795291ABBC5FB88AEE43E24DFC90AEC33C28A17A5D8B379B6574C1E9DB13DC │ │ │ │ -2FE761CF4CF0DA2579A48330F43D36E5CB9DAE9855C7FFC445F70DAFFD307DC2 │ │ │ │ -FF59771240C451B9682291FB4FA982FA740636B7D9CF9A6210C860CBC31DB3EA │ │ │ │ -0DE8D8FD214955FAA891C7AE3F61DD775CFAFA0EB005BA3145F5C7F5182147C4 │ │ │ │ -C232E1A136D46ACA36F4EDEE1E1E0E65AB30546671C2E19288E297835DD57A09 │ │ │ │ -63DD46A9575506D6DA81ADF86F67AE74305577A0E7584E333524890B254ADADF │ │ │ │ -127D1F3BEED93AE7C9E21C5E567C4E990FF918A505E9DA18E7DBDA0F0145F8BA │ │ │ │ -204867CC956C4ACFD94FC84549D264EC63995867B337122E3A461135C45CF4BB │ │ │ │ -746F7F1A0C3B12E01D9D227667228C4D4CD7BEBA74BE1098BCAAC1BC092435B6 │ │ │ │ -70838B3F5DC4845F50E06D57DB7B3D453FDAB880831507F3A725AB213AE57A91 │ │ │ │ -2338636076E68625142D14A493491E8C477B0A856ED01BB93F94D3D0363AAEE2 │ │ │ │ -3010503BB4EA01B6D188315DCEC9543C7484849D3271114EABDCAF83B341F07A │ │ │ │ -5884B5C4D0B921FDD8E55D79B07769059DB32D4D817D360A07F9A72E037A8E61 │ │ │ │ -072641DF2698558709F86E2328F0DCF5A724C41A10B4A3B2A2242FAB33950DCA │ │ │ │ -3A697EC4BADB4C5918A6939E2385384C63D0362A99D03D0251C33229998032D0 │ │ │ │ -ACD5F48CC0647F70D42A90E9FA49EB53087519133677ADEBB514A78CAD4A021A │ │ │ │ -953B5F512BF47A2C335682F9E22EB7BEC778C8DCBF6A258CE01C59113D791480 │ │ │ │ -2D6D64A6930EF0F1FA09267F240360CCA93B75B3A5223B8EB531F25459F574F2 │ │ │ │ -3DA6370963DEB374E1A88C820A475C9EC0D3D78CD570F3C793B20262381949C8 │ │ │ │ -E95ED522BFE0A939548003EDE588B422627F5650110A2773707ABE121DD20689 │ │ │ │ -C29632CCD9A6D04FD8A6E9B0F01577531D2232F53B974FCCA83941CCD0835AC8 │ │ │ │ -287FE13B782476834B4B996D7B9F5FE5E880C3491DC61E5C3C87B101EFAA0FC1 │ │ │ │ -ADB659278A49B7A577424EC978D546F7E70DC8A0610043BEC2987DC34C91D7FA │ │ │ │ -72359D156E46D85903BE6E806CC7B9D6A0504D9B2D6BFDDF7E71963EAF9A529C │ │ │ │ -2FD69DAB6606110139FFAD27B82F4493A07BCE00A34C7D334B45073408104726 │ │ │ │ -29BE67E312A3CDCBD04EE116E79C08908A0030F9EDA6A08B69F48D0B2DD2E357 │ │ │ │ -CAEA6D1F2C6199B654375CBD8831CF092C05584F95507D009CC50E166C6C262D │ │ │ │ -E9D4F3AD7BE6CEDDF340D54674BC03878C88BF23EAF99219F850DA149F60CD41 │ │ │ │ -6CBB90EE64B0515C016FCAABD1D085E8EF2DDE3BD33BD618633EF796FE7C9207 │ │ │ │ -4BB4EF481B1659257C1EF21C3F8883161D95D746B86E041D16F4C618B509A6E0 │ │ │ │ -98DF383FBB0FF5140841E005C2647CDB4448601AF3C2AF45BC1625993D487544 │ │ │ │ -21E644ECC682A31DBC03DF78AFDAAAEE30187049CA2CC85ED2AC7326C418F70A │ │ │ │ -67A3ACE0BFD050296E6C4C612F85611A7C4E1BF459238A3839F50825B4CB8DFA │ │ │ │ -D52266E96E571B7BA7C97BB6BCD4739188A9430A275F6EA9DB090041CC5B0873 │ │ │ │ -CBF8F07320ADEDA099B17C23218F6E173955EBC4820DB0F49DFDB188F085C13F │ │ │ │ -EC93FD10653EDAFE8E4D3AFED3D7586D95E7DFE7AF3AD4062BC3223B262D98CB │ │ │ │ -99F0DB0CA217D0F40EA7BB363607EF322BA32FFCA8A34018802E69F8EAAD02A2 │ │ │ │ -B9FF28B7251A553D4E9C14AF0827C824FC54FE20C91852E8EC2F483B8F1BF811 │ │ │ │ -D944745E070A6EE6C57D1B2B1411192094D5842C66B1B81341CCD3807567367B │ │ │ │ -29749CBACA5C1950EB22783BB837C2EF2E109384C2139F3CB783298522F56935 │ │ │ │ -ADBCA5488668398FA8FE3940F506F6185C602BDF7D1EFCC72BAB9387A7FBACE2 │ │ │ │ -894DAFBA61E80D924E8B7E8758642853EF017C12C5045C3BE8D759753F3BB7CF │ │ │ │ -4974EBD7F94EAB58A33FCABE80C14C2086AD4DEA54A54B189763584613521E1E │ │ │ │ -D03972C18AC775554BABCAAEF8D264674CB669E3CB1F48CFC6407D6244603109 │ │ │ │ -3CF9A75FE2530E08CA87F84E52869FD2CFC1963D1E2A0EFA1CE29D2A4D0546B4 │ │ │ │ -745CDDC2C9C8A28654529371FD07CEEC5AFA8DD85CFFA4C20DCFCD9655BB3DB0 │ │ │ │ -C41EF67D86BA21D9B5D959BC48122FEE2B614BF519AA694A271FD4C717711D93 │ │ │ │ -9E488E57AFBCB3E69DA209518B5D1B791CDC37343156F4FA277CD589E6C56C20 │ │ │ │ -62C0AAB992C9F415DDBCC7DEDA7EEDD99FCC2D8EC61DCDB0AF19681BFA7F8DF8 │ │ │ │ -588A741409D0D232DC7606C490199CE2F0330CFB71A4A3AE343D1115F5FB5353 │ │ │ │ -F0240325EC066CDFDC83069E61801AE473CEEAF138B27E317E1F2DDFE25E7E44 │ │ │ │ -7C6594B791F9381B5CDB09D58BE012B03811F46F308AEFD2F2F74F73EC3BA4A4 │ │ │ │ -A825E31588AE5CBA8D297F212C594A426F5EB660C346FF2FA42613DDD8DB2BC2 │ │ │ │ -B009B47EB85167B42D2A0A9877025F4227D3C339AFFAE366B651FAE24289CF31 │ │ │ │ -36CA1D8337EE5880C9CFDB5E57B487CB611ABE0CD968BC4DE196D8C4551ED1FB │ │ │ │ -5E1A9067DFC61D629A6C927018AB9338798281F64FE79C7B69937398FA5D9B58 │ │ │ │ -1FFF70879676AD2D13551FC49C9344C40329A7BE9E1796F49BA7EB9417EE3CBE │ │ │ │ -976EB865BA42ED164BDE64F682E7494F2F1DE7D635CAA58D13F130C5641C52A6 │ │ │ │ -40892FE386BF56DD2C746A3590106B46754437858C54F2A9DA9FD1F232E2BA6F │ │ │ │ -57CC269EBB416275B3B0AA50BF39B878AC5842AA0C1E370B89F6942CF3F7D23D │ │ │ │ -337E64ABAFDAB5F42BA266480EF3B4478EE32E4CE084C58439B65AF8F2E4690F │ │ │ │ -10E1FE7F4849DE4835913C945BDB65F817330A303C1CF80911245AF53931A00A │ │ │ │ -DFC9D9BD4F0F93378113FBC09EAAABBE57D4C9CF0AFE37A8CA3F31F2720D6A4A │ │ │ │ -C0541BC7C8D0022F81A945D41C31278E46B7FD950F24B5E04E0C97C18D39DA2B │ │ │ │ -A9E11957137B249CEC5762448320225B801DA6D9931F7A75EC347A47CE7FC3D7 │ │ │ │ -CCA40DE3F81AD94DBC71C4F8063ACEC72E90DD74607652EA71775D0397AA537D │ │ │ │ -F8B0E5EF775D62175B64AE002C0D714FB7CC79095A16E21100BF4A0387C5D009 │ │ │ │ -6CF38D69265910628FEA7773507740CBD3CCA047AB43866488E63574903150D6 │ │ │ │ -791F6807B0926A6C4D370F914B557C3D218C0A9D472EE523B5FC2CC04EDEC804 │ │ │ │ -663ECE03AFF08C79EFB1F236F072BD5AD3C3D79C44575C73EA6B964754E830BC │ │ │ │ -E74BFC72330925C94395CA22F117E60B4ACAEA9669007661B12966AE5163A541 │ │ │ │ -306E5AF7B5DA213CDD1BD6F324FFB906BD3F74B79B59A5171E3FC8F17B02784B │ │ │ │ -91777B43843DA6151811EB3109CBE5C205A4BDA888A3800DC704A0DAC462336B │ │ │ │ -3F9AEF73BFFD5E41E8AB81864EA9EB6A739D5A4FDD4ACBF25E531F4AAC3D83FE │ │ │ │ -F8CDC182EE53DFD5C502B535A55A0DD8013D164C8EF36DB2207937EBF1340BE2 │ │ │ │ -48EF5E373251E9556C6A143809FBFE4074D25268D5EBF3DE95A0FED254811166 │ │ │ │ -406830EC69696DC01AC8DDEF2AAA52CAAD5F8BB6548FBF89F9BFC15550811ADC │ │ │ │ -3349302F6780FDB79FB0CA9553B1854A3656266F0718600C6FF583CE2063E15D │ │ │ │ -B402E39AE35B85078A214D7A6077BDE9EE34431D5D22EAFCF2534EBA144A37FE │ │ │ │ -12E242ECF19BEF99131165B31815A7987B365636C90A4F8A5C1B9ED1B0DF673D │ │ │ │ -954E66824D42021C3DAA54F2C2141DD60D03C4578621CEF0D7328BE628A57EED │ │ │ │ -EF50BA56FEA45E6E9090F3ADCD5B2CB2991006F0D9E26F258FFCA05D613D4258 │ │ │ │ -441D5661D93D31F817CEE4B9378F29E0E633B8DA57E0A76842F3D3445E400B82 │ │ │ │ -28D2D760D3BD91F7CE615BA041C33A6428BA5B106944AA5DB103C3AE717023D3 │ │ │ │ -9E3AFAF10CF89E9F3CE967670DACD69CE6AC86B42BA7977511742AFC8F4AFCC0 │ │ │ │ -E1543F576CE63BF6E27A898CDB9C88C4DB40261C590370326A351232FF108D84 │ │ │ │ -53046CF1300B5BF764EBF203530EF1286B9D61A79340EABB23805834A6FFE457 │ │ │ │ -0D4E92A78A9597735B10D77BBC3C5929FE0665FD7909A63CF7EFA374FBFC5DE3 │ │ │ │ -24C64D794F74B26A020C685C80DD99E9434BC3705A600C22B667224FF5AEAF48 │ │ │ │ -C8F4C6CAB516A095CCB0460E44AF08C60335EB4D6F1A039453F526C20C732212 │ │ │ │ -D03EFDB794EBF84FA8B7D0023DC0FF1150BA12F5CB93ECB3AA1268D316F77E76 │ │ │ │ -856915E041172C4913C1839ABE4852DE380420CC047F5B73DD46A2C464936AAB │ │ │ │ -018CB8A1AAC124FA74B0A3AC1112B303F456D0C4E2A73173B3F9A0A6BA7AEBD2 │ │ │ │ -03CB699984EB7601DA79412A49D8016DDB828AF999F16E2E3CEE4A1AD69D833D │ │ │ │ -A1EAB6CDDB21AA2C1CFE62AE2185E101D67C918F78BA96F5E82DB08422A5F457 │ │ │ │ -401E11E8740A30A27848F89075760E075A4F6388C018CFA5 │ │ │ │ +2F2CF265A203E3AA5D1A7D899B311D039A90A9699107A32F11A0B3B1663F0FD8 │ │ │ │ +7B91B4892171B31CB6BBCE3FC0D870CB02DA8F09FAA2060C39B3DE11F7DFF7D4 │ │ │ │ +7C4F3880CA100DF258CDD7452F08534E80EEC107D09BCAF019768DBFB5817D58 │ │ │ │ +A1F9C94B4143A048FAB0BE33021FE06887A04350AC3AD9F9B2E36EFA68870EF6 │ │ │ │ +3A7F013EFB2043F4A163D9651EC02685E395EF9D4D27C88B25C65C97EF8701E8 │ │ │ │ +B5CD5F96F44CA9786BBD6ADB22269EF9A3B78234112A6549066AA0D48CFEF669 │ │ │ │ +A8408A2C72C07CF78C32985BFF719BB9AC4AF4294D97FADA7894FBE27D6353B9 │ │ │ │ +A40A91D0293C9841523E276505D6106E513E4170B4948334C8488BA962DCF426 │ │ │ │ +587DC9141E8CBA54581724E22BD553F9A14EFEF355A5E98F39F4453E48C33604 │ │ │ │ +913220E53C6287592E9848DF987E1D1752E4BA915951C61F2AE3B076C3EEA462 │ │ │ │ +F143FC22FFBE41D6F0EE78ABC6007C824897C1652FA210C09F1F2C2EFEF9332B │ │ │ │ +3A70BC648CA75FE9FF7F97ED0CA1908DF54F7922512C1C6137775654FD3AE821 │ │ │ │ +39CEA7F000F3DD5F5701FFC1B5016F8678E7B59DCCC0DF1BB504314455106ABB │ │ │ │ +5ED1C1A6D180F26B80E0D052D3F61670148F04A6AF2ED550B63898D86786DC31 │ │ │ │ +2F6B28C70B9D921B4A6980F66F57E53942DF31E06B56748188C4C9A28F6CB3AA │ │ │ │ +069C7556419F000C17FBA2408775924CF39AB1E14FA5B66A94FFB7BD3642DFCD │ │ │ │ +55BB4921031CA3191E5E61EFF27C209F585C313A0336D02B720943A7DCF080C4 │ │ │ │ +1F514060FC912EC8E929510623CE2510D81D4E731A0D36ABBD819BBBD6D69AB6 │ │ │ │ +29C8B06062D7F35064B3709EE8D10148EC17788806885AE63F1984905EB514AB │ │ │ │ +F127465832EB2106320DBE554FF985DD421636A710134445B3017E991B0D4316 │ │ │ │ +F04E2C94266C748A8065B77B07FBFAB5643268E7B2CEAB7C1F3B78D7B88ED26D │ │ │ │ +3288E2F016C8DF9D5170C0576D655F249A64F88F2841705B485B0EF5FE1B17A3 │ │ │ │ +6F1E397E96E9C5A12CD577C65F1B8EC729B96D5BD490F3DB2447FEE1A7153F4B │ │ │ │ +E078819805D72412A33EA76B75AD933C01D0D20904ABBF0478D2AD93D3B1E867 │ │ │ │ +D4682EF852F5B5280A1C8A02162B93F0157B34D773C87187AB86CF3913A76D37 │ │ │ │ +441BFDE38A4E57701A17C69257E4E3C17B3861C478F0C38F0187020B38AE9FEC │ │ │ │ +6192E9D631C81C028A1F66D4720DDBED676F5B008B04B434D22BE49392656C16 │ │ │ │ +2A7D36DE1C538CE951317CE2889B17F817B5D31ECE2FD60F4C460CE27A223554 │ │ │ │ +9C36DF56191BE56EFB938C5E5E99059AACBA4D8B3F95E5CE8BE4CB0E3D37F3A5 │ │ │ │ +F54446EFF648FF6B1D8DDAE326E5CB620122E0BF55CDA0FA6DFDE9DE21516BFB │ │ │ │ +B268AAE0C48EADE7AE8FD32B3977B3D38BA11167BCF76B635AB2A0487B6B1AFB │ │ │ │ +0BE5599EE9EBD69B2507E3AE865412C8255AD565FC5F9B44032D11974EACDE4C │ │ │ │ +46445A3B9D6E3BFCB80FC361B145F2D198D7E04C3737AD490A0E2B4911F8790D │ │ │ │ +0DA8F5E982D45CEFC633BACD852543B5EF4ADAEC6E08997636B0A0866A64D335 │ │ │ │ +5B02BA9B031CFD47594A04C5DBDE8D716A1A9F91288416981984FF633799A929 │ │ │ │ +95D90DEF2C3ECC36355792C7685CCBB6ECBA02950CF020C04D70C28982582E40 │ │ │ │ +919AFCF51541172D118C820CAC9D1CF2AAEE47D406F694D61E714E0D3A0F7DEB │ │ │ │ +658AE33BD7D90EE9B5634ADFCBAEF48E2756E6F51663DDE2074031183AB47354 │ │ │ │ +68DB9D19CFA54281105CC7DED87B831F5C70745EFD5B940833DC2F3C0FFFE5FC │ │ │ │ +B2A110CA41F8E9F16BF5311E7862F8DD7B3A4D24F48F42FC8D869B72CD5E5545 │ │ │ │ +2C71B5FC56B1FC620B62EC9B50982A23124A3E9169635F8F000B65ED2ABAACAB │ │ │ │ +E5AB9E483AF65BFE1DE19BE59009268682F3ECE67866B1F040B428497427C485 │ │ │ │ +4F99626EF2A90005D4B14062DA246B9017DCFE455C3E1E3283ED08D5EC58C0F4 │ │ │ │ +F0836D7CC9E5B2A4C15F50150E3E741A531C4452153C63ED760EC7E2BD5682C4 │ │ │ │ +83AAE4BE785CC84848AA803399E2C2070069F1FB772FD612F6600E6B9CEC8682 │ │ │ │ +01669494BCE0D2FC66FEF296C0A58D4B03A92E68B494052AE0839E3EF8F029B6 │ │ │ │ +75BD0CE834B9F38020B2802074CBDD312B5D295C2D84BC992E8EA597D92A1481 │ │ │ │ +976A9D825BFC725360D82F7327AE8E5D4EB5A7C1915D3437F7892BCBD22BDF27 │ │ │ │ +83651CDEEDAB353DAD46B7E68E8195AA1EBDB73113D17FEA0876E91D15D8C421 │ │ │ │ +FA5E401117B0673E9CB74021EDD21796998C8CC6819C1B2390D7E15756D3F228 │ │ │ │ +01F8D095DFF180D41C7CC2355B6A4896879AF8880D52EEA983B83989EBC364D8 │ │ │ │ +A54D921EDFE6928E74AF52EC44FEE397C31DFD70CD6582B0E987D637A58CA37E │ │ │ │ +C3F4CE58B30DD1C7BA860274E7412CDDEE99A7671FEC0F9306444642A46F531B │ │ │ │ +66E810991ED34F56C66D3A8A72EC0FEFE058B99442570283DBA01B8F54DB11D1 │ │ │ │ +D8419B019809A6239DE4CF75ADA8B72A9F98DAA7365EFC748B72F3761244B750 │ │ │ │ +BAE2E44A87F644C4BDF40FFA720094FE4E92C83BC70D1983372885D499348985 │ │ │ │ +B682829909D982050123E300CA7A6551422CBC57F7AE8EC6DBD03A57FE0D39D2 │ │ │ │ +DCEB3DB38370FD20C841C3A4A8C6A320100CC4C8079BAD3E973743C59B40D544 │ │ │ │ +6A4DE7533202C8512B520D9D3227C6F7EBC7B9FA7BF906C6F99D4C38406B0670 │ │ │ │ +E6F5661321046A5EDD34218BF5D1FD6D5E4D5B7423BB56672E458A59274AB2DE │ │ │ │ +10F1C12FB92F93D93FE4ED17D8D2C2FDF9C8415A230D5F53D226D2912EA871C4 │ │ │ │ +D926FA707044A7D2C4CEA981E905D42627F3231D9E12E4EC90A9592AD20DADA0 │ │ │ │ +9D56270FBBCD3307862316D1303104AF8790401B3D1C8CC6BF204C3CD05AED1B │ │ │ │ +AD13F0A6151F621C770BC868E0B7A52F944400416F9923448409699DC50360A4 │ │ │ │ +DE4B48A8B026B9E35016F8A9EB79CA9EB065DD9110EBE4AF18DFD5EC4E3177A6 │ │ │ │ +6AC1221EFFD034EB7F403C1A77EB6A1FCCA67B90D74601AF935E88F361B43C3B │ │ │ │ +60A9A10492374CDE119B17BF04F0621D242F5AF2DE18A63132EC8F8D620D84F2 │ │ │ │ +B307CD9B133BA1BE501820E8285583B39A6ECE3536A72B582FF1ED6D6BC7DD89 │ │ │ │ +DCAB184076D50472ED08F49011E3B1EDC11BBA44A2DB8010D0D9357805D74FBA │ │ │ │ +6D65C21349D390E2582990A59D0EBB66A0C7C98CB5D9378C56BBEA8AC2F3A80B │ │ │ │ +D1CDE05506840D30E046C3AEFE726FD33031895CC1BD3939916E4F4C5E6D3286 │ │ │ │ +5C66652ACA656955D5B6C1CD7116101FBD79C38F8FC6B86F261DB080F52D366E │ │ │ │ +5DC5C03070ED5708BD2A41ECEE6C0E45303CD809022B1C52225F70C5AB85E7DF │ │ │ │ +4BC0B5B7C3BCB971FCA081F78200A18FEF146F73D4DF5A6BDBFB829132DC1284 │ │ │ │ +FBE41D6E00D37B9126D9A32FA24199A4B81497A86F5A978E82FAD8E7619144FB │ │ │ │ +5C5BAABBD8CA1D6F4471C325B5BA056D2B80347A5F94320BA5B85AC4B184E13F │ │ │ │ +3ABAED3ADA9601EA0FA0A28A9DDEE87E294B8CD8C0765FAB08D844A4DB66BFA9 │ │ │ │ +1DA4F1ED09968BACF47F873C4FDCD7627DF951DD8F939FDB66D0977F83786805 │ │ │ │ +8D13B53441899A3937B1CBF882CFB1F0CBDA4F57C13F3EBB6E72446237566FD9 │ │ │ │ +357075FEFD0544328D9FC0569DF06E897FBED8D01EFE2400E77EA2FCC97C0046 │ │ │ │ +D84C3949172ACB07AD9F1E56EAD7EC62CFC83D4574EA025CA9DF9A6D90F930B5 │ │ │ │ +42039E80D40B2CC6804E60156816C9525334481EB456F3440C41F584833884F3 │ │ │ │ +B3848BC59F12450163BA0DE23231C69964D6478EECFF1F50B7FECA1C2E21F991 │ │ │ │ +D4FBAF87FF3F7FB897B245447F849E8A1AA2F7EFFFCFAFFE20874BB832EC7098 │ │ │ │ +B0EAEA15011A478759B964631527C953EA23CA66906D1E074231819515280957 │ │ │ │ +256018692BB04DF9DF8FED107778B7B8DA2DD202CCB43F4D510109D0B45C6F0E │ │ │ │ +122AAE57FC9FAC03028FF28AE7E6FC7E956950D715A9B64D1E3A8BE4F1E8CCEA │ │ │ │ +204105E4663C577CEDF7F2FC6AFCAD162501CA3AA3ECBE513540072FDAE30228 │ │ │ │ +2712465DC5316C1498BC658387043C26BA83F5500CCAD3BFAECA6B360E72E734 │ │ │ │ +65D8CA58D9815D123F4155B64819C78D450789F5AA86F3D64CE1F38424E41718 │ │ │ │ +930E300336979067439745CBEDF6BBF449FC7A51DE0EA3837079624329864A3E │ │ │ │ +139B84801B51F9DB797912E054567999CD8173B644E5ABDC7B9DE26822B025E8 │ │ │ │ +6B855C54DA008ABE4459E4F891BC18F9E5D4130D0C0B7A6476EC03E5A491A4E8 │ │ │ │ +663AFD9481D49143CCCF98C5A0C09E98779F8422B3D2DCE4B5AAAC476C2AD9A4 │ │ │ │ +6F3BDD9BA73EED6116011690093DE4DEDA89A6FD3D26BCCAA47F4C883287949F │ │ │ │ +BC2494690A89FE4D77421945E8E6F7D6BD5A5700B4712301CB54485F3C254243 │ │ │ │ +B3C874B9EA09043897876E2C6C83939D0C041DD11D111FB0A2A915E5EA2F07A1 │ │ │ │ +3FE0551FBDA8526C046E25C48B4A7998DFB3C4006CAFBA22D3ECDF21E70A37A6 │ │ │ │ +9ED21060D0CA9722DE9C25832FAA6696A2F3ABE7DDAF1F687789FF7ACC72B35A │ │ │ │ +8411B4254B3204C0840B222F439E6A35CF147E362C292AF8E8C390DACCAB53BD │ │ │ │ +4C82068300D34C99B2B992CA0949731814023B9A15B318B29E24A7C034C4D8D0 │ │ │ │ +71C7697C808BBA77EC41DBACE282A72AB92835B3C3596F9ABF88A74FB7AFAF65 │ │ │ │ +56CBF3D9CDFBC675F1D1FD5614CAE80571DA896DB5FF300B19636D2EE87777E1 │ │ │ │ +0E2FBB1C4E146C4F2F58EA44C8C0F08783247EBCD68D60D328AFD6C73C246970 │ │ │ │ +1A130A125CA9BCD07D566440758DB5E01F733B84E20D88168A4011DF9D3AB125 │ │ │ │ +FFDAF5E74341B83B4C7FC715D6990F32868CC6274003A7247073E7D865A8624E │ │ │ │ +37E6AA62AD3248D58CF44DC00D99D30B0713845002BCD3FE686AFFE23E06ACC3 │ │ │ │ +7551EDA45FEB9E11052DE7756278E8CC7984AA573372C1B1E0202651E175254C │ │ │ │ +46EBFDD8C75C02DFEB22D054D19A28462334418454C10C7C317A683AE32078C1 │ │ │ │ +EB24C04A7B9AE2FEE32E0D8ECBF4AFE236190ABACE394B47BAFE257B7801F084 │ │ │ │ +C976611254C9B5A847478CCC7CC43700BC621E2CE1E4D46C9EE307D989830A50 │ │ │ │ +564F982D43F3953E7F2CC27779E5725749F9CE193343D8EC48E9A11AE900D9F9 │ │ │ │ +BAE768DD1F68099FF893C44C70781304075A55FAD4544B8AAE8451E120120E07 │ │ │ │ +3DCD67FFA315595D14199D1926775D490023172C84335E9019B2D57ABEDB908D │ │ │ │ +6592C3DCE013AF2581DE088F0997171BC2BA99E0072D6F512382E91ADB07FC08 │ │ │ │ +9793495DABDA96A063C4EEDBC10A31F39B8609B196B2B46A60D88BB67258A63D │ │ │ │ +055DECA14A08443A0E258096C2115D65560BB35ED14D28DC5E1DC7B36FAC8FD7 │ │ │ │ +6162B8B5F9B801C9B5AEACA6426AF95B10B7AB8BBE74B41DB0F7CD2207E92C0D │ │ │ │ +FE37522D515DAAC7536A18C8B487057D5F40C6862E1E3267E654722CED32D0C2 │ │ │ │ +F25A1F1900EAEF8C808E01A0671D73B468F86A8C30FEB13E63CCF05FC0E99400 │ │ │ │ +9D7597A3F667286CB525392D3871C1C4948AB5A7D1FF6B9AE5561DA5F423993D │ │ │ │ +7C85076B91083919C6583BC718BBBE92E9812A2C579EA9A16A9C37942A962F76 │ │ │ │ +DB1D1FD90B278B799FD5FBC004E1B40E53D77FCCFFEBFE2A8CD9142F77E7F13C │ │ │ │ +2BD3B3CC514FAE54E54B7757B239F65183A73FFC5108F9FC6CFF0696588808DA │ │ │ │ +8BC1825F19408B683B437DAEBAC9C3A0D4D810924C746AA187D1A26FCE81E031 │ │ │ │ +460D7B3E86D6A2260C4767B709A8C7C7E9B90606178038CC05A2F06E28160120 │ │ │ │ +D9024F662F55CECCD27388A7B7970190CF9FE12A56C9BE9422EF222ABA643235 │ │ │ │ +4FD56F536983AC9C99C1F18CDEEBAF50C3C1A3DFBADC2C45606662200745E9D1 │ │ │ │ +65F2AA0667E42DF6481974C0FE5F6AF25DB00605D0E6261E696CD413485D7AB2 │ │ │ │ +1F8F798410A09E49FF287C3678D0390BECB15FF4724BDD2FBADC9672F6DE8E31 │ │ │ │ +C85495F4F1CE1A02E6C9917ABA5091D21C2EF261EB535C64601C63BC6CBD2896 │ │ │ │ +81C6C948DF62C36865847269542BE7C06F183553DCBED6755865397B1CB61862 │ │ │ │ +B129BD647BA9BC15600010680E63DF845A6D15A549CC162D3A945BA47DE1BBCF │ │ │ │ +9CA96886510DDBAF7A67AB8A6830FF6F75E87EB584CF13C61DC1CC601ADD7B8D │ │ │ │ +06E5B10D5B245DB511D5D9A9D9ECC202B957F695D4D7052BDD0607A0275661D6 │ │ │ │ +A1CD9A6C8AAFD1D808473CC563DEA97676C33CEADD45121C2113E453EBF0F021 │ │ │ │ +493AC203706AC37CFCFFAE5EEAD7CDF05B4E5D685B648C6FDF3A9C1A993D1194 │ │ │ │ +758F195D2C4B6B889D4029B3E865377E9F45FC5ACF2EB5CCE1C8EB0C094DC97C │ │ │ │ +A9C16BCA0F621120E4C891116FA8CBCAAE32C5A142E8A4FF135552ACC6237BBA │ │ │ │ +705749F70BEE49616264B069F841BD2025E2424C20DC0FEC1A32B314EC8D3343 │ │ │ │ +5A17BFF9FFF48BE29231C7E72162FF4888E522B3EB7813 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -8603,28 +8592,27 @@ │ │ │ │ 1[44 44 44 33[{}86 83.022 /CMTT10 rf /Fq 142[37 23[48 │ │ │ │ 69 2[57 2[63 66 53 3[57 1[46 5[69 2[62 65[{}11 83.022 │ │ │ │ /CMMI10 rf /Fr 132[67 60 2[97 71 75 52 53 55 2[67 75 │ │ │ │ 112 37 2[37 75 67 41 61 75 60 1[65 13[75 2[92 101 1[128 │ │ │ │ 3[50 4[103 97 96 102 11[67 67 67 67 67 49[{}34 119.552 │ │ │ │ /CMBX12 rf /Fs 131[83 2[44 2[44 1[32 33 33 2[42 46 69 │ │ │ │ 23 2[23 1[42 1[37 1[37 46 42 13[46 3[65 2[52 19[42 2[42 │ │ │ │ -2[42 42 42 3[23 44[{}25 83.022 /CMSL10 rf /Ft 132[48 │ │ │ │ -42 2[69 50 53 37 38 39 2[48 53 80 27 2[27 53 48 29 44 │ │ │ │ -53 42 1[46 6[58 6[53 2[65 72 75 91 57 2[36 3[63 73 69 │ │ │ │ -68 72 7[48 2[48 48 48 48 48 48 48 1[27 46[{}42 83.022 │ │ │ │ -/CMBX10 rf /Fu 131[83 42 37 44 44 60 44 46 32 33 33 44 │ │ │ │ -46 42 46 69 23 44 25 23 46 42 25 37 46 37 46 42 4[42 │ │ │ │ -3[62 85 1[62 60 46 61 1[57 65 62 76 52 65 1[30 62 1[54 │ │ │ │ -57 63 60 59 62 3[65 2[23 42 42 42 42 42 42 42 42 42 42 │ │ │ │ -42 23 28 23 65 1[32 32 23 4[42 20[46 46 48 11[{}73 83.022 │ │ │ │ -/CMR10 rf /Fv 133[31 37 37 51 37 39 27 28 28 1[39 35 │ │ │ │ -39 59 20 1[22 20 39 35 22 31 39 31 39 35 9[72 2[51 39 │ │ │ │ -52 1[48 55 53 65 44 2[25 53 3[54 51 50 53 7[35 35 35 │ │ │ │ -35 35 35 35 35 35 35 1[20 24 20 31[39 12[{}53 66.4176 │ │ │ │ -/CMR8 rf │ │ │ │ +2[42 1[42 3[23 44[{}24 83.022 /CMSL10 rf /Ft 132[48 42 │ │ │ │ +2[69 50 53 37 38 39 2[48 53 80 27 2[27 53 48 29 44 53 │ │ │ │ +42 1[46 6[58 6[53 2[65 72 75 91 57 2[36 3[63 73 69 68 │ │ │ │ +72 7[48 2[48 48 48 48 48 48 48 1[27 46[{}42 83.022 /CMBX10 │ │ │ │ +rf /Fu 131[83 42 37 44 44 60 44 46 32 33 33 44 46 42 │ │ │ │ +46 69 23 44 25 23 46 42 25 37 46 37 46 42 4[42 3[62 85 │ │ │ │ +1[62 60 46 61 1[57 65 62 76 52 65 1[30 62 1[54 57 63 │ │ │ │ +60 59 62 3[65 2[23 42 42 42 42 42 42 42 42 42 42 42 23 │ │ │ │ +28 23 65 1[32 32 23 4[42 20[46 46 48 11[{}73 83.022 /CMR10 │ │ │ │ +rf /Fv 133[31 37 37 51 37 39 27 28 28 1[39 35 39 59 20 │ │ │ │ +1[22 20 39 35 22 31 39 31 39 35 9[72 2[51 39 52 1[48 │ │ │ │ +55 53 65 44 2[25 53 3[54 51 50 53 7[35 35 35 35 35 35 │ │ │ │ +35 35 35 35 1[20 24 20 31[39 12[{}53 66.4176 /CMR8 rf │ │ │ │ %DVIPSBitmapFont: Fw tcrm0600 6 1 │ │ │ │ /EN0 load IEn S/IEn X FBB FMat/FMat[0.02 0 0 -0.02 0 │ │ │ │ 0]N/FBB[-11 -15 87 40]N │ │ │ │ /Fw 1 43 df<006000007000006000006000406020E06070F861F07E67E01FFF8007FE00 │ │ │ │ 00F00007FE001FFF807E67E0F861F0E0607040602000600000600000700000600014157B │ │ │ │ 961E>42 D E │ │ │ │ /Fw load 0 Fw currentfont 50 scalefont put/FMat X/FBB │ │ │ │ @@ -8638,15 +8626,15 @@ │ │ │ │ E00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E0000001E │ │ │ │ 0000001E0000001E0000000C00001A1D7C9E23>42 D E │ │ │ │ /Fx load 0 Fx currentfont 66.6667 scalefont put/FMat │ │ │ │ X/FBB X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fy 139[38 38 38 2[49 54 81 1[51 1[27 54 49 30 43 1[43 │ │ │ │ 54 49 9[100 4[72 1[66 76 3[76 50 2[77 2[75 70 69 73 8[49 │ │ │ │ -2[49 2[49 49 49 1[27 1[27 44[{}33 99.6264 /CMR12 rf /Fz │ │ │ │ +2[49 2[49 1[49 1[27 1[27 44[{}32 99.6264 /CMR12 rf /Fz │ │ │ │ 172[90 2[110 121 2[97 6[106 18[81 3[45 46[{}7 143.462 │ │ │ │ /CMBX12 rf /FA 134[70 2[70 73 51 52 51 2[66 73 111 36 │ │ │ │ 2[36 1[66 1[58 3[66 13[73 6[83 76[{}16 143.462 /CMR17 │ │ │ │ rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ @@ -8660,27 +8648,27 @@ │ │ │ │ end │ │ │ │ %%EndSetup │ │ │ │ %%Page: 1 1 │ │ │ │ TeXDict begin 1 0 bop 590 739 a FA(Solving)43 b(Linear)g(Systems)f │ │ │ │ (using)h Fz(SPOOLES)54 b(2.2)778 1005 y Fy(C.)33 b(C.)g(Ashcraft,)g(R.) │ │ │ │ f(G.)h(Grimes,)g(D.)f(J.)h(Pierce,)h(D.)e(K.)g(W)-8 b(ah)1442 │ │ │ │ 1121 y(Bo)s(eing)32 b(Phan)m(tom)i(W)-8 b(orks)2458 1085 │ │ │ │ -y Fx(*)1586 1341 y Fy(Octob)s(er)32 b(18,)g(2025)p 0 │ │ │ │ +y Fx(*)1586 1341 y Fy(Octob)s(er)32 b(28,)g(2025)p 0 │ │ │ │ 5173 1560 4 v 92 5226 a Fw(*)127 5249 y Fv(P)-6 b(.)33 │ │ │ │ b(O.)g(Bo)n(x)h(24346,)j(Mail)32 b(Stop)i(7L-22,)i(Seattle,)h(W)-6 │ │ │ │ b(ashington)36 b(98124.)62 b(This)32 b(researc)n(h)i(w)n(as)g(supp)r │ │ │ │ (orted)g(in)f(part)h(b)n(y)g(the)g(D)n(ARP)-6 b(A)0 5328 │ │ │ │ y(Con)n(tract)33 b(D)n(ABT63-95-C-0122)f(and)g(the)g(DoD)g(High)f(P)n │ │ │ │ (erformance)h(Computing)g(Mo)r(dernization)g(Program)f(Common)h(HPC)f │ │ │ │ (Soft)n(w)n(are)0 5407 y(Supp)r(ort)25 b(Initiativ)n(e.)1929 │ │ │ │ 5656 y Fu(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fu(2)327 b Ft(SPOOLES)32 │ │ │ │ b(2.2)27 b Fs(|)g(Solving)g(Linear)g(Systems)p 2053 100 │ │ │ │ -1144 4 v 1336 w(Octob)r(er)g(18,)g(2025)0 390 y Fr(Con)l(ten)l(ts)0 │ │ │ │ +1144 4 v 1336 w(Octob)r(er)g(28,)g(2025)0 390 y Fr(Con)l(ten)l(ts)0 │ │ │ │ 601 y Ft(1)77 b(Ov)m(erview)3335 b(4)0 812 y(2)77 b(Serial)31 │ │ │ │ b(Solution)g(of)g Fq(AX)f Fu(=)23 b Fq(Y)50 b Ft(using)31 │ │ │ │ b(an)h Fq(LU)40 b Ft(factorization)1572 b(6)125 938 y │ │ │ │ Fu(2.1)83 b(Reading)28 b(the)f(input)i(parameters)k(.)42 │ │ │ │ b(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.) │ │ │ │ 134 b(6)125 1065 y(2.2)83 b(Comm)n(unicating)27 b(the)h(data)f(for)h │ │ │ │ @@ -8780,24 +8768,24 @@ │ │ │ │ b(.)d(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 b(23)0 │ │ │ │ 5196 y Ft(A)53 b Fp(allInOne.c)27 b Ft({)32 b(A)g(Serial)f │ │ │ │ Fq(LU)40 b Ft(Driv)m(er)33 b(Program)1941 b(24)0 5407 │ │ │ │ y(B)57 b Fp(allInOne.c)27 b Ft({)32 b(A)g(Serial)f Fq(LU)40 │ │ │ │ b Ft(Driv)m(er)33 b(Program)1941 b(31)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ -TeXDict begin 3 2 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 3 2 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1171 4 v 1334 w Ft(SPOOLES)32 b(2.2)27 b Fs(|)g(Solving)g │ │ │ │ (Linear)g(Systems)327 b Fu(3)0 390 y Ft(C)56 b Fp(allInOne.c)27 │ │ │ │ b Ft({)32 b(A)g(Serial)f Fq(LU)40 b Ft(Driv)m(er)33 b(Program)1941 │ │ │ │ b(39)0 598 y(D)52 b Fp(allInOne.c)27 b Ft({)32 b(A)g(Serial)f │ │ │ │ Fq(QR)h Ft(Driv)m(er)h(Program)1934 b(49)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fu(4)327 b Ft(SPOOLES)32 │ │ │ │ b(2.2)27 b Fs(|)g(Solving)g(Linear)g(Systems)p 2053 100 │ │ │ │ -1144 4 v 1336 w(Octob)r(er)g(18,)g(2025)0 390 y Fr(1)135 │ │ │ │ +1144 4 v 1336 w(Octob)r(er)g(28,)g(2025)0 390 y Fr(1)135 │ │ │ │ b(Ov)l(erview)0 598 y Fu(The)34 b Ft(SPOOLES)h Fu(soft)n(w)n(are)d │ │ │ │ (library)h(is)h(designed)g(to)g(solv)n(e)f(sparse)g(systems)h(of)g │ │ │ │ (linear)f(equations)h Fq(AX)40 b Fu(=)34 b Fq(Y)53 b │ │ │ │ Fu(for)34 b Fq(X)7 b Fu(,)0 698 y(where)20 b Fq(A)h Fu(is)f(full)h │ │ │ │ (rank)f(and)g Fq(X)27 b Fu(and)20 b Fq(Y)40 b Fu(are)19 │ │ │ │ b(dense)h(matrices.)34 b(The)21 b(matrix)f Fq(A)g Fu(can)g(b)r(e)h │ │ │ │ (either)g(real)e(or)h(complex,)h(symmetric,)0 797 y(Hermitian,)28 │ │ │ │ @@ -8919,15 +8907,15 @@ │ │ │ │ 5308 y(F)-7 b(or)35 b(example,)k(consider)c(the)i Fp(DenseMtx)d │ │ │ │ Fu(ob)5 b(ject)36 b(that)h(mo)r(dels)f(a)h(dense)f(matrix.)63 │ │ │ │ b(The)37 b Fp(DenseMtx/DenseMt)o(x.)o(h)0 5407 y Fu(header)j(\014le)i │ │ │ │ (de\014nes)f(the)h(ob)5 b(ject's)41 b(C)g(struct)g(and)h(has)e(protot)n │ │ │ │ (yp)r(es)h(\(with)h(extensiv)n(e)e(commen)n(ts\))i(of)f(the)g(ob)5 │ │ │ │ b(ject's)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ -TeXDict begin 5 4 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 5 4 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1171 4 v 1334 w Ft(SPOOLES)32 b(2.2)27 b Fs(|)g(Solving)g │ │ │ │ (Linear)g(Systems)327 b Fu(5)0 390 y(metho)r(ds.)35 b(The)21 │ │ │ │ b(source)f(\014les)h(are)f(found)i(in)f(the)h Fp(DenseMtx/src)16 │ │ │ │ b Fu(directory)-7 b(.)33 b(The)21 b(L)2629 373 y Fm(A)2666 │ │ │ │ 390 y Fu(T)2712 408 y(E)2758 390 y(X)h(do)r(cumen)n(tation)f(\014les)g │ │ │ │ (are)f(found)0 490 y(in)g(the)h Fp(DenseMtx/doc)15 b │ │ │ │ Fu(directory)-7 b(.)34 b(The)20 b(\014les)g(can)g(b)r(e)g(used)g(to)g │ │ │ │ @@ -8945,15 +8933,15 @@ │ │ │ │ Fq(LU)34 b Fu(and)24 b Fq(QR)h Fu(driv)n(er)0 1013 y(programs.)58 │ │ │ │ b(The)36 b Fp(MT/drivers)31 b Fu(and)k Fp(MPI/drivers)c │ │ │ │ Fu(directories)j(con)n(tain)h(the)h(m)n(ultithreaded)f(and)h(MPI)f │ │ │ │ Fq(LU)43 b Fu(driv)n(er)0 1112 y(programs.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fu(6)327 b Ft(SPOOLES)32 │ │ │ │ b(2.2)27 b Fs(|)g(Solving)g(Linear)g(Systems)p 2053 100 │ │ │ │ -1144 4 v 1336 w(Octob)r(er)g(18,)g(2025)0 390 y Fr(2)135 │ │ │ │ +1144 4 v 1336 w(Octob)r(er)g(28,)g(2025)0 390 y Fr(2)135 │ │ │ │ b(Serial)46 b(Solution)f(of)g Fj(AX)e Fi(=)33 b Fj(Y)71 │ │ │ │ b Fr(using)45 b(an)g Fj(LU)56 b Fr(factorization)0 599 │ │ │ │ y Fu(The)27 b(user)g(has)g(some)g(represen)n(tation)f(of)h(the)h(data)f │ │ │ │ (whic)n(h)g(represen)n(ts)f(the)i(linear)f(system,)g │ │ │ │ Fq(AX)j Fu(=)22 b Fq(Y)d Fu(.)37 b(The)27 b(user)g(w)n(an)n(ts)0 │ │ │ │ 699 y(the)h(solution)f Fq(X)7 b Fu(.)36 b(The)28 b Ft(SPOOLES)g │ │ │ │ Fu(library)e(will)i(use)f Fq(A)h Fu(and)g Fq(Y)46 b Fu(and)27 │ │ │ │ @@ -9049,15 +9037,15 @@ │ │ │ │ b Fu(or)23 b Fp(InpMtx)p 3048 5253 V 29 w(inputComplexEntr)o(y\()o(\))p │ │ │ │ 0 5330 1560 4 v 92 5384 a Fg(1)127 5407 y Ff(InpMtx)i │ │ │ │ Fv(stands)g(for)d Ff(Inp)p Fv(ut)j Ff(M)p Fv(a)p Ff(t)p │ │ │ │ Fv(ri)p Ff(x)p Fv(,)f(for)f(it)g(is)g(the)i(ob)t(ject)f(in)n(to)h(whic) │ │ │ │ n(h)e(the)i(user)e(inputs)h(the)h(matrix)e(en)n(tries.)p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ -TeXDict begin 7 6 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 7 6 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1171 4 v 1334 w Ft(SPOOLES)32 b(2.2)27 b Fs(|)g(Solving)g │ │ │ │ (Linear)g(Systems)327 b Fu(7)0 390 y(to)30 b(place)g(that)g(en)n(try)g │ │ │ │ (in)n(to)g(the)g Fp(InpMtx)e Fu(ob)5 b(ject.)44 b(Finally)30 │ │ │ │ b(this)g(co)r(de)g(segmen)n(t)g(closes)f(the)i(\014le.)44 │ │ │ │ b(\014nalizes)30 b(the)g(input)h(to)0 490 y Fp(InpMtx)23 │ │ │ │ b Fu(b)n(y)j(con)n(v)n(erting)e(the)i(in)n(ternal)f(storage)e(of)j(the) │ │ │ │ g(matrix)f(en)n(tries)g(to)h(a)f(v)n(ector)f(form.)36 │ │ │ │ @@ -9130,15 +9118,15 @@ │ │ │ │ (they)h(apply)f(to,)h(or)e(the)i(library)e(name,)h(e.g.,)g │ │ │ │ Ff(SPOOLES)p 3716 5328 V 27 w(REAL)p Fv(.)0 5407 y(They)e(are)g │ │ │ │ (describ)r(ed)g(in)f(the)i(reference)f(man)n(ual)g(in)f(the)i(section)g │ │ │ │ (for)d(the)j(particular)e(ob)t(ject.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fu(8)327 b Ft(SPOOLES)32 │ │ │ │ b(2.2)27 b Fs(|)g(Solving)g(Linear)g(Systems)p 2053 100 │ │ │ │ -1144 4 v 1336 w(Octob)r(er)g(18,)g(2025)125 390 y Fu(Ev)n(ery)e(ob)5 │ │ │ │ +1144 4 v 1336 w(Octob)r(er)g(28,)g(2025)125 390 y Fu(Ev)n(ery)e(ob)5 │ │ │ │ b(ject)27 b(in)g Ft(SPOOLES)g Fu(has)g(prin)n(t)g(metho)r(ds)g(to)g │ │ │ │ (output)h(the)f(con)n(ten)n(ts)f(of)h(that)h(ob)5 b(ject.)36 │ │ │ │ b(This)27 b(is)g(illustrated)0 490 y(in)h(this)g(co)r(de)g(segmen)n(t)f │ │ │ │ (b)n(y)h(prin)n(ting)f(the)h(input)h(matrix)e(as)g(con)n(tained)g(in)i │ │ │ │ (the)f Fp(InpMtx)d Fu(ob)5 b(ject,)28 b Fp(mtxA)p Fu(.)e(T)-7 │ │ │ │ b(o)28 b(shorten)f(this)0 589 y(c)n(hapter)g(w)n(e)g(will)g(from)g(no)n │ │ │ │ (w)g(on)g(omit)h(the)g(part)f(of)g(the)h(co)r(de)f(that)h(prin)n(ts)f │ │ │ │ @@ -9210,15 +9198,15 @@ │ │ │ │ 5308 y(The)j(righ)n(t)f(hand)h(side)g(en)n(tries)f(are)g(then)h(in,)h │ │ │ │ (ro)n(w)e(b)n(y)h(ro)n(w,)f(and)h(placed)g(in)n(to)g(their)g(lo)r │ │ │ │ (cations)f(via)g(one)h(of)g(the)g(t)n(w)n(o)0 5407 y(\\set)c(en)n │ │ │ │ (tries")g(metho)r(ds.)37 b(Note,)27 b(the)h(nonzero)f(ro)n(ws)f(can)h │ │ │ │ (b)r(e)h(read)f(from)g(the)h(\014le)g(in)g(an)n(y)e(order.)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ -TeXDict begin 9 8 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 9 8 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1171 4 v 1334 w Ft(SPOOLES)32 b(2.2)27 b Fs(|)g(Solving)g │ │ │ │ (Linear)g(Systems)327 b Fu(9)0 390 y Fh(2.3)112 b(Reordering)38 │ │ │ │ b(the)f(linear)h(system)0 564 y Fu(The)30 b(\014rst)g(step)h(is)f(to)g │ │ │ │ (\014nd)h(the)g(p)r(erm)n(utation)f(matrix)f Fq(P)12 │ │ │ │ b Fu(,)31 b(and)g(then)f(p)r(erm)n(ute)h Fq(AX)j Fu(=)27 │ │ │ │ b Fq(Y)49 b Fu(in)n(to)30 b(\()p Fq(P)12 b(AP)3336 534 │ │ │ │ y Fl(T)3389 564 y Fu(\)\()p Fq(P)g(X)7 b Fu(\))27 b(=)g │ │ │ │ @@ -9306,15 +9294,15 @@ │ │ │ │ b(ject.)p 0 5330 1560 4 v 92 5384 a Fg(3)127 5407 y Ff(IVL)24 │ │ │ │ b Fv(stands)h(for)e Ff(I)p Fv(n)n(teger)i Ff(V)p Fv(ector)f │ │ │ │ Ff(L)p Fv(ist,)g(i.e.,)e(a)i(list)f(of)g(in)n(teger)h(v)n(ectors.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fu(10)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)125 390 y Fu(Once)i(w)n(e)h(ha) │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)125 390 y Fu(Once)i(w)n(e)h(ha) │ │ │ │ n(v)n(e)f(the)i(p)r(erm)n(utation)f(v)n(ector,)f(w)n(e)h(apply)g(it)g │ │ │ │ (to)g(the)h(fron)n(t)f(tree,)g(b)n(y)g(the)h Fp(ETree)p │ │ │ │ 3135 390 27 4 v 29 w(permuteVertices\()o(\))0 490 y Fu(metho)r(d,)41 │ │ │ │ b(and)c(then)h(to)g(the)g(matrix)f(with)h(the)g Fp(InpMtx)p │ │ │ │ 1874 490 V 29 w(permute\(\))c Fu(metho)r(d.)67 b(If)38 │ │ │ │ b(the)g(matrix)f Fq(A)h Fu(is)g(symmetric)f(or)0 589 │ │ │ │ y(Hermitian,)32 b(w)n(e)e(exp)r(ect)h(all)f(nonzero)g(en)n(tries)g(to)g │ │ │ │ @@ -9402,15 +9390,15 @@ │ │ │ │ Fd(i)p Fv(-th)f(c)n(hevron)i(of)e Fd(A)g Fv(consists)h(of)f(the)i │ │ │ │ (diagonal)f(en)n(try)g Fd(A)1829 5338 y Fc(i;i)1896 5328 │ │ │ │ y Fv(,)g(the)g Fd(i)p Fv(-th)g(ro)n(w)f(of)g(the)h(upp)r(er)g(triangle) │ │ │ │ g(of)f Fd(A)p Fv(,)g(and)h(the)h Fd(i)p Fv(-th)e(column)h(of)0 │ │ │ │ 5407 y(the)f(lo)n(w)n(er)e(triangle)h(of)f Fd(A)p Fv(.)p │ │ │ │ eop end │ │ │ │ %%Page: 11 11 │ │ │ │ -TeXDict begin 11 10 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 11 10 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(11)0 390 y Fp(chvmanager)39 │ │ │ │ b(=)44 b(ChvManager_new\()o(\))38 b(;)0 490 y(ChvManager_init\()o(chv)o │ │ │ │ (ma)o(na)o(ger)o(,)f(NO_LOCK,)k(1\))h(;)0 589 y(DVfill\(10,)d(cpus,)j │ │ │ │ (0.0\))g(;)0 689 y(IVfill\(20,)d(stats,)j(0\))g(;)0 789 │ │ │ │ y(rootchv)f(=)i(FrontMtx_factorI)o(np)o(Mtx)o(\(f)o(ron)o(tm)o(tx)o(,) │ │ │ │ 38 b(mtxA,)j(tau,)h(droptol,)567 888 y(chvmanager,)d(&error,)h(cpus,)i │ │ │ │ @@ -9496,15 +9484,15 @@ │ │ │ │ b(for)g(w)n(orking)f(storage.)34 b(The)25 b(last)f(step)h(is)f(to)h(p)r │ │ │ │ (erm)n(ute)g(the)g(ro)n(ws)e(of)h(the)h Fp(DenseMtx)d │ │ │ │ Fu(from)i(the)h(new)f(ordering)f(in)n(to)0 5407 y(the)28 │ │ │ │ b(old)f(ordering.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fu(12)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fh(2.7)112 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fh(2.7)112 │ │ │ │ b(Sample)39 b(Matrix)f(and)h(Righ)m(t)d(Hand)i(Side)h(Files)0 │ │ │ │ 568 y Fu(Immediately)34 b(b)r(elo)n(w)g(are)f(t)n(w)n(o)g(sample)h │ │ │ │ (\014les:)50 b Fp(matrix.input)29 b Fu(holds)34 b(the)g(matrix)g(input) │ │ │ │ h(and)f Fp(rhs.input)c Fu(holds)k(the)0 668 y(righ)n(t)20 │ │ │ │ b(hand)h(side.)35 b(This)21 b(example)g(is)g(for)f(a)h(symmetric)g │ │ │ │ (Laplacian)f(op)r(erator)f(on)i(a)f(3)5 b Fb(\002)g Fu(3)21 │ │ │ │ b(grid.)34 b(Only)21 b(en)n(tries)f(in)h(the)h(upp)r(er)0 │ │ │ │ @@ -9533,15 +9521,15 @@ │ │ │ │ (0.0)h(0.0)f(0.0)1533 2351 y(5)h(0.0)g(0.0)f(0.0)g(0.0)h(0.0)f(1.0)g │ │ │ │ (0.0)h(0.0)f(0.0)1533 2451 y(6)h(0.0)g(0.0)f(0.0)g(0.0)h(0.0)f(0.0)g │ │ │ │ (1.0)h(0.0)f(0.0)1533 2550 y(7)h(0.0)g(0.0)f(0.0)g(0.0)h(0.0)f(0.0)g │ │ │ │ (0.0)h(1.0)f(0.0)1533 2650 y(8)h(0.0)g(0.0)f(0.0)g(0.0)h(0.0)f(0.0)g │ │ │ │ (0.0)h(0.0)f(1.0)p 3231 2650 V 1483 2653 1750 4 v eop │ │ │ │ end │ │ │ │ %%Page: 13 13 │ │ │ │ -TeXDict begin 13 12 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 13 12 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(13)0 390 y Fr(3)135 b(Multithreaded)45 │ │ │ │ b(Solution)h(of)f Fj(AX)e Fi(=)33 b Fj(Y)71 b Fr(using)45 │ │ │ │ b(an)f Fj(LU)57 b Fr(factorization)0 599 y Fu(The)26 │ │ │ │ b(only)f(computations)g(that)h(are)f(m)n(ultithreaded)g(are)g(the)h │ │ │ │ (factorization)e(and)i(forw)n(ard)e(and)h(bac)n(ksolv)n(es.)34 │ │ │ │ b(Therefore,)0 699 y(this)c(section)g(will)g(describ)r(e)g(only)g(the)g │ │ │ │ @@ -9621,15 +9609,15 @@ │ │ │ │ 5308 y(DV_init\(cumopsDV)o(,)d(nthread,)i(NULL\))h(;)0 │ │ │ │ 5407 y(ownersIV)f(=)j(ETree_ddMap\(front)o(ETr)o(ee)o(,)38 │ │ │ │ b(type,)j(symmetryflag,)d(cumopsDV,)i(1./\(2.*nthread\)\))d(;)p │ │ │ │ eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fu(14)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fu(The)d(\014rst)f │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fu(The)d(\014rst)f │ │ │ │ (step)h(is)f(to)h(ensure)f(that)g(eac)n(h)g(thread)g(has)g(a)h(fron)n │ │ │ │ (t)f(to)g(o)n(wn,)h(decreasing)e(the)i(n)n(um)n(b)r(er)f(of)h(threads)f │ │ │ │ (if)h(necessary)-7 b(.)0 490 y(W)g(e)31 b(then)f(construct)g(the)h(o)n │ │ │ │ (wners)d(map)i(using)g(the)h(fron)n(t)f(tree)f(ob)5 b(ject.)45 │ │ │ │ b(The)30 b Fp(cumopsDV)d Fu(ob)5 b(ject)30 b(is)g(a)g(double)g │ │ │ │ (precision)0 589 y(v)n(ector)e(ob)5 b(ject)29 b(whose)f(length)h(is)g │ │ │ │ (the)h(n)n(um)n(b)r(er)f(of)g(threads.)41 b(On)29 b(return)f(from)h │ │ │ │ @@ -9710,15 +9698,15 @@ │ │ │ │ b(Mo)r(derate)33 b(sp)r(eedups)g(in)g(the)g(factorization)f(ha)n(v)n(e) │ │ │ │ g(b)r(een)h(for)g(v)-5 b(alues)32 b(of)h Fp(lookahead)d │ │ │ │ Fu(up)j(to)g(the)g(n)n(um)n(b)r(er)208 5308 y(of)i(threads.)58 │ │ │ │ b(F)-7 b(or)35 b(nonzero)f Fp(lookahead)d Fu(v)-5 b(alues,)37 │ │ │ │ b(the)f(amoun)n(t)e(of)h(w)n(orking)f(storage)f(can)i(increase,)g │ │ │ │ (sometimes)208 5407 y(appreciably)-7 b(.)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ -TeXDict begin 15 14 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 15 14 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(15)0 390 y(The)22 b(p)r(ost-pro)r(cessing)f │ │ │ │ (of)h(the)g(factorization)f(is)h(exactly)g(the)g(same)g(as)g(the)g │ │ │ │ (serial)f(co)r(de.)35 b(Note,)24 b(this)e(step)g(can)g(b)r(e)h │ │ │ │ (trivially)0 490 y(parallelized,)j(but)j(is)e(not)h(done)f(at)h(presen) │ │ │ │ n(t.)125 614 y(After)d(the)g(p)r(ost-pro)r(cessing)e(step,)j(the)f │ │ │ │ Fp(FrontMtx)d Fu(ob)5 b(ject)24 b(con)n(tains)g(the)i │ │ │ │ @@ -9755,15 +9743,15 @@ │ │ │ │ b(in)h(the)g(latter.)0 3167 y Fh(3.7)112 b(Sample)39 │ │ │ │ b(Matrix)f(and)h(Righ)m(t)d(Hand)i(Side)h(Files)0 3345 │ │ │ │ y Fu(The)28 b(m)n(ultithreaded)f(driv)n(er)g(uses)g(the)h(same)f(input) │ │ │ │ h(\014les)g(as)f(found)g(in)h(Section)g(2.7.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fu(16)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fr(4)135 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fr(4)135 │ │ │ │ b(MPI)44 b(Solution)i(of)f Fj(AX)d Fi(=)34 b Fj(Y)70 │ │ │ │ b Fr(using)45 b(an)g Fj(LU)57 b Fr(factorization)0 597 │ │ │ │ y Fu(Unlik)n(e)30 b(the)h(serial)d(and)i(m)n(ultithreaded)g(en)n │ │ │ │ (vironmen)n(ts)f(where)h(the)g(data)g(structures)f(are)g(global,)h │ │ │ │ (existing)g(under)f(one)0 697 y(address)d(space,)g(in)h(the)h(MPI)e(en) │ │ │ │ n(vironmen)n(t,)g(data)h(is)g(lo)r(cal,)f(eac)n(h)g(pro)r(cess)g(or)g │ │ │ │ (pro)r(cessor)f(has)h(its)h(o)n(wn)g(distinct)g(address)0 │ │ │ │ @@ -9850,15 +9838,15 @@ │ │ │ │ (cessors,)e(w)n(e)h(use)0 5407 y(the)e(distributed)g │ │ │ │ Fp(InpMtx)p 837 5407 27 4 v 29 w(MPI)p 998 5407 V 30 │ │ │ │ w(fullAdjacency\(\))22 b Fu(metho)r(d)28 b(to)f(construct)g(the)h │ │ │ │ Fp(IVL)f Fu(ob)5 b(ject)27 b(of)h(the)f(graph)g(of)g │ │ │ │ Fq(A)19 b Fu(+)f Fq(A)3819 5377 y Fl(T)3872 5407 y Fu(.)p │ │ │ │ eop end │ │ │ │ %%Page: 17 17 │ │ │ │ -TeXDict begin 17 16 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 17 16 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(17)125 390 y(A)n(t)31 b(this)h(p)r(oin)n(t,) │ │ │ │ h(eac)n(h)d(pro)r(cessor)g(has)h(computed)g(its)h(o)n(wn)f(minim)n(um)h │ │ │ │ (degree)e(ordering)g(and)i(created)e(a)h(fron)n(t)g(tree)0 │ │ │ │ 490 y(ob)5 b(ject.)36 b(The)26 b(orderings)e(will)i(lik)n(ely)g(b)r(e)g │ │ │ │ (di\013eren)n(t,)h(b)r(ecause)e(eac)n(h)h(pro)r(cessors)d(input)k(a)e │ │ │ │ (di\013eren)n(t)i(random)e(n)n(um)n(b)r(er)g(seed)0 589 │ │ │ │ @@ -9923,15 +9911,15 @@ │ │ │ │ b(=)j(0)h(;)0 5208 y(newA)e(=)h(InpMtx_MPI_split)o(\(mt)o(xA)o(,)38 │ │ │ │ b(vtxmapIV,)h(stats,)j(msglvl,)e(msgFile,)h(firsttag,)0 │ │ │ │ 5308 y(MPI_COMM_WORLD\))c(;)0 5407 y(InpMtx_free\(mtxA)o(\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fu(18)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(mtxA)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(mtxA)42 │ │ │ │ b(=)h(newA)f(;)0 490 y(InpMtx_changeSto)o(rag)o(eM)o(od)o(e\(m)o(tx)o │ │ │ │ (A,)37 b(INPMTX_BY_VECTORS)o(\))g(;)0 589 y(newY)42 b(=)h │ │ │ │ (DenseMtx_MPI_spl)o(itB)o(yR)o(ows)o(\(m)o(txY)o(,)37 │ │ │ │ b(vtxmapIV,)j(stats,)h(msglvl,)1395 689 y(msgFile,)f(firsttag,)g │ │ │ │ (MPI_COMM_WORLD\))d(;)0 789 y(DenseMtx_free\(mt)o(xY\))g(;)0 │ │ │ │ 888 y(mtxY)42 b(=)h(newY)f(;)0 1073 y Fu(The)27 b Fp(InpMtx)p │ │ │ │ 439 1073 27 4 v 29 w(MPI)p 600 1073 V 30 w(split\(\))e │ │ │ │ @@ -9998,15 +9986,15 @@ │ │ │ │ (addition)f(of)h(the)g Fp(firsttag)c Fu(and)k(MPI)f(comm)n(unicator)f │ │ │ │ (at)i(the)g(end.)125 5308 y(The)h(p)r(ost-pro)r(cessing)e(of)j(the)f │ │ │ │ (factorization)f(is)h(the)h(same)f(in)g(principle)g(as)g(in)g(the)h │ │ │ │ (serial)e(co)r(de)h(but)h(di\013ers)f(in)h(that)0 5407 │ │ │ │ y(is)d(uses)h(the)g(distributed)g(data)f(structures.)p │ │ │ │ eop end │ │ │ │ %%Page: 19 19 │ │ │ │ -TeXDict begin 19 18 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 19 18 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(19)0 390 y Fp(FrontMtx_MPI_pos)o(tPr)o(oc)o │ │ │ │ (es)o(s\(f)o(ro)o(ntm)o(tx)o(,)38 b(ownersIV,)h(stats,)i(msglvl,)1090 │ │ │ │ 490 y(msgFile,)f(firsttag,)g(MPI_COMM_WORLD\))d(;)0 682 │ │ │ │ y Fu(After)f(the)g(p)r(ost-pro)r(cessing)e(step,)j(eac)n(h)e(lo)r(cal)g │ │ │ │ Fp(FrontMtx)d Fu(ob)5 b(ject)36 b(con)n(tains)e(the)i │ │ │ │ Fq(L)2759 694 y Fl(J)n(;I)2851 682 y Fu(,)i Fq(D)2981 │ │ │ │ @@ -10070,15 +10058,15 @@ │ │ │ │ b(=)43 b(FrontMtx_ownedCo)o(lum)o(ns)o(IV)o(\(fr)o(on)o(tmt)o(x,)37 │ │ │ │ b(myid,)k(ownersIV,)1787 5308 y(msglvl,)g(msgFile\))f(;)0 │ │ │ │ 5407 y(nmycol)h(=)i(IV_size\(ownedColu)o(mn)o(sIV)o(\))37 │ │ │ │ b(;)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fu(20)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(mtxX)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(mtxX)42 │ │ │ │ b(=)h(DenseMtx_new\(\))38 b(;)0 490 y(if)43 b(\()g(nmycol)e(>)i(0)g(\)) │ │ │ │ h({)131 589 y(DenseMtx_init\(mt)o(xX)o(,)37 b(type,)42 │ │ │ │ b(0,)h(0,)g(nmycol,)d(nrhs,)i(1,)g(nmycol\))f(;)131 689 │ │ │ │ y(DenseMtx_rowIndi)o(ce)o(s\()o(mtx)o(X,)c(&nrow,)k(&rowind\))f(;)131 │ │ │ │ 789 y(IVcopy\(nmycol,)e(rowind,)i(IV_entries\(ownedC)o(ol)o(umn)o(sI)o │ │ │ │ (V\))o(\))e(;)0 888 y(})0 1079 y Fu(If)25 b Fq(A)h Fu(is)f(symmetric,)g │ │ │ │ (or)f(if)i(piv)n(oting)e(for)h(stabilit)n(y)g(w)n(as)f(not)h(used,)g │ │ │ │ @@ -10134,15 +10122,15 @@ │ │ │ │ 1205 4918 V 1222 4918 V 1273 4520 a(2)h(1)1273 4619 y(2)g(0.0)1273 │ │ │ │ 4719 y(3)g(0.0)p 1932 4918 V 1948 4918 V 2000 4520 a(2)f(1)2000 │ │ │ │ 4619 y(4)87 b(1.0)2000 4719 y(5)g(0.0)p 2658 4918 V 2675 │ │ │ │ 4918 V 2726 4520 a(3)43 b(1)2726 4619 y(6)87 b(0.0)2726 │ │ │ │ 4719 y(7)g(0.0)2726 4818 y(8)g(0.0)p 3385 4918 V 3401 │ │ │ │ 4918 V 497 4921 2906 4 v eop end │ │ │ │ %%Page: 21 21 │ │ │ │ -TeXDict begin 21 20 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 21 20 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(21)0 390 y Fr(5)135 b(Serial)46 │ │ │ │ b(Solution)f(of)g Fj(AX)e Fi(=)33 b Fj(Y)71 b Fr(using)45 │ │ │ │ b(an)g Fj(QR)g Fr(factorization)0 595 y Fu(Let)28 b(us)f(review)g(the)h │ │ │ │ (steps)g(is)f(solving)g Fq(AX)i Fu(=)23 b Fq(Y)46 b Fu(using)27 │ │ │ │ b(a)h Fq(QR)g Fu(factorization.)125 777 y Fo(\210)42 │ │ │ │ b Ft(comm)m(unicate)27 b Fu(the)h(data)f(for)g(the)h(problem)f(as)g │ │ │ │ @@ -10212,15 +10200,15 @@ │ │ │ │ (ETr)o(ee)o(\))38 b(;)0 5208 y(newToOld)127 b(=)44 b(IV_entries\(newT)o │ │ │ │ (oOl)o(dI)o(V\))37 b(;)0 5308 y(InpMtx_permute\(m)o(txA)o(,)g(NULL,)42 │ │ │ │ b(oldToNew\)\))d(;)0 5407 y(InpMtx_changeSto)o(rag)o(eM)o(od)o(e\(m)o │ │ │ │ (tx)o(A,)e(INPMTX_BY_VECTORS)o(\))g(;)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fu(22)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fu(The)j │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fu(The)j │ │ │ │ Fp(oldToNewIV)25 b Fu(and)k Fp(newToOldIV)d Fu(v)-5 b(ariables)28 │ │ │ │ b(are)g Fp(IV)h Fu(ob)5 b(jects)29 b(that)h(represen)n(t)e(an)h(in)n │ │ │ │ (teger)g(v)n(ector.)41 b(The)29 b Fp(oldToNew)0 490 y │ │ │ │ Fu(and)21 b Fp(newToOld)e Fu(v)-5 b(ariables)20 b(are)g(p)r(oin)n(ters) │ │ │ │ h(to)g Fp(int)p Fu(,)h(whic)n(h)f(p)r(oin)n(t)h(to)f(the)h(base)f │ │ │ │ (address)f(of)h(the)h Fp(int)f Fu(v)n(ector)f(in)h(an)h │ │ │ │ Fp(IV)e Fu(ob)5 b(ject.)0 589 y(Once)38 b(w)n(e)g(ha)n(v)n(e)f(the)h(p) │ │ │ │ @@ -10291,15 +10279,15 @@ │ │ │ │ b(;)0 5009 y(ChvManager_init\()o(chv)o(ma)o(na)o(ger)o(,)f(NO_LOCK,)k │ │ │ │ (1\))h(;)0 5108 y(DVzero\(10,)d(cpus\))j(;)0 5208 y(facops)f(=)i(0.0)g │ │ │ │ (;)0 5308 y(FrontMtx_QR_fact)o(or\()o(fr)o(on)o(tmt)o(x,)37 │ │ │ │ b(mtxA,)42 b(chvmanager,)d(cpus,)i(&facops,)f(msglvl,)h(msgFile\))f(;)0 │ │ │ │ 5407 y(ChvManager_free\()o(chv)o(ma)o(na)o(ger)o(\))d(;)p │ │ │ │ eop end │ │ │ │ %%Page: 23 23 │ │ │ │ -TeXDict begin 23 22 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 23 22 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(23)0 390 y(W)-7 b(orking)38 │ │ │ │ b(storage)g(used)h(during)g(the)g(factorization)f(is)i(found)f(in)h │ │ │ │ (the)f(form)g(of)h(blo)r(c)n(k)e Fk(chevr)l(ons)p Fu(,)44 │ │ │ │ b(in)39 b(a)g Fp(Chv)f Fu(ob)5 b(ject,)0 490 y(whic)n(h)34 │ │ │ │ b(hold)g(the)h(partial)e(fron)n(tal)g(matrix)h(for)g(a)f(fron)n(t.)57 │ │ │ │ b(Muc)n(h)34 b(as)f(with)i(the)f Fp(SubMtx)e Fu(ob)5 │ │ │ │ @@ -10361,15 +10349,15 @@ │ │ │ │ 4053 a(8)g(1)2162 4153 y(0)g(3.0)2162 4253 y(1)g(5.0)2162 │ │ │ │ 4352 y(2)g(3.0)2162 4452 y(3)g(9.0)2162 4551 y(4)g(1.0)2162 │ │ │ │ 4651 y(5)g(6.0)2162 4751 y(6)g(5.0)2162 4850 y(7)g(4.0)p │ │ │ │ 2602 4850 V 2112 4854 492 4 v eop end │ │ │ │ %%Page: 24 24 │ │ │ │ TeXDict begin 24 23 bop 0 100 a Fu(24)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fr(A)134 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fr(A)134 │ │ │ │ b Fa(allInOne.c)40 b Fr({)45 b(A)g(Serial)h Fj(LU)56 │ │ │ │ b Fr(Driv)l(er)46 b(Program)0 625 y Fp(/*)86 b(allInOne.c)d(*/)0 │ │ │ │ 824 y(#include)40 b("../../misc.h")0 924 y(#include)g │ │ │ │ ("../../FrontMtx.h)o(")0 1024 y(#include)g("../../SymbFac.h")0 │ │ │ │ 1223 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 1322 y(int)0 1422 y(main)i(\()h(int)f(argc,)g(char)g │ │ │ │ @@ -10409,15 +10397,15 @@ │ │ │ │ 4909 y(int)565 b(*newToOld,)40 b(*oldToNew)g(;)0 5009 │ │ │ │ y(int)565 b(stats[20])40 b(;)0 5108 y(IV)609 b(*newToOldIV,)39 │ │ │ │ b(*oldToNewIV)g(;)0 5208 y(IVL)565 b(*adjIVL,)41 b(*symbfacIVL)e(;)0 │ │ │ │ 5308 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 5407 y(/*)p eop end │ │ │ │ %%Page: 25 25 │ │ │ │ -TeXDict begin 25 24 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 25 24 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(25)131 390 y Fp(----------------)o(--)o(--) │ │ │ │ 131 490 y(get)42 b(input)g(parameters)131 589 y(----------------)o(--)o │ │ │ │ (--)0 689 y(*/)0 789 y(if)h(\()g(argc)f(!=)h(9)g(\))g({)131 │ │ │ │ 888 y(fprintf\(stdout,)37 b("\\n")262 988 y("\\n)42 b(usage:)f(\045s)i │ │ │ │ (msglvl)e(msgFile)g(type)g(symmetryflag)e(pivotingflag")262 │ │ │ │ 1088 y("\\n)347 b(matrixFileName)38 b(rhsFileName)h(seed")262 │ │ │ │ @@ -10462,15 +10450,15 @@ │ │ │ │ b(=)43 b(atoi\(argv[8]\))38 b(;)0 5272 y(/*--------------)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 5372 y(/*)p │ │ │ │ eop end │ │ │ │ %%Page: 26 26 │ │ │ │ TeXDict begin 26 25 bop 0 100 a Fu(26)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(----------------)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(----------------)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(--)131 │ │ │ │ 490 y(STEP)42 b(1:)g(read)g(the)h(entries)d(from)i(the)h(input)e(file) │ │ │ │ 479 589 y(and)i(create)e(the)h(InpMtx)f(object)131 689 │ │ │ │ y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (---)o(--)o(--)0 789 y(*/)0 888 y(inputFile)f(=)j(fopen\(matrixFile)o │ │ │ │ (Nam)o(e,)37 b("r"\))42 b(;)0 988 y(fscanf\(inputFile)o(,)c("\045d)k │ │ │ │ (\045d)h(\045d",)f(&nrow,)f(&ncol,)g(&nent\))g(;)0 1088 │ │ │ │ @@ -10511,15 +10499,15 @@ │ │ │ │ 4774 y(fscanf\(inputFil)o(e,)37 b("\045d",)42 b(&jrow\))f(;)262 │ │ │ │ 4873 y(for)h(\()h(jrhs)f(=)h(0)g(;)g(jrhs)f(<)i(nrhs)e(;)h(jrhs++)e(\)) │ │ │ │ i({)392 4973 y(fscanf\(inputFile,)37 b("\045le",)k(&value\))g(;)392 │ │ │ │ 5073 y(DenseMtx_setRealE)o(nt)o(ry\()o(mt)o(xY,)c(jrow,)k(jrhs,)h │ │ │ │ (value\))f(;)262 5172 y(})131 5272 y(})0 5372 y(})i(else)f({)p │ │ │ │ eop end │ │ │ │ %%Page: 27 27 │ │ │ │ -TeXDict begin 27 26 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 27 26 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(27)131 390 y Fp(double)128 │ │ │ │ b(imag,)42 b(real)f(;)131 490 y(for)h(\()h(irow)f(=)h(0)h(;)f(irow)f(<) │ │ │ │ h(nrow)f(;)h(irow++)e(\))i({)262 589 y(fscanf\(inputFil)o(e,)37 │ │ │ │ b("\045d",)42 b(&jrow\))f(;)262 689 y(for)h(\()h(jrhs)f(=)h(0)g(;)g │ │ │ │ (jrhs)f(<)i(nrhs)e(;)h(jrhs++)e(\))i({)392 789 y(fscanf\(inputFile,)37 │ │ │ │ b("\045le)42 b(\045le",)f(&real,)g(&imag\))g(;)392 888 │ │ │ │ @@ -10566,15 +10554,15 @@ │ │ │ │ (oNe)o(wI)o(V\))37 b(;)0 5272 y(newToOldIV)i(=)44 b(ETree_newToOldV)o │ │ │ │ (txP)o(er)o(m\(f)o(ro)o(nt)o(ETr)o(ee)o(\))38 b(;)0 5372 │ │ │ │ y(newToOld)127 b(=)44 b(IV_entries\(newT)o(oOl)o(dI)o(V\))37 │ │ │ │ b(;)p eop end │ │ │ │ %%Page: 28 28 │ │ │ │ TeXDict begin 28 27 bop 0 100 a Fu(28)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(ETree_permuteVer)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(ETree_permuteVer)o │ │ │ │ (tic)o(es)o(\(f)o(ron)o(tE)o(Tre)o(e,)37 b(oldToNewIV\))i(;)0 │ │ │ │ 490 y(InpMtx_permute\(m)o(txA)o(,)e(oldToNew,)j(oldToNew\))g(;)0 │ │ │ │ 589 y(if)j(\()87 b(symmetryflag)38 b(==)43 b(SPOOLES_SYMMETRI)o(C)131 │ │ │ │ 689 y(||)g(symmetryflag)38 b(==)43 b(SPOOLES_HERMITIA)o(N)37 │ │ │ │ b(\))44 b({)131 789 y(InpMtx_mapToUppe)o(rT)o(ri)o(ang)o(le)o(\(mt)o │ │ │ │ (xA)o(\))38 b(;)0 888 y(})0 988 y(InpMtx_changeCoo)o(rdT)o(yp)o(e\()o │ │ │ │ (mtx)o(A,)f(INPMTX_BY_CHEVRO)o(NS\))g(;)0 1088 y(InpMtx_changeSto)o │ │ │ │ @@ -10623,15 +10611,15 @@ │ │ │ │ (0.0\))g(;)0 4973 y(IVfill\(20,)d(stats,)j(0\))g(;)0 │ │ │ │ 5073 y(rootchv)f(=)i(FrontMtx_factorI)o(np)o(Mtx)o(\(f)o(ron)o(tm)o(tx) │ │ │ │ o(,)38 b(mtxA,)j(tau,)h(droptol,)567 5172 y(chvmanager,)d(&error,)h │ │ │ │ (cpus,)i(stats,)f(msglvl,)g(msgFile\))f(;)0 5272 y(ChvManager_free\()o │ │ │ │ (chv)o(ma)o(na)o(ger)o(\))d(;)0 5372 y(if)43 b(\()g(msglvl)e(>)i(2)g │ │ │ │ (\))h({)p eop end │ │ │ │ %%Page: 29 29 │ │ │ │ -TeXDict begin 29 28 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 29 28 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(29)131 390 y Fp(fprintf\(msgFile,)37 │ │ │ │ b("\\n\\n)k(factor)g(matrix"\))g(;)131 490 y(FrontMtx_writeFo)o(rH)o │ │ │ │ (um)o(anE)o(ye)o(\(fr)o(on)o(tmt)o(x,)c(msgFile\))j(;)131 │ │ │ │ 589 y(fflush\(msgFile\))d(;)0 689 y(})0 789 y(if)43 b(\()g(rootchv)e │ │ │ │ (!=)h(NULL)g(\))h({)131 888 y(fprintf\(msgFile,)37 b("\\n\\n)k(matrix)g │ │ │ │ (found)h(to)h(be)f(singular\\n"\))d(;)131 988 y(exit\(-1\))h(;)0 │ │ │ │ @@ -10676,15 +10664,15 @@ │ │ │ │ 5172 y(fprintf\(msgFile,)37 b("\\n\\n)k(solution)g(matrix)g(in)h │ │ │ │ (original)f(ordering"\))e(;)131 5272 y(DenseMtx_writeFo)o(rH)o(um)o │ │ │ │ (anE)o(ye)o(\(mt)o(xX)o(,)f(msgFile\))i(;)131 5372 y(fflush\(msgFile\)) │ │ │ │ d(;)p eop end │ │ │ │ %%Page: 30 30 │ │ │ │ TeXDict begin 30 29 bop 0 100 a Fu(30)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(})0 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(})0 │ │ │ │ 490 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 589 y(/*)131 689 y(-----------)131 789 y(free)42 │ │ │ │ b(memory)131 888 y(-----------)0 988 y(*/)0 1088 y(FrontMtx_free\(fr)o │ │ │ │ (ont)o(mt)o(x\))37 b(;)0 1187 y(DenseMtx_free\(mt)o(xX\))g(;)0 │ │ │ │ 1287 y(DenseMtx_free\(mt)o(xY\))g(;)0 1386 y(IV_free\(newToOld)o(IV\))g │ │ │ │ (;)0 1486 y(IV_free\(oldToNew)o(IV\))g(;)0 1586 y(InpMtx_free\(mtxA)o │ │ │ │ @@ -10694,15 +10682,15 @@ │ │ │ │ (;)0 2084 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(-*/)0 2183 y(return\(1\))i(;)j(})0 2283 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)p │ │ │ │ eop end │ │ │ │ %%Page: 31 31 │ │ │ │ -TeXDict begin 31 30 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 31 30 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(31)0 390 y Fr(B)134 b Fa(allInOne.c)40 │ │ │ │ b Fr({)45 b(A)g(Serial)h Fj(LU)56 b Fr(Driv)l(er)46 b(Program)0 │ │ │ │ 625 y Fp(/*)86 b(allInOneMT.c)d(*/)0 824 y(#include)40 │ │ │ │ b("../spoolesMT.h")0 924 y(#include)g("../../misc.h")0 │ │ │ │ 1024 y(#include)g("../../FrontMtx.h)o(")0 1123 y(#include)g │ │ │ │ ("../../SymbFac.h")0 1322 y(/*--------------)o(---)o(--)o(--)o(---)o │ │ │ │ @@ -10746,15 +10734,15 @@ │ │ │ │ 5108 y(ncol,)i(nedges,)f(nent,)g(neqns,)g(nfront,)g(nrhs,)g(nrow,)697 │ │ │ │ 5208 y(nthread,)g(pivotingflag,)d(seed,)j(symmetryflag,)e(type)j(;)0 │ │ │ │ 5308 y(int)565 b(*newToOld,)40 b(*oldToNew)g(;)0 5407 │ │ │ │ y(int)565 b(stats[20])40 b(;)p eop end │ │ │ │ %%Page: 32 32 │ │ │ │ TeXDict begin 32 31 bop 0 100 a Fu(32)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(IV)609 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(IV)609 │ │ │ │ b(*newToOldIV,)39 b(*oldToNewIV,)g(*ownersIV)g(;)0 490 │ │ │ │ y(IVL)565 b(*adjIVL,)41 b(*symbfacIVL)e(;)0 589 y(SolveMap)345 │ │ │ │ b(*solvemap)40 b(;)0 689 y(SubMtxManager)125 b(*mtxmanager)83 │ │ │ │ b(;)0 789 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(-*/)0 888 y(/*)131 988 y(----------------)o(--)o(--)131 │ │ │ │ 1088 y(get)42 b(input)g(parameters)131 1187 y(----------------)o(--)o │ │ │ │ @@ -10795,15 +10783,15 @@ │ │ │ │ 4774 y(})i(else)f(if)h(\()g(\(msgFile)d(=)j(fopen\(argv[2],)38 │ │ │ │ b("a"\)\))k(==)h(NULL)e(\))j({)131 4873 y(fprintf\(stderr,)37 │ │ │ │ b("\\n)42 b(fatal)g(error)g(in)g(\045s")479 4973 y("\\n)h(unable)e(to)i │ │ │ │ (open)f(file)g(\045s\\n",)479 5073 y(argv[0],)f(argv[2]\))f(;)131 │ │ │ │ 5172 y(return\(-1\))f(;)0 5272 y(})0 5372 y(type)478 │ │ │ │ b(=)43 b(atoi\(argv[3]\))38 b(;)p eop end │ │ │ │ %%Page: 33 33 │ │ │ │ -TeXDict begin 33 32 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 33 32 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(33)0 390 y Fp(symmetryflag)126 │ │ │ │ b(=)43 b(atoi\(argv[4]\))38 b(;)0 490 y(pivotingflag)126 │ │ │ │ b(=)43 b(atoi\(argv[5]\))38 b(;)0 589 y(matrixFileName)g(=)43 │ │ │ │ b(argv[6])e(;)0 689 y(rhsFileName)170 b(=)43 b(argv[7])e(;)0 │ │ │ │ 789 y(seed)478 b(=)43 b(atoi\(argv[8]\))38 b(;)0 888 │ │ │ │ y(nthread)346 b(=)43 b(atoi\(argv[9]\))38 b(;)0 988 y(/*--------------) │ │ │ │ @@ -10848,15 +10836,15 @@ │ │ │ │ b(;)0 5073 y(DenseMtx_init\(mt)o(xY,)f(type,)k(0,)i(0,)g(neqns,)e │ │ │ │ (nrhs,)g(1,)i(neqns\))e(;)0 5172 y(DenseMtx_zero\(mt)o(xY\))c(;)0 │ │ │ │ 5272 y(if)43 b(\()g(type)f(==)h(SPOOLES_REAL)38 b(\))43 │ │ │ │ b({)131 5372 y(double)128 b(value)42 b(;)p eop end │ │ │ │ %%Page: 34 34 │ │ │ │ TeXDict begin 34 33 bop 0 100 a Fu(34)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(for)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(for)42 │ │ │ │ b(\()h(irow)f(=)h(0)h(;)f(irow)f(<)h(nrow)f(;)h(irow++)e(\))i({)262 │ │ │ │ 490 y(fscanf\(inputFil)o(e,)37 b("\045d",)42 b(&jrow\))f(;)262 │ │ │ │ 589 y(for)h(\()h(jrhs)f(=)h(0)g(;)g(jrhs)f(<)i(nrhs)e(;)h(jrhs++)e(\))i │ │ │ │ ({)392 689 y(fscanf\(inputFile,)37 b("\045le",)k(&value\))g(;)392 │ │ │ │ 789 y(DenseMtx_setRealE)o(nt)o(ry\()o(mt)o(xY,)c(jrow,)k(jrhs,)h │ │ │ │ (value\))f(;)262 888 y(})131 988 y(})0 1088 y(})i(else)f({)131 │ │ │ │ 1187 y(double)128 b(imag,)42 b(real)f(;)131 1287 y(for)h(\()h(irow)f(=) │ │ │ │ @@ -10896,15 +10884,15 @@ │ │ │ │ 4973 y(})0 5073 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(-*/)0 5172 y(/*)131 5272 y(----------------)o(--)o(--) │ │ │ │ o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---) │ │ │ │ 131 5372 y(STEP)42 b(4:)g(get)h(the)f(permutation,)d(permute)h(the)j │ │ │ │ (front)e(tree,)p eop end │ │ │ │ %%Page: 35 35 │ │ │ │ -TeXDict begin 35 34 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 35 34 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(35)479 390 y Fp(permute)41 │ │ │ │ b(the)h(matrix)g(and)g(right)f(hand)h(side,)g(and)479 │ │ │ │ 490 y(get)h(the)f(symbolic)e(factorization)131 589 y(----------------)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)0 689 y(*/)0 789 y(oldToNewIV)f(=)44 b(ETree_oldToNewV)o(txP) │ │ │ │ o(er)o(m\(f)o(ro)o(nt)o(ETr)o(ee)o(\))38 b(;)0 888 y(oldToNew)127 │ │ │ │ @@ -10957,15 +10945,15 @@ │ │ │ │ (sIV)o(,)d(msgFile\))k(;)131 5272 y(fprintf\(msgFile,)c("\\n\\n)k │ │ │ │ (factor)g(operations)f(for)i(each)g(front"\))f(;)131 │ │ │ │ 5372 y(DV_writeForHuman)o(Ey)o(e\()o(cum)o(op)o(sDV)o(,)c(msgFile\))k │ │ │ │ (;)p eop end │ │ │ │ %%Page: 36 36 │ │ │ │ TeXDict begin 36 35 bop 0 100 a Fu(36)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(fflush\(msgFile\)) │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(fflush\(msgFile\)) │ │ │ │ 37 b(;)0 490 y(})0 589 y(DV_free\(cumopsDV)o(\))h(;)0 │ │ │ │ 689 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 789 y(/*)131 888 y(----------------)o(--)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(--)o(---)o(--)131 988 y(STEP)k(6:)g(initialize)e │ │ │ │ (the)i(front)g(matrix)f(object)131 1088 y(----------------)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)0 1187 │ │ │ │ @@ -11008,15 +10996,15 @@ │ │ │ │ (post-process)d(the)j(factorization)131 4973 y(----------------)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-)0 5073 │ │ │ │ y(*/)0 5172 y(FrontMtx_postPro)o(ces)o(s\()o(fr)o(ont)o(mt)o(x,)37 │ │ │ │ b(msglvl,)k(msgFile\))f(;)0 5272 y(if)j(\()g(msglvl)e(>)i(1)g(\))h({) │ │ │ │ 131 5372 y(fprintf\(msgFile,)37 b("\\n\\n)k(factor)g(matrix)g(after)h │ │ │ │ (post-processing")o(\))c(;)p eop end │ │ │ │ %%Page: 37 37 │ │ │ │ -TeXDict begin 37 36 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 37 36 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(37)131 390 y Fp(FrontMtx_writeFo)o(rH)o(um)o │ │ │ │ (anE)o(ye)o(\(fr)o(on)o(tmt)o(x,)37 b(msgFile\))j(;)131 │ │ │ │ 490 y(fflush\(msgFile\))d(;)0 589 y(})0 689 y(/*--------------)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 789 │ │ │ │ y(/*)131 888 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ @@ -11063,28 +11051,28 @@ │ │ │ │ 4774 y(free)42 b(memory)131 4873 y(-----------)0 4973 │ │ │ │ y(*/)0 5073 y(FrontMtx_free\(fr)o(ont)o(mt)o(x\))37 b(;)0 │ │ │ │ 5172 y(DenseMtx_free\(mt)o(xX\))g(;)0 5272 y(DenseMtx_free\(mt)o(xY\))g │ │ │ │ (;)0 5372 y(IV_free\(newToOld)o(IV\))g(;)p eop end │ │ │ │ %%Page: 38 38 │ │ │ │ TeXDict begin 38 37 bop 0 100 a Fu(38)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(IV_free\(oldToNew)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(IV_free\(oldToNew)o │ │ │ │ (IV\))37 b(;)0 490 y(InpMtx_free\(mtxA)o(\))h(;)0 589 │ │ │ │ y(ETree_free\(front)o(ETr)o(ee)o(\))f(;)0 689 y(IVL_free\(symbfac)o │ │ │ │ (IVL)o(\))g(;)0 789 y(SubMtxManager_fr)o(ee\()o(mt)o(xm)o(ana)o(ge)o │ │ │ │ (r\))g(;)0 888 y(Graph_free\(graph)o(\))h(;)0 988 y(SolveMap_free\(so)o │ │ │ │ (lve)o(ma)o(p\))f(;)0 1088 y(IV_free\(ownersIV)o(\))h(;)0 │ │ │ │ 1187 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 1287 y(return\(1\))i(;)j(})0 1386 y(/*--------------)o(---) │ │ │ │ o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)p eop │ │ │ │ end │ │ │ │ %%Page: 39 39 │ │ │ │ -TeXDict begin 39 38 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 39 38 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(39)0 390 y Fr(C)135 b Fa(allInOne.c)40 │ │ │ │ b Fr({)45 b(A)f(Serial)i Fj(LU)57 b Fr(Driv)l(er)45 b(Program)0 │ │ │ │ 625 y Fp(/*)86 b(allInOneMPI.c)c(*/)0 824 y(#include)40 │ │ │ │ b("../spoolesMPI.h")0 924 y(#include)g("../../timings.h")0 │ │ │ │ 1123 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ @@ -11124,15 +11112,15 @@ │ │ │ │ b(*inputFile,)39 b(*msgFile)i(;)0 5208 y(Graph)477 b(*graph)41 │ │ │ │ b(;)0 5308 y(int)565 b(error,)41 b(firsttag,)f(ient,)i(irow,)f(jcol,)h │ │ │ │ (lookahead)e(=)j(0,)697 5407 y(msglvl,)e(myid,)h(nedges,)e(nent,)i │ │ │ │ (neqns,)f(nmycol,)g(nproc,)g(nrhs,)p eop end │ │ │ │ %%Page: 40 40 │ │ │ │ TeXDict begin 40 39 bop 0 100 a Fu(40)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)697 390 y Fp(nrow,)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)697 390 y Fp(nrow,)42 │ │ │ │ b(pivotingflag,)c(root,)k(seed,)f(symmetryflag,)d(type)k(;)0 │ │ │ │ 490 y(int)565 b(stats[20])40 b(;)0 589 y(int)565 b(*rowind)41 │ │ │ │ b(;)0 689 y(IV)609 b(*oldToNewIV,)39 b(*ownedColumnsIV,)e(*ownersIV,) │ │ │ │ 697 789 y(*newToOldIV,)i(*vtxmapIV)h(;)0 888 y(IVL)565 │ │ │ │ b(*adjIVL,)41 b(*symbfacIVL)e(;)0 988 y(SolveMap)345 │ │ │ │ b(*solvemap)40 b(;)0 1088 y(/*--------------)o(---)o(--)o(--)o(---)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o │ │ │ │ @@ -11177,15 +11165,15 @@ │ │ │ │ (number")262 4674 y("\\n",)g(argv[0]\))f(;)131 4774 y(return\(0\))g(;)0 │ │ │ │ 4873 y(})0 4973 y(msglvl)h(=)i(atoi\(argv[1]\))38 b(;)0 │ │ │ │ 5073 y(if)43 b(\()g(strcmp\(argv[2],)37 b("stdout"\))j(==)j(0)g(\))g({) │ │ │ │ 131 5172 y(msgFile)d(=)k(stdout)d(;)0 5272 y(})i(else)f({)131 │ │ │ │ 5372 y(sprintf\(buffer,)37 b("res.\045d",)j(myid\))i(;)p │ │ │ │ eop end │ │ │ │ %%Page: 41 41 │ │ │ │ -TeXDict begin 41 40 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 41 40 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(41)131 390 y Fp(if)43 b(\()g(\(msgFile)d(=)j │ │ │ │ (fopen\(buffer,)38 b("w"\)\))k(==)h(NULL)f(\))h({)262 │ │ │ │ 490 y(fprintf\(stderr,)37 b("\\n)42 b(fatal)g(error)f(in)i(\045s")610 │ │ │ │ 589 y("\\n)g(unable)e(to)h(open)g(file)g(\045s\\n",)610 │ │ │ │ 689 y(argv[0],)e(buffer\))h(;)262 789 y(return\(-1\))e(;)131 │ │ │ │ 888 y(})0 988 y(})0 1088 y(type)391 b(=)43 b(atoi\(argv[3]\))38 │ │ │ │ @@ -11230,15 +11218,15 @@ │ │ │ │ o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (---)131 5272 y(STEP)42 b(2:)g(read)g(the)h(rhs)f(entries)f(from)h(the) │ │ │ │ g(rhs)g(input)g(file)131 5372 y(and)g(create)f(the)i(DenseMtx)d(object) │ │ │ │ h(for)h(Y)p eop end │ │ │ │ %%Page: 42 42 │ │ │ │ TeXDict begin 42 41 bop 0 100 a Fu(42)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(----------------)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(----------------)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)0 490 y(*/)0 589 y(sprintf\(buffer,)37 b("rhs.\045d.input",)h │ │ │ │ (myid\))j(;)0 689 y(inputFile)f(=)j(fopen\(buffer,)38 │ │ │ │ b("r"\))k(;)0 789 y(fscanf\(inputFile)o(,)c("\045d)k(\045d",)g(&nrow,)f │ │ │ │ (&nrhs\))g(;)0 888 y(mtxY)h(=)h(DenseMtx_new\(\))38 b(;)0 │ │ │ │ 988 y(DenseMtx_init\(mt)o(xY,)f(type,)k(0,)i(0,)g(nrow,)e(nrhs,)h(1,)h │ │ │ │ (nrow\))e(;)0 1088 y(DenseMtx_rowIndi)o(ces)o(\(m)o(tx)o(Y,)c(&nrow,)k │ │ │ │ @@ -11281,15 +11269,15 @@ │ │ │ │ 4973 y(nedges)k(=)i(IVL_tsize\(adjIVL\))37 b(;)0 5073 │ │ │ │ y(Graph_init2\(grap)o(h,)g(0,)43 b(neqns,)e(0,)i(nedges,)d(neqns,)i │ │ │ │ (nedges,)e(adjIVL,)523 5172 y(NULL,)i(NULL\))f(;)0 5272 │ │ │ │ y(if)i(\()g(msglvl)e(>)i(2)g(\))h({)131 5372 y(fprintf\(msgFile,)37 │ │ │ │ b("\\n\\n)k(graph)h(of)h(the)f(input)f(matrix"\))g(;)p │ │ │ │ eop end │ │ │ │ %%Page: 43 43 │ │ │ │ -TeXDict begin 43 42 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 43 42 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(43)131 390 y Fp(Graph_writeForHu)o(ma)o(nE)o │ │ │ │ (ye\()o(gr)o(aph)o(,)37 b(msgFile\))k(;)131 490 y(fflush\(msgFile\))c │ │ │ │ (;)0 589 y(})0 689 y(frontETree)i(=)44 b(orderViaMMD\(gra)o(ph,)37 │ │ │ │ b(seed)42 b(+)h(myid,)e(msglvl,)g(msgFile\))f(;)0 789 │ │ │ │ y(Graph_free\(graph)o(\))e(;)0 888 y(if)43 b(\()g(msglvl)e(>)i(2)g(\))h │ │ │ │ ({)131 988 y(fprintf\(msgFile,)37 b("\\n\\n)k(front)h(tree)g(from)g │ │ │ │ @@ -11340,15 +11328,15 @@ │ │ │ │ o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(-)131 5272 │ │ │ │ y(STEP)42 b(4:)g(generate)f(the)h(owners)f(map)i(IV)f(object)479 │ │ │ │ 5372 y(and)h(the)f(map)g(from)g(vertices)f(to)h(owners)p │ │ │ │ eop end │ │ │ │ %%Page: 44 44 │ │ │ │ TeXDict begin 44 43 bop 0 100 a Fu(44)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(----------------)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(----------------)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(-)0 │ │ │ │ 490 y(*/)0 589 y(cutoff)128 b(=)43 b(1./\(2*nproc\))c(;)0 │ │ │ │ 689 y(cumopsDV)h(=)j(DV_new\(\))e(;)0 789 y(DV_init\(cumopsDV)o(,)d │ │ │ │ (nproc,)j(NULL\))g(;)0 888 y(ownersIV)f(=)j(ETree_ddMap\(front)o(ETr)o │ │ │ │ (ee)o(,)1002 988 y(type,)f(symmetryflag,)c(cumopsDV,)i(cutoff\))h(;)0 │ │ │ │ 1088 y(DV_free\(cumopsDV)o(\))d(;)0 1187 y(vtxmapIV)i(=)j(IV_new\(\))e │ │ │ │ (;)0 1287 y(IV_init\(vtxmapIV)o(,)d(neqns,)j(NULL\))g(;)0 │ │ │ │ @@ -11388,15 +11376,15 @@ │ │ │ │ 4873 y(fflush\(msgFile\))d(;)0 4973 y(})0 5073 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 │ │ │ │ 5172 y(/*)131 5272 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)131 5372 y(STEP)42 b(6:)g(compute)f(the)h │ │ │ │ (symbolic)f(factorization)p eop end │ │ │ │ %%Page: 45 45 │ │ │ │ -TeXDict begin 45 44 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 45 44 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(45)131 390 y Fp(----------------)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)0 490 │ │ │ │ y(*/)0 589 y(symbfacIVL)39 b(=)44 b(SymbFac_MPI_ini)o(tFr)o(om)o(Inp)o │ │ │ │ (Mt)o(x\()o(fro)o(nt)o(ETr)o(ee)o(,)37 b(ownersIV,)j(mtxA,)915 │ │ │ │ 689 y(stats,)h(msglvl,)g(msgFile,)f(firsttag,)g(MPI_COMM_WORLD\))e(;)0 │ │ │ │ 789 y(firsttag)i(+=)j(frontETree->nfro)o(nt)37 b(;)0 │ │ │ │ @@ -11443,15 +11431,15 @@ │ │ │ │ o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(-)131 │ │ │ │ 5272 y(STEP)i(9:)g(post-process)d(the)j(factorization)d(and)j(split)131 │ │ │ │ 5372 y(the)g(factor)f(matrices)f(into)i(submatrices)p │ │ │ │ eop end │ │ │ │ %%Page: 46 46 │ │ │ │ TeXDict begin 46 45 bop 0 100 a Fu(46)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)131 390 y Fp(----------------)o │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)131 390 y Fp(----------------)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (-)0 490 y(*/)0 589 y(FrontMtx_MPI_pos)o(tPr)o(oc)o(es)o(s\(f)o(ro)o │ │ │ │ (ntm)o(tx)o(,)38 b(ownersIV,)h(stats,)i(msglvl,)1090 │ │ │ │ 689 y(msgFile,)f(firsttag,)g(MPI_COMM_WORLD\))d(;)0 789 │ │ │ │ y(firsttag)j(+=)j(5*nproc)e(;)0 888 y(if)i(\()g(msglvl)e(>)i(2)g(\))h │ │ │ │ ({)131 988 y(fprintf\(msgFile,)37 b("\\n\\n)k(numeric)g(factorization)d │ │ │ │ (after)k(post-processing)o("\);)131 1088 y(FrontMtx_writeFo)o(rH)o(um)o │ │ │ │ @@ -11495,15 +11483,15 @@ │ │ │ │ b(\))43 b({)131 4973 y(IV)130 b(*rowmapIV)40 b(;)0 5073 │ │ │ │ y(/*)131 5172 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---) │ │ │ │ o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(-)131 │ │ │ │ 5272 y(pivoting)g(has)i(taken)g(place,)f(redistribute)e(the)j(right)f │ │ │ │ (hand)h(side)131 5372 y(to)h(match)e(the)h(final)g(rows)g(and)g │ │ │ │ (columns)f(in)i(the)f(fronts)p eop end │ │ │ │ %%Page: 47 47 │ │ │ │ -TeXDict begin 47 46 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 47 46 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(47)131 390 y Fp(----------------)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o │ │ │ │ (--)o(---)o(-)0 490 y(*/)131 589 y(rowmapIV)40 b(=)j(FrontMtx_MPI_rowm) │ │ │ │ o(ap)o(IV\()o(fr)o(on)o(tmt)o(x,)37 b(ownersIV,)j(msglvl,)1569 │ │ │ │ 689 y(msgFile,)g(MPI_COMM_WORLD\))e(;)131 789 y(newY)k(=)h │ │ │ │ (DenseMtx_MPI_spl)o(it)o(ByR)o(ow)o(s\(m)o(tx)o(Y,)37 │ │ │ │ @@ -11554,15 +11542,15 @@ │ │ │ │ (ordering)523 5272 y(and)i(assemble)f(the)h(solution)e(onto)i │ │ │ │ (processor)e(zero)131 5372 y(----------------)o(--)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(--)p │ │ │ │ eop end │ │ │ │ %%Page: 48 48 │ │ │ │ TeXDict begin 48 47 bop 0 100 a Fu(48)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(*/)0 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(*/)0 │ │ │ │ 490 y(DenseMtx_permute)o(Row)o(s\()o(mt)o(xX,)37 b(newToOldIV\))i(;)0 │ │ │ │ 589 y(if)k(\()g(msglvl)e(>)i(2)g(\))h({)131 689 y(fprintf\(msgFile,)37 │ │ │ │ b("\\n\\n)k(solution)g(in)h(old)h(ordering"\))c(;)131 │ │ │ │ 789 y(DenseMtx_writeFo)o(rH)o(um)o(anE)o(ye)o(\(mt)o(xX)o(,)f │ │ │ │ (msgFile\))i(;)131 888 y(fflush\(msgFile\))d(;)0 988 │ │ │ │ y(})0 1088 y(IV_fill\(vtxmapIV)o(,)h(0\))k(;)0 1187 y(firsttag++)d(;)0 │ │ │ │ 1287 y(mtxX)j(=)h(DenseMtx_MPI_spl)o(itB)o(yR)o(ows)o(\(m)o(txX)o(,)37 │ │ │ │ @@ -11575,15 +11563,15 @@ │ │ │ │ y(})0 1984 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(-*/)0 2084 y(MPI_Finalize\(\))h(;)0 2283 y(return\(1\))i(;)j │ │ │ │ (})0 2383 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(-*/)p eop end │ │ │ │ %%Page: 49 49 │ │ │ │ -TeXDict begin 49 48 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 49 48 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(49)0 390 y Fr(D)135 b Fa(allInOne.c)40 │ │ │ │ b Fr({)45 b(A)f(Serial)i Fj(QR)g Fr(Driv)l(er)f(Program)0 │ │ │ │ 625 y Fp(/*)86 b(QRallInOne.c)d(*/)0 824 y(#include)40 │ │ │ │ b("../../misc.h")0 924 y(#include)g("../../FrontMtx.h)o(")0 │ │ │ │ 1024 y(#include)g("../../SymbFac.h")0 1223 y(/*--------------)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ @@ -11622,15 +11610,15 @@ │ │ │ │ (-*/)0 4809 y(/*)131 4909 y(----------------)o(--)o(--)131 │ │ │ │ 5009 y(get)j(input)g(parameters)131 5108 y(----------------)o(--)o(--)0 │ │ │ │ 5208 y(*/)0 5308 y(if)h(\()g(argc)f(!=)h(7)g(\))g({)131 │ │ │ │ 5407 y(fprintf\(stdout,)p eop end │ │ │ │ %%Page: 50 50 │ │ │ │ TeXDict begin 50 49 bop 0 100 a Fu(50)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)262 390 y Fp("\\n)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)262 390 y Fp("\\n)42 │ │ │ │ b(usage:)f(\045s)i(msglvl)e(msgFile)g(type)g(matrixFileName)d │ │ │ │ (rhsFileName)h(seed")262 490 y("\\n)173 b(msglvl)41 b(--)h(message)f │ │ │ │ (level")262 589 y("\\n)173 b(msgFile)40 b(--)j(message)e(file")262 │ │ │ │ 689 y("\\n)173 b(type)f(--)43 b(type)f(of)h(entries")262 │ │ │ │ 789 y("\\n)260 b(1)43 b(\(SPOOLES_REAL\))169 b(--)42 │ │ │ │ b(real)g(entries")262 888 y("\\n)260 b(2)43 b(\(SPOOLES_COMPLEX)o(\))38 │ │ │ │ b(--)k(complex)f(entries")262 988 y("\\n)173 b(matrixFileName)37 │ │ │ │ @@ -11670,15 +11658,15 @@ │ │ │ │ (ient++)e(\))i({)262 4973 y(fscanf\(inputFil)o(e,)37 │ │ │ │ b("\045d)42 b(\045d)h(\045le",)f(&irow,)f(&jcol,)g(&value\))g(;)262 │ │ │ │ 5073 y(InpMtx_inputRea)o(lE)o(ntr)o(y\()o(mtx)o(A,)c(irow,)k(jcol,)h │ │ │ │ (value\))f(;)131 5172 y(})0 5272 y(})i(else)f({)131 5372 │ │ │ │ y(for)g(\()h(ient)f(=)h(0)h(;)f(ient)f(<)h(nent)f(;)h(ient++)e(\))i({)p │ │ │ │ eop end │ │ │ │ %%Page: 51 51 │ │ │ │ -TeXDict begin 51 50 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 51 50 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(51)262 390 y Fp(fscanf\(inputFil)o(e,)37 │ │ │ │ b("\045d)42 b(\045d)h(\045le)g(\045le",)e(&irow,)g(&jcol,)g(&real,)g │ │ │ │ (&imag\))g(;)262 490 y(InpMtx_inputCom)o(pl)o(exE)o(nt)o(ry\()o(mt)o │ │ │ │ (xA,)c(irow,)k(jcol,)h(real,)f(imag\))h(;)131 589 y(})0 │ │ │ │ 689 y(})0 789 y(fclose\(inputFile)o(\))c(;)0 888 y(if)43 │ │ │ │ b(\()g(msglvl)e(>)i(1)g(\))h({)131 988 y(fprintf\(msgFile,)37 │ │ │ │ @@ -11722,15 +11710,15 @@ │ │ │ │ 5172 y(\(1\))i(create)f(the)i(Graph)e(object)g(for)i(A^TA)e(or)i(A^HA) │ │ │ │ 131 5272 y(\(2\))f(order)g(the)g(graph)f(using)h(multiple)e(minimum)h │ │ │ │ (degree)131 5372 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)p eop end │ │ │ │ %%Page: 52 52 │ │ │ │ TeXDict begin 52 51 bop 0 100 a Fu(52)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(*/)0 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(*/)0 │ │ │ │ 490 y(graph)42 b(=)h(Graph_new\(\))c(;)0 589 y(adjIVL)i(=)i │ │ │ │ (InpMtx_adjForATA\()o(mt)o(xA\))37 b(;)0 689 y(nedges)k(=)i │ │ │ │ (IVL_tsize\(adjIVL\))37 b(;)0 789 y(Graph_init2\(grap)o(h,)g(0,)43 │ │ │ │ b(neqns,)e(0,)i(nedges,)d(neqns,)i(nedges,)e(adjIVL,)523 │ │ │ │ 888 y(NULL,)i(NULL\))f(;)0 988 y(if)i(\()g(msglvl)e(>)i(1)g(\))h({)131 │ │ │ │ 1088 y(fprintf\(msgFile,)37 b("\\n\\n)k(graph)h(of)h(A^T)f(A"\))g(;)131 │ │ │ │ 1187 y(Graph_writeForHu)o(ma)o(nE)o(ye\()o(gr)o(aph)o(,)37 │ │ │ │ @@ -11776,15 +11764,15 @@ │ │ │ │ (--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(-*/)0 4973 y(/*)131 5073 y(----------------)o(--)o(--) │ │ │ │ o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)131 │ │ │ │ 5172 y(STEP)42 b(5:)g(initialize)e(the)i(front)g(matrix)f(object)131 │ │ │ │ 5272 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)0 5372 y(*/)p eop end │ │ │ │ %%Page: 53 53 │ │ │ │ -TeXDict begin 53 52 bop 0 100 a Fs(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 53 52 bop 0 100 a Fs(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1130 4 v 1293 w Ft(SPOOLES)32 b(2.2)26 b Fs(|)i(Solving)f │ │ │ │ (Linear)f(Systems)328 b Fu(53)0 390 y Fp(frontmtx)40 │ │ │ │ b(=)j(FrontMtx_new\(\))38 b(;)0 490 y(mtxmanager)h(=)44 │ │ │ │ b(SubMtxManager_n)o(ew\()o(\))37 b(;)0 589 y(SubMtxManager_in)o(it\()o │ │ │ │ (mt)o(xm)o(ana)o(ge)o(r,)g(NO_LOCK,)j(0\))j(;)0 689 y(if)g(\()g(type)f │ │ │ │ (==)h(SPOOLES_REAL)38 b(\))43 b({)131 789 y(FrontMtx_init\(fr)o(on)o │ │ │ │ (tm)o(tx,)37 b(frontETree,)i(symbfacIVL,)g(type,)741 │ │ │ │ @@ -11829,15 +11817,15 @@ │ │ │ │ y(/*)131 5073 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(-) │ │ │ │ 131 5172 y(STEP)42 b(8:)g(solve)g(the)g(linear)f(system)131 │ │ │ │ 5272 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(-)0 │ │ │ │ 5372 y(*/)p eop end │ │ │ │ %%Page: 54 54 │ │ │ │ TeXDict begin 54 53 bop 0 100 a Fu(54)327 b Ft(SPOOLES)31 │ │ │ │ b(2.2)c Fs(|)h(Solving)f(Linear)f(Systems)p 2095 100 │ │ │ │ -1102 4 v 1295 w(Octob)r(er)h(18,)g(2025)0 390 y Fp(mtxX)42 │ │ │ │ +1102 4 v 1295 w(Octob)r(er)h(28,)g(2025)0 390 y Fp(mtxX)42 │ │ │ │ b(=)h(DenseMtx_new\(\))38 b(;)0 490 y(DenseMtx_init\(mt)o(xX,)f(type,)k │ │ │ │ (0,)i(0,)g(neqns,)e(nrhs,)g(1,)i(neqns\))e(;)0 589 y(FrontMtx_QR_solv)o │ │ │ │ (e\(f)o(ro)o(nt)o(mtx)o(,)c(mtxA,)42 b(mtxX,)f(mtxB,)h(mtxmanager,)785 │ │ │ │ 689 y(cpus,)f(msglvl,)g(msgFile\))f(;)0 789 y(if)j(\()g(msglvl)e(>)i(1) │ │ │ │ g(\))h({)131 888 y(fprintf\(msgFile,)37 b("\\n\\n)k(solution)g(matrix)g │ │ │ │ (in)h(new)h(ordering"\))c(;)131 988 y(DenseMtx_writeFo)o(rH)o(um)o(anE) │ │ │ │ o(ye)o(\(mt)o(xX)o(,)f(msgFile\))i(;)131 1088 y(fflush\(msgFile\))d(;)0 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -1,16 +1,16 @@ │ │ │ │ │ Solving Linear Systems using SPOOLES 2.2 │ │ │ │ │ C. C. Ashcraft, R. G. Grimes, D. J. Pierce, D. K. Wah │ │ │ │ │ Boeing Phantom Works∗ │ │ │ │ │ - October 18, 2025 │ │ │ │ │ + October 28, 2025 │ │ │ │ │ ∗P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124. This research was supported in part by the DARPA │ │ │ │ │ Contract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software │ │ │ │ │ Support Initiative. │ │ │ │ │ 1 │ │ │ │ │ - 2 SPOOLES 2.2 — Solving Linear Systems October 18, 2025 │ │ │ │ │ + 2 SPOOLES 2.2 — Solving Linear Systems October 28, 2025 │ │ │ │ │ Contents │ │ │ │ │ 1 Overview 4 │ │ │ │ │ 2 Serial Solution of AX = Y using an LU factorization 6 │ │ │ │ │ 2.1 Reading the input parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 │ │ │ │ │ 2.2 Communicating the data for the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 │ │ │ │ │ 2.3 Reordering the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 │ │ │ │ │ 2.4 Non-numeric work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 │ │ │ │ │ @@ -39,18 +39,18 @@ │ │ │ │ │ 5.3 Reordering the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 │ │ │ │ │ 5.4 Non-numeric work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 │ │ │ │ │ 5.5 The Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 │ │ │ │ │ 5.6 Solving the linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 │ │ │ │ │ 5.7 Sample Matrix and Right Hand Side Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 │ │ │ │ │ A allInOne.c – A Serial LU Driver Program 24 │ │ │ │ │ B allInOne.c – A Serial LU Driver Program 31 │ │ │ │ │ - October 18, 2025 SPOOLES 2.2 — Solving Linear Systems 3 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2 — Solving Linear Systems 3 │ │ │ │ │ C allInOne.c – A Serial LU Driver Program 39 │ │ │ │ │ D allInOne.c – A Serial QR Driver Program 49 │ │ │ │ │ - 4 SPOOLES 2.2 — Solving Linear Systems October 18, 2025 │ │ │ │ │ + 4 SPOOLES 2.2 — Solving Linear Systems October 28, 2025 │ │ │ │ │ 1 Overview │ │ │ │ │ The SPOOLES software library is designed to solve sparse systems of linear equations AX = Y for X, │ │ │ │ │ whereAisfullrankandX andY aredensematrices. ThematrixAcanbeeitherrealorcomplex,symmetric, │ │ │ │ │ Hermitian, square nonsymmetric, or overdetermined. When A is square, there are four steps in the process │ │ │ │ │ of solving AX = Y. │ │ │ │ │ • communicate the data for the problem as A, X and Y. │ │ │ │ │ ee e e T e e │ │ │ │ │ @@ -94,26 +94,26 @@ │ │ │ │ │ The SPOOLES library is based on an object oriented design philosophy. There are several data struc- │ │ │ │ │ tures or objects that the user must interact with. These interactions are performed with a set of methods │ │ │ │ │ for each object. Every object has some standard methods, such as initializing the object, placing data into │ │ │ │ │ the object, extracting data out of the object, writing and reading the object to a input/output file, printing │ │ │ │ │ the contents of the object to a specified file, and freeing the object. │ │ │ │ │ For example, consider the DenseMtx object that models a dense matrix. The DenseMtx/DenseMtx.h │ │ │ │ │ header file defines the object’s C struct and has prototypes (with extensive comments) of the object’s │ │ │ │ │ - October 18, 2025 SPOOLES 2.2 — Solving Linear Systems 5 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2 — Solving Linear Systems 5 │ │ │ │ │ A │ │ │ │ │ methods. Thesourcefiles arefound in the DenseMtx/srcdirectory. The LT X documentation files are found │ │ │ │ │ E │ │ │ │ │ in the DenseMtx/docdirectory. The files can be used to create the DenseMtxobject’s chapter in the Reference │ │ │ │ │ Manual,orinastandalonemannertogeneratetheobject’sdocumentation. TheDenseMtx/driversdirectory │ │ │ │ │ contains driver programs that exercise and validate the object’s functionality. │ │ │ │ │ Almost all the methods in the library are associated with a particular object. There are some exceptions, │ │ │ │ │ mostly found in the misc/src directory. The misc/drivers directory contains the serial LU and QR driver │ │ │ │ │ programs. The MT/drivers and MPI/drivers directories contain the multithreaded and MPI LU driver │ │ │ │ │ programs. │ │ │ │ │ - 6 SPOOLES 2.2 — Solving Linear Systems October 18, 2025 │ │ │ │ │ + 6 SPOOLES 2.2 — Solving Linear Systems October 28, 2025 │ │ │ │ │ 2 Serial Solution of AX = Y using an LU factorization │ │ │ │ │ The user has some representation of the data which represents the linear system, AX = Y . The user wants │ │ │ │ │ the solution X. The SPOOLES library will use A and Y and provide X back to the user. │ │ │ │ │ The SPOOLESlibrary is based on an object oriented design philosophy. The first object that the user │ │ │ │ │ mustinteract with is InpMtx1. The InpMtx object is where the SPOOLES representation of A is assembled. │ │ │ │ │ The user can input the representation of A into the InpMtx object with methods for single matrix entry │ │ │ │ │ (consisting of the row index, the column index, and the value), for an array of entries, for a set of entries in │ │ │ │ │ @@ -145,15 +145,15 @@ │ │ │ │ │ nrhs floating point numbers if the system is real, or 2*nrhs numbers if the system is complex. │ │ │ │ │ • The seed parameter is a random number seed used in the ordering process. │ │ │ │ │ 2.2 Communicating the data for the problem │ │ │ │ │ The following code segment from the full sample program opens the file matrixFileName, reads the first │ │ │ │ │ line of the file, and then initializes the InpMtx object. The program continues by reading each line of the │ │ │ │ │ input matrix data and uses either the method InpMtx inputRealEntry()or InpMtx inputComplexEntry() │ │ │ │ │ 1InpMtx stands for Input Matrix, for it is the object into which the user inputs the matrix entries. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2 — Solving Linear Systems 7 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2 — Solving Linear Systems 7 │ │ │ │ │ to place that entry into the InpMtx object. Finally this code segment closes the file. finalizes the input to │ │ │ │ │ InpMtx by converting the internal storage of the matrix entries to a vector form. (This is necessary for later │ │ │ │ │ steps.) │ │ │ │ │ inputFile = fopen(matrixFileName, "r") ; │ │ │ │ │ fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ; │ │ │ │ │ neqns = nrow ; │ │ │ │ │ mtxA = InpMtx_new() ; │ │ │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ • The fifth argument maxnvector is an estimate of the number of number of vectors that will be used, │ │ │ │ │ e.g., number of rows or numbers of columns. │ │ │ │ │ The maxnent and maxnvector arguments only have to be estimates as they are used in the initial sizing of │ │ │ │ │ the object. Either can be 0. The InpMtx object resizes itself as required to handle the linear system. │ │ │ │ │ 2Note that SPOOLES has some pre-defined parameters such as INPMTX BY ROWS for some objects. These parameters are │ │ │ │ │ always uppercase and either begin with the name of the object which they apply to, or the library name, e.g., SPOOLES REAL. │ │ │ │ │ They are described in the reference manual in the section for the particular object. │ │ │ │ │ - 8 SPOOLES 2.2 — Solving Linear Systems October 18, 2025 │ │ │ │ │ + 8 SPOOLES 2.2 — Solving Linear Systems October 28, 2025 │ │ │ │ │ Every object in SPOOLES has print methods to output the contents of that object. This is illustrated │ │ │ │ │ in this code segment by printing the input matrix as contained in the InpMtx object, mtxA. To shorten this │ │ │ │ │ chapter we will from now on omit the part of the code that prints debug output to msgFile for the various │ │ │ │ │ code segments. The complete sample program in Section A contains all of the debug print statements. │ │ │ │ │ After the matrix A has been read in from the file and placed in an InpMtx object, the right hand matrix │ │ │ │ │ Y is read in from a file and placed in a DenseMtx object. The following code fragment does this operation. │ │ │ │ │ inputFile = fopen(rhsFileName, "r") ; │ │ │ │ │ @@ -240,15 +240,15 @@ │ │ │ │ │ number of rows, or neqns. │ │ │ │ │ Theinitialization step allocates storage for the matrix entries, but it does not fill them with any values. This │ │ │ │ │ is done explicitly via the DenseMtx zero() method, which places zeroes in all the entries. This is necessary │ │ │ │ │ since the right hand side matrix Y may be sparse, and so the number of rows in the file may not equal the │ │ │ │ │ number of equations. │ │ │ │ │ The right hand side entries are then in, row by row, and placed into their locations via one of the two │ │ │ │ │ “set entries” methods. Note, the nonzero rows can be read from the file in any order. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2 — Solving Linear Systems 9 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2 — Solving Linear Systems 9 │ │ │ │ │ 2.3 Reordering the linear system │ │ │ │ │ The first step is to find the permutation matrix P, and then permute AX = Y into (PAPT)(PX) = PY. │ │ │ │ │ The result of the SPOOLES ordering step is not just P or its permutation vector, it is a front tree that │ │ │ │ │ defines not just the permutation, but the blocking of the factor matrices, which in turn specifies the data │ │ │ │ │ structures and the computations that are performed during the factor and solves. To determine this ETree │ │ │ │ │ front tree object takes three step, as seen in the code fragment below. │ │ │ │ │ adjIVL = InpMtx_fullAdjacency(mtxA) ; │ │ │ │ │ @@ -287,15 +287,15 @@ │ │ │ │ │ InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ; │ │ │ │ │ InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; │ │ │ │ │ DenseMtx_permuteRows(mtxB, oldToNewIV) ; │ │ │ │ │ The oldToNewIV and newToOldIV variables are IV objects that represent an integer vector. The oldToNew │ │ │ │ │ and newToOld variables are pointers to int, which point to the base address of the int vector in an IV │ │ │ │ │ object. │ │ │ │ │ 3IVL stands for Integer Vector List, i.e., a list of integer vectors. │ │ │ │ │ - 10 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 10 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ Once we have the permutation vector, we apply it to the front tree, by the ETree permuteVertices() │ │ │ │ │ method, and then to the matrix with the InpMtx permute() method. If the matrix A is symmetric or │ │ │ │ │ Hermitian, we expect all nonzero entries to be in the upper triangle. Permuting the matrix yields PAPT, │ │ │ │ │ which may not have all of its entries in the upper triangle. If A is symmetric or Hermitian, the call to │ │ │ │ │ InpMtx mapToUpperTriangle() ensures that all entries of PAPT are in its upper triangle. Permuting the │ │ │ │ │ matrix destroys the internal vector structure, which has to be restored. But first we need to change the │ │ │ │ │ 4 │ │ │ │ │ @@ -330,15 +330,15 @@ │ │ │ │ │ little internal code differences, and it is the hook we have left in the library to extend its capabilities │ │ │ │ │ to out-of-core factors and solves. │ │ │ │ │ • The twelveth and thirteenth parameters define the message level and message file for the factorization. │ │ │ │ │ The numeric factorization is performed by the FrontMtx factorInpMtx() method. The code segment │ │ │ │ │ from the sample program for the numerical factorization step is found below. │ │ │ │ │ 4The i-th chevron of A consists of the diagonal entry Ai,i, the i-th row of the upper triangle of A, and the i-th column of │ │ │ │ │ the lower triangle of A. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 11 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 11 │ │ │ │ │ chvmanager = ChvManager_new() ; │ │ │ │ │ ChvManager_init(chvmanager, NO_LOCK, 1) ; │ │ │ │ │ DVfill(10, cpus, 0.0) ; │ │ │ │ │ IVfill(20, stats, 0) ; │ │ │ │ │ rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, │ │ │ │ │ chvmanager, &error, cpus, stats, msglvl, msgFile) ; │ │ │ │ │ ChvManager_free(chvmanager) ; │ │ │ │ │ @@ -373,15 +373,15 @@ │ │ │ │ │ First we initialize a new DenseMtx object to hold X (and also PX). (Note, in all cases but a nonsymmetric │ │ │ │ │ matrix with pivoting enabled in an MPI environment, X may overwrite Y, and so we can use the same │ │ │ │ │ DenseMtx object for X and Y.) We then solve the linear system with a call to FrontMtx solve(). Note │ │ │ │ │ that one of the arguments is the mtxmanager object, first created for the numerical factorization. The solve │ │ │ │ │ requires working submatrices, and so we continue the convention of having the FrontMtx ask the manager │ │ │ │ │ object for working storage. The last step is to permute the rows of the DenseMtx from the new ordering into │ │ │ │ │ the old ordering. │ │ │ │ │ - 12 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 12 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ 2.7 Sample Matrix and Right Hand Side Files │ │ │ │ │ Immediately below are two sample files: matrix.input holds the matrix input and rhs.input holds the │ │ │ │ │ right hand side. This example is for a symmetric Laplacian operator on a 3×3 grid. Only entries in the upper │ │ │ │ │ triangle are stored. The right hand side is the 9×9 identity matrix. Note how the indices are zero-based as │ │ │ │ │ for C, instead of one-based as for Fortran. │ │ │ │ │ matrix.input │ │ │ │ │ 9 9 21 │ │ │ │ │ @@ -402,15 +402,15 @@ │ │ │ │ │ 7 8 -1.0 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 │ │ │ │ │ 0 3 -1.0 │ │ │ │ │ 1 4 -1.0 │ │ │ │ │ 2 5 -1.0 │ │ │ │ │ 3 6 -1.0 │ │ │ │ │ 4 7 -1.0 │ │ │ │ │ 5 8 -1.0 │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 13 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 13 │ │ │ │ │ 3 Multithreaded Solution of AX = Y using an LU factorization │ │ │ │ │ The only computations that are multithreaded are the factorization and forward and backsolves. Therefore, │ │ │ │ │ this section will describe only the differences between the serial driver in Section A and the multithreaded │ │ │ │ │ driver whose complete listing is found in Section B. This section will refer the reader to subsections in │ │ │ │ │ Section 2 for the parts of the code where the two drivers are identical. │ │ │ │ │ The shared memory parallel version of SPOOLES is implemented using thread based parallelism. The │ │ │ │ │ multi-threaded code uses much of the serial code — the basic steps are the same and use the serial methods. │ │ │ │ │ @@ -443,15 +443,15 @@ │ │ │ │ │ over a range of orderings, and this is what we recommend, as we see in the code fragment below. │ │ │ │ │ if ( nthread > (nfront = FrontMtx_nfront(frontmtx)) ) { │ │ │ │ │ nthread = nfront ; │ │ │ │ │ } │ │ │ │ │ cumopsDV = DV_new() ; │ │ │ │ │ DV_init(cumopsDV, nthread, NULL) ; │ │ │ │ │ ownersIV = ETree_ddMap(frontETree, type, symmetryflag, cumopsDV, 1./(2.*nthread)) ; │ │ │ │ │ - 14 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 14 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ The first step is to ensure that each thread has a front to own, decreasing the number of threads if necessary. │ │ │ │ │ We then construct the owners map using the front tree object. The cumopsDV object is a double precision │ │ │ │ │ vector object whose length is the number of threads. On return from the map call, it contains the number │ │ │ │ │ of factor operations that will be performed by each thread when pivoting for stability is not enabled. │ │ │ │ │ 3.5 The Matrix Factorization │ │ │ │ │ During the factorization and solves, the threads access data and modify the state of the FrontMtx and │ │ │ │ │ SubMtxManagerobjects in a concurrent fashion, so there must be some way to control this access for critical │ │ │ │ │ @@ -487,15 +487,15 @@ │ │ │ │ │ workcooperativelyto compute the factor matrices, there is idle time while one thread waits on another. │ │ │ │ │ The lookahead parameter controls the ability of the thread to look past the present idle point and │ │ │ │ │ performworkthatisnotsoimmediate. Unfortunately, whileathreadisoffdoingthiswork,itmayblock │ │ │ │ │ a thread at a more crucial point. When lookahead = 0, each processor tries to do only “immediate” │ │ │ │ │ work. Moderate speedups in the factorization have been for values of lookahead up to the number │ │ │ │ │ of threads. For nonzero lookahead values, the amount of working storage can increase, sometimes │ │ │ │ │ appreciably. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 15 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 15 │ │ │ │ │ Thepost-processing of the factorization is exactly the same as the serial code. Note, this step can be trivially │ │ │ │ │ parallelized, but is not done at present. │ │ │ │ │ After the post-processing step, the FrontMtx object contains the L , D and U submatrices. What │ │ │ │ │ J,I I,I I,J │ │ │ │ │ remains to be done is to specify which threads own which submatrices, and thus perform computations with │ │ │ │ │ them. This is done by constructing a “solve–map” object, as we see below. │ │ │ │ │ solvemap = SolveMap_new() ; │ │ │ │ │ @@ -511,15 +511,15 @@ │ │ │ │ │ DenseMtx_zero(mtxX) ; │ │ │ │ │ FrontMtx_MT_solve(frontmtx, mtxX, mtxY, mtxmanager, solvemap, cpus, msglvl, msgFile) ; │ │ │ │ │ DenseMtx_permuteRows(mtxX, newToOldIV) ; │ │ │ │ │ The only difference between the serial and multithreaded solve methods is the presence of the solve–map │ │ │ │ │ object in the latter. │ │ │ │ │ 3.7 Sample Matrix and Right Hand Side Files │ │ │ │ │ The multithreaded driver uses the same input files as found in Section 2.7. │ │ │ │ │ - 16 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 16 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ 4 MPISolution of AX =Y using an LU factorization │ │ │ │ │ Unlike the serial and multithreaded environments where the data structures are global, existing under one │ │ │ │ │ address space, in the MPI environment, data is local, each process or processor has its own distinct address │ │ │ │ │ space. The MPI step-by-step process to solve a linear system is exactly the same as the multithreaded case, │ │ │ │ │ with the additional trouble that the data structures are distributed and need to be re-distributed as needed. │ │ │ │ │ The ownership of the factor matrices during the factorization and solves is exactly the same as for the │ │ │ │ │ multithreaded case – the map from fronts to processors and map from submatrices to processors are identical │ │ │ │ │ @@ -552,15 +552,15 @@ │ │ │ │ │ adjIVL = InpMtx_MPI_fullAdjacency(mtxA, stats, msglvl, msgFile, MPI_COMM_WORLD) ; │ │ │ │ │ nedges = IVL_tsize(adjIVL) ; │ │ │ │ │ Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, NULL, NULL) ; │ │ │ │ │ frontETree = orderViaMMD(graph, seed + myid, msglvl, msgFile) ; │ │ │ │ │ Whilethedataandcomputationsaredistributedacrosstheprocessors,the orderingprocessis not. Therefore │ │ │ │ │ we need a global graph on each processor. Since the matrix A is distributed across the processors, we use │ │ │ │ │ the distributed InpMtx MPI fullAdjacency() method to construct the IVL object of the graph of A+AT. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 17 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 17 │ │ │ │ │ At this point, each processor has computed its own minimum degree ordering and created a front tree │ │ │ │ │ object. The orderings will likely be different, because each processors input a different random number seed │ │ │ │ │ to the ordering method. Only one ordering can be used for the factorization, so the processors collectively │ │ │ │ │ determine which of the orderings is best, which is then broadcast to all the processors, as the code fragment │ │ │ │ │ below illustrates. │ │ │ │ │ opcounts = DVinit(nproc, 0.0) ; │ │ │ │ │ opcounts[myid] = ETree_nFactorOps(frontETree, type, symmetryflag) ; │ │ │ │ │ @@ -597,15 +597,15 @@ │ │ │ │ │ IV_init(vtxmapIV, neqns, NULL) ; │ │ │ │ │ IVgather(neqns, IV_entries(vtxmapIV), IV_entries(ownersIV), ETree_vtxToFront(frontETree)) ; │ │ │ │ │ At this point we are ready to assemble and distribute the entries of A and Y . │ │ │ │ │ firsttag = 0 ; │ │ │ │ │ newA = InpMtx_MPI_split(mtxA, vtxmapIV, stats, msglvl, msgFile, firsttag, │ │ │ │ │ MPI_COMM_WORLD) ; │ │ │ │ │ InpMtx_free(mtxA) ; │ │ │ │ │ - 18 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 18 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ mtxA = newA ; │ │ │ │ │ InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; │ │ │ │ │ newY = DenseMtx_MPI_splitByRows(mtxY, vtxmapIV, stats, msglvl, │ │ │ │ │ msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ DenseMtx_free(mtxY) ; │ │ │ │ │ mtxY = newY ; │ │ │ │ │ The InpMtx MPI split() method assembles and redistributes the matrix entries by the vectors of the local │ │ │ │ │ @@ -640,15 +640,15 @@ │ │ │ │ │ chvmanager, ownersIV, lookahead, &error, cpus, │ │ │ │ │ stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ ChvManager_free(chvmanager) ; │ │ │ │ │ Note that the ChvManager is not locked. The calling sequence is identical to that of the multithreaded │ │ │ │ │ factorization except for the addition of the firsttag and MPI communicator at the end. │ │ │ │ │ The post-processing of the factorization is the same in principle as in the serial code but differs in that │ │ │ │ │ is uses the distributed data structures. │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 19 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 19 │ │ │ │ │ FrontMtx_MPI_postProcess(frontmtx, ownersIV, stats, msglvl, │ │ │ │ │ msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ After the post-processing step, each local FrontMtx object contains the L , D and U submatrices │ │ │ │ │ J,I I,I I,J │ │ │ │ │ for the fronts that were owned by the particular processor. However, the parallel solve is based on the │ │ │ │ │ submatrices being distributed across the processors, not just the fronts. │ │ │ │ │ We must specify which threads own which submatrices, and so perform computations with them. This │ │ │ │ │ @@ -683,15 +683,15 @@ │ │ │ │ │ mtxY = newY ; │ │ │ │ │ IV_free(rowmapIV) ; │ │ │ │ │ } │ │ │ │ │ Each processor now must create a local DenseMtx object to hold the rows of PX that it owns. │ │ │ │ │ ownedColumnsIV = FrontMtx_ownedColumnsIV(frontmtx, myid, ownersIV, │ │ │ │ │ msglvl, msgFile) ; │ │ │ │ │ nmycol = IV_size(ownedColumnsIV) ; │ │ │ │ │ - 20 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 20 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ mtxX = DenseMtx_new() ; │ │ │ │ │ if ( nmycol > 0 ) { │ │ │ │ │ DenseMtx_init(mtxX, type, 0, 0, nmycol, nrhs, 1, nmycol) ; │ │ │ │ │ DenseMtx_rowIndices(mtxX, &nrow, &rowind) ; │ │ │ │ │ IVcopy(nmycol, rowind, IV_entries(ownedColumnsIV)) ; │ │ │ │ │ } │ │ │ │ │ If A is symmetric, or if pivoting for stability was not used, then mtxX can just be a pointer to mtxY, i.e., PX │ │ │ │ │ @@ -722,15 +722,15 @@ │ │ │ │ │ 1 4 -1.0 6 6 4.0 │ │ │ │ │ 6 7 -1.0 │ │ │ │ │ rhs.0.input rhs.1.input rhs.2.input rhs.3.input │ │ │ │ │ 2 1 2 1 2 1 3 1 │ │ │ │ │ 0 0.0 2 0.0 4 1.0 6 0.0 │ │ │ │ │ 1 0.0 3 0.0 5 0.0 7 0.0 │ │ │ │ │ 8 0.0 │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 21 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 21 │ │ │ │ │ 5 Serial Solution of AX = Y using an QR factorization │ │ │ │ │ Let us review the steps is solving AX = Y using a QR factorization. │ │ │ │ │ • communicate the data for the problem as A, X and Y. │ │ │ │ │ ee e T e │ │ │ │ │ • reorder as AX = Y, where A = AP and X =PX. and P is a permutation matrix. │ │ │ │ │ e │ │ │ │ │ • factor A = QR, where Q is orthogonal and R is upper triangular. │ │ │ │ │ @@ -762,15 +762,15 @@ │ │ │ │ │ apply it to the matrix A. This is done by the following code fragment. │ │ │ │ │ oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; │ │ │ │ │ oldToNew = IV_entries(oldToNewIV) ; │ │ │ │ │ newToOldIV = ETree_newToOldVtxPerm(frontETree) ; │ │ │ │ │ newToOld = IV_entries(newToOldIV) ; │ │ │ │ │ InpMtx_permute(mtxA, NULL, oldToNew)) ; │ │ │ │ │ InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; │ │ │ │ │ - 22 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 22 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ The oldToNewIV and newToOldIV variables are IV objects that represent an integer vector. The oldToNew │ │ │ │ │ andnewToOldvariablesarepointers to int, which point to the base address of the int vector in an IV object. │ │ │ │ │ Once we have the permutation vector, we apply it to the front tree, by the ETree permuteVertices() │ │ │ │ │ method. We need APT, so we permute the InpMtx object using a NULL pointer for the row permutation │ │ │ │ │ (which means do not permute the rows) and the oldToNew vector for the column permutation. At this point │ │ │ │ │ the InpMtx object holds APT in the form required by the factorization. │ │ │ │ │ The final steps are to compute the symbolic factorization, which is stored in an IVL object, and to │ │ │ │ │ @@ -808,15 +808,15 @@ │ │ │ │ │ the sample program for the numerical factorization step is found below. │ │ │ │ │ chvmanager = ChvManager_new() ; │ │ │ │ │ ChvManager_init(chvmanager, NO_LOCK, 1) ; │ │ │ │ │ DVzero(10, cpus) ; │ │ │ │ │ facops = 0.0 ; │ │ │ │ │ FrontMtx_QR_factor(frontmtx, mtxA, chvmanager, cpus, &facops, msglvl, msgFile) ; │ │ │ │ │ ChvManager_free(chvmanager) ; │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 23 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 23 │ │ │ │ │ Working storage used during the factorization is found in the form of block chevrons, in a Chv object, │ │ │ │ │ which hold the partial frontal matrix for a front. Much as with the SubMtx object, the FrontMtx object │ │ │ │ │ does not concern itself with managing working storage, instead it relies on a ChvManager object to manage │ │ │ │ │ the Chv objects. On return facops contains the number of floating point operations performed during the │ │ │ │ │ factorization. │ │ │ │ │ The factorization is performed using a one-dimensional decomposition of the factor matrices. Keeping │ │ │ │ │ the factor matrices in this form severely limits the amount of parallelism for the forward and backsolves. │ │ │ │ │ @@ -853,15 +853,15 @@ │ │ │ │ │ 5 1 2.0 6 5.0 │ │ │ │ │ 5 4 3.0 7 4.0 │ │ │ │ │ 5 5 1.0 │ │ │ │ │ 6 0 2.0 │ │ │ │ │ 6 3 3.0 │ │ │ │ │ 7 1 1.0 │ │ │ │ │ 7 4 3.0 │ │ │ │ │ - 24 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 24 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ A allInOne.c – A Serial LU Driver Program │ │ │ │ │ /* allInOne.c */ │ │ │ │ │ #include "../../misc.h" │ │ │ │ │ #include "../../FrontMtx.h" │ │ │ │ │ #include "../../SymbFac.h" │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ int │ │ │ │ │ @@ -900,15 +900,15 @@ │ │ │ │ │ symmetryflag, type ; │ │ │ │ │ int *newToOld, *oldToNew ; │ │ │ │ │ int stats[20] ; │ │ │ │ │ IV *newToOldIV, *oldToNewIV ; │ │ │ │ │ IVL *adjIVL, *symbfacIVL ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 25 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 25 │ │ │ │ │ -------------------- │ │ │ │ │ get input parameters │ │ │ │ │ -------------------- │ │ │ │ │ */ │ │ │ │ │ if ( argc != 9 ) { │ │ │ │ │ fprintf(stdout, "\n" │ │ │ │ │ "\n usage: %s msglvl msgFile type symmetryflag pivotingflag" │ │ │ │ │ @@ -952,15 +952,15 @@ │ │ │ │ │ symmetryflag = atoi(argv[4]) ; │ │ │ │ │ pivotingflag = atoi(argv[5]) ; │ │ │ │ │ matrixFileName = argv[6] ; │ │ │ │ │ rhsFileName = argv[7] ; │ │ │ │ │ seed = atoi(argv[8]) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ - 26 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 26 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ -------------------------------------------- │ │ │ │ │ STEP 1: read the entries from the input file │ │ │ │ │ and create the InpMtx object │ │ │ │ │ -------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ inputFile = fopen(matrixFileName, "r") ; │ │ │ │ │ fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ; │ │ │ │ │ @@ -1004,15 +1004,15 @@ │ │ │ │ │ fscanf(inputFile, "%d", &jrow) ; │ │ │ │ │ for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { │ │ │ │ │ fscanf(inputFile, "%le", &value) ; │ │ │ │ │ DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ } else { │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 27 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 27 │ │ │ │ │ double imag, real ; │ │ │ │ │ for ( irow = 0 ; irow < nrow ; irow++ ) { │ │ │ │ │ fscanf(inputFile, "%d", &jrow) ; │ │ │ │ │ for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { │ │ │ │ │ fscanf(inputFile, "%le %le", &real, &imag) ; │ │ │ │ │ DenseMtx_setComplexEntry(mtxY, jrow, jrhs, real, imag) ; │ │ │ │ │ } │ │ │ │ │ @@ -1056,15 +1056,15 @@ │ │ │ │ │ get the symbolic factorization │ │ │ │ │ ---------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; │ │ │ │ │ oldToNew = IV_entries(oldToNewIV) ; │ │ │ │ │ newToOldIV = ETree_newToOldVtxPerm(frontETree) ; │ │ │ │ │ newToOld = IV_entries(newToOldIV) ; │ │ │ │ │ - 28 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 28 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ ETree_permuteVertices(frontETree, oldToNewIV) ; │ │ │ │ │ InpMtx_permute(mtxA, oldToNew, oldToNew) ; │ │ │ │ │ if ( symmetryflag == SPOOLES_SYMMETRIC │ │ │ │ │ || symmetryflag == SPOOLES_HERMITIAN ) { │ │ │ │ │ InpMtx_mapToUpperTriangle(mtxA) ; │ │ │ │ │ } │ │ │ │ │ InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ; │ │ │ │ │ @@ -1108,15 +1108,15 @@ │ │ │ │ │ ChvManager_init(chvmanager, NO_LOCK, 1) ; │ │ │ │ │ DVfill(10, cpus, 0.0) ; │ │ │ │ │ IVfill(20, stats, 0) ; │ │ │ │ │ rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, │ │ │ │ │ chvmanager, &error, cpus, stats, msglvl, msgFile) ; │ │ │ │ │ ChvManager_free(chvmanager) ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 29 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 29 │ │ │ │ │ fprintf(msgFile, "\n\n factor matrix") ; │ │ │ │ │ FrontMtx_writeForHumanEye(frontmtx, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ if ( rootchv != NULL ) { │ │ │ │ │ fprintf(msgFile, "\n\n matrix found to be singular\n") ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ @@ -1160,15 +1160,15 @@ │ │ │ │ │ ------------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ DenseMtx_permuteRows(mtxX, newToOldIV) ; │ │ │ │ │ if ( msglvl > 0 ) { │ │ │ │ │ fprintf(msgFile, "\n\n solution matrix in original ordering") ; │ │ │ │ │ DenseMtx_writeForHumanEye(mtxX, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ - 30 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 30 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ----------- │ │ │ │ │ free memory │ │ │ │ │ ----------- │ │ │ │ │ */ │ │ │ │ │ @@ -1181,15 +1181,15 @@ │ │ │ │ │ ETree_free(frontETree) ; │ │ │ │ │ IVL_free(symbfacIVL) ; │ │ │ │ │ SubMtxManager_free(mtxmanager) ; │ │ │ │ │ Graph_free(graph) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ return(1) ; } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 31 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 31 │ │ │ │ │ B allInOne.c – A Serial LU Driver Program │ │ │ │ │ /* allInOneMT.c */ │ │ │ │ │ #include "../spoolesMT.h" │ │ │ │ │ #include "../../misc.h" │ │ │ │ │ #include "../../FrontMtx.h" │ │ │ │ │ #include "../../SymbFac.h" │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ @@ -1228,15 +1228,15 @@ │ │ │ │ │ Graph *graph ; │ │ │ │ │ InpMtx *mtxA ; │ │ │ │ │ int error, ient, irow, jcol, jrhs, jrow, lookahead, msglvl, │ │ │ │ │ ncol, nedges, nent, neqns, nfront, nrhs, nrow, │ │ │ │ │ nthread, pivotingflag, seed, symmetryflag, type ; │ │ │ │ │ int *newToOld, *oldToNew ; │ │ │ │ │ int stats[20] ; │ │ │ │ │ - 32 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 32 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ IV *newToOldIV, *oldToNewIV, *ownersIV ; │ │ │ │ │ IVL *adjIVL, *symbfacIVL ; │ │ │ │ │ SolveMap *solvemap ; │ │ │ │ │ SubMtxManager *mtxmanager ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ -------------------- │ │ │ │ │ @@ -1280,15 +1280,15 @@ │ │ │ │ │ } else if ( (msgFile = fopen(argv[2], "a")) == NULL ) { │ │ │ │ │ fprintf(stderr, "\n fatal error in %s" │ │ │ │ │ "\n unable to open file %s\n", │ │ │ │ │ argv[0], argv[2]) ; │ │ │ │ │ return(-1) ; │ │ │ │ │ } │ │ │ │ │ type = atoi(argv[3]) ; │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 33 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 33 │ │ │ │ │ symmetryflag = atoi(argv[4]) ; │ │ │ │ │ pivotingflag = atoi(argv[5]) ; │ │ │ │ │ matrixFileName = argv[6] ; │ │ │ │ │ rhsFileName = argv[7] ; │ │ │ │ │ seed = atoi(argv[8]) ; │ │ │ │ │ nthread = atoi(argv[9]) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ @@ -1332,15 +1332,15 @@ │ │ │ │ │ inputFile = fopen(rhsFileName, "r") ; │ │ │ │ │ fscanf(inputFile, "%d %d", &nrow, &nrhs) ; │ │ │ │ │ mtxY = DenseMtx_new() ; │ │ │ │ │ DenseMtx_init(mtxY, type, 0, 0, neqns, nrhs, 1, neqns) ; │ │ │ │ │ DenseMtx_zero(mtxY) ; │ │ │ │ │ if ( type == SPOOLES_REAL ) { │ │ │ │ │ double value ; │ │ │ │ │ - 34 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 34 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ for ( irow = 0 ; irow < nrow ; irow++ ) { │ │ │ │ │ fscanf(inputFile, "%d", &jrow) ; │ │ │ │ │ for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) { │ │ │ │ │ fscanf(inputFile, "%le", &value) ; │ │ │ │ │ DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ @@ -1384,15 +1384,15 @@ │ │ │ │ │ ETree_writeForHumanEye(frontETree, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------------------- │ │ │ │ │ STEP 4: get the permutation, permute the front tree, │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 35 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 35 │ │ │ │ │ permute the matrix and right hand side, and │ │ │ │ │ get the symbolic factorization │ │ │ │ │ ---------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ; │ │ │ │ │ oldToNew = IV_entries(oldToNewIV) ; │ │ │ │ │ newToOldIV = ETree_newToOldVtxPerm(frontETree) ; │ │ │ │ │ @@ -1436,15 +1436,15 @@ │ │ │ │ │ ownersIV = ETree_ddMap(frontETree, type, symmetryflag, │ │ │ │ │ cumopsDV, 1./(2.*nthread)) ; │ │ │ │ │ if ( msglvl > 1 ) { │ │ │ │ │ fprintf(msgFile, "\n\n map from fronts to threads") ; │ │ │ │ │ IV_writeForHumanEye(ownersIV, msgFile) ; │ │ │ │ │ fprintf(msgFile, "\n\n factor operations for each front") ; │ │ │ │ │ DV_writeForHumanEye(cumopsDV, msgFile) ; │ │ │ │ │ - 36 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 36 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ DV_free(cumopsDV) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------ │ │ │ │ │ STEP 6: initialize the front matrix object │ │ │ │ │ @@ -1488,15 +1488,15 @@ │ │ │ │ │ -------------------------------------- │ │ │ │ │ STEP 8: post-process the factorization │ │ │ │ │ -------------------------------------- │ │ │ │ │ */ │ │ │ │ │ FrontMtx_postProcess(frontmtx, msglvl, msgFile) ; │ │ │ │ │ if ( msglvl > 1 ) { │ │ │ │ │ fprintf(msgFile, "\n\n factor matrix after post-processing") ; │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 37 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 37 │ │ │ │ │ FrontMtx_writeForHumanEye(frontmtx, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------------------- │ │ │ │ │ STEP 9: get the solve map object for the parallel solve │ │ │ │ │ @@ -1540,27 +1540,27 @@ │ │ │ │ │ free memory │ │ │ │ │ ----------- │ │ │ │ │ */ │ │ │ │ │ FrontMtx_free(frontmtx) ; │ │ │ │ │ DenseMtx_free(mtxX) ; │ │ │ │ │ DenseMtx_free(mtxY) ; │ │ │ │ │ IV_free(newToOldIV) ; │ │ │ │ │ - 38 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 38 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ IV_free(oldToNewIV) ; │ │ │ │ │ InpMtx_free(mtxA) ; │ │ │ │ │ ETree_free(frontETree) ; │ │ │ │ │ IVL_free(symbfacIVL) ; │ │ │ │ │ SubMtxManager_free(mtxmanager) ; │ │ │ │ │ Graph_free(graph) ; │ │ │ │ │ SolveMap_free(solvemap) ; │ │ │ │ │ IV_free(ownersIV) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ return(1) ; } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 39 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 39 │ │ │ │ │ C allInOne.c – A Serial LU Driver Program │ │ │ │ │ /* allInOneMPI.c */ │ │ │ │ │ #include "../spoolesMPI.h" │ │ │ │ │ #include "../../timings.h" │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ int │ │ │ │ │ main ( int argc, char *argv[] ) { │ │ │ │ │ @@ -1598,15 +1598,15 @@ │ │ │ │ │ double *opcounts ; │ │ │ │ │ DV *cumopsDV ; │ │ │ │ │ ETree *frontETree ; │ │ │ │ │ FILE *inputFile, *msgFile ; │ │ │ │ │ Graph *graph ; │ │ │ │ │ int error, firsttag, ient, irow, jcol, lookahead = 0, │ │ │ │ │ msglvl, myid, nedges, nent, neqns, nmycol, nproc, nrhs, │ │ │ │ │ - 40 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 40 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ nrow, pivotingflag, root, seed, symmetryflag, type ; │ │ │ │ │ int stats[20] ; │ │ │ │ │ int *rowind ; │ │ │ │ │ IV *oldToNewIV, *ownedColumnsIV, *ownersIV, │ │ │ │ │ *newToOldIV, *vtxmapIV ; │ │ │ │ │ IVL *adjIVL, *symbfacIVL ; │ │ │ │ │ SolveMap *solvemap ; │ │ │ │ │ @@ -1650,15 +1650,15 @@ │ │ │ │ │ return(0) ; │ │ │ │ │ } │ │ │ │ │ msglvl = atoi(argv[1]) ; │ │ │ │ │ if ( strcmp(argv[2], "stdout") == 0 ) { │ │ │ │ │ msgFile = stdout ; │ │ │ │ │ } else { │ │ │ │ │ sprintf(buffer, "res.%d", myid) ; │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 41 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 41 │ │ │ │ │ if ( (msgFile = fopen(buffer, "w")) == NULL ) { │ │ │ │ │ fprintf(stderr, "\n fatal error in %s" │ │ │ │ │ "\n unable to open file %s\n", │ │ │ │ │ argv[0], buffer) ; │ │ │ │ │ return(-1) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ @@ -1702,15 +1702,15 @@ │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------------------- │ │ │ │ │ STEP 2: read the rhs entries from the rhs input file │ │ │ │ │ and create the DenseMtx object for Y │ │ │ │ │ - 42 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 42 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ ---------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ sprintf(buffer, "rhs.%d.input", myid) ; │ │ │ │ │ inputFile = fopen(buffer, "r") ; │ │ │ │ │ fscanf(inputFile, "%d %d", &nrow, &nrhs) ; │ │ │ │ │ mtxY = DenseMtx_new() ; │ │ │ │ │ DenseMtx_init(mtxY, type, 0, 0, nrow, nrhs, 1, nrow) ; │ │ │ │ │ @@ -1754,15 +1754,15 @@ │ │ │ │ │ adjIVL = InpMtx_MPI_fullAdjacency(mtxA, stats, │ │ │ │ │ msglvl, msgFile, MPI_COMM_WORLD) ; │ │ │ │ │ nedges = IVL_tsize(adjIVL) ; │ │ │ │ │ Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, │ │ │ │ │ NULL, NULL) ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n graph of the input matrix") ; │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 43 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 43 │ │ │ │ │ Graph_writeForHumanEye(graph, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ frontETree = orderViaMMD(graph, seed + myid, msglvl, msgFile) ; │ │ │ │ │ Graph_free(graph) ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n front tree from ordering") ; │ │ │ │ │ @@ -1806,15 +1806,15 @@ │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------- │ │ │ │ │ STEP 4: generate the owners map IV object │ │ │ │ │ and the map from vertices to owners │ │ │ │ │ - 44 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 44 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ ------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ cutoff = 1./(2*nproc) ; │ │ │ │ │ cumopsDV = DV_new() ; │ │ │ │ │ DV_init(cumopsDV, nproc, NULL) ; │ │ │ │ │ ownersIV = ETree_ddMap(frontETree, │ │ │ │ │ type, symmetryflag, cumopsDV, cutoff) ; │ │ │ │ │ @@ -1858,15 +1858,15 @@ │ │ │ │ │ DenseMtx_writeForHumanEye(mtxY, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------ │ │ │ │ │ STEP 6: compute the symbolic factorization │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 45 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 45 │ │ │ │ │ ------------------------------------------ │ │ │ │ │ */ │ │ │ │ │ symbfacIVL = SymbFac_MPI_initFromInpMtx(frontETree, ownersIV, mtxA, │ │ │ │ │ stats, msglvl, msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ firsttag += frontETree->nfront ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n local symbolic factorization") ; │ │ │ │ │ @@ -1910,15 +1910,15 @@ │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------------ │ │ │ │ │ STEP 9: post-process the factorization and split │ │ │ │ │ the factor matrices into submatrices │ │ │ │ │ - 46 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 46 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ ------------------------------------------------ │ │ │ │ │ */ │ │ │ │ │ FrontMtx_MPI_postProcess(frontmtx, ownersIV, stats, msglvl, │ │ │ │ │ msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ firsttag += 5*nproc ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n numeric factorization after post-processing"); │ │ │ │ │ @@ -1962,15 +1962,15 @@ │ │ │ │ │ */ │ │ │ │ │ if ( FRONTMTX_IS_PIVOTING(frontmtx) ) { │ │ │ │ │ IV *rowmapIV ; │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------------------------- │ │ │ │ │ pivoting has taken place, redistribute the right hand side │ │ │ │ │ to match the final rows and columns in the fronts │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 47 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 47 │ │ │ │ │ ---------------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ rowmapIV = FrontMtx_MPI_rowmapIV(frontmtx, ownersIV, msglvl, │ │ │ │ │ msgFile, MPI_COMM_WORLD) ; │ │ │ │ │ newY = DenseMtx_MPI_splitByRows(mtxY, rowmapIV, stats, msglvl, │ │ │ │ │ msgFile, firsttag, MPI_COMM_WORLD) ; │ │ │ │ │ DenseMtx_free(mtxY) ; │ │ │ │ │ @@ -2014,15 +2014,15 @@ │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ -------------------------------------------------------- │ │ │ │ │ STEP 15: permute the solution into the original ordering │ │ │ │ │ and assemble the solution onto processor zero │ │ │ │ │ -------------------------------------------------------- │ │ │ │ │ - 48 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 48 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ */ │ │ │ │ │ DenseMtx_permuteRows(mtxX, newToOldIV) ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n solution in old ordering") ; │ │ │ │ │ DenseMtx_writeForHumanEye(mtxX, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ @@ -2035,15 +2035,15 @@ │ │ │ │ │ DenseMtx_writeForHumanEye(mtxX, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ MPI_Finalize() ; │ │ │ │ │ return(1) ; } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 49 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 49 │ │ │ │ │ D allInOne.c – A Serial QR Driver Program │ │ │ │ │ /* QRallInOne.c */ │ │ │ │ │ #include "../../misc.h" │ │ │ │ │ #include "../../FrontMtx.h" │ │ │ │ │ #include "../../SymbFac.h" │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ int │ │ │ │ │ @@ -2083,15 +2083,15 @@ │ │ │ │ │ /* │ │ │ │ │ -------------------- │ │ │ │ │ get input parameters │ │ │ │ │ -------------------- │ │ │ │ │ */ │ │ │ │ │ if ( argc != 7 ) { │ │ │ │ │ fprintf(stdout, │ │ │ │ │ - 50 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 50 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ "\n usage: %s msglvl msgFile type matrixFileName rhsFileName seed" │ │ │ │ │ "\n msglvl -- message level" │ │ │ │ │ "\n msgFile -- message file" │ │ │ │ │ "\n type -- type of entries" │ │ │ │ │ "\n 1 (SPOOLES_REAL) -- real entries" │ │ │ │ │ "\n 2 (SPOOLES_COMPLEX) -- complex entries" │ │ │ │ │ "\n matrixFileName -- matrix file name, format" │ │ │ │ │ @@ -2135,15 +2135,15 @@ │ │ │ │ │ if ( type == SPOOLES_REAL ) { │ │ │ │ │ for ( ient = 0 ; ient < nent ; ient++ ) { │ │ │ │ │ fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ; │ │ │ │ │ InpMtx_inputRealEntry(mtxA, irow, jcol, value) ; │ │ │ │ │ } │ │ │ │ │ } else { │ │ │ │ │ for ( ient = 0 ; ient < nent ; ient++ ) { │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 51 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 51 │ │ │ │ │ fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ; │ │ │ │ │ InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ fclose(inputFile) ; │ │ │ │ │ if ( msglvl > 1 ) { │ │ │ │ │ fprintf(msgFile, "\n\n input matrix") ; │ │ │ │ │ @@ -2187,15 +2187,15 @@ │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------------- │ │ │ │ │ STEP 3 : find a low-fill ordering │ │ │ │ │ (1) create the Graph object for A^TA or A^HA │ │ │ │ │ (2) order the graph using multiple minimum degree │ │ │ │ │ ------------------------------------------------- │ │ │ │ │ - 52 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 52 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ */ │ │ │ │ │ graph = Graph_new() ; │ │ │ │ │ adjIVL = InpMtx_adjForATA(mtxA) ; │ │ │ │ │ nedges = IVL_tsize(adjIVL) ; │ │ │ │ │ Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL, │ │ │ │ │ NULL, NULL) ; │ │ │ │ │ if ( msglvl > 1 ) { │ │ │ │ │ @@ -2239,15 +2239,15 @@ │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------ │ │ │ │ │ STEP 5: initialize the front matrix object │ │ │ │ │ ------------------------------------------ │ │ │ │ │ */ │ │ │ │ │ - October 18, 2025 SPOOLES 2.2—Solving Linear Systems 53 │ │ │ │ │ + October 28, 2025 SPOOLES 2.2—Solving Linear Systems 53 │ │ │ │ │ frontmtx = FrontMtx_new() ; │ │ │ │ │ mtxmanager = SubMtxManager_new() ; │ │ │ │ │ SubMtxManager_init(mtxmanager, NO_LOCK, 0) ; │ │ │ │ │ if ( type == SPOOLES_REAL ) { │ │ │ │ │ FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, │ │ │ │ │ SPOOLES_SYMMETRIC, FRONTMTX_DENSE_FRONTS, │ │ │ │ │ SPOOLES_NO_PIVOTING, NO_LOCK, 0, NULL, │ │ │ │ │ @@ -2291,15 +2291,15 @@ │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------------- │ │ │ │ │ STEP 8: solve the linear system │ │ │ │ │ ------------------------------- │ │ │ │ │ */ │ │ │ │ │ - 54 SPOOLES2.2—SolvingLinearSystems October 18, 2025 │ │ │ │ │ + 54 SPOOLES2.2—SolvingLinearSystems October 28, 2025 │ │ │ │ │ mtxX = DenseMtx_new() ; │ │ │ │ │ DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ; │ │ │ │ │ FrontMtx_QR_solve(frontmtx, mtxA, mtxX, mtxB, mtxmanager, │ │ │ │ │ cpus, msglvl, msgFile) ; │ │ │ │ │ if ( msglvl > 1 ) { │ │ │ │ │ fprintf(msgFile, "\n\n solution matrix in new ordering") ; │ │ │ │ │ DenseMtx_writeForHumanEye(mtxX, msgFile) ; │ │ ├── ./usr/share/doc/spooles-doc/BKL.ps.gz │ │ │ ├── BKL.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o BKL.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2553,15 +2553,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2755,81 +2754,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4120,15 +4114,15 @@ │ │ │ │ 29[45 2[71{}4 90.9091 /CMSY10 rf /Fe 133[50 59 2[59 62 │ │ │ │ 44 44 46 1[62 56 62 93 31 2[31 62 2[51 62 2[54 11[86 │ │ │ │ 4[77 6[42 20[56 56 56 56 2[31 46[{}25 99.6264 /CMBX12 │ │ │ │ rf /Ff 179[62 62 8[62 66[{}3 119.552 /CMTT12 rf /Fg 141[38 │ │ │ │ 2[46 51 1[23 42 1[28 46 42 1[42 1[42 1[46 12[65 1[66 │ │ │ │ 11[59 62 69 2[68 6[28 58[{}18 90.9091 /CMTI10 rf /Fh │ │ │ │ 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 │ │ │ │ -45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -4238,15 +4232,15 @@ │ │ │ │ b(to)h(an)f Fk(int)f Fl(v)m(ector)j(of)e(size)h(3,)g │ │ │ │ Fk(cweights[0])c Fl(con)m(tains)32 b(the)e(w)m(eigh)m(t)h(of)g(the)227 │ │ │ │ 5407 y(separator,)h Fk(cweights[1])27 b Fl(and)j Fk(cweights[2])d │ │ │ │ Fl(con)m(tains)k(the)g(w)m(eigh)m(ts)h(of)e(the)h(t)m(w)m(o)h(comp)s │ │ │ │ (onen)m(ts)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fl(2)p 136 100 1159 4 v │ │ │ │ -1340 w Fk(BKL)30 b Fh(:)g Fg(DRAFT)h Fh(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fk(BKL)30 b Fh(:)g Fg(DRAFT)h Fh(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 137 399 a Fi(\210)45 b Fk(int)i(*regwghts)39 │ │ │ │ b Fl(:)62 b(p)s(oin)m(ter)41 b(to)h(an)f Fk(int)f Fl(v)m(ector)j(of)e │ │ │ │ (size)h Fk(nreg)p Fl(,)h(used)d(to)i(store)g(the)f(w)m(eigh)m(ts)h(of)g │ │ │ │ (the)227 511 y(domains)30 b(and)g(segmen)m(ts)137 738 │ │ │ │ y Fi(\210)45 b Fk(float)i(alpha)41 b Fl(:)65 b(n)m(um)m(b)s(er)41 │ │ │ │ b(used)g(to)j(store)f(the)f(partition)i(ev)-5 b(aluation)44 │ │ │ │ b(parameter,)i(the)d(cost)g(of)g(the)227 851 y(partition)31 │ │ │ │ @@ -4293,15 +4287,15 @@ │ │ │ │ Fl(then)j(free's)h(the)f(storage)i(for)227 5238 y(the)31 │ │ │ │ b(structure)f(with)g(a)h(call)g(to)g Fk(free\(\))p Fl(.)227 │ │ │ │ 5407 y Fg(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fl(If)30 │ │ │ │ b Fk(bkl)g Fl(is)g Fk(NULL)p Fl(,)g(an)g(error)g(message)h(is)g(prin)m │ │ │ │ (ted)f(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1159 4 v 1340 100 a Fk(BKL)29 │ │ │ │ -b Fh(:)i Fg(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)i Fg(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fl(3)0 399 y Fe(1.3.1)112 b(Initializer)38 │ │ │ │ b(metho)s(ds)111 590 y Fl(1.)46 b Fk(void)h(BKL_init)e(\()j(BKL)f │ │ │ │ (*bkl,)f(BPG)h(*bpg,)f(float)h(alpha)f(\))i(;)227 736 │ │ │ │ y Fl(This)34 b(metho)s(d)g(initializes)j(the)d Fk(BKL)g │ │ │ │ Fl(ob)5 b(ject)35 b(giv)m(en)h(a)f(bipartite)g(graph)f(ob)5 │ │ │ │ b(ject)35 b(and)f(cost)i(function)e(pa-)227 849 y(rameter)g(as)f │ │ │ │ (input.)48 b(An)m(y)33 b(previous)g(data)h(is)f(cleared)h(with)f(a)h │ │ │ │ @@ -4367,15 +4361,15 @@ │ │ │ │ (flag,)f(int)h(seed,)g(int)f(domcolors[])f(\))j(;)227 │ │ │ │ 5294 y Fl(This)43 b(metho)s(d)g(sets)h(the)f(initial)i(partition)f(b)m │ │ │ │ (y)f(coloring)i(the)e(domains)h(and)e(segmen)m(ts.)81 │ │ │ │ b(The)43 b Fk(flag)227 5407 y Fl(parameter)31 b(has)f(the)h(follo)m │ │ │ │ (wing)h(v)-5 b(alues.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fl(4)p 136 100 1159 4 v │ │ │ │ -1340 w Fk(BKL)30 b Fh(:)g Fg(DRAFT)h Fh(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fk(BKL)30 b Fh(:)g Fg(DRAFT)h Fh(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 337 399 a Fi(\210)45 b Fk(flag)i(=)g(1)30 │ │ │ │ b Fd(\000)-15 b(!)30 b Fl(random)g(coloring)h(of)g(the)g(domains)337 │ │ │ │ 558 y Fi(\210)45 b Fk(flag)i(=)g(2)30 b Fd(\000)-15 b(!)30 │ │ │ │ b Fl(one)h(blac)m(k)g(domain,)g(\()p Fk(seed)e Fl(\045)h │ │ │ │ Fk(ndom)p Fl(\),)g(rest)h(are)f(white)337 717 y Fi(\210)45 │ │ │ │ b Fk(flag)i(=)g(3)32 b Fd(\000)-15 b(!)32 b Fl(one)g(blac)m(k)i │ │ │ │ (pseudop)s(eripheral)c(domain,)j(found)e(using)g(domain)h(\()p │ │ │ │ @@ -4445,15 +4439,15 @@ │ │ │ │ Fd(j)p Fc(B)5 b Fd(j)20 b Fl(+)g Fd(j)p Fc(W)13 b Fd(j)p │ │ │ │ Fl(\))1714 5211 y Fa(2)1754 5244 y Fl(.)227 5407 y Fg(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fl(If)30 b Fk(bkl)g Fl(is)g │ │ │ │ Fk(NULL)p Fl(,)g(an)g(error)g(message)h(is)g(prin)m(ted)f(and)g(the)g │ │ │ │ (program)g(exits.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1159 4 v 1340 100 a Fk(BKL)29 │ │ │ │ -b Fh(:)i Fg(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)i Fg(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fl(5)111 399 y(3.)46 b Fk(float)h(BKL_eval)e(\()j │ │ │ │ (BKL)f(*bkl,)f(int)h(Sweight,)e(int)i(Bweight,)f(int)h(Wweight)f(\))h │ │ │ │ (;)227 549 y Fl(The)31 b Fd(j)p Fc(S)5 b Fd(j)p Fl(,)31 │ │ │ │ b Fd(j)p Fc(B)5 b Fd(j)31 b Fl(and)f Fd(j)p Fc(W)13 b │ │ │ │ Fd(j)31 b Fl(v)-5 b(alues)31 b(are)g(tak)m(en)h(from)e(the)h │ │ │ │ Fk(Sweight)p Fl(,)f Fk(Bweight)e Fl(and)j Fk(Wweight)d │ │ │ │ Fl(parameters.)227 662 y(If)i(min\()p Fd(j)p Fc(B)5 b │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ • int ngaineval : number of gain evaluations, roughly equivalent to the number of degree │ │ │ │ │ evaluations in the minimum degree algorithm │ │ │ │ │ • int *colors : pointer to an int vector of size nreg, colors[idom] is 1 or 2 for domain │ │ │ │ │ idom, colors[iseg] is 0, 1 or 2 for segment iseg. │ │ │ │ │ • int *cweights : pointer to an int vector of size 3, cweights[0] contains the weight of the │ │ │ │ │ separator, cweights[1] and cweights[2] contains the weights of the two components │ │ │ │ │ 1 │ │ │ │ │ - 2 BKL : DRAFT October 18, 2025 │ │ │ │ │ + 2 BKL : DRAFT October 28, 2025 │ │ │ │ │ • int *regwghts : pointer to an int vector of size nreg, used to store the weights of the │ │ │ │ │ domains and segments │ │ │ │ │ • float alpha : number used to store the partition evaluation parameter, the cost of the │ │ │ │ │ partition is │ │ │ │ │ balance = max(cweights[1], cweights[2])/min(cweights[1], cweights[2]) ; │ │ │ │ │ cost = cweights[0]*(1. + alpha*balance) ; │ │ │ │ │ 1.2 Prototypes and descriptions of BKL methods │ │ │ │ │ @@ -47,15 +47,15 @@ │ │ │ │ │ This method clears any data allocated by the object, namely the colors and regwghts vec- │ │ │ │ │ tors. It then fills the structure’s fields with default values with a call to BKL setDefaultFields(). │ │ │ │ │ Error checking: If bkl is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void BKL_free ( BKL *bkl ) ; │ │ │ │ │ This method releases any storage by a call to BKL clearData() then free’s the storage for │ │ │ │ │ the structure with a call to free(). │ │ │ │ │ Error checking: If bkl is NULL, an error message is printed and the program exits. │ │ │ │ │ - BKL : DRAFT October 18, 2025 3 │ │ │ │ │ + BKL : DRAFT October 28, 2025 3 │ │ │ │ │ 1.3.1 Initializer methods │ │ │ │ │ 1. void BKL_init ( BKL *bkl, BPG *bpg, float alpha ) ; │ │ │ │ │ This method initializes the BKL object given a bipartite graph object and cost function pa- │ │ │ │ │ rameter as input. Any previous data is cleared with a call to BKL clearData(). The ndom, │ │ │ │ │ nseg and nreg scalars are set, the regwghts[] vector allocated and filled, and the colors[] │ │ │ │ │ vector allocated and filled with zeros. │ │ │ │ │ Error checking: If bkl or bpg is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ This method returns the next domain id in a grey code sequence, used to exhaustively search │ │ │ │ │ of a subspace of partitions defined by set of candidate domains to flip. The value count │ │ │ │ │ ranges from 1 to 2ndom. │ │ │ │ │ Error checking: If bkl is NULL, an error message is printed and the program exits. │ │ │ │ │ 6. float BKL_setInitPart ( BKL *bkl, int flag, int seed, int domcolors[] ) ; │ │ │ │ │ This method sets the initial partition by coloring the domains and segments. The flag │ │ │ │ │ parameter has the following values. │ │ │ │ │ - 4 BKL : DRAFT October 18, 2025 │ │ │ │ │ + 4 BKL : DRAFT October 28, 2025 │ │ │ │ │ • flag = 1 −→ random coloring of the domains │ │ │ │ │ • flag = 2 −→ one black domain, (seed % ndom), rest are white │ │ │ │ │ • flag = 3 −→ one black pseudoperipheral domain, found using domain (seed % ndom) │ │ │ │ │ as root, rest are white │ │ │ │ │ • flag = 4 −→ roughly half-half split, breadth first search of domains, (seed % ndom) as │ │ │ │ │ root │ │ │ │ │ • flag = 5 −→ roughly half-half split, breadth first search of domains, (seed % ndom) as │ │ │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ The |S|, |B| and |W| values are taken from the cweights[] vector. If min(|B|,|W|) > 0, this │ │ │ │ │ function returns   │ │ │ │ │ |S| 1+α∗max(|B|,|W|) , │ │ │ │ │ min(|B|,|W|) │ │ │ │ │ 2 │ │ │ │ │ otherwise it returns (|S| + |B| + |W|) . │ │ │ │ │ Error checking: If bkl is NULL, an error message is printed and the program exits. │ │ │ │ │ - BKL : DRAFT October 18, 2025 5 │ │ │ │ │ + BKL : DRAFT October 28, 2025 5 │ │ │ │ │ 3. float BKL_eval ( BKL *bkl, int Sweight, int Bweight, int Wweight ) ; │ │ │ │ │ The |S|, |B| and |W| values are taken from the Sweight, Bweight and Wweight parameters. │ │ │ │ │ If min(|B|,|W|) > 0, this function returns │ │ │ │ │ |S|1+α∗ max(|B|,|W|), │ │ │ │ │ min(|B|,|W|) │ │ │ │ │ 2 │ │ │ │ │ otherwise it returns (|S| + |B| + |W|) . The method checks that bkl is not NULL. │ │ ├── ./usr/share/doc/spooles-doc/BPG.ps.gz │ │ │ ├── BPG.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o BPG.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1425,15 +1425,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1627,81 +1626,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4746,15 +4740,15 @@ │ │ │ │ /Fb 133[50 59 3[62 44 44 46 1[62 56 62 93 31 2[31 62 │ │ │ │ 56 1[51 62 50 1[54 11[86 5[84 1[106 3[42 1[88 2[86 1[80 │ │ │ │ 11[56 56 56 56 56 56 2[31 37 45[{}33 99.6264 /CMBX12 │ │ │ │ rf /Fc 175[62 8[62 4[62 66[{}3 119.552 /CMTT12 rf /Fd │ │ │ │ 134[71 2[71 75 52 53 55 1[75 67 75 112 2[41 37 75 67 │ │ │ │ 41 61 75 60 75 65 13[75 2[92 11[103 16[67 67 67 2[37 │ │ │ │ 46[{}27 119.552 /CMBX12 rf /Fe 139[32 1[33 2[42 9[37 │ │ │ │ -1[37 46 18[65 20[23 1[42 2[42 2[42 42 42 3[23 44[{}14 │ │ │ │ +1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 3[23 44[{}13 │ │ │ │ 83.022 /CMSL10 rf /Ff 156[83 46 35[74 1[74 1[74 1[74 │ │ │ │ 56[{}6 83.022 /CMEX10 rf /Fg 192[45 63[{}1 83.022 /CMBX10 │ │ │ │ rf │ │ │ │ %DVIPSBitmapFont: Fh tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -4905,15 +4899,15 @@ │ │ │ │ (bipartite)g(graph)f(is)h(a)f(little)i(less)f(clear)f(cut.)37 │ │ │ │ b(When)28 b(the)0 5215 y(v)n(ertices)e(in)i(the)g(bipartite)g(graph)e │ │ │ │ (ha)n(v)n(e)h(unit)h(w)n(eigh)n(t,)f(the)h(pro)r(cess)e(is)i(straigh)n │ │ │ │ (tforw)n(ard.)125 5407 y Fh(\210)42 b Fm(Find)28 b(a)f(maxim)n(um)g │ │ │ │ (matc)n(hing.)1929 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fm(2)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 125 390 a Fh(\210)42 b Fm(Drop)27 b(an)g(alternating)g(lev)n │ │ │ │ (el)g(structure)g(from)g(exp)r(osed)g(no)r(des)h(in)f │ │ │ │ Fj(X)7 b Fm(.)125 564 y Fh(\210)42 b Fm(Drop)27 b(an)g(alternating)g │ │ │ │ (lev)n(el)g(structure)g(from)g(exp)r(osed)g(no)r(des)h(in)f │ │ │ │ Fj(Y)19 b Fm(.)125 738 y Fh(\210)42 b Fm(Based)24 b(on)h(the)g(t)n(w)n │ │ │ │ (o)g(previous)f(steps,)h(partition)g Fj(X)32 b Fm(in)n(to)25 │ │ │ │ b(three)g(pieces)g(and)g Fj(Y)44 b Fm(in)n(to)24 b(three)h(pieces)g │ │ │ │ @@ -5035,15 +5029,15 @@ │ │ │ │ 5407 y(b)n(y)e Fj(S)17 b Fi([)c Fm(\()p Fj(Ad)-9 b(j)5 │ │ │ │ b Fm(\()p Fj(S)g Fm(\))13 b Fi(\\)g Fj(B)t Fm(\))27 b(need)e(not)g(b)r │ │ │ │ (e)g(bipartite.)36 b(In)25 b(other)f(w)n(ords,)g(a)h(bipartite)g │ │ │ │ (induced)g(graph)f(necessarily)f(implies)i(t)n(w)n(o)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1227 4 v 1393 100 a Fl(BPG)26 │ │ │ │ -b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fm(3)0 390 y(la)n(y)n(ers)e(to)i(the)g(wide)g │ │ │ │ (separator,)e(but)j(the)f(con)n(v)n(erse)e(do)r(es)h(not)h(hold.)37 │ │ │ │ b(W)-7 b(e)27 b(w)n(ere)f(then)i(free)e(to)h(examine)g(wide)g │ │ │ │ (separators)0 490 y(that)f(had)f(more)g(than)g(t)n(w)n(o)g(la)n(y)n │ │ │ │ (ers)e(from)i(whic)n(h)g(to)h(\014nd)g(a)f(minimal)g(w)n(eigh)n(t)g │ │ │ │ (separator.)34 b(It)26 b(turns)f(out)g(that)h(three)f(la)n(y)n(ers)0 │ │ │ │ 589 y(is)i(b)r(etter)h(than)g(t)n(w)n(o,)f(in)h(practice.)125 │ │ │ │ @@ -5106,15 +5100,15 @@ │ │ │ │ (the)h(structure)208 5262 y(with)28 b(a)f(call)g(to)h │ │ │ │ Fl(free\(\))p Fm(.)208 5407 y Fk(Err)l(or)i(che)l(cking:)38 │ │ │ │ b Fm(If)28 b Fl(bpg)f Fm(is)g Fl(NULL)p Fm(,)f(an)i(error)d(message)i │ │ │ │ (is)g(prin)n(ted)h(and)f(the)h(program)e(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fm(4)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 0 390 a Fb(1.2.2)112 b(Initializer)38 b(metho)s(ds)0 │ │ │ │ 562 y Fm(There)27 b(are)g(t)n(w)n(o)f(initializer)i(metho)r(ds.)101 │ │ │ │ 731 y(1.)42 b Fl(void)f(BPG_init)g(\()i(BPG)f(*bpg,)g(int)g(nX,)g(int)h │ │ │ │ (nY,)f(Graph)g(*graph)f(\))i(;)208 858 y Fm(This)23 b(metho)r(d)i │ │ │ │ (initializes)e(the)h Fl(BPG)f Fm(ob)5 b(ject)23 b(when)h(all)g(three)f │ │ │ │ (of)h(its)g(\014elds)g(are)f(giv)n(en)g(in)h(the)g(calling)f(sequence.) │ │ │ │ 35 b(The)208 958 y Fl(Graph)22 b Fm(ob)5 b(ject)25 b(has)f │ │ │ │ @@ -5200,15 +5194,15 @@ │ │ │ │ Fl(list)p Fm(,)g Fl(dist)f Fm(or)i Fl(mark)e Fm(is)i │ │ │ │ Fl(NULL)p Fm(,)f(or)g(if)i Fl(root)d Fm(is)i(not)g(in)g │ │ │ │ Fl([0,)43 b(nX+nY\))p Fm(,)25 b(an)h(error)g(message)208 │ │ │ │ 5407 y(is)h(prin)n(ted)h(and)f(the)h(program)e(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1227 4 v 1393 100 a Fl(BPG)26 │ │ │ │ -b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fm(5)0 390 y Fb(1.2.5)112 b(Dulmage-Mendelsohn)42 │ │ │ │ b(decomp)s(osition)c(metho)s(d)0 563 y Fm(There)32 b(is)h(one)f(metho)r │ │ │ │ (d)h(to)f(\014nd)h(the)g(Dulmage-Mendelsohn)f(decomp)r(osition)g(that)h │ │ │ │ (uses)f(matc)n(hing)g(when)h(the)g(graph)0 662 y(is)41 │ │ │ │ b(unit)g(w)n(eigh)n(t)f(and)g(a)h(generalized)e(matc)n(hing)h(tec)n │ │ │ │ (hnique)h(otherwise.)75 b(There)40 b(is)h(a)f(second)g(metho)r(d)h(to)g │ │ │ │ (\014nd)g(the)0 762 y(decomp)r(osition)30 b(using)g(a)h(F)-7 │ │ │ │ @@ -5305,15 +5299,15 @@ │ │ │ │ b(If)28 b(an)g(IO)f(error)e(is)j(encoun)n(tered)f(from)g │ │ │ │ Fl(fscanf)p Fm(,)e(zero)i(is)g(returned.)208 5407 y Fk(Err)l(or)j(che)l │ │ │ │ (cking:)38 b Fm(If)28 b Fl(bpg)f Fm(or)g Fl(fp)f Fm(is)i │ │ │ │ Fl(NULL)e Fm(an)h(error)f(message)g(is)i(prin)n(ted)f(and)g(zero)g(is)g │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fm(6)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(BPG)27 b Fe(:)g Fk(DRAFT)h Fe(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 101 390 a Fm(3.)42 b Fl(int)g(BPG_readFromBina)o(ry)o(Fil)o │ │ │ │ (e)37 b(\()44 b(BPG)e(*bpg,)f(FILE)h(*fp)h(\))g(;)208 │ │ │ │ 523 y Fm(This)24 b(metho)r(d)i(reads)e(a)g Fl(BPG)g Fm(ob)5 │ │ │ │ b(ject)25 b(from)f(a)h(binary)f(\014le.)36 b(If)26 b(there)e(are)g(no)h │ │ │ │ (errors)e(in)i(reading)f(the)h(data,)g(the)g(v)-5 b(alue)208 │ │ │ │ 623 y Fl(1)27 b Fm(is)g(returned.)37 b(If)28 b(an)f(IO)g(error)f(is)h │ │ │ │ (encoun)n(tered)g(from)g Fl(fread)p Fm(,)f(zero)h(is)g(returned.)208 │ │ │ │ @@ -5398,15 +5392,15 @@ │ │ │ │ b(ject.)60 b(It)35 b(m)n(ust)h(b)r(e)f(of)h(the)f(form)g │ │ │ │ Fl(*.bpgf)e Fm(or)390 5407 y Fl(*.bpgb)p Fm(.)i(The)27 │ │ │ │ b Fl(BPG)g Fm(ob)5 b(ject)27 b(is)h(read)e(from)i(the)g(\014le)f(via)g │ │ │ │ (the)h Fl(BPG)p 2449 5407 V 31 w(readFromFile\(\))21 │ │ │ │ b Fm(metho)r(d.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1227 4 v 1393 100 a Fl(BPG)26 │ │ │ │ -b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)110 b Fe(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fm(7)307 390 y Fh(\210)42 b Fm(The)33 │ │ │ │ b Fl(outFile)d Fm(parameter)i(is)g(the)i(output)f(\014le)g(for)g(the)g │ │ │ │ Fl(BPG)f Fm(ob)5 b(ject.)52 b(If)33 b Fl(outFile)d Fm(is)j │ │ │ │ Fl(none)f Fm(then)h(the)g Fl(BPG)390 490 y Fm(ob)5 b(ject)30 │ │ │ │ b(is)f(not)h(written)f(to)h(a)f(\014le.)43 b(Otherwise,)30 │ │ │ │ b(the)g Fl(BPG)p 2219 490 27 4 v 30 w(writeToFile\(\))24 │ │ │ │ b Fm(metho)r(d)30 b(is)g(called)f(to)g(write)h(the)390 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ │ code for the process outweighed (outline’d?) the BPG code for the data. Now if someone wants to modify │ │ │ │ │ (and hopefully improve) the Kernighan-Lin process, they won’t alter the behavior of the bipartite graph │ │ │ │ │ object. │ │ │ │ │ Finding the Dulmage-Mendelsohn decomposition of a bipartite graph is a little less clear cut. When the │ │ │ │ │ vertices in the bipartite graph have unit weight, the process is straightforward. │ │ │ │ │ • Find a maximum matching. │ │ │ │ │ 1 │ │ │ │ │ - 2 BPG : DRAFT October 18, 2025 │ │ │ │ │ + 2 BPG : DRAFT October 28, 2025 │ │ │ │ │ • Drop an alternating level structure from exposed nodes in X. │ │ │ │ │ • Drop an alternating level structure from exposed nodes in Y . │ │ │ │ │ • Based on the two previous steps, partition X into three pieces and Y into three pieces and form a new │ │ │ │ │ separator from the pieces. │ │ │ │ │ (If these terms are not familiar, see [?]; our present purpose is a discussion of software design, not algorithms.) │ │ │ │ │ Amatching is a very common operation on a bipartite graph, so it is not unreasonable to expand the data │ │ │ │ │ object to include some mechanism for matching, e.g., a mate[] vector. Finding a maximum matching is │ │ │ │ │ @@ -78,15 +78,15 @@ │ │ │ │ │ b │ │ │ │ │ separator size. But, if we consider S ∪ (Adj(S) ∩ B) to be a wide separator, the resulting separator S need │ │ │ │ │ not be a separator with minimal weight that is found within the wide separator. The trick is that some │ │ │ │ │ nodes in Adj(S)∩B might be absorbed into W. │ │ │ │ │ Onecanfindaseparatorwith minimal weight from the wide separator S∪(Adj(S)∩B), in fact from any │ │ │ │ │ wide separator that contains S, by solving a max flow problem. The drawback is that the network induced │ │ │ │ │ by S∪(Adj(S)∩B) need not be bipartite. In other words, a bipartite induced graph necessarily implies two │ │ │ │ │ - BPG : DRAFT October 18, 2025 3 │ │ │ │ │ + BPG : DRAFT October 28, 2025 3 │ │ │ │ │ layers to the wide separator, but the converse does not hold. We were then free to examine wide separators │ │ │ │ │ that had more than two layers from which to find a minimal weight separator. It turns out that three layers │ │ │ │ │ is better than two, in practice. │ │ │ │ │ We did write a separate object to solve our max flow problem; see the Network object. To smooth a │ │ │ │ │ separator, i.e., to improve a 2-set partition, we no longer have need of the bipartite graph object. We leave │ │ │ │ │ the two Dulmage-Mendelsohn methods in the BPG object for historical and sentimental reasons. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ @@ -110,15 +110,15 @@ │ │ │ │ │ This method releases the storage for graph via a call to Graph clearData(), and then the structure’s │ │ │ │ │ fields are then set to their default values with a call to BPG setDefaultFields(). │ │ │ │ │ Error checking: If bpg is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void BPG_free ( BPG *bpg ) ; │ │ │ │ │ This method releases any storage by a call to BPG clearData()then free’s the storage for the structure │ │ │ │ │ with a call to free(). │ │ │ │ │ Error checking: If bpg is NULL, an error message is printed and the program exits. │ │ │ │ │ - 4 BPG : DRAFT October 18, 2025 │ │ │ │ │ + 4 BPG : DRAFT October 28, 2025 │ │ │ │ │ 1.2.2 Initializer methods │ │ │ │ │ There are two initializer methods. │ │ │ │ │ 1. void BPG_init ( BPG *bpg, int nX, int nY, Graph *graph ) ; │ │ │ │ │ This method initializes the BPG object when all three of its fields are given in the calling sequence. The │ │ │ │ │ Graphobject has nX + nY vertices. Note, the BPG object now “owns” the Graph object and so will free │ │ │ │ │ the Graph object when it is free’d. The Graph object may contains edges between nodes in X and Y, │ │ │ │ │ but these edges are swapped to the end of each adjacency list and the size of each list is then set. │ │ │ │ │ @@ -151,15 +151,15 @@ │ │ │ │ │ int mark[], int tag ) ; │ │ │ │ │ This method drops a level structure from vertex root, fills the dist[] vector with the distances from │ │ │ │ │ root, and returns the number of levels created. The mark[] vector is used to mark nodes with the tag │ │ │ │ │ value as they are placed in the level structure. The list[] vector is used to accumulate the nodes as │ │ │ │ │ they are placed in the level structure. │ │ │ │ │ Error checking: If bpg, list, dist or mark is NULL, or if root is not in [0, nX+nY), an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - BPG : DRAFT October 18, 2025 5 │ │ │ │ │ + BPG : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.5 Dulmage-Mendelsohn decomposition method │ │ │ │ │ There is one method to find the Dulmage-Mendelsohn decomposition that uses matching when the graph │ │ │ │ │ is unit weight and a generalized matching technique otherwise. There is a second method to find the │ │ │ │ │ decomposition using a Ford-Fulkerson algorithm to find a max flow and a min-cut on a bipartite network. │ │ │ │ │ This has largely been superceded by the Network object. │ │ │ │ │ 1. void BPG_DMdecomposition ( BPG *bpg, int dmflags[], int stats[], │ │ │ │ │ int msglvl, FILE *msgFile ) │ │ │ │ │ @@ -204,15 +204,15 @@ │ │ │ │ │ the value returned from the called routine. │ │ │ │ │ Error checking: If bpg or fn is NULL, or if fn is not of the form *.bpgf (for a formatted file) or *.bpgb │ │ │ │ │ (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 2. int BPG_readFromFormattedFile ( BPG *bpg, FILE *fp ) ; │ │ │ │ │ This method reads a BPG object from a formatted file. If there are no errors in reading the data, the │ │ │ │ │ value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If bpg or fp is NULL an error message is printed and zero is returned. │ │ │ │ │ - 6 BPG : DRAFT October 18, 2025 │ │ │ │ │ + 6 BPG : DRAFT October 28, 2025 │ │ │ │ │ 3. int BPG_readFromBinaryFile ( BPG *bpg, FILE *fp ) ; │ │ │ │ │ This method reads a BPG object from a binary file. If there are no errors in reading the data, the value │ │ │ │ │ 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ Error checking: If bpg or fp is NULL an error message is printed and zero is returned. │ │ │ │ │ 4. int BPG_writeToFile ( BPG *bpg, char *fn ) ; │ │ │ │ │ ThismethodwritesaBPGobjecttoafile. Themethodtriestoopenthefileandifitissuccessful,it then │ │ │ │ │ calls BPG writeFromFormattedFile()or BPG writeFromBinaryFile(),closes the file and returns the │ │ │ │ │ @@ -243,15 +243,15 @@ │ │ │ │ │ BPG writeStats() method). │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means the BPG │ │ │ │ │ object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The inFile parameter is the input file for the BPG object. It must be of the form *.bpgf or │ │ │ │ │ *.bpgb. The BPG object is read from the file via the BPG readFromFile() method. │ │ │ │ │ - BPG : DRAFT October 18, 2025 7 │ │ │ │ │ + BPG : DRAFT October 28, 2025 7 │ │ │ │ │ • The outFile parameter is the output file for the BPG object. If outFile is none then the BPG │ │ │ │ │ object is not written to a file. Otherwise, the BPG writeToFile() method is called to write the │ │ │ │ │ graph to a formatted file (if outFile is of the form *.bpgf), or a binary file (if outFile is of the │ │ │ │ │ form *.bpgb). │ │ │ │ │ 2. extractBPG msglvl msgFile inGraphFile inCompidsIVfile │ │ │ │ │ icomp outMapFile outBPGfile │ │ │ │ │ This driver program reads in a Graph object and an IV object that contains the component ids. (A │ │ ├── ./usr/share/doc/spooles-doc/Chv.ps.gz │ │ │ ├── Chv.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Chv.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2516,15 +2516,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2718,81 +2717,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5382,15 +5376,15 @@ │ │ │ │ X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Ff 134[71 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 │ │ │ │ 41 61 75 60 1[65 13[75 2[92 11[103 16[67 67 67 2[37 46[{}25 │ │ │ │ 119.552 /CMBX12 rf /Fg 132[52 8[43 1[58 52 58 10[46 99[{}6 │ │ │ │ 90.9091 /CMBX10 rf /Fh 149[25 2[45 45 60[91 19[71 71 │ │ │ │ 17[71 1[71{}8 90.9091 /CMSY10 rf /Fi 139[35 1[36 2[45 │ │ │ │ -9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Fj 138[56 1[42 55 1[51 2[68 47 58 │ │ │ │ 4[49 51 1[54 1[56 97[{}11 90.9091 /CMCSC10 rf /Fk 163[47 │ │ │ │ 77[35 14[{}2 66.4176 /CMSY8 rf /Fl 134[44 42 2[49 30 │ │ │ │ 37 38 42 46 46 51 74 23 42 1[28 46 42 28 42 46 42 42 │ │ │ │ 46 12[65 1[66 11[59 62 69 2[68 6[28 44[53 1[56 11[{}31 │ │ │ │ 90.9091 /CMTI10 rf /Fm 133[48 48 48 48 48 48 48 48 48 │ │ │ │ 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 1[48 │ │ │ │ @@ -5519,15 +5513,15 @@ │ │ │ │ Fn(\),)f(then)h(w)m(e)g(can)g(mo)s(dify)0 5272 y(the)31 │ │ │ │ b Fm(Chv)e Fn(ob)5 b(ject)31 b(to)g(handle)f(unequal)g(ro)m(ws)h(and)e │ │ │ │ (columns.)141 5407 y(During)h(a)h(factorization,)i(a)e(fron)m(t)f(has)h │ │ │ │ (to)g(tak)m(e)h(part)e(in)g(four)g(distinct)g(op)s(erations.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 136 100 1153 4 v │ │ │ │ -1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 111 399 a Fn(1.)46 b(Assem)m(ble)39 b(en)m(tries)g(from)f │ │ │ │ (the)h(original)g(matrix)g(\(or)g(matrix)f(p)s(encil\).)65 │ │ │ │ b(\(See)39 b(the)g Fm(Chv)p 3300 399 29 4 v 33 w(addChevron\(\))227 │ │ │ │ 511 y Fn(metho)s(d.\))111 698 y(2.)46 b(Accum)m(ulate)32 │ │ │ │ b(up)s(dates)e(from)g(descendan)m(t)g(fron)m(ts.)41 b(\(See)31 │ │ │ │ b(the)f Fm(Chv)p 2548 698 V 34 w(update)p Fh(f)p Fm(S,H,N)p │ │ │ │ Fh(g)p Fm(\(\))e Fn(metho)s(ds.\))111 885 y(3.)46 b(Assem)m(ble)21 │ │ │ │ @@ -5712,15 +5706,15 @@ │ │ │ │ b(ject,)34 b(meaning)e(it)g(is)g(designed)g(so)g(that)h(only)0 │ │ │ │ 5407 y(one)h(thread)g(or)f(pro)s(cess)h(\\o)m(wns")g(or)g(op)s(erates)g │ │ │ │ (on)g(a)g(particular)g Fm(Chv)f Fn(ob)5 b(ject.)51 b(A)34 │ │ │ │ b Fm(Chv)f Fn(ob)5 b(ject)35 b(is)e(an)h(\\atom")p eop │ │ │ │ end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1153 4 v 1335 100 a Fm(Chv)29 │ │ │ │ -b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2700 100 V 1153 w Fn(3)0 399 y(of)38 b(comm)m(unication.)63 │ │ │ │ b(It)37 b(stores)h(p)s(ostp)s(oned)e(ro)m(ws)h(and)g(columns)g(to)h(b)s │ │ │ │ (e)f(assem)m(bled)h(in)f(a)g(paren)m(t)h(fron)m(t.)62 │ │ │ │ b(It)0 511 y(migh)m(t)28 b(ha)m(v)m(e)h(to)f(b)s(e)f(written)g(to)h │ │ │ │ (and)f(read)g(from)g(a)h(\014le)f(in)h(an)f(out-of-core)i(implemen)m │ │ │ │ (tation.)41 b(In)27 b(a)h(distributed)0 624 y(en)m(vironmen)m(t,)34 │ │ │ │ b(it)e(is)h(comm)m(unicated)g(b)s(et)m(w)m(een)g(pro)s(cesses.)46 │ │ │ │ @@ -5791,15 +5785,15 @@ │ │ │ │ (address)e(of)i(the)f Fm(int)g Fn(v)m(ector)i(that)f(con)m(tains)g │ │ │ │ (column)g(indices.)137 5407 y Fe(\210)45 b Fm(double)h(*entries)22 │ │ │ │ b Fn(:)37 b(p)s(oin)m(ter)23 b(to)h(the)g(base)g(address)e(of)i(the)g │ │ │ │ Fm(double)d Fn(v)m(ector)k(that)g(con)m(tains)f(the)g(en)m(tries.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 136 100 1153 4 v │ │ │ │ -1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 137 399 a Fe(\210)45 b Fm(DV)i(wrkDV)29 b │ │ │ │ Fn(:)i(ob)5 b(ject)31 b(that)g(manages)g(the)g(o)m(wned)f(w)m(orking)h │ │ │ │ (storage.)137 586 y Fe(\210)45 b Fm(Chv)i(*next)29 b │ │ │ │ Fn(:)41 b(link)30 b(to)h(a)g(next)f(ob)5 b(ject)32 b(in)e(a)h(singly)f │ │ │ │ (link)m(ed)h(list.)141 798 y(One)f(can)h(query)f(the)g(t)m(yp)s(e)h │ │ │ │ (and)e(symmetry)h(of)h(the)f(ob)5 b(ject)32 b(using)e(these)g(simple)h │ │ │ │ (macros.)137 1011 y Fe(\210)45 b Fm(CHV)p 377 1011 29 │ │ │ │ @@ -5861,15 +5855,15 @@ │ │ │ │ Fn(and)i(then)h(free)g(the)h(space)f(for)227 5257 y Fm(chv)p │ │ │ │ Fn(.)227 5407 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fn(If)30 b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g(message)h │ │ │ │ (is)g(prin)m(ted)f(and)g(the)g(program)g(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1153 4 v 1335 100 a Fm(Chv)29 │ │ │ │ -b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2700 100 V 1153 w Fn(5)0 399 y Fc(1.2.2)112 b(Instance)38 │ │ │ │ b(metho)s(ds)111 595 y Fn(1.)46 b Fm(int)h(Chv_id)f(\()i(Chv)f(*chv)f │ │ │ │ (\))i(;)227 746 y Fn(This)30 b(metho)s(d)g(returns)f(the)h │ │ │ │ Fl(id)h Fn(of)g(the)f(ob)5 b(ject.)227 897 y Fl(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fn(If)30 b Fm(chv)g Fn(is)g │ │ │ │ Fm(NULL)p Fn(,)g(an)g(error)g(message)h(is)g(prin)m(ted)f(and)g(zero)h │ │ │ │ (is)f(returned.)111 1086 y(2.)46 b Fm(int)h(Chv_type)f(\()h(Chv)g(*chv) │ │ │ │ @@ -5931,15 +5925,15 @@ │ │ │ │ b Fn(en)m(tries,)g(equal)f(to)g(one)g(half)g(the)f(n)m(um)m(b)s(er)227 │ │ │ │ 5256 y(of)j(double)f(precision)g(en)m(tries)h(that)g(are)g(stored.)227 │ │ │ │ 5407 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fn(If)30 │ │ │ │ b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g(message)h(is)g(prin)m │ │ │ │ (ted)f(and)g(zero)h(is)f(returned.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fn(6)p 136 100 1153 4 v │ │ │ │ -1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 111 399 a Fn(8.)46 b Fm(double)g(*)i(Chv_entries)d(\()i(Chv) │ │ │ │ g(*chv)g(\))g(;)227 548 y Fn(This)40 b(metho)s(d)h(returns)f(the)h │ │ │ │ Fl(entries)g Fn(\014eld)g(of)g(the)g(ob)5 b(ject,)45 │ │ │ │ b(a)c(p)s(oin)m(ter)g(to)h(the)f(base)g(lo)s(cation)i(of)e(the)227 │ │ │ │ 661 y(double)30 b(precision)h(arra)m(y)g(that)g(stores)f(the)h(complex) │ │ │ │ g(data.)227 810 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fn(If)30 b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g(message)h │ │ │ │ @@ -6021,15 +6015,15 @@ │ │ │ │ b(cking:)45 b Fn(If)32 b Fm(chv)p Fn(,)h Fm(pReal)e Fn(or)i │ │ │ │ Fm(pImag)e Fn(is)i Fm(NULL)p Fn(,)f(or)h(if)g Fm(irow)e │ │ │ │ Fn(or)i Fm(jcol)f Fn(is)h(out)g(of)g(range,)h(an)e(error)227 │ │ │ │ 5407 y(message)g(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1153 4 v 1335 100 a Fm(Chv)29 │ │ │ │ -b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2700 100 V 1153 w Fn(7)66 399 y(15.)46 b Fm(Chv_locationOfComplexEntr)o │ │ │ │ (y)c(\()47 b(Chv)g(*chv,)g(int)g(irow,)f(int)h(jcol,)1611 │ │ │ │ 511 y(double)f(**ppReal,)g(double)g(**ppImag)f(\))j(;)227 │ │ │ │ 666 y Fn(This)29 b(metho)s(d)g(\014lls)h Fm(*ppReal)e │ │ │ │ Fn(with)h(a)h(p)s(oin)m(ter)g(to)h(the)f(real)g(part)g(and)f │ │ │ │ Fm(*ppImag)f Fn(with)h(a)h(p)s(oin)m(ter)g(to)h(the)227 │ │ │ │ 779 y(imaginary)37 b(part)g(of)f(the)h(en)m(try)f(in)g(ro)m(w)h │ │ │ │ @@ -6104,15 +6098,15 @@ │ │ │ │ Fm(Chv)f Fn(ob)5 b(ject)33 b(is)f(sen)m(t)h(and)227 5253 │ │ │ │ y(receiv)m(ed.)227 5407 y Fl(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fn(If)30 b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)g(zero)h(is)f(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fn(8)p 136 100 1153 4 v │ │ │ │ -1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fm(Chv)30 b Fi(:)40 b Fl(DRAFT)31 b Fi(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 0 399 a Fc(1.2.4)112 b(Searc)m(h)38 b(metho)s(ds)111 │ │ │ │ 604 y Fn(1.)46 b Fm(int)h(Chv_maxabsInDiagonal11)42 b(\()47 │ │ │ │ b(Chv)g(*chv,)g(int)g(mark[],)e(int)i(tag,)g(double)f(*pmaxval)g(\))h │ │ │ │ (;)227 763 y Fn(This)34 b(metho)s(d)g(returns)f(the)i(lo)s(cation)h(of) │ │ │ │ f(the)g(\014rst)f(tagged)i(elemen)m(t)g(with)e(the)h(largest)h │ │ │ │ (magnitude)e(in)227 876 y(the)i(diagonal)i(of)e(the)g(\(1,1\))i(blo)s │ │ │ │ (c)m(k.)58 b(Elemen)m(t)37 b Fm(jj)e Fn(m)m(ust)h(ha)m(v)m(e)h │ │ │ │ @@ -6182,15 +6176,15 @@ │ │ │ │ Fn(is)h(not)g(in)g Fm([0,n1-1])p Fn(,)f(an)g(error)h(message)h(is)f │ │ │ │ (prin)m(ted)g(and)227 5089 y(the)d(program)f(exits.)111 │ │ │ │ 5294 y(5.)46 b Fm(int)h(Chv_maxabsInColumn)c(\()k(Chv)g(*chv,)g(int)g │ │ │ │ (jcol,)f(int)h(rowmark[],)1420 5407 y(int)g(tag,)g(double)f(*pmaxval)g │ │ │ │ (\))h(;)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1153 4 v 1335 100 a Fm(Chv)29 │ │ │ │ -b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fi(:)41 b Fl(DRAFT)121 b Fi(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2700 100 V 1153 w Fn(9)227 399 y(This)g(metho)s(d)g(returns)g(the)h(lo) │ │ │ │ s(cation)h(of)f(the)g(\014rst)f(elemen)m(t)i(with)f(the)g(largest)h │ │ │ │ (magnitude)f(in)f(column)227 511 y Fm(jcol)p Fn(.)52 │ │ │ │ b(Elemen)m(t)35 b Fm(jj)f Fn(m)m(ust)g(ha)m(v)m(e)i Fm(rowmark[jj])45 │ │ │ │ b(=)i(tag)33 b Fn(to)j(b)s(e)d(eligible.)55 b(Its)34 │ │ │ │ b(magnitude)h(is)f(returned)227 624 y(in)28 b Fm(*pmaxval)p │ │ │ │ Fn(.)38 b(Note,)30 b(if)e(the)h(c)m(hevron)f(is)g(complex,)i(the)e(lo)s │ │ │ │ @@ -6276,15 +6270,15 @@ │ │ │ │ Fn(1)33 b(or)f(2)22 b Fh(\002)f Fn(2)32 b(piv)m(ot.)47 │ │ │ │ b(If)31 b(the)i(c)m(hevron)227 5294 y(is)d(nonsymmetric,)g(w)m(e)h │ │ │ │ (only)f(\014nd)e(a)i(1)20 b Fh(\002)f Fn(1)30 b(piv)m(ot.)42 │ │ │ │ b(A)30 b(return)e(v)-5 b(alue)31 b(of)f(zero)h(means)e(that)i(no)f(piv) │ │ │ │ m(ot)h(w)m(as)227 5407 y(found.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fn(10)p 182 100 1131 4 │ │ │ │ -v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 227 399 a Fl(Err)-5 b(or)47 b(che)-5 │ │ │ │ b(cking:)67 b Fn(If)43 b Fm(chv)p Fn(,)j Fm(workDV)p │ │ │ │ Fn(,)d Fm(pirow)p Fn(,)j Fm(pjcol)c Fn(or)i Fm(pntest)e │ │ │ │ Fn(is)h Fm(NULL)p Fn(,)g(or)h(if)g Fm(tau)j Fb(<)g Fn(1)p │ │ │ │ Fb(:)p Fn(0,)h(or)c(if)227 511 y Fm(ndelay)24 b Fb(<)h │ │ │ │ Fn(0,)31 b(an)f(error)g(message)i(is)e(prin)m(ted)g(and)g(the)g │ │ │ │ (program)g(exits.)0 782 y Fc(1.2.6)112 b(Up)s(date)39 │ │ │ │ @@ -6384,15 +6378,15 @@ │ │ │ │ (cation)i Fm(\(ichv-off,)45 b(ichv\))28 b Fn(of)h(the)g(matrix.)227 │ │ │ │ 5407 y(The)35 b(v)-5 b(alue\(s\))37 b(in)e Fm(alpha[])e │ │ │ │ Fn(form)i(a)h(scalar)h(used)d(to)i(scale)h(the)f(en)m(tire)g(c)m │ │ │ │ (hevron)g(for)f(its)h(assem)m(bly)-8 b(.)57 b(A)p eop │ │ │ │ end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(11)227 399 y(call)e(to)g(assem)m(ble)g(en)m(tries) │ │ │ │ g(in)e Fb(A)h Fn(\(from)g(the)g(p)s(encil)g Fb(A)15 b │ │ │ │ Fn(+)g Fb(\033)s(B)5 b Fn(\))28 b(w)m(ould)f(ha)m(v)m(e)i │ │ │ │ Fm(alpha[])46 b(=)i(\(1.0,0.0\))p Fn(;)26 b(to)227 511 │ │ │ │ y(assem)m(ble)32 b(en)m(tries)f(in)f Fb(B)35 b Fn(\(from)30 │ │ │ │ b(the)g(p)s(encil)h Fb(A)20 b Fn(+)g Fb(\033)s(B)5 b │ │ │ │ Fn(\))30 b(w)m(ould)g(ha)m(v)m(e)i Fm(alpha[])23 b Fn(=)i(\()p │ │ │ │ @@ -6482,15 +6476,15 @@ │ │ │ │ (try)g(is)g(found)e(in)i(the)g(diagonal)g(elemen)m(t)227 │ │ │ │ 5294 y(that)45 b(is)f(to)h(b)s(e)f(eliminated,)49 b(some)c(action)h │ │ │ │ (can)e(b)s(e)g(tak)m(en.)83 b(The)44 b(return)f(v)-5 │ │ │ │ b(alue)45 b(is)f(the)h(n)m(um)m(b)s(er)e(of)227 5407 │ │ │ │ y(eliminated)32 b(ro)m(ws)e(and)g(columns.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fn(12)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 227 399 a Fl(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fn(If)30 b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)g(the)g(program)g(exits.)111 │ │ │ │ 588 y(3.)46 b Fm(int)h(Chv_r1upd)e(\()j(Chv)f(*chv)f(\))i(;)227 │ │ │ │ 739 y Fn(This)29 b(metho)s(d)f(is)i(used)e(during)g(the)h │ │ │ │ (factorization)j(of)e(a)f(fron)m(t,)h(p)s(erforming)e(a)i(rank-one)f │ │ │ │ (up)s(date)f(of)i(the)227 852 y(c)m(hevron.)41 b(The)30 │ │ │ │ @@ -6560,15 +6554,15 @@ │ │ │ │ (upp)s(er)e(en)m(tries)i(in)f(the)g(\(1,1\))j(blo)s(c)m(k)337 │ │ │ │ 5407 y Fe(\210)45 b Fm(CHV)p 577 5407 V 34 w(UPPER)p │ │ │ │ 851 5407 V 33 w(12)30 b Fn(=)-16 b Fh(\))30 b Fn(coun)m(t)h(upp)s(er)e │ │ │ │ (en)m(tries)i(in)f(the)g(\(1,2\))j(blo)s(c)m(k)p eop │ │ │ │ end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(13)227 399 y(This)f(metho)s(d)g(is)g(used)g(to)h │ │ │ │ (compute)f(the)h(necessary)g(storage)h(to)f(store)g(a)g(c)m(hevron)f │ │ │ │ (as)h(a)g(dense)f(fron)m(t.)227 551 y Fl(Err)-5 b(or)36 │ │ │ │ b(che)-5 b(cking:)45 b Fn(If)32 b Fm(chv)g Fn(is)h Fm(NULL)e │ │ │ │ Fn(or)i(if)g Fm(countflag)d Fn(is)i(not)h(v)-5 b(alid,)34 │ │ │ │ b(an)f(error)f(message)i(is)e(prin)m(ted)h(and)227 664 │ │ │ │ y(the)e(program)f(exits.)111 855 y(2.)46 b Fm(int)h │ │ │ │ @@ -6650,15 +6644,15 @@ │ │ │ │ Fn(is)h Fm(NULL)e Fn(or)i(if)f Fm(length)f Fn(is)i(less)g(than)f(the)h │ │ │ │ (n)m(um)m(b)s(er)e(of)i(en)m(tries)g(to)h(b)s(e)227 5294 │ │ │ │ y(copied,)k(or)d(if)g Fm(copyflag)e Fn(or)j Fm(storeflag)c │ │ │ │ Fn(is)k(v)-5 b(alid,)37 b(an)e(error)g(message)i(is)e(prin)m(ted)g(and) │ │ │ │ g(the)g(program)227 5407 y(exits.)p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fn(14)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 111 399 a Fn(4.)46 b Fm(int)h │ │ │ │ (Chv_copyBigEntriesToVecto)o(r)42 b(\()47 b(Chv)g(*chv,)g(int)f │ │ │ │ (npivot,)g(int)h(pivotsizes[],)1420 511 y(int)g(sizes[],)f(int)h │ │ │ │ (ivec[],)f(double)g(dvec[],)1420 624 y(int)h(copyflag,)f(int)h │ │ │ │ (storeflag,)e(double)h(droptol)f(\))j(;)227 769 y Fn(This)32 │ │ │ │ b(metho)s(d)f(also)j(copies)f(some)g(en)m(tries)g(the)f(c)m(hevron)h │ │ │ │ (ob)5 b(ject)33 b(in)m(to)g(a)g(double)f(precision)g(v)m(ector,)j(but) │ │ │ │ @@ -6749,15 +6743,15 @@ │ │ │ │ b(The)36 b(ro)m(w)g(ids)f(of)i(the)f(t)m(w)m(o)h(ro)m(ws)f(are)g(also)h │ │ │ │ (sw)m(app)s(ed.)57 b(If)35 b(the)i(c)m(hevron)f(is)227 │ │ │ │ 5407 y(symmetric,)31 b(then)f(the)h(metho)s(d)f Fm(Chv)p │ │ │ │ 1540 5407 V 33 w(swapRowsAndColumns\(\))25 b Fn(is)30 │ │ │ │ b(called.)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(15)227 399 y Fl(Err)-5 b(or)35 b(che)-5 │ │ │ │ b(cking:)43 b Fn(If)31 b Fm(chv)g Fn(is)h Fm(NULL)e Fn(or)i(if)g │ │ │ │ Fm(irow)e Fn(or)i Fm(jrow)e Fn(are)i(less)g(than)f(0)i(or)e(greater)i │ │ │ │ (than)e(or)h(equal)g(to)227 511 y Fm(nD)p Fn(,)e(an)h(error)f(message)h │ │ │ │ (is)f(prin)m(ted)g(and)g(the)h(program)f(exits.)111 699 │ │ │ │ y(2.)46 b Fm(void)h(Chv_swapColumns)d(\()j(Chv)g(*chv,)f(int)h(icol,)g │ │ │ │ (int)f(jcol)h(\))h(;)227 849 y Fn(This)29 b(metho)s(d)g(sw)m(aps)g │ │ │ │ @@ -6829,15 +6823,15 @@ │ │ │ │ Fn(c)m(hevrons)i(are)g(remo)m(v)m(ed)g(from)f(the)h(c)m(hevron.)75 │ │ │ │ b(If)41 b Fm(shift)f Fn(is)227 5407 y(negativ)m(e,)j(the)38 │ │ │ │ b Fm(shift)f Fn(previous)g(c)m(hevrons)h(are)h(prep)s(ended)d(to)i(the) │ │ │ │ h(c)m(hevron.)64 b(This)37 b(is)h(a)g(dangerous)p eop │ │ │ │ end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fn(16)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 227 399 a Fn(metho)s(d)j(as)h(it)g(c)m(hanges)h(the) │ │ │ │ e(state)i(of)f(the)g(ob)5 b(ject.)54 b(W)-8 b(e)35 b(use)g(it)g(during) │ │ │ │ e(the)i(factorization)i(of)e(a)g(fron)m(t,)227 511 y(where)c(one)g │ │ │ │ Fm(Chv)e Fn(ob)5 b(ject)32 b(p)s(oin)m(ts)f(to)g(the)g(en)m(tire)h(c)m │ │ │ │ (hevron)f(in)f(order)g(to)i(sw)m(ap)e(ro)m(ws)h(and)f(columns,)h(while) │ │ │ │ 227 624 y(another)36 b(c)m(hevron)g(p)s(oin)m(ts)g(to)g(the)g │ │ │ │ (uneliminated)g(ro)m(ws)g(and)f(columns)g(of)h(the)g(fron)m(t.)57 │ │ │ │ @@ -6893,15 +6887,15 @@ │ │ │ │ 5234 y Fn(This)30 b(metho)s(d)g(zero)s(es)h(the)f(en)m(tries)h(in)f │ │ │ │ (the)h(c)m(hevron.)227 5407 y Fl(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fn(If)30 b Fm(chv)g Fn(is)g Fm(NULL)p Fn(,)g(an)g(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)g(the)g(program)g(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(17)0 399 y Fc(1.2.12)113 b(IO)37 │ │ │ │ b(metho)s(ds)111 592 y Fn(1.)46 b Fm(void)h(Chv_writeForHumanEye)42 │ │ │ │ b(\()48 b(Chv)f(*chv,)f(FILE)h(*fp)f(\))i(;)227 739 y │ │ │ │ Fn(This)30 b(metho)s(d)g(writes)g(a)h Fm(Chv)e Fn(ob)5 │ │ │ │ b(ject)32 b(to)f(a)f(\014le)h(in)f(an)g(easily)i(readable)f(format.)227 │ │ │ │ 887 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fn(If)30 │ │ │ │ b Fm(chv)g Fn(or)g Fm(fp)g Fn(are)h Fm(NULL)p Fn(,)e(an)h(error)g │ │ │ │ @@ -6963,15 +6957,15 @@ │ │ │ │ (en)m(tries)h(in)m(to)g(a)427 5294 y(fron)m(t.)41 b(Ho)m(w)m(ev)m(er,) │ │ │ │ 33 b(when)c(w)m(e)i(factor)g Fb(A)20 b Fn(+)g Fb(\013B)5 │ │ │ │ b Fn(,)31 b(the)f(en)m(tries)h(of)g Fb(B)j Fn(will)d(b)s(e)f(loaded)h │ │ │ │ (with)f Fm(alpha)e Fn(set)427 5407 y(equal)j(to)g Fb(\013)p │ │ │ │ Fn([0)c(:)e(1].)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fn(18)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 111 399 a Fn(2.)46 b Fm(test_assmbChv)e(msglvl)j │ │ │ │ (msgFile)e(nDJ)i(nUJ)g(nDI)g(nUI)g(type)g(symflag)e(seed)227 │ │ │ │ 553 y Fn(This)30 b(driv)m(er)h(program)g(tests)g(the)h │ │ │ │ Fm(Chv)p 1585 553 29 4 v 33 w(assembleChv)c Fn(metho)s(d.)42 │ │ │ │ b(It)31 b(assem)m(bles)g(a)h(c)m(hevron)f Fb(T)3517 567 │ │ │ │ y Fa(I)3588 553 y Fn(in)m(to)h Fb(T)3826 567 y Fa(J)3875 │ │ │ │ 553 y Fn(,)227 666 y(as)c(is)f(done)h(during)e(the)h(assem)m(bly)h(of)g │ │ │ │ @@ -7050,15 +7044,15 @@ │ │ │ │ b Fn(The)32 b Fm(pivotingflag)d Fn(parameter)k(is)g(the)g(piv)m(oting)g │ │ │ │ (\015ag)g(|)g Fm(SPOOLES)p 2906 5294 V 32 w(NO)p 3034 │ │ │ │ 5294 V 34 w(PIVOTING)d Fn(for)j(no)f(piv-)427 5407 y(oting,)g │ │ │ │ Fm(SPOOLES)p 1027 5407 V 32 w(PIVOTING)c Fn(for)j(piv)m(oting.)p │ │ │ │ eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(19)337 399 y Fe(\210)45 b Fn(The)35 │ │ │ │ b Fm(storeflag)e Fn(parameter)j(is)g(the)g(storage)h(\015ag,)g(to)g │ │ │ │ (store)f(b)m(y)f(ro)m(ws,)i(use)f Fm(SPOOLES)p 3528 399 │ │ │ │ 29 4 v 32 w(BY)p 3656 399 V 34 w(ROWS)p Fn(,)427 511 │ │ │ │ y(to)31 b(store)g(b)m(y)g(columns,)f(use)g Fm(SPOOLES)p │ │ │ │ 1766 511 V 32 w(BY)p 1894 511 V 34 w(COLUMNS)p Fn(.)337 │ │ │ │ 651 y Fe(\210)45 b Fn(The)30 b Fm(seed)f Fn(parameter)i(is)g(a)f │ │ │ │ @@ -7136,15 +7130,15 @@ │ │ │ │ Fm(msgFile)e Fn(is)i Fm(stdout)p Fn(,)g(then)g(the)427 │ │ │ │ 5294 y(message)27 b(\014le)f(is)g Fl(stdout)p Fn(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fl(app)-5 b(end)28 │ │ │ │ b Fn(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 5407 │ │ │ │ y(data.)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fn(20)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 337 399 a Fe(\210)45 b Fn(The)30 b │ │ │ │ Fm(nD)g Fn(parameter)h(is)f(the)h(n)m(um)m(b)s(er)e(of)h(ro)m(ws)h(and) │ │ │ │ e(columns)h(in)h(the)f(\(1,1\))i(blo)s(c)m(k.)337 551 │ │ │ │ y Fe(\210)45 b Fn(The)30 b Fm(nU)g Fn(parameter)h(is)f(the)h(n)m(um)m │ │ │ │ (b)s(er)e(of)h(columns)g(in)g(the)h(\(1,2\))h(blo)s(c)m(k.)337 │ │ │ │ 703 y Fe(\210)45 b Fn(The)30 b Fm(type)f Fn(parameter)i(denotes)g(the)g │ │ │ │ (t)m(yp)s(e)f(of)h(en)m(tries)g(|)f Fm(SPOOLES)p 2818 │ │ │ │ @@ -7218,15 +7212,15 @@ │ │ │ │ Fn(,)e Fm(colerror11)f Fn(and)h Fm(diag11error)p Fn(.)59 │ │ │ │ b(All)38 b(should)f(b)s(e)227 5067 y(zero.)337 5294 y │ │ │ │ Fe(\210)45 b Fn(The)f Fm(msglvl)e Fn(parameter)j(determines)f(the)g │ │ │ │ (amoun)m(t)h(of)f(output.)82 b(Use)44 b Fm(msglvl)i(=)i(1)c │ │ │ │ Fn(for)g(just)427 5407 y(timing)31 b(output.)p eop end │ │ │ │ %%Page: 21 21 │ │ │ │ TeXDict begin 21 20 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(21)337 399 y Fe(\210)45 b Fn(The)33 │ │ │ │ b Fm(msgFile)e Fn(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fm(msgFile)e Fn(is)i Fm(stdout)p Fn(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Fl(stdout)p Fn(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fl(app)-5 b(end)28 │ │ │ │ b Fn(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 772 y Fe(\210)45 b Fn(The)30 b Fm(nD)g Fn(parameter)h(is)f │ │ │ │ @@ -7298,15 +7292,15 @@ │ │ │ │ b Fm(nU)g Fn(parameter)h(is)f(the)h(n)m(um)m(b)s(er)e(of)h(columns)g │ │ │ │ (in)g(the)h(\(1,2\))h(blo)s(c)m(k.)337 5407 y Fe(\210)45 │ │ │ │ b Fn(The)30 b Fm(type)f Fn(parameter)i(denotes)g(the)g(t)m(yp)s(e)f(of) │ │ │ │ h(en)m(tries)g(|)f Fm(SPOOLES)p 2818 5407 V 32 w(REAL)g │ │ │ │ Fn(or)g Fm(SPOOLES)p 3519 5407 V 32 w(COMPLEX)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fn(22)p 182 100 1131 │ │ │ │ -4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(18,)g │ │ │ │ +4 v 1313 w Fm(Chv)29 b Fi(:)41 b Fl(DRAFT)30 b Fi(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2770 100 V 337 399 a Fe(\210)45 b Fn(The)20 b │ │ │ │ Fm(symflag)e Fn(parameter)j(is)f(the)h(symmetry)f(\015ag)g(|)g │ │ │ │ Fm(SPOOLES)p 2640 399 29 4 v 33 w(SYMMETRIC)p Fn(,)e │ │ │ │ Fm(SPOOLES)p 3484 399 V 32 w(HERMITIAN)427 511 y Fn(or)31 │ │ │ │ b Fm(SPOOLES)p 881 511 V 32 w(NONSYMMETRIC)p Fn(.)337 │ │ │ │ 659 y Fe(\210)45 b Fn(The)30 b Fm(seed)f Fn(parameter)i(is)g(a)f │ │ │ │ (random)g(n)m(um)m(b)s(er)f(seed.)66 876 y(10.)46 b Fm(test_swap)g │ │ │ │ @@ -7384,15 +7378,15 @@ │ │ │ │ (um)m(b)s(er)e(of)i(columns)f(in)g(the)g(\(1,1\))i(and)e(\(1,2\))i(blo) │ │ │ │ s(c)m(ks)f(of)g Fb(T)13 b Fn(.)337 5407 y Fe(\210)45 │ │ │ │ b Fn(The)30 b Fm(nDT)g Fn(parameter)g(is)h(the)f(n)m(um)m(b)s(er)g(of)g │ │ │ │ (ro)m(ws)g(and)g(columns)g(in)g(the)h(\(1,1\))h(blo)s(c)m(k)f(of)f │ │ │ │ Fb(T)13 b Fn(.)p eop end │ │ │ │ %%Page: 23 23 │ │ │ │ TeXDict begin 23 22 bop 91 100 1131 4 v 1312 100 a Fm(Chv)30 │ │ │ │ -b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fi(:)40 b Fl(DRAFT)121 b Fi(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2677 100 V 1131 w Fn(23)337 399 y Fe(\210)45 b Fn(The)30 │ │ │ │ b Fm(ncolU)f Fn(parameter)i(is)f(the)h(n)m(um)m(b)s(er)e(of)i(columns)f │ │ │ │ (in)g Fb(U)10 b Fn(.)337 545 y Fe(\210)45 b Fn(The)30 │ │ │ │ b Fm(nrowD)f Fn(parameter)i(is)f(the)h(n)m(um)m(b)s(er)e(of)i(ro)m(ws)f │ │ │ │ (and)g(columns)g(in)g Fb(D)s Fn(.)337 691 y Fe(\210)45 │ │ │ │ b Fn(The)30 b Fm(nentU)f Fn(parameter)i(is)f(the)h(n)m(um)m(b)s(er)e │ │ │ │ (en)m(tries)i(in)f Fb(U)10 b Fn(,)31 b(ignored)f(if)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ unnecessary, that we put on the Chv object — the number of rows in the (2,1) block and number of │ │ │ │ │ columns in the (1,2) block are equal. The Chv object is used within the context of a factorization of │ │ │ │ │ a sparse matrix that is assumed to have symmetric structure. If we ever extend the code to handle │ │ │ │ │ a true nonsymmetric structure factorization (e.g., umfpack and superlu), then we can modify │ │ │ │ │ the Chv object to handle unequal rows and columns. │ │ │ │ │ During a factorization, a front has to take part in four distinct operations. │ │ │ │ │ 1 │ │ │ │ │ - 2 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 2 Chv : DRAFT October 28, 2025 │ │ │ │ │ 1. Assemble entries from the original matrix (or matrix pencil). (See the Chv addChevron() │ │ │ │ │ method.) │ │ │ │ │ 2. Accumulate updates from descendant fronts. (See the Chv update{S,H,N}() methods.) │ │ │ │ │ 3. Assembleanypostponeddatafromitschildrenfronts. (SeetheChv assemblePostponedData() │ │ │ │ │ method.) │ │ │ │ │ 4. Computethefactorization ofthecompletely assembledfront. (SeetheChv factor()method.) │ │ │ │ │ The implementor of a front object has a great deal of freedom to design the underlying data │ │ │ │ │ @@ -65,15 +65,15 @@ │ │ │ │ │ defineitsrowsandcolumns. ForasymmetricorHermitianmatrix, weonlystorethecolumnindices. │ │ │ │ │ For a nonsymmetric matrix, we store the both the row and column indices. This second case may │ │ │ │ │ seem unnecessary, since we assume that the larger global matrix has symmetric structure. However, │ │ │ │ │ during a factorization with pivoting enabled, a pivot element may be chosen from anywhere in the │ │ │ │ │ (1,1) block, so the row indices and column indices may no longer be identical. │ │ │ │ │ AChv object is inherently a serial, single threaded object, meaning it is designed so that only │ │ │ │ │ one thread or process “owns” or operates on a particular Chv object. A Chv object is an “atom” │ │ │ │ │ - Chv : DRAFT October 18, 2025 3 │ │ │ │ │ + Chv : DRAFT October 28, 2025 3 │ │ │ │ │ of communication. It stores postponed rows and columns to be assembled in a parent front. It │ │ │ │ │ might have to be written to and read from a file in an out-of-core implementation. In a distributed │ │ │ │ │ environment, it is communicated between processes. For these reasons, we designed the object so │ │ │ │ │ that its data (the scalars that describe its dimensions, id and type, the row and column indices, │ │ │ │ │ and its entries) are found in contiguous storage managed by a DV object. A file operation can be │ │ │ │ │ done with a single read or write, a message can be sent without packing and unpacking data, or │ │ │ │ │ defining a new datatype. Managing working storage for a number of Chv objects is now simpler. │ │ │ │ │ @@ -100,15 +100,15 @@ │ │ │ │ │ • int symflag : symmetry flag │ │ │ │ │ – SPOOLES SYMMETRIC =⇒ symmetric entries │ │ │ │ │ – SPOOLES HERMITIAN =⇒ Hermitian entries │ │ │ │ │ – SPOOLES NONSYMMETRIC =⇒ nonsymmetric entries │ │ │ │ │ • int *rowind : pointer to the base address of the int vector that contains row indices. │ │ │ │ │ • int *colind : pointer to the base address of the int vector that contains column indices. │ │ │ │ │ • double *entries: pointer to the base address of the double vector that contains the entries. │ │ │ │ │ - 4 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 4 Chv : DRAFT October 28, 2025 │ │ │ │ │ • DV wrkDV : object that manages the owned working storage. │ │ │ │ │ • Chv *next : link to a next object in a singly linked list. │ │ │ │ │ One can query the type and symmetry of the object using these simple macros. │ │ │ │ │ • CHV IS REAL(chv) is 1 if chv has real entries and 0 otherwise. │ │ │ │ │ • CHV IS COMPLEX(chv) is 1 if chv has complex entries and 0 otherwise. │ │ │ │ │ • CHV IS SYMMETRIC(chv) is 1 if chv is symmetric and 0 otherwise. │ │ │ │ │ • CHV IS HERMITIAN(chv) is 1 if chv is Hermitian and 0 otherwise. │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ This method clears the object and free’s any owned data by invoking the clearData() │ │ │ │ │ methods for its internal DV object. There is a concluding call to Chv setDefaultFields(). │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void Chv_free ( Chv *chv ) ; │ │ │ │ │ This method releases any storage by a call to Chv clearData() and then free the space for │ │ │ │ │ chv. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and the program exits. │ │ │ │ │ - Chv : DRAFT October 18, 2025 5 │ │ │ │ │ + Chv : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. int Chv_id ( Chv *chv ) ; │ │ │ │ │ This method returns the id of the object. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and zero is returned. │ │ │ │ │ 2. int Chv_type ( Chv *chv ) ; │ │ │ │ │ This method returns the type of the object. │ │ │ │ │ • SPOOLES REAL =⇒ real entries │ │ │ │ │ @@ -167,15 +167,15 @@ │ │ │ │ │ Error checking: If chv, pncol or pcolind is NULL, an error message is printed and zero is │ │ │ │ │ returned. │ │ │ │ │ 7. int Chv_nent ( Chv *chv ) ; │ │ │ │ │ This method returns number of matrix entries that the object contains. Note, for a complex │ │ │ │ │ chevron, this is the number of double precision complex entries, equal to one half the number │ │ │ │ │ of double precision entries that are stored. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and zero is returned. │ │ │ │ │ - 6 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 6 Chv : DRAFT October 28, 2025 │ │ │ │ │ 8. double * Chv_entries ( Chv *chv ) ; │ │ │ │ │ This method returns the entries field of the object, a pointer to the base location of the │ │ │ │ │ double precision array that stores the complex data. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and zero is returned. │ │ │ │ │ 9. double * Chv_diagLocation ( Chv *chv, int ichv ) ; │ │ │ │ │ This method returns a pointer to the address of the entry in the ichv’th diagonal location. │ │ │ │ │ For a real chevron, to find the entry k places to the right of the diagonal entry, add k to the │ │ │ │ │ @@ -205,15 +205,15 @@ │ │ │ │ │ 14. void Chv_complexEntry ( Chv *chv, int irow, int jcol, │ │ │ │ │ double *pReal, double *pImag ) ; │ │ │ │ │ This method fills *pReal with the real part and *pImag with the imaginary part of the the │ │ │ │ │ entry in row irow and column jcol. Note, irow and jcol are local indices, i.e., 0 ≤ irow < │ │ │ │ │ nD+nLand0≤jcolentries[2*kk:2*kk+1]. │ │ │ │ │ @@ -281,15 +281,15 @@ │ │ │ │ │ in *pmaxval. Note, if the chevron is complex, the location is in terms of the complex entries, │ │ │ │ │ not in the real entries, i.e., if k = Chv maxabsRow(chv,...), then the complex entry is found │ │ │ │ │ in chv->entries[2*kk:2*kk+1]. │ │ │ │ │ Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 5. int Chv_maxabsInColumn ( Chv *chv, int jcol, int rowmark[], │ │ │ │ │ int tag, double *pmaxval ) ; │ │ │ │ │ - Chv : DRAFT October 18, 2025 9 │ │ │ │ │ + Chv : DRAFT October 28, 2025 9 │ │ │ │ │ This method returns the location of the first element with the largest magnitude in column │ │ │ │ │ jcol. Element jj must have rowmark[jj] = tag to be eligible. Its magnitude is returned │ │ │ │ │ in *pmaxval. Note, if the chevron is complex, the location is in terms of the complex entries, │ │ │ │ │ not in the real entries, i.e., if k = Chv maxabsColumn11(chv,...), then the complex entry │ │ │ │ │ is found in chv->entries[2*kk:2*kk+1]. │ │ │ │ │ Error checking: If chv is NULL or irow is not in [0,n1-1], an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ @@ -322,15 +322,15 @@ │ │ │ │ │ number of leading rows and columns to ignore, useful when delayed rows and columns have │ │ │ │ │ been placed in the leading portion of the chevron. The pirow, pjcol and pntest addresses │ │ │ │ │ are filled with the pivot row, pivot column, and number of pivot tests performed to find the │ │ │ │ │ pivot. If no pivot was found, pirow and pjcol are filled with -1. The return value is the size │ │ │ │ │ of the pivot. If the chevron is symmetric, we can find a 1 × 1 or 2 × 2 pivot. If the chevron │ │ │ │ │ is nonsymmetric, we only find a 1×1 pivot. A return value of zero means that no pivot was │ │ │ │ │ found. │ │ │ │ │ - 10 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 10 Chv : DRAFT October 28, 2025 │ │ │ │ │ Error checking: If chv, workDV, pirow, pjcol or pntest is NULL, or if tau < 1.0, or if │ │ │ │ │ ndelay < 0, an error message is printed and the program exits. │ │ │ │ │ 1.2.6 Update methods │ │ │ │ │ 1. void Chv_updateS ( Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV ) ; │ │ │ │ │ void Chv_updateH ( Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV ) ; │ │ │ │ │ void Chv_updateN ( Chv *chv, SubMtx *mtxL, SubMtx *mtxD, SubMtx *mtxU, │ │ │ │ │ DV *tempDV ) ; │ │ │ │ │ @@ -364,15 +364,15 @@ │ │ │ │ │ This method is used to assemble entries from the matrix pencil A+σB into the block chevron │ │ │ │ │ object. Typically the entries from A or B will come from a InpMtx object, one of whose modes │ │ │ │ │ of storage is by single chevrons. The value ichvis the row and column location of the diagonal │ │ │ │ │ entry. The indices found in chvind[] are offsets. Let off = chvind[ii] be the offset for one │ │ │ │ │ of the chevron’s entries. If off ≥ 0, then the entry is found in location (ichv, ichv+off) of │ │ │ │ │ the matrix. If off < 0, then the entry is found in location (ichv-off, ichv) of the matrix. │ │ │ │ │ The value(s) in alpha[] form a scalar used to scale the entire chevron for its assembly. A │ │ │ │ │ - Chv : DRAFT October 18, 2025 11 │ │ │ │ │ + Chv : DRAFT October 28, 2025 11 │ │ │ │ │ call to assemble entries in A (from the pencil A+σB) would have alpha[] = (1.0,0.0); to │ │ │ │ │ assemble entries in B (from the pencil A+σB) would have alpha[] = (Real(σ),Imag(σ)). │ │ │ │ │ Error checking: If chv, chvind, chvent or alpha is NULL, or if ichv or chvsize are less than │ │ │ │ │ zero, an error message is printed and the program exits. │ │ │ │ │ 2. void Chv_assembleChv ( Chv *chvJ, Chv *chvI ) ; │ │ │ │ │ This method is used to assemble entries from one Chv object into another. The application │ │ │ │ │ is during a factorization with pivoting, postponed entries from the children are stored in the │ │ │ │ │ @@ -404,15 +404,15 @@ │ │ │ │ │ chevron is symmetric or Hermitian, pivotflag == SPOOLES PIVOTING and pivotsizesIV is │ │ │ │ │ NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int Chv_factorWithNoPivoting ( Chv *chv, PatchAndGoInfo *info ) ; │ │ │ │ │ This method factors a front without using pivoting for numerical stability. It does support │ │ │ │ │ “patch-and-go” functionality, where if a small or zero entry is found in the diagonal element │ │ │ │ │ that is to be eliminated, some action can be taken. The return value is the number of │ │ │ │ │ eliminated rows and columns. │ │ │ │ │ - 12 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 12 Chv : DRAFT October 28, 2025 │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. int Chv_r1upd ( Chv *chv ) ; │ │ │ │ │ This method is used during the factorization of a front, performing a rank-one update of the │ │ │ │ │ chevron. The return value is 1 if the pivot is nonzero, 0 otherwise. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int Chv_r2upd ( Chv *chv ) ; │ │ │ │ │ This method is used during the factorization of a front, performing a rank-two update of the │ │ │ │ │ @@ -440,15 +440,15 @@ │ │ │ │ │ • CHV STRICT LOWER =⇒ count strict lower entries │ │ │ │ │ • CHV DIAGONAL =⇒ count diagonal entries │ │ │ │ │ • CHV STRICT UPPER =⇒ count strict upper entries │ │ │ │ │ • CHV STRICT LOWER 11 =⇒ count strict lower entries in the (1,1) block │ │ │ │ │ • CHV LOWER 21 =⇒ count lower entries in the (2,1) block │ │ │ │ │ • CHV STRICT UPPER 11 =⇒ count strict upper entries in the (1,1) block │ │ │ │ │ • CHV UPPER 12 =⇒ count upper entries in the (1,2) block │ │ │ │ │ - Chv : DRAFT October 18, 2025 13 │ │ │ │ │ + Chv : DRAFT October 28, 2025 13 │ │ │ │ │ This method is used to compute the necessary storage to store a chevron as a dense front. │ │ │ │ │ Error checking: If chv is NULL or if countflag is not valid, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 2. int Chv_countBigEntries ( Chv *chv, int npivot, int pivotsizes[], │ │ │ │ │ int countflag, double droptol ) ; │ │ │ │ │ This method counts the number of entries in the chevron that are larger in magnitude than │ │ │ │ │ droptol. countflag has the following meaning. │ │ │ │ │ @@ -477,15 +477,15 @@ │ │ │ │ │ • CHV STRICT UPPER 11 =⇒ copy strict upper entries in the (1,1) block │ │ │ │ │ • CHV UPPER 12 =⇒ copy upper entries in the (1,2) block │ │ │ │ │ If storeflagisCHV BY ROWS,theentriesarestoredbyrowsandifstoreflagisCHV BY COLUMNS, │ │ │ │ │ the entries are stored by columns. │ │ │ │ │ Error checking: If chv or dvec is NULL or if length is less than the number of entries to be │ │ │ │ │ copied, or if copyflag or storeflag is valid, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 14 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 14 Chv : DRAFT October 28, 2025 │ │ │ │ │ 4. int Chv_copyBigEntriesToVector ( Chv *chv, int npivot, int pivotsizes[], │ │ │ │ │ int sizes[], int ivec[], double dvec[], │ │ │ │ │ int copyflag, int storeflag, double droptol ) ; │ │ │ │ │ This method also copies some entries the chevron object into a double precision vector, but │ │ │ │ │ only those entries whose magnitude is greater than or equal to droptol are copied. This │ │ │ │ │ method is called after a front has been factored and is used to store the factor entries of large │ │ │ │ │ magnitude into the storage for the factor matrix. If the front is nonsymmetric, the front │ │ │ │ │ @@ -517,15 +517,15 @@ │ │ │ │ │ Error checking: If chvI or chvJ is NULL, or if offset < 0 or offset is greater than the │ │ │ │ │ number of chevrons in chvJ, an error message is printed and the program exits. │ │ │ │ │ 1.2.10 Swap methods │ │ │ │ │ 1. void Chv_swapRows ( Chv *chv, int irow, int jrow ) ; │ │ │ │ │ This method swaps rows irow and jrow of the chevron. Both rows must be less than the │ │ │ │ │ width nD of the chevron. The row ids of the two rows are also swapped. If the chevron is │ │ │ │ │ symmetric, then the method Chv swapRowsAndColumns() is called. │ │ │ │ │ - Chv : DRAFT October 18, 2025 15 │ │ │ │ │ + Chv : DRAFT October 28, 2025 15 │ │ │ │ │ Error checking: If chv is NULL or if irow or jrow are less than 0 or greater than or equal to │ │ │ │ │ nD, an error message is printed and the program exits. │ │ │ │ │ 2. void Chv_swapColumns ( Chv *chv, int icol, int jcol ) ; │ │ │ │ │ This method swaps columns icol and jcol of the chevron. Both columns must be less than │ │ │ │ │ the width nD of the chevron. The column ids of the two columns are also swapped. If the │ │ │ │ │ chevron is symmetric, then the method Chv swapRowsAndColumns() is called. │ │ │ │ │ Error checking: If chv is NULL or if icol or jcol are less than 0 or greater than or equal to │ │ │ │ │ @@ -553,15 +553,15 @@ │ │ │ │ │ This method sets the scalar fields and rowind, colind and entries pointers. │ │ │ │ │ Error checking: If chv is NULL, or if nD ≤ 0, or if nL or nU are less than zero, or if type or │ │ │ │ │ symflag are not valid, an error message is printed and the program exits. │ │ │ │ │ 5. void Chv_shift ( Chv *chv, int shift ) ; │ │ │ │ │ This method is used to shift the base of the entries and adjust dimensions of the Chv object. │ │ │ │ │ If shift is positive, the first shift chevrons are removed from the chevron. If shift is │ │ │ │ │ negative, the shift previous chevrons are prepended to the chevron. This is a dangerous │ │ │ │ │ - 16 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 16 Chv : DRAFT October 28, 2025 │ │ │ │ │ method as it changes the state of the object. We use it during the factorization of a front, │ │ │ │ │ where one Chv object points to the entire chevron in order to swap rows and columns, while │ │ │ │ │ another chevron points to the uneliminated rows and columns of the front. It is the latter │ │ │ │ │ chevron that is shifted during the factorization. │ │ │ │ │ Error checking: If chv is NULL an error message is printed and the program exits. │ │ │ │ │ 6. void Chv_fill11block ( Chv *chv, A2 *mtx ) ; │ │ │ │ │ This method is used to fill a A2 dense matrix object with the entries in the (1,1) block of the │ │ │ │ │ @@ -584,15 +584,15 @@ │ │ │ │ │ 11. void Chv_sub ( Chv *chvJ, Chv *chvI ) ; │ │ │ │ │ This method subtracts chvI from chvJ. │ │ │ │ │ Error checking: If chvJ or chvI is NULL, or if their dimensions are not the same, or if either │ │ │ │ │ of their entries fields are NULL, an error message is printed and the program exits. │ │ │ │ │ 12. void Chv_zero ( Chv *chv ) ; │ │ │ │ │ This method zeroes the entries in the chevron. │ │ │ │ │ Error checking: If chv is NULL, an error message is printed and the program exits. │ │ │ │ │ - Chv : DRAFT October 18, 2025 17 │ │ │ │ │ + Chv : DRAFT October 28, 2025 17 │ │ │ │ │ 1.2.12 IO methods │ │ │ │ │ 1. void Chv_writeForHumanEye ( Chv *chv, FILE *fp ) ; │ │ │ │ │ This method writes a Chv object to a file in an easily readable format. │ │ │ │ │ Error checking: If chv or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 2. void Chv_writeForMatlab ( Chv *chv, char *chvname, FILE *fp ) ; │ │ │ │ │ This method writes a Chv object to a file in a matlab format. For a real chevron, a sample │ │ │ │ │ line is │ │ │ │ │ @@ -619,15 +619,15 @@ │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The alphareal and alphaimag parameters form a complex number that is a scaling │ │ │ │ │ parameter. Normally alpha is (1.0,0.0), when we are just loading matrix entries into a │ │ │ │ │ front. However, when we factor A+αB, the entries of B will be loaded with alpha set │ │ │ │ │ equal to α[0 : 1]. │ │ │ │ │ - 18 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 18 Chv : DRAFT October 28, 2025 │ │ │ │ │ 2. test_assmbChv msglvl msgFile nDJ nUJ nDI nUI type symflag seed │ │ │ │ │ This driver program tests the Chv assembleChv method. It assembles a chevron T into T , │ │ │ │ │ I J │ │ │ │ │ as is done during the assembly of postponed rows and columns during the factorization when │ │ │ │ │ pivoting is enabled. Use the script file do assmbChv for testing. When the output file is │ │ │ │ │ loaded into matlab, the last line to the screen is the error of the assembly. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ @@ -658,15 +658,15 @@ │ │ │ │ │ • The nD parameter is the number of rows and columns in the (1,1) block. │ │ │ │ │ • The nU parameter is the number of columns in the (1,2) block. │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC. │ │ │ │ │ • The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no piv- │ │ │ │ │ oting, SPOOLES PIVOTING for pivoting. │ │ │ │ │ - Chv : DRAFT October 18, 2025 19 │ │ │ │ │ + Chv : DRAFT October 28, 2025 19 │ │ │ │ │ • The storeflag parameter is the storage flag, to store by rows, use SPOOLES BY ROWS, │ │ │ │ │ to store by columns, use SPOOLES BY COLUMNS. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 4. test_copyBigEntriesToVector msglvl msgFile nD nU type symflag │ │ │ │ │ pivotingflag storeflag seed droptol │ │ │ │ │ This driver program tests the Chv copyBigEntriesToVector method which is used when │ │ │ │ │ after a front has been factored to store the entries into sparse L and U submatrices. Use │ │ │ │ │ @@ -698,15 +698,15 @@ │ │ │ │ │ three entries. The first entry is the error in the factorization. The second and third entries │ │ │ │ │ are the maximum magnitudes of the entries in L and U, respectively. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ - 20 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 20 Chv : DRAFT October 28, 2025 │ │ │ │ │ • The nD parameter is the number of rows and columns in the (1,1) block. │ │ │ │ │ • The nU parameter is the number of columns in the (1,2) block. │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC. │ │ │ │ │ • The pivotingflag parameter is the pivoting flag — SPOOLES NO PIVOTING for no piv- │ │ │ │ │ oting, SPOOLES PIVOTING for pivoting. │ │ │ │ │ @@ -735,15 +735,15 @@ │ │ │ │ │ ThisdriverprogramteststheChv maxabsInRow(),Chv maxabsInRow11(),Chv maxabsInColumn(), │ │ │ │ │ Chv maxabsInColumn11() and Chv maxabsInDiagonal11() methods. Use the script file │ │ │ │ │ do maxabs for testing. When the output file is loaded into matlab, look on the screen for the │ │ │ │ │ variables rowerror, colerror, rowerror11, colerror11 and diag11error. All should be │ │ │ │ │ zero. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ - Chv : DRAFT October 18, 2025 21 │ │ │ │ │ + Chv : DRAFT October 28, 2025 21 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The nD parameter is the number of rows and columns in the (1,1) block. │ │ │ │ │ • The nU parameter is the number of columns in the (1,2) block. │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ @@ -772,15 +772,15 @@ │ │ │ │ │ timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The nD parameter is the number of rows and columns in the (1,1) block. │ │ │ │ │ • The nU parameter is the number of columns in the (1,2) block. │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ - 22 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 22 Chv : DRAFT October 28, 2025 │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 10. test_swap msglvl msgFile nD nU type symflag seed │ │ │ │ │ This driver program tests three methods: Chv swapRowsAndColumns(), Chv swapRows() and │ │ │ │ │ Chv swapColumns(). Use the script file do swap for testing. When the output file is loaded │ │ │ │ │ into matlab, look for the maxerrrowswap1, maxerrcolswap1, maxerrswap, maxerrsymswap1 │ │ │ │ │ @@ -810,15 +810,15 @@ │ │ │ │ │ • The type parameter denotes the type of entries — SPOOLES REAL or SPOOLES COMPLEX │ │ │ │ │ • Thesymflagparameteristhesymmetryflag—SPOOLES SYMMETRIC,SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC. │ │ │ │ │ • The sparsityflag parameter should be zero for dense U and L, or 1 for sparse U and │ │ │ │ │ L. │ │ │ │ │ • The ncolT parameter is the number of columns in the (1,1) and (1,2) blocks of T. │ │ │ │ │ • The nDT parameter is the number of rows and columns in the (1,1) block of T. │ │ │ │ │ - Chv : DRAFT October 18, 2025 23 │ │ │ │ │ + Chv : DRAFT October 28, 2025 23 │ │ │ │ │ • The ncolU parameter is the number of columns in U. │ │ │ │ │ • The nrowD parameter is the number of rows and columns in D. │ │ │ │ │ • The nentU parameter is the number entries in U, ignored if sparsityflag = 0. │ │ │ │ │ • The offset parameter is the offset of first index in T from the last index in D. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ Index │ │ │ │ │ Chv addChevron(), 10 Chv new(), 4 │ │ ├── ./usr/share/doc/spooles-doc/ChvList.ps.gz │ │ │ ├── ChvList.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o ChvList.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1760,15 +1760,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1962,81 +1961,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3303,15 +3297,15 @@ │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}23 99.6264 /CMBX12 │ │ │ │ rf /Fc 137[62 1[62 62 9[62 62 27[62 8[62 67[{}7 119.552 │ │ │ │ /CMTT12 rf /Fd 134[71 3[75 52 53 55 1[75 67 75 112 3[37 │ │ │ │ 75 1[41 61 75 60 1[65 13[75 2[92 11[103 17[67 67 2[37 │ │ │ │ 46[{}22 119.552 /CMBX12 rf /Fe 141[38 2[46 51 2[42 1[28 │ │ │ │ 46 42 1[42 1[42 14[65 1[66 11[59 62 69 2[68 6[28 58[{}16 │ │ │ │ 90.9091 /CMTI10 rf /Ff 139[35 1[36 2[45 9[40 1[40 51 │ │ │ │ -18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fg tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3424,15 +3418,15 @@ │ │ │ │ (ciated)g(with)f(a)h Fh(ChvList)d Fi(ob)5 b(ject)27 b(is)f(optional,)i │ │ │ │ (for)e(example,)i(it)e(is)g(not)g(needed)g(during)0 5407 │ │ │ │ y(a)31 b(serial)h(factorization)i(nor)c(a)i(MPI)f(factorization.)45 │ │ │ │ b(In)31 b(the)g(latter)h(case)g(there)g(is)f(one)g Fh(ChvList)e │ │ │ │ Fi(p)s(er)h(pro)s(cess.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fi(2)p 136 100 1058 4 v │ │ │ │ -1240 w Fh(ChvList)28 b Ff(:)41 b Fe(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fh(ChvList)28 b Ff(:)41 b Fe(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 0 399 a Fi(F)-8 b(or)35 b(a)g(m)m(ultithreaded)g │ │ │ │ (factorization)i(there)d(is)h(one)f Fh(ChvList)f Fi(ob)5 │ │ │ │ b(ject)35 b(that)g(is)g(shared)e(b)m(y)i(all)g(threads.)52 │ │ │ │ b(The)0 511 y(m)m(utual)22 b(exclusion)h(lo)s(c)m(k)g(that)f(is)g │ │ │ │ (\(optionally\))i(em)m(b)s(edded)d(in)h(the)g Fh(ChvList)e │ │ │ │ Fi(ob)5 b(ject)23 b(is)f(a)g Fh(Lock)f Fi(ob)5 b(ject)23 │ │ │ │ b(from)e(this)0 624 y(library)-8 b(.)39 b(It)27 b(is)f(inside)g(the)g │ │ │ │ @@ -3487,15 +3481,15 @@ │ │ │ │ b Fh(lock)g Fi(and)h Fh(flags)f Fi(are)i(set)g(to)g Fh(NULL)e │ │ │ │ Fi(.)227 5407 y Fe(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fi(If)30 b Fh(list)g Fi(is)g Fh(NULL)p Fi(,)f(an)i(error)f(message)h │ │ │ │ (is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1058 4 v 1239 100 a Fh(ChvList)29 │ │ │ │ -b Ff(:)40 b Fe(DRAFT)121 b Ff(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Ff(:)40 b Fe(DRAFT)121 b Ff(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2795 100 V 1058 w Fi(3)111 399 y(3.)46 b Fh(void)h(ChvList_clearData)c │ │ │ │ (\()k(ChvList)f(*list)h(\))g(;)227 555 y Fi(This)41 b(metho)s(d)g │ │ │ │ (clears)h(the)g(ob)5 b(ject)42 b(and)f(free's)h(an)m(y)g(o)m(wned)f │ │ │ │ (data)i(b)m(y)e(calling)i Fh(Chv)p 3220 555 29 4 v 34 │ │ │ │ w(free\(\))c Fi(for)j(eac)m(h)227 668 y(ob)5 b(ject)36 │ │ │ │ b(on)f(the)h(free)f(list.)56 b(If)35 b Fh(heads)f Fi(is)h(not)g │ │ │ │ Fh(NULL)p Fi(,)g(it)g(is)h(free'd.)55 b(If)35 b Fh(counts)e │ │ │ │ @@ -3560,15 +3554,15 @@ │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fi(If)29 b Fh(list)g Fi(is)h │ │ │ │ Fh(NULL)p Fi(,)f(or)h(if)g Fh(ilist)e Fi(is)i(not)h(in)e(the)h(range)h │ │ │ │ Fh([0,nlist\))p Fi(,)c(an)j(error)g(message)227 5407 │ │ │ │ y(is)h(prin)m(ted)f(and)f(zero)j(is)e(returned.)p eop │ │ │ │ end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fi(4)p 136 100 1058 4 v │ │ │ │ -1240 w Fh(ChvList)28 b Ff(:)41 b Fe(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fh(ChvList)28 b Ff(:)41 b Fe(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 111 399 a Fi(3.)46 b Fh(Chv)h(*)h(ChvList_getList)43 │ │ │ │ b(\()48 b(ChvList)e(*list,)g(int)h(ilist)f(\))h(;)227 │ │ │ │ 549 y Fi(If)28 b(list)h Fh(ilist)e Fi(is)h(empt)m(y)-8 │ │ │ │ b(,)30 b(the)f(metho)s(d)f(returns)f Fh(NULL)p Fi(.)g(Otherwise,)i(if)f │ │ │ │ (the)h(list)g(needs)f(to)h(b)s(e)e(lo)s(c)m(k)m(ed,)k(the)227 │ │ │ │ 662 y(lo)s(c)m(k)37 b(is)e(lo)s(c)m(k)m(ed.)57 b(The)34 │ │ │ │ b(head)h(of)h(the)f(list)h(is)f(sa)m(v)m(ed)i(to)f(a)f(p)s(oin)m(ter)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ The first two operations are queries, and can be done without locking the list. The third operation │ │ │ │ │ needs a lock only when two or more threads will be inserting objects into the list. The fourth │ │ │ │ │ operation requires a lock only when one thread will add an object while another thread removes │ │ │ │ │ the object and the incoming count is not yet zero. │ │ │ │ │ Having a lock associated with a ChvList object is optional, for example, it is not needed during │ │ │ │ │ a serial factorization nor a MPI factorization. In the latter case there is one ChvList per process. │ │ │ │ │ 1 │ │ │ │ │ - 2 ChvList : DRAFT October 18, 2025 │ │ │ │ │ + 2 ChvList : DRAFT October 28, 2025 │ │ │ │ │ For a multithreaded factorization there is one ChvList object that is shared by all threads. The │ │ │ │ │ mutualexclusion lock that is (optionally) embedded in the ChvListobject is a Lock object from this │ │ │ │ │ library. It is inside the Lock object that we have a mutual exclusion lock. Presently we support the │ │ │ │ │ Solaris and POSIX thread packages. Porting the multithreaded codes to another platform should │ │ │ │ │ be simple if the POSIX thread package is present. Another type of thread package will require │ │ │ │ │ some modifications to the Lock object, but none to the ChvList objects. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ │ 1. ChvList * ChvList_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the ChvList structure and then sets the default │ │ │ │ │ fields by a call to ChvList setDefaultFields(). │ │ │ │ │ 2. void ChvList_setDefaultFields ( ChvList *list ) ; │ │ │ │ │ The structure’s fields are set to default values: nlist and nlocks set to zero, and heads, │ │ │ │ │ counts, lock and flags are set to NULL . │ │ │ │ │ Error checking: If list is NULL, an error message is printed and the program exits. │ │ │ │ │ - ChvList : DRAFT October 18, 2025 3 │ │ │ │ │ + ChvList : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void ChvList_clearData ( ChvList *list ) ; │ │ │ │ │ This method clears the object and free’s any owned data by calling Chv free() for each │ │ │ │ │ object on the free list. If heads is not NULL, it is free’d. If counts is not NULL, it is free’d │ │ │ │ │ via a call to IVfree(). If flags is not NULL, it is free’d via a call to CVfree(). If the │ │ │ │ │ lock is not NULL, it is destroyed via a call to Lock free(). There is a concluding call to │ │ │ │ │ ChvList setDefaultFields(). │ │ │ │ │ Error checking: If list is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ │ │ │ 2. int ChvList_isCountZero ( ChvList *list, int ilist ) ; │ │ │ │ │ If counts is NULL, or if counts[ilist] equal to zero, the method returns 1. Otherwise, the │ │ │ │ │ method returns 0. │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ │ │ │ - 4 ChvList : DRAFT October 18, 2025 │ │ │ │ │ + 4 ChvList : DRAFT October 28, 2025 │ │ │ │ │ 3. Chv * ChvList_getList ( ChvList *list, int ilist ) ; │ │ │ │ │ If list ilist is empty, the method returns NULL. Otherwise, if the list needs to be locked, the │ │ │ │ │ lock is locked. The head of the list is saved to a pointer and then the head is set to NULL. │ │ │ │ │ If the list was locked, the number of locks is incremented and the lock unlocked. The saved │ │ │ │ │ pointer is returned. │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ ├── ./usr/share/doc/spooles-doc/ChvManager.ps.gz │ │ │ ├── ChvManager.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o ChvManager.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1157,15 +1157,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1359,81 +1358,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3105,15 +3099,15 @@ │ │ │ │ @start /Fa 133[50 59 4[44 44 3[56 62 93 31 2[31 62 2[51 │ │ │ │ 62 50 1[54 11[86 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}23 │ │ │ │ 99.6264 /CMBX12 rf /Fb 137[62 3[62 3[62 5[62 62 1[62 │ │ │ │ 3[62 19[62 9[62 67[{}9 119.552 /CMTT12 rf /Fc 134[71 │ │ │ │ 3[75 52 53 55 1[75 67 75 112 3[37 75 1[41 61 75 60 1[65 │ │ │ │ 13[75 2[92 11[103 17[67 67 2[37 46[{}22 119.552 /CMBX12 │ │ │ │ rf /Fd 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 │ │ │ │ -2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fe 134[44 │ │ │ │ +2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fe 134[44 │ │ │ │ 4[30 37 38 2[46 51 74 23 42 1[28 46 42 1[42 46 42 1[46 │ │ │ │ 12[65 1[66 11[59 62 69 2[68 6[28 12[33 45[{}24 90.9091 │ │ │ │ /CMTI10 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -3234,15 +3228,15 @@ │ │ │ │ (vironmen)m(t)g(creates)h(some)f(di\016culties.)66 b(Should)37 │ │ │ │ b(there)i(b)s(e)f(one)h(manager)g(ob)5 b(ject)0 5407 │ │ │ │ y(p)s(er)30 b(thread,)h(or)g(should)e(all)j(the)f(threads)g(share)f │ │ │ │ (one)h(ob)5 b(ject?)43 b(W)-8 b(e)32 b(ha)m(v)m(e)g(c)m(hosen)f(the)g │ │ │ │ (latter)i(course,)e(but)f(this)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fh(2)p 136 100 1034 4 v │ │ │ │ -1216 w Fg(DChvList)28 b Fd(:)41 b Fe(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fg(DChvList)28 b Fd(:)41 b Fe(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 0 399 a Fh(requires)e(that)i(a)f(lo)s(c)m(k)h(b)s(e) │ │ │ │ e(presen)m(t)h(to)h(guard)e(the)h(critical)i(section)f(of)f(co)s(de)g │ │ │ │ (where)f(one)h(searc)m(hes)h(or)f(adds)f(an)0 511 y(ob)5 │ │ │ │ b(ject)38 b(to)g(the)f(list.)61 b(The)36 b(lo)s(c)m(k)i(w)m(e)g(use)e │ │ │ │ (is)h(a)h Fg(Lock)d Fh(ob)5 b(ject,)40 b(and)d(so)g(the)g │ │ │ │ Fg(ChvManager)d Fh(co)s(de)j(is)g(completely)0 624 y(indep)s(enden)m(t) │ │ │ │ c(of)i(the)f(thread)g(pac)m(k)-5 b(age.)55 b(P)m(orting)35 │ │ │ │ @@ -3297,15 +3291,15 @@ │ │ │ │ (ChvManager_new)c(\()j(void)g(\))g(;)227 5294 y Fh(This)28 │ │ │ │ b(metho)s(d)f(simply)h(allo)s(cates)i(storage)g(for)e(the)g │ │ │ │ Fg(ChvManager)e Fh(structure)h(and)h(then)g(sets)g(the)h(default)227 │ │ │ │ 5407 y(\014elds)h(b)m(y)g(a)h(call)h(to)f Fg(ChvManager)p │ │ │ │ 1426 5407 V 32 w(setDefaultFields\(\))p Fh(.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1034 4 v 1215 100 a Fg(DChvList)29 │ │ │ │ -b Fd(:)40 b Fe(DRAFT)121 b Fd(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fd(:)40 b Fe(DRAFT)121 b Fd(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fh(3)111 399 y(2.)46 b Fg(void)h │ │ │ │ (ChvManager_setDefaultFie)o(lds)41 b(\()48 b(ChvManager)d(*manager)g │ │ │ │ (\))j(;)227 548 y Fh(The)20 b(structure's)g(\014elds)g(are)g(set)h(to)g │ │ │ │ (default)g(v)-5 b(alues:)36 b Fg(mode)p Fh(,)21 b Fg(nactive)p │ │ │ │ Fh(,)g Fg(nbytesactive)p Fh(,)e Fg(nbytesrequested)p │ │ │ │ Fh(,)227 661 y Fg(nbytesalloc)p Fh(,)26 b Fg(nrequests)p │ │ │ │ Fh(,)h Fg(nreleases)p Fh(,)g Fg(nlocks)g Fh(and)h Fg(nunlocks)e │ │ │ │ @@ -3374,15 +3368,15 @@ │ │ │ │ (ob)5 b(jects.)47 b(The)32 b(head)g(of)g(the)g(list)227 │ │ │ │ 5258 y(is)f(the)f Fg(chv)g Fh(instance.)227 5407 y Fe(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fh(If)30 b Fg(manager)f │ │ │ │ Fh(is)h Fg(NULL)p Fh(,)g(an)g(error)g(message)h(is)g(prin)m(ted)f(and)f │ │ │ │ (zero)j(is)e(returned.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fh(4)p 136 100 1034 4 v │ │ │ │ -1216 w Fg(DChvList)28 b Fd(:)41 b Fe(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fg(DChvList)28 b Fd(:)41 b Fe(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 0 399 a Fa(1.2.4)112 b(IO)38 b(metho)s(ds)111 │ │ │ │ 595 y Fh(1.)46 b Fg(void)h(ChvManager_writeForHuman)o(Eye)41 │ │ │ │ b(\()48 b(ChvManager)d(*manager,)g(FILE)i(*fp)g(\))g(;)227 │ │ │ │ 745 y Fh(This)30 b(metho)s(d)g(writes)g(the)h(statistics)h(to)f(a)g │ │ │ │ (\014le)f(in)g(user)g(readable)h(form.)227 896 y Fe(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fh(If)30 b Fg(manager)f │ │ │ │ Fh(or)h Fg(fp)g Fh(are)h Fg(NULL)p Fh(,)e(an)h(error)g(message)i(is)e │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ finds a smallest object of that size or larger.) If there is no object on the free pool of sufficient │ │ │ │ │ size, one is created and returned. When the user releases an object to the manager, the object │ │ │ │ │ is placed on the free pool. │ │ │ │ │ For the factorization, serial, multithreaded or MPI, we recommend using the recycling mode. │ │ │ │ │ A multithreaded environment creates some difficulties. Should there be one manager object │ │ │ │ │ per thread, or should all the threads share one object? We have chosen the latter course, but this │ │ │ │ │ 1 │ │ │ │ │ - 2 DChvList : DRAFT October 18, 2025 │ │ │ │ │ + 2 DChvList : DRAFT October 28, 2025 │ │ │ │ │ requires that a lock be present to guard the critical section of code where one searches or adds an │ │ │ │ │ object to the list. The lock we use is a Lock object, and so the ChvManager code is completely │ │ │ │ │ independent of the thread package. Porting to a new system might require some modification to │ │ │ │ │ the Lock, but none to the manager object. │ │ │ │ │ Each manager object keeps track of certain statistics, bytes in their workspaces, the total │ │ │ │ │ number of bytes requested, the number of requests for a Chv objects, the number of releases, and │ │ │ │ │ the number of locks and unlocks. │ │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ ChvManager object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. ChvManager * ChvManager_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the ChvManager structure and then sets the default │ │ │ │ │ fields by a call to ChvManager setDefaultFields(). │ │ │ │ │ - DChvList : DRAFT October 18, 2025 3 │ │ │ │ │ + DChvList : DRAFT October 28, 2025 3 │ │ │ │ │ 2. void ChvManager_setDefaultFields ( ChvManager *manager ) ; │ │ │ │ │ Thestructure’sfieldsaresettodefaultvalues: mode,nactive,nbytesactive,nbytesrequested, │ │ │ │ │ nbytesalloc, nrequests, nreleases, nlocks and nunlocks set to zero, and head and lock │ │ │ │ │ are set to NULL . │ │ │ │ │ Error checking: If manager is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void ChvManager_clearData ( ChvManager *manager ) ; │ │ │ │ │ This method clears the object and free’s any owned data by calling Chv free() for each │ │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ 2. void ChvManager_releaseObject ( ChvManager *manager, Chv *chv ) ; │ │ │ │ │ This method releases the chv instance into the free pool of objects. │ │ │ │ │ Error checking: If manager is NULL, an error message is printed and zero is returned. │ │ │ │ │ 3. void ChvManager_releaseListOfObjects ( ChvManager *manager, Chv *chv ) ; │ │ │ │ │ This method releases a list of Chv objects into the free pool of objects. The head of the list │ │ │ │ │ is the chv instance. │ │ │ │ │ Error checking: If manager is NULL, an error message is printed and zero is returned. │ │ │ │ │ - 4 DChvList : DRAFT October 18, 2025 │ │ │ │ │ + 4 DChvList : DRAFT October 28, 2025 │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ 1. void ChvManager_writeForHumanEye ( ChvManager *manager, FILE *fp ) ; │ │ │ │ │ This method writes the statistics to a file in user readable form. │ │ │ │ │ Error checking: If manager or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ Index │ │ │ │ │ ChvManager clearData(), 3 │ │ │ │ │ ChvManager free(), 3 │ │ ├── ./usr/share/doc/spooles-doc/Coords.ps.gz │ │ │ ├── Coords.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Coords.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1236,15 +1236,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1438,81 +1437,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3893,15 +3887,15 @@ │ │ │ │ {restore}if │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 253[71 2[{}1 90.9091 /CMSY10 rf /Fb 138[49 │ │ │ │ 30 37 38 1[46 46 51 2[42 1[28 46 42 1[42 46 42 1[46 12[65 │ │ │ │ 1[66 11[59 62 69 2[68 6[28 58[{}22 90.9091 /CMTI10 rf │ │ │ │ /Fc 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fd 133[50 │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fd 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}24 99.6264 /CMBX12 │ │ │ │ rf /Fe 140[62 62 2[62 10[62 32[62 67[{}5 119.552 /CMTT12 │ │ │ │ rf /Ff 199[35 35 35 3[35 35 35 48[{}6 66.4176 /CMR8 rf │ │ │ │ %DVIPSBitmapFont: Fg tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ @@ -4008,15 +4002,15 @@ │ │ │ │ b Fk(ob)5 b(ject.)0 5092 y Fd(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 5294 y Fk(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 5407 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 111 399 a Fk(1.)46 b Fj(Coords)g(*)i(Coords_new)d │ │ │ │ (\()i(void)g(\))g(;)227 555 y Fk(This)25 b(metho)s(d)g(simply)f(allo)s │ │ │ │ (cates)k(storage)f(for)e(the)h Fj(Coords)d Fk(structure)i(and)g(then)g │ │ │ │ (sets)g(the)h(default)f(\014elds)227 668 y(b)m(y)31 b(a)f(call)i(to)f │ │ │ │ Fj(Coords)p 1001 668 29 4 v 33 w(setDefaultFields\(\))p │ │ │ │ Fk(.)111 867 y(2.)46 b Fj(void)h(Coords_setDefaultFields)41 │ │ │ │ b(\()48 b(Coords)e(*coords)g(\))h(;)227 1023 y Fk(This)34 │ │ │ │ @@ -4087,15 +4081,15 @@ │ │ │ │ (message)h(is)f(prin)m(ted)f(and)g(the)h(program)227 │ │ │ │ 5095 y(exits.)111 5294 y(3.)46 b Fj(void)h(Coords_init27P)d(\()j │ │ │ │ (Coords)f(*coords,)g(float)g(bbox[],)g(int)h(type,)1277 │ │ │ │ 5407 y(int)g(n1,)g(int)g(n2,)g(int)g(n3,)g(int)g(ncomp)f(\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1082 4 v 1263 100 a Fj(Coords)29 │ │ │ │ -b Fc(:)41 b Fb(DRAFT)121 b Fc(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fc(:)41 b Fb(DRAFT)121 b Fc(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fk(3)227 399 y(This)g(metho)s(d)g(initializes)i(a)f │ │ │ │ Fj(Coords)e Fk(ob)5 b(ject)32 b(for)f(a)h(27-p)s(oin)m(t)h(op)s(erator) │ │ │ │ e(on)h(a)f Fj(n1)21 b Fa(\002)f Fj(n2)h Fa(\002)f Fj(n3)31 │ │ │ │ b Fk(grid)g(with)227 511 y Fj(ncomp)42 b Fk(degrees)j(of)e(freedom)h │ │ │ │ (at)g(a)g(grid)f(p)s(oin)m(t.)81 b(The)43 b(grid's)g(lo)s(cation)i(is)f │ │ │ │ (giv)m(en)h(b)m(y)e(the)h(b)s(ounding)227 624 y(b)s(o)m(x)34 │ │ │ │ b(v)m(ector,)i Fj(bbox[0])31 b Fk(=)i Fi(x)p Fk(-co)s(ordinate)i(of)f │ │ │ │ @@ -4178,15 +4172,15 @@ │ │ │ │ 5407 y(2,)47 b(16,)g(3.3\))30 b Fk(sets)g Fi(y)1005 5421 │ │ │ │ y Ff(16)1105 5407 y Fk(=)25 b(3)p Fi(:)p Fk(3,)32 b(and)d │ │ │ │ Fj(Coords)p 1843 5407 V 33 w(setValue\(coords,)43 b(3,)48 │ │ │ │ b(118,)e(0\))30 b Fk(sets)h Fi(z)3409 5421 y Ff(118)3544 │ │ │ │ 5407 y Fk(=)25 b(0.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fk(4)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 227 399 a Fb(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fk(If)29 b Fj(coords)g Fk(is)h Fj(NULL)p │ │ │ │ Fk(,)f(or)h(if)g Fj(idim)f Fk(do)s(es)g(not)h(lie)h(in)f(the)g(range)g │ │ │ │ Fj([1,ndim])p Fk(,)e(or)i(if)g Fj(icoor)227 511 y Fk(do)s(es)g(not)h │ │ │ │ (lie)g(in)f(the)h(range)g Fj([0,ncoor\))p Fk(,)d(an)i(error)g(message)h │ │ │ │ (is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)0 790 │ │ │ │ y Fd(1.2.4)112 b(IO)38 b(metho)s(ds)0 989 y Fk(There)29 │ │ │ │ @@ -4265,15 +4259,15 @@ │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ Fj(fwrite)p Fk(,)f(zero)i(is)g(returned.)227 5407 y Fb(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 b Fj(coords)f │ │ │ │ Fk(or)h Fj(fp)g Fk(are)h Fj(NULL)e Fk(an)h(error)g(message)i(is)e(prin) │ │ │ │ m(ted)g(and)g(zero)h(is)g(returned.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1082 4 v 1263 100 a Fj(Coords)29 │ │ │ │ -b Fc(:)41 b Fb(DRAFT)121 b Fc(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fc(:)41 b Fb(DRAFT)121 b Fc(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fk(5)111 399 y(7.)46 b Fj(int)h │ │ │ │ (Coords_writeForHumanEye)42 b(\()47 b(Coords)f(*coords,)g(FILE)g(*fp)h │ │ │ │ (\))h(;)227 554 y Fk(This)43 b(metho)s(d)g(write)h(the)g │ │ │ │ Fj(Coords)e Fk(ob)5 b(ject)45 b(to)f(a)g(\014le)g(in)g(an)f(easy)i(to)f │ │ │ │ (read)g(fashion.)80 b(The)43 b(metho)s(d)227 667 y Fj(Coords)p │ │ │ │ 521 667 29 4 v 33 w(writeStats\(\))24 b Fk(is)k(called)h(to)f(write)g │ │ │ │ (out)g(the)g(header)g(and)f(statistics.)42 b(The)27 b │ │ │ │ @@ -4339,15 +4333,15 @@ │ │ │ │ f(the)h(message)g(\014le)f(|)h(if)f Fj(msgFile)e Fk(is)i │ │ │ │ Fj(stdout)p Fk(,)g(then)g(the)427 5294 y(message)24 b(\014le)e(is)h │ │ │ │ Fb(stdout)p Fk(,)i(otherwise)e(a)f(\014le)h(is)f(op)s(ened)g(with)g │ │ │ │ Fb(app)-5 b(end)24 b Fk(status)f(to)g(receiv)m(e)h(an)m(y)f(message)427 │ │ │ │ 5407 y(data.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fk(6)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(Coords)28 b Fc(:)41 b Fb(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 337 399 a Fg(\210)45 b Fk(The)20 b │ │ │ │ Fj(outCoordsFile)d Fk(parameter)j(is)h(the)f(output)g(\014le)g(for)h │ │ │ │ (the)f Fj(Coords)f Fk(ob)5 b(ject.)38 b(If)20 b Fj(outCoordsFile)427 │ │ │ │ 511 y Fk(is)h Fj(none)e Fk(then)h(the)g Fj(Coords)f Fk(ob)5 │ │ │ │ b(ject)21 b(is)f(not)h(written)f(to)h(a)g(\014le.)37 │ │ │ │ b(Otherwise,)22 b(the)f Fj(Coords)p 3409 511 29 4 v 33 │ │ │ │ w(writeToFile\(\))427 624 y Fk(metho)s(d)27 b(is)h(called)h(to)f(write) │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -18,15 +18,15 @@ │ │ │ │ │ 1.2 Prototypes and descriptions of Coords methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Coords object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1 │ │ │ │ │ - 2 Coords : DRAFT October 18, 2025 │ │ │ │ │ + 2 Coords : DRAFT October 28, 2025 │ │ │ │ │ 1. Coords * Coords_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Coords structure and then sets the default fields │ │ │ │ │ by a call to Coords setDefaultFields(). │ │ │ │ │ 2. void Coords_setDefaultFields ( Coords *coords ) ; │ │ │ │ │ This method sets the structure’s fields are set to default values: type = COORDS BY TUPLE, │ │ │ │ │ ndim = ncoor = 0 and coors = NULL. │ │ │ │ │ Error checking: If coords is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ point, bbox[2] = x-coordinate of the northeast point, and bbox[3] = y-coordinate of the │ │ │ │ │ northeast point. │ │ │ │ │ Error checking: If coordsbboxisNULL,oriftypeisnotCOORDS BY TUPLEorCOORDS BY COORD, │ │ │ │ │ or if any of n1, n2 or ncomp are nonpositive, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 3. void Coords_init27P ( Coords *coords, float bbox[], int type, │ │ │ │ │ int n1, int n2, int n3, int ncomp ) ; │ │ │ │ │ - Coords : DRAFT October 18, 2025 3 │ │ │ │ │ + Coords : DRAFT October 28, 2025 3 │ │ │ │ │ This method initializes a Coords object for a 27-point operator on a n1 ×n2 ×n3 grid with │ │ │ │ │ ncomp degrees of freedom at a grid point. The grid’s location is given by the bounding │ │ │ │ │ box vector, bbox[0] = x-coordinate of the southwest point, bbox[1] = y-coordinate of the │ │ │ │ │ southwest point, bbox[2] = z-coordinate of the southwest point, bbox[3] = x-coordinate │ │ │ │ │ of the northeast point, bbox[4] = y-coordinate of the northeast point, and bbox[5] = z- │ │ │ │ │ coordinate of the northeast point. │ │ │ │ │ Error checking: If coordsbboxisNULL,oriftypeisnotCOORDS BY TUPLEorCOORDS BY COORD, │ │ │ │ │ @@ -94,15 +94,15 @@ │ │ │ │ │ does not lie in the range [0,ncoor), an error message is printed and the program exits. │ │ │ │ │ 5. void Coords_setValue ( Coords *coords, int idim, int icoor, float val ) ; │ │ │ │ │ Thismethodsetsthefloatvalueoftheidim-thcoordinateoftheicoor-thgridpoint. Forex- │ │ │ │ │ ample, Coords setValue(coords, 1, 27, 1.2) sets x =1.2, Coords setValue(coords, │ │ │ │ │ 27 │ │ │ │ │ 2, 16, 3.3) sets y =3.3, and Coords setValue(coords, 3, 118, 0) sets z =0. │ │ │ │ │ 16 118 │ │ │ │ │ - 4 Coords : DRAFT October 18, 2025 │ │ │ │ │ + 4 Coords : DRAFT October 28, 2025 │ │ │ │ │ Error checking: If coords is NULL, or if idim does not lie in the range [1,ndim], or if icoor │ │ │ │ │ does not lie in the range [0,ncoor), an error message is printed and the program exits. │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ There are the usual eight IO routines. The file structure of a Coords object is simple: type, ndim, │ │ │ │ │ ncoor followed by the coors[] vector. │ │ │ │ │ 1. int Coords_readFromFile ( Coords *coords, char *filename ) ; │ │ │ │ │ This method read a Coords object from a file. It tries to open the file and if it is successful, it │ │ │ │ │ @@ -129,15 +129,15 @@ │ │ │ │ │ This method writes a Coords object to a formatted file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If coords or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 6. int Coords_writeToBinaryFile ( Coords *coords, FILE *fp ) ; │ │ │ │ │ This method writes a Coords object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If coords or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - Coords : DRAFT October 18, 2025 5 │ │ │ │ │ + Coords : DRAFT October 28, 2025 5 │ │ │ │ │ 7. int Coords_writeForHumanEye ( Coords *coords, FILE *fp ) ; │ │ │ │ │ This method write the Coords object to a file in an easy to read fashion. The method │ │ │ │ │ Coords writeStats() is called to write out the header and statistics. The coors[] vector is │ │ │ │ │ then printed out. The value 1 is returned. │ │ │ │ │ Error checking: If coords or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 8. int Coords_writeStats ( Coords *coords, FILE *fp ) ; │ │ │ │ │ The header and statistics are written. The value 1 is returned. │ │ │ │ │ @@ -164,15 +164,15 @@ │ │ │ │ │ This driver program creates a Coords object for 9-point finite difference operator on a n1×n2 │ │ │ │ │ grid and optionally writes it to a file. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ that all objects are written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any message │ │ │ │ │ data. │ │ │ │ │ - 6 Coords : DRAFT October 18, 2025 │ │ │ │ │ + 6 Coords : DRAFT October 28, 2025 │ │ │ │ │ • TheoutCoordsFileparameteristheoutputfilefortheCoordsobject. IfoutCoordsFile │ │ │ │ │ is nonethentheCoordsobjectisnotwrittentoafile. Otherwise,theCoords writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outCoordsFile is of the form │ │ │ │ │ *.coordsf), or a binary file (if outCoordsFile is of the form *.coordsb). │ │ │ │ │ Index │ │ │ │ │ Coords clearData(), 2 │ │ │ │ │ Coords free(), 2 │ │ ├── ./usr/share/doc/spooles-doc/DSTree.ps.gz │ │ │ ├── DSTree.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o DSTree.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1406,15 +1406,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1608,81 +1607,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3656,15 +3650,15 @@ │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 154[40 40 100[{}2 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 56 1[51 62 50 1[54 │ │ │ │ 11[86 1[62 3[84 5[42 6[80 11[56 56 56 56 56 56 2[31 46[{}28 │ │ │ │ 99.6264 /CMBX12 rf /Fc 141[62 12[62 16[62 62 14[62 68[{}5 │ │ │ │ 119.552 /CMTT12 rf /Fd 139[35 1[36 2[45 9[40 1[40 51 │ │ │ │ -18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fe tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3783,15 +3777,15 @@ │ │ │ │ b(to)h(the)g Fi(Tree)e Fj(ob)5 b(ject)137 5294 y Fe(\210)45 │ │ │ │ b Fi(IV)i(*mapIV)d Fj(:)h(p)s(oin)m(ter)g(to)h(the)f │ │ │ │ Fi(IV)g Fj(ob)5 b(ject)46 b(that)g(holds)e(the)i(map)e(from)h(v)m │ │ │ │ (ertices)i(to)f(domains)f(and)227 5407 y(separators.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 136 100 1130 4 v │ │ │ │ -1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Ff(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Fc(DSTree)d Ff(metho)t(ds)0 │ │ │ │ 636 y Fj(This)f(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 749 y Fi(DSTree)29 b Fj(ob)5 b(ject.)0 │ │ │ │ 1047 y Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 1253 y │ │ │ │ Fj(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g(supp)s │ │ │ │ @@ -3848,15 +3842,15 @@ │ │ │ │ g Fi(IV)e Fj(ob)5 b(ject)28 b(that)g(maps)e(v)m(ertices)j(to)f(domains) │ │ │ │ f(and)f(separators.)227 5407 y Fh(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fj(If)30 b Fi(dstree)f Fj(is)h Fi(NULL)p │ │ │ │ Fj(,)g(an)g(error)g(message)i(is)e(prin)m(ted)g(and)g(the)g(program)g │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1130 4 v 1311 100 a Fi(Tree)29 │ │ │ │ -b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fj(3)0 399 y Fb(1.2.3)112 b(Initializer)38 │ │ │ │ b(metho)s(ds)0 602 y Fj(There)c(are)h(three)f(initializers)j(and)d(t)m │ │ │ │ (w)m(o)h(help)s(er)f(functions)g(to)h(set)g(the)g(dimensions)e(of)i │ │ │ │ (the)g(dstree,)g(allo)s(cate)0 715 y(the)c(three)f(v)m(ectors,)i(and)e │ │ │ │ (\014ll)g(the)h(information.)111 969 y(1.)46 b Fi(void)h(DSTree_init1)d │ │ │ │ (\()k(DSTree)e(*dstree,)f(int)i(ndomsep,)f(int)h(nvtx)f(\))i(;)227 │ │ │ │ 1126 y Fj(This)28 b(metho)s(d)f(initializes)k(an)d(ob)5 │ │ │ │ @@ -3926,15 +3920,15 @@ │ │ │ │ Fj(.)227 5294 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)41 │ │ │ │ b Fj(If)29 b Fi(dstree)g Fj(is)i Fi(NULL)p Fj(,)e(or)h(if)h(the)f(ob)5 │ │ │ │ b(ject)32 b(has)e(not)g(b)s(een)g(initialized,)j(an)d(error)g(message) │ │ │ │ 227 5407 y(is)h(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 136 100 1130 4 v │ │ │ │ -1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 111 399 a Fj(3.)46 b Fi(IV)h(*)h(DSTree_MS2stages)43 │ │ │ │ b(\()48 b(DSTree)e(*dstree)g(\))95 b(;)227 553 y Fj(This)40 │ │ │ │ b(metho)s(d)g(returns)f(the)i(stages)h(for)e(the)h(standard)f(m)m │ │ │ │ (ultisection)i(ordering.)71 b(The)40 b(lev)m(els)i(of)f(the)227 │ │ │ │ 666 y(domains)34 b(and)f(separators)h(are)g(obtained)g(via)g(a)g(call)h │ │ │ │ (to)g Fi(Tree)p 2455 666 29 4 v 33 w(setHeightImetric\(\))p │ │ │ │ Fj(.)45 b(A)34 b Fi(stagesIV)227 779 y(IV)40 b Fj(ob)5 │ │ │ │ @@ -4007,15 +4001,15 @@ │ │ │ │ 5294 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)41 b Fj(If)29 │ │ │ │ b Fi(dstree)g Fj(is)i Fi(NULL)p Fj(,)e(or)h(if)h(the)f(ob)5 │ │ │ │ b(ject)32 b(has)e(not)g(b)s(een)g(initialized,)j(an)d(error)g(message) │ │ │ │ 227 5407 y(is)h(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1130 4 v 1311 100 a Fi(Tree)29 │ │ │ │ -b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fj(5)111 399 y(3.)46 b Fi(int)h(DSTree_domainWeight)c │ │ │ │ (\()k(DSTree)f(*dstree,)g(int)h(vwghts[])e(\))j(;)227 │ │ │ │ 560 y Fj(This)25 b(metho)s(d)g(returns)g(the)h(w)m(eigh)m(t)h(of)f(the) │ │ │ │ g(v)m(ertices)h(in)f(the)g(domains.)38 b(If)26 b Fi(vwghts)e │ │ │ │ Fj(is)i Fi(NULL)p Fj(,)e(the)i(v)m(ertices)227 673 y(ha)m(v)m(e)32 │ │ │ │ b(unit)e(w)m(eigh)m(t.)227 834 y Fh(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fj(If)30 b Fi(dstree)f Fj(is)h Fi(NULL)p │ │ │ │ @@ -4084,15 +4078,15 @@ │ │ │ │ Fi(fn)f Fj(is)h(not)g(of)f(the)h(form)g Fi(*.dstreef)d │ │ │ │ Fj(\(for)j(a)227 5294 y(formatted)32 b(\014le\))g(or)f │ │ │ │ Fi(*.dstreeb)e Fj(\(for)j(a)f(binary)g(\014le\),)h(an)f(error)g │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(the)g(metho)s(d)227 │ │ │ │ 5407 y(returns)e(zero.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fj(6)p 136 100 1130 4 v │ │ │ │ -1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fi(Tree)30 b Fd(:)40 b Fh(DRAFT)30 b Fd(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 111 399 a Fj(5.)46 b Fi(int)h(DSTree_writeToFormattedFi)o │ │ │ │ (le)42 b(\()47 b(DSTree)f(*dstree,)g(FILE)g(*fp)h(\))h(;)227 │ │ │ │ 548 y Fj(This)30 b(metho)s(d)g(writes)g(a)h Fi(DSTree)e │ │ │ │ Fj(ob)5 b(ject)31 b(to)g(a)g(formatted)g(\014le.)41 b(If)30 │ │ │ │ b(there)h(are)g(no)f(errors)g(in)g(writing)h(the)227 │ │ │ │ 661 y(data,)h(the)e(v)-5 b(alue)31 b Fi(1)f Fj(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ @@ -4168,15 +4162,15 @@ │ │ │ │ y(is)31 b(called)h(to)f(write)g(the)g(ob)5 b(ject)32 │ │ │ │ b(to)f(a)g(formatted)h(\014le)f(\(if)g Fi(outFile)d Fj(is)j(of)g(the)g │ │ │ │ (form)f Fi(*.dinpmtxf)p Fj(\),)427 5407 y(or)h(a)f(binary)g(\014le)g │ │ │ │ (\(if)h Fi(outFile)e Fj(is)h(of)g(the)h(form)f Fi(*.dinpmtxb)p │ │ │ │ Fj(\).)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1130 4 v 1311 100 a Fi(Tree)29 │ │ │ │ -b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fd(:)41 b Fh(DRAFT)121 b Fd(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fj(7)111 399 y(2.)46 b Fi(writeStagesIV)e(msglvl)j │ │ │ │ (msgFile)e(inFile)h(type)h(outFile)227 543 y Fj(This)28 │ │ │ │ b(driv)m(er)h(program)g(reads)f(in)h(a)g Fi(DSTree)e │ │ │ │ Fj(from)h(a)i(\014le,)f(creates)h(a)g(stages)g Fi(IV)e │ │ │ │ Fj(ob)5 b(ject)30 b(and)e(writes)h(it)g(to)227 656 y(a)i(\014le.)337 │ │ │ │ 853 y Fe(\210)45 b Fj(The)28 b Fi(msglvl)f Fj(parameter)i(determines)g │ │ │ │ (the)g(amoun)m(t)g(of)f(output)h(|)f(taking)i Fi(msglvl)46 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ │ The DSTree object has a very simple data structure. It contains a Tree object to represent the │ │ │ │ │ tree fields of the domains and separators, and an IV object to hold the map from the vertices to │ │ │ │ │ the domains and separators. │ │ │ │ │ • Tree *tree : pointer to the Tree object │ │ │ │ │ • IV *mapIV : pointer to the IV object that holds the map from vertices to domains and │ │ │ │ │ separators. │ │ │ │ │ 1 │ │ │ │ │ - 2 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 2 Tree : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of DSTree methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ DSTree object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. DSTree * DSTree_new ( void ) ; │ │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. Tree * DSTree_tree ( DSTree *dstree ) ; │ │ │ │ │ This method returns a pointer to its Tree object. │ │ │ │ │ Error checking: If dstree is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. IV * DSTree_mapIV ( DSTree *dstree ) ; │ │ │ │ │ This method returns a pointer to its IV object that maps vertices to domains and separators. │ │ │ │ │ Error checking: If dstree is NULL, an error message is printed and the program exits. │ │ │ │ │ - Tree : DRAFT October 18, 2025 3 │ │ │ │ │ + Tree : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ There are three initializers and two helper functions to set the dimensions of the dstree, allocate │ │ │ │ │ the three vectors, and fill the information. │ │ │ │ │ 1. void DSTree_init1 ( DSTree *dstree, int ndomsep, int nvtx ) ; │ │ │ │ │ This method initializes an object given the number of vertices, (the dimension of mapIV) and │ │ │ │ │ domains and separators (the number of nodes in tree). It then clears any previous data │ │ │ │ │ with a call to DSTree clearData(). The tree field is created and initialized via a call to │ │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ This method returns the stages for a nested dissection variant, separators on two adjacent │ │ │ │ │ levels are put into the same stage. The levels of the domains and separators are obtained │ │ │ │ │ via a call to Tree setHeightImetric(). A stagesIV IV object is created of size nvtx = │ │ │ │ │ mapIV->size, filled and then returned. If a vertex is found in a domain, its stage is zero. If │ │ │ │ │ a vertex is found in a separator at level k, its stage is ⌈k/2⌉. │ │ │ │ │ Error checking: If dstree is NULL, or if the object has not been initialized, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - 4 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 4 Tree : DRAFT October 28, 2025 │ │ │ │ │ 3. IV * DSTree_MS2stages ( DSTree *dstree ) ; │ │ │ │ │ This method returns the stages for the standard multisection ordering. The levels of the │ │ │ │ │ domains and separators are obtained via a call to Tree setHeightImetric(). A stagesIV │ │ │ │ │ IV object is created of size nvtx = mapIV->size, filled and then returned. If a vertex is │ │ │ │ │ found in a domain, its stage is zero. If a vertex is found in a separator, its stage is one. │ │ │ │ │ Error checking: If dstree is NULL, or if the object has not been initialized, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ @@ -125,15 +125,15 @@ │ │ │ │ │ If dstree is NULL, an error message is printed and the program exits. Otherwise, the number │ │ │ │ │ of bytes taken by this object is returned. │ │ │ │ │ Error checking: If dstree is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. void DSTree_renumberViaPostOT ( DSTree *dstree ) ; │ │ │ │ │ This method renumbers the fronts in the tree via a post-order traversal. │ │ │ │ │ Error checking: If dstree is NULL, or if the object has not been initialized, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - Tree : DRAFT October 18, 2025 5 │ │ │ │ │ + Tree : DRAFT October 28, 2025 5 │ │ │ │ │ 3. int DSTree_domainWeight ( DSTree *dstree, int vwghts[] ) ; │ │ │ │ │ This method returns the weight of the vertices in the domains. If vwghts is NULL, the vertices │ │ │ │ │ have unit weight. │ │ │ │ │ Error checking: If dstree is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int DSTree_separatorWeight ( DSTree *dstree, int vwghts[] ) ; │ │ │ │ │ This method returns the weight of the vertices in the separators. If vwghts is NULL, the │ │ │ │ │ vertices have unit weight. │ │ │ │ │ @@ -159,15 +159,15 @@ │ │ │ │ │ 4. int DSTree_writeToFile ( DSTree *dstree, char *fn ) ; │ │ │ │ │ This method writes a DSTree object to a file. It tries to open the file and if it is successful, │ │ │ │ │ it then calls DSTree writeFromFormattedFile()or DSTree writeFromBinaryFile(),closes │ │ │ │ │ the file and returns the value returned from the called routine. │ │ │ │ │ Error checking: If dstree or fn are NULL, or if fn is not of the form *.dstreef (for a │ │ │ │ │ formatted file) or *.dstreeb (for a binary file), an error message is printed and the method │ │ │ │ │ returns zero. │ │ │ │ │ - 6 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 6 Tree : DRAFT October 28, 2025 │ │ │ │ │ 5. int DSTree_writeToFormattedFile ( DSTree *dstree, FILE *fp ) ; │ │ │ │ │ This method writes a DSTree object to a formatted file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If dstree or fp is NULL, an error message is printed and zero is returned. │ │ │ │ │ 6. int DSTree_writeToBinaryFile ( DSTree *dstree, FILE *fp ) ; │ │ │ │ │ This method writes a DSTree object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ @@ -195,15 +195,15 @@ │ │ │ │ │ • The inFile parameter is the input file for the DSTree object. It must be of the │ │ │ │ │ form *.dinpmtxf or *.dinpmtxb. The DSTree object is read from the file via the │ │ │ │ │ DSTree readFromFile() method. │ │ │ │ │ • The outFileparameter is the output file for the DSTree object. If outFile is none then │ │ │ │ │ the DSTreeobject is not written to a file. Otherwise, the DSTree writeToFile()method │ │ │ │ │ is called to write the object to a formatted file (if outFile is of the form *.dinpmtxf), │ │ │ │ │ or a binary file (if outFile is of the form *.dinpmtxb). │ │ │ │ │ - Tree : DRAFT October 18, 2025 7 │ │ │ │ │ + Tree : DRAFT October 28, 2025 7 │ │ │ │ │ 2. writeStagesIV msglvl msgFile inFile type outFile │ │ │ │ │ This driver program reads in a DSTree from a file, creates a stages IV object and writes it to │ │ │ │ │ a file. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the DSTree object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ ├── ./usr/share/doc/spooles-doc/DV.ps.gz │ │ │ ├── DV.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o DV.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2350,15 +2350,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2552,81 +2551,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4201,15 +4195,15 @@ │ │ │ │ 66.4176 /CMR8 rf /Fd 133[50 59 4[44 44 46 2[56 62 93 │ │ │ │ 31 2[31 62 2[51 62 50 1[54 11[86 5[84 5[42 6[80 12[56 │ │ │ │ 56 56 56 56 2[31 46[{}25 99.6264 /CMBX12 rf /Fe 139[62 │ │ │ │ 4[62 4[62 4[62 1[62 62 11[62 17[62 68[{}8 119.552 /CMTT12 │ │ │ │ rf /Ff 138[49 30 37 38 1[46 46 51 74 23 42 1[28 46 42 │ │ │ │ 1[42 46 42 42 46 12[65 1[66 11[59 62 69 2[68 6[28 58[{}25 │ │ │ │ 90.9091 /CMTI10 rf /Fg 139[35 1[36 2[45 9[40 1[40 51 │ │ │ │ -18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf /Fh 134[71 2[71 75 52 53 55 1[75 67 75 112 │ │ │ │ 3[37 75 67 41 61 75 60 1[65 13[75 2[92 11[103 16[67 67 │ │ │ │ 67 2[37 46[{}25 119.552 /CMBX12 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 2 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -4328,15 +4322,15 @@ │ │ │ │ (v)m(enience)0 4684 y(mak)m(es)h(it)g(a)g(widely)f(used)g(ob)5 │ │ │ │ b(ject.)0 4989 y Fh(1.1)135 b(Data)46 b(Structure)0 5214 │ │ │ │ y Fl(The)30 b Fk(DV)g Fl(structure)g(has)g(three)g(\014elds.)137 │ │ │ │ 5407 y Fi(\210)45 b Fk(int)i(size)29 b Fl(:)41 b(presen)m(t)30 │ │ │ │ b(size)i(of)e(the)h(v)m(ector.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fl(2)p 136 100 1182 4 v │ │ │ │ -1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 137 399 a Fi(\210)45 b Fk(int)i(maxsize)29 │ │ │ │ b Fl(:)40 b(maxim)m(um)30 b(size)i(of)e(the)h(v)m(ector.)137 │ │ │ │ 608 y Fi(\210)45 b Fk(int)i(owned)27 b Fl(:)40 b(o)m(wner)28 │ │ │ │ b(\015ag)h(for)f(the)h(data.)41 b(When)28 b Fk(owned)46 │ │ │ │ b(=)i(1)p Fl(,)28 b(storage)i(for)f Fk(owned)e(double)p │ │ │ │ Fl('s)f(has)j(b)s(een)227 721 y(allo)s(cated)k(b)m(y)d(this)h(ob)5 │ │ │ │ b(ject)31 b(and)f(can)h(b)s(e)f(free'd)g(b)m(y)h(the)f(ob)5 │ │ │ │ @@ -4392,15 +4386,15 @@ │ │ │ │ V 34 w(clearData\(\))d Fl(then)i(free's)h(the)g(storage)h(for)f(the)227 │ │ │ │ 5246 y(structure)h(with)g(a)h(call)h(to)f Fk(free\(\))p │ │ │ │ Fl(.)227 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fl(If)30 b Fk(dv)g Fl(is)h Fk(NULL)e Fl(an)h(error)g(message)h(is)g │ │ │ │ (prin)m(ted)f(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1182 4 v 1364 100 a Fk(DV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fl(3)0 399 y Fd(1.2.2)112 b(Instance)38 │ │ │ │ b(metho)s(ds)0 610 y Fl(These)33 b(metho)s(d)f(allo)m(w)j(access)g(to)e │ │ │ │ (information)h(in)f(the)g(data)h(\014elds)e(without)i(explicitly)g │ │ │ │ (follo)m(wing)h(p)s(oin)m(ters.)0 723 y(There)g(is)h(o)m(v)m(erhead)h │ │ │ │ (in)m(v)m(olv)m(ed)h(with)d(these)h(metho)s(d)g(due)f(to)h(the)g │ │ │ │ (function)g(call)h(and)e(error)h(c)m(hec)m(king)h(inside)0 │ │ │ │ 835 y(the)31 b(metho)s(ds.)111 1110 y(1.)46 b Fk(int)h(DV_owned)f(\()h │ │ │ │ @@ -4456,15 +4450,15 @@ │ │ │ │ (the)h Fk(loc)p Fl('th)f(en)m(try)g(of)h(the)f(v)m(ector)i(to)f │ │ │ │ Fk(value)p Fl(.)227 5407 y Ff(Err)-5 b(or)33 b(che)-5 │ │ │ │ b(cking:)40 b Fl(If)28 b Fk(dv)h Fl(is)g Fk(NULL)e Fl(or)j │ │ │ │ Fk(loc)46 b(<)i(0)p Fl(,)29 b(an)g(error)g(message)h(is)f(prin)m(ted)f │ │ │ │ (and)h(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fl(4)p 136 100 1182 4 v │ │ │ │ -1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 0 399 a Fd(1.2.3)112 b(Initializer)38 b(metho)s(ds)0 │ │ │ │ 592 y Fl(There)30 b(are)h(three)f(initializer)j(metho)s(ds.)111 │ │ │ │ 806 y(1.)46 b Fk(void)h(DV_init)f(\()h(DV)g(*dv,)g(int)g(size,)f │ │ │ │ (double)g(*entries)g(\))h(;)227 953 y Fl(This)36 b(metho)s(d)g │ │ │ │ (initializes)j(the)d(ob)5 b(ject)38 b(giv)m(en)f(a)g(size)h(for)e(the)h │ │ │ │ (v)m(ector)h(and)e(a)h(p)s(ossible)f(p)s(oin)m(ter)g(to)i(the)227 │ │ │ │ 1066 y(v)m(ectors')30 b(storage.)42 b(An)m(y)28 b(previous)g(data)h(is) │ │ │ │ @@ -4542,15 +4536,15 @@ │ │ │ │ (base)f(en)m(tries)g(of)h(the)f(v)m(ector)h(and)f(decremen)m(ts)g(the)g │ │ │ │ (presen)m(t)g(size)h(and)f(max-)227 5407 y(im)m(um)g(size)g(of)g(the)f │ │ │ │ (v)m(ector)j(b)m(y)d Fk(offset)p Fl(.)46 b(This)31 b(is)i(a)g │ │ │ │ (dangerous)f(metho)s(d)g(to)h(use)g(b)s(ecause)f(the)h(state)h(of)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1182 4 v 1364 100 a Fk(DV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fl(5)227 399 y(the)37 b(v)m(ector)h(is)e(lost,)j │ │ │ │ (namely)e Fk(vec)p Fl(,)g(the)g(base)f(of)h(the)f(en)m(tries,)j(is)e │ │ │ │ (corrupted.)58 b(If)35 b(the)i(ob)5 b(ject)37 b(o)m(wns)g(its)227 │ │ │ │ 511 y(en)m(tries)29 b(and)e Fk(DV)p 792 511 29 4 v 34 │ │ │ │ w(free\(\))p Fl(,)g Fk(DV)p 1262 511 V 34 w(setSize\(\))e │ │ │ │ Fl(or)j Fk(DV)p 1958 511 V 34 w(setMaxsize\(\))d Fl(is)j(called)h(b)s │ │ │ │ (efore)f(the)g(base)g(has)g(b)s(een)227 624 y(shifted)h(bac)m(k)g(to)g │ │ │ │ @@ -4611,15 +4605,15 @@ │ │ │ │ 5247 y Fl(This)30 b(metho)s(d)g(returns)f(the)h(n)m(um)m(b)s(er)f(of)i │ │ │ │ (b)m(ytes)g(tak)m(en)g(b)m(y)g(the)f(ob)5 b(ject.)227 │ │ │ │ 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fl(If)30 │ │ │ │ b Fk(dv)g Fl(is)h Fk(NULL)e Fl(an)h(error)g(message)h(is)g(prin)m(ted)f │ │ │ │ (and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fl(6)p 136 100 1182 4 v │ │ │ │ -1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 111 399 a Fl(8.)46 b Fk(double)g(*)i(DV_first)d(\()j(DV)f │ │ │ │ (*dv)g(\))g(;)227 511 y(double)f(*)i(DV_next)e(\()h(DV)g(*dv,)g(int)g │ │ │ │ (*pd)g(\))g(;)227 671 y Fl(These)30 b(t)m(w)m(o)i(metho)s(ds)e(are)h │ │ │ │ (used)e(as)i(iterators,)h(e.g.,)227 921 y Fk(for)47 b(\()h(pd)f(=)g │ │ │ │ (DV_first\(dv\))e(;)i(pd)g(!=)h(NULL)e(;)i(pd)f(=)g(DV_next\(dv,)e │ │ │ │ (pd\))i(\))g({)370 1033 y(do)h(something)d(with)i(entry)f(*pd)227 │ │ │ │ 1146 y(})227 1396 y Fl(Eac)m(h)41 b(metho)s(d)f(c)m(hec)m(ks)i(to)f │ │ │ │ @@ -4681,15 +4675,15 @@ │ │ │ │ b(\014le)f(structure)h(of)g(a)g Fk(DV)f Fl(ob)5 b(ject)31 │ │ │ │ b(is)f(simple:)41 b(the)30 b(\014rst)f(en)m(try)h(is)0 │ │ │ │ 5407 y Fk(size)p Fl(,)f(follo)m(w)m(ed)j(b)m(y)f(the)f │ │ │ │ Fk(size)g Fl(en)m(tries)h(found)e(in)h Fk(vec[])p Fl(.)p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1182 4 v 1364 100 a Fk(DV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fl(7)111 399 y(1.)46 b Fk(int)h(DV_readFromFile)d(\() │ │ │ │ j(DV)g(*dv,)g(char)g(*fn)g(\))g(;)227 547 y Fl(This)33 │ │ │ │ b(metho)s(d)g(reads)g(a)h Fk(DV)f Fl(ob)5 b(ject)35 b(from)e(a)h │ │ │ │ (\014le.)50 b(It)34 b(tries)f(to)i(op)s(en)e(the)g(\014le)h(and)f(if)g │ │ │ │ (it)h(is)g(successful,)g(it)227 660 y(then)j(calls)g │ │ │ │ Fk(DV)p 751 660 29 4 v 34 w(readFromFormattedFile\(\))30 │ │ │ │ b Fl(or)37 b Fk(DV)p 2133 660 V 34 w(readFromBinaryFile\(\))p │ │ │ │ @@ -4772,15 +4766,15 @@ │ │ │ │ (and)g(statistics)i(to)f(a)g(\014le.)41 b(The)29 b(v)-5 │ │ │ │ b(alue)31 b Fk(1)f Fl(is)h(returned.)227 5407 y Ff(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fl(If)30 b Fk(dv)g Fl(or)g │ │ │ │ Fk(fp)g Fl(are)h Fk(NULL)p Fl(,)e(an)i(error)f(message)h(is)g(prin)m │ │ │ │ (ted)f(and)f(zero)i(is)g(returned.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fl(8)p 136 100 1182 4 v │ │ │ │ -1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fk(DV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 111 399 a Fl(9.)46 b Fk(int)h(DV_writeForMatlab)c(\()48 │ │ │ │ b(DV)f(*dv,)g(char)f(*name,)g(FILE)h(*fp)g(\))g(;)227 │ │ │ │ 549 y Fl(This)37 b(metho)s(d)h(writes)f(the)i(en)m(tries)f(of)g(the)g │ │ │ │ (v)m(ector)i(to)e(a)g(\014le)g(suitable)h(to)f(b)s(e)g(read)f(b)m(y)h │ │ │ │ (Matlab.)64 b(The)227 662 y(c)m(haracter)31 b(string)e │ │ │ │ Fk(name)f Fl(is)h(the)g(name)g(of)g(the)g(v)m(ector,)i(e.g,)g(if)e │ │ │ │ Fk(name)46 b(=)i("A")p Fl(,)28 b(then)h(w)m(e)g(ha)m(v)m(e)h(lines)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ simplest operations, and so when we need to manipulate an double vector inside a loop, we extract │ │ │ │ │ out the size and pointer to the base array from the DV object. On the other hand, the convenience │ │ │ │ │ makes it a widely used object. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The DV structure has three fields. │ │ │ │ │ • int size : present size of the vector. │ │ │ │ │ 1 │ │ │ │ │ - 2 DV : DRAFT October 18, 2025 │ │ │ │ │ + 2 DV : DRAFT October 28, 2025 │ │ │ │ │ • int maxsize : maximum size of the vector. │ │ │ │ │ • int owned : owner flag for the data. When owned = 1, storage for owned double’s has been │ │ │ │ │ allocated by this object and can be free’d by the object. When owned == 0 but size > 0 , │ │ │ │ │ this object points to entries that have been allocated elsewhere, and these entries will not be │ │ │ │ │ free’d by this object. │ │ │ │ │ • double *vec : pointer to the base address of the double vector │ │ │ │ │ The size, maxsize, nowned and vec fields need never be accessed directly — see the DV size(), │ │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ │ the storage for vec is free’d by a call to DVfree(). The structure’s default fields are then set │ │ │ │ │ with a call to DV setDefaultFields(). │ │ │ │ │ Error checking: If dv is NULL an error message is printed and the program exits. │ │ │ │ │ 4. void DV_free ( DV *dv ) ; │ │ │ │ │ This method releases any storage by a call to DV clearData() then free’s the storage for the │ │ │ │ │ structure with a call to free(). │ │ │ │ │ Error checking: If dv is NULL an error message is printed and the program exits. │ │ │ │ │ - DV : DRAFT October 18, 2025 3 │ │ │ │ │ + DV : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ These method allow access to information in the data fields without explicitly following pointers. │ │ │ │ │ There is overhead involved with these method due to the function call and error checking inside │ │ │ │ │ the methods. │ │ │ │ │ 1. int DV_owned ( DV *dv ) ; │ │ │ │ │ This method returns the value of owned. If owned > 0, then the object owns the data pointed │ │ │ │ │ to by vec and will free this data with a call to DVfree() when its data is cleared by a call to │ │ │ │ │ @@ -85,15 +85,15 @@ │ │ │ │ │ This method fills *psize with the size of the vector and **pentries with the base address │ │ │ │ │ of the vector. │ │ │ │ │ Error checking: If dv, psize or pentriesis NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 7. void DV_setEntry ( DV *dv, int loc, double value ) ; │ │ │ │ │ This method sets the loc’th entry of the vector to value. │ │ │ │ │ Error checking: If dv is NULL or loc < 0, an error message is printed and the program exits. │ │ │ │ │ - 4 DV : DRAFT October 18, 2025 │ │ │ │ │ + 4 DV : DRAFT October 28, 2025 │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ There are three initializer methods. │ │ │ │ │ 1. void DV_init ( DV *dv, int size, double *entries ) ; │ │ │ │ │ This method initializes the object given a size for the vector and a possible pointer to the │ │ │ │ │ vectors’ storage. Any previous data is cleared with a call to DV clearData(). If entries != │ │ │ │ │ NULL then the vec field is set to entries, the size and maxsize fields are set to size, and │ │ │ │ │ owned is set to zero because the object does not own the entries. If entries is NULL and size │ │ │ │ │ @@ -123,15 +123,15 @@ │ │ │ │ │ increased with a call to DV setMaxsize(). The size field is set to newsize. │ │ │ │ │ Error checking: If dv is NULL, or newsize < 0, or if 0 < maxsize < newsize and owned = │ │ │ │ │ 0, an error message is printed and the program exits. │ │ │ │ │ 1.2.4 Utility methods │ │ │ │ │ 1. void DV_shiftBase ( DV *dv, int offset ) ; │ │ │ │ │ This method shifts the base entries of the vector and decrements the present size and max- │ │ │ │ │ imum size of the vector by offset. This is a dangerous method to use because the state of │ │ │ │ │ - DV : DRAFT October 18, 2025 5 │ │ │ │ │ + DV : DRAFT October 28, 2025 5 │ │ │ │ │ the vector is lost, namely vec, the base of the entries, is corrupted. If the object owns its │ │ │ │ │ entries and DV free(), DV setSize() or DV setMaxsize() is called before the base has been │ │ │ │ │ shifted back to its original position, a segmentation violation will likely result. This is a very │ │ │ │ │ useful method, but use with caution. │ │ │ │ │ Error checking: If dv is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. void DV_push ( DV *dv, double val ) ; │ │ │ │ │ This method pushes an entry onto the vector. If the vector is full, i.e., if size == maxsize │ │ │ │ │ @@ -159,15 +159,15 @@ │ │ │ │ │ This method shuffles the entries in the vector using seed as a seed to a random number │ │ │ │ │ generator. │ │ │ │ │ Error checking: If dv is NULL, size <= 0 or if vec == NULL, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 7. int DV_sizeOf ( DV *dv ) ; │ │ │ │ │ This method returns the number of bytes taken by the object. │ │ │ │ │ Error checking: If dv is NULL an error message is printed and the program exits. │ │ │ │ │ - 6 DV : DRAFT October 18, 2025 │ │ │ │ │ + 6 DV : DRAFT October 28, 2025 │ │ │ │ │ 8. double * DV_first ( DV *dv ) ; │ │ │ │ │ double * DV_next ( DV *dv, int *pd ) ; │ │ │ │ │ These two methods are used as iterators, e.g., │ │ │ │ │ for ( pd = DV_first(dv) ; pd != NULL ; pd = DV_next(dv, pd) ) { │ │ │ │ │ do something with entry *pd │ │ │ │ │ } │ │ │ │ │ Each method checks to see if dv or pd is NULL, if so an error message is printed and the │ │ │ │ │ @@ -193,15 +193,15 @@ │ │ │ │ │ smaller than tausmall, or larger than taubig are placed into pnzero, *pnsmall and *pnbig, │ │ │ │ │ respectively. On return, the size of the xDV and yDV objects is npts. │ │ │ │ │ Error checking: If dv, xDV, yDV, pnsmall or pnbig are NULL, or if npts ≤ 0, or if taubig < 0.0 │ │ │ │ │ or if tausmall > taubig, an error message is printed and the program exits. │ │ │ │ │ 1.2.5 IO methods │ │ │ │ │ There are the usual eight IO routines. The file structure of a DV object is simple: the first entry is │ │ │ │ │ size, followed by the size entries found in vec[]. │ │ │ │ │ - DV : DRAFT October 18, 2025 7 │ │ │ │ │ + DV : DRAFT October 28, 2025 7 │ │ │ │ │ 1. int DV_readFromFile ( DV *dv, char *fn ) ; │ │ │ │ │ This method reads a DV object from a file. It tries to open the file and if it is successful, it │ │ │ │ │ then calls DV readFromFormattedFile() or DV readFromBinaryFile(), closes the file and │ │ │ │ │ returns the value returned from the called routine. │ │ │ │ │ Error checking: If dv or fn are NULL, or if fn is not of the form *.dvf (for a formatted file) │ │ │ │ │ or *.dvb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 2. int DV_readFromFormattedFile ( DV *dv, FILE *fp ) ; │ │ │ │ │ @@ -230,15 +230,15 @@ │ │ │ │ │ This method writes a DV object to a file in a human readable format. is called to write out │ │ │ │ │ the header and statistics. The entries of the vector then follow in eighty column format using │ │ │ │ │ the DVfprintf() method. The value 1 is returned. │ │ │ │ │ Error checking: If dv or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 8. int DV_writeStats ( DV *dv, FILE *fp ) ; │ │ │ │ │ This method writes the header and statistics to a file. The value 1 is returned. │ │ │ │ │ Error checking: If dv or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 8 DV : DRAFT October 18, 2025 │ │ │ │ │ + 8 DV : DRAFT October 28, 2025 │ │ │ │ │ 9. int DV_writeForMatlab ( DV *dv, char *name, FILE *fp ) ; │ │ │ │ │ This method writes the entries of the vector to a file suitable to be read by Matlab. The │ │ │ │ │ character string name is the name of the vector, e.g, if name = "A", then we have lines of the │ │ │ │ │ form │ │ │ │ │ A(1) = 1.000000000000e0 ; │ │ │ │ │ A(2) = 2.000000000000e0 ; │ │ │ │ │ ... │ │ ├── ./usr/share/doc/spooles-doc/DenseMtx.ps.gz │ │ │ ├── DenseMtx.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o DenseMtx.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1621,15 +1621,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1823,81 +1822,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3687,15 +3681,15 @@ │ │ │ │ TeXDict begin 40258437 52099151 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 234[65 21[{}1 83.022 /CMSY10 rf /Fb 195[65 │ │ │ │ 60[{}1 83.022 /CMMI10 rf /Fc 133[50 59 4[44 44 3[56 62 │ │ │ │ 93 31 2[31 62 2[51 62 50 1[54 11[86 5[84 5[42 6[80 12[56 │ │ │ │ 56 56 56 56 2[31 46[{}24 99.6264 /CMBX12 rf /Fd 135[62 │ │ │ │ 3[62 62 4[62 8[62 23[62 8[62 68[{}7 119.552 /CMTT12 rf │ │ │ │ /Fe 139[32 1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 │ │ │ │ -2[42 42 42 3[23 44[{}14 83.022 /CMSL10 rf │ │ │ │ +2[42 1[42 3[23 44[{}13 83.022 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -3819,15 +3813,15 @@ │ │ │ │ (and)h Fi(0)f Fj(otherwise.)125 5407 y Ff(\210)42 b Fi(DENSEMTX)p │ │ │ │ 565 5407 V 28 w(IS)p 681 5407 V 30 w(COMPLEX\(mtx\))23 │ │ │ │ b Fj(returns)k Fi(1)g Fj(if)h(the)g(matrix)f(has)g(complex)g(en)n │ │ │ │ (tries,)g(and)h Fi(0)f Fj(otherwise.)1929 5656 y(1)p │ │ │ │ eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 125 100 1114 4 v │ │ │ │ -1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(18,)g │ │ │ │ +1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2787 100 V 0 390 a Fg(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Fd(DenseMtx)c Fg(metho)t(ds)0 │ │ │ │ 598 y Fj(This)35 b(section)f(con)n(tains)g(brief)h(descriptions)f │ │ │ │ (including)h(protot)n(yp)r(es)f(of)h(all)f(metho)r(ds)i(that)f(b)r │ │ │ │ (elong)f(to)h(the)g Fi(DenseMtx)0 698 y Fj(ob)5 b(ject.)0 │ │ │ │ 958 y Fc(1.2.1)112 b(Basic)38 b(metho)s(ds)0 1138 y Fj(As)21 │ │ │ │ b(usual,)g(there)f(are)g(four)g(basic)g(metho)r(ds)g(to)h(supp)r(ort)f │ │ │ │ @@ -3893,15 +3887,15 @@ │ │ │ │ b(the)h(di\013erence)f(in)g(memory)f(lo)r(cations)h(of)g(t)n(w)n(o)f │ │ │ │ (en)n(tries)208 5273 y(in)k(consecutiv)n(e)g(columns)g(in)h(the)g(same) │ │ │ │ f(ro)n(w.)208 5407 y Fh(Err)l(or)j(che)l(cking:)38 b │ │ │ │ Fj(If)28 b Fi(mtx)f Fj(is)g Fi(NULL)p Fj(,)f(an)i(error)d(message)i(is) │ │ │ │ g(prin)n(ted)h(and)f(the)h(program)e(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1114 4 v 1279 100 a Fi(DenseMtx)25 │ │ │ │ -b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2747 100 V 1114 w Fj(3)101 390 y(5.)42 b Fi(int)g(DenseMtx_rowIncr)o │ │ │ │ (em)o(ent)37 b(\()43 b(DenseMtx)d(*mtx)i(\))h(;)208 529 │ │ │ │ y Fj(This)24 b(metho)r(d)g(returns)f(the)i(ro)n(w)e(incremen)n(t)g(of)h │ │ │ │ (the)h(ob)5 b(ject,)24 b(the)h(di\013erence)f(in)g(memory)f(lo)r │ │ │ │ (cations)h(of)g(t)n(w)n(o)f(en)n(tries)208 629 y(in)k(consecutiv)n(e)g │ │ │ │ (ro)n(ws)f(in)i(the)g(same)f(column.)208 767 y Fh(Err)l(or)j(che)l │ │ │ │ (cking:)38 b Fj(If)28 b Fi(mtx)f Fj(is)g Fi(NULL)p Fj(,)f(an)i(error)d │ │ │ │ @@ -3974,15 +3968,15 @@ │ │ │ │ Fj(.)208 5308 y Fh(Err)l(or)31 b(che)l(cking:)42 b Fj(If)29 │ │ │ │ b Fi(mtx)f Fj(is)h Fi(NULL)p Fj(,)e(or)h(if)i(the)f(matrix)g(is)g(not)g │ │ │ │ (complex,)g(or)f(if)h Fi(irow)f Fj(or)g Fi(jcol)f Fj(is)i(out)g(of)g │ │ │ │ (range,)f(an)208 5407 y(error)d(message)h(is)i(prin)n(ted)f(and)h(the)g │ │ │ │ (program)d(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 125 100 1114 4 v │ │ │ │ -1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(18,)g │ │ │ │ +1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2787 100 V 60 390 a Fj(14.)41 b Fi(int)h(DenseMtx_row)d(\()k │ │ │ │ (DenseMtx)d(*mtx,)h(int)i(irow,)e(double)g(**prowent)f(\))j(;)208 │ │ │ │ 517 y Fj(This)27 b(metho)r(d)h(\014lls)g Fi(*prowent)c │ │ │ │ Fj(with)k(the)g(\014rst)g(lo)r(cation)f(of)g(the)h(en)n(tries)f(in)h │ │ │ │ (ro)n(w)e Fi(irow)p Fj(.)208 644 y Fh(R)l(eturn)31 b(c)l(o)l(des:)45 │ │ │ │ b Fi(1)31 b Fj(is)g(a)g(normal)f(return,)i Fi(-1)e Fj(means)h │ │ │ │ Fi(mtx)f Fj(is)h Fi(NULL)p Fj(,)f Fi(-2)g Fj(means)h(in)n(v)-5 │ │ │ │ @@ -4071,15 +4065,15 @@ │ │ │ │ Fj(ob)5 b(ject)27 b(to)g(p)r(oin)n(t)h(in)n(to)f(the)h(en)n(tries)f(of) │ │ │ │ h(the)g(matrix.)208 5407 y Fh(Err)l(or)i(che)l(cking:)38 │ │ │ │ b Fj(If)28 b Fi(mtx)f Fj(or)g Fi(a2)f Fj(is)i Fi(NULL)p │ │ │ │ Fj(,)e(an)h(error)f(message)g(is)i(prin)n(ted)f(and)h(the)g(program)d │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1114 4 v 1279 100 a Fi(DenseMtx)25 │ │ │ │ -b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2747 100 V 1114 w Fj(5)0 390 y Fc(1.2.4)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)101 570 y Fj(1.)k Fi(int)g(DenseMtx_nbytesN)o(ee)o(ded)37 │ │ │ │ b(\()43 b(int)f(type,)g(int)g(nrow,)g(int)g(ncol)g(\))h(;)208 │ │ │ │ 705 y Fj(This)27 b(metho)r(d)h(returns)f(the)h(n)n(um)n(b)r(er)f(of)h │ │ │ │ (b)n(ytes)f(required)g(to)g(store)g(the)h(ob)5 b(ject's)27 │ │ │ │ b(information)g(in)h(its)g(bu\013er.)208 839 y Fh(Err)l(or)h(che)l │ │ │ │ (cking:)38 b Fj(If)27 b Fi(type)e Fj(is)i(neither)f Fi(SPOOLES)p │ │ │ │ @@ -4160,15 +4154,15 @@ │ │ │ │ Fj(is)h Fi(NULL)p Fj(,)f(or)h(if)h Fi(irowA)e Fj(is)h(out)h(of)208 │ │ │ │ 5308 y(range,)23 b(or)h(if)g(the)h(n)n(um)n(b)r(er)f(of)h(columns)f(in) │ │ │ │ g Fi(mtxB)f Fj(and)h Fi(mtxA)f Fj(are)g(not)h(the)h(same,)g(an)f(error) │ │ │ │ e(message)h(is)h(prin)n(ted)g(and)208 5407 y(the)k(program)d(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fj(6)p 125 100 1114 4 v │ │ │ │ -1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(18,)g │ │ │ │ +1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2787 100 V 101 390 a Fj(9.)42 b Fi(void)f(DenseMtx_addRow)d(\() │ │ │ │ 43 b(DenseMtx)d(*mtxB,)h(int)i(irowB,)e(DenseMtx)f(*mtxA,)h(int)i │ │ │ │ (irowA)85 b(\))43 b(;)208 525 y Fj(This)27 b(metho)r(d)h(adds)f(ro)n(w) │ │ │ │ g Fi(irowA)e Fj(from)j(matrix)f Fi(mtxA)f Fj(in)n(to)h(ro)n(w)f │ │ │ │ Fi(irowB)g Fj(of)i(matrix)f Fi(mtxB)p Fj(.)208 659 y │ │ │ │ Fh(Err)l(or)34 b(che)l(cking:)46 b Fj(If)32 b Fi(mtxB)e │ │ │ │ Fj(is)i Fi(NULL)p Fj(,)e(or)h(if)h Fi(irowB)e Fj(is)h(out)h(of)f │ │ │ │ @@ -4243,15 +4237,15 @@ │ │ │ │ Fj(.)208 5308 y Fh(Err)l(or)j(che)l(cking:)39 b Fj(If)28 │ │ │ │ b Fi(mtx)e Fj(or)h Fi(vec)f Fj(is)i Fi(NULL)p Fj(,)e(or)h(if)h │ │ │ │ Fi(irow)22 b Fb(<)g Fj(0)28 b(or)e Fi(irow)c Fa(\025)h │ │ │ │ Fi(nrow)n Fj(,)28 b(an)f(error)f(message)g(is)i(prin)n(ted)f(and)208 │ │ │ │ 5407 y(the)h(program)d(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1114 4 v 1279 100 a Fi(DenseMtx)25 │ │ │ │ -b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fe(:)37 b Fh(DRAFT)110 b Fe(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2747 100 V 1114 w Fj(7)0 390 y Fc(1.2.5)112 b(IO)38 b(metho)s(ds)0 │ │ │ │ 573 y Fj(The)23 b(\014le)g(structure)f(of)h(a)g Fi(DenseMtx)c │ │ │ │ Fj(ob)5 b(ject)23 b(is)g(simple.)35 b(First)23 b(comes)f(sev)n(en)g │ │ │ │ (scalars,)g Fi(type)p Fj(,)h Fi(rowid)p Fj(,)e Fi(colid)p │ │ │ │ Fj(,)h Fi(nrow)p Fj(,)h Fi(ncol)p Fj(,)0 672 y Fi(inc1)g │ │ │ │ Fj(and)h Fi(inc2)p Fj(,)f(follo)n(w)n(ed)g(b)n(y)h(the)h(ro)n(w)e │ │ │ │ (indices,)i(follo)n(w)n(ed)e(b)n(y)h(the)g(column)g(indices,)h(and)f │ │ │ │ @@ -4340,15 +4334,15 @@ │ │ │ │ Fj(ob)5 b(ject)27 b(to)h(a)f(\014le)h(in)g(an)f(easily)g(readable)f │ │ │ │ (format.)208 5407 y Fh(Err)l(or)k(che)l(cking:)38 b Fj(If)28 │ │ │ │ b Fi(mtx)f Fj(or)g Fi(fp)f Fj(are)h Fi(NULL)p Fj(,)f(an)h(error)f │ │ │ │ (message)g(is)i(prin)n(ted)f(and)h(zero)e(is)i(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fj(8)p 125 100 1114 4 v │ │ │ │ -1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(18,)g │ │ │ │ +1279 w Fi(DenseMtx)24 b Fe(:)37 b Fh(DRAFT)27 b Fe(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2787 100 V 101 390 a Fj(9.)42 b Fi(void)f(DenseMtx_writeFor)o │ │ │ │ (Mat)o(la)o(b)d(\()43 b(DenseMtx)d(*mtx,)i(char)f(*mtxname,)f(FILE)i │ │ │ │ (*fp)h(\))g(;)208 523 y Fj(This)27 b(metho)r(d)h(writes)f(out)h(a)f │ │ │ │ Fi(DenseMtx)e Fj(ob)5 b(ject)27 b(to)g(a)h(\014le)f(in)h(a)f(Matlab)h │ │ │ │ (format.)36 b(A)28 b(sample)f(line)h(is)208 722 y Fi(a\(10,5\))40 │ │ │ │ b(=)87 b(-1.550328201511e)o(-01)37 b(+)130 b(1.848033378871e+)o(00*)o │ │ │ │ (i)37 b(;)208 922 y Fj(for)27 b(complex)g(matrices,)g(or)208 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ • double *entries : pointer to the base address of the double vector that contains the entries. │ │ │ │ │ • DV wrkDV : object that manages the owned working storage. │ │ │ │ │ • DenseMtx *next : link to a next object in a singly linked list. │ │ │ │ │ One can query the type of entries via two macros. │ │ │ │ │ • DENSEMTX IS REAL(mtx) returns 1 if the matrix has real entries, and 0 otherwise. │ │ │ │ │ • DENSEMTX IS COMPLEX(mtx) returns 1 if the matrix has complex entries, and 0 otherwise. │ │ │ │ │ 1 │ │ │ │ │ - 2 DenseMtx : DRAFT October 18, 2025 │ │ │ │ │ + 2 DenseMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of DenseMtx methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the DenseMtx │ │ │ │ │ object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ Asusual, there are four basic methods to support object creation, setting default fields, clearing any allocated │ │ │ │ │ data, and free’ing the object. │ │ │ │ │ 1. DenseMtx * DenseMtx_new ( void ) ; │ │ │ │ │ @@ -58,15 +58,15 @@ │ │ │ │ │ 3. void DenseMtx_dimensions ( DenseMtx *mtx, int *pnrow, int *pncol ) ; │ │ │ │ │ This method fills *pnrow and *pncol with nrow and ncol. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int DenseMtx_columnIncrement ( DenseMtx *mtx ) ; │ │ │ │ │ This method returns the row increment of the object, the difference in memory locations of two entries │ │ │ │ │ in consecutive columns in the same row. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - DenseMtx : DRAFT October 18, 2025 3 │ │ │ │ │ + DenseMtx : DRAFT October 28, 2025 3 │ │ │ │ │ 5. int DenseMtx_rowIncrement ( DenseMtx *mtx ) ; │ │ │ │ │ This method returns the row increment of the object, the difference in memory locations of two entries │ │ │ │ │ in consecutive rows in the same column. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 6. void DenseMtx_rowIndices ( DenseMtx *mtx, int *pnrow, **prowind ) ; │ │ │ │ │ This method fills *pnrow with nrow, the number of rows, and *prowind with rowind, a pointer to the │ │ │ │ │ row indices. │ │ │ │ │ @@ -97,15 +97,15 @@ │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 13. void DenseMtx_setComplexEntry ( DenseMtx *mtx, int irow, int jcol, │ │ │ │ │ double real, double imag ) ; │ │ │ │ │ This method sets the real and imaginary parts of the entry in row irow and column jcol to be │ │ │ │ │ (real,imag). │ │ │ │ │ Error checking: If mtx is NULL, or if the matrix is not complex, or if irow or jcol is out of range, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ - 4 DenseMtx : DRAFT October 18, 2025 │ │ │ │ │ + 4 DenseMtx : DRAFT October 28, 2025 │ │ │ │ │ 14. int DenseMtx_row ( DenseMtx *mtx, int irow, double **prowent ) ; │ │ │ │ │ This method fills *prowent with the first location of the entries in row irow. │ │ │ │ │ Return codes: 1 is a normal return, -1 means mtx is NULL, -2 means invalid type for mtx, -3 means │ │ │ │ │ irow is out-of-range, -4 means prowent is NULL. │ │ │ │ │ 15. int DenseMtx_column ( DenseMtx *mtx, int jcol, double **pcolent ) ; │ │ │ │ │ This method fills *pcolent with the first location of the entries in column jcol. │ │ │ │ │ Return codes: 1 is a normal return, -1 means mtx is NULL, -2 means invalid type for mtx, -3 means │ │ │ │ │ @@ -139,15 +139,15 @@ │ │ │ │ │ 4. void DenseMtx_initFromBuffer ( DenseMtx *mtx ) ; │ │ │ │ │ This method initializes the object using information present in the workspace buffer. This method is │ │ │ │ │ used to initialize the DenseMtx object when it has been received as an MPI message. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 5. void DenseMtx_setA2 ( DenseMtx *mtx, A2 *a2 ) ; │ │ │ │ │ This method initializes the a2 object to point into the entries of the matrix. │ │ │ │ │ Error checking: If mtx or a2 is NULL, an error message is printed and the program exits. │ │ │ │ │ - DenseMtx : DRAFT October 18, 2025 5 │ │ │ │ │ + DenseMtx : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.4 Utility methods │ │ │ │ │ 1. int DenseMtx_nbytesNeeded ( int type, int nrow, int ncol ) ; │ │ │ │ │ This method returns the number of bytes required to store the object’s information in its buffer. │ │ │ │ │ Error checking: If type is neither SPOOLES REAL nor SPOOLES COMPLEX, or if nrow or ncol is less than │ │ │ │ │ zero, an error message is printed and the program exits. │ │ │ │ │ 2. int DenseMtx_nbytesInWorkspace ( DenseMtx *mtx ) ; │ │ │ │ │ This method returns the number of bytes in the workspace owned by this object. │ │ │ │ │ @@ -180,15 +180,15 @@ │ │ │ │ │ 8. void DenseMtx_copyRowAndIndex ( DenseMtx *mtxB, int irowB, │ │ │ │ │ DenseMtx *mtxA, int irowA ) ; │ │ │ │ │ This method copies row irowA from matrix mtxA into row irowB of matrix mtxB, and copies the index │ │ │ │ │ of row irowA of mtxA into location irowB of the row indices for mtxB. │ │ │ │ │ Error checking: If mtxB is NULL, or if irowB is out of range, or if mtxA is NULL, or if irowA is out of │ │ │ │ │ range, or if the number of columns in mtxB and mtxA are not the same, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ - 6 DenseMtx : DRAFT October 18, 2025 │ │ │ │ │ + 6 DenseMtx : DRAFT October 28, 2025 │ │ │ │ │ 9. void DenseMtx_addRow ( DenseMtx *mtxB, int irowB, DenseMtx *mtxA, int irowA ) ; │ │ │ │ │ This method adds row irowA from matrix mtxA into row irowB of matrix mtxB. │ │ │ │ │ Error checking: If mtxB is NULL, or if irowB is out of range, or if mtxA is NULL, or if irowA is out of │ │ │ │ │ range, or if the number of columns in mtxB and mtxA are not the same, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 10. void DenseMtx_zero ( DenseMtx *mtx ) ; │ │ │ │ │ This method zeros the entries in the matrix. │ │ │ │ │ @@ -219,15 +219,15 @@ │ │ │ │ │ This method copies vector vec[] into row irow of matrix mtx. │ │ │ │ │ Error checking: If mtx or vec is NULL, or if irow < 0 or irow ≥ nrow, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 18. double DenseMtx_addVectorIntoRow ( DenseMtx *mtx, int irow, double vec[] ) ; │ │ │ │ │ This method adds vector vec[] into row irow of matrix mtx. │ │ │ │ │ Error checking: If mtx or vec is NULL, or if irow < 0 or irow ≥ nrow, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ - DenseMtx : DRAFT October 18, 2025 7 │ │ │ │ │ + DenseMtx : DRAFT October 28, 2025 7 │ │ │ │ │ 1.2.5 IO methods │ │ │ │ │ Thefile structure of a DenseMtxobject is simple. First comes seven scalars, type, rowid, colid, nrow, ncol, │ │ │ │ │ inc1 and inc2, followed by the row indices, followed by the column indices, and then followed by the matrix │ │ │ │ │ entries. │ │ │ │ │ 1. int DenseMtx_readFromFile ( DenseMtx *mtx, char *fn ) ; │ │ │ │ │ This method reads an DenseMtx object from a file. If the the file can be opened successfully, the │ │ │ │ │ method calls DenseMtx readFromFormattedFile() or DenseMtx readFromBinaryFile(), closes the │ │ │ │ │ @@ -258,15 +258,15 @@ │ │ │ │ │ Error checking: If mtx or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 7. int DenseMtx_writeStats ( DenseMtx *mtx, FILE *fp ) ; │ │ │ │ │ This method writes out a header and statistics to a file. The value 1 is returned. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 8. void DenseMtx_writeForHumanEye ( DenseMtx *mtx, FILE *fp ) ; │ │ │ │ │ This method writes a DenseMtx object to a file in an easily readable format. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 8 DenseMtx : DRAFT October 18, 2025 │ │ │ │ │ + 8 DenseMtx : DRAFT October 28, 2025 │ │ │ │ │ 9. void DenseMtx_writeForMatlab ( DenseMtx *mtx, char *mtxname, FILE *fp ) ; │ │ │ │ │ This method writes out a DenseMtx object to a file in a Matlab format. A sample line is │ │ │ │ │ a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ; │ │ │ │ │ for complex matrices, or │ │ │ │ │ a(10,5) = -1.550328201511e-01 ; │ │ │ │ │ for real matrices, where mtxname = "a". The matrix indices come from the rowind[] and colind[] │ │ │ │ │ vectors, and are incremented by one to follow the Matlab and FORTRAN convention. │ │ ├── ./usr/share/doc/spooles-doc/Drand.ps.gz │ │ │ ├── Drand.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Drand.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1719,15 +1719,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1921,81 +1920,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3607,17 +3601,16 @@ │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 234[71 71 20[{}2 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 11[42 6[80 14[56 56 56 2[31 46[{}22 99.6264 /CMBX12 rf │ │ │ │ /Fc 138[49 30 37 38 1[46 46 51 2[42 1[28 46 42 1[42 46 │ │ │ │ 42 1[46 12[65 1[66 11[59 62 69 2[68 6[28 58[{}22 90.9091 │ │ │ │ /CMTI10 rf /Fd 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 │ │ │ │ -1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ -/Fe 141[62 3[62 9[62 2[62 28[62 68[{}5 119.552 /CMTT12 │ │ │ │ -rf │ │ │ │ +1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fe │ │ │ │ +141[62 3[62 9[62 2[62 28[62 68[{}5 119.552 /CMTT12 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -3709,15 +3702,15 @@ │ │ │ │ Fh(2)0 5064 y Fg(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g │ │ │ │ (of)g Fe(Drand)e Fg(metho)t(ds)0 5294 y Fj(This)e(section)j(con)m │ │ │ │ (tains)f(brief)f(descriptions)g(including)f(protot)m(yp)s(es)i(of)f │ │ │ │ (all)h(metho)s(ds)f(that)h(b)s(elong)f(to)h(the)0 5407 │ │ │ │ y Fh(Drand)29 b Fj(ob)5 b(ject.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 136 100 1106 4 v │ │ │ │ -1288 w Fh(Drand)28 b Fd(:)41 b Fc(DRAFT)30 b Fd(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fh(Drand)28 b Fd(:)41 b Fc(DRAFT)30 b Fd(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 0 399 a Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 602 y Fj(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 715 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 972 y(1.)46 b Fh(Drand)h(*)g │ │ │ │ (Drand_new)e(\()j(void)e(\))i(;)227 1130 y Fj(This)28 │ │ │ │ b(metho)s(d)g(simply)h(allo)s(cates)i(storage)f(for)e(the)h │ │ │ │ @@ -3767,15 +3760,15 @@ │ │ │ │ 5294 y Fc(Err)-5 b(or)30 b(che)-5 b(cking:)38 b Fj(If)25 │ │ │ │ b Fh(drand)f Fj(is)h Fh(NULL)p Fj(,)g(or)h(if)f Fh(seed1)f │ │ │ │ Fa(\024)h Fj(0,)i(or)f(if)f Fh(seed1)f Fa(\025)h Fj(2147483563,)31 │ │ │ │ b(an)26 b(error)f(message)227 5407 y(is)31 b(prin)m(ted)f(and)f(the)i │ │ │ │ (program)f(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1106 4 v 1287 100 a Fh(Drand)29 │ │ │ │ -b Fd(:)41 b Fc(DRAFT)121 b Fd(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fd(:)41 b Fc(DRAFT)121 b Fd(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fj(3)111 399 y(3.)46 b Fh(void)h(Drand_setSeeds)d(\() │ │ │ │ j(Drand)g(*drand,)e(int)i(seed1,)f(int)h(seed2)g(\))g(;)227 │ │ │ │ 553 y Fj(This)30 b(metho)s(d)g(sets)g(the)h(random)f(n)m(um)m(b)s(er)f │ │ │ │ (seeds)h(using)g(t)m(w)m(o)i(input)d(seeds.)227 707 y │ │ │ │ Fc(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 b Fh(drand)f │ │ │ │ Fj(is)i Fh(NULL)p Fj(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g │ │ │ │ (the)h(program)f(exits.)227 862 y Fc(Err)-5 b(or)33 b(che)-5 │ │ │ │ @@ -3832,15 +3825,15 @@ │ │ │ │ (and)f(the)227 4852 y(program)d(exits.)0 5175 y Fg(1.3)135 │ │ │ │ b(Driv)l(er)46 b(programs)g(for)f(the)g Fe(Drand)d Fg(ob)7 │ │ │ │ b(ject)0 5407 y Fj(This)30 b(section)h(con)m(tains)h(brief)e │ │ │ │ (descriptions)g(of)g(the)h(driv)m(er)f(programs.)p eop │ │ │ │ end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 136 100 1106 4 v │ │ │ │ -1288 w Fh(Drand)28 b Fd(:)41 b Fc(DRAFT)30 b Fd(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fh(Drand)28 b Fd(:)41 b Fc(DRAFT)30 b Fd(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 111 399 a Fj(1.)46 b Fh(testDrand)g(msglvl)g │ │ │ │ (msgFile)f(distribution)g(param1)h(param2)g(seed1)g(seed2)h(n)227 │ │ │ │ 549 y Fj(This)30 b(driv)m(er)g(program)g(test)h(the)g │ │ │ │ Fh(Drand)e Fj(random)g(n)m(um)m(b)s(er)h(generator.)337 │ │ │ │ 761 y Ff(\210)45 b Fj(The)30 b Fh(msglvl)f Fj(parameter)i(determines)f │ │ │ │ (the)h(amoun)m(t)f(of)h(output.)337 907 y Ff(\210)45 │ │ │ │ b Fj(The)33 b Fh(msgFile)e Fj(parameter)j(determines)f(the)h(message)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -15,15 +15,15 @@ │ │ │ │ │ • double mean : mean for a normal distribution │ │ │ │ │ • double sigma : variation for a normal distribution │ │ │ │ │ • int mode: mode of the object, uniform is 1, normal is 2 │ │ │ │ │ 1.2 Prototypes and descriptions of Drand methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Drand object. │ │ │ │ │ 1 │ │ │ │ │ - 2 Drand : DRAFT October 18, 2025 │ │ │ │ │ + 2 Drand : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Drand * Drand_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Drand structure and then sets the default fields │ │ │ │ │ by a call to Drand setDefaultFields(). │ │ │ │ │ 2. void Drand_setDefaultFields ( Drand *drand ) ; │ │ │ │ │ @@ -47,15 +47,15 @@ │ │ │ │ │ 1. void Drand_init ( Drand *drand ) ; │ │ │ │ │ This initializer simply sets the default fields with a call to Drand setDefaultFields(). │ │ │ │ │ Error checking: If drand is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. void Drand_setSeed ( Drand *drand, int seed1 ) ; │ │ │ │ │ This method sets the random number seeds using a single input seed. │ │ │ │ │ Error checking: If drand is NULL, or if seed1 ≤ 0, or if seed1 ≥ 2147483563, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - Drand : DRAFT October 18, 2025 3 │ │ │ │ │ + Drand : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void Drand_setSeeds ( Drand *drand, int seed1, int seed2 ) ; │ │ │ │ │ This method sets the random number seeds using two input seeds. │ │ │ │ │ Error checking: If drand is NULL, an error message is printed and the program exits. │ │ │ │ │ Error checking: If drand is NULL, or if seed1 ≤ 0, or if seed1 ≥ 2147483563, or if seed2 ≤ 0, │ │ │ │ │ or if seed2 ≥ 2147483399, an error message is printed and the program exits. │ │ │ │ │ 4. void Drand_setNormal ( Drand *drand, double mean, double sigma ) ; │ │ │ │ │ This method sets the mode to be a normal distribution with mean mean and variation sigma. │ │ │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ program exits. │ │ │ │ │ 4. void Drand_fillIvector ( Drand *drand, int n, int vec[] ) ; │ │ │ │ │ This method fills vec[] with n int random numbers. │ │ │ │ │ Error checking: If drand or vec are NULL or if n < 0 , an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 1.3 Driver programs for the Drand object │ │ │ │ │ This section contains brief descriptions of the driver programs. │ │ │ │ │ - 4 Drand : DRAFT October 18, 2025 │ │ │ │ │ + 4 Drand : DRAFT October 28, 2025 │ │ │ │ │ 1. testDrand msglvl msgFile distribution param1 param2 seed1 seed2 n │ │ │ │ │ This driver program test the Drand random number generator. │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The distribution parameter specifies the mode of the object. If 1, the distribution is │ │ ├── ./usr/share/doc/spooles-doc/EGraph.ps.gz │ │ │ ├── EGraph.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o EGraph.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1405,15 +1405,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1607,81 +1606,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3902,15 +3896,15 @@ │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 253[71 2[{}1 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}24 99.6264 /CMBX12 │ │ │ │ rf /Fc 141[62 1[62 7[62 6[62 25[62 1[62 69[{}6 119.552 │ │ │ │ /CMTT12 rf /Fd 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 │ │ │ │ -1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fe tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -4031,15 +4025,15 @@ │ │ │ │ Fj(EGraph)e Fk(ob)5 b(ject)38 b(will)f(ha)m(v)m(e)i(p)s(ositiv)m(e)f │ │ │ │ Fj(nelem)e Fk(and)g Fj(nvtx)g Fk(v)-5 b(alues,)40 b(a)0 │ │ │ │ 5407 y(v)-5 b(alid)31 b Fj(adjIVL)d Fk(\014eld.)41 b(If)30 │ │ │ │ b Fj(type)46 b(=)i(1)p Fk(,)30 b(the)h Fj(vwghts)d Fk(will)j(b)s(e)f │ │ │ │ (non-)p Fj(NULL)p Fk(.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 0 399 a Ff(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Fc(EGraph)d Ff(metho)t(ds)0 │ │ │ │ 631 y Fk(This)f(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 744 y Fj(EGraph)29 b Fk(ob)5 b(ject.)0 │ │ │ │ 1025 y Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 1226 y │ │ │ │ Fk(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g(supp)s │ │ │ │ @@ -4102,15 +4096,15 @@ │ │ │ │ b(che)-5 b(cking:)45 b Fk(If)32 b Fj(egraph)f Fk(is)i │ │ │ │ Fj(NULL)f Fk(or)g Fj(type)g Fk(is)h(not)g(zero)g(or)g(one,)h(or)e(if)h │ │ │ │ (either)g Fj(nelem)e Fk(or)i Fj(nvtx)f Fk(are)227 5407 │ │ │ │ y(nonp)s(ositiv)m(e,)f(an)g(error)f(message)h(is)g(prin)m(ted)e(and)h │ │ │ │ (the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1082 4 v 1263 100 a Fj(EGraph)29 │ │ │ │ -b Fd(:)41 b Fg(DRAFT)121 b Fd(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fd(:)41 b Fg(DRAFT)121 b Fd(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fk(3)0 399 y Fb(1.2.3)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)111 591 y Fk(1.)46 b Fj(Graph)h(EGraph_mkAdjGraph)c(\()k │ │ │ │ (EGraph)f(*egraph)g(\))i(;)227 736 y Fk(This)26 b(metho)s(d)h(creates)h │ │ │ │ (and)f(returns)f(a)h Fj(Graph)f Fk(ob)5 b(ject)27 b(with)g(v)m(ertex)h │ │ │ │ (adjacency)g(lists)g(from)e(the)h(elemen)m(t)227 849 │ │ │ │ y(graph)j(ob)5 b(ject.)227 995 y Fg(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fk(If)30 b Fj(egraph)f Fk(is)h Fj(NULL)p │ │ │ │ @@ -4184,15 +4178,15 @@ │ │ │ │ b(If)29 b(an)h(IO)f(error)g(is)h(encoun)m(tered)g(from)f │ │ │ │ Fj(fread)p Fk(,)g(zero)h(is)g(returned.)227 5407 y Fg(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 b Fj(egraph)f │ │ │ │ Fk(or)h Fj(fp)g Fk(are)h Fj(NULL)e Fk(an)h(error)g(message)i(is)e(prin) │ │ │ │ m(ted)g(and)g(zero)h(is)g(returned.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fk(4)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 111 399 a Fk(4.)46 b Fj(int)h(EGraph_writeToFile)c │ │ │ │ (\()k(EGraph)g(*egraph,)e(char)i(*fn)g(\))g(;)227 546 │ │ │ │ y Fk(This)29 b(metho)s(d)h(writes)g(an)g Fj(EGraph)e │ │ │ │ Fk(ob)5 b(ject)31 b(to)g(a)f(\014le.)41 b(It)30 b(tries)h(to)f(op)s(en) │ │ │ │ g(the)g(\014le)g(and)f(if)h(it)h(is)f(successful,)227 │ │ │ │ 658 y(it)25 b(then)e(calls)i Fj(EGraph)p 1002 658 29 │ │ │ │ 4 v 33 w(writeFromFormattedFile\(\))17 b Fk(or)24 b Fj(EGraph)p │ │ │ │ @@ -4266,15 +4260,15 @@ │ │ │ │ (the)h(message)g(\014le)f(|)h(if)f Fj(msgFile)e Fk(is)i │ │ │ │ Fj(stdout)p Fk(,)g(then)g(the)427 5294 y(message)27 b(\014le)f(is)g │ │ │ │ Fg(stdout)p Fk(,)i(otherwise)e(a)h(\014le)f(is)f(op)s(ened)g(with)h │ │ │ │ Fg(app)-5 b(end)28 b Fk(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 │ │ │ │ 5407 y(data.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1082 4 v 1263 100 a Fj(EGraph)29 │ │ │ │ -b Fd(:)41 b Fg(DRAFT)121 b Fd(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fd(:)41 b Fg(DRAFT)121 b Fd(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fk(5)337 399 y Fe(\210)45 b Fk(The)35 │ │ │ │ b Fj(inFile)e Fk(parameter)i(is)g(the)h(input)e(\014le)h(for)f(the)h │ │ │ │ Fj(EGraph)f Fk(ob)5 b(ject.)55 b(It)35 b(m)m(ust)g(b)s(e)f(of)h(the)g │ │ │ │ (form)427 511 y Fj(*.egraphf)18 b Fk(or)i Fj(*.egraphb)p │ │ │ │ Fk(.)35 b(The)20 b Fj(EGraph)e Fk(ob)5 b(ject)22 b(is)e(read)g(from)g │ │ │ │ (the)g(\014le)h(via)g(the)f Fj(EGraph)p 3559 511 29 4 │ │ │ │ v 33 w(readFromFile\(\))427 624 y Fk(metho)s(d.)337 780 │ │ │ │ @@ -4348,15 +4342,15 @@ │ │ │ │ 5294 y Fe(\210)45 b Fj(ncomp)26 b Fk(is)g(the)h(n)m(um)m(b)s(er)f(of)h │ │ │ │ (comp)s(onen)m(ts)f(\(i.e.,)k(the)c(n)m(um)m(b)s(er)g(of)h(degrees)g │ │ │ │ (of)g(freedom\))g(at)g(eac)m(h)h(grid)427 5407 y(p)s(oin)m(t,)j(m)m │ │ │ │ (ust)f(b)s(e)g(greater)h(than)g(or)f(equal)h(to)g(one.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fk(6)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(EGraph)28 b Fd(:)41 b Fg(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 337 399 a Fe(\210)45 b Fk(The)20 b │ │ │ │ Fj(outEGraphFile)d Fk(parameter)j(is)h(the)f(output)g(\014le)g(for)h │ │ │ │ (the)f Fj(EGraph)f Fk(ob)5 b(ject.)38 b(If)20 b Fj(outEGraphFile)427 │ │ │ │ 511 y Fk(is)h Fj(none)e Fk(then)h(the)g Fj(EGraph)f Fk(ob)5 │ │ │ │ b(ject)21 b(is)f(not)h(written)f(to)h(a)g(\014le.)37 │ │ │ │ b(Otherwise,)22 b(the)f Fj(EGraph)p 3409 511 29 4 v 33 │ │ │ │ w(writeToFile\(\))427 624 y Fk(metho)s(d)27 b(is)h(called)h(to)f(write) │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ │ • int nvtx : number of vertices in the graph │ │ │ │ │ • IVL *adjIVL : pointer to a IVL structure that holds the vertex lists for the elements. │ │ │ │ │ • int *vwghts : when type = 1, vwghts points to an int vector of size nvtx that holds the │ │ │ │ │ node weights. │ │ │ │ │ A correctly initialized and nontrivial EGraph object will have positive nelem and nvtx values, a │ │ │ │ │ valid adjIVL field. If type = 1, the vwghts will be non-NULL. │ │ │ │ │ 1 │ │ │ │ │ - 2 EGraph : DRAFT October 18, 2025 │ │ │ │ │ + 2 EGraph : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of EGraph methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ EGraph object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. EGraph * EGraph_new ( void ) ; │ │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ │ This method initializes an EGraph object given the type of vertices, number of elements, │ │ │ │ │ number of vertices, and storage type for the IVL element list object. It then clears any │ │ │ │ │ previous data with a call to EGraph clearData(). The IVL object is initialized by a call │ │ │ │ │ to IVL init1(). If type = 1, the vwghts is initialized via a call to IVinit(). See the IVL │ │ │ │ │ object for a description of the IVL type parameter. │ │ │ │ │ Error checking: If egraph is NULL or type is not zero or one, or if either nelem or nvtx are │ │ │ │ │ nonpositive, an error message is printed and the program exits. │ │ │ │ │ - EGraph : DRAFT October 18, 2025 3 │ │ │ │ │ + EGraph : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. Graph EGraph_mkAdjGraph ( EGraph *egraph ) ; │ │ │ │ │ This method creates and returns a Graph object with vertex adjacency lists from the element │ │ │ │ │ graph object. │ │ │ │ │ Error checking: If egraph is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. EGraph * EGraph_make9P ( int n1, int n2, int ncomp ) ; │ │ │ │ │ This method creates and returns a EGraph object for a n1 × n2 grid for a 9-point operator │ │ │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ This method reads in an EGraph object from a formatted file. If there are no errors in reading │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If egraph or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 3. int EGraph_readFromBinaryFile ( EGraph *egraph, FILE *fp ) ; │ │ │ │ │ This method reads in an EGraph object from a binary file. If there are no errors in reading │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ Error checking: If egraph or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - 4 EGraph : DRAFT October 18, 2025 │ │ │ │ │ + 4 EGraph : DRAFT October 28, 2025 │ │ │ │ │ 4. int EGraph_writeToFile ( EGraph *egraph, char *fn ) ; │ │ │ │ │ This method writes an EGraph object to a file. It tries to open the file and if it is successful, │ │ │ │ │ it then calls EGraph writeFromFormattedFile()or EGraph writeFromBinaryFile(),closes │ │ │ │ │ the file and returns the value returned from the called routine. │ │ │ │ │ Error checking: If egraph or fn are NULL, or if fn is not of the form *.egraphf (for a │ │ │ │ │ formatted file) or *.egraphb (for a binary file), an error message is printed and the method │ │ │ │ │ returns zero. │ │ │ │ │ @@ -128,15 +128,15 @@ │ │ │ │ │ binary files and vice versa. One can also read in a EGraph file and print out just the header │ │ │ │ │ information (see the EGraph writeStats() method). │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the EGraph object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ - EGraph : DRAFT October 18, 2025 5 │ │ │ │ │ + EGraph : DRAFT October 28, 2025 5 │ │ │ │ │ • The inFile parameter is the input file for the EGraph object. It must be of the form │ │ │ │ │ *.egraphfor*.egraphb. TheEGraphobjectisreadfromthefileviatheEGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The outFileparameter is the output file for the EGraph object. If outFile is none then │ │ │ │ │ the EGraphobject is not written to a file. Otherwise, the EGraph writeToFile()method │ │ │ │ │ is called to write the object to a formatted file (if outFile is of the form *.egraphf), │ │ │ │ │ or a binary file (if outFile is of the form *.egraphb). │ │ │ │ │ @@ -166,15 +166,15 @@ │ │ │ │ │ data. │ │ │ │ │ • n1 is the number of grid points in the first direction, must be greater than one. │ │ │ │ │ • n2 is the number of grid points in the second direction, must be greater than one. │ │ │ │ │ • n3 is the number of grid points in the third direction, must be greater than or equal to │ │ │ │ │ one. │ │ │ │ │ • ncomp is the number of components (i.e., the number of degrees of freedom) at each grid │ │ │ │ │ point, must be greater than or equal to one. │ │ │ │ │ - 6 EGraph : DRAFT October 18, 2025 │ │ │ │ │ + 6 EGraph : DRAFT October 28, 2025 │ │ │ │ │ • TheoutEGraphFileparameteristheoutputfilefortheEGraphobject. IfoutEGraphFile │ │ │ │ │ is nonethentheEGraphobjectisnotwrittentoafile. Otherwise,theEGraph writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outEGraphFile is of the form │ │ │ │ │ *.egraphf), or a binary file (if outEGraphFile is of the form *.egraphb). │ │ │ │ │ Index │ │ │ │ │ EGraph clearData(), 2 │ │ │ │ │ EGraph free(), 2 │ │ ├── ./usr/share/doc/spooles-doc/ETree.ps.gz │ │ │ ├── ETree.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o ETree.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -3605,15 +3605,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -3807,81 +3806,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5424,15 +5418,15 @@ │ │ │ │ 31 2[31 62 56 34 51 62 50 1[54 11[86 78 62 2[77 84 1[106 │ │ │ │ 2[58 42 5[81 80 8[56 56 56 56 56 56 56 56 56 56 1[31 │ │ │ │ 33[62 12[{}41 99.6264 /CMBX12 rf /Fi 141[62 12[62 16[62 │ │ │ │ 14[62 69[{}4 119.552 /CMTT12 rf /Fj 135[42 60 1[49 30 │ │ │ │ 37 38 1[46 46 51 74 23 42 1[28 46 42 1[42 46 42 42 46 │ │ │ │ 12[65 51 66 4[82 6[59 62 69 2[68 6[28 12[33 45[{}30 90.9091 │ │ │ │ /CMTI10 rf /Fk 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 │ │ │ │ -1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fl tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -5546,15 +5540,15 @@ │ │ │ │ b(to)g(hold)f(fron)m(t)h(w)m(eigh)m(ts,)h(size)f Fn(nfront)137 │ │ │ │ 5294 y Fl(\210)45 b Fn(IV)i(*bndwghtsIV)28 b Fo(:)i(p)s(oin)m(ter)h(to) │ │ │ │ g(an)f Fn(IV)g Fo(ob)5 b(ject)31 b(to)g(hold)f(the)h(w)m(eigh)m(ts)g │ │ │ │ (of)g(the)f(fron)m(ts')h(b)s(oundaries,)e(size)227 5407 │ │ │ │ y Fn(nfront)1927 5656 y Fo(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fo(2)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 137 399 a Fl(\210)45 b Fn(IV)i(*vtxToFrontIV)35 │ │ │ │ b Fo(:)j(p)s(oin)m(ter)h(to)g(an)f Fn(IV)f Fo(ob)5 b(ject)39 │ │ │ │ b(to)g(hold)f(the)g(map)g(from)g(v)m(ertices)i(to)f(fron)m(ts,)h(size) │ │ │ │ 227 511 y Fn(nfront)0 727 y Fo(A)d(correctly)i(initialized)g(and)d(non) │ │ │ │ m(trivial)i Fn(ETree)e Fo(ob)5 b(ject)38 b(will)g(ha)m(v)m(e)g(p)s │ │ │ │ (ositiv)m(e)g Fn(nfront)e Fo(and)g Fn(nvtx)g Fo(v)-5 │ │ │ │ b(alues,)40 b(a)0 840 y(v)-5 b(alid)31 b Fn(tree)e Fo(\014eld)h(and)g │ │ │ │ @@ -5609,15 +5603,15 @@ │ │ │ │ (*etree)h(\))g(;)227 5255 y Fo(This)30 b(metho)s(d)g(returns)f(the)h(n) │ │ │ │ m(um)m(b)s(er)f(of)i(fron)m(ts.)227 5407 y Fj(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b Fn(etree)f │ │ │ │ Fo(is)i Fn(NULL)p Fo(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g │ │ │ │ (the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1106 4 v 1287 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(3)111 399 y(2.)46 b Fn(int)h(ETree_nvtx)e(\()j │ │ │ │ (ETree)e(*etree)g(\))i(;)227 556 y Fo(This)30 b(metho)s(d)g(returns)f │ │ │ │ (the)h(n)m(um)m(b)s(er)f(of)i(v)m(ertices.)227 713 y │ │ │ │ Fj(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b Fn(etree)f │ │ │ │ Fo(is)i Fn(NULL)p Fo(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g │ │ │ │ (the)h(program)f(exits.)111 915 y(3.)46 b Fn(Tree)h(*)g(ETree_tree)e │ │ │ │ (\()j(ETree)e(*etree)g(\))i(;)227 1072 y Fo(This)30 b(metho)s(d)g │ │ │ │ @@ -5667,15 +5661,15 @@ │ │ │ │ (a)i(p)s(oin)m(ter)f(to)h(the)g Fn(bndwghtsIV)c Fo(ob)5 │ │ │ │ b(ject.)227 5407 y Fj(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fo(If)30 b Fn(etree)f Fo(is)i Fn(NULL)p Fo(,)e(an)h(error)g(message)i │ │ │ │ (is)e(prin)m(ted)g(and)g(the)h(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fo(4)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 66 399 a Fo(11.)46 b Fn(int)h(*)h(ETree_bndwghts)c │ │ │ │ (\()j(ETree)f(*etree)g(\))i(;)227 551 y Fo(This)30 b(metho)s(d)g │ │ │ │ (returns)f(a)i(p)s(oin)m(ter)f(to)h(the)g Fn(bndwghts)d │ │ │ │ Fo(v)m(ector.)227 703 y Fj(Err)-5 b(or)32 b(che)-5 b(cking:)39 │ │ │ │ b Fo(If)27 b Fn(etree)f Fo(or)i Fn(etree->bndwghtsIV)23 │ │ │ │ b Fo(is)k Fn(NULL)p Fo(,)g(an)h(error)f(message)i(is)e(prin)m(ted)h │ │ │ │ (and)f(the)227 816 y(program)j(exits.)66 1008 y(12.)46 │ │ │ │ @@ -5735,15 +5729,15 @@ │ │ │ │ (and)f(n)m(um)m(b)s(er)g(of)h(v)m(ertices.)227 5407 y(An)m(y)26 │ │ │ │ b(previous)f(data)h(is)f(cleared)i(with)e(a)h(call)g(to)h │ │ │ │ Fn(ETree)p 2153 5407 V 33 w(clearData\(\))p Fo(,)c(The)i │ │ │ │ Fn(Tree)f Fo(ob)5 b(ject)27 b(is)e(initialized)p eop │ │ │ │ end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1106 4 v 1287 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(5)227 399 y(with)j(a)g(call)i(to)e │ │ │ │ Fn(Tree)p 1000 399 29 4 v 34 w(init1\(\))p Fo(.)49 b(The)34 │ │ │ │ b Fn(nodwghtsIV)p Fo(,)d Fn(bndwghtsIV)h Fo(and)h Fn(vtxToFrontIV)e │ │ │ │ Fo(ob)5 b(jects)35 b(are)227 511 y(initialized)d(with)e(calls)h(to)g │ │ │ │ Fn(IV)p 1268 511 V 34 w(init\(\))p Fo(.)39 b(The)30 b(en)m(tries)h(in)f │ │ │ │ Fn(nodwghtsIV)d Fo(and)i Fn(bndwghtsIV)f Fo(are)i(set)h(to)g │ │ │ │ Fn(0)p Fo(,)227 624 y(while)g(the)f(en)m(tries)h(in)f │ │ │ │ @@ -5823,15 +5817,15 @@ │ │ │ │ Fo(from)h Fn(tree)f Fo(using)h(the)h(no)s(des)f(of)h │ │ │ │ Fn(etree)e Fo(that)i(are)g(found)e(in)227 5407 y Fn(nodeidsIV)p │ │ │ │ Fo(.)28 b(The)i(map)g(from)g(no)s(des)g(in)g Fn(subtree)e │ │ │ │ Fo(to)j(no)s(des)f(in)g Fn(etree)f Fo(is)h(returned)f(in)h │ │ │ │ Fn(vtxIV)p Fo(.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fo(6)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 227 399 a Fj(R)-5 b(eturn)40 b(c)-5 │ │ │ │ b(o)g(de:)111 b Fo(1)38 b(for)f(a)h(normal)g(return,)g(-1)h(if)e │ │ │ │ Fn(subtree)f Fo(is)h Fn(NULL)p Fo(,)g(-2)h(if)g Fn(nodeidsIV)d │ │ │ │ Fo(is)i Fn(NULL)p Fo(,)g(-3)h(if)227 511 y Fn(etree)29 │ │ │ │ b Fo(is)i Fn(NULL)p Fo(,)e(-4)i(if)f Fn(nodeidsIV)e Fo(is)j(in)m(v)-5 │ │ │ │ b(alid,)31 b(-5)g(if)f Fn(vtxIV)f Fo(is)i Fn(NULL)p Fo(.)0 │ │ │ │ 809 y Fh(1.2.4)112 b(Utilit)m(y)38 b(metho)s(ds)0 1015 │ │ │ │ @@ -5908,15 +5902,15 @@ │ │ │ │ Fo(,)g(or)h(if)f Fn(nfront)f Fg(<)h Fo(1,)j(or)d(if)h │ │ │ │ Fn(symflag)e Fo(is)h(in)m(v)-5 b(alid,)40 b(or)e(if)227 │ │ │ │ 5407 y Fn(J)25 b Fg(<)g Fo(0,)31 b(or)g(if)f Fn(J)25 │ │ │ │ b Ff(\025)g Fn(nfront)n Fo(,)31 b(an)f(error)g(message)i(is)e(prin)m │ │ │ │ (ted)g(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1106 4 v 1287 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(7)111 399 y(6.)46 b Fn(double)g │ │ │ │ (ETree_nInternalOpsInFront)41 b(\()48 b(ETree)e(*etree,)g(int)h(type,)f │ │ │ │ (int)h(symflag,)f(int)h(J)g(\))g(;)227 554 y Fo(This)20 │ │ │ │ b(metho)s(d)f(returns)h(the)g(n)m(um)m(b)s(er)f(of)h(in)m(ternal)h(op)s │ │ │ │ (erations)g(p)s(erformed)e(b)m(y)h(fron)m(t)g Fn(J)g │ │ │ │ Fo(on)h(its)f(\(1)p Fg(;)15 b Fo(1\),)25 b(\(2)p Fg(;)15 │ │ │ │ b Fo(1\),)227 667 y(and)37 b(\(1)p Fg(;)15 b Fo(2\))38 │ │ │ │ @@ -6004,15 +5998,15 @@ │ │ │ │ (uncompressed)f(v)m(ertices)i(is)e(found)f(in)h(the)h │ │ │ │ Fn(eqmapIV)d Fo(ob)5 b(ject.)227 5294 y Fj(Err)-5 b(or)39 │ │ │ │ b(che)-5 b(cking:)50 b Fo(If)34 b Fn(etree)g Fo(or)h │ │ │ │ Fn(eqmapIV)e Fo(is)j Fn(NULL)p Fo(,)e(an)h(error)g(message)h(is)f(prin) │ │ │ │ m(ted)g(and)g(the)g(program)227 5407 y(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fo(8)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(ETree)28 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 66 399 a Fo(12.)46 b Fn(ETree)h(*)g │ │ │ │ (ETree_spliceTwoEtrees)42 b(\()48 b(ETree)e(*etree0,)f(Graph)i(*graph,) │ │ │ │ f(IV)h(*mapIV,)f(ETree)g(*etree1)g(\))h(;)227 562 y Fo(This)38 │ │ │ │ b(metho)s(d)h(creates)h(and)e(returns)g(an)h Fn(ETree)e │ │ │ │ Fo(ob)5 b(ject)40 b(that)g(is)f(formed)f(b)m(y)h(splicing)g(together)i │ │ │ │ (t)m(w)m(o)227 675 y(fron)m(t)28 b(trees,)h Fn(etree0)c │ │ │ │ Fo(for)j(the)f(v)m(ertices)i(the)f(eliminated)g(domains,)g │ │ │ │ @@ -6083,15 +6077,15 @@ │ │ │ │ Fn(NULL)p Fo(,)f(or)h(if)g Fn(nfront)28 b Fg(<)h Fo(1,)34 │ │ │ │ b(or)f(if)f Fn(nvtx)d Fg(<)g Fo(1,)34 b(or)f(if)g Fn(type)e │ │ │ │ Fo(or)i Fn(symflag)e Fo(is)227 5407 y(in)m(v)-5 b(alid,)31 │ │ │ │ b(an)g(error)f(message)h(is)g(prin)m(ted)f(and)f(the)i(program)f │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1106 4 v 1287 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(9)0 399 y Fh(1.2.6)112 b(Compression)39 │ │ │ │ b(metho)s(ds)0 604 y Fo(F)-8 b(requen)m(tly)30 b(an)f │ │ │ │ Fn(ETree)f Fo(ob)5 b(ject)30 b(will)g(need)e(to)i(b)s(e)f(compressed)g │ │ │ │ (in)f(some)i(manner.)40 b(Elimination)29 b(trees)h(usually)0 │ │ │ │ 717 y(ha)m(v)m(e)42 b(long)g(c)m(hains)g(of)f(v)m(ertices)i(at)f(the)f │ │ │ │ (higher)g(lev)m(els,)46 b(where)41 b(eac)m(h)h(c)m(hain)g(of)f(v)m │ │ │ │ (ertices)i(corresp)s(onds)d(to)i(a)0 830 y(sup)s(erno)s(de.)d(Liu's)30 │ │ │ │ @@ -6161,15 +6155,15 @@ │ │ │ │ b(cking:)41 b Fo(If)31 b Fn(etree)e Fo(or)i Fn(tree)f │ │ │ │ Fo(is)h Fn(NULL)p Fo(,)f(or)h(if)g Fn(nfront)24 b Fg(<)i │ │ │ │ Fo(1,)32 b(or)f(if)g Fn(nvtx)25 b Fg(<)h Fo(1,)31 b(an)g(error)g │ │ │ │ (message)227 5407 y(is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fo(10)p 182 100 1083 4 │ │ │ │ -v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 111 399 a Fo(3.)46 b Fn(ETree)h(*)g(ETree_compress)d │ │ │ │ (\()j(ETree)g(*etree,)f(IV)h(*frontMapIV)e(\))i(;)227 │ │ │ │ 562 y Fo(Using)41 b Fn(frontMapIV)p Fo(,)d(a)j(new)f │ │ │ │ Fn(ETree)f Fo(ob)5 b(ject)41 b(is)g(created)g(and)f(returned.)70 │ │ │ │ b(If)40 b Fn(frontMapIV)e Fo(do)s(es)i(not)227 675 y(de\014ne)30 │ │ │ │ b(eac)m(h)i(in)m(v)m(erse)f(map)f(of)h(a)g(new)f(no)s(de)g(to)h(b)s(e)f │ │ │ │ (connected)i(set)f(of)f(no)s(des)g(in)g(the)h(old)g Fn(ETree)e │ │ │ │ @@ -6235,15 +6229,15 @@ │ │ │ │ b(or)31 b(che)-5 b(cking:)38 b Fo(If)26 b Fn(etree)e │ │ │ │ Fo(is)j Fn(NULL)p Fo(,)e(or)h(if)h Fn(nfront)c Fg(<)i │ │ │ │ Fo(1,)j(or)e(if)h Fn(nvtx)d Fg(<)h Fo(1,)i(an)g(error)f(message)h(is)f │ │ │ │ (prin)m(ted)227 5407 y(and)k(the)h(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(11)111 399 y(2.)46 b Fn(IV)h(*)h │ │ │ │ (ETree_newToOldVtxPerm)42 b(\()47 b(ETree)g(*etree)f(\))h(;)227 │ │ │ │ 511 y(IV)g(*)h(ETree_oldToNewVtxPerm)42 b(\()47 b(ETree)g(*etree)f(\))h │ │ │ │ (;)227 663 y Fo(An)29 b Fn(IV)f Fo(ob)5 b(ject)30 b(is)g(created)g │ │ │ │ (with)f(size)h Fn(nvtx)p Fo(.)39 b(First)29 b(w)m(e)h(\014nd)d(a)j │ │ │ │ (new-to-old)g(p)s(erm)m(utation)f(of)g(the)h(fron)m(ts.)227 │ │ │ │ 776 y(Then)j(w)m(e)i(searc)m(h)f(o)m(v)m(er)h(the)g(fron)m(ts)f(in)f │ │ │ │ @@ -6317,15 +6311,15 @@ │ │ │ │ b(their)e(comp)s(onen)m(t)g(id)g(zero,)i(domain)e(no)s(des)f(ha)m(v)m │ │ │ │ (e)i(their)f(comp)s(onen)m(t)h(id)e(one.)52 b(Inclusion)34 │ │ │ │ b(in)g(the)227 5407 y(m)m(ultisector)g(is)e(based)f(on)h(the)g(n)m(um)m │ │ │ │ (b)s(er)e(of)i(factor)h(en)m(tries)g(in)e(the)i(subtree)e(that)h(a)h(v) │ │ │ │ m(ertex)g(b)s(elongs,)f(or)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fo(12)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 227 399 a Fo(strictly)k(sp)s(eaking,)f(the)f(n)m(um) │ │ │ │ m(b)s(er)f(of)i(factor)g(en)m(tries)g(in)f(the)g(subtree)g(of)g(the)h │ │ │ │ (fron)m(t)f(to)h(whic)m(h)f(a)h(v)m(ertex)227 511 y(b)s(elongs.)63 │ │ │ │ b(If)37 b(w)m(eigh)m(t)i(of)f(the)g(subtree)g(is)f(more)h(than)g │ │ │ │ Fn(cutoff)e Fo(times)i(the)g(n)m(um)m(b)s(er)e(of)i(factor)h(en)m │ │ │ │ (tries,)227 624 y(the)31 b(v)m(ertex)h(is)f(in)g(the)g(m)m(ultisector.) │ │ │ │ 44 b(The)31 b Fn(symflag)e Fo(parameter)i(can)g(b)s(e)f(one)i(of)f │ │ │ │ @@ -6420,15 +6414,15 @@ │ │ │ │ Fn(compids[J])p Fo(.)227 5294 y Fj(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)41 b Fo(If)30 b Fn(etree)p Fo(,)g Fn(graph)f │ │ │ │ Fo(or)h Fn(symbfacIVL)e Fo(is)j Fn(NULL)p Fo(,)f(an)g(error)g(message)i │ │ │ │ (is)f(prin)m(ted)f(and)g(the)227 5407 y(program)g(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(13)0 399 y Fh(1.2.10)113 b(T)-9 │ │ │ │ b(ransformation)38 b(metho)s(ds)0 592 y Fo(Often)g(the)h(elimination)h │ │ │ │ (tree)g(or)e(fron)m(t)h(tree)g(that)h(w)m(e)f(obtain)g(from)f(an)h │ │ │ │ (ordering)f(of)h(the)g(graph)f(is)h(not)g(as)0 705 y(appropriate)30 │ │ │ │ b(for)h(a)f(factorization)j(as)e(w)m(e)g(w)m(ould)f(lik)m(e.)42 │ │ │ │ b(There)30 b(are)h(t)m(w)m(o)g(imp)s(ortan)m(t)g(cases.)137 │ │ │ │ 898 y Fl(\210)45 b Fo(Near)h(the)g(lea)m(v)m(es)i(of)d(the)h(tree)g │ │ │ │ @@ -6519,15 +6513,15 @@ │ │ │ │ 927 5294 V 33 w(mergeFrontsOne\(\))c Fo(follo)m(w)m(ed)34 │ │ │ │ b(b)m(y)f Fn(ETree)p 2479 5294 V 33 w(mergeFrontsAll\(\))p │ │ │ │ Fo(.)45 b(See)33 b(the)g(driv)m(er)0 5407 y(programs)d │ │ │ │ Fn(testTransform)d Fo(and)j Fn(mkNDETree)d Fo(for)k(examples)f(of)h(ho) │ │ │ │ m(w)f(to)h(call)h(the)f(metho)s(ds.)p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fo(14)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 111 399 a Fo(1.)46 b Fn(ETree)h(*)g │ │ │ │ (ETree_mergeFrontsOne)42 b(\()48 b(ETree)e(*etree,)g(int)h(maxzeros,)e │ │ │ │ (IV)i(*nzerosIV)f(\))h(;)227 549 y Fo(This)27 b(metho)s(d)g(only)g │ │ │ │ (tries)h(to)g(merge)g(a)g(fron)m(t)f(with)g(its)h(only)f(c)m(hild.)40 │ │ │ │ b(It)28 b(returns)e(an)h Fn(ETree)f Fo(ob)5 b(ject)28 │ │ │ │ b(where)227 662 y(one)34 b(or)g(more)f(subtrees)g(that)h(con)m(tain)h │ │ │ │ (m)m(ultiple)f(fron)m(ts)g(ha)m(v)m(e)g(b)s(een)f(merged)h(in)m(to)g │ │ │ │ @@ -6609,15 +6603,15 @@ │ │ │ │ 5106 y(an)j(error)f(message)h(is)f(prin)m(ted)g(and)g(the)h(program)f │ │ │ │ (exits.)111 5294 y(5.)46 b Fn(ETree)h(*)g(ETree_transform)91 │ │ │ │ b(\()48 b(ETree)e(*etree,)g(int)h(vwghts[],)e(int)i(maxzeros,)1516 │ │ │ │ 5407 y(int)g(maxfrontsize,)d(int)j(seed)g(\))g(;)p eop │ │ │ │ end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(15)227 399 y Fn(ETree)47 b(*)g(ETree_transform2)c │ │ │ │ (\()48 b(ETree)e(*etree,)g(int)h(vwghts[],)e(int)i(maxzeros,)1516 │ │ │ │ 511 y(int)g(maxfrontsize,)d(int)j(seed)g(\))g(;)227 675 │ │ │ │ y Fo(These)37 b(metho)s(ds)g(returns)f(an)i Fn(ETree)e │ │ │ │ Fo(ob)5 b(ject)38 b(where)f(one)h(or)f(more)h(subtrees)e(that)i(con)m │ │ │ │ (tain)h(m)m(ultiple)227 788 y(fron)m(ts)28 b(ha)m(v)m(e)g(b)s(een)f │ │ │ │ (merged)h(in)m(to)g(single)g(fron)m(ts)g(and)f(where)g(one)g(or)h(more) │ │ │ │ @@ -6684,15 +6678,15 @@ │ │ │ │ b(tree)h(is)f(then)g(visited)g(in)g(a)h(p)s(ost-order)e(tra)m(v)m │ │ │ │ (ersal,)k(and)d(eac)m(h)427 5294 y(fron)m(t)27 b(is)g(assigned)g(to)g │ │ │ │ (an)g(eligible)h(thread)e(or)h(pro)s(cessor)f(with)h(the)f(least)i(n)m │ │ │ │ (um)m(b)s(er)e(of)h(accum)m(ulated)427 5407 y(ops)j(so)h(far.)p │ │ │ │ eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fo(16)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fl(\210)45 b Fo(The)28 b │ │ │ │ Fj(domain)k(de)-5 b(c)g(omp)g(osition)34 b(map)c Fo(is)e(also)h │ │ │ │ (complex,)h(where)e(domains)g(are)g(mapp)s(ed)f(to)i(threads,)427 │ │ │ │ 511 y(then)d(the)h(fron)m(ts)f(in)g(the)g(sc)m(h)m(ur)g(complemen)m(t)i │ │ │ │ (are)e(mapp)s(ed)f(to)i(threads,)g(b)s(oth)e(using)h(indep)s(enden)m(t) │ │ │ │ 427 624 y(balanced)38 b(maps.)61 b(The)36 b(metho)s(d)h │ │ │ │ Fn(ETree)p 1884 624 29 4 v 33 w(ddMapNew\(\))e Fo(is)i(more)g(robust)g │ │ │ │ @@ -6763,15 +6757,15 @@ │ │ │ │ Fo(using)g(the)g(m)m(ultifron)m(tal-)227 5249 y(based)30 │ │ │ │ b(forw)m(ard)g(solv)m(e.)227 5407 y Fj(Err)-5 b(or)29 │ │ │ │ b(che)-5 b(cking:)38 b Fo(If)25 b Fn(etree)e Fo(or)j │ │ │ │ Fn(dvec)d Fo(are)j Fn(NULL)p Fo(,)e(an)h(error)g(message)h(is)f(prin)m │ │ │ │ (ted)g(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(17)111 399 y(5.)46 b Fn(void)h │ │ │ │ (ETree_backSolveProfile)42 b(\()47 b(ETree)f(*etree,)g(double)g(dvec[]) │ │ │ │ g(\))i(;)227 555 y Fo(On)24 b(return,)g Fn(dvec[J])f │ │ │ │ Fo(con)m(tains)i(the)g(amoun)m(t)g(of)f(stac)m(k)i(storage)g(to)f(solv) │ │ │ │ m(e)h(for)e Fn(J)g Fo(using)g(the)g(m)m(ultifron)m(tal-)227 │ │ │ │ 668 y(based)30 b(bac)m(kw)m(ard)h(solv)m(e.)227 825 y │ │ │ │ Fj(Err)-5 b(or)29 b(che)-5 b(cking:)38 b Fo(If)25 b Fn(etree)e │ │ │ │ @@ -6847,15 +6841,15 @@ │ │ │ │ b(an)g(IO)f(error)h(is)227 5250 y(encoun)m(tered)e(from)f │ │ │ │ Fn(fprintf)p Fo(,)f(zero)i(is)f(returned.)227 5407 y │ │ │ │ Fj(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b Fn(etree)f │ │ │ │ Fo(or)i Fn(fp)e Fo(are)i Fn(NULL)p Fo(,)f(an)g(error)g(message)h(is)g │ │ │ │ (prin)m(ted)f(and)f(zero)j(is)e(returned.)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fo(18)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 111 399 a Fo(6.)46 b Fn(int)h │ │ │ │ (ETree_writeToBinaryFile)42 b(\()47 b(ETree)f(*etree,)g(FILE)h(*fp)g │ │ │ │ (\))g(;)227 557 y Fo(This)37 b(metho)s(d)g(writes)g(an)h │ │ │ │ Fn(ETree)e Fo(ob)5 b(ject)38 b(to)g(a)g(binary)f(\014le.)62 │ │ │ │ b(If)37 b(there)h(are)g(no)f(errors)g(in)g(writing)h(the)227 │ │ │ │ 670 y(data,)32 b(the)e(v)-5 b(alue)31 b Fn(1)f Fo(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ @@ -6928,15 +6922,15 @@ │ │ │ │ (ob)5 b(ject)26 b(to)g(a)g(formatted)g(\014le)f(\(if)g │ │ │ │ Fn(outIVfile)427 5407 y Fo(is)31 b(of)f(the)h(form)f │ │ │ │ Fn(*.ivf)p Fo(\),)f(or)i(a)f(binary)g(\014le)g(\(if)h │ │ │ │ Fn(outIVfile)d Fo(is)i(of)h(the)f(form)g Fn(*.ivb)p Fo(\).)p │ │ │ │ eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(19)337 399 y Fl(\210)45 b Fo(The)24 │ │ │ │ b Fn(outETreeFile)d Fo(parameter)k(is)f(the)h(output)f(\014le)g(for)g │ │ │ │ (the)h Fn(ETree)d Fo(ob)5 b(ject.)40 b(If)24 b Fn(outETreeFile)d │ │ │ │ Fo(is)427 511 y Fn(none)g Fo(then)h(the)g Fn(ETree)f │ │ │ │ Fo(ob)5 b(ject)22 b(is)g(not)h(written)f(to)g(a)h(\014le.)38 │ │ │ │ b(Otherwise,)23 b(the)g Fn(ETree)p 3253 511 29 4 v 33 │ │ │ │ w(writeToFile\(\))427 624 y Fo(metho)s(d)30 b(is)h(called)h(to)f(write) │ │ │ │ @@ -7010,15 +7004,15 @@ │ │ │ │ 5294 y(merge2)142 b(:)g(511)47 b(fronts,)189 b(29525)47 │ │ │ │ b(indices,)141 b(373757)46 b(|L|,)g(63590185)g(ops)275 │ │ │ │ 5407 y(split)190 b(:)142 b(536)47 b(fronts,)189 b(34484)47 │ │ │ │ b(indices,)141 b(373757)46 b(|L|,)g(63590185)g(ops)p │ │ │ │ eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fo(20)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fl(\210)45 b Fo(The)28 b │ │ │ │ Fn(msglvl)f Fo(parameter)i(determines)g(the)g(amoun)m(t)g(of)f(output)h │ │ │ │ (|)f(taking)i Fn(msglvl)46 b(>=)h(3)28 b Fo(means)427 │ │ │ │ 511 y(the)j Fn(ETree)e Fo(ob)5 b(ject)31 b(is)f(written)h(to)g(the)g │ │ │ │ (message)g(\014le.)337 660 y Fl(\210)45 b Fo(The)33 b │ │ │ │ Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ @@ -7090,15 +7084,15 @@ │ │ │ │ 427 5146 y(original)j(fron)m(t)f(that)g(con)m(tains)h(more)f(than)f │ │ │ │ Fn(maxsize)f Fo(v)m(ertices)j(will)f(b)s(e)f(brok)m(en)g(up)g(in)m(to)h │ │ │ │ (smaller)427 5259 y(fron)m(ts.)337 5407 y Fl(\210)45 │ │ │ │ b Fo(The)30 b Fn(nthread)f Fo(parameter)h(is)h(the)f(n)m(um)m(b)s(er)f │ │ │ │ (of)i(threads.)p eop end │ │ │ │ %%Page: 21 21 │ │ │ │ TeXDict begin 21 20 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(21)337 399 y Fl(\210)45 b Fo(The)30 │ │ │ │ b Fn(maptype)f Fo(parameter)h(is)h(the)f(t)m(yp)s(e)h(of)f(map.)500 │ │ │ │ 540 y Fe({)45 b Fn(1)30 b Fo(|)h(wrap)e(map)500 667 y │ │ │ │ Fe({)45 b Fn(2)30 b Fo(|)h(balanced)f(map)500 794 y Fe({)45 │ │ │ │ b Fn(3)30 b Fo(|)h(subtree-subset)e(map)500 921 y Fe({)45 │ │ │ │ b Fn(4)30 b Fo(|)h(domain)f(decomp)s(osition)h(map)337 │ │ │ │ 1062 y Fl(\210)45 b Fo(The)d Fn(cutoff)e Fo(parameter)i(is)g(used)f(b)m │ │ │ │ @@ -7183,15 +7177,15 @@ │ │ │ │ 5294 y Fo(metho)s(d)i(is)h(called)h(to)f(write)g(the)g(ob)5 │ │ │ │ b(ject)40 b(to)g(a)g(formatted)h(\014le)e(\(if)h Fn(outIVFile)d │ │ │ │ Fo(is)j(of)g(the)f(form)427 5407 y Fn(*.ivf)p Fo(\),)30 │ │ │ │ b(or)g(a)h(binary)f(\014le)g(\(if)h Fn(outIVFile)d Fo(is)i(of)g(the)h │ │ │ │ (form)f Fn(*.ivb)p Fo(\).)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fo(22)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 111 399 a Fo(6.)46 b Fn(testExpand)f(msglvl)h │ │ │ │ (msgFile)g(inETreeFile)f(inEqmapFile)g(outETreeFile)227 │ │ │ │ 553 y Fo(This)39 b(driv)m(er)h(program)g(is)g(used)f(to)i(translate)g │ │ │ │ (an)f Fn(ETree)e Fo(ob)5 b(ject)41 b(for)f(a)g(compressed)g(graph)f(in) │ │ │ │ m(to)i(an)227 666 y Fn(ETree)29 b Fo(ob)5 b(ject)31 b(for)g(the)f(unit) │ │ │ │ g(w)m(eigh)m(t)i(graph.)337 888 y Fl(\210)45 b Fo(The)28 │ │ │ │ b Fn(msglvl)f Fo(parameter)i(determines)g(the)g(amoun)m(t)g(of)f │ │ │ │ @@ -7268,15 +7262,15 @@ │ │ │ │ b(no)s(de)f(will)h(ha)m(v)m(e)g(a)g(circle)h(with)e(radius)f │ │ │ │ Fn(radius)p Fo(.)337 5208 y Fl(\210)45 b Fo(The)34 b │ │ │ │ Fn(firstEPSfile)e Fo(and)i Fn(secondEPSfile)d Fo(parameters)j(is)h(the) │ │ │ │ g(output)f(EPS)g(\014le)g(for)h(the)g(t)m(w)m(o)427 5321 │ │ │ │ y(plots.)p eop end │ │ │ │ %%Page: 23 23 │ │ │ │ TeXDict begin 23 22 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(23)0 453 y(Figure)26 b(1.1:)40 b │ │ │ │ Fa(GRD7x7)p Fo(:)f(W)-8 b(orking)26 b(storage)i(for)d(the)h(forw)m(ard) │ │ │ │ f(sparse)g(factorization)k(of)d(the)g(nested)f(dissection)0 │ │ │ │ 566 y(ordering.)40 b(On)28 b(the)h(left)h(is)e(the)h(storage)i │ │ │ │ (required)d(to)i(factor)2159 540 y Fb(b)2137 566 y Fg(J)38 │ │ │ │ b Fo(and)29 b(its)g(up)s(date)f(matrix.)40 b(On)28 b(the)h(righ)m(t)h │ │ │ │ (is)f(the)0 679 y(storage)j(required)d(to)j(factor)f │ │ │ │ @@ -7677,15 +7671,15 @@ │ │ │ │ V 33 w(writeStats\(\))c Fo(metho)s(d\).)337 5294 y Fl(\210)45 │ │ │ │ b Fo(The)28 b Fn(msglvl)f Fo(parameter)i(determines)g(the)g(amoun)m(t)g │ │ │ │ (of)f(output)h(|)f(taking)i Fn(msglvl)46 b(>=)h(3)28 │ │ │ │ b Fo(means)427 5407 y(the)j Fn(ETree)e Fo(ob)5 b(ject)31 │ │ │ │ b(is)f(written)h(to)g(the)g(message)g(\014le.)p eop end │ │ │ │ %%Page: 24 24 │ │ │ │ TeXDict begin 24 23 bop 0 100 a Fo(24)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fl(\210)45 b Fo(The)33 b │ │ │ │ Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Fj(stdout)p Fo(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fj(app)-5 b(end)28 │ │ │ │ b Fo(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 770 y Fl(\210)45 b Fo(The)37 b Fn(inFile)f │ │ │ │ @@ -7768,15 +7762,15 @@ │ │ │ │ y(v)m(ertices)37 b(in)m(to)f(domains)f(and)g(a)g(m)m(ultisector,)j │ │ │ │ (where)d(eac)m(h)h(domain)f(is)h(a)f(subtree)g(of)g(the)h(elimination) │ │ │ │ 227 5407 y(tree)i(and)e(the)h(m)m(ultisector)h(is)f(the)g(rest)g(of)g │ │ │ │ (the)g(v)m(ertices.)61 b(The)37 b(c)m(hoice)h(of)f(the)g(subtrees)f │ │ │ │ (dep)s(ends)f(on)p eop end │ │ │ │ %%Page: 25 25 │ │ │ │ TeXDict begin 25 24 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(25)227 399 y(the)g Fn(flag)e Fo(and)h │ │ │ │ Fn(cutoff)f Fo(parameters)i(|)f(it)h(can)g(b)s(e)f(based)g(on)h(depth)f │ │ │ │ (of)g(a)h(subtree)f(or)h(the)g(n)m(um)m(b)s(er)e(of)227 │ │ │ │ 511 y(v)m(ertices,)36 b(factor)e(en)m(tries)g(or)f(factor)h(op)s │ │ │ │ (erations)f(asso)s(ciated)i(with)e(the)g(subtree.)48 │ │ │ │ b(The)33 b(comp)s(onen)m(t)g(ids)227 624 y Fn(IV)27 b │ │ │ │ Fo(ob)5 b(ject)28 b(is)g(optionally)h(written)e(to)h(a)g(\014le.)40 │ │ │ │ @@ -7842,15 +7836,15 @@ │ │ │ │ V 34 w(writeToFile\(\))c Fo(metho)s(d)k(is)427 5294 y(called)35 │ │ │ │ b(to)f(write)g(the)f(ob)5 b(ject)35 b(to)f(a)g(formatted)g(\014le)f │ │ │ │ (\(if)h Fn(outIVFile)d Fo(is)i(of)h(the)g(form)f Fn(*.ivf)p │ │ │ │ Fo(\),)g(or)h(a)427 5407 y(binary)c(\014le)g(\(if)h Fn(outIVFile)d │ │ │ │ Fo(is)i(of)h(the)f(form)g Fn(*.ivb)p Fo(\).)p eop end │ │ │ │ %%Page: 26 26 │ │ │ │ TeXDict begin 26 25 bop 0 100 a Fo(26)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fl(\210)45 b Fo(The)30 b │ │ │ │ Fn(flag)f Fo(parameter)i(sp)s(eci\014es)f(the)h(t)m(yp)s(e)f(of)h(m)m │ │ │ │ (ultisector.)500 548 y Fe({)45 b Fn(flag)i(==)g(1)30 │ │ │ │ b Fo(|)h(the)g(m)m(ultisector)h(is)f(based)f(on)g(the)h(depth)f(of)h │ │ │ │ (the)g(fron)m(t,)g(i.e.,)h(if)e(the)h(fron)m(t)g(is)597 │ │ │ │ 661 y(more)g(than)f Fn(depth)f Fo(steps)h(remo)m(v)m(ed)i(from)d(the)i │ │ │ │ (ro)s(ot,)g(it)g(forms)f(the)g(ro)s(ot)h(of)f(a)h(domain.)500 │ │ │ │ @@ -7922,15 +7916,15 @@ │ │ │ │ b(ject.)39 b(It)24 b(m)m(ust)f(b)s(e)f(of)i(the)f(form)427 │ │ │ │ 5294 y Fn(*.graphf)18 b Fo(or)j Fn(*.graphb)p Fo(.)35 │ │ │ │ b(The)19 b Fn(Graph)g Fo(ob)5 b(ject)21 b(is)g(read)f(from)g(the)g │ │ │ │ (\014le)h(via)f(the)h Fn(Graph)p 3368 5294 V 33 w(readFromFile\(\))427 │ │ │ │ 5407 y Fo(metho)s(d.)p eop end │ │ │ │ %%Page: 27 27 │ │ │ │ TeXDict begin 27 26 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(27)337 399 y Fl(\210)45 b Fo(The)30 │ │ │ │ b Fn(outEPSfile)e Fo(parameter)j(is)f(the)h(name)f(of)h(the)f(EPS)g │ │ │ │ (\014le)g(to)h(hold)f(the)h(tree.)337 542 y Fl(\210)45 │ │ │ │ b Fo(The)34 b Fn(metricType)e Fo(parameter)j(de\014nes)f(the)h(t)m(yp)s │ │ │ │ (e)g(of)g(metric)g(to)g(b)s(e)f(illustrated.)54 b(See)35 │ │ │ │ b(ab)s(o)m(v)m(e)h(for)427 655 y(v)-5 b(alues.)337 799 │ │ │ │ y Fl(\210)45 b Fo(F)-8 b(or)31 b(information)g(ab)s(out)f(the)h │ │ │ │ @@ -9735,15 +9729,15 @@ │ │ │ │ (bining)g(fron)m(ts)g(together)h(that)227 5407 y(do)26 │ │ │ │ b(not)g(in)m(tro)s(duce)f(more)h(than)f Fn(maxzeros)e │ │ │ │ Fo(zero)k(en)m(tries)f(in)f(a)h(fron)m(t.)40 b(\(See)26 │ │ │ │ b([)p Fe(?)p Fo(])g(and)f([)p Fe(?)q Fo(])h(for)f(a)h(description)p │ │ │ │ eop end │ │ │ │ %%Page: 28 28 │ │ │ │ TeXDict begin 28 27 bop 0 100 a Fo(28)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(ETree)29 b Fk(:)41 b Fj(DRAFT)30 b Fk(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 0 731 a Fo(Figure)27 b(1.2:)39 b Fa(GRD7x7x7)p │ │ │ │ Fo(:)h(F)-8 b(our)26 b(tree)h(plots)g(for)f(a)g(7)12 │ │ │ │ b Ff(\002)g Fo(7)g Ff(\002)g Fo(7)27 b(grid)f(matrix)g(ordered)g(using) │ │ │ │ g(nested)g(dissection.)0 844 y(The)j(top)h(left)h(tree)g(measure)e(n)m │ │ │ │ (um)m(b)s(er)g(of)h(original)h(matrix)f(en)m(tries)h(in)f(a)g(fron)m │ │ │ │ (t.)40 b(The)30 b(top)g(righ)m(t)g(tree)h(measure)0 957 │ │ │ │ y(n)m(um)m(b)s(er)20 b(of)i(factor)h(matrix)f(en)m(tries)h(in)e(a)h │ │ │ │ @@ -12016,15 +12010,15 @@ │ │ │ │ │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial 3879 5026 V 1965 5029 1918 4 v eop end │ │ │ │ %%Page: 29 29 │ │ │ │ TeXDict begin 29 28 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(29)227 399 y(of)i(this)g(sup)s(erno)s(de)d │ │ │ │ (amalgamation)36 b(or)e(relaxation.\))53 b Fj(Splitting)34 │ │ │ │ b Fo(a)g(fron)m(t)g(means)f(breaking)h(a)g(fron)m(t)g(up)227 │ │ │ │ 511 y(in)m(to)39 b(a)f(c)m(hain)g(of)g(smaller)g(fron)m(ts;)j(this)d │ │ │ │ (allo)m(ws)h(more)e(pro)s(cessors)g(to)i(w)m(ork)f(on)f(the)h(original) │ │ │ │ h(fron)m(t)e(in)227 624 y(a)g(straigh)m(tforw)m(ard)f(manner.)57 │ │ │ │ b(The)35 b(new)h(fron)m(t)g(tree)g(is)g(optionally)i(written)e(to)g(a)h │ │ │ │ @@ -12187,15 +12181,15 @@ │ │ │ │ Fo(,)i(14)1992 5064 y Fn(ETree)p 2238 5064 V 33 w(subtreeSubsetMap\(\)) │ │ │ │ p Fo(,)e(15)1992 5178 y Fn(ETree)p 2238 5178 V 33 w(transform\(\))p │ │ │ │ Fo(,)i(15)1992 5293 y Fn(ETree)p 2238 5293 V 33 w(transform2\(\))p │ │ │ │ Fo(,)g(15)1992 5407 y Fn(ETree)p 2238 5407 V 33 w(tree\(\))p │ │ │ │ Fo(,)h(3)1905 5656 y(30)p eop end │ │ │ │ %%Page: 31 31 │ │ │ │ TeXDict begin 31 30 bop 91 100 1083 4 v 1264 100 a Fn(ETree)29 │ │ │ │ -b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fk(:)41 b Fj(DRAFT)121 b Fk(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(31)0 399 y Fn(ETree)p 246 399 29 │ │ │ │ 4 v 33 w(vtxToFront\(\))p Fo(,)27 b(4)0 511 y Fn(ETree)p │ │ │ │ 246 511 V 33 w(vtxToFrontIV\(\))p Fo(,)g(4)0 624 y Fn(ETree)p │ │ │ │ 246 624 V 33 w(wrapMap\(\))p Fo(,)h(15)0 737 y Fn(ETree)p │ │ │ │ 246 737 V 33 w(writeForHumanEye\(\))p Fo(,)e(18)0 850 │ │ │ │ y Fn(ETree)p 246 850 V 33 w(writeStats\(\))p Fo(,)h(18)0 │ │ │ │ 963 y Fn(ETree)p 246 963 V 33 w(writeToBinaryFile\(\))p │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ │ • int nfront : number of fronts in the tree │ │ │ │ │ • int nvtx : number of vertices in the tree │ │ │ │ │ • Tree *tree : pointer to a Tree structure │ │ │ │ │ • IV *nodwghtsIV : pointer to an IV object to hold front weights, size nfront │ │ │ │ │ • IV *bndwghtsIV : pointer to an IV object to hold the weights of the fronts’ boundaries, size │ │ │ │ │ nfront │ │ │ │ │ 1 │ │ │ │ │ - 2 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 2 ETree : DRAFT October 28, 2025 │ │ │ │ │ • IV *vtxToFrontIV : pointer to an IV object to hold the map from vertices to fronts, size │ │ │ │ │ nfront │ │ │ │ │ A correctly initialized and nontrivial ETree object will have positive nfront and nvtx values, a │ │ │ │ │ valid tree field and non-NULL nodwghtsIV, bndwghtsIV and vtxToFrontIV pointers. │ │ │ │ │ 1.2 Prototypes and descriptions of ETree methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ ETree object. │ │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ │ This method releases any storage by a call to ETree clearData() then free’s the storage for │ │ │ │ │ the structure with a call to free(). │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. int ETree_nfront ( ETree *etree ) ; │ │ │ │ │ This method returns the number of fronts. │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 3 │ │ │ │ │ + ETree : DRAFT October 28, 2025 3 │ │ │ │ │ 2. int ETree_nvtx ( ETree *etree ) ; │ │ │ │ │ This method returns the number of vertices. │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. Tree * ETree_tree ( ETree *etree ) ; │ │ │ │ │ This method returns a pointer to the Tree object. │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int ETree_root ( ETree *etree ) ; │ │ │ │ │ @@ -86,15 +86,15 @@ │ │ │ │ │ 9. int * ETree_nodwghts ( ETree *etree ) ; │ │ │ │ │ This method returns a pointer to the nodwghts vector. │ │ │ │ │ Error checking: If etree or etree->nodwghtsIV is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 10. IV * ETree_bndwghtsIV ( ETree *etree ) ; │ │ │ │ │ This method returns a pointer to the bndwghtsIV object. │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ - 4 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 4 ETree : DRAFT October 28, 2025 │ │ │ │ │ 11. int * ETree_bndwghts ( ETree *etree ) ; │ │ │ │ │ This method returns a pointer to the bndwghts vector. │ │ │ │ │ Error checking: If etree or etree->bndwghtsIV is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 12. IV * ETree_vtxToFrontIV ( ETree *etree ) ; │ │ │ │ │ This method returns a pointer to the vtxToFrontIV object. │ │ │ │ │ Error checking: If etree is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ Error checking: If etree is NULL, or if symflag is invalid, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ There are four initializer methods. │ │ │ │ │ 1. void ETree_init1 ( ETree *etree, int nfront, int nvtx ) ; │ │ │ │ │ This method initializes an ETree object given the number of fronts and number of vertices. │ │ │ │ │ Anyprevious data is cleared with a call to ETree clearData(), The Tree object is initialized │ │ │ │ │ - ETree : DRAFT October 18, 2025 5 │ │ │ │ │ + ETree : DRAFT October 28, 2025 5 │ │ │ │ │ with a call to Tree init1(). The nodwghtsIV, bndwghtsIV and vtxToFrontIV objects are │ │ │ │ │ initialized with calls to IV init(). The entries in nodwghtsIV and bndwghtsIV are set to 0, │ │ │ │ │ while the entries in vtxToFrontIV are set to -1. │ │ │ │ │ Error checking: If etree is NULL, or if nfront is negative, or if nvtx < nfront, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 2. void ETree_initFromGraph ( ETree *etree, Graph *g ) ; │ │ │ │ │ This method generates an elimination tree from a graph. The nodwghtsIV vector object is │ │ │ │ │ @@ -160,15 +160,15 @@ │ │ │ │ │ permutes to vertex-to-front map, and returns an IV object that contains the old-to-new │ │ │ │ │ permutation. │ │ │ │ │ Error checking: If etree is NULL or inETreeFileName is “none”, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 6. int ETree_initFromSubtree ( ETree *subtree, IV *nodeidsIV, ETree *etree, IV *vtxIV ) ; │ │ │ │ │ This method initializes subtree from tree using the nodes of etree that are found in │ │ │ │ │ nodeidsIV. The map from nodes in subtree to nodes in etree is returned in vtxIV. │ │ │ │ │ - 6 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 6 ETree : DRAFT October 28, 2025 │ │ │ │ │ Return code: 1 for a normal return, -1 if subtree is NULL, -2 if nodeidsIV is NULL, -3 if │ │ │ │ │ etree is NULL, -4 if nodeidsIV is invalid, -5 if vtxIV is NULL. │ │ │ │ │ 1.2.4 Utility methods │ │ │ │ │ Theutility methods return the number of bytes taken by the object, or the number of factor indices, │ │ │ │ │ entries or operations required by the object. │ │ │ │ │ 1. int ETree_sizeOf ( ETree *etree ) ; │ │ │ │ │ This method returns the number of bytes taken by this object (which includes the bytes taken │ │ │ │ │ @@ -195,15 +195,15 @@ │ │ │ │ │ Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, or if type or │ │ │ │ │ symflag is invalid, an error message is printed and the program exits. │ │ │ │ │ 5. double ETree_nFactorEntriesInFront ( ETree *etree, int symflag, int J ) ; │ │ │ │ │ ThismethodreturnsthenumberofentriesinfrontJforanLU factorization. Thesymflagpa- │ │ │ │ │ rameter can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC. │ │ │ │ │ Error checking: If etree or tree is NULL, or if nfront < 1, or if symflag is invalid, or if │ │ │ │ │ J < 0, or if J ≥ nfront, an error message is printed and the program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 7 │ │ │ │ │ + ETree : DRAFT October 28, 2025 7 │ │ │ │ │ 6. double ETree_nInternalOpsInFront ( ETree *etree, int type, int symflag, int J ) ; │ │ │ │ │ ThismethodreturnsthenumberofinternaloperationsperformedbyfrontJonits(1,1), (2,1), │ │ │ │ │ and (1,2) blocks during a factorization. The type parameter can be one of SPOOLES REAL │ │ │ │ │ or SPOOLES COMPLEX. symflag must be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or │ │ │ │ │ SPOOLES NONSYMMETRIC. │ │ │ │ │ Error checking: If etree or tree is NULL, or if nfront < 1, or if type or symflag is invalid, │ │ │ │ │ or if J < 0, or if J ≥ nfront, an error message is printed and the program exits. │ │ │ │ │ @@ -233,15 +233,15 @@ │ │ │ │ │ Error checking: If etree is NULL, or if type or symflag is invalid, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 11. ETree * ETree_expand ( ETree *etree, IV *eqmapIV ) ; │ │ │ │ │ This method creates and returns an ETree object for an uncompressed graph. The map from │ │ │ │ │ compressed vertices to uncompressed vertices is found in the eqmapIV object. │ │ │ │ │ Error checking: If etree or eqmapIV is NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 8 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 8 ETree : DRAFT October 28, 2025 │ │ │ │ │ 12. ETree * ETree_spliceTwoEtrees ( ETree *etree0, Graph *graph, IV *mapIV, ETree *etree1 ) ; │ │ │ │ │ This method creates and returns an ETree object that is formed by splicing together two │ │ │ │ │ front trees, etree0 for the vertices the eliminated domains, etree1 for the vertices the Schur │ │ │ │ │ complement. The mapIV object maps vertices to domains or the Schur complement — if the │ │ │ │ │ entry is 0, the vertex is in the Schur complement, otherwise it is in a domain. │ │ │ │ │ Error checking: If etree0, graph, mapIV or etree1 is NULL, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ @@ -266,15 +266,15 @@ │ │ │ │ │ 3. DV * ETree_nopsMetric ( ETree *etree, int type, int symflag ) ; │ │ │ │ │ AnDVobjectofsize nfrontis created and returned. Each entry of the vector is filled with the │ │ │ │ │ number of factor operations associated with the corresponding front. The type parameter │ │ │ │ │ can be one of SPOOLES REAL or SPOOLES COMPLEX. The symflag parameter can be one of │ │ │ │ │ SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if type or symflag is │ │ │ │ │ invalid, an error message is printed and the program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 9 │ │ │ │ │ + ETree : DRAFT October 28, 2025 9 │ │ │ │ │ 1.2.6 Compression methods │ │ │ │ │ Frequently an ETree object will need to be compressed in some manner. Elimination trees usually │ │ │ │ │ have long chains of vertices at the higher levels, where each chain of vertices corresponds to a │ │ │ │ │ supernode. Liu’s generalized row envelope methods partition the vertices by longest chains [?]. In │ │ │ │ │ both cases, we can construct a map from each node to a set of nodes to define a smaller, more │ │ │ │ │ compact ETree object. Given such a map, we construct the smaller etree. │ │ │ │ │ Afundamental chain is a set of vertices v ,...,v such that │ │ │ │ │ @@ -308,15 +308,15 @@ │ │ │ │ │ Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 2. IV * ETree_fundSupernodeMap ( ETree *etree ) ; │ │ │ │ │ An IV object of size nfront is created, filled with the map from vertices to fundamental │ │ │ │ │ supernodes, then returned. │ │ │ │ │ Error checking: If etree or tree is NULL, or if nfront < 1, or if nvtx < 1, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - 10 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 10 ETree : DRAFT October 28, 2025 │ │ │ │ │ 3. ETree * ETree_compress ( ETree *etree, IV *frontMapIV ) ; │ │ │ │ │ Using frontMapIV, a new ETree object is created and returned. If frontMapIV does not │ │ │ │ │ define each inverse map of a new node to be connected set of nodes in the old ETree object, │ │ │ │ │ the new ETree object will not be well defined. │ │ │ │ │ Error checking: If etree or frontMapIV is NULL, or if nfront < 1, or if nvtx < 1, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 1.2.7 Justification methods │ │ │ │ │ @@ -342,15 +342,15 @@ │ │ │ │ │ 1. IV * ETree_newToOldFrontPerm ( ETree *etree ) ; │ │ │ │ │ IV * ETree_oldToNewFrontPerm ( ETree *etree ) ; │ │ │ │ │ An IV object is created with size nfront. A post-order traversal of the Tree object fills │ │ │ │ │ the new-to-old permutation. A reversal of the new-to-old permutation gives the old-to-new │ │ │ │ │ permutation. Both methods are simply wrappers around the respective Tree methods. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 11 │ │ │ │ │ + ETree : DRAFT October 28, 2025 11 │ │ │ │ │ 2. IV * ETree_newToOldVtxPerm ( ETree *etree ) ; │ │ │ │ │ IV * ETree_oldToNewVtxPerm ( ETree *etree ) ; │ │ │ │ │ AnIVobject is created with size nvtx. First we find a new-to-old permutation of the fronts. │ │ │ │ │ Then we search over the fronts in their new order to fill the vertex new-to-old permutation │ │ │ │ │ vector. The old-to-new vertex permutation vector is found by first finding the new-to-old │ │ │ │ │ vertex permutation vector, then inverting it. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed │ │ │ │ │ @@ -380,15 +380,15 @@ │ │ │ │ │ of the subtree is more than cutoff times the vertex weight, the vertex is in the multisector. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 3. IV * ETree_msByNentCutoff ( ETree *etree, double cutoff, int symflag ) ; │ │ │ │ │ An IV object is created to hold the multisector nodes and returned. Multisector nodes │ │ │ │ │ have their component id zero, domain nodes have their component id one. Inclusion in the │ │ │ │ │ multisector is based on the number of factor entries in the subtree that a vertex belongs, or │ │ │ │ │ - 12 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 12 ETree : DRAFT October 28, 2025 │ │ │ │ │ strictly speaking, the number of factor entries in the subtree of the front to which a vertex │ │ │ │ │ belongs. If weight of the subtree is more than cutoff times the number of factor entries, │ │ │ │ │ the vertex is in the multisector. The symflag parameter can be one of SPOOLES SYMMETRIC, │ │ │ │ │ SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if symflag is invalid, │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 4. IV * ETree_msByNopsCutoff ( ETree *etree, double cutoff, int type, int symflag ) ; │ │ │ │ │ @@ -423,15 +423,15 @@ │ │ │ │ │ ∂J,J ∂J,J J,J │ │ │ │ │ α = 0, we minimize active storage, when α = 1, we minimize solve operations. On return, │ │ │ │ │ *ptotalgain is filled with the total gain. The return value is a pointer to compidsIV, where │ │ │ │ │ compids[J] = 0 means that J is in the Schur complement, and compids[J] != 0 means │ │ │ │ │ that J is in domain compids[J]. │ │ │ │ │ Error checking: If etree, graph or symbfacIVL is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 13 │ │ │ │ │ + ETree : DRAFT October 28, 2025 13 │ │ │ │ │ 1.2.10 Transformation methods │ │ │ │ │ Often the elimination tree or front tree that we obtain from an ordering of the graph is not as │ │ │ │ │ appropriate for a factorization as we would like. There are two important cases. │ │ │ │ │ • Near the leaves of the tree the fronts are typically small in size. There is an overhead │ │ │ │ │ associated with each front, and though the overhead varies with regard to the factorization │ │ │ │ │ algorithm, it can be beneficial to group small subtrees together into one front. The expense is │ │ │ │ │ added storage for the logically zero entries and the factor operations on them. In this library, │ │ │ │ │ @@ -464,15 +464,15 @@ │ │ │ │ │ restriction. │ │ │ │ │ • The method ETree mergeFrontsAll() tries to merge a front with all of its children, if the │ │ │ │ │ resulting front does not contain too many zero entries. This has the effect of merging small │ │ │ │ │ bushy subtrees, but will not merge a top level separator with one of its children. │ │ │ │ │ For a serial application, ETree mergeFrontsAny()is suitable. For a parallel application, we recom- │ │ │ │ │ mend first using ETree mergeFrontsOne() followed by ETree mergeFrontsAll(). See the driver │ │ │ │ │ programs testTransform and mkNDETree for examples of how to call the methods. │ │ │ │ │ - 14 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 14 ETree : DRAFT October 28, 2025 │ │ │ │ │ 1. ETree * ETree_mergeFrontsOne ( ETree *etree, int maxzeros, IV *nzerosIV ) ; │ │ │ │ │ This method only tries to merge a front with its only child. It returns an ETree object where │ │ │ │ │ one or more subtrees that contain multiple fronts have been merged into single fronts. The │ │ │ │ │ parameter that governs the merging process is maxzeros, the number of zero entries that can │ │ │ │ │ be introduced by merging a child and parent front together. On input, nzerosIV contains │ │ │ │ │ the number of zeros presently in each front. It is modified on output to correspond with the │ │ │ │ │ new front tree. This method only tries to merge a front with its only child. │ │ │ │ │ @@ -505,15 +505,15 @@ │ │ │ │ │ is NULL, then the vertices have unit weight. The way the vertices in a front to be split are │ │ │ │ │ assigned to smaller fronts is random; the seed parameter is a seed to a random number │ │ │ │ │ generator that permutes the vertices in a front. │ │ │ │ │ Error checking: If etree is NULL, or if nfront < 1, or if nvtx < 1, or if maxfrontsize ≤ 0, │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 5. ETree * ETree_transform ( ETree *etree, int vwghts[], int maxzeros, │ │ │ │ │ int maxfrontsize, int seed ) ; │ │ │ │ │ - ETree : DRAFT October 18, 2025 15 │ │ │ │ │ + ETree : DRAFT October 28, 2025 15 │ │ │ │ │ ETree * ETree_transform2 ( ETree *etree, int vwghts[], int maxzeros, │ │ │ │ │ int maxfrontsize, int seed ) ; │ │ │ │ │ These methods returns an ETree object where one or more subtrees that contain multiple │ │ │ │ │ fronts have been merged into single fronts and where one or more large fronts have been split │ │ │ │ │ into smaller fronts. The two methods differ slightly. ETree transform2() is better suited │ │ │ │ │ for parallel computing because it tends to preserve the tree branching properties. (A front is │ │ │ │ │ merged with either an only child or all children. ETree transform() can merge a front with │ │ │ │ │ @@ -544,15 +544,15 @@ │ │ │ │ │ where the fronts are visited in a post-order traversal of the tree and a front is assigned │ │ │ │ │ to a thread or processor with the least number of accumulated operations thus far. │ │ │ │ │ • The subtree-subset map is the most complex, where subsets of threads or processors are │ │ │ │ │ assigned to subtrees via a pre-order traversal of the tree. (Each root of the tree can be │ │ │ │ │ assigned to all processors.) The tree is then visited in a post-order traversal, and each │ │ │ │ │ front is assigned to an eligible thread or processor with the least number of accumulated │ │ │ │ │ ops so far. │ │ │ │ │ - 16 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 16 ETree : DRAFT October 28, 2025 │ │ │ │ │ • The domain decomposition map is also complex, where domains are mapped to threads, │ │ │ │ │ then the fronts in the schur complement are mapped to threads, both using independent │ │ │ │ │ balanced maps. The method ETree ddMapNew() is more robust than ETree ddMap(), │ │ │ │ │ and is more general in the sense that it takes a multisector vector as input. The msIV │ │ │ │ │ object is a map from the vertices to {0,1}. A vertex mapped to 0 lies in the Schur │ │ │ │ │ complement, a vertex mapped to 1 lies in a domain. │ │ │ │ │ Error checking: If etree or cumopsDV is NULL, or if type or symflag is invalid, an error │ │ │ │ │ @@ -580,15 +580,15 @@ │ │ │ │ │ can be one of SPOOLES SYMMETRIC, SPOOLES HERMITIAN or SPOOLES NONSYMMETRIC. │ │ │ │ │ Error checking: If etree or dvec are NULL, or if symflag is invalid, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 4. void ETree_forwSolveProfile ( ETree *etree, double dvec[] ) ; │ │ │ │ │ Onreturn, dvec[J] contains the amount of stack storage to solve for J using the multifrontal- │ │ │ │ │ based forward solve. │ │ │ │ │ Error checking: If etree or dvec are NULL, an error message is printed and the program exits. │ │ │ │ │ - ETree : DRAFT October 18, 2025 17 │ │ │ │ │ + ETree : DRAFT October 28, 2025 17 │ │ │ │ │ 5. void ETree_backSolveProfile ( ETree *etree, double dvec[] ) ; │ │ │ │ │ Onreturn, dvec[J] contains the amount of stack storage to solve for J using the multifrontal- │ │ │ │ │ based backward solve. │ │ │ │ │ Error checking: If etree or dvec are NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.13 IO methods │ │ │ │ │ There are the usual eight IO routines. The file structure of a tree object is simple: nfront, nvtx, │ │ │ │ │ a Tree object followed by the nodwghtsIV, bndwghtsIV and vtxToFrontIV objects. │ │ │ │ │ @@ -615,15 +615,15 @@ │ │ │ │ │ Error checking: If etree or fn are NULL, or if fn is not of the form *.etreef (for a formatted │ │ │ │ │ file) or *.etreeb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 5. int ETree_writeToFormattedFile ( ETree *etree, FILE *fp ) ; │ │ │ │ │ This method writes an ETree object to a formatted file. Otherwise, the data is written to │ │ │ │ │ the file. If there are no errors in writing the data, the value 1 is returned. If an IO error is │ │ │ │ │ encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If etree or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 18 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 18 ETree : DRAFT October 28, 2025 │ │ │ │ │ 6. int ETree_writeToBinaryFile ( ETree *etree, FILE *fp ) ; │ │ │ │ │ This method writes an ETree object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If etree or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 7. int ETree_writeForHumanEye ( ETree *etree, FILE *fp ) ; │ │ │ │ │ This method writes an ETree object to a file in a readable format. Otherwise, the method │ │ │ │ │ ETree writeStats() is called to write out the header and statistics. Then the parent, first │ │ │ │ │ @@ -650,15 +650,15 @@ │ │ │ │ │ • The inPermFile parameter is the input file for the Perm object. It must be of the form │ │ │ │ │ *.permfor*.permb. ThePermobjectisreadfromthefileviathePerm readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The outIVfile parameter is the output file for the vertex-to-front map IV object. │ │ │ │ │ If outIVfile is none then the IV object is not written to a file. Otherwise, the │ │ │ │ │ IV writeToFile()methodis called to write the object to a formatted file (if outIVfile │ │ │ │ │ is of the form *.ivf), or a binary file (if outIVfile is of the form *.ivb). │ │ │ │ │ - ETree : DRAFT October 18, 2025 19 │ │ │ │ │ + ETree : DRAFT October 28, 2025 19 │ │ │ │ │ • TheoutETreeFileparameter is the output file for the ETree object. If outETreeFileis │ │ │ │ │ nonethentheETreeobjectisnotwrittentoafile. Otherwise,theETree writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outETreeFile is of the form │ │ │ │ │ *.etreef), or a binary file (if outETreeFile is of the form *.etreeb). │ │ │ │ │ 2. extractTopSep msglvl msgFile inETreeFile outIVfile │ │ │ │ │ ThisdriverprogramcreatesanIVobjectthatcontainsacompids[]vector, wherecompids[v] │ │ │ │ │ = 0 if vertex v is in the top level separator and -1 otherwise. The IV object is optionally │ │ │ │ │ @@ -689,15 +689,15 @@ │ │ │ │ │ Here is some typical output for a 15×15×15 grid matrix with maxzeros = 64 and maxsize │ │ │ │ │ = 32. │ │ │ │ │ vtx tree : 3375 fronts, 367237 indices, 367237 |L|, 63215265 ops │ │ │ │ │ fs tree : 1023 fronts, 39661 indices, 367237 |L|, 63215265 ops │ │ │ │ │ merge1 : 1023 fronts, 39661 indices, 367237 |L|, 63215265 ops │ │ │ │ │ merge2 : 511 fronts, 29525 indices, 373757 |L|, 63590185 ops │ │ │ │ │ split : 536 fronts, 34484 indices, 373757 |L|, 63590185 ops │ │ │ │ │ - 20 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 20 ETree : DRAFT October 28, 2025 │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the ETree object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • n1 is the number of grid points in the first direction. │ │ │ │ │ • n2 is the number of grid points in the second direction. │ │ │ │ │ @@ -729,15 +729,15 @@ │ │ │ │ │ • n3 is the number of grid points in the third direction. │ │ │ │ │ • The maxzeros parameter is an upper bound on the number of logically zero entries that │ │ │ │ │ will be allowed in a new front. │ │ │ │ │ • The maxsize parameter is an upper bound on the number of vertices in a front — any │ │ │ │ │ original front that contains more than maxsize vertices will be broken up into smaller │ │ │ │ │ fronts. │ │ │ │ │ • The nthread parameter is the number of threads. │ │ │ │ │ - ETree : DRAFT October 18, 2025 21 │ │ │ │ │ + ETree : DRAFT October 28, 2025 21 │ │ │ │ │ • The maptype parameter is the type of map. │ │ │ │ │ – 1 — wrap map │ │ │ │ │ – 2 — balanced map │ │ │ │ │ – 3 — subtree-subset map │ │ │ │ │ – 4 — domain decomposition map │ │ │ │ │ • The cutoff parameter is used by the domain decomposition map only. Try setting │ │ │ │ │ cutoff = 1/nthread or cutoff = 1/(2*nthread). │ │ │ │ │ @@ -771,15 +771,15 @@ │ │ │ │ │ nonethentheETreeobjectisnotwrittentoafile. Otherwise,theETree writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outETreeFile is of the form │ │ │ │ │ *.etreef), or a binary file (if outETreeFile is of the form *.etreeb). │ │ │ │ │ • The outIVFile parameter is the output file for the old-to-new IV object. If outIVFile │ │ │ │ │ is none then the IV object is not written to a file. Otherwise, the IV writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outIVFile is of the form │ │ │ │ │ *.ivf), or a binary file (if outIVFile is of the form *.ivb). │ │ │ │ │ - 22 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 22 ETree : DRAFT October 28, 2025 │ │ │ │ │ 6. testExpand msglvl msgFile inETreeFile inEqmapFile outETreeFile │ │ │ │ │ This driver program is used to translate an ETree object for a compressed graph into an │ │ │ │ │ ETree object for the unit weight graph. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the ETree object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ @@ -812,15 +812,15 @@ │ │ │ │ │ • TheinETreeFileparameteristheinputfilefortheETreeobject. It mustbeof theform │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • If labelflag = 1, the node ids are written on the nodes in the two plots. │ │ │ │ │ • Each node will have a circle with radius radius. │ │ │ │ │ • The firstEPSfile and secondEPSfile parameters is the output EPS file for the two │ │ │ │ │ plots. │ │ │ │ │ - ETree : DRAFT October 18, 2025 23 │ │ │ │ │ + ETree : DRAFT October 28, 2025 23 │ │ │ │ │ Figure 1.1: GRD7x7: Working storage for the forward sparse factorization of the nested dissection │ │ │ │ │ b │ │ │ │ │ ordering. On the left is the storage required to factor J and its update matrix. On the right is the │ │ │ │ │ storage required to factor J and all of its ancestors. Both plots have the same scale. │ │ │ │ │ 29 30 14 22 16 10 4 │ │ │ │ │ 23 15 11 3 │ │ │ │ │ 26 25 24 19 18 17 12 8 7 5 1 0 │ │ │ │ │ @@ -846,15 +846,15 @@ │ │ │ │ │ method. │ │ │ │ │ 9. testIO msglvl msgFile inFile outFile │ │ │ │ │ This driver program reads and writes ETree files, useful for converting formatted files to │ │ │ │ │ binary files and vice versa. One can also read in a ETree file and print out just the header │ │ │ │ │ information (see the ETree writeStats() method). │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the ETree object is written to the message file. │ │ │ │ │ - 24 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 24 ETree : DRAFT October 28, 2025 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The inFile parameter is the input file for the ETree object. It must be of the form │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The outFile parameter is the output file for the ETree object. If outFile is none then │ │ │ │ │ @@ -886,15 +886,15 @@ │ │ │ │ │ Thecutoff defines the multisector, 0 ≤ cutoff ≤ 1. If front J has a subtree metric based │ │ │ │ │ on forward operations that is greater than or equalt to cutoff times the total number │ │ │ │ │ of operations, then front J belongs to the multisector. │ │ │ │ │ 11. testMS msglvl msgFile inETreeFile outIVfile flag cutoff │ │ │ │ │ This program is used to extract a multisector from a front tree ETree object. It partitions the │ │ │ │ │ vertices into domains and a multisector, where each domain is a subtree of the elimination │ │ │ │ │ tree and the multisector is the rest of the vertices. The choice of the subtrees depends on │ │ │ │ │ - ETree : DRAFT October 18, 2025 25 │ │ │ │ │ + ETree : DRAFT October 28, 2025 25 │ │ │ │ │ the flag and cutoff parameters — it can be based on depth of a subtree or the number of │ │ │ │ │ vertices, factor entries or factor operations associated with the subtree. The component ids │ │ │ │ │ IV object is optionally written to a file. Here is some sample output for BCSSTK30 ordered by │ │ │ │ │ nested dissection, where the multisector is defined by subtree vertex weight (flag = 2) with │ │ │ │ │ cutoff = 0.125. │ │ │ │ │ region vertices entries operations metric/(avg domain) │ │ │ │ │ 0 1671 597058 255691396 0.797 2.201 3.967 │ │ │ │ │ @@ -927,15 +927,15 @@ │ │ │ │ │ • TheinETreeFileparameteristheinputfilefortheETreeobject. It mustbeof theform │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The outIVFile parameter is the output file for the IV object. If outIVFile is none │ │ │ │ │ then the IV object is not written to a file. Otherwise, the IV writeToFile() method is │ │ │ │ │ called to write the object to a formatted file (if outIVFile is of the form *.ivf), or a │ │ │ │ │ binary file (if outIVFile is of the form *.ivb). │ │ │ │ │ - 26 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 26 ETree : DRAFT October 28, 2025 │ │ │ │ │ • The flag parameter specifies the type of multisector. │ │ │ │ │ – flag == 1 — the multisector is based on the depth of the front, i.e., if the front is │ │ │ │ │ more than depth steps removed from the root, it forms the root of a domain. │ │ │ │ │ – flag == 2 — the multisector is based on the number of vertices in a subtree, i.e., │ │ │ │ │ if the subtree rooted at a front contains more than cutoff times the total number │ │ │ │ │ of vertices, it is a domain. │ │ │ │ │ – flag == 3 — the multisector is based on the number of factor entries in a subtree, │ │ │ │ │ @@ -967,15 +967,15 @@ │ │ │ │ │ data. │ │ │ │ │ • TheinETreeFileparameteristheinputfilefortheETreeobject. It mustbeof theform │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • TheinGraphFileparameteristheinputfilefortheGraphobject. It mustbeof theform │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ - ETree : DRAFT October 18, 2025 27 │ │ │ │ │ + ETree : DRAFT October 28, 2025 27 │ │ │ │ │ • The outEPSfile parameter is the name of the EPS file to hold the tree. │ │ │ │ │ • The metricType parameter defines the type of metric to be illustrated. See above for │ │ │ │ │ values. │ │ │ │ │ • For information about the heightflag and coordflag parameters, see Section ??. │ │ │ │ │ • If labelflag = 1, the node ids are written on the nodes in the two plots. │ │ │ │ │ • The fontscale parameter is the font size when labels are drawn. │ │ │ │ │ 13. testStorage msglvl msgFile inETreeFile inGraphFile │ │ │ │ │ @@ -1007,21 +1007,21 @@ │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ 14. testTransform msglvl msgFile inETreeFile inGraphFile │ │ │ │ │ outETreeFile maxzeros maxsize seed │ │ │ │ │ This driver program is used to transform a front tree ETree object into a (possibly) merged │ │ │ │ │ and (possibly) split front tree. Merging the front tree means combining fronts together that │ │ │ │ │ do not introduce more than maxzeros zero entries in a front. (See [?] and [?] for a description │ │ │ │ │ - 28 ETree : DRAFT October 18, 2025 │ │ │ │ │ + 28 ETree : DRAFT October 28, 2025 │ │ │ │ │ Figure 1.2: GRD7x7x7: Four tree plots for a 7×7×7 grid matrix ordered using nested dissection. │ │ │ │ │ The top left tree measure number of original matrix entries in a front. The top right tree measure │ │ │ │ │ numberoffactormatrixentries inafront. Thebottomlefttree measurenumberoffactor operations │ │ │ │ │ in a front for a forward looking factorization, e.g., forward sparse. The bottom right tree measure │ │ │ │ │ number of factor operations in a front for a backward looking factorization, e.g., general sparse. │ │ │ │ │ - ETree : DRAFT October 18, 2025 29 │ │ │ │ │ + ETree : DRAFT October 28, 2025 29 │ │ │ │ │ of this supernode amalgamation or relaxation.) Splitting a front means breaking a front up │ │ │ │ │ into a chain of smaller fronts; this allows more processors to work on the original front in │ │ │ │ │ a straightforward manner. The new front tree is optionally written to a file. Here is some │ │ │ │ │ output for the R3D13824 matrix using maxzeros = 1000 and maxsize = 64. │ │ │ │ │ CPU #fronts #indices #entries #ops │ │ │ │ │ original : 6001 326858 3459359 1981403337 │ │ │ │ │ merge one : 0.209 3477 158834 3497139 2000297117 │ │ │ │ │ @@ -1094,15 +1094,15 @@ │ │ │ │ │ ETree mergeFrontsAll(), 14 ETree spliceTwoEtrees(), 8 │ │ │ │ │ ETree mergeFrontsAny(), 14 ETree splitFronts(), 14 │ │ │ │ │ ETree mergeFrontsOne(), 14 ETree subtreeSubsetMap(), 15 │ │ │ │ │ ETree MFstackProfile(), 16 ETree transform(), 15 │ │ │ │ │ ETree msByDepth(), 11 ETree transform2(), 15 │ │ │ │ │ ETree msByNentCutoff(), 11 ETree tree(), 3 │ │ │ │ │ 30 │ │ │ │ │ - ETree : DRAFT October 18, 2025 31 │ │ │ │ │ + ETree : DRAFT October 28, 2025 31 │ │ │ │ │ ETree vtxToFront(), 4 │ │ │ │ │ ETree vtxToFrontIV(), 4 │ │ │ │ │ ETree wrapMap(), 15 │ │ │ │ │ ETree writeForHumanEye(), 18 │ │ │ │ │ ETree writeStats(), 18 │ │ │ │ │ ETree writeToBinaryFile(), 18 │ │ │ │ │ ETree writeToFile(), 17 │ │ ├── ./usr/share/doc/spooles-doc/Eigen.ps.gz │ │ │ ├── Eigen.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Eigen.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1594,15 +1594,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1796,81 +1795,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -6531,15 +6525,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 65 /A put │ │ │ │ dup 66 /B put │ │ │ │ dup 67 /C put │ │ │ │ dup 74 /J put │ │ │ │ @@ -6743,183 +6736,179 @@ │ │ │ │ B36258037B5F0DF7D78C26C1D24931A18A2606939F9933100C723ED2FD991F4C │ │ │ │ 98CCB4F15E381B4886FE0E928D4989A0257051C547165291D35FA5BCF359E153 │ │ │ │ 7EF69FEC09DBE6A9E866BAE054F56E86CA2D299F8DCB88685B932117314A73CB │ │ │ │ 5954C6D639CEB6F8A0A1F4D9414F1CA7CF3DEDEE81F75D8B5CEB205425442B32 │ │ │ │ 8703A8A79A51613E3E6A46C9B7B1052C0A5491130E312ED3A0A2F32C5D52B15F │ │ │ │ 9621BA9E1688463FEA43F72D5FDB6E8D0739003C1D8A04E1589A7FD3F405364F │ │ │ │ CD0677FB7EADC0D62CB762350689F751F19E6389284C97A5163CAD892E9A7043 │ │ │ │ -AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8CC30D683C461 │ │ │ │ -AD9C4BDC977B04018DEACFD28A494A97EA00BAEA3EC87A55A4A443515B0AF101 │ │ │ │ -B7D5B60ACDA971F89630C5CC19878930158C50457F7C5A5BB17C51B847C0104F │ │ │ │ -FC6A24E01DFBBE38D0C2EB515147F88C5F8686799909779F22074AD8B869B5C5 │ │ │ │ -AB16E955F051B0CDE308F51C53C411B5A1F345AD252ACE84A5A4C362EA070955 │ │ │ │ -4FDC64B1E47CE12C3AECEEE68623F3C1CCB36CD3E55D11D97595874D7ECB1FC3 │ │ │ │ -1C3469C3045E80C6E99ECCBEF59092AE5E66CCAE3B89FB8037B6705151D7E62B │ │ │ │ -86809B7FEC9C7A242A8B369F6EF0D06F7CCF47D5458F960A2AA1FAABCABBACA9 │ │ │ │ -F2F33876F9C61FAC3B10FB6AD648E27DB482CDC5DFEBA251002DDA29686D7513 │ │ │ │ -88071E86B1D8C780863E73226E34B7636F6C9B0A1A3DCD1CCF175EA67B2740B0 │ │ │ │ -E78071E5FE6402317474D179D05EFE1ADB5000021C65B15E00610A0BF6A7DDBD │ │ │ │ -2BFF3B997734AE6FB52D4CE40010373491A70C412483250CE35ABEA693614EB9 │ │ │ │ -484ACD4D96D6393F0E9AE117DDAAA14205F3A7B1F655B2A26106016F32C7A5C1 │ │ │ │ -9C82315C947861F1FA5DC517C21F471FCA2AEF505B2C9984F71093EFCE59E581 │ │ │ │ -5B83212ED710AE172F026C8E091CC5FEE1C8D5026A43F3B42134B3D0C47B6FC3 │ │ │ │ -DDD73B9253FA9955932CFF099C5AB34641677E777B5CA37272CF5738EECC05BE │ │ │ │ -29C10056BB5338C6826561AA3369FB210065CFF850CB84BA6C47E027629CCA0D │ │ │ │ -A9B21FEAA0B44D521B1E4C945CC9D0F1FFA29EF87B516D7A7138818E4722A0D2 │ │ │ │ -23CB86BCED8A56157B02A26FA2E073D7D6D12C85782A6DEDF2C4197A22A45F4C │ │ │ │ -9C4670DB8A537E91FF6A05598716FB720C9086419D4CE4AA05D10E914E734BC4 │ │ │ │ -A7557643841476FCC0A5DEF317AC0E4159E4F73ED716A7F9B2025F687F5ABBF6 │ │ │ │ -E8512809C427C03C8EE1570EC2001DF551BDD5DB73004579846401AFEE84CAAE │ │ │ │ -3C34B369671A543B77E69392C29D4FB0E046352689EC1F35F36E3E259DA35743 │ │ │ │ -7C65C2DF42D5E0B416582B44939A4EBFDBEB939417D9DE7C27C92CA9B32B7FAD │ │ │ │ -65E1DEAD635CA05B32624B06CF99D75ABB9AE2CD328A99A29EA103946C94AFB2 │ │ │ │ -0220225C323071303A260A44FDA16EE98DFB108531232F063DDBBEB6CB011F0F │ │ │ │ -C9277E1854AF6F2CA84F1254847CB52355680048A7B69321D79941CB5317984F │ │ │ │ -8A2CAC941D1B4B02DEB64152FB8D9DF631D41F393B67AEE3526AC8F91B67DB0E │ │ │ │ -CFB19D319B6BFDA72CED58E3F213DD2E945C3BCC0CA70A629E9A9250F891BE97 │ │ │ │ -DEC8C5D8221F5D6689FF375E455BE3768EDB8436626E9E3FA09C8041F83C74BA │ │ │ │ -38E7ECE73E71311B9C0ABB5571CA95CD87F0EE072DDF65DA3414EA8F5FA0B5AA │ │ │ │ -BCC4C425F63D4B940BF9377C91F9E00D96C782926B75384413F606017BDF1E7E │ │ │ │ -863972A92DF89A57D5078B4F79C03623862E68D74AC7E464217DCA2D0AA1F260 │ │ │ │ -DAAFF729A4EE268B19FCC88AF68A70CEE6B00D7642A1B464CB90FEC415EF0286 │ │ │ │ -CD4BCE9A415C9CAA0139B552ABFC27E2E696752AEBCBB0128EBE65E3530D7BDE │ │ │ │ -71E57013976B41C2DBA14C79BD2D3A4223D2D3243608AEA9A842D818F977EE8B │ │ │ │ -EC8A655C9597DFE809BB68E0F89E5792101FFBE16AF1B98575A0A6B4634C7D2E │ │ │ │ -5EE774C8FE021C580436011CC22CA13548D0F54FDC153FD7DF6741774E11BC8D │ │ │ │ -D2C69C4758E242256C054618FA63086989E5C4B2A7DC521920523100E0997D07 │ │ │ │ -A48EBE35DD1332171836B5194EDFC7F049BF646B9BE7C0855A446D63A855EE0D │ │ │ │ -3D753BE66A6194455A1D4EEC7988D1BA34DC05A4EDFE9DE49E6D16DC5C69099C │ │ │ │ -0EC423A5D4037E900EA85BF1B801C8124045014A6FB8943B4678B97F1657BD30 │ │ │ │ -D7FFC70C97A863C0ABD2C8FC275A97FB8E7EDDFEA1AB805DEF48B4D41FEBAF2A │ │ │ │ -1ED158999CA195E7CDDB87DA048E9A99F04DD8E0DA2E682A2FE9038B091555FA │ │ │ │ -39D56A95D5A7371904F8943AF7CA648A174FE3B7E8BAA18F77DB5186AE54F67F │ │ │ │ -D8DCD004C8134A5F5DAB90A60953CDE6C88C6868CCCE090434CF0142A10C1B2F │ │ │ │ -0CB38A21BE63EF2AAFAB80674110A7C3CD8C50223011F5F0C8471BEC1A2A9275 │ │ │ │ -1C86D6AD04D97F924D51081B57847EB7A9D9A5F762F93FBE59E50AFB22F767DE │ │ │ │ -E8B6371B45687456E18B940A944196A4E2577DEBD0FE6DE6D52611B7007DBC43 │ │ │ │ -4F11531792EC0253B06C644B8095174BEF90DDEE6776BB3F87D6BF7BC712A232 │ │ │ │ -2DD305164FB364D0C4832E065326B0A3E6804E4637E4EEA45752E023E4B40C20 │ │ │ │ -A68DEEDE9ED2135D6972764804F09ED0BC43C711C01AE5B801D170EB73772D29 │ │ │ │ -7CCA604ED822F9DC0251A91A595EE330AB2320B690808BAFDE9266AF1A653442 │ │ │ │ -9C2C24D236E0D5DA8310BE6825E7ABA1626B5147E0527A6395DEA5B0657CBF9D │ │ │ │ -442918BE69D3D12B58842B857C6FC2C1E3CB2BB2D0709B22EEA04DDA9D550962 │ │ │ │ -557A845E782FCB12D1BC486CAF81E8A0DCF9C6700AA3D0A8CABD09531BF0CA5B │ │ │ │ -C9EACE7F6D8B14048FB3C89EEE4A2912768DCF5638A5666AA4E05B8DA62E8FAA │ │ │ │ -F13DE286DB91ED425282BECE5F48BC59461740DCFDAF484EAFA45D3677D24E6B │ │ │ │ -3FE0410B3376DA60DF35CEC3ACAAD94DF466E605B1A358A419D43E0A7976A6DE │ │ │ │ -FA5D9F3BB5A26D84A5FFA4EDAFCE97928645D9D9427B3411533CA4B6BC7D46A1 │ │ │ │ -7A3D259F2E06269381456B6C081300AD68F8918D00F66650CD5197D3734A1A33 │ │ │ │ -876554EDE2810101EC1961E820FE6FA45B0755037238A9F4FD193F92A5782DE9 │ │ │ │ -FC3F154C8369520C91750E75DF8E6E27803BAC306DA708E6CDA9AE06C0A6D811 │ │ │ │ -DDFCAC32DDCCB79D1F7848A90F29FC8B0FE95B0CB9CB5D6D2A62CDD324D5E74E │ │ │ │ -8C58932F42231664ABD20FF9712948DF3CE7B78E28BA1D44DAADD2ABF2858B32 │ │ │ │ -91DD86358D3D288EDA67A034E18204680124575C04BCDA974A1DC8AAE326B0C5 │ │ │ │ -3B578AC6D87D662431816500480803BBF53166AA7C73F2058F7900761677286C │ │ │ │ -98D9A9D2144B8767E794E9C2CA90BD42537FC11B16B35FE6F8021792DF988671 │ │ │ │ -C412FBFBE07720B80CD7B8D4FC0E72089057B98F84D25B9024A0065D10F7CFD8 │ │ │ │ -8E8EA42BBC37034BF96B525C669700BB3BD8F7FABDDB157B94941EA3BEBE89A9 │ │ │ │ -18373D0915E2EFFF5ECBF2BB61FC3E039A4D45392C9E918D6D20D9020AF82AF5 │ │ │ │ -50FD0EA12C008C28249D29640035DA1F347CB22222169A1364D0F58ABFEAAE79 │ │ │ │ -0F6E2849DB8C6E7D6DC8B3F3FACD77A8A7B4FE7B075D42BE2F6F916C619AE875 │ │ │ │ -D3152FB564784240158C8D246B04D5EF0D621828A08BCAD14208EBF82534B302 │ │ │ │ -AF62746675B4B86952E3444D41692A9C8D73DCE622F8B9739B8BCCF52C77671B │ │ │ │ -3031907442AE5270AE7F95B1961E51E005C104B6ED72DE0C83353D0BB072C6BB │ │ │ │ -504B16807291B75C1190A683E7A6FED81E7EE27D5DE398C926B8F8E3D1A23B24 │ │ │ │ -10DBE3C1F9C70D7EEAB4B879473604A71EABE671E3C7311CBF643873D2ADF34D │ │ │ │ -8063383BD0C8BC7A95806295DE8760AEAD6B2F95FA7869634240F9A7C54BA3F3 │ │ │ │ -A22AA9BA29BB5DB948D8E19C25CC95E2A649918950DED5B9C221B0E876FDC855 │ │ │ │ -13C5E9DDD24FD10BCFE1880518D5E92FC2D1EBD43C23ED60FFB5C5DF4C0C86B2 │ │ │ │ -DBCD5D1DE521D6222B867F3C54AEEEB607E94FC28E20EA13280F12C3984743D0 │ │ │ │ -940841DADFD8071197367510DF1454DCD41DD5D5404745A678E89D5C4034C2DA │ │ │ │ -B277C0D50684DCC7080A6B1A90C6A6EE9DDBA6DC4160A20D089D9BB1FD0676A0 │ │ │ │ -4A5CACAF145E8AF3C34417031BA06BA70B0230DE52CFDB5273F10C639A55CC03 │ │ │ │ -B4716D9642CBFE26F7E9E4A46099CA6C842BAA64CC9F62C0523700226F9B2524 │ │ │ │ -A93059A121A49680C0C507CE3F64235D50A7D0B937B24A050682F8A5C56FF6D3 │ │ │ │ -0098AB55F3C5CF8F8BC171566C0788D38B763B9B36CAAA73266CBB8372BFF204 │ │ │ │ -3F72FB65714731927FAF542FD18E12F564075BFDAE49223646F0A0040E6B6E10 │ │ │ │ -F21436D273B3245A281B99ED99FD462EB7953B6578BCFC29A2D69FB5CEBB34FF │ │ │ │ -01A21346EBA5717E45458BEC517EF5C0A825430E9DD61D4ABB41AA528B4980DC │ │ │ │ -58A39005DA1D077B31F13366DD656325A6158910C90FF9A5EFED859D0D639461 │ │ │ │ -DBF31AB00D1B2CF62D5F0037ECEF6C31ACCAD6CBC5262DBFD638B5685BC4904F │ │ │ │ -E8CE0E80E472370B005D39891F30432CDF889CBF1814E1D9EEADBE9D070D5795 │ │ │ │ -7424143BC6641EC713AE85B59BF7D7F400F531DA519C11550B7EA8480BD12E1C │ │ │ │ -C121A5BCE044B2F5359C79865A480278785CE1BA6BCDDC62F8B0252E3272EB4E │ │ │ │ -B9DB917810412EE89A08FC1E2409A19BA050249C1CE8837B1F1B100620A8FFA0 │ │ │ │ -750C0FAB765DF300FA5D30AD4E0D1CBDD727F0D62DA8EC1962D31BCDA7D502AA │ │ │ │ -608E744DC3B7E0F97AB870FF1A471E6BB3610D938FF43855870A4ACE1A889F2C │ │ │ │ -C672EBEFC0DA8A8B905C5A26C166580CEB24BACFD1B3ACE399AF84A7370037F3 │ │ │ │ -49FD831C5267A7C65AE29F0FB4C5647DC12B99A5E22FF85C13CC4FFC2D156CD2 │ │ │ │ -F57739666ED1DF6401CDA1A6CB3BFD957AFBC3EA8075D441E271EC38A3C611A4 │ │ │ │ -03F99DF98AA3AFE3845E7944027528B2B951D9366326420B7AFCC23A256B0D11 │ │ │ │ -A4A97261F4D794F92858D8F9A1A2B42D2C0666A8E3EDAD689661DA3F47616006 │ │ │ │ -21AEA0F133F80D6150DA9710654CB465FB499BE309D78DCCA49EFC08EEBCB17B │ │ │ │ -EBBE28C30FEF9BD0BB9AA324F84325C39AFF9D6E796610DCA4B4B9DC6CD8C260 │ │ │ │ -4519D7E831260FE824C939EA406E49A0C93C9D20D9878223D4FB0CA74577A8BD │ │ │ │ -3C15BD709AAAE8DFA74A6F89F94793C73BA90BB6CC97F07A80FA2007DA175FD3 │ │ │ │ -B055291DE5E9473B415DF66F22AF294B72EF9BB34EB7507D45EC03B64631E9FC │ │ │ │ -088EF994F2E66C48395653A66AEE604B8F263D6C37B917D8B6F522D17076A52A │ │ │ │ -7E8A190324BB34F458B4C0CECA59422657D4C7634D32D1A102DF02691626E654 │ │ │ │ -9F6CDDB642F8F88BD3400848227F8B51A776EF6DA06D74A477EBEE3DDEA82417 │ │ │ │ -BC5E34EBAD7A6AD9F801CE9FA91EE33BC18E5D251A59731461508D4F286F58CF │ │ │ │ -8EF9B7D1614E816A11D21176EAEFE5E6FF5D87289D33270FB5C1CA45A4C43579 │ │ │ │ -7DE29B9891E7DA85927E7FE743B9D7551406808A6000AE678F0F9F367FAF600C │ │ │ │ -A3303C70FA7A3D46386B3B34EBE33C26AF2D75D6AF73C0737635F84471DEDEED │ │ │ │ -78DB2BA475FF35B11E5DA13E7EE3EC091F98BBD34929D3BDFC41081BBD4560FE │ │ │ │ -1CC0F21C5867654A257844B120DA05442081FB960D3B6669F23C5E99960F5396 │ │ │ │ -56BBC9CBE03C5ACF9BA657F384390A18914C0E7BD100FC95C5D537AF037F92A6 │ │ │ │ -C8D29E7142E703331880865087FD8683030D8C7E7647AB6A57C933E85125C1D2 │ │ │ │ -6EA0895CC3559E07050DD42B460D732A32A43DEFBFA9704A4EE69EF659B447FB │ │ │ │ -1A84F0F5918B7841F683FB55D1CF9F5F9F1FFEBC016FC5AF9E5A58C7472E3BC3 │ │ │ │ -AC8CA78A6BBA18459D97DF86EFE4521B6AEE0A9E379A201183FF3136D7490C74 │ │ │ │ -4B917C15D5E25D1379550B7D9EE5B586AFFBAD8E773C7FA4A8EED2738CEF4102 │ │ │ │ -4B72E03182E30DB62A4F07307819AFCE31039497677725363914659DC739ACEA │ │ │ │ -B464EFD46B6528644182FC902B52AE74D740D614014655B9A51334986BEBB532 │ │ │ │ -72DBFEE2FEE87D33D94744453B1DC08473D4C5E07C8A78CAB6C7C4A15FD0B934 │ │ │ │ -105B01B7293119B162E5D54FC09A9B20F5153FA3291A3892CA2C1000800C3F67 │ │ │ │ -E9AA9E85A2E602587D214743912500BEBA368208687FF3D9C940A64AD1B5B91D │ │ │ │ -EFC3C0781A58A31918A4719775465C3D180BB97051621CF9D15A5B027663EB8D │ │ │ │ -422FD37E61AC3D27D8E80E1D6106CFA3EA2E2CDC79B29F14A0E25DE79C2378E8 │ │ │ │ -31BF0653015005CE4E3CECFCB6F7A67A87C67976E9F861A23B6793B26BC1C9BE │ │ │ │ -21EA5CD67B3CE91E7975A43A4CFBE3635FBEFDA9CA7D1FE2CB577EB293DBC5E1 │ │ │ │ -93F2618E5AC6C9015FCBEEE0F57217E6A934FEDAEA5E871424647F9FFF79EFEC │ │ │ │ -1704D68BE07F43C8D4C67A384BC3CC8BC7B4C3737F30CBC083A627CCEB148C40 │ │ │ │ -C03C704C0481F45F94A12F4E6289D226AA5D095D943B648A527BCFA81846988D │ │ │ │ -C164D5CF9F3116DD9B71302E700F40493834952027BCE5C372C2C067857D7F30 │ │ │ │ -6BA8B66025D735C12A6618C46E7E339DC6131E9F9D522F025DBD5B369C55A5CF │ │ │ │ -096DD271162FA23C30082B76D53015B1FA758E70428C0CD907F66BB6A6A7DE77 │ │ │ │ -438EE2F12DC3B71BCBED619D8B4A6246A39DEFFC19CE568EEFFFC6D03A050D84 │ │ │ │ -5F89C6FFEC66FDEEEBE52BDAE631CD90171A3574FAD5058CCF8AAFAAE6EA9522 │ │ │ │ -3C992D807729073CFAC939FDF7509364304E580332340BEAB010745D741A7028 │ │ │ │ -EA1510698554E250E52194A565933D1F6D3EE1E3217BF5F8E8E1B721841D7F4F │ │ │ │ -5A040D65688A5899FF4927869A8E9EEFE1E0A743DDBA61BC37D1879C4B097D7A │ │ │ │ -974BA22082F03E5195DD2703ABAD32609A6E13D31ECF5F8633F97FA53755396F │ │ │ │ -E092A726B5C74DA7565A62AD333EBF2E6B9C97C32556BB70F956D7B836367902 │ │ │ │ -C17AF93605FDDDE9F532CE85D0F1F4943B19FD1EB727D0613E119B96E2A4CE2D │ │ │ │ -EA2FFE0733ACB440E6A8CCA2D1DE3E1BD37DFB9E340BB16ED063E857CF540C1F │ │ │ │ -97E99145F569E8512ED44B36116B66C311313578E134F50F17EE58A30C514677 │ │ │ │ -0C0BDC5F3ED4658238AB6418AFA1B6F27551A128FE99D5A3AAAB59D32EDD6B09 │ │ │ │ -DEBF643A42622031B403FDF83A1E9978B9BC650DC773689111554296B812D3A6 │ │ │ │ -2AB8D877C6363B5BAA1C0BAF65BA79097C66418CC92E19E86F81B5D7FD7C1C35 │ │ │ │ -2C6BEEC865FE7465F807C77CA771EE41118E8ED69104BCD1E785D7AC0289A923 │ │ │ │ -493858F913A6F3B40F33330D35EA7D40FF331529B44A8E14399CA1ED39827AA9 │ │ │ │ -B5FEFC8C815BAB29824FA4282C474A7A8AD90EA5F99B1613574E98A9B5147E0B │ │ │ │ -EB7AFAA3521FA5EC4FE90A4CAECFE2BE6F679C2710E92B9CB2BAAD30718990A0 │ │ │ │ -BF628B8B62483307AB91152A98BF1A8F9917447E9CBA4BF378A9B75C54CCF9FE │ │ │ │ -EB521723CD8001F1EFD6FED6F7DCB1BB05FD4DD6C50803A45477F584C3693714 │ │ │ │ -04C10B0139FE29FAA4D139C4219A43929DF4D12D13021A90BF2CD419EA464399 │ │ │ │ -3737CB229D521AFA19724D2E819E4478AC00581CC516B835747A4094789AEA90 │ │ │ │ -F2275C7B24275AAE27E600ADFAFD81116BC2566C5F1BB21232E2901569228F42 │ │ │ │ -A472793D28A523199DB2DE53CE9B1AE4577F2A8A2664287CC7CFCC4D2F09E642 │ │ │ │ -5BF59AAEB6CCEB5E7C2AC6FF5D79092D3C1D4794F48B4AED3A22B319C7FE8F2D │ │ │ │ -1AF01182C2DCCE8239038D81D8C759257D8C6693DFBA55A27275DB90EF45D3F6 │ │ │ │ -74E5A9C2B936055DD394B371FEEDE3B7001D011571EC31218F4FEBC634D4EE56 │ │ │ │ -4C5C861705B3AC2F7FBEF9C92D047B50C138F93F0CE19F92FA4F190B199680BC │ │ │ │ -D85623823CE3DDFA3762483F2E4E35C186E5E9D35D921426EA4234ABC765A957 │ │ │ │ -DDD5588C069FF83F51B7D0A7863A3EF5FA3CEB511409CB9AB1580906405E9EB5 │ │ │ │ -7DACC19CAC2EAD47E71EA2DB90176E058103B559846FE4BAB4FC0E6FC361EF │ │ │ │ +AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8CDFE0CECB764 │ │ │ │ +1D3459669942B17D3825972CAC8ABE85D65653F80D780A1DD8CE08BC9C7DFDA2 │ │ │ │ +C9F2AB7C6CEB4FE5A158ADCFDBCD6B4F3C9CE40724AE4FAE30F0C406B5CE2F7D │ │ │ │ +64487C640627136AD6FBDD1DB07602D6898F36B41F3F05E8D372458B8B1DC1CB │ │ │ │ +8931B0B6AA5B9301DF1AD61A1DF72E6E1E9367DDB31A278C8FB7D8CAF5B0F397 │ │ │ │ +0F36CD8D13B3C2E65B5EFBAE8124826EBFE1AB2F2774E3AF8C5A15513E552173 │ │ │ │ +AB61A24BD189EF65413EB261484556C37471697B37B76A93EE13D66B9391CA99 │ │ │ │ +8249134A33B4D675F994F30428B52B3907F4A97FB4D2B3C070180B50C16179AE │ │ │ │ +03DF9709FF1DA296703240F859F20E991422B38AB0D364FED870A0059BC9601E │ │ │ │ +37D09EEE73271CD255F8DF03C6CB4B41037FC77131835E0CEC55F01E2A34318B │ │ │ │ +7BF1F13A7997335A19249102A48BE6579F9CE29482F18FF1C32793B52B6C6550 │ │ │ │ +8403DBD0D9235174A5AAC21AB9714B6F2718BE7E558D59AB96B2EDEBA3047BA3 │ │ │ │ +73CE874904C5DB61A19C3C41057220A74199972C0E8E8BE2CCAC8B15A421A9BE │ │ │ │ +ACD4C3FFFC6CCCCA140CD7A07CC47946CFCAECB183BCFAF3FAC46A0164E5E410 │ │ │ │ +27D6739A041B24D30FDF1EFB5E60F9BD968B9C06AB87A979278981AA3CDFE761 │ │ │ │ +E9CB6D81A34E20480D9968989E8E0846106385A4677049FB769435FEED1870AD │ │ │ │ +2D3C38DA135A490DA92E89F4F50BEAEAFCA5C00FEEFB302D102F6B4AC7FF2028 │ │ │ │ +E114191AF9CD7A5EA5E33896A210821683FEB23B5BEDBF9A721A3603D8DBB817 │ │ │ │ +560764585434A28CCEF2129D42A73CF8631BAD718E4DF0C31E4B37697404ABB7 │ │ │ │ +91F8E5F32D64F329A2B1B95282FD945BF03E78A777AA48717C2B6ED6465188E3 │ │ │ │ +B9BEB015F1DC2F3D24D59B0C100115EC1F33073B2A4D0D435C8886FFF8520437 │ │ │ │ +05D06939B0ED070D3CBB072396541A67B2777AB9C04B8DE0E0BD20071B0610EB │ │ │ │ +27CB02FF3E08A242B2514C24721B3A6BA3B816D56D38EF19990C00CA99FF41A0 │ │ │ │ +BCC0092867AB390163764166D78689DD9D910FA555FCC874429CF8D329663E4D │ │ │ │ +5FBE8495941194174AE416581EDC54AB91726D16241B62918CDA8F96690C2004 │ │ │ │ +CEE23CC25C69FFF95439143D1E621D1748754887E155500187A10376480500D9 │ │ │ │ +2BA9332035DD92111662D33ECBE8423A549077B43BFBB44CF299BFC7048C7AC7 │ │ │ │ +D2CC1E630028317C6FFE3A2D1231897E8B578A32D387212F1BDF1A360F4C901A │ │ │ │ +9931D7AD211C9DD95A85225961FB00C0AF50761D94502E5DB43782EBAA2E07D3 │ │ │ │ +3E3C10FFEB55FCF7ED7E1F0931CC53CF6CE17B35F23B024406BCD45D7B6BBB3B │ │ │ │ +2808490F5ECED46AC315F503E420842D6FFB59C39586559CAC133099B224271C │ │ │ │ +54C57CE4B0A613E4E2331F3E4ABBD268B6EDC03400A2640ADCAD0BD35B7BDDCA │ │ │ │ +1AB107E764D043D5DD929486A6D1CC5E04480AE6CF586ABC8352C107BFDA344B │ │ │ │ +FBA35C5EFDBAEC45BE94A482CCC96231D5B1E53A8BC0D0334DEEFD472541D936 │ │ │ │ +1BAC20A85E1E9B3C15808F8032DD661DC826BBB00BCCBC60E3670023C48ACC70 │ │ │ │ +83848633E6A326B767A9343BE767B77BE4B4E46B0CF4E9C2C8C838A6D43DD577 │ │ │ │ +188B51E4F548304E73DEA1A1911C7B0A9D84FFC74BC9F8A839164B92305A1F37 │ │ │ │ +67C3B65F33179D71C6DE664F2F639DF46692B262A9C28FAD848E8B062F38BA08 │ │ │ │ +F266DAEB9B10CFFF452721E805BF4AEC4D9C23816EF9E112781D53309ACF1617 │ │ │ │ +1EACF53262AE8C2EF72CC7DE01C7B70780B5960E20BA9809B8320781F09F040B │ │ │ │ +9934D1C62E750D9EB367DAC9DF94388190ED1D900C00077A52271D668C2AD8CD │ │ │ │ +A0613C301417C000AAC4738E0DFE5AB5DA48870DAA48C6F1DA83E1407C9A35AC │ │ │ │ +0EB8200556DBBCA66EC4934B04B228A2BACA0D6B4359D7F9C5CBAB0191C15E89 │ │ │ │ +FD8A195EBB254E5379AB49F9FDE3B9698C71EAB4F837F85267D9DA4B2CD25C69 │ │ │ │ +52B1910019398AE1F87088A79B582A5EBF582BBADE34D7DF167F118FF44B43F6 │ │ │ │ +B3CBE40BBA252CE0B2B18ACB1EE1FF148C40E332C23A00141478429DC098D01B │ │ │ │ +4DB46A13251D3AA1A5EF9F3B0368AE48B2E01F397CF4E95C5CFEE1F39A4C5301 │ │ │ │ +CB2A6E46FDA0C47586FB1B2187B556778F70DD975B462E2C2199B9084BBC0CB1 │ │ │ │ +E5DE5FA495D7D4FA47E9CC9248F741B3A4272F44E5C1BA4CF75E48D3D210DB16 │ │ │ │ +F47B4468A338083297D3086BA465BB7EBE81AC5D7FD530653FA9C857A7ECC1A8 │ │ │ │ +49E31917EAE6723236CD23775C4D3321F04CA7A6AB3C5BB026A321DCDCD8112A │ │ │ │ +3C9243F44FC6BE67C6F2BC65AC3C2F71B9565281DE5CCA1AB484D7A0105C2E82 │ │ │ │ +2E384A818B97694091579D9C785C062E4AE7C0C0B05C60C0684817AD8C38525C │ │ │ │ +2DBE6BEB191865FDAC33A141A82511732E009BE15BB2D133385C371887723A26 │ │ │ │ +E146BC93A64B214D80E2F6778BB45FE49C18201E8E190C2325FBB85D26B84EA2 │ │ │ │ +C8E9275949204F5EA1DD8AED1EFAF758F625882A033464895EB8A81D260DA46D │ │ │ │ +68805907C07BB90932CAAB4B950A4E4AB6BC4274A2F1B7EE2E43A344FBF8F39E │ │ │ │ +8916D979FA372781D4C886F700DAACBBAD1BC0C0B66BFB6F9F08A248D72B76A1 │ │ │ │ +95AF54AB20D36FD3384FF5D02C48A300F01DB597B66FB33DE73D302B0F3ADEFB │ │ │ │ +F8176EC380E9AB58DC0E2BA7D2C4E3F38E72B28FA6F9F410070CB36F33031B15 │ │ │ │ +81BB71F2ED016BDA212AC18128DFA2D02987FE45721EC8E690BCE82DC5DF2BBF │ │ │ │ +EA7A9B33103227FAD6BF3123B534E0F50CA8DFBA504FC3DECFE0DA1090A2374F │ │ │ │ +8B9AFC6423A8BFA4B48E3D74D803E1E162C228FF5F595CB542B60DE0B5F58468 │ │ │ │ +6C092CF921A26A548BA9C41FA6F6F05EA1A3736AC1B8EBD48608B03CA65950DD │ │ │ │ +FF8BE2F06DBCC26B8C06FEF670D4AF75D263A1505154745E9085822D4CAD4B43 │ │ │ │ +5650875C65915F2ED6E5CCFC633D04FB8AFB4294678AA5074E03E9F6C7DD58D7 │ │ │ │ +9A03DCF4640A73DBB7C303C8D3F0F6C4F6AEF78967E22C3AF6E5344F37E80B6B │ │ │ │ +790348118D8038E0861C7193AEAD482785458C40A86398EDCB59E36E70DABF9D │ │ │ │ +0C68DE9976B926CCC4AB05D574B9DFBCDE1C76B6ADCADE67CFCA3CA8BFD89CE4 │ │ │ │ +EF8E3C3AB6E9D523A1B0D6CFBCFC29FD95155168D3A0E058ED5C07123A461843 │ │ │ │ +51747E09C20D94C298FB22405C254988E739EFCF71B821F4C40008DC13655D72 │ │ │ │ +41B5E431F547D01206327B4BF87400A4192042716B77A5A57A3A985A1326C27C │ │ │ │ +FD8A1D6A5457747885B50F44F02A06D59213A01BD10A4024FD7CD038324BD736 │ │ │ │ +AF2F1D410DCFA4446133E1EC664BDC56421C6E375F4F69B237C9747692E5CC26 │ │ │ │ +510F8630822A66FE964CC98F2B9624C6EA731BABD7AC7417F0C07F5D4648E8E7 │ │ │ │ +80F977500C7D3F5A738CC355F956E8D8E4E9D8B2A1FB58B390148AA1A95FF83B │ │ │ │ +5A956235AACF0888F2F1F78758B4330BD4370B51ECCD4BDFD61A44797D030F5C │ │ │ │ +9E09D7ACAA979E3D057CC4A480A7956FC0934CCD50D2E5EC6C9017EFF0E0B4D7 │ │ │ │ +D7FF4A717B22F344BD3CAF5312A34B277B1D534578ED7996623514574216320A │ │ │ │ +724F9E44CFB66720995A2376834F62D48618611F1F0CB51EF2DD8C402D4B47F8 │ │ │ │ +F8CCABC495AB99C5A542C5EAEA6291C6116716EC997D5AC58FAA034CC11B4F3D │ │ │ │ +E680F5DC8BE1EF8A77AAB6E9EFC7DAC0EF898873CC6FCB142C18C953359CDE1B │ │ │ │ +6545343906E3977FF596A66467C68497EBFD5B98F1C5580EAF49D4CBFE87C5D5 │ │ │ │ +312A9E78FC6A043598A203E33FFF9D78591EEB46D87257FBD3964C28AB0F746A │ │ │ │ +9FBD0036DE21305CDA71915158DFE41B081A019FB8798B9E09F0DA471E15E491 │ │ │ │ +0719EBF2C67F1BB8325234F1078D74752CDC60F2C536C1DAAA2C27B30B33355E │ │ │ │ +B7250F107AD4E240B27134952E56B044AC96430E392EF66D5BFD8F77639D627C │ │ │ │ +097FB93C37AA522A939A5C91839989EF563D5631707E800CB27F16F2EB7CAC14 │ │ │ │ +A4511B8F9F53580A38D347E27ACCEB059DC1953BC885519815287BB4B43B4CAA │ │ │ │ +4B373260BCE590F55D89DBD2210D41997B088D23421D4F0DFEFCE377D552D5AD │ │ │ │ +0D569527D0B5F025AD1111F1B68A4F4B5C4D22D677CAB338B82D117E66510619 │ │ │ │ +4FB128750E6664525C2FFBD93F3F5892306D53572E468CCAC5F03ACBB2DB6E89 │ │ │ │ +10C10DADC78EBF5FA3BF774DFD3C482B55C726E52D49E22A29AFC0B5E88E796F │ │ │ │ +77125D2496328A120219A83CC64178494DBB50D4ABE5C4CE15182C6B0545D2A4 │ │ │ │ +80A7566BA421DD7879E4003DA076B1A00688AF1C79238FCCE14BE180303B767C │ │ │ │ +F0C5D5E9EC232828AFB6B0A74538B60DD2B61ABE21176DC28FC3E55A82556D25 │ │ │ │ +016F2F5DF54BED4C1750B8AD64BA2AB99350285CF3B44148D948FB8284B61B2D │ │ │ │ +79E68B4AEDCD4E96502739A4554CA4065043D5B3AB63F3F8E52BFF5FAFCD7813 │ │ │ │ +96B459A1FDACFF3F8237E6687FE6BFD96C30B19E82E87DCFCBCA279D8269EB18 │ │ │ │ +B96F947266F82C3A95012846AE22031497794432E4A5FA8D6557AE44F1F91B81 │ │ │ │ +DE25BB37B0353A313DFEBB5B5B0D88BE14A0054AC0AEF50A98B5E8ACF95314DD │ │ │ │ +BEB76A98637D1A3C951F18799CA4BAA4C5903ACAEA79828F14FF3EB9D3DB4968 │ │ │ │ +99D7FEA619FFA095F11DC277D63E2FD38EFA61683C6F3CF54680B5143BD43CEA │ │ │ │ +2553E7BE034553180F8A04BB92F37ADB040C2CDF3C8250F81A60CE7214810CDB │ │ │ │ +25ADDAC7253A4647299F5D047CAFDD08823B0DE0D3C1D1D65A156996149B8CE5 │ │ │ │ +AD008843FC9BECA03F4053FEF58879447EC95B0596AA5AFE689C6A5AFD9F18CD │ │ │ │ +824345BDEC7E99D0C7035584A6C50F5D1277D61C76439E412ED2D3BF28E9FB78 │ │ │ │ +87EA1F945DEDD9F520D7FACBD899611EC0A7322C5A19CD7B4E7676C6F7D2A281 │ │ │ │ +1401A6A406D0A8501A3A40BA9DBE98FEFAEED34440A35CF347DAD46193BC9DCF │ │ │ │ +AD715654E08DD6947257811482E15D97C69A3FC648475FDC50889E703A7B170F │ │ │ │ +6BCBD3316670C51AE3F49A83403A5B17CE2F25406D49BBF23EA17A93B33113F9 │ │ │ │ +830EEAAB69BF88E90BD14FCC2F063CF5EF06725EE5606134B665BCF9A0DEB5D2 │ │ │ │ +4A1A03BFDAE3785CA6206763F6BE9ABF183BF9A2FEAB868D7108EB1237D33B7D │ │ │ │ +50DA5352B6DBB597192D8A714FBD42512B4A9F17498158437A4C013F474614F0 │ │ │ │ +39FDFEC414FAF13B73EFF8B9F579A01EDC592A3A5A1392FC2697A870FA1F741E │ │ │ │ +AE542ACAAD1B6105C11810838455B028A7484147F1C428495B4585A5F10104D6 │ │ │ │ +F53A2CA603749DC45BAE6F6BF64621ADECBD0DA9553521D6D886F87EB14D5223 │ │ │ │ +B913927BD77B13765DA952A2CE751BF57BC06EA0D38FB02A4FF0130770E972B6 │ │ │ │ +56B81F1F69ADFB4F62C145C294EF566EEBD4DC3A94138ACF38EEFD332430FA13 │ │ │ │ +313A318A84BE6A959DE3889C081798D9C6C9183222DD0CBD053ECD067C03A778 │ │ │ │ +C24098A61797CFE36850EA1C6F59D8526D5238CF7F9EA1BA3D11006B763ED02B │ │ │ │ +2D9A2DD7688B59316DD10802F1FED2E250AAAD92BF41561CC2E8EAC2930178B9 │ │ │ │ +7D09EEC29EF07CAD148EFFFEF1716380E627B854AB4A083BEB8635358823D343 │ │ │ │ +A31064CA57F0AD0C42FCD3C734A3E38EE55726619617C61DEF429F75C0DDF2AF │ │ │ │ +1AC4B07D7ADED91A21BA3CBBA85086B7E105B7009A21E34508092EEBCDA80745 │ │ │ │ +4CF964FE26270288A00B54C1CC42673513E17B0F2339BD61AF8AE9BB932C0039 │ │ │ │ +B93917230E8A92777075035E8ACCEB03E5627A7839A53B10F5A24F53DBF825AF │ │ │ │ +027C39C0EDBCEB5451EE550B539FD0E5D63CBBEDD08A6486848EAF717DEA1012 │ │ │ │ +3492B0C76BFBC6031E8B3F842D81DBE4E469FD4EA55750954336D7011D82C600 │ │ │ │ +FB5167BA14FB2A43AC430B2146990A22E8550DADD5659E40B5E7FDB4D254B697 │ │ │ │ +B59E8590DE0704A29A99111895943C6CE54EE92EC62F889506A8505BC1A1C778 │ │ │ │ +1F76452E4D56569F9D07912B1C268F750CAFFD9E7C9D42A73629A8A0A64C934C │ │ │ │ +1356AED1648C42D2E50E19626F50FC086FD3407B5FAE4A75B82B075B7ED1C49C │ │ │ │ +78FC0C6622CD07FC0F6EC706EFE14C066E6A9D9DC619FB84E83AF7189570E1FE │ │ │ │ +3D79CF8EAEDDF4829947143C1BF98F2526111699BF39D9DB70AD3D9F483C64AB │ │ │ │ +6AD470DABE7C0A00FF5E7EDF726E16C491DBB28412D0E82A02622FC87BCBDFCE │ │ │ │ +E88E1B399B995316B1EE79291773408CF3B22B53C4492645E1AE5516B5829890 │ │ │ │ +9CEE22B0F0964D1FFF7ABA2214DE12E6F30A733E592A8B242B72E0220078450D │ │ │ │ +BCC23AACB57F8471FC8BDE1DB5CE6D0610F1344E5F79F1AF5B4E5D6DBC2C9360 │ │ │ │ +309C7B1D1FC4BEF604239C1643106FCB368A0F768C99BCAC0D2E2F1DF1E24561 │ │ │ │ +B9C2DB95559040BC8E45864E49667AE5295F44F74FC45D6E2A2BA73D81546A6A │ │ │ │ +0E0FBEFF43FE605BF382CC68A690BFEEF8C7A0F98076A4D153EB642C1854C439 │ │ │ │ +00282A02BDFE1743918A88E345409CED0A764A2581B32186D6E121FFC54DF6C7 │ │ │ │ +CBA48C9895130A9ED1DBB2B7F1ED0FB67B80E6E7613374D57665EA626ABA4FBF │ │ │ │ +AFD8BFFB416E4118E92B6D40BD86C764EF9F7D4BD370392E4ABE5A1363C2B0ED │ │ │ │ +E42D13D8BC5CD85120652E8C04C1607F0D5D88C7205CBD5090847E6C8FCFCEDC │ │ │ │ +0C2A0F3367E46CA3FA5FCE690C15F43EEED60D2C02027EBCD902C4C18B8D0874 │ │ │ │ +E953C227B742FF8F15EF9DF614EC1235B32BD8A7075D70FF545ABC68C8811814 │ │ │ │ +C4A1C1DD9C04D09774339BE857FDFB6EE5200B26EC1A1A546479BE88AC4089F2 │ │ │ │ +AD40E06C133CBCB0586B3992587134233B6344E57243ED7782B9A581CD92C82D │ │ │ │ +14D40CEB1D5B036DA10CD8490760A80EA5F46CA429AB522325786EB22C529AED │ │ │ │ +4E172A56C074A022E75462D3AD44B8977272236CC8AE7A2BAB0026D4ECA661C1 │ │ │ │ +DEE15C9336A9F1A753D6F299CDAABC29127D44E70B3F66D1664969A9546795D1 │ │ │ │ +D1310FD91C7A19CCDCC1E9C8A38EE9E2456B6247CEC6D0D2684048957A142B35 │ │ │ │ +C75CF0AEE66DFCAF2AA39BC84AEF365C732CF636A6FA11135B2877A557A41932 │ │ │ │ +9EAC0EAABF0E2AE5EA272F4DC362121FC8420E6420A6797C0B2AA8F3154AD04D │ │ │ │ +A05B8585949DBE61C5B86B4CB90652F00818D5E62312FACCE6FD946ED1072E0E │ │ │ │ +0E60F078837931DD7EE22E8C78DE9D99EC27922BAE0B7BDCA4E81D568E447635 │ │ │ │ +D8DD74DE3F4D9AC6CCB8264DB39F89900A27CFB31433081A956E2B60753665E9 │ │ │ │ +E2BFB74B55143C1A14AAEF2D6ED78E98FCBCC710EB4829E37F4A05888DA4FE70 │ │ │ │ +A2649AF21D69C2B5FA35BB783FD8D719D037A23D1F2DA2E2F8B739B8F5CEC08D │ │ │ │ +23371A070ECF51C56ED86D7613C2F92DA86384D9F1FE88FC839597D863F280C5 │ │ │ │ +79A2DBC9D875E9179751DC32A2DE257182A288D5020677A7C42EB645FFFDDB93 │ │ │ │ +4D3DE8FA3C8184B5C9A79EE848A1CE8F5068B1699EDDB12B8A30E95B7A062EDD │ │ │ │ +E8791553EF31AE04F0505B89237716961FAC96D5668BD831F12571 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -7345,15 +7334,15 @@ │ │ │ │ rf /Fb 137[38 45 28 1[35 2[42 47 1[21 4[38 1[38 1[38 │ │ │ │ 38 42 14[61 23[25 58[{}14 83.022 /CMTI10 rf /Fc 139[62 │ │ │ │ 62 62 5[62 2[62 1[62 1[62 62 2[62 12[62 62 2[62 2[62 │ │ │ │ 3[62 6[62 66[{}15 119.552 /CMTT12 rf /Fd 134[71 2[71 │ │ │ │ 75 52 53 55 1[75 67 75 112 3[37 75 67 41 61 75 60 1[65 │ │ │ │ 12[94 75 2[92 11[103 15[67 67 67 67 2[37 46[{}27 119.552 │ │ │ │ /CMBX12 rf /Fe 139[32 1[33 2[42 9[37 1[37 46 18[65 20[23 │ │ │ │ -1[42 2[42 2[42 42 42 3[23 44[{}14 83.022 /CMSL10 rf /Ff │ │ │ │ +1[42 2[42 2[42 1[42 3[23 44[{}13 83.022 /CMSL10 rf /Ff │ │ │ │ 171[39 84[{}1 58.1154 /CMMI7 rf /Fg 157[46 98[{}1 83.022 │ │ │ │ /CMEX10 rf /Fh 222[83 29[42 2[65{}3 83.022 /CMSY10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ @@ -7412,19 +7401,19 @@ │ │ │ │ 74.7198 /CMTT9 rf /Fq 133[34 41 41 55 41 43 30 30 30 │ │ │ │ 1[43 38 43 64 21 2[21 43 38 23 34 43 34 43 38 9[79 2[55 │ │ │ │ 43 57 1[52 60 1[70 48 2[28 58 3[59 55 54 58 7[38 38 38 │ │ │ │ 38 38 38 38 38 38 38 1[21 26 21 44[{}50 74.7198 /CMR9 │ │ │ │ rf /Fr 205[30 30 49[{}2 49.8132 /CMR6 rf /Fs 205[35 35 │ │ │ │ 49[{}2 66.4176 /CMR8 rf /Ft 137[51 1[38 38 38 2[49 54 │ │ │ │ 81 27 51 1[27 54 49 30 43 1[43 54 49 9[100 6[66 76 4[50 │ │ │ │ -6[70 69 73 8[49 2[49 2[49 49 49 3[27 44[{}30 99.6264 │ │ │ │ -/CMR12 rf /Fu 165[99 6[90 2[110 121 126 1[97 6[106 1[117 │ │ │ │ -1[122 65[{}9 143.462 /CMBX12 rf /Fv 133[58 70 2[70 1[51 │ │ │ │ -52 51 1[73 66 73 1[36 70 1[36 73 66 40 58 73 58 73 66 │ │ │ │ -13[73 6[83 2[47 3[90 2[94 99 14[66 3[36 43 45[{}29 143.462 │ │ │ │ +6[70 69 73 8[49 2[49 2[49 1[49 3[27 44[{}29 99.6264 /CMR12 │ │ │ │ +rf /Fu 165[99 6[90 2[110 121 126 1[97 6[106 1[117 1[122 │ │ │ │ +65[{}9 143.462 /CMBX12 rf /Fv 133[58 70 2[70 1[51 52 │ │ │ │ +51 1[73 66 73 1[36 70 1[36 73 66 40 58 73 58 73 66 13[73 │ │ │ │ +6[83 2[47 3[90 2[94 99 14[66 3[36 43 45[{}29 143.462 │ │ │ │ /CMR17 rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ TeXDict begin │ │ │ │ %%BeginPaperSize: Letter │ │ │ │ /setpagedevice where │ │ │ │ @@ -7438,15 +7427,15 @@ │ │ │ │ TeXDict begin 1 0 bop 109 1940 a Fv(In)l(tegrating)43 │ │ │ │ b(the)g Fu(SPOOLES)h Fv(2.2)e(Sparse)i(Linear)f(Algebra)g(Library)326 │ │ │ │ 2123 y(in)l(to)g(the)h Fu(LANCZOS)e Fv(Blo)t(c)l(k-shifted)h(Lanczos)g │ │ │ │ (Eigensolv)l(er)950 2513 y Ft(Clev)m(e)35 b(Ashcraft)737 │ │ │ │ 2629 y(Bo)s(eing)d(Phan)m(tom)i(W)-8 b(orks)1753 2593 │ │ │ │ y Fs(1)2334 2513 y Ft(Jim)33 b(P)m(atterson)2107 2629 │ │ │ │ y(Bo)s(eing)f(Phan)m(tom)i(W)-8 b(orks)3123 2593 y Fs(2)1586 │ │ │ │ -2891 y Ft(Octob)s(er)32 b(18,)g(2025)104 4919 y Fr(1)138 │ │ │ │ +2891 y Ft(Octob)s(er)32 b(28,)g(2025)104 4919 y Fr(1)138 │ │ │ │ 4951 y Fq(P)-6 b(.)36 b(O.)g(Bo)n(x)g(24346,)41 b(Mail)c(Stop)e(7L-22,) │ │ │ │ 40 b(Seattle,)f(W)-6 b(ashington)36 b(98124,)k Fp │ │ │ │ (cleve.ashcraft@boeing.com)p Fq(.)71 b(This)36 b(researc)n(h)0 │ │ │ │ 5042 y(w)n(as)f(supp)r(orted)e(in)h(part)g(b)n(y)f(the)h(D)n(ARP)-6 │ │ │ │ b(A)32 b(Con)n(tract)i(D)n(ABT63-95-C-0122)i(and)e(the)g(DoD)f(High)h │ │ │ │ (P)n(erformance)i(Computing)0 5133 y(Mo)r(dernization)27 │ │ │ │ b(Program)g(Common)g(HPC)f(Soft)n(w)n(are)g(Supp)r(ort)f(Initiativ)n │ │ │ │ @@ -7579,15 +7568,15 @@ │ │ │ │ (more)g(setup)h(w)n(ork)f(to)g(do,)0 5396 y(analyzing)20 │ │ │ │ b(the)h(factorization)f(and)h(solv)n(es)f(and)h(sp)r(ecifying)g(whic)n │ │ │ │ (h)g(threads)g(or)f(pro)r(cessors)f(p)r(erform)h(what)i(computations) │ │ │ │ 1929 5656 y(2)p eop end │ │ │ │ %%Page: 3 4 │ │ │ │ TeXDict begin 3 3 bop 83 100 781 4 v 946 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fm(3)0 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fm(3)0 │ │ │ │ 390 y(and)i(store)f(what)h(data.)37 b(In)28 b(a)g(distributed)g(en)n │ │ │ │ (vironmen)n(t,)g(the)g(en)n(tries)f(of)h Fj(A)g Fm(and)g │ │ │ │ Fj(B)k Fm(m)n(ust)c(also)f(b)r(e)i(distributed)f(among)0 │ │ │ │ 490 y(the)g(pro)r(cessors)d(in)j(preparation)e(for)h(the)h(factors)e │ │ │ │ (and)i(m)n(ultiplies.)125 614 y(F)-7 b(or)37 b(eac)n(h)h(of)h(the)f │ │ │ │ (three)h(en)n(vironmen)n(ts)e(|)i(serial,)h(m)n(ultithreaded)e(and)h │ │ │ │ (MPI)f(|)g(the)h Fn(SPOOLES)g Fm(solv)n(er)e(has)0 714 │ │ │ │ @@ -7654,15 +7643,15 @@ │ │ │ │ (the)h(matrix)f(m)n(ultiples)h(and)g(solv)n(es.)125 5407 │ │ │ │ y Fi(\210)42 b Fl(DenseMtx)e(*Y)27 b Fm(:)g(dense)h(matrix)f(ob)5 │ │ │ │ b(ject)27 b(that)h(is)g(used)f(during)g(the)h(matrix)f(m)n(ultiples)h │ │ │ │ (and)g(solv)n(es.)1929 5656 y(4)p eop end │ │ │ │ %%Page: 5 6 │ │ │ │ TeXDict begin 5 5 bop 83 100 781 4 v 946 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fm(5)125 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fm(5)125 │ │ │ │ 390 y Fi(\210)42 b Fl(int)g(msglvl)30 b Fm(:)48 b(message)31 │ │ │ │ b(lev)n(el)h(for)h(output.)53 b(When)33 b(0,)h(no)e(output,)j(When)e │ │ │ │ (1,)h(just)g(statistics)e(and)h(cpu)g(times.)208 490 │ │ │ │ y(When)28 b(greater)e(than)h(1,)g(more)g(and)h(more)e(output.)125 │ │ │ │ 654 y Fi(\210)42 b Fl(FILE)f(*msgFile)25 b Fm(:)37 b(message)26 │ │ │ │ b(\014le)i(for)f(output.)37 b(When)28 b Fl(msglvl)e Fj(>)h │ │ │ │ Fm(0,)g Fl(msgFile)e Fm(m)n(ust)j(not)f(b)r(e)h Fl(NULL)p │ │ │ │ @@ -7738,15 +7727,15 @@ │ │ │ │ b(to)g(c)n(hevrons)f(and)i(v)n(ectors,)e(in)i(preparation)d(for)j(the)g │ │ │ │ (\014rst)f(factorization.)307 5407 y Fi(\210)42 b Fm(The)28 │ │ │ │ b(sym)n(b)r(olic)f(factorization)f(is)i(then)g(computed)g(and)f(loaded) │ │ │ │ g(in)h(the)g Fl(Bridge)d Fm(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 6 7 │ │ │ │ TeXDict begin 6 6 bop 83 100 781 4 v 946 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fm(6)307 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fm(6)307 │ │ │ │ 390 y Fi(\210)42 b Fm(A)28 b Fl(FrontMtx)d Fm(ob)5 b(ject)27 │ │ │ │ b(is)g(created)g(to)h(hold)f(the)h(factorization)e(and)i(loaded)f(in)n │ │ │ │ (to)g(the)h Fl(Bridge)d Fm(ob)5 b(ject.)307 523 y Fi(\210)42 │ │ │ │ b Fm(A)30 b Fl(SubMtxManager)24 b Fm(ob)5 b(ject)29 b(is)g(created)f │ │ │ │ (to)h(hold)g(the)h(factor's)e(submatrices)g(and)h(loaded)g(in)n(to)g │ │ │ │ (the)g Fl(Bridge)390 622 y Fm(ob)5 b(ject.)307 755 y │ │ │ │ Fi(\210)42 b Fm(Tw)n(o)27 b Fl(DenseMtx)d Fm(ob)5 b(jects)27 │ │ │ │ @@ -7831,15 +7820,15 @@ │ │ │ │ Fm(is)f(required.)456 5275 y Fn({)41 b Fl(3)28 b Fm(|)f(simple,)h(no)g │ │ │ │ (m)n(ultiply)g(is)f(required.)307 5407 y Fi(\210)42 b │ │ │ │ Fl(void)g(*data)26 b Fm(|)h(a)h(p)r(oin)n(ter)f(to)g(the)h │ │ │ │ Fl(Bridge)d Fm(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 7 8 │ │ │ │ TeXDict begin 7 7 bop 83 100 781 4 v 946 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fm(7)101 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fm(7)101 │ │ │ │ 390 y(4.)42 b Fl(void)f(Solve)h(\()h(int)g(*pnrows,)d(int)i(*pncols,)e │ │ │ │ (double)i(X[],)f(double)h(Y[],)774 490 y(void)g(*data,)f(int)i(*perror) │ │ │ │ d(\))j(;)208 623 y Fm(This)22 b(metho)r(d)i(solv)n(es)d(\()p │ │ │ │ Fj(A)9 b Fh(\000)g Fj(\033)s(B)t Fm(\))p Fj(X)30 b Fm(=)23 │ │ │ │ b Fj(Y)c Fm(,)24 b(where)e(\()p Fj(A)9 b Fh(\000)g Fj(\033)s(B)t │ │ │ │ Fm(\))24 b(has)e(b)r(een)h(factored)f(b)n(y)h(a)f(previous)g(call)h(to) │ │ │ │ f Fl(Factor\(\))p Fm(.)208 722 y(All)28 b(calling)f(sequence)g │ │ │ │ @@ -7903,15 +7892,15 @@ │ │ │ │ b(parameters)f(that)i(de\014ne)g(the)g(eigensystem)f(to)g(b)r(e)h(solv) │ │ │ │ n(ed)f(are)f(read)h(in)h(from)f(the)h Fl(parmFile)c Fm(\014le.)101 │ │ │ │ 5343 y(4.)42 b(The)27 b(Lanczos)f(eigensolv)n(er)g(w)n(orkspace)f(is)j │ │ │ │ (initialized.)p eop end │ │ │ │ %%Page: 8 9 │ │ │ │ TeXDict begin 8 8 bop 83 100 781 4 v 946 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fm(8)101 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fm(8)101 │ │ │ │ 390 y(5.)42 b(The)27 b(Lanczos)f(comm)n(unication)h(structure)g(is)h │ │ │ │ (\014lled)g(with)g(some)f(parameters.)101 556 y(6.)42 │ │ │ │ b(The)30 b Fj(A)h Fm(and)g(p)r(ossibly)f Fj(B)k Fm(matrices)c(are)g │ │ │ │ (read)g(in)g(from)h(the)g(Harw)n(ell-Bo)r(eing)d(\014les)j(and)f(con)n │ │ │ │ (v)n(erted)f(in)n(to)h Fl(InpMtx)208 656 y Fm(ob)5 b(jects)27 │ │ │ │ b(from)g(the)h Fn(SPOOLES)g Fm(library)-7 b(.)101 822 │ │ │ │ y(7.)42 b(The)27 b(linear)g(solv)n(er)f(en)n(vironmen)n(t)h(is)g(then)h │ │ │ │ @@ -7974,15 +7963,15 @@ │ │ │ │ Fm(and)f Fj(U)36 b Fm(factor)27 b(matrices.)125 5354 │ │ │ │ y Fi(\210)42 b Fl(IV)g(*oldToNewIV)23 b Fm(:)28 b(ob)5 │ │ │ │ b(ject)28 b(that)f(stores)g(old-to-new)f(p)r(erm)n(utation)i(v)n │ │ │ │ (ector.)1929 5656 y(9)p eop end │ │ │ │ %%Page: 10 11 │ │ │ │ TeXDict begin 10 10 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(10)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(10)125 │ │ │ │ 390 y Fi(\210)42 b Fl(IV)g(*newToOldIV)23 b Fm(:)28 b(ob)5 │ │ │ │ b(ject)28 b(that)f(stores)g(new-to-old)f(p)r(erm)n(utation)i(v)n │ │ │ │ (ector.)125 556 y Fi(\210)42 b Fl(DenseMtx)e(*X)27 b │ │ │ │ Fm(:)g(dense)h(matrix)f(ob)5 b(ject)27 b(that)h(is)g(used)f(during)g │ │ │ │ (the)h(matrix)f(m)n(ultiples)h(and)g(solv)n(es.)125 721 │ │ │ │ y Fi(\210)42 b Fl(DenseMtx)e(*Y)27 b Fm(:)g(dense)h(matrix)f(ob)5 │ │ │ │ b(ject)27 b(that)h(is)g(used)f(during)g(the)h(matrix)f(m)n(ultiples)h │ │ │ │ @@ -8049,15 +8038,15 @@ │ │ │ │ (setting)g(the)h(appropriate)d(\014elds)j(of)f(the)390 │ │ │ │ 5275 y Fl(BridgeMT)25 b Fm(ob)5 b(ject.)307 5407 y Fi(\210)42 │ │ │ │ b Fm(The)28 b Fl(pencil)d Fm(ob)5 b(ject)27 b(is)h(initialized)g(with)g │ │ │ │ Fl(A)f Fm(and)h Fl(B)p Fm(.)p eop end │ │ │ │ %%Page: 11 12 │ │ │ │ TeXDict begin 11 11 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(11)307 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(11)307 │ │ │ │ 390 y Fi(\210)42 b Fl(A)27 b Fm(and)h Fl(B)f Fm(are)g(con)n(v)n(erted)f │ │ │ │ (to)h(storage)f(b)n(y)h(ro)n(ws)f(and)i(v)n(ector)e(mo)r(de.)307 │ │ │ │ 516 y Fi(\210)42 b Fm(A)28 b Fl(Graph)e Fm(ob)5 b(ject)27 │ │ │ │ b(is)h(created)e(that)i(con)n(tains)f(the)h(sparsit)n(y)e(pattern)i(of) │ │ │ │ f(the)h(union)g(of)f Fl(A)g Fm(and)h Fl(B)p Fm(.)307 │ │ │ │ 642 y Fi(\210)42 b Fm(The)37 b(graph)e(is)i(ordered)e(b)n(y)h(\014rst)g │ │ │ │ (\014nding)h(a)f(recursiv)n(e)f(dissection)h(partition,)i(and)f(then)g │ │ │ │ @@ -8148,15 +8137,15 @@ │ │ │ │ Fl(psigma)26 b Fm(is)h Fl(NULL)2341 5220 y Fm(-2)98 b │ │ │ │ Fl(ppvttol)25 b Fm(is)j Fl(NULL)2341 5319 y Fm(-3)98 │ │ │ │ b Fl(data)26 b Fm(is)i Fl(NULL)2341 5419 y Fm(-4)98 b │ │ │ │ Fl(pinertia)25 b Fm(is)i Fl(NULL)p eop end │ │ │ │ %%Page: 12 13 │ │ │ │ TeXDict begin 12 12 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(12)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(12)101 │ │ │ │ 390 y(3.)42 b Fl(void)f(MatMulMT)g(\()i(int)f(*pnrows,)f(int)h │ │ │ │ (*pncols,)e(double)h(X[],)h(double)f(Y[],)905 490 y(int)h(*pprbtype,)e │ │ │ │ (void)i(*data)f(\))i(;)208 623 y Fm(This)31 b(metho)r(d)i(computes)e(a) │ │ │ │ h(m)n(ultiply)g(of)g(the)g(form)f Fj(Y)49 b Fm(=)30 b │ │ │ │ Fj(I)7 b(X)g Fm(,)32 b Fj(Y)49 b Fm(=)29 b Fj(AX)39 b │ │ │ │ Fm(or)31 b Fj(Y)49 b Fm(=)29 b Fj(B)t(X)7 b Fm(.)49 b(All)32 │ │ │ │ b(calling)g(sequence)208 722 y(parameters)25 b(are)i(p)r(oin)n(ters)g │ │ │ │ @@ -8226,15 +8215,15 @@ │ │ │ │ (the)h Fn(SPOOLES)g Fm(soft)n(w)n(are.)125 5368 y Fi(\210)42 │ │ │ │ b Fl(msgFile)24 b Fm(is)k(the)g(message)e(\014le)i(for)f(the)h │ │ │ │ Fl(BridgeMT)c Fm(metho)r(ds)k(and)f(the)h Fn(SPOOLES)g │ │ │ │ Fm(soft)n(w)n(are.)p eop end │ │ │ │ %%Page: 13 14 │ │ │ │ TeXDict begin 13 13 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(13)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(13)125 │ │ │ │ 390 y Fi(\210)42 b Fl(parmFile)24 b Fm(is)j(the)h(input)h(\014le)f(for) │ │ │ │ f(the)h(parameters)d(of)j(the)g(eigensystem)f(to)g(b)r(e)h(solv)n(ed.) │ │ │ │ 125 556 y Fi(\210)42 b Fl(seed)26 b Fm(is)h(a)g(random)g(n)n(um)n(b)r │ │ │ │ (er)g(seed)h(used)f(b)n(y)g(the)h Fn(SPOOLES)g Fm(soft)n(w)n(are.)125 │ │ │ │ 722 y Fi(\210)42 b Fl(nthread)24 b Fm(is)k(the)g(n)n(um)n(b)r(er)f(of)h │ │ │ │ (threads)f(to)g(use)g(in)h(the)g(factors,)f(solv)n(es)f(and)h(matrix-m) │ │ │ │ n(ultiplies.)125 888 y Fi(\210)42 b Fl(inFileA)24 b Fm(is)k(the)g(Harw) │ │ │ │ @@ -8322,15 +8311,15 @@ │ │ │ │ b Fm(:)41 b(ob)5 b(ject)30 b(that)g(manages)e(the)i Fl(SubMtx)e │ │ │ │ Fm(ob)5 b(jects)29 b(that)h(store)f(the)h(factor)f(en)n(tries)208 │ │ │ │ 5404 y(and)e(are)g(used)g(in)h(the)g(solv)n(es.)1908 │ │ │ │ 5656 y(14)p eop end │ │ │ │ %%Page: 15 16 │ │ │ │ TeXDict begin 15 15 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(15)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(15)125 │ │ │ │ 390 y Fi(\210)42 b Fl(FrontMtx)e(*frontmtx)24 b Fm(:)37 │ │ │ │ b(ob)5 b(ject)27 b(that)h(stores)e(the)i Fj(L)p Fm(,)g │ │ │ │ Fj(D)h Fm(and)f Fj(U)36 b Fm(factor)27 b(matrices.)125 │ │ │ │ 556 y Fi(\210)42 b Fl(IV)g(*oldToNewIV)23 b Fm(:)28 b(ob)5 │ │ │ │ b(ject)28 b(that)f(stores)g(old-to-new)f(p)r(erm)n(utation)i(v)n │ │ │ │ (ector.)125 722 y Fi(\210)42 b Fl(IV)g(*newToOldIV)23 │ │ │ │ b Fm(:)28 b(ob)5 b(ject)28 b(that)f(stores)g(new-to-old)f(p)r(erm)n │ │ │ │ @@ -8415,15 +8404,15 @@ │ │ │ │ b(These)27 b(op)r(erations)f(add)i(a)f(considerable)f(cost)h(to)g(the)h │ │ │ │ (solv)n(e)e(and)h(matrix-m)n(ultiplies,)g(but)i(the)e(next)h(release)e │ │ │ │ (of)0 5297 y(the)i Fn(LANCZOS)g Fm(soft)n(w)n(are)e(will)i(remo)n(v)n │ │ │ │ (e)e(these)h(steps.)p eop end │ │ │ │ %%Page: 16 17 │ │ │ │ TeXDict begin 16 16 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(16)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(16)101 │ │ │ │ 390 y(1.)42 b Fl(int)g(SetupMPI)e(\()j(void)f(*data,)f(int)i │ │ │ │ (*pprbtype,)c(int)k(*pneqns,)818 490 y(int)f(*pmxbsz,)e(InpMtx)h(*A,)i │ │ │ │ (InpMtx)e(*B,)h(int)h(*pseed,)818 589 y(int)f(*pmsglvl,)e(FILE)i │ │ │ │ (*msgFile,)e(MPI_Comm)g(comm)i(\))h(;)208 722 y Fm(All)28 │ │ │ │ b(calling)f(sequence)g(parameters)e(are)i(p)r(oin)n(ters)g(to)g(more)g │ │ │ │ (easily)g(allo)n(w)g(an)g(in)n(terface)g(with)h(F)-7 │ │ │ │ b(ortran.)307 888 y Fi(\210)42 b Fl(void)g(*data)26 b │ │ │ │ @@ -8504,15 +8493,15 @@ │ │ │ │ (and)f(loaded)g(in)h(the)g Fl(BridgeMPI)c Fm(ob)5 b(ject.)307 │ │ │ │ 5405 y Fi(\210)42 b Fm(A)28 b Fl(FrontMtx)d Fm(ob)5 b(ject)27 │ │ │ │ b(is)g(created)g(to)h(hold)f(the)h(factorization)e(and)i(loaded)f(in)n │ │ │ │ (to)g(the)h Fl(BridgeMPI)c Fm(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 17 18 │ │ │ │ TeXDict begin 17 17 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(17)307 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(17)307 │ │ │ │ 390 y Fi(\210)42 b Fm(A)20 b Fl(SubMtxManager)15 b Fm(ob)5 │ │ │ │ b(ject)20 b(is)f(created)g(to)h(hold)g(the)g(factor's)f(submatrices)g │ │ │ │ (and)h(loaded)f(in)n(to)g(the)i Fl(BridgeMPI)390 490 │ │ │ │ y Fm(ob)5 b(ject.)307 620 y Fi(\210)42 b Fm(The)22 b(map)g(from)g │ │ │ │ (factor)f(submatrices)h(to)g(their)g(o)n(wning)f(threads)g(is)h │ │ │ │ (computed)g(and)g(stored)g(in)g(the)g Fl(solvemap)390 │ │ │ │ 720 y Fm(ob)5 b(ject.)307 850 y Fi(\210)42 b Fm(The)28 │ │ │ │ @@ -8597,15 +8586,15 @@ │ │ │ │ 5292 y Fn({)41 b Fl(1)28 b Fm(|)f(vibration,)g(a)g(m)n(ultiply)h(with)h │ │ │ │ Fj(B)i Fm(is)d(required.)456 5407 y Fn({)41 b Fl(2)28 │ │ │ │ b Fm(|)f(buc)n(kling,)h(a)f(m)n(ultiply)h(with)g Fj(A)g │ │ │ │ Fm(is)f(required.)p eop end │ │ │ │ %%Page: 18 19 │ │ │ │ TeXDict begin 18 18 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(18)456 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(18)456 │ │ │ │ 390 y Fn({)41 b Fl(3)28 b Fm(|)f(simple,)h(no)g(m)n(ultiply)g(is)f │ │ │ │ (required.)307 518 y Fi(\210)42 b Fl(void)g(*data)26 │ │ │ │ b Fm(|)h(a)h(p)r(oin)n(ter)f(to)g(the)h Fl(BridgeMPI)c │ │ │ │ Fm(ob)5 b(ject.)101 678 y(4.)42 b Fl(void)f(MatMulMPI)f(\()k(int)e │ │ │ │ (*pnrows,)e(int)i(*pncols,)f(double)g(X[],)h(double)f(Y[],)905 │ │ │ │ 778 y(int)h(*pprbtype,)e(void)i(*data)f(\))i(;)208 908 │ │ │ │ y Fm(This)31 b(metho)r(d)i(computes)e(a)h(m)n(ultiply)g(of)g(the)g │ │ │ │ @@ -8695,15 +8684,15 @@ │ │ │ │ b Fm(is)j Fl(NULL)2252 5220 y Fm(-3)99 b Fl(X)27 b Fm(is)h │ │ │ │ Fl(NULL)2252 5319 y Fm(-4)99 b Fl(Y)27 b Fm(is)h Fl(NULL)2252 │ │ │ │ 5419 y Fm(-5)99 b Fl(data)26 b Fm(is)i Fl(NULL)p eop │ │ │ │ end │ │ │ │ %%Page: 19 20 │ │ │ │ TeXDict begin 19 19 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(19)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(19)101 │ │ │ │ 390 y(7.)42 b Fl(int)g(CleanupMPI)d(\()44 b(void)d(*data)h(\))h(;)208 │ │ │ │ 520 y Fm(This)27 b(metho)r(d)h(releases)e(all)h(the)h(storage)e(used)i │ │ │ │ (b)n(y)f(the)h Fn(SPOOLES)g Fm(library)e(functions.)208 │ │ │ │ 649 y Fb(R)l(eturn)i(value:)38 b Fm(1)27 b(for)g(a)g(normal)g(return,)g │ │ │ │ (-1)g(if)h(a)f Fl(data)f Fm(is)h Fl(NULL)p Fm(.)0 942 │ │ │ │ y Fd(4.3)135 b(The)45 b Fc(testMPI)c Fd(Driv)l(er)46 │ │ │ │ b(Program)0 1145 y Fm(A)31 b(complete)f(listing)h(of)f(the)h(m)n │ │ │ │ @@ -8800,15 +8789,15 @@ │ │ │ │ (nfound,)g(nnonzeros,)e(nrhs,)j(nrow,)f(prbtyp,)g(rc,)436 │ │ │ │ 5272 y(retc,)g(rfinit,)g(seed,)h(warnng)f(;)0 5372 y(int)304 │ │ │ │ b(c__5)42 b(=)h(5,)g(output)e(=)i(6)g(;)1908 5656 y Fm(20)p │ │ │ │ eop end │ │ │ │ %%Page: 21 22 │ │ │ │ TeXDict begin 21 21 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(21)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(21)0 │ │ │ │ 390 y Fl(int)304 b(*lanczos_wksp;)0 490 y(InpMtx)172 │ │ │ │ b(*inpmtxA,)40 b(*inpmtxB)g(;)0 589 y(FILE)260 b(*msgFile,)40 │ │ │ │ b(*parmFile;)0 789 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---) │ │ │ │ o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(-*/)0 988 y(if)j(\()g(argc)f(!=)h(7)g(\))g({)131 │ │ │ │ 1088 y(fprintf\(stdout,)87 1187 y("\\n\\n)f(usage)f(:)i(\045s)g(msglvl) │ │ │ │ e(msgFile)g(parmFile)f(seed)i(inFileA)f(inFileB")87 1287 │ │ │ │ @@ -8846,15 +8835,15 @@ │ │ │ │ (--)o(---)o(--)o(---)0 5172 y(*/)0 5272 y(if)i(\()g(strcmp\(inFileNam)o │ │ │ │ (e_)o(A,)37 b("none"\))k(==)i(0)g(\))g({)131 5372 y(fprintf\(msgFile,) │ │ │ │ 37 b("\\n)42 b(no)h(file)f(to)h(read)e(from"\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 22 23 │ │ │ │ TeXDict begin 22 22 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(22)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(22)131 │ │ │ │ 390 y Fl(exit\(0\))40 b(;)0 490 y(})0 589 y(MARKTIME\(t1\))f(;)0 │ │ │ │ 689 y(readHB_info)g(\(inFileName_A,)f(&nrow,)j(&ncol,)g(&nnonzeros,)e │ │ │ │ (&type,)i(&nrhs\))g(;)0 789 y(MARKTIME\(t2\))e(;)0 888 │ │ │ │ y(fprintf\(msgFile,)e("\\n)42 b(CPU)h(\0458.3f)e(:)i(read)f(in)h │ │ │ │ (header)e(information)e(for)k(A",)349 988 y(t2)f(-)i(t1\))e(;)0 │ │ │ │ 1088 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ @@ -8900,15 +8889,15 @@ │ │ │ │ 4973 y(/*)131 5073 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(--)o(---)131 5172 y(check)f(and)i(set)f(the)g(problem)f │ │ │ │ (type)h(parameter)131 5272 y(----------------)o(--)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(--)o(---)0 5372 y(*/)p eop end │ │ │ │ %%Page: 23 24 │ │ │ │ TeXDict begin 23 23 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(23)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(23)0 │ │ │ │ 390 y Fl(switch)41 b(\()i(pbtype[1])d(\))j({)0 490 y(case)f('v')g(:)h │ │ │ │ (case)f('V')h(:)g(prbtyp)e(=)i(1)g(;)h(break)d(;)0 589 │ │ │ │ y(case)h('b')g(:)h(case)f('B')h(:)g(prbtyp)e(=)i(2)g(;)h(break)d(;)0 │ │ │ │ 689 y(case)h('o')g(:)h(case)f('O')h(:)g(prbtyp)e(=)i(3)g(;)h(break)d(;) │ │ │ │ 0 789 y(default)g(:)131 888 y(fprintf\(stderr,)c("\\n)42 │ │ │ │ b(invalid)f(problem)g(type)h(\045s",)g(pbtype\))e(;)131 │ │ │ │ 988 y(exit\(-1\))g(;)0 1088 y(})0 1187 y(/*)131 1287 │ │ │ │ @@ -8950,15 +8939,15 @@ │ │ │ │ 37 b("\\n\\n)k(InpMtx)g(A)j(object)d(after)g(loading"\))f(;)131 │ │ │ │ 5272 y(InpMtx_writeForH)o(um)o(an)o(Eye)o(\(i)o(npm)o(tx)o(A,)d │ │ │ │ (msgFile\))j(;)131 5372 y(fflush\(msgFile\))d(;)p eop │ │ │ │ end │ │ │ │ %%Page: 24 25 │ │ │ │ TeXDict begin 24 24 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(24)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(24)0 │ │ │ │ 390 y Fl(})0 490 y(MARKTIME\(t1\))39 b(;)0 589 y(lanczos_set_parm)o(\() │ │ │ │ f(&lanczos_wksp,)f("matrix-type",)h(&c__1,)j(&retc)h(\);)0 │ │ │ │ 689 y(MARKTIME\(t2\))d(;)0 789 y(fprintf\(msgFile,)e("\\n)42 │ │ │ │ b(CPU)h(\0458.3f)e(:)i(set)g(A's)f(parameters",)d(t2)j(-)i(t1\))e(;)0 │ │ │ │ 888 y(if)h(\()g(prbtyp)e(!=)i(3)g(\))g({)131 988 y(if)g(\()g │ │ │ │ (strcmp\(inFileNa)o(me_)o(B,)37 b("none"\))k(==)h(0)i(\))f({)262 │ │ │ │ 1088 y(fprintf\(msgFile)o(,)37 b("\\n)43 b(no)g(file)f(to)g(read)g │ │ │ │ @@ -8997,15 +8986,15 @@ │ │ │ │ (discarded)131 5073 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--) │ │ │ │ o(---)o(--)o(--)o(---)o(--)o(---)o(--)0 5172 y(*/)0 5272 │ │ │ │ y(MARKTIME\(t1\))g(;)0 5372 y(lanczos_run\(&nei)o(gvl)o(,)e(&which[1])j │ │ │ │ (,)j(&pbtype[1],)c(&lfinit,)i(&lftend,)p eop end │ │ │ │ %%Page: 25 26 │ │ │ │ TeXDict begin 25 25 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(25)218 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(25)218 │ │ │ │ 390 y Fl(&rfinit,)40 b(&rhtend,)g(¢er,)h(&lanczos_wksp,)d(&bridge,) │ │ │ │ i(&nfound,)218 490 y(&ndiscd,)g(&warnng,)g(&error,)h(Factor,)g(MatMul,) │ │ │ │ g(Solve)g(\))i(;)0 589 y(MARKTIME\(t2\))c(;)0 689 y(fprintf\(msgFile,)e │ │ │ │ ("\\n)42 b(CPU)h(\0458.3f)e(:)i(time)f(for)h(lanczos)d(run",)i(t2)h(-)g │ │ │ │ (t1\))f(;)0 789 y(/*)131 888 y(----------------)o(--)o(--)o(---)o(--) │ │ │ │ 131 988 y(get)g(eigenvalues)d(and)j(print)131 1088 y(----------------)o │ │ │ │ (--)o(--)o(---)o(--)0 1187 y(*/)0 1287 y(MARKTIME\(t1\))d(;)0 │ │ │ │ @@ -9039,15 +9028,15 @@ │ │ │ │ b(;)0 5073 y(fprintf\(msgFile,)e("\\n)42 b(CPU)h(\0458.3f)e(:)i(free)f │ │ │ │ (lanczos)f(workspace)f(",)j(t2)f(-)i(t1\))e(;)0 5172 │ │ │ │ y(MARKTIME\(t1\))d(;)0 5272 y(rc)k(=)g(Cleanup\(&bridge\))37 │ │ │ │ b(;)0 5372 y(MARKTIME\(t2\))i(;)p eop end │ │ │ │ %%Page: 26 27 │ │ │ │ TeXDict begin 26 26 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(26)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(26)0 │ │ │ │ 390 y Fl(fprintf\(msgFile,)37 b("\\n)42 b(CPU)h(\0458.3f)e(:)i(free)f │ │ │ │ (solver)f(workspace)f(",)j(t2)g(-)g(t1\))f(;)0 490 y(if)h(\()g(rc)g(!=) │ │ │ │ f(1)i(\))f({)131 589 y(fprintf\(stderr,)37 b("\\n)42 │ │ │ │ b(error)g(return)f(\045d)i(from)f(Cleanup\(\)",)d(rc\))j(;)131 │ │ │ │ 689 y(exit\(-1\))e(;)0 789 y(})0 888 y(fprintf\(msgFile,)d("\\n"\))k(;) │ │ │ │ 0 988 y(fclose\(msgFile\))c(;)0 1187 y(return)k(;)i(})p │ │ │ │ eop end │ │ │ │ @@ -9082,15 +9071,15 @@ │ │ │ │ (nnonzeros,)e(nrhs,)j(nrow,)f(nthreads,)436 5172 y(prbtyp,)g(rc,)h │ │ │ │ (retc,)f(rfinit,)g(seed,)h(warnng)f(;)0 5272 y(int)304 │ │ │ │ b(c__5)42 b(=)h(5,)g(output)e(=)i(6)g(;)0 5372 y(int)304 │ │ │ │ b(*lanczos_wksp;)1908 5656 y Fm(27)p eop end │ │ │ │ %%Page: 28 29 │ │ │ │ TeXDict begin 28 28 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(28)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(28)0 │ │ │ │ 390 y Fl(InpMtx)172 b(*inpmtxA,)40 b(*inpmtxB)g(;)0 490 │ │ │ │ y(FILE)260 b(*msgFile,)40 b(*parmFile)g(;)0 589 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 │ │ │ │ 689 y(if)j(\()g(argc)f(!=)h(8)g(\))g({)131 789 y(fprintf\(stdout,)0 │ │ │ │ 888 y("\\n\\n)f(usage)f(:)i(\045s)g(msglvl)e(msgFile)g(parmFile)f(seed) │ │ │ │ i(nthread)f(inFileA)f(inFileB")0 988 y("\\n)173 b(msglvl)128 │ │ │ │ @@ -9132,15 +9121,15 @@ │ │ │ │ 5073 y(*/)0 5172 y(if)i(\()g(strcmp\(inFileNam)o(e_)o(A,)37 │ │ │ │ b("none"\))k(==)i(0)g(\))g({)131 5272 y(fprintf\(msgFile,)37 │ │ │ │ b("\\n)42 b(no)h(file)f(to)h(read)e(from"\))h(;)131 5372 │ │ │ │ y(exit\(0\))e(;)p eop end │ │ │ │ %%Page: 29 30 │ │ │ │ TeXDict begin 29 29 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(29)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(29)0 │ │ │ │ 390 y Fl(})0 490 y(MARKTIME\(t1\))39 b(;)0 589 y(readHB_info)g │ │ │ │ (\(inFileName_A,)f(&nrow,)j(&ncol,)g(&nnonzeros,)e(&type,)i(&nrhs\))g │ │ │ │ (;)0 689 y(MARKTIME\(t2\))e(;)0 789 y(fprintf\(msgFile,)e("\\n)42 │ │ │ │ b(CPU)h(\0458.3f)e(:)i(read)f(in)h(harwell-boeing)38 │ │ │ │ b(header)j(info",)349 888 y(t2)h(-)i(t1\))e(;)0 988 y │ │ │ │ (fflush\(msgFile\))37 b(;)0 1088 y(/*--------------)o(---)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o │ │ │ │ @@ -9188,15 +9177,15 @@ │ │ │ │ y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (---)131 5272 y(check)k(and)i(set)f(the)g(problem)f(type)h(parameter) │ │ │ │ 131 5372 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--) │ │ │ │ o(--)o(---)p eop end │ │ │ │ %%Page: 30 31 │ │ │ │ TeXDict begin 30 30 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(30)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(30)0 │ │ │ │ 390 y Fl(*/)0 490 y(switch)41 b(\()i(pbtype[1])d(\))j({)0 │ │ │ │ 589 y(case)f('v')g(:)0 689 y(case)g('V')g(:)131 789 y(prbtyp)f(=)i(1)g │ │ │ │ (;)131 888 y(break)e(;)0 988 y(case)h('b')g(:)0 1088 │ │ │ │ y(case)g('B')g(:)131 1187 y(prbtyp)f(=)i(2)g(;)131 1287 │ │ │ │ y(break)e(;)0 1386 y(case)h('o')g(:)0 1486 y(case)g('O')g(:)131 │ │ │ │ 1586 y(prbtyp)f(=)i(3)g(;)131 1685 y(break)e(;)0 1785 │ │ │ │ y(default)g(:)131 1885 y(fprintf\(stderr,)c("\\n)42 b(invalid)f │ │ │ │ @@ -9231,15 +9220,15 @@ │ │ │ │ y(create)f(the)h(InpMtx)f(objects)g(for)h(matrix)f(A)j(and)e(B)131 │ │ │ │ 5172 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)0 5272 y(*/)0 5372 y(if)h(\()g(strcmp\(inFileNam)o │ │ │ │ (e_)o(A,)37 b("none"\))k(==)i(0)g(\))g({)p eop end │ │ │ │ %%Page: 31 32 │ │ │ │ TeXDict begin 31 31 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(31)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(31)131 │ │ │ │ 390 y Fl(fprintf\(msgFile,)37 b("\\n)42 b(no)h(file)f(to)h(read)e(A)j │ │ │ │ (from"\))d(;)131 490 y(exit\(-1\))f(;)0 589 y(})0 689 │ │ │ │ y(MARKTIME\(t1\))f(;)0 789 y(inpmtxA)i(=)i(InpMtx_new\(\))38 │ │ │ │ b(;)0 888 y(InpMtx_readFromH)o(Bfi)o(le)f(\()43 b(inpmtxA,)d │ │ │ │ (inFileName_A)f(\))k(;)0 988 y(MARKTIME\(t2\))c(;)0 1088 │ │ │ │ y(fprintf\(msgFile,)e("\\n)42 b(CPU)h(\0458.3f)e(:)i(read)f(in)h(A",)f │ │ │ │ (t2)h(-)g(t1\))g(;)0 1187 y(fflush\(msgFile\))37 b(;)0 │ │ │ │ @@ -9277,15 +9266,15 @@ │ │ │ │ b(;)0 5073 y(if)43 b(\()g(rc)g(!=)f(1)i(\))f({)131 5172 │ │ │ │ y(fprintf\(stderr,)37 b("\\n)42 b(error)g(return)f(\045d)i(from)f │ │ │ │ (SetupMT\(\)",)d(rc\))j(;)131 5272 y(exit\(-1\))e(;)0 │ │ │ │ 5372 y(})p eop end │ │ │ │ %%Page: 32 33 │ │ │ │ TeXDict begin 32 32 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(32)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(32)0 │ │ │ │ 390 y Fl(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 490 y(/*)131 589 y(----------------)o(--)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)131 689 │ │ │ │ y(invoke)41 b(eigensolver)131 789 y(nfound)g(--)i(#)g(of)g(eigenvalues) │ │ │ │ c(found)i(and)h(kept)131 888 y(ndisc)85 b(--)43 b(#)g(of)g(additional)c │ │ │ │ (eigenvalues)g(discarded)131 988 y(----------------)o(--)o(--)o(---)o │ │ │ │ @@ -9323,15 +9312,15 @@ │ │ │ │ 4973 y(})0 5073 y(MARKTIME\(t2\))c(;)0 5172 y(fprintf\(msgFile,)e("\\n) │ │ │ │ 42 b(CPU)h(\0458.3f)e(:)i(get)g(and)f(print)g(eigenvectors",)37 │ │ │ │ b(t2)43 b(-)g(t1\))g(;)0 5272 y(fflush\(msgFile\))37 │ │ │ │ b(;)0 5372 y(*/)p eop end │ │ │ │ %%Page: 33 34 │ │ │ │ TeXDict begin 33 33 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(33)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(33)0 │ │ │ │ 390 y Fl(/*)131 490 y(----------------)o(--)o(--)o(---)o(-)131 │ │ │ │ 589 y(free)42 b(the)g(working)f(storage)131 689 y(----------------)o │ │ │ │ (--)o(--)o(---)o(-)0 789 y(*/)0 888 y(MARKTIME\(t1\))e(;)0 │ │ │ │ 988 y(lanczos_free\()f(&lanczos_wksp)g(\))44 b(;)0 1088 │ │ │ │ y(MARKTIME\(t2\))39 b(;)0 1187 y(fprintf\(msgFile,)e("\\n)42 │ │ │ │ b(CPU)h(\0458.3f)e(:)i(free)f(lanczos)f(workspace",)e(t2)k(-)g(t1\))f │ │ │ │ (;)0 1287 y(fflush\(msgFile\))37 b(;)0 1386 y(MARKTIME\(t1\))i(;)0 │ │ │ │ @@ -9373,15 +9362,15 @@ │ │ │ │ (shfscl,)g(t1,)h(t2)h(;)0 5208 y(double)172 b(c__1)42 │ │ │ │ b(=)h(1.0,)f(c__4)g(=)h(4.0,)f(tolact)f(=)i(2.309970868130169)o(e-)o │ │ │ │ (11)37 b(;)0 5308 y(double)172 b(eigval[1000],)38 b(sigma[2])i(;)0 │ │ │ │ 5407 y(double)172 b(*evec;)1908 5656 y Fm(34)p eop end │ │ │ │ %%Page: 35 36 │ │ │ │ TeXDict begin 35 35 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(35)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(35)0 │ │ │ │ 390 y Fl(/*)131 490 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--) │ │ │ │ o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---) │ │ │ │ o(-)131 589 y(find)42 b(out)g(the)g(identity)f(of)h(this)g(process)f │ │ │ │ (and)h(the)h(number)e(of)i(process)131 689 y(----------------)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(-)0 789 y(*/)0 888 y(MPI_Init\(&argc,)37 │ │ │ │ b(&argv\))k(;)0 988 y(MPI_Comm_dup\(MPI)o(_CO)o(MM)o(_W)o(ORL)o(D,)c │ │ │ │ @@ -9421,15 +9410,15 @@ │ │ │ │ 4873 y(parmFileName)h(=)k(argv[3])d(;)0 4973 y(seed)391 │ │ │ │ b(=)43 b(atoi\(argv[4]\))38 b(;)0 5073 y(inFileName_A)h(=)k(argv[5])d │ │ │ │ (;)0 5172 y(inFileName_B)f(=)k(argv[6])d(;)0 5272 y(fprintf\(msgFile,) │ │ │ │ 349 5372 y("\\n)i(\045s)h(")p eop end │ │ │ │ %%Page: 36 37 │ │ │ │ TeXDict begin 36 36 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(36)349 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(36)349 │ │ │ │ 390 y Fl("\\n)42 b(msglvl)695 b(--)43 b(\045d")349 490 │ │ │ │ y("\\n)f(message)f(file)434 b(--)43 b(\045s")349 589 │ │ │ │ y("\\n)f(parameter)e(file)347 b(--)43 b(\045s")349 689 │ │ │ │ y("\\n)f(stiffness)e(matrix)h(file)h(--)h(\045s")349 │ │ │ │ 789 y("\\n)f(mass)g(matrix)f(file)260 b(--)43 b(\045s")349 │ │ │ │ 888 y("\\n)f(random)f(number)g(seed)173 b(--)43 b(\045d")349 │ │ │ │ 988 y("\\n",)349 1088 y(argv[0],)d(msglvl,)h(argv[2],)f(parmFileName,)e │ │ │ │ @@ -9474,15 +9463,15 @@ │ │ │ │ (lower)e(bound)h(of)567 5172 y(eigenvalues.)c(if)43 b(false,)e(no)i │ │ │ │ (restriction)c(on)k(lower)e(bound)131 5272 y(lftend)g(--)i(left)f │ │ │ │ (endpoint)e(of)j(interval)131 5372 y(rfinit)e(--)i(if)f(true,)g(rhtend) │ │ │ │ f(is)i(restriction)c(on)k(upper)e(bound)h(of)p eop end │ │ │ │ %%Page: 37 38 │ │ │ │ TeXDict begin 37 37 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(37)567 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(37)567 │ │ │ │ 390 y Fl(eigenvalues.)82 b(if)43 b(false,)e(no)h(restriction)d(on)k │ │ │ │ (upper)f(bound)131 490 y(rhtend)f(--)i(right)e(endpoint)f(of)j │ │ │ │ (interval)131 589 y(center)e(--)i(center)e(of)h(interval)131 │ │ │ │ 689 y(mxbksz)f(--)i(upper)e(bound)h(on)g(block)g(size)g(for)g(Lanczos)f │ │ │ │ (recurrence)131 789 y(shfscl)g(--)i(shift)e(scaling)g(parameter,)e(an)k │ │ │ │ (estimate)d(on)j(the)f(magnitude)567 888 y(of)g(the)h(smallest)d │ │ │ │ (nonzero)h(eigenvalues)131 988 y(----------------)o(--)o(--)o(---)o(--) │ │ │ │ @@ -9522,15 +9511,15 @@ │ │ │ │ 5272 y(lanczos_set_parm)o(\()c(&lanczos_wksp,)f("accuracy-toleran)o(ce) │ │ │ │ o(",)g(&tolact,)k(&retc)g(\);)0 5372 y(lanczos_set_parm)o(\()d │ │ │ │ (&lanczos_wksp,)f("max-block-size",)g(&mxbksz,)j(&retc)i(\);)p │ │ │ │ eop end │ │ │ │ %%Page: 38 39 │ │ │ │ TeXDict begin 38 38 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(38)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(38)0 │ │ │ │ 390 y Fl(lanczos_set_parm)o(\()38 b(&lanczos_wksp,)f("shift-scale",)h │ │ │ │ (&shfscl,)i(&retc)i(\);)0 490 y(lanczos_set_parm)o(\()c(&lanczos_wksp,) │ │ │ │ f("message_level",)g(&msglvl,)k(&retc)g(\);)0 589 y(lanczos_set_parm)o │ │ │ │ (\()d(&lanczos_wksp,)f("mpi-communicator)o(",)g(&comm,)k(&retc)h(\);)0 │ │ │ │ 689 y(lanczos_set_parm)o(\()c(&lanczos_wksp,)f("qfile-pathname",)g │ │ │ │ ("lqfil",)j(&retc)i(\);)0 789 y(lanczos_set_parm)o(\()c(&lanczos_wksp,) │ │ │ │ f("mqfil-pathname",)g("lmqfil",)j(&retc)h(\);)0 888 y(lanczos_set_parm) │ │ │ │ @@ -9573,15 +9562,15 @@ │ │ │ │ 4973 y(})43 b(else)f({)262 5073 y(inpmtxB)e(=)j(NULL)f(;)262 │ │ │ │ 5172 y(lanczos_set_par)o(m\()37 b(&lanczos_wksp,)h("matrix-type",)g │ │ │ │ (&c__4,)j(&retc)g(\);)131 5272 y(})0 5372 y(})i(else)f({)p │ │ │ │ eop end │ │ │ │ %%Page: 39 40 │ │ │ │ TeXDict begin 39 39 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(39)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(39)0 │ │ │ │ 390 y Fl(/*)131 490 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--) │ │ │ │ o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(-)131 589 y(other)41 │ │ │ │ b(processors)f(initialize)f(their)j(local)f(matrices)131 │ │ │ │ 689 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--) │ │ │ │ o(---)o(--)o(---)o(--)o(-)0 789 y(*/)131 888 y(inpmtxA)f(=)k │ │ │ │ (InpMtx_new\(\))38 b(;)131 988 y(InpMtx_init\(inpm)o(tx)o(A,)f │ │ │ │ (INPMTX_BY_CHEVRO)o(NS,)g(SPOOLES_REAL,)h(0,)43 b(0\))g(;)131 │ │ │ │ @@ -9622,15 +9611,15 @@ │ │ │ │ (lanczos)d(run",)i(t2)h(-)g(t1\))f(;)0 5073 y(fflush\(msgFile\))37 │ │ │ │ b(;)0 5172 y(if)43 b(\()g(myid)f(==)h(0)g(\))g({)0 5272 │ │ │ │ y(/*)131 5372 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---) │ │ │ │ o(--)o(--)o(---)o(--)o(---)o(-)p eop end │ │ │ │ %%Page: 40 41 │ │ │ │ TeXDict begin 40 40 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(40)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(40)131 │ │ │ │ 390 y Fl(processor)40 b(0)j(deals)e(with)h(eigenvalues)d(and)k(vectors) │ │ │ │ 131 490 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(-)0 589 y(*/)131 689 y(MARKTIME\(t1\))38 │ │ │ │ b(;)131 789 y(neig)129 b(=)43 b(nfound)e(+)i(ndiscd)e(;)131 │ │ │ │ 888 y(lstevl)g(=)i(nfound)e(;)131 988 y(lanczos_eigenval)o(ue)o(s)c │ │ │ │ (\(&lanczos_wksp,)h(eigval,)j(&neig,)g(&retc\);)131 1088 │ │ │ │ y(fstevl)g(=)i(1)g(;)131 1187 y(if)g(\()g(nfound)e(==)i(0)g(\))g │ │ │ │ @@ -9662,15 +9651,15 @@ │ │ │ │ (t1\))f(;)0 4973 y(fflush\(msgFile\))37 b(;)0 5073 y(MARKTIME\(t1\))i │ │ │ │ (;)0 5172 y(CleanupMPI\(&brid)o(ge\))e(;)0 5272 y(MARKTIME\(t2\))i(;)0 │ │ │ │ 5372 y(fprintf\(msgFile,)e("\\n)42 b(CPU)h(\0458.3f)e(:)i(free)f │ │ │ │ (solver)f(workspace",)e(t2)k(-)g(t1\))g(;)p eop end │ │ │ │ %%Page: 41 42 │ │ │ │ TeXDict begin 41 41 bop 83 100 760 4 v 925 100 a Fn(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fe(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fm(41)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fm(41)0 │ │ │ │ 390 y Fl(fflush\(msgFile\))37 b(;)0 589 y(MPI_Finalize\(\))h(;)0 │ │ │ │ 789 y(fprintf\(msgFile,)f("\\n"\))k(;)0 888 y(fclose\(msgFile\))c(;)0 │ │ │ │ 1088 y(return)k(;)i(})p eop end │ │ │ │ %%Page: 42 43 │ │ │ │ TeXDict begin 42 42 bop 0 866 a Fo(Index)0 1281 y Fl(Cleanup\(\))p │ │ │ │ Fm(,)24 b(7)0 1380 y Fl(CleanupMPI\(\))p Fm(,)f(19)0 │ │ │ │ 1480 y Fl(CleanupMT\(\))p Fm(,)g(12)0 1663 y Fl(Factor\(\))p │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -1,12 +1,12 @@ │ │ │ │ │ Integrating the SPOOLES 2.2 Sparse Linear Algebra Library │ │ │ │ │ into the LANCZOS Block-shifted Lanczos Eigensolver │ │ │ │ │ Cleve Ashcraft Jim Patterson │ │ │ │ │ Boeing Phantom Works1 Boeing Phantom Works2 │ │ │ │ │ - October 18, 2025 │ │ │ │ │ + October 28, 2025 │ │ │ │ │ 1P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, cleve.ashcraft@boeing.com. This research │ │ │ │ │ was supported in part by the DARPA Contract DABT63-95-C-0122 and the DoD High Performance Computing │ │ │ │ │ Modernization Program Common HPC Software Support Initiative. │ │ │ │ │ 2P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, pattersn@redwood.rt.cs.boeing.com. This re- │ │ │ │ │ search was supportedin part bytheDARPAContractDABT63-95-C-0122 andtheDoDHighPerformanceComputing │ │ │ │ │ Modernization Program Common HPC Software Support Initiative. │ │ │ │ │ Contents │ │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ │ b b │ │ │ │ │ izations and solves involving A and B. This permutation matrix P is typically found by ordering the graph │ │ │ │ │ of A +B using a variant of minimum degree or nested dissection. The ordering is performed prior to any │ │ │ │ │ action by the eigensolver. This “setup phase” includes more than just finding the permutation matrix, e.g., │ │ │ │ │ various data structures must be initialized. In a parallel environment, there is even more setup work to do, │ │ │ │ │ analyzing the factorization and solves and specifying which threads or processors perform what computations │ │ │ │ │ 2 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 3 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 3 │ │ │ │ │ and store what data. In a distributed environment, the entries of A and B must also be distributed among │ │ │ │ │ the processors in preparation for the factors and multiplies. │ │ │ │ │ For each of the three environments — serial, multithreaded and MPI — the SPOOLES solver has │ │ │ │ │ constructed a “bridge” object to span the interface between the linear system solver and the eigensolver. │ │ │ │ │ Each of the Bridge, BridgeMT and BridgeMPI objects have five methods: set-up, factor, solve, matrix- │ │ │ │ │ multiply and cleanup. The factor, solve and matrix-multiply methods follow the calling sequence convention │ │ │ │ │ imposed by the eigensolver, and are passed to the eigensolver at the beginning of the Lanczos run. The │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ and are used in the solves. │ │ │ │ │ • FrontMtx *frontmtx : object that stores the L, D and U factor matrices. │ │ │ │ │ • IV *oldToNewIV : object that stores old-to-new permutation vector. │ │ │ │ │ • IV *newToOldIV : object that stores new-to-old permutation vector. │ │ │ │ │ • DenseMtx *X : dense matrix object that is used during the matrix multiples and solves. │ │ │ │ │ • DenseMtx *Y : dense matrix object that is used during the matrix multiples and solves. │ │ │ │ │ 4 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 5 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 5 │ │ │ │ │ • int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times. │ │ │ │ │ When greater than 1, more and more output. │ │ │ │ │ • FILE *msgFile : message file for output. When msglvl > 0, msgFile must not be NULL. │ │ │ │ │ 2.2 Prototypes and descriptions of Bridge methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the Bridge object. │ │ │ │ │ 1. int Setup ( void *data, int *pprbtype, int *pneqns, int *pmxbsz, │ │ │ │ │ InpMtx *A, InpMtx *B, int *pseed, int *pmsglvl, FILE *msgFile ) ; │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ The frontETree object is produced and placed into the bridge object. │ │ │ │ │ • Old-to-new and new-to-old permutations are extracted from the front tree and loaded into the │ │ │ │ │ Bridge object. │ │ │ │ │ • The vertices in the front tree are permuted, as well as the entries in A and B. Entries in the lower │ │ │ │ │ triangle of A and B are mapped into the upper triangle, and the storage modes of A and B are │ │ │ │ │ changed to chevrons and vectors, in preparation for the first factorization. │ │ │ │ │ • The symbolic factorization is then computed and loaded in the Bridge object. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 6 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 6 │ │ │ │ │ • A FrontMtx object is created to hold the factorization and loaded into the Bridge object. │ │ │ │ │ • A SubMtxManager object is created to hold the factor’s submatrices and loaded into the Bridge │ │ │ │ │ object. │ │ │ │ │ • Two DenseMtx objects are created to be used during the matrix multiplies and solves. │ │ │ │ │ The A and B matrices are now in their permuted ordering, i.e., PAPT and PBPT, and all data struc- │ │ │ │ │ tures are with respect to this ordering. After the Lanczos run completes, any generated eigenvectors │ │ │ │ │ must be permuted back into their original ordering using the oldToNewIV and newToOldIV objects. │ │ │ │ │ @@ -173,15 +173,15 @@ │ │ │ │ │ • double X[] — this is the X matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • double Y[] — this is the Y matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • int *pprbtype — *pprbtype holds the problem type. │ │ │ │ │ – 1 — vibration, a multiply with B is required. │ │ │ │ │ – 2 — buckling, a multiply with A is required. │ │ │ │ │ – 3 — simple, no multiply is required. │ │ │ │ │ • void *data — a pointer to the Bridge object. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 7 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 7 │ │ │ │ │ 4. void Solve ( int *pnrows, int *pncols, double X[], double Y[], │ │ │ │ │ void *data, int *perror ) ; │ │ │ │ │ This method solves (A−σB)X = Y, where (A−σB) has been factored by a previous call to Factor(). │ │ │ │ │ All calling sequence parameters are pointers to more easily allow an interface with Fortran. │ │ │ │ │ • int *pnrows — *pnrows contains the number of rows in X and Y. │ │ │ │ │ • int *pncols — *pncols contains the number of columns in X and Y. │ │ │ │ │ • double X[] — this is the X matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ @@ -207,15 +207,15 @@ │ │ │ │ │ • inFileB is the Harwell-Boeing file for the matrix B. │ │ │ │ │ This program is executed for some sample matrices by the do ST * shell scripts in the drivers directory. │ │ │ │ │ Here is a short description of the steps in the driver program. See Chapter A for the listing. │ │ │ │ │ 1. The command line inputs are decoded. │ │ │ │ │ 2. The header of the Harwell-Boeing file for A is read. This yields the number of equations. │ │ │ │ │ 3. The parameters that define the eigensystem to be solved are read in from the parmFile file. │ │ │ │ │ 4. The Lanczos eigensolver workspace is initialized. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 8 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 8 │ │ │ │ │ 5. The Lanczos communication structure is filled with some parameters. │ │ │ │ │ 6. The A and possibly B matrices are read in from the Harwell-Boeing files and converted into InpMtx │ │ │ │ │ objects from the SPOOLES library. │ │ │ │ │ 7. The linear solver environment is then initialized via a call to Setup(). │ │ │ │ │ 8. The eigensolver is invoked via a call to lanczos run(). The FactorMT(), SolveMT() and MatMulMT() │ │ │ │ │ methods are passed to this routine. │ │ │ │ │ 9. The eigenvalues are extracted and printed via a call to lanczos eigenvalues(). │ │ │ │ │ @@ -243,15 +243,15 @@ │ │ │ │ │ where it is contained. │ │ │ │ │ • IVL *symbfacIVL : object that contains the symbolic factorization of the matrix. │ │ │ │ │ • SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor entries │ │ │ │ │ and are used in the solves. │ │ │ │ │ • FrontMtx *frontmtx : object that stores the L, D and U factor matrices. │ │ │ │ │ • IV *oldToNewIV : object that stores old-to-new permutation vector. │ │ │ │ │ 9 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 10 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 10 │ │ │ │ │ • IV *newToOldIV : object that stores new-to-old permutation vector. │ │ │ │ │ • DenseMtx *X : dense matrix object that is used during the matrix multiples and solves. │ │ │ │ │ • DenseMtx *Y : dense matrix object that is used during the matrix multiples and solves. │ │ │ │ │ • IV *ownersIV : object that maps fronts to owning threads for the factorization and matrix-multiplies. │ │ │ │ │ • SolveMap *solvemap : object that maps factor submatrices to owning threads for the solve. │ │ │ │ │ • int msglvl : message level for output. When 0, no output, When 1, just statistics and cpu times. │ │ │ │ │ When greater than 1, more and more output. │ │ │ │ │ @@ -281,15 +281,15 @@ │ │ │ │ │ • FILE *pmsglvl— msgFileis the message file for the bridge methods and the SPOOLES meth- │ │ │ │ │ ods they call. │ │ │ │ │ This method must be called in the driver program prior to invoking the eigensolver via a call to │ │ │ │ │ lanczos run(). It then follows this sequence of action. │ │ │ │ │ • The method begins by checking all the input data, and setting the appropriate fields of the │ │ │ │ │ BridgeMT object. │ │ │ │ │ • The pencil object is initialized with A and B. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 11 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 11 │ │ │ │ │ • A and B are converted to storage by rows and vector mode. │ │ │ │ │ • A Graph object is created that contains the sparsity pattern of the union of A and B. │ │ │ │ │ • The graph is ordered by first finding a recursive dissection partition, and then evaluating the │ │ │ │ │ orderings produced by nested dissection and multisection, and choosing the better of the two. │ │ │ │ │ The frontETree object is produced and placed into the bridge object. │ │ │ │ │ • Old-to-new and new-to-old permutations are extracted from the front tree and loaded into the │ │ │ │ │ BridgeMT object. │ │ │ │ │ @@ -326,15 +326,15 @@ │ │ │ │ │ by 1/(∗ppvttol). │ │ │ │ │ • void *data — a pointer to the BridgeMT object. │ │ │ │ │ • int *pinertia — on return, *pinertia holds the number of negative eigenvalues. │ │ │ │ │ • int *perror — on return, *perror holds an error code. │ │ │ │ │ 1 error in the factorization -2 ppvttol is NULL │ │ │ │ │ 0 normal return -3 data is NULL │ │ │ │ │ -1 psigma is NULL -4 pinertia is NULL │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 12 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 12 │ │ │ │ │ 3. void MatMulMT ( int *pnrows, int *pncols, double X[], double Y[], │ │ │ │ │ int *pprbtype, void *data ) ; │ │ │ │ │ This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence │ │ │ │ │ parameters are pointers to more easily allow an interface with Fortran. │ │ │ │ │ • int *pnrows — *pnrows contains the number of rows in X and Y. │ │ │ │ │ • int *pncols — *pncols contains the number of columns in X and Y. │ │ │ │ │ • double X[] — this is the X matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ @@ -363,15 +363,15 @@ │ │ │ │ │ 3.3 The testMT Driver Program │ │ │ │ │ A complete listing of the multithreaded driver program is found in chapter B. The program is invoked by │ │ │ │ │ this command sequence. │ │ │ │ │ testMT msglvl msgFile parmFile seed nthread inFileA inFileB │ │ │ │ │ where │ │ │ │ │ • msglvl is the message level for the BridgeMT methods and the SPOOLES software. │ │ │ │ │ • msgFile is the message file for the BridgeMT methods and the SPOOLES software. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 13 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 13 │ │ │ │ │ • parmFile is the input file for the parameters of the eigensystem to be solved. │ │ │ │ │ • seed is a random number seed used by the SPOOLES software. │ │ │ │ │ • nthread is the number of threads to use in the factors, solves and matrix-multiplies. │ │ │ │ │ • inFileA is the Harwell-Boeing file for the matrix A. │ │ │ │ │ • inFileB is the Harwell-Boeing file for the matrix B. │ │ │ │ │ This program is executed for some sample matrices by the do ST * shell scripts in the drivers directory. │ │ │ │ │ Here is a short description of the steps in the driver program. See Chapter A for the listing. │ │ │ │ │ @@ -411,15 +411,15 @@ │ │ │ │ │ • ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree they │ │ │ │ │ form, the number of internal and external rows for each front, and the map from vertices to the front │ │ │ │ │ where it is contained. │ │ │ │ │ • IVL *symbfacIVL : object that contains the symbolic factorization of the matrix. │ │ │ │ │ • SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor entries │ │ │ │ │ and are used in the solves. │ │ │ │ │ 14 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 15 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 15 │ │ │ │ │ • FrontMtx *frontmtx : object that stores the L, D and U factor matrices. │ │ │ │ │ • IV *oldToNewIV : object that stores old-to-new permutation vector. │ │ │ │ │ • IV *newToOldIV : object that stores new-to-old permutation vector. │ │ │ │ │ • DenseMtx *Xloc : dense local matrix object that is used during the matrix multiples and solves. │ │ │ │ │ • DenseMtx *Yloc : dense local matrix object that is used during the matrix multiples and solves. │ │ │ │ │ • IV *vtxmapIV : object that maps vertices to owning processors for the factorization and matrix- │ │ │ │ │ multiplies. │ │ │ │ │ @@ -450,15 +450,15 @@ │ │ │ │ │ inside the LANCZOS software a global Krylov block is assembled on each processor prior to calling the │ │ │ │ │ solve or matrix-multiply methods. To “translate” between the global blocks to local blocks, and then back │ │ │ │ │ to global blocks, we have written two wrapper methods, JimMatMulMPI() and JimSolveMPI(). Each takes │ │ │ │ │ the global input block, compresses it into a local block, call the bridge matrix-multiply or solve method, │ │ │ │ │ then takes the local output blocks and gathers them on all the processors into each of their global output │ │ │ │ │ blocks. These operations add a considerable cost to the solve and matrix-multiplies, but the next release of │ │ │ │ │ the LANCZOS software will remove these steps. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 16 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 16 │ │ │ │ │ 1. int SetupMPI ( void *data, int *pprbtype, int *pneqns, │ │ │ │ │ int *pmxbsz, InpMtx *A, InpMtx *B, int *pseed, │ │ │ │ │ int *pmsglvl, FILE *msgFile, MPI_Comm comm ) ; │ │ │ │ │ All calling sequence parameters are pointers to more easily allow an interface with Fortran. │ │ │ │ │ • void *data — a pointer to the BridgeMPI object. │ │ │ │ │ • int *pprbtype — *pprbtype holds the problem type. │ │ │ │ │ – 1 — vibration, a multiply with B is required. │ │ │ │ │ @@ -493,15 +493,15 @@ │ │ │ │ │ • The ownersIV, vtxmapIV and myownedIV objects are created, that map fronts and vertices to │ │ │ │ │ processors. │ │ │ │ │ • The entries in A and B are permuted. Entries in the permuted lower triangle are mapped into │ │ │ │ │ the upper triangle. The storage modes of A and B are changed to chevrons and vectors, and the │ │ │ │ │ entries of A and B are redistributed to the processors that own them. │ │ │ │ │ • The symbolic factorization is then computed and loaded in the BridgeMPI object. │ │ │ │ │ • A FrontMtx object is created to hold the factorization and loaded into the BridgeMPI object. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 17 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 17 │ │ │ │ │ • ASubMtxManagerobjectiscreatedtoholdthefactor’ssubmatricesandloadedintotheBridgeMPI │ │ │ │ │ object. │ │ │ │ │ • Themapfromfactorsubmatricestotheir owningthreadsis computed and stored in the solvemap │ │ │ │ │ object. │ │ │ │ │ • The distributed matrix-multiplies are set up. │ │ │ │ │ The A and B matrices are now in their permuted ordering, i.e., PAPT and PBPT, and all data struc- │ │ │ │ │ tures are with respect to this ordering. After the Lanczos run completes, any generated eigenvectors │ │ │ │ │ @@ -536,15 +536,15 @@ │ │ │ │ │ • int *pnrows — *pnrows contains the number of global rows in X and Y. │ │ │ │ │ • int *pncols — *pncols contains the number of global columns in X and Y. │ │ │ │ │ • double X[] — this is the global X matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • double Y[] — this is the global Y matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • int *pprbtype — *pprbtype holds the problem type. │ │ │ │ │ – 1 — vibration, a multiply with B is required. │ │ │ │ │ – 2 — buckling, a multiply with A is required. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 18 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 18 │ │ │ │ │ – 3 — simple, no multiply is required. │ │ │ │ │ • void *data — a pointer to the BridgeMPI object. │ │ │ │ │ 4. void MatMulMPI ( int *pnrows, int *pncols, double X[], double Y[], │ │ │ │ │ int *pprbtype, void *data ) ; │ │ │ │ │ This method computes a multiply of the form Y = IX, Y = AX or Y = BX. All calling sequence │ │ │ │ │ parameters are pointers to more easily allow an interface with Fortran. │ │ │ │ │ • int *pnrows — *pnrows contains the number of local rows in X and Y. │ │ │ │ │ @@ -578,15 +578,15 @@ │ │ │ │ │ • double X[] — this is the local X matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • double Y[] — this is the local Y matrix, stored column major with leading dimension *pnrows. │ │ │ │ │ • void *data — a pointer to the BridgeMPI object. │ │ │ │ │ • int *perror — on return, *perror holds an error code. │ │ │ │ │ 1 normal return -3 X is NULL │ │ │ │ │ -1 pnrows is NULL -4 Y is NULL │ │ │ │ │ -2 pncols is NULL -5 data is NULL │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 19 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 19 │ │ │ │ │ 7. int CleanupMPI ( void *data ) ; │ │ │ │ │ This method releases all the storage used by the SPOOLES library functions. │ │ │ │ │ Return value: 1 for a normal return, -1 if a data is NULL. │ │ │ │ │ 4.3 The testMPI Driver Program │ │ │ │ │ A complete listing of the multithreaded driver program is found in chapter C. The program is invoked by │ │ │ │ │ this command sequence. │ │ │ │ │ testMPI msglvl msgFile parmFile seed inFileA inFileB │ │ │ │ │ @@ -644,15 +644,15 @@ │ │ │ │ │ double eigval[1000], sigma[2]; │ │ │ │ │ double *evec; │ │ │ │ │ int error, fstevl, lfinit, lstevl, mxbksz, msglvl, ncol, ndiscd, │ │ │ │ │ neig, neigvl, nfound, nnonzeros, nrhs, nrow, prbtyp, rc, │ │ │ │ │ retc, rfinit, seed, warnng ; │ │ │ │ │ int c__5 = 5, output = 6 ; │ │ │ │ │ 20 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 21 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 21 │ │ │ │ │ int *lanczos_wksp; │ │ │ │ │ InpMtx *inpmtxA, *inpmtxB ; │ │ │ │ │ FILE *msgFile, *parmFile; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ if ( argc != 7 ) { │ │ │ │ │ fprintf(stdout, │ │ │ │ │ "\n\n usage : %s msglvl msgFile parmFile seed inFileA inFileB" │ │ │ │ │ @@ -694,15 +694,15 @@ │ │ │ │ │ /* │ │ │ │ │ --------------------------------------------- │ │ │ │ │ read in the Harwell-Boeing matrix information │ │ │ │ │ --------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ if ( strcmp(inFileName_A, "none") == 0 ) { │ │ │ │ │ fprintf(msgFile, "\n no file to read from") ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 22 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 22 │ │ │ │ │ exit(0) ; │ │ │ │ │ } │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : read in header information for A", │ │ │ │ │ t2 - t1) ; │ │ │ │ │ @@ -746,15 +746,15 @@ │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data", │ │ │ │ │ t2 - t1) ; │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------- │ │ │ │ │ check and set the problem type parameter │ │ │ │ │ ---------------------------------------- │ │ │ │ │ */ │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 23 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 23 │ │ │ │ │ switch ( pbtype[1] ) { │ │ │ │ │ case ’v’ : case ’V’ : prbtyp = 1 ; break ; │ │ │ │ │ case ’b’ : case ’B’ : prbtyp = 2 ; break ; │ │ │ │ │ case ’o’ : case ’O’ : prbtyp = 3 ; break ; │ │ │ │ │ default : │ │ │ │ │ fprintf(stderr, "\n invalid problem type %s", pbtype) ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ InpMtx_readFromHBfile ( inpmtxA, inFileName_A ) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : read in A", t2 - t1) ; │ │ │ │ │ if ( msglvl > 2 ) { │ │ │ │ │ fprintf(msgFile, "\n\n InpMtx A object after loading") ; │ │ │ │ │ InpMtx_writeForHumanEye(inpmtxA, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 24 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 24 │ │ │ │ │ } │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__1, &retc ); │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : set A’s parameters", t2 - t1) ; │ │ │ │ │ if ( prbtyp != 3 ) { │ │ │ │ │ if ( strcmp(inFileName_B, "none") == 0 ) { │ │ │ │ │ @@ -850,15 +850,15 @@ │ │ │ │ │ invoke eigensolver │ │ │ │ │ nfound -- # of eigenvalues found and kept │ │ │ │ │ ndisc -- # of additional eigenvalues discarded │ │ │ │ │ ----------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ lanczos_run(&neigvl, &which[1] , &pbtype[1], &lfinit, &lftend, │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 25 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 25 │ │ │ │ │ &rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound, │ │ │ │ │ &ndiscd, &warnng, &error, Factor, MatMul, Solve ) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : time for lanczos run", t2 - t1) ; │ │ │ │ │ /* │ │ │ │ │ ------------------------- │ │ │ │ │ get eigenvalues and print │ │ │ │ │ @@ -901,15 +901,15 @@ │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ lanczos_free( &lanczos_wksp ) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : free lanczos workspace ", t2 - t1) ; │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ rc = Cleanup(&bridge) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 26 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 26 │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : free solver workspace ", t2 - t1) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ fprintf(stderr, "\n error return %d from Cleanup()", rc) ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ fprintf(msgFile, "\n") ; │ │ │ │ │ fclose(msgFile) ; │ │ │ │ │ @@ -942,15 +942,15 @@ │ │ │ │ │ double *evec; │ │ │ │ │ int error, fstevl, lfinit, lstevl, msglvl, mxbksz, ncol, ndiscd, │ │ │ │ │ neig, neigvl, nfound, nnonzeros, nrhs, nrow, nthreads, │ │ │ │ │ prbtyp, rc, retc, rfinit, seed, warnng ; │ │ │ │ │ int c__5 = 5, output = 6 ; │ │ │ │ │ int *lanczos_wksp; │ │ │ │ │ 27 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 28 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 28 │ │ │ │ │ InpMtx *inpmtxA, *inpmtxB ; │ │ │ │ │ FILE *msgFile, *parmFile ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ if ( argc != 8 ) { │ │ │ │ │ fprintf(stdout, │ │ │ │ │ "\n\n usage : %s msglvl msgFile parmFile seed nthread inFileA inFileB" │ │ │ │ │ "\n msglvl -- message level" │ │ │ │ │ @@ -994,15 +994,15 @@ │ │ │ │ │ --------------------------------------------- │ │ │ │ │ read in the Harwell-Boeing matrix information │ │ │ │ │ --------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ if ( strcmp(inFileName_A, "none") == 0 ) { │ │ │ │ │ fprintf(msgFile, "\n no file to read from") ; │ │ │ │ │ exit(0) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 29 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 29 │ │ │ │ │ } │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : read in harwell-boeing header info", │ │ │ │ │ t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ @@ -1046,15 +1046,15 @@ │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data", │ │ │ │ │ t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------- │ │ │ │ │ check and set the problem type parameter │ │ │ │ │ ---------------------------------------- │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 30 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 30 │ │ │ │ │ */ │ │ │ │ │ switch ( pbtype[1] ) { │ │ │ │ │ case ’v’ : │ │ │ │ │ case ’V’ : │ │ │ │ │ prbtyp = 1 ; │ │ │ │ │ break ; │ │ │ │ │ case ’b’ : │ │ │ │ │ @@ -1098,15 +1098,15 @@ │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ --------------------------------------------- │ │ │ │ │ create the InpMtx objects for matrix A and B │ │ │ │ │ --------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ if ( strcmp(inFileName_A, "none") == 0 ) { │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 31 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 31 │ │ │ │ │ fprintf(msgFile, "\n no file to read A from") ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ inpmtxA = InpMtx_new() ; │ │ │ │ │ InpMtx_readFromHBfile ( inpmtxA, inFileName_A ) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ @@ -1150,15 +1150,15 @@ │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : set up the solver environment", │ │ │ │ │ t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ fprintf(stderr, "\n error return %d from SetupMT()", rc) ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 32 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 32 │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ----------------------------------------------- │ │ │ │ │ invoke eigensolver │ │ │ │ │ nfound -- # of eigenvalues found and kept │ │ │ │ │ ndisc -- # of additional eigenvalues discarded │ │ │ │ │ ----------------------------------------------- │ │ │ │ │ @@ -1202,15 +1202,15 @@ │ │ │ │ │ hdslp5_ ( "computed eigenvector returned by hdserc", │ │ │ │ │ &neig, evec, &output, 39L ) ; │ │ │ │ │ } │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : get and print eigenvectors", t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ */ │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 33 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 33 │ │ │ │ │ /* │ │ │ │ │ ------------------------ │ │ │ │ │ free the working storage │ │ │ │ │ ------------------------ │ │ │ │ │ */ │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ lanczos_free( &lanczos_wksp ) ; │ │ │ │ │ @@ -1254,15 +1254,15 @@ │ │ │ │ │ InpMtx *inpmtxA, *inpmtxB ; │ │ │ │ │ FILE *msgFile, *parmFile ; │ │ │ │ │ double lftend, rhtend, center, shfscl, t1, t2 ; │ │ │ │ │ double c__1 = 1.0, c__4 = 4.0, tolact = 2.309970868130169e-11 ; │ │ │ │ │ double eigval[1000], sigma[2] ; │ │ │ │ │ double *evec; │ │ │ │ │ 34 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 35 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 35 │ │ │ │ │ /* │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ find out the identity of this process and the number of process │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ MPI_Init(&argc, &argv) ; │ │ │ │ │ MPI_Comm_dup(MPI_COMM_WORLD, &comm) ; │ │ │ │ │ @@ -1306,15 +1306,15 @@ │ │ │ │ │ } │ │ │ │ │ parmFileName = argv[3] ; │ │ │ │ │ seed = atoi(argv[4]) ; │ │ │ │ │ inFileName_A = argv[5] ; │ │ │ │ │ inFileName_B = argv[6] ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n %s " │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 36 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 36 │ │ │ │ │ "\n msglvl -- %d" │ │ │ │ │ "\n message file -- %s" │ │ │ │ │ "\n parameter file -- %s" │ │ │ │ │ "\n stiffness matrix file -- %s" │ │ │ │ │ "\n mass matrix file -- %s" │ │ │ │ │ "\n random number seed -- %d" │ │ │ │ │ "\n", │ │ │ │ │ @@ -1358,15 +1358,15 @@ │ │ │ │ │ with K positive semidefinite │ │ │ │ │ with K_s posibly indefinite (buckling problem) │ │ │ │ │ ’o’ or ’O’ ordinary symmetric eigenproblem │ │ │ │ │ lfinit -- if true, lftend is restriction on lower bound of │ │ │ │ │ eigenvalues. if false, no restriction on lower bound │ │ │ │ │ lftend -- left endpoint of interval │ │ │ │ │ rfinit -- if true, rhtend is restriction on upper bound of │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 37 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 37 │ │ │ │ │ eigenvalues. if false, no restriction on upper bound │ │ │ │ │ rhtend -- right endpoint of interval │ │ │ │ │ center -- center of interval │ │ │ │ │ mxbksz -- upper bound on block size for Lanczos recurrence │ │ │ │ │ shfscl -- shift scaling parameter, an estimate on the magnitude │ │ │ │ │ of the smallest nonzero eigenvalues │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ @@ -1410,15 +1410,15 @@ │ │ │ │ │ initialize communication structure │ │ │ │ │ ---------------------------------- │ │ │ │ │ */ │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "order-of-problem", &nrow, &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "accuracy-tolerance", &tolact, &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "max-block-size", &mxbksz, &retc ); │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 38 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 38 │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "shift-scale", &shfscl, &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "message_level", &msglvl, &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "mpi-communicator", &comm, &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "qfile-pathname", "lqfil", &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "mqfil-pathname", "lmqfil", &retc ); │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "evfil-pathname", "evcfil", &retc ); │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ @@ -1462,15 +1462,15 @@ │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ } else { │ │ │ │ │ inpmtxB = NULL ; │ │ │ │ │ lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__4, &retc ); │ │ │ │ │ } │ │ │ │ │ } else { │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 39 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 39 │ │ │ │ │ /* │ │ │ │ │ ------------------------------------------------ │ │ │ │ │ other processors initialize their local matrices │ │ │ │ │ ------------------------------------------------ │ │ │ │ │ */ │ │ │ │ │ inpmtxA = InpMtx_new() ; │ │ │ │ │ InpMtx_init(inpmtxA, INPMTX_BY_CHEVRONS, SPOOLES_REAL, 0, 0) ; │ │ │ │ │ @@ -1514,15 +1514,15 @@ │ │ │ │ │ JimSolveMPI ) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : time for lanczos run", t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ if ( myid == 0 ) { │ │ │ │ │ /* │ │ │ │ │ ---------------------------------------------- │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 40 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 40 │ │ │ │ │ processor 0 deals with eigenvalues and vectors │ │ │ │ │ ---------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ neig = nfound + ndiscd ; │ │ │ │ │ lstevl = nfound ; │ │ │ │ │ lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc); │ │ │ │ │ @@ -1566,15 +1566,15 @@ │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : free lanczos workspace", t2 - t1) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ MARKTIME(t1) ; │ │ │ │ │ CleanupMPI(&bridge) ; │ │ │ │ │ MARKTIME(t2) ; │ │ │ │ │ fprintf(msgFile, "\n CPU %8.3f : free solver workspace", t2 - t1) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 41 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 41 │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ MPI_Finalize() ; │ │ │ │ │ fprintf(msgFile, "\n") ; │ │ │ │ │ fclose(msgFile) ; │ │ │ │ │ return ; } │ │ │ │ │ Index │ │ │ │ │ Cleanup(), 7 │ │ ├── ./usr/share/doc/spooles-doc/FrontMtx.ps.gz │ │ │ ├── FrontMtx.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o FrontMtx.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1758,15 +1758,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1960,81 +1959,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5002,15 +4996,15 @@ │ │ │ │ 56 56 56 56 56 56 56 56 56 1[31 46[{}40 99.6264 /CMBX12 │ │ │ │ rf /Fc 135[62 3[62 1[62 2[62 62 32[62 6[62 1[62 68[{}8 │ │ │ │ 119.552 /CMTT12 rf /Fd 134[71 2[71 75 52 53 55 1[75 67 │ │ │ │ 75 112 2[41 37 75 67 41 61 75 60 75 65 13[75 2[92 11[103 │ │ │ │ 16[67 67 67 2[37 46[{}27 119.552 /CMBX12 rf /Fe 132[52 │ │ │ │ 39[58 2[71 79 2[63 6[69 69[{}6 90.9091 /CMBX10 rf /Ff │ │ │ │ 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 │ │ │ │ -45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fg 148[45 3[45 │ │ │ │ +1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fg 148[45 3[45 │ │ │ │ 45 9[61 61 31[45 4[0 51[71 1[71{}9 90.9091 /CMSY10 rf │ │ │ │ /Fh 135[42 1[42 49 30 37 38 1[46 46 51 74 23 42 1[28 │ │ │ │ 46 42 28 42 46 42 1[46 12[65 1[66 11[59 62 69 2[68 6[28 │ │ │ │ 58[{}27 90.9091 /CMTI10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ @@ -5147,15 +5141,15 @@ │ │ │ │ b(.)111 5294 y(3.)46 b Fk(A)k Fm(=)e Fk(QR)e Fm(for)e(square)g(or)h │ │ │ │ (rectangular)h Fk(A)p Fm(.)84 b Fk(Q)44 b Fm(is)h(an)f(orthogonal)i │ │ │ │ (matrix)f(that)h(is)e(not)h(explicitly)227 5407 y(computed)30 │ │ │ │ b(or)h(stored.)41 b Fk(R)31 b Fm(is)f(upp)s(er)e(triangular.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fm(2)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 141 399 a Fm(The)44 b(factorization)j(is)d(p)s │ │ │ │ (erformed)f(using)h(a)g(one)h(dimensional)f(decomp)s(osition)h(of)f │ │ │ │ (the)h(global)g(sparse)0 511 y(matrix.)c(A)31 b(t)m(ypical)h │ │ │ │ Fh(fr)-5 b(ont)31 b Fm(of)g(the)f(matrix)h(is)f(found)f(the)i(shaded)f │ │ │ │ (p)s(ortion)g(of)g(the)h(\014gure)e(b)s(elo)m(w.)1650 │ │ │ │ 1237 y @beginspecial 0 @llx 0 @lly 100 @urx 100 @ury │ │ │ │ 720 @rwi 720 @rhi @setspecial │ │ │ │ @@ -5241,15 +5235,15 @@ │ │ │ │ b(ject,)37 b(nor)c(do)s(es)h(it)g(o)m(wn)g(the)h(storage)g(for)f(the)g │ │ │ │ Fl(ETree)227 5407 y Fm(ob)5 b(ject.)42 b(Th)m(us)29 b(m)m(ultiple)i │ │ │ │ (fron)m(t)g(matrices)g(can)g(all)g(p)s(oin)m(t)f(to)i(the)e(same)h │ │ │ │ Fl(ETree)e Fm(ob)5 b(ject)31 b(sim)m(ultaneously)-8 b(.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1034 4 v 1215 100 a Fl(FrontMtx)29 │ │ │ │ -b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(3)137 399 y Fi(\210)45 b Fm(An)35 │ │ │ │ b Fl(IVL)g Fm(ob)5 b(ject)36 b(\()p Fl(I)p Fm(n)m(teger)g │ │ │ │ Fl(V)p Fm(ector)h Fl(L)p Fm(ist\),)g(con)m(tains)f(the)g(sym)m(b)s │ │ │ │ (olic)g(factorization.)58 b(F)-8 b(or)36 b(eac)m(h)g(fron)m(t,)h(it)227 │ │ │ │ 511 y(giv)m(es)31 b(the)g(list)f(of)g(in)m(ternal)h(and)e(external)i │ │ │ │ (ro)m(ws)f(and)f(columns,)h(used)f(to)h(initialize)j(a)d(fron)m(t)g │ │ │ │ (prior)f(to)i(its)227 624 y(factorization.)55 b(F)-8 │ │ │ │ @@ -5335,15 +5329,15 @@ │ │ │ │ b(the)45 b(data)h(structures)e(are)i(p)s(ostpro)s(cessed)e(to)h(yield)g │ │ │ │ (submatrices)g(that)h(con)m(tain)g(the)227 5294 y(coupling)34 │ │ │ │ b(b)s(et)m(w)m(een)g(fron)m(ts.)50 b(The)33 b(w)m(orking)h(storage)h │ │ │ │ (during)d(the)i(solv)m(es)g(is)g(also)g(managed)g(b)m(y)g │ │ │ │ Fl(SubMtx)227 5407 y Fm(ob)5 b(jects.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fm(4)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 137 399 a Fi(\210)45 b Fm(Eac)m(h)25 │ │ │ │ b(submatrix)f(represen)m(ts)h(the)f(coupling)h(b)s(et)m(w)m(een)g(t)m │ │ │ │ (w)m(o)h(fron)m(ts,)g Fk(I)31 b Fm(and)24 b Fk(J)9 b │ │ │ │ Fm(.)39 b(T)-8 b(o)25 b(enable)g(rapid)f(random)227 511 │ │ │ │ y(access)30 b(to)f(these)f(submatrices,)h(w)m(e)f(use)g(a)h │ │ │ │ Fl(I2Ohash)d Fm(ob)5 b(ject)29 b(that)f(is)h(a)f(hash)f(table)i(whose)f │ │ │ │ (k)m(eys)h(are)g(t)m(w)m(o)227 624 y(in)m(tegers)j(and)e(whose)g(data)h │ │ │ │ @@ -5407,15 +5401,15 @@ │ │ │ │ (of)e(factors.)330 5153 y Fe({)45 b Fl(0)30 b Fm(|)h(eac)m(h)g(fron)m │ │ │ │ (t)g(is)f(dense)330 5294 y Fe({)45 b Fl(1)g Fm(|)h(a)g(fron)m(t)f(ma)m │ │ │ │ (y)h(b)s(e)f(sparse)g(due)g(to)h(en)m(tries)h(dropp)s(ed)c(b)s(ecause)j │ │ │ │ (they)f(are)h(b)s(elo)m(w)g(a)g(drop)427 5407 y(tolerance.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1034 4 v 1215 100 a Fl(FrontMtx)29 │ │ │ │ -b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(5)137 399 y Fi(\210)45 b Fl(int)i(dataMode)28 │ │ │ │ b Fm(:)41 b(\015ag)31 b(to)g(sp)s(ecify)f(data)h(storage.)330 │ │ │ │ 583 y Fe({)45 b Fl(1)30 b Fm(|)h(one-dimensional,)g(used)f(during)f │ │ │ │ (the)h(factorization.)330 727 y Fe({)45 b Fl(2)30 b Fm(|)h(t)m(w)m │ │ │ │ (o-dimensional,)h(used)e(during)f(the)h(solv)m(es.)137 │ │ │ │ 911 y Fi(\210)45 b Fl(int)i(nentD)29 b Fm(:)i(n)m(um)m(b)s(er)e(of)h │ │ │ │ (en)m(tries)h(in)f Fk(D)137 1096 y Fi(\210)45 b Fl(int)i(nentL)29 │ │ │ │ @@ -5474,15 +5468,15 @@ │ │ │ │ y(the)c(solv)m(es.)137 5294 y Fi(\210)45 b Fl(I2Ohash)h(*upperhash)33 │ │ │ │ b Fm(:)51 b(p)s(oin)m(ter)35 b(to)i(a)f Fl(I2Ohash)d │ │ │ │ Fm(hash)i(table)h(for)g(submatrices)f(in)g Fk(U)10 b │ │ │ │ Fm(,)37 b(used)e(during)227 5407 y(the)c(solv)m(es.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fm(6)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 137 399 a Fi(\210)45 b Fl(SubMtxManager)f(*manager) │ │ │ │ 30 b Fm(:)43 b(p)s(oin)m(ter)31 b(to)h(an)g(ob)5 b(ject)32 │ │ │ │ b(that)g(manages)h(the)e(instances)h(of)g(submatrices)227 │ │ │ │ 511 y(during)d(the)i(factors)g(and)f(solv)m(es.)137 719 │ │ │ │ y Fi(\210)45 b Fl(Lock)i(*lock)27 b Fm(:)40 b(p)s(oin)m(ter)30 │ │ │ │ b(to)f(a)h Fl(Lock)e Fm(lo)s(c)m(k)i(used)e(in)h(a)g(m)m(ultithreaded)g │ │ │ │ (en)m(vironmen)m(t)h(to)g(ensure)e(exlusiv)m(e)227 832 │ │ │ │ @@ -5544,15 +5538,15 @@ │ │ │ │ y Fd(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g │ │ │ │ Fc(FrontMtx)c Fd(metho)t(ds)0 5294 y Fm(This)g(section)j(con)m(tains)f │ │ │ │ (brief)f(descriptions)g(including)f(protot)m(yp)s(es)i(of)f(all)h │ │ │ │ (metho)s(ds)f(that)h(b)s(elong)f(to)h(the)0 5407 y Fl(FrontMtx)28 │ │ │ │ b Fm(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1034 4 v 1215 100 a Fl(FrontMtx)29 │ │ │ │ -b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(7)0 399 y Fb(1.2.1)112 b(Basic)38 │ │ │ │ b(metho)s(ds)0 593 y Fm(As)d(usual,)h(there)f(are)g(four)f(basic)h │ │ │ │ (metho)s(ds)g(to)g(supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e │ │ │ │ (default)f(\014elds,)h(clearing)0 706 y(an)m(y)31 b(allo)s(cated)h │ │ │ │ (data,)f(and)f(free'ing)h(the)g(ob)5 b(ject.)111 930 │ │ │ │ y(1.)46 b Fl(FrontMtx)g(*)h(FrontMtx_new)e(\()i(void)g(\))g(;)227 │ │ │ │ 1078 y Fm(This)35 b(metho)s(d)g(simply)g(allo)s(cates)j(storage)f(for)e │ │ │ │ @@ -5613,15 +5607,15 @@ │ │ │ │ (*frontmtx)g(\))j(;)227 5259 y Fm(This)30 b(metho)s(d)g(returns)f(the)h │ │ │ │ (n)m(um)m(b)s(er)f(of)i(equations)g(in)f(the)h(matrix.)227 │ │ │ │ 5407 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fm(If)30 │ │ │ │ b Fl(frontmtx)e Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f(message)h(is)g │ │ │ │ (prin)m(ted)e(and)h(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fm(8)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(FrontMtx)28 b Ff(:)41 b Fh(DRAFT)30 b Ff(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 111 399 a Fm(3.)46 b Fl(Tree)h(*)g │ │ │ │ (FrontMtx_frontTree)c(\()48 b(FrontMtx)d(*frontmtx)g(\))j(;)227 │ │ │ │ 552 y Fm(This)30 b(metho)s(d)g(returns)f(the)h Fl(Tree)g │ │ │ │ Fm(ob)5 b(ject)31 b(for)f(the)h(fron)m(ts.)227 706 y │ │ │ │ Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fm(If)30 b Fl(frontmtx)e │ │ │ │ Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f(message)h(is)g(prin)m(ted)e(and)h │ │ │ │ (the)h(program)f(exits.)111 900 y(4.)46 b Fl(void)h │ │ │ │ @@ -5691,15 +5685,15 @@ │ │ │ │ 5294 y Fh(Err)-5 b(or)31 b(che)-5 b(cking:)38 b Fm(If)27 │ │ │ │ b Fl(frontmtx)d Fm(is)j Fl(NULL)p Fm(,)f(or)h(if)g Fl(J)f │ │ │ │ Fm(is)h(not)g(in)g Fl([0,nfront\))p Fm(,)d(an)j(error)g(message)h(is)e │ │ │ │ (prin)m(ted)227 5407 y(and)k(the)h(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1034 4 v 1215 100 a Fl(FrontMtx)29 │ │ │ │ -b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Ff(:)40 b Fh(DRAFT)121 b Ff(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(9)66 399 y(10.)46 b Fl(SubMtx)g(*)i │ │ │ │ (FrontMtx_upperMtx)43 b(\()k(FrontMtx)f(*frontmtx,)f(int)i(J,)g(int)g │ │ │ │ (K)g(\))h(;)227 554 y Fm(This)32 b(metho)s(d)h(returns)e(a)i(p)s(oin)m │ │ │ │ (ter)g(to)h(the)f(ob)5 b(ject)33 b(that)h(con)m(tains)g(submatrix)e │ │ │ │ Fk(U)3087 568 y Fj(J)n(;K)3212 554 y Fm(.)48 b(If)32 │ │ │ │ b Fk(K)k Fm(=)29 b Fk(nf)10 b(r)s(ont)p Fm(,)227 667 │ │ │ │ y(then)30 b(the)h(ob)5 b(ject)31 b(con)m(taining)h Fk(U)1370 │ │ │ │ @@ -5773,15 +5767,15 @@ │ │ │ │ Fl(IVL)e Fm(ob)5 b(ject)31 b(that)g(holds)f(the)h(lo)m(w)m(er)g(blo)s │ │ │ │ (c)m(ks.)227 5407 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fm(If)30 b Fl(frontmtx)e Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f │ │ │ │ (message)h(is)g(prin)m(ted)e(and)h(the)h(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fm(10)p 182 100 1011 4 │ │ │ │ -v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f(18,)h │ │ │ │ +v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f(28,)h │ │ │ │ (2025)p 2889 100 V 0 399 a Fb(1.2.3)112 b(Initialization)39 │ │ │ │ b(metho)s(ds)111 604 y Fm(1.)46 b Fl(void)h(FrontMtx_init)d(\()k │ │ │ │ (FrontMtx)d(*frontmtx,)g(ETree)h(*frontETree,)705 716 │ │ │ │ y(IVL)g(*symbfacIVL,)f(int)i(type,)f(int)h(symmetryflag,)d(int)j │ │ │ │ (sparsityflag,)705 829 y(int)f(pivotingflag,)f(int)i(lockflag,)e(int)i │ │ │ │ (myid,)f(IV)h(*ownersIV,)705 942 y(SubMtxManager)d(*manager,)h(int)i │ │ │ │ (msglvl,)f(FILE)g(*msgFile)g(\))h(;)227 1101 y Fm(This)23 │ │ │ │ @@ -5851,15 +5845,15 @@ │ │ │ │ b(Finally)34 b(the)e(fron)m(t's)h(en)m(tries)227 5248 │ │ │ │ y(are)e(zero)s(ed)g(via)g(a)f(call)i(to)f Fl(Chv)p 1317 │ │ │ │ 5248 V 34 w(zero\(\))p Fm(.)227 5407 y Fh(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fm(None)31 b(presen)m(tly)-8 b(.)p │ │ │ │ eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(11)111 399 y(2.)46 b Fl(char)h │ │ │ │ (FrontMtx_factorVisit)42 b(\()48 b(FrontMtx)d(*frontmtx,)g(Pencil)h │ │ │ │ (*pencil,)g(int)h(J,)370 511 y(int)g(myid,)g(int)g(owners[],)e(Chv)i │ │ │ │ (*fronts[],)e(int)i(lookahead,)e(double)h(tau,)370 624 │ │ │ │ y(double)h(droptol,)e(char)i(status[],)e(IP)i(*heads[],)e(IV)j │ │ │ │ (*pivotsizesIV,)c(DV)j(*workDV,)370 737 y(int)g(parent[],)f(ChvList)f │ │ │ │ (*aggList,)h(ChvList)g(*postList,)f(ChvManager)g(*chvmanager,)370 │ │ │ │ @@ -5925,15 +5919,15 @@ │ │ │ │ (es)f(in)e(the)h(fron)m(t)f(tree)h(with)f(resp)s(ect)h(to)g(the)f │ │ │ │ (thread)h(or)f(pro)s(cessor.)227 5407 y Fh(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fm(None)31 b(presen)m(tly)-8 b(.)p │ │ │ │ eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fm(12)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 111 399 a Fm(8.)46 b Fl(ChvList)g(*)i │ │ │ │ +(28,)h(2025)p 2889 100 V 111 399 a Fm(8.)46 b Fl(ChvList)g(*)i │ │ │ │ (FrontMtx_postList)43 b(\()k(FrontMtx)f(*frontmtx,)f(IV)i │ │ │ │ (*frontOwnersIV,)1659 511 y(int)g(lockflag)f(\))h(;)227 │ │ │ │ 666 y Fm(This)31 b(metho)s(d)h(is)g(called)h(b)m(y)e(the)h(m)m │ │ │ │ (ultithreaded)g(and)g(MPI)g(factor)g(metho)s(ds)g(to)g(create)i(and)d │ │ │ │ (return)g(a)227 779 y(list)g(ob)5 b(ject)32 b(to)f(hold)f(p)s(ostp)s │ │ │ │ (oned)f(c)m(hevrons)h(and)g(help)g(sync)m(hronize)g(the)h │ │ │ │ (factorization.)227 933 y Fh(Err)-5 b(or)34 b(che)-5 │ │ │ │ @@ -6002,15 +5996,15 @@ │ │ │ │ Fm(None)31 b(presen)m(tly)-8 b(.)66 5294 y(13.)46 b Fl │ │ │ │ (FrontMtx_storePostponedDa)o(ta)c(\()47 b(FrontMtx)f(*frontmtx,)f(Chv)i │ │ │ │ (*frontJ,)418 5407 y(int)g(npost,)f(int)h(K,)g(ChvList)f │ │ │ │ (*postponedlist,)e(ChvManager)h(*chvmanager)f(\))k(;)p │ │ │ │ eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(13)227 399 y(This)c(metho)s(d)f(is)h(used)g(to)h │ │ │ │ (store)g(an)m(y)f(p)s(ostp)s(oned)f(ro)m(ws)h(and)f(columns)h(from)g │ │ │ │ (the)g(curren)m(t)g(fron)m(t)h Fl(frontJ)227 511 y Fm(in)m(to)f(a)g │ │ │ │ Fl(Chv)e Fm(ob)5 b(ject)27 b(obtained)f(from)f(the)i │ │ │ │ Fl(chvmanager)c Fm(ob)5 b(ject)27 b(and)e(place)i(it)f(in)m(to)h(the)g │ │ │ │ (list)f(of)g(p)s(ostp)s(oned)227 624 y(ob)5 b(jects)25 │ │ │ │ b(for)e Fl(K)p Fm(,)g(its)h(paren)m(t,)i(found)c(in)h(the)h │ │ │ │ @@ -6081,15 +6075,15 @@ │ │ │ │ (bling)h(p)s(ostp)s(oned)e(data.)337 5257 y Fi(\210)45 │ │ │ │ b Fl(cpus[4])29 b Fm(|)h(time)h(sp)s(en)m(t)f(to)h(factor)g(the)g(fron) │ │ │ │ m(ts.)337 5407 y Fi(\210)45 b Fl(cpus[5])29 b Fm(|)h(time)h(sp)s(en)m │ │ │ │ (t)f(to)h(extract)h(p)s(ostp)s(oned)d(data.)p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fm(14)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 337 399 a Fi(\210)45 b Fl(cpus[6])29 │ │ │ │ +(28,)h(2025)p 2889 100 V 337 399 a Fi(\210)45 b Fl(cpus[6])29 │ │ │ │ b Fm(|)h(time)h(sp)s(en)m(t)f(to)h(store)g(the)g(factor)g(en)m(tries.) │ │ │ │ 337 550 y Fi(\210)45 b Fl(cpus[7])29 b Fm(|)h(miscellaneous)i(time.)337 │ │ │ │ 701 y Fi(\210)45 b Fl(cpus[8])29 b Fm(|)h(total)i(time)f(in)f(the)h │ │ │ │ (metho)s(d.)227 900 y(On)f(return,)f(the)i Fl(stats[])d │ │ │ │ Fm(v)m(ector)k(is)f(\014lled)f(with)g(the)h(follo)m(wing)g │ │ │ │ (information.)337 1098 y Fi(\210)45 b Fl(stats[0])28 │ │ │ │ b Fm(|)j(n)m(um)m(b)s(er)e(of)h(piv)m(ots.)337 1249 y │ │ │ │ @@ -6152,15 +6146,15 @@ │ │ │ │ Fl(A2)e Fm(ob)5 b(ject)39 b(to)f(hold)f(the)g(fron)m(t,)j(assem)m(bles) │ │ │ │ e(an)m(y)g(original)g(ro)m(ws)g(of)f Fk(A)h Fm(and)227 │ │ │ │ 5407 y(an)m(y)c(up)s(date)e(matrices)i(from)e(the)i(c)m(hildren)e(in)m │ │ │ │ (to)i(the)g(fron)m(t,)g(and)e(then)h(returns)f(the)h(fron)m(t.)48 │ │ │ │ b(The)33 b(ro)m(ws)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(15)227 399 y(and)c(up)s(date)g(matrices)h(are)g │ │ │ │ (assem)m(bled)g(in)m(to)g(staircase)h(form,)f(so)g(no)f(subsequen)m(t)g │ │ │ │ (p)s(erm)m(utations)g(of)h(the)227 511 y(ro)m(ws)j(is)f(necessary)-8 │ │ │ │ b(.)227 660 y Fh(Err)j(or)28 b(che)-5 b(cking:)36 b Fm(If)23 │ │ │ │ b Fl(frontmtx)p Fm(,)f Fl(mtxA)p Fm(,)h Fl(rowsIVL)p │ │ │ │ Fm(,)e Fl(firstnz)p Fm(,)i Fl(colmap)e Fm(or)j Fl(workDV)d │ │ │ │ Fm(is)i Fl(NULL)p Fm(,)f(or)i(if)f Fl(msglvl)227 773 │ │ │ │ @@ -6235,15 +6229,15 @@ │ │ │ │ Fm(,)e Fl(frontJ)g Fm(or)i Fl(chvmanager)d Fm(is)j Fl(NULL)p │ │ │ │ Fm(,)f(or)h(if)g Fl(msglvl)46 b(>)i(0)31 b Fm(and)f Fl(msgFile)227 │ │ │ │ 5407 y Fm(is)h Fl(NULL)p Fm(,)e(an)h(error)g(message)i(is)e(prin)m(ted) │ │ │ │ g(and)g(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fm(16)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 0 399 a Fb(1.2.8)112 b(P)m(ostpro)s(cessing)38 │ │ │ │ +(28,)h(2025)p 2889 100 V 0 399 a Fb(1.2.8)112 b(P)m(ostpro)s(cessing)38 │ │ │ │ b(metho)s(ds)111 594 y Fm(1.)46 b Fl(void)h(FrontMtx_postProcess)42 │ │ │ │ b(\()48 b(FrontMtx)d(*frontmtx,)g(int)i(msglvl,)f(FILE)h(*msgFile)e(\)) │ │ │ │ j(;)227 743 y Fm(This)31 b(metho)s(d)g(do)s(es)g(p)s(ost-pro)s(cessing) │ │ │ │ g(c)m(hores)i(after)f(the)f(factorization)k(is)c(complete.)46 │ │ │ │ b(If)31 b(piv)m(oting)i(w)m(as)227 856 y(enabled,)25 │ │ │ │ b(the)f(metho)s(d)f(p)s(erm)m(utes)g(the)h(ro)m(w)g(and)f(column)g │ │ │ │ (adjacency)i(ob)5 b(jects,)26 b(p)s(erm)m(utes)d(the)h(lo)m(w)m(er)h │ │ │ │ @@ -6314,15 +6308,15 @@ │ │ │ │ (and)g(MPI.)111 5181 y(1.)46 b Fl(SubMtx)g(**)i │ │ │ │ (FrontMtx_loadRightHandS)o(ide)41 b(\()48 b(FrontMtx)d(*frontmtx,)g │ │ │ │ (DenseMtx)h(*mtxB,)1277 5294 y(int)h(owners[],)e(int)i(myid,)g │ │ │ │ (SubMtxManager)d(*mtxmanager,)1277 5407 y(int)j(msglvl,)f(FILE)h │ │ │ │ (*msgFile)e(\))j(;)p eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(17)227 399 y(This)d(metho)s(d)g(creates)h(and)f │ │ │ │ (returns)f(a)i(v)m(ector)h(of)f(p)s(oin)m(ters)f(to)h │ │ │ │ Fl(SubMtx)e Fm(ob)5 b(jects)29 b(that)g(hold)f(p)s(oin)m(ters)g(to)227 │ │ │ │ 511 y(the)j(righ)m(t)g(hand)e(side)h(submatrices)h(o)m(wned)f(b)m(y)g │ │ │ │ (the)h(thread)f(or)g(pro)s(cessor.)227 671 y Fh(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fm(None)31 b(presen)m(tly)-8 │ │ │ │ b(.)111 878 y(2.)46 b Fl(void)h(FrontMtx_forwardVisit)42 │ │ │ │ @@ -6393,15 +6387,15 @@ │ │ │ │ y Fk(X)1184 5261 y Fj(K)1283 5247 y Fm(that)31 b(will)f(b)s(e)g(p)s │ │ │ │ (erformed)f(b)m(y)h(this)g(thread)h(or)f(pro)s(cessor.)227 │ │ │ │ 5407 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fm(None)31 │ │ │ │ b(presen)m(tly)-8 b(.)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fm(18)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 111 399 a Fm(8.)46 b Fl(void)h │ │ │ │ +(28,)h(2025)p 2889 100 V 111 399 a Fm(8.)46 b Fl(void)h │ │ │ │ (FrontMtx_loadActiveRoots)41 b(\()48 b(FrontMtx)d(*frontmtx,)g(char)i │ │ │ │ (status[],)1755 511 y(char)f(activeFlag,)f(Ideq)i(*dequeue)e(\))j(;)227 │ │ │ │ 660 y Fm(This)43 b(metho)s(d)f(loads)i(the)g(activ)m(e)h(ro)s(ots)f │ │ │ │ (for)f(a)g(thread)g(or)h(a)f(pro)s(cessor)g(in)m(to)h(the)g(dequeue)f │ │ │ │ (for)g(the)227 773 y(bac)m(kw)m(ard)31 b(solv)m(e.)227 │ │ │ │ 921 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fm(None)31 │ │ │ │ b(presen)m(tly)-8 b(.)0 1186 y Fb(1.2.10)113 b(Serial)38 │ │ │ │ @@ -6475,15 +6469,15 @@ │ │ │ │ 5123 y Fi(\210)45 b Fl(cpus[1])29 b Fm(|)h(fetc)m(h)h(righ)m(t)g(hand)e │ │ │ │ (side)i(and)e(store)i(solution)337 5265 y Fi(\210)45 │ │ │ │ b Fl(cpus[2])29 b Fm(|)h(forw)m(ard)g(solv)m(e)337 5407 │ │ │ │ y Fi(\210)45 b Fl(cpus[3])29 b Fm(|)h(diagonal)i(solv)m(e)p │ │ │ │ eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(19)337 399 y Fi(\210)45 b Fl(cpus[4])29 │ │ │ │ b Fm(|)h(bac)m(kw)m(ard)h(solv)m(e)337 551 y Fi(\210)45 │ │ │ │ b Fl(cpus[5])29 b Fm(|)h(total)i(time)f(in)f(the)h(solv)m(e)g(metho)s │ │ │ │ (d.)337 704 y Fi(\210)45 b Fl(cpus[6])29 b Fm(|)h(time)h(to)g(compute)g │ │ │ │ Fk(A)1668 671 y Fj(T)1723 704 y Fk(B)k Fm(or)30 b Fk(A)2006 │ │ │ │ 671 y Fj(H)2074 704 y Fk(B)5 b Fm(.)337 856 y Fi(\210)45 │ │ │ │ b Fl(cpus[7])29 b Fm(|)h(total)i(time.)227 1056 y Fh(Err)-5 │ │ │ │ @@ -6548,15 +6542,15 @@ │ │ │ │ Fl(symmetryflag)31 b Fg(6)p Fm(=)k(0)i(an)227 5207 y(error)30 │ │ │ │ b(message)i(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)111 │ │ │ │ 5407 y(5.)46 b Fl(int)h(FrontMtx_nSolveOps)c(\()k(FrontMtx)f(*frontmtx) │ │ │ │ f(\))j(;)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fm(20)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 227 399 a Fm(This)e(metho)s(d)g(computes)g │ │ │ │ +(28,)h(2025)p 2889 100 V 227 399 a Fm(This)e(metho)s(d)g(computes)g │ │ │ │ (and)g(return)f(the)i(n)m(um)m(b)s(er)e(of)h(\015oating)i(p)s(oin)m(t)e │ │ │ │ (op)s(erations)h(for)f(a)h(solv)m(e)g(with)g(a)227 511 │ │ │ │ y(single)h(righ)m(t)g(hand)f(side.)227 664 y Fh(Err)-5 │ │ │ │ b(or)29 b(che)-5 b(cking:)37 b Fm(If)24 b Fl(frontmtx)e │ │ │ │ Fm(is)i Fl(NULL)p Fm(,)g(or)g(if)g Fl(type)f Fm(or)i │ │ │ │ Fl(symmetryflag)c Fm(are)j(in)m(v)-5 b(alid,)27 b(an)d(error)g(message) │ │ │ │ 227 777 y(is)31 b(prin)m(ted)f(and)f(the)i(program)f(exits.)0 │ │ │ │ @@ -6634,15 +6628,15 @@ │ │ │ │ (tered)h(from)f Fl(fwrite)p Fm(,)f(zero)i(is)g(returned.)227 │ │ │ │ 5407 y Fh(Err)-5 b(or)33 b(che)-5 b(cking:)40 b Fm(If)28 │ │ │ │ b Fl(frontmtx)f Fm(or)i Fl(fp)g Fm(are)g Fl(NULL)f Fm(an)h(error)g │ │ │ │ (message)h(is)f(prin)m(ted)f(and)h(zero)h(is)f(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 21 21 │ │ │ │ TeXDict begin 21 20 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(21)111 399 y(7.)46 b Fl(int)h │ │ │ │ (FrontMtx_writeForHumanEye)41 b(\()48 b(FrontMtx)d(*frontmtx,)g(FILE)i │ │ │ │ (*fp)g(\))g(;)227 547 y Fm(This)36 b(metho)s(d)g(writes)h(a)g │ │ │ │ Fl(FrontMtx)d Fm(ob)5 b(ject)37 b(to)g(a)g(\014le)g(in)f(a)h(h)m(uman)f │ │ │ │ (readable)h(format.)59 b(The)36 b(metho)s(d)227 660 y │ │ │ │ Fl(FrontMtx)p 617 660 29 4 v 32 w(writeStats\(\))41 b │ │ │ │ Fm(is)i(called)i(to)f(write)g(out)f(the)h(header)f(and)g(statistics.)82 │ │ │ │ @@ -6708,15 +6702,15 @@ │ │ │ │ 337 5265 y Fi(\210)45 b Fm(The)30 b Fl(type)f Fm(parameter)i(sp)s │ │ │ │ (eci\014es)f(a)h(real)g(or)f(complex)h(linear)g(system.)500 │ │ │ │ 5407 y Fe({)45 b Fl(type)i(=)g(1)h(\(SPOOLES)p 1417 5407 │ │ │ │ V 32 w(REAL\))29 b Fm(for)h(real,)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fm(22)p 182 100 1011 │ │ │ │ 4 v 1194 w Fl(FrontMtx)28 b Ff(:)40 b Fh(DRAFT)31 b Ff(Octob)s(er)f │ │ │ │ -(18,)h(2025)p 2889 100 V 500 399 a Fe({)45 b Fl(type)i(=)g(2)h │ │ │ │ +(28,)h(2025)p 2889 100 V 500 399 a Fe({)45 b Fl(type)i(=)g(2)h │ │ │ │ (\(SPOOLES)p 1417 399 29 4 v 32 w(COMPLEX\))28 b Fm(for)i(complex.)337 │ │ │ │ 544 y Fi(\210)45 b Fm(The)30 b Fl(symmetryflag)d Fm(parameter)k(sp)s │ │ │ │ (eci\014es)f(the)h(symmetry)f(of)g(the)h(matrix.)500 │ │ │ │ 690 y Fe({)45 b Fl(type)i(=)g(0)h(\(SPOOLES)p 1417 690 │ │ │ │ V 32 w(SYMMETRIC\))28 b Fm(for)i Fk(A)g Fm(real)h(or)g(complex)g │ │ │ │ (symmetric,)500 820 y Fe({)45 b Fl(type)i(=)g(1)h(\(SPOOLES)p │ │ │ │ 1417 820 V 32 w(HERMITIAN\))28 b Fm(for)i Fk(A)g Fm(complex)h │ │ │ │ @@ -6787,15 +6781,15 @@ │ │ │ │ (oin)m(ts)f(in)g(the)g(second)h(grid)f(direction.)337 │ │ │ │ 5261 y Fi(\210)45 b Fl(n3)30 b Fm(is)g(the)h(n)m(um)m(b)s(er)e(of)i(p)s │ │ │ │ (oin)m(ts)f(in)g(the)g(third)g(grid)g(direction.)337 │ │ │ │ 5407 y Fi(\210)45 b Fm(The)30 b Fl(seed)f Fm(parameter)i(is)g(a)f │ │ │ │ (random)g(n)m(um)m(b)s(er)f(seed.)p eop end │ │ │ │ %%Page: 23 23 │ │ │ │ TeXDict begin 23 22 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(23)337 399 y Fi(\210)45 b Fm(The)30 │ │ │ │ b Fl(nrhs)f Fm(parameter)i(is)g(the)f(n)m(um)m(b)s(er)f(of)i(righ)m(t)g │ │ │ │ (hand)e(sides)h(to)h(solv)m(e)h(as)f(one)f(blo)s(c)m(k.)337 │ │ │ │ 545 y Fi(\210)45 b Fm(The)30 b Fl(type)f Fm(parameter)i(sp)s(eci\014es) │ │ │ │ f(a)h(real)g(or)f(complex)h(linear)g(system.)500 691 │ │ │ │ y Fe({)45 b Fl(type)i(=)g(1)h(\(SPOOLES)p 1417 691 29 │ │ │ │ 4 v 32 w(REAL\))29 b Fm(for)h(real,)500 820 y Fe({)45 │ │ │ │ @@ -6887,15 +6881,15 @@ │ │ │ │ (writeForHumanEye\(\))p Fm(,)d(20)1992 5178 y Fl(FrontMtx)p │ │ │ │ 2382 5178 V 32 w(writeStats\(\))p Fm(,)i(21)1992 5293 │ │ │ │ y Fl(FrontMtx)p 2382 5293 V 32 w(writeToBinaryFile\(\))p │ │ │ │ Fm(,)e(20)1992 5407 y Fl(FrontMtx)p 2382 5407 V 32 w(writeToFile\(\))p │ │ │ │ Fm(,)i(20)1905 5656 y(24)p eop end │ │ │ │ %%Page: 25 25 │ │ │ │ TeXDict begin 25 24 bop 91 100 1011 4 v 1193 100 a Fl(FrontMtx)28 │ │ │ │ -b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Ff(:)41 b Fh(DRAFT)121 b Ff(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2796 100 V 1011 w Fm(25)0 399 y Fl(FrontMtx)p 390 399 │ │ │ │ 29 4 v 32 w(writeToFormattedFile\(\))p Fm(,)25 b(20)p │ │ │ │ eop end │ │ │ │ %%Trailer │ │ │ │ │ │ │ │ userdict /end-hook known{end-hook}if │ │ │ │ %%EOF │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ are disjoint. P is a permutation matrix. If pivoting is not used, P is the identity. │ │ │ │ │ 2. (A + σB) = P(L + I)D(I + U)QT for a square nonsymmetric matrix A with symmetric │ │ │ │ │ structure. D is a diagonal matrix. U is strictly upper triangular. L is strictly lower triangular. │ │ │ │ │ P and Q are permutation matrices. If pivoting is not used, P and Q are the identity. │ │ │ │ │ 3. A = QR for square or rectangular A. Q is an orthogonal matrix that is not explicitly │ │ │ │ │ computed or stored. R is upper triangular. │ │ │ │ │ 1 │ │ │ │ │ - 2 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 2 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ The factorization is performed using a one dimensional decomposition of the global sparse │ │ │ │ │ matrix. A typical front of the matrix is found the shaded portion of the figure below. │ │ │ │ │ Afront is indivisible, it is found on one processor, and one processor or one thread is responsible │ │ │ │ │ for its internal computations. This is extremely important if we want to support pivoting for │ │ │ │ │ stability, for deciding how to choose the pivot elements in the front requires continuous up-to- │ │ │ │ │ date information about all the entries in the front. If a front were partitioned among threads or │ │ │ │ │ processors, the cost of the communication to select pivot elements would be intolerable. │ │ │ │ │ @@ -56,15 +56,15 @@ │ │ │ │ │ • The linear combination A+σB is found in a Pencil object. │ │ │ │ │ • The ETree object contains the front tree that governs the factorization and solve. Inside │ │ │ │ │ this object are the dimensions of each front (the number of internal and external rows and │ │ │ │ │ columns), the tree connectivity of the fronts, and a map from each vertex to the front that │ │ │ │ │ contains it as an internal row and column. The FrontMtx object contains a pointer to an │ │ │ │ │ ETree object, but it does not modify the object, nor does it own the storage for the ETree │ │ │ │ │ object. Thus multiple front matrices can all point to the same ETree object simultaneously. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 3 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 3 │ │ │ │ │ • An IVL object (Integer Vector List), contains the symbolic factorization. For each front, it │ │ │ │ │ gives the list of internal and external rows and columns, used to initialize a front prior to its │ │ │ │ │ factorization. For a factorization without pivoting, this object stores the index information │ │ │ │ │ for the factors, and so is used during the forward and backsolves. For a factorization with │ │ │ │ │ pivoting, the index information for a front may change, so this object is not used during the │ │ │ │ │ solves. As for the ETree object, the symbolic factorization is neither modified or owned by │ │ │ │ │ the front matrix object. │ │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ postponed data (when pivoting is enabled) or aggregate data (in a parallel factorization), and │ │ │ │ │ the factorization of the fully assembled front, take place within the context of this object. │ │ │ │ │ • The SubMtx object is used to store a submatrix of the factor matrices D, L and U. Once a │ │ │ │ │ front is factored it is split into one or more of these submatrix objects. After the factorization │ │ │ │ │ is complete, the data structures are postprocessed to yield submatrices that contain the │ │ │ │ │ coupling between fronts. The working storage during the solves is also managed by SubMtx │ │ │ │ │ objects. │ │ │ │ │ - 4 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 4 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ • Each submatrix represents the coupling between two fronts, I and J. To enable rapid random │ │ │ │ │ access to these submatrices, we use a I2Ohash object that is a hash table whose keys are two │ │ │ │ │ integers and whose data is a void * pointer. │ │ │ │ │ • The set of nonzero submatrices, i.e., the nonzero couplings between two fronts, is kept in │ │ │ │ │ one or two IVL objects. This information is necessary for the factorization and forward and │ │ │ │ │ backsolves. │ │ │ │ │ • The factorization and solves require lists of fronts and submatrices to manage assembly of │ │ │ │ │ @@ -131,15 +131,15 @@ │ │ │ │ │ • int pivotingflag : flag to specify pivoting for stability, │ │ │ │ │ – SPOOLES NO PIVOTING — pivoting not used │ │ │ │ │ – SPOOLES PIVOTING — pivoting used │ │ │ │ │ • int sparsityflag : flag to specify storage of factors. │ │ │ │ │ – 0 — each front is dense │ │ │ │ │ – 1 — a front may be sparse due to entries dropped because they are below a drop │ │ │ │ │ tolerance. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 5 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 5 │ │ │ │ │ • int dataMode : flag to specify data storage. │ │ │ │ │ – 1 — one-dimensional, used during the factorization. │ │ │ │ │ – 2 — two-dimensional, used during the solves. │ │ │ │ │ • int nentD : number of entries in D │ │ │ │ │ • int nentL : number of entries in L │ │ │ │ │ • int nentU : number of entries in U │ │ │ │ │ • Tree *tree: Treeobjectthatholdsthetreeoffronts. Note, normallythisisfrontETree->tree, │ │ │ │ │ @@ -165,15 +165,15 @@ │ │ │ │ │ used only during a nonsymmetric factorization. │ │ │ │ │ • SubMtx **p mtxLNJ : a vector of pointers to submatrices in L that are off the block diagonal, │ │ │ │ │ used only during a nonsymmetric factorization. │ │ │ │ │ • I2Ohash *lowerhash : pointer to a I2Ohash hash table for submatrices in L, used during │ │ │ │ │ the solves. │ │ │ │ │ • I2Ohash *upperhash : pointer to a I2Ohash hash table for submatrices in U, used during │ │ │ │ │ the solves. │ │ │ │ │ - 6 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 6 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ • SubMtxManager *manager : pointer to an object that manages the instances of submatrices │ │ │ │ │ during the factors and solves. │ │ │ │ │ • Lock *lock : pointer to a Lock lock used in a multithreaded environment to ensure exlusive │ │ │ │ │ access while allocating storage in the IV and IVL objects. This is not used in a serial or MPI │ │ │ │ │ environment. │ │ │ │ │ • int nlocks : number of times the lock has been locked. │ │ │ │ │ • PatchAndGo *info : this is a pointer to an object that is used by the Chv object during the │ │ │ │ │ @@ -196,15 +196,15 @@ │ │ │ │ │ • FRONTMTX IS 1D MODE(frontmtx) is 1 if the factor are still stored as a one-dimensional data │ │ │ │ │ decomposition (i.e., the matrix has not yet been post-processed), and 0 otherwise. │ │ │ │ │ • FRONTMTX IS 2D MODE(frontmtx) is 1 if the factor are stored as a two-dimensional data │ │ │ │ │ decomposition (i.e., the matrix has been post-processed), and 0 otherwise. │ │ │ │ │ 1.2 Prototypes and descriptions of FrontMtx methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ FrontMtx object. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 7 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 7 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. FrontMtx * FrontMtx_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the FrontMtx structure and then sets the default │ │ │ │ │ fields by a call to FrontMtx setDefaultFields(). │ │ │ │ │ 2. void FrontMtx_setDefaultFields ( FrontMtx *frontmtx ) ; │ │ │ │ │ @@ -231,15 +231,15 @@ │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. int FrontMtx_nfront ( FrontMtx *frontmtx ) ; │ │ │ │ │ This method returns the number of fronts in the matrix. │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int FrontMtx_neqns ( FrontMtx *frontmtx ) ; │ │ │ │ │ This method returns the number of equations in the matrix. │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - 8 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 8 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ 3. Tree * FrontMtx_frontTree ( FrontMtx *frontmtx ) ; │ │ │ │ │ This method returns the Tree object for the fronts. │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void FrontMtx_initialFrontDimensions ( FrontMtx *frontmtx, int J, │ │ │ │ │ int *pnD, int *pnL, int *pnU, int *pnbytes ) ; │ │ │ │ │ This method fills the four pointer arguments with the number of internal rows and columns, │ │ │ │ │ number of rows in the lower block, number of columns in the upper block, and number of │ │ │ │ │ @@ -269,15 +269,15 @@ │ │ │ │ │ Error checking: If frontmtx, pnrow or pindices is NULL, or if J is not in [0,nfront), an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 9. SubMtx * FrontMtx_diagMtx ( FrontMtx *frontmtx, int J ) ; │ │ │ │ │ This method returns a pointer to the object that contains submatrix D . │ │ │ │ │ J,J │ │ │ │ │ Error checking: If frontmtx is NULL, or if J is not in [0,nfront), an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 9 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 9 │ │ │ │ │ 10. SubMtx * FrontMtx_upperMtx ( FrontMtx *frontmtx, int J, int K ) ; │ │ │ │ │ This method returns a pointer to the object that contains submatrix UJ,K. If K = nfront, │ │ │ │ │ then the object containing UJ,∂J is returned. │ │ │ │ │ Error checking: If frontmtx is NULL, or if J is not in [0,nfront), or if K is not in [0,nfront], │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 11. SubMtx * FrontMtx_lowerMtx ( FrontMtx *frontmtx, int K, int J ) ; │ │ │ │ │ This method returns a pointer to the object that contains submatrix LK,J. If K = nfront, │ │ │ │ │ @@ -304,15 +304,15 @@ │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 16. IVL * FrontMtx_upperBlockIVL ( FrontMtx *frontmtx ) ; │ │ │ │ │ This method returns a pointer to the IVL object that holds the upper blocks. │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 17. IVL * FrontMtx_lowerBlockIVL ( FrontMtx *frontmtx ) ; │ │ │ │ │ This method returns a pointer to the IVL object that holds the lower blocks. │ │ │ │ │ Error checking: If frontmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 10 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.2.3 Initialization methods │ │ │ │ │ 1. void FrontMtx_init ( FrontMtx *frontmtx, ETree *frontETree, │ │ │ │ │ IVL *symbfacIVL, int type, int symmetryflag, int sparsityflag, │ │ │ │ │ int pivotingflag, int lockflag, int myid, IV *ownersIV, │ │ │ │ │ SubMtxManager *manager, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method initializes the object, allocating and initializing the internal objects as necessary. │ │ │ │ │ See the previous section on data structures for the meanings of the type, symmetryflag, │ │ │ │ │ @@ -342,15 +342,15 @@ │ │ │ │ │ 1. void FrontMtx_initializeFront ( FrontMtx *frontmtx, Chv *frontJ, int J ) ; │ │ │ │ │ This method is called to initialize a front. The number of internal rows and columns is found │ │ │ │ │ from the front ETree object and the row and column indices are obtained from the symbolic │ │ │ │ │ factorization IVL object. The front Chv object is initialized via a call to Chv init(), and the │ │ │ │ │ column indices and row indices (when nonsymemtric) are copied. Finally the front’s entries │ │ │ │ │ are zeroed via a call to Chv zero(). │ │ │ │ │ Error checking: None presently. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 11 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 11 │ │ │ │ │ 2. char FrontMtx_factorVisit ( FrontMtx *frontmtx, Pencil *pencil, int J, │ │ │ │ │ int myid, int owners[], Chv *fronts[], int lookahead, double tau, │ │ │ │ │ double droptol, char status[], IP *heads[], IV *pivotsizesIV, DV *workDV, │ │ │ │ │ int parent[], ChvList *aggList, ChvList *postList, ChvManager *chvmanager, │ │ │ │ │ int stats[], double cpus[], int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method is called during the serial, multithreaded and MPI factorizations when front J │ │ │ │ │ is visited during the bottom-up traversal of the tree. │ │ │ │ │ @@ -382,15 +382,15 @@ │ │ │ │ │ Error checking: If frontmtx, owners or status is NULL, or if myid < 0, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ 7. void FrontMtx_loadActiveLeaves ( FrontMtx *frontmtx, char status[], │ │ │ │ │ char activeFlag, Ideq *dequeue ) ; │ │ │ │ │ This method is called by the multithreaded and MPI factor and solve methods to load the │ │ │ │ │ dequeue with the active leaves in the front tree with respect to the thread or processor. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ - 12 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 12 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ 8. ChvList * FrontMtx_postList ( FrontMtx *frontmtx, IV *frontOwnersIV, │ │ │ │ │ int lockflag ) ; │ │ │ │ │ This method is called by the multithreaded and MPI factor methods to create and return a │ │ │ │ │ list object to hold postponed chevrons and help synchronize the factorization. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 9. ChvList * FrontMtx_aggregateList ( FrontMtx *frontmtx, │ │ │ │ │ IV *frontOwnersIV, int lockflag ) ; │ │ │ │ │ @@ -421,15 +421,15 @@ │ │ │ │ │ the list in postponedlist. If this list is empty, a new front is created to hold the aggregate │ │ │ │ │ updates and the postponed data, and the chvmanager object receives the aggregate and │ │ │ │ │ postponed Chv objects. The number of delayed rows and columns is returned in *pndelay — │ │ │ │ │ this is used during the factorization of the front that follows immediately. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 13. FrontMtx_storePostponedData ( FrontMtx *frontmtx, Chv *frontJ, │ │ │ │ │ int npost, int K, ChvList *postponedlist, ChvManager *chvmanager ) ; │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 13 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 13 │ │ │ │ │ This method is used to store any postponed rows and columns from the current front frontJ │ │ │ │ │ into a Chv object obtained from the chvmanager object and place it into the list of postponed │ │ │ │ │ objects for K, its parent, found in the postponedlist object. The frontJ object is unchanged │ │ │ │ │ by this method. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 14. FrontMtx_storeFront ( FrontMtx *frontmtx, Chv *frontJ, IV *pivotsizesIV, │ │ │ │ │ double droptol, int msglvl, FILE *msgFile ) ; │ │ │ │ │ @@ -459,15 +459,15 @@ │ │ │ │ │ following information. │ │ │ │ │ • cpus[0] — time spent initializing the fronts. │ │ │ │ │ • cpus[1] — time spent loading the original entries. │ │ │ │ │ • cpus[2] — time spent accumulating updates from descendents. │ │ │ │ │ • cpus[3] — time spent assembling postponed data. │ │ │ │ │ • cpus[4] — time spent to factor the fronts. │ │ │ │ │ • cpus[5] — time spent to extract postponed data. │ │ │ │ │ - 14 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 14 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ • cpus[6] — time spent to store the factor entries. │ │ │ │ │ • cpus[7] — miscellaneous time. │ │ │ │ │ • cpus[8] — total time in the method. │ │ │ │ │ Onreturn, the stats[] vector is filled with the following information. │ │ │ │ │ • stats[0] — number of pivots. │ │ │ │ │ • stats[1] — number of pivot tests. │ │ │ │ │ • stats[2] — number of delayed rows and columns. │ │ │ │ │ @@ -495,15 +495,15 @@ │ │ │ │ │ workDV, cpus or pfacops is NULL, or if msglvl > 0 and msgFile is NULL, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 3. A2 * FrontMtx_QR_assembleFront ( FrontMtx *frontmtx, int J, InpMtx *mtxA, │ │ │ │ │ IVL *rowsIVL, int firstnz[], int colmap[], Chv *firstchild, │ │ │ │ │ DV *workDV, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method creates an A2 object to hold the front, assembles any original rows of A and │ │ │ │ │ any update matrices from the children into the front, and then returns the front. The rows │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 15 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 15 │ │ │ │ │ and update matrices are assembled into staircase form, so no subsequent permutations of the │ │ │ │ │ rows is necessary. │ │ │ │ │ Error checking: If frontmtx, mtxA, rowsIVL, firstnz, colmap or workDV is NULL, or if msglvl │ │ │ │ │ > 0 and msgFile is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void FrontMtx_QR_storeFront ( FrontMtx *frontmtx, int J, A2 *frontJ, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method takes as input frontJ, the front in trapezoidal or triangular form. It scales the │ │ │ │ │ @@ -533,15 +533,15 @@ │ │ │ │ │ • cpus[4] – time to store the update entries │ │ │ │ │ • cpus[5] – miscellaneous time │ │ │ │ │ • cpus[6] – total time │ │ │ │ │ Onreturn, *pfacops contains the number of floating point operations done by the factoriza- │ │ │ │ │ tion. │ │ │ │ │ Error checking: If frontmtx, frontJ or chvmanager is NULL, or if msglvl > 0 and msgFile │ │ │ │ │ is NULL, an error message is printed and the program exits. │ │ │ │ │ - 16 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 16 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.2.8 Postprocessing methods │ │ │ │ │ 1. void FrontMtx_postProcess ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method does post-processing chores after the factorization is complete. If pivoting was │ │ │ │ │ enabled, the method permutes the row and column adjacency objects, permutes the lower and │ │ │ │ │ upper matrices, and updates the block adjacency objects. The chevron submatrices L∂J,J │ │ │ │ │ and UJ,∂J are split into LK,J and UJ,K where K ∩∂J 6= ∅. │ │ │ │ │ Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message │ │ │ │ │ @@ -572,15 +572,15 @@ │ │ │ │ │ Error checking: If frontmtx is NULL, or if msglvl ¿ 0 and msgFile is NULL, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 1.2.9 Utility Solve methods │ │ │ │ │ The following methods are called by all the solve methods — serial, multithreaded and MPI. │ │ │ │ │ 1. SubMtx ** FrontMtx_loadRightHandSide ( FrontMtx *frontmtx, DenseMtx *mtxB, │ │ │ │ │ int owners[], int myid, SubMtxManager *mtxmanager, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 17 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 17 │ │ │ │ │ This method creates and returns a vector of pointers to SubMtx objects that hold pointers to │ │ │ │ │ the right hand side submatrices owned by the thread or processor. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 2. void FrontMtx_forwardVisit ( FrontMtx *frontmtx, int J, int nrhs, │ │ │ │ │ int *owners, int myid, SubMtxManager *mtxmanager, SubMtxList *aggList, │ │ │ │ │ SubMtx *p_mtx[], char frontIsDone[], IP *heads[], SubMtx *p_agg[], │ │ │ │ │ char status[], int msglvl, FILE *msgFile) ; │ │ │ │ │ @@ -610,15 +610,15 @@ │ │ │ │ │ this thread or processor. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 7. IP ** FrontMtx_backwardSetup ( FrontMtx *frontmtx, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method is used to set up a data structure of IP objects that hold the updates of the │ │ │ │ │ form Z := Z −U X that will be performed by this thread or processor. │ │ │ │ │ J J J,K K │ │ │ │ │ Error checking: None presently. │ │ │ │ │ - 18 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 18 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ 8. void FrontMtx_loadActiveRoots ( FrontMtx *frontmtx, char status[], │ │ │ │ │ char activeFlag, Ideq *dequeue ) ; │ │ │ │ │ This method loads the active roots for a thread or a processor into the dequeue for the │ │ │ │ │ backward solve. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 1.2.10 Serial Solve method │ │ │ │ │ 1. void FrontMtx_solve ( FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB, │ │ │ │ │ @@ -648,15 +648,15 @@ │ │ │ │ │ the seminormal equations (U +I)D(I +U)X = A B or (U +I)D(I +U)X = A B for │ │ │ │ │ X. The mtxmanager object manages the working storage used in the solves. On return the │ │ │ │ │ cpus[] vector is filled with the following. │ │ │ │ │ • cpus[0] — set up the solves │ │ │ │ │ • cpus[1] — fetch right hand side and store solution │ │ │ │ │ • cpus[2] — forward solve │ │ │ │ │ • cpus[3] — diagonal solve │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 19 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 19 │ │ │ │ │ • cpus[4] — backward solve │ │ │ │ │ • cpus[5] — total time in the solve method. │ │ │ │ │ T H │ │ │ │ │ • cpus[6] — time to compute A B or A B. │ │ │ │ │ • cpus[7] — total time. │ │ │ │ │ Error checking: If frontmtx, mtxA, mtxX, mtxB or cpus is NULL, or if msglvl ¿ 0 and msgFile │ │ │ │ │ is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -685,15 +685,15 @@ │ │ │ │ │ This method determines the inertia of a symmetric matrix based on the (UT + I)D(I + U) │ │ │ │ │ factorization. The number of negative eigenvalues is returned in *pnneg, the number of zero │ │ │ │ │ eigenvalues is returned in *pnzero, and the number of positive eigenvalues is returned in │ │ │ │ │ *pnpos. │ │ │ │ │ Error checking: If frontmtx, pnneg, pnzero or pnpos is NULL, or if symmetryflag 6= 0 an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 5. int FrontMtx_nSolveOps ( FrontMtx *frontmtx ) ; │ │ │ │ │ - 20 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 20 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ This method computes and return the number of floating point operations for a solve with a │ │ │ │ │ single right hand side. │ │ │ │ │ Error checking: If frontmtx is NULL, or if type or symmetryflag are invalid, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 1.2.13 IO methods │ │ │ │ │ 1. int FrontMtx_readFromFile ( FrontMtx *frontmtx, char *fn ) ; │ │ │ │ │ This method reads a FrontMtx object from a file. It tries to open the file and if it is success- │ │ │ │ │ @@ -721,15 +721,15 @@ │ │ │ │ │ This method writes a FrontMtx object to a formatted file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 6. int FrontMtx_writeToBinaryFile ( FrontMtx *frontmtx, FILE *fp ) ; │ │ │ │ │ This method writes a FrontMtx object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 21 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 21 │ │ │ │ │ 7. int FrontMtx_writeForHumanEye ( FrontMtx *frontmtx, FILE *fp ) ; │ │ │ │ │ This method writes a FrontMtx object to a file in a human readable format. The method │ │ │ │ │ FrontMtx writeStats() is called to write out the header and statistics. The value 1 is │ │ │ │ │ returned. │ │ │ │ │ Error checking: If frontmtx or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 8. int FrontMtx_writeStats ( FrontMtx *frontmtx, FILE *fp ) ; │ │ │ │ │ The header and statistics are written to a file. The value 1 is returned. │ │ │ │ │ @@ -758,15 +758,15 @@ │ │ │ │ │ • maxzeros is used to merge small fronts together into larger fronts. Look at the ETree │ │ │ │ │ object for the ETree mergeFronts{One,All,Any}() methods. │ │ │ │ │ • maxsize is used to split large fronts into smaller fronts. See the ETree splitFronts() │ │ │ │ │ method. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ - 22 FrontMtx : DRAFT October 18, 2025 │ │ │ │ │ + 22 FrontMtx : DRAFT October 28, 2025 │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ – type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric, │ │ │ │ │ – type = 1 (SPOOLES HERMITIAN) for A complex Hermitian, │ │ │ │ │ – type = 2 (SPOOLES NONSYMMETRIC) │ │ │ │ │ for A real or complex nonsymmetric. │ │ │ │ │ • The sparsityflag parameter signals a direct or approximate factorization. │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • n1 is the number of points in the first grid direction. │ │ │ │ │ • n2 is the number of points in the second grid direction. │ │ │ │ │ • n3 is the number of points in the third grid direction. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 23 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 23 │ │ │ │ │ • The nrhs parameter is the number of right hand sides to solve as one block. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ Index │ │ │ │ │ FrontMtx aggregateList(), 12 FrontMtx ownedColumns(), 19 │ │ │ │ │ FrontMtx assemblePostponedData(), 12 FrontMtx ownedRows(), 19 │ │ │ │ │ @@ -842,9 +842,9 @@ │ │ │ │ │ FrontMtx nactiveChild(), 11 FrontMtx upperBlockIVL(), 9 │ │ │ │ │ FrontMtx neqns(), 7 FrontMtx upperMtx(), 9 │ │ │ │ │ FrontMtx new(), 7 FrontMtx writeForHumanEye(), 20 │ │ │ │ │ FrontMtx nfront(), 7 FrontMtx writeStats(), 21 │ │ │ │ │ FrontMtx nLowerBlocks(), 9 FrontMtx writeToBinaryFile(), 20 │ │ │ │ │ FrontMtx nUpperBlocks(), 9 FrontMtx writeToFile(), 20 │ │ │ │ │ 24 │ │ │ │ │ - FrontMtx : DRAFT October 18, 2025 25 │ │ │ │ │ + FrontMtx : DRAFT October 28, 2025 25 │ │ │ │ │ FrontMtx writeToFormattedFile(), 20 │ │ ├── ./usr/share/doc/spooles-doc/FrontTrees.ps.gz │ │ │ ├── FrontTrees.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o FrontTrees.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -3344,15 +3344,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 70 /F put │ │ │ │ dup 79 /O put │ │ │ │ dup 84 /T put │ │ │ │ dup 97 /a put │ │ │ │ @@ -3547,132 +3546,127 @@ │ │ │ │ 60F5C3F629F7BC5A27C207D70DE63FBE0E023452097D5B7AA5B2CAC668D4D075 │ │ │ │ 1A0F70683E96AE35A6BA0B59619C215A7012568991AFC0C35789DD0ECE45C649 │ │ │ │ F44580845F0FA422868CFCC8029513235C0286B76196E350498845EA934DF289 │ │ │ │ 1D0C954B079BD2977384B96D8460B4F50EE635A4C8F7A3B6866F93CA641F3F2C │ │ │ │ C93ECCD6BBCD792189A12FC9366BA7134EFD67A22B4FD62465250E0BA6B7C627 │ │ │ │ 73E8F50E379328B7FABA341B0D50F9A2CFB055E01DDF6BBCF6FE4114BC36C10B │ │ │ │ E581D76A84EA12995506C33DAE9035683FBD5F54AA1545992B94B8ED946E5866 │ │ │ │ -2F2CF265A5AE5DF94A417B9C586F6B9C596D5A5CEFE74F770B8779D3CDEACF5E │ │ │ │ -4DEC459759D7D3D77E7B60A16227426FF8C81730EEBF03D84CCD2B72602D2A8F │ │ │ │ -76384DB473890FA5F27B754832C547717B04A1FC5EBFE112917604D7233B3B9F │ │ │ │ -FE133B09AAFC8C60E806F3A2A811EB19B57E9F174F71E74E1BF08845925D5CEE │ │ │ │ -D8B32184B962EEFF0432AE8F4ACD5D181C186B6C87AE283E6F3B6399730155B1 │ │ │ │ -34BC5A74637D22B4AC24A765F4CB1881306E9D114472DB2D8482D3E70456875D │ │ │ │ -74EC2A7E24F94C1B867EA193FADA6F132370A02A7F704404421DBBEEF4D377B0 │ │ │ │ -6FD3B44C4B53DF870E932BA700422DD125FC00D210197A2B78C149C9C3BF04A4 │ │ │ │ -E3EF6A6176E23204BCFB04D985B1196C831374A8CD31383AFB3C87043C72FA82 │ │ │ │ -A1B0ED2BA5E4D5BA203A2AA4BFD55326A66FCCDB12DCBD02B6ED0F28E45EECA8 │ │ │ │ -70BEDF7F2909377917D58E976F8283A3B798F7905E325CBCF79DC80AB64453B8 │ │ │ │ -5A622A384230B4229D6DE94BA7D1CFAAB8227EB9931552D0098567342D498AEA │ │ │ │ -D55F4826ED6ABA190A03260CF4D1B0C4836CE4EAD15879E10551DFD35A8C5E63 │ │ │ │ -97F7C2E5B1106EED3746A1716376B43FA6D812C42A0F4E7DC8228619785077D9 │ │ │ │ -91391138EA6A07CE358D213C09806D499A88D575358723E331CB230DD4CB1274 │ │ │ │ -7BDB660BA3129D27BE899A0764CA6BE06A84B08C9EA649010DAD65570A579F24 │ │ │ │ -1F3EB9F89B2155DDAF488C120BBE1D5076E650B4C5654ACB4DC2C72ED33769F8 │ │ │ │ -ED6B343D0711FB967996E7A9565B70A4C034294C82806EDD634136CE03248079 │ │ │ │ -1DA779C965AD668C8C5FFCBD07A47E02070040A5885DF629FFD3A7E76D5F0AFB │ │ │ │ -91FCB562AEEE089461296646262D0CA53DCCDEDE9A12AAFAC679D6F7DC8B56D0 │ │ │ │ -5BE898AE5E7B0CAD8627C449551A9482896F0A75D6329F11AC0936ED25638A94 │ │ │ │ -DF47760F13DEBEA5A2DFF0403F5AC6B146DD50C1A01821E8CFB0D4111B28BAA4 │ │ │ │ -374D9BF83C8FBA323F33672425C90A5953B273F8155890AC3D1975B19A78EC5E │ │ │ │ -53A64F6A76CC3CFFF8ECF9A5FE88628411D3B7D38A9ED260FECEE13F0A44E749 │ │ │ │ -756243095CB7BD5F06F2A501E50CA836641E4C8739AB78EB71F6A9A132F159DA │ │ │ │ -A6A5E936F0D3226DE9FDE9FFCD7C7C03A65503A9DC04DAE16579238FE6508F6A │ │ │ │ -3183BF1695FF0D94597702FCBA520FFE6DA2E96DECD16C306D1E66D98EB28F9F │ │ │ │ -81B5D3B7D2CD403CD11A9F785F0668A619845254EBEF399FF618A493CACC1153 │ │ │ │ -DB69293D25FB1328424D0F725268A48983514E537A24A5B15CFA6B6BF53D634D │ │ │ │ -DCCFA818DF91B2439B7B5717DC018C718BDADA6B803D26DBB545BC7A5C83486C │ │ │ │ -38E63B0B7A4FBA4BF962D23EE6D73EE6316496D3BE6169BDF9C9EBF567EE297D │ │ │ │ -AEB4AC336BF75AC8A82F2739F6074B0FEA017FC2D4A5BF90977CFD197DB27157 │ │ │ │ -872C908AFD2190A0D80439BAE0D50DBED9F8A10BE44C1F149A82019D579DA7FF │ │ │ │ -86EFAC7338394976AD56EBD2898737F734023B8990F21F7E965AEAC9796A8696 │ │ │ │ -B634F8BDED410B05B519DF9BDACBAE783C54D49205B274C269D50445791BCD81 │ │ │ │ -EB4F877E535ECC0573F5D70B2AE706C0ACB6DA313F725926E832341A65B12B21 │ │ │ │ -D566B2335AAA4249EEB3DC278F6C0CF361E535514AD8306FC13182D314F58DA2 │ │ │ │ -72A2C7AED0837D9F0860CC7B9C5D9F90BC975CD842D5853223CADF1D781A8354 │ │ │ │ -03B584F88E5F8D7505E5BBAC497001B805955DE01AF6B632AAFB38F5DC9BD9DA │ │ │ │ -C181432E0BC34FDB7299B56A9A237D456F5911F8F9B605C49B579435EE900CE9 │ │ │ │ -B89D026D4ACA25B1828051D3EDCA8D52D741FA4797942F9227920C569D3E596E │ │ │ │ -34001E5CEC9BD23E489C5BB5F95D19707E7DD00CF47570B3C067C8F77F0E30E3 │ │ │ │ -F22A058D1F10076D84F1CD21D2E7C539B1E85286A3A85C91BA31D690E47339EE │ │ │ │ -C517DE2B071092B62CDE9279ACC59480A8FDF759A5BF4D1D575977D8E29BF857 │ │ │ │ -85900ECB1132D8F6203437FD7B1C050AD809B4EC70F90E788BCBED920E44A2F3 │ │ │ │ -40A2FEB647D113ECDB20C85C001603543B5483C498EF62523A5788C3B5489E59 │ │ │ │ -68179D1B2B74428C18D7809EC8398BEF33A09124269D9568E8CDA413843B3A3A │ │ │ │ -7519FE2FBCA2E768D002DB471E2A88D4C78E87DC5ABC48D258106C0F1DEDE420 │ │ │ │ -4F5D97BAC879EFA5314EC67B2E86C3E90056383DAEBCA3E7D9D83CD541CDD548 │ │ │ │ -FCEA2298018E7C694127BE7A39791D2FC8E5106002731634EFD6609390C60A16 │ │ │ │ -31F932C0F85CF832DC901B51D67EF0D18644BFB8C21B2FBF4D1F750633B62372 │ │ │ │ -873BDB6C260A454C453E9EAB5BDE2FA10A84ED180169901688D9B3558E58B7E0 │ │ │ │ -6DA20004928A4FFA02DFDE27DD68E0F0C09379CDD6538E360562EFBC4F0DEB16 │ │ │ │ -CA1BB09D45847A0BD5999237C73050D2525C675B4EBBF221875C5EBCBD51F5BB │ │ │ │ -4620331636A1E681EEB5E510207C022BBB05B21B3A295ADCB6313B790318A7C0 │ │ │ │ -B7ED8C4A02F46C71B03C196D51DEC7D3E5512745A70001934DBC4827B52CFBFA │ │ │ │ -CE6ABE7E6CDC89C18A5B74E1864B7AD6E41D3C99BE62055DB7974A65663F20F6 │ │ │ │ -9B7DC47D10A7A9F18BCB5FF9CFEF793094786A8B030692AE2BFC1CF3B1D3BADE │ │ │ │ -3AE8F79F647B9DEDBD68B92C3ABDBABB81D80691ED54E85F044A7A77F4649B2F │ │ │ │ -BCEDA9A5B84ED8889D63E2C1401EDB6AE4AE3AD339C01BCE0FBB82C6A34EBA71 │ │ │ │ -A952C6D12F18E0FB4B32B0D2B8E174F05C5EFDABD4B046D148FF362C9DE802DA │ │ │ │ -E63C673F1295F0CD0F6418DB3A76B2FA986BD24C39E1432DBE405B33AA1D3C1C │ │ │ │ -8DC075A94F1C9F82B8D1AD4E8E1D51731275CE7D5F3496053E857CA44A94D37C │ │ │ │ -6647498685B8C3988CCD44B3E84D934BA847E514B7516C240852945573D6E5B7 │ │ │ │ -D8835B83562AD90DE9046F165886876B5D89E7FCB6B3FAB054DAED0A8BF4711E │ │ │ │ -FE3A7D64BD0B1E506F58C6A3686E80C78571F0AEAA80C58D174CE65270367A99 │ │ │ │ -4F7971BDE751CE6D294EB4B737D08C119F71B6DBC18E9309C5EC6218BC8E4893 │ │ │ │ -B2D70A2B0A36A226B7C4D82D941D228E0A8B9301F229A9F365044DDB3BBD5D3E │ │ │ │ -456AB25464B1313570436E0AADD107B6E177220F0B257C65F7F9DDBDB051BBC7 │ │ │ │ -8437AB568E5975AFD9C459503B0A7BBE9C1D6EFA6DDD7AACC10A694ABBB055D7 │ │ │ │ -DF7777375B2D20F7F684F8242E2AABE23D5D09DE119A19BA22E49C09745B6B31 │ │ │ │ -66DD51038CC66B6D354ADD83187A34D55A780868C9A265568617C24CFFA557FB │ │ │ │ -D80EE0D2A55BCA70FF6815C8212F9FC8C19C2655B76FC048029DB46194005B89 │ │ │ │ -6C42BAADA45EB03166A7B07FA73AB9BB614878705510CB71789D470F03C868E3 │ │ │ │ -24137C1BA456F2239782B738D57F441FE6A5D597B46777C352CE34BE55DAA6F6 │ │ │ │ -EC18725142C11CF91D361D79F1A81F45F0ACD9DC4273B73DAC515C3D4C45E438 │ │ │ │ -A54E95773EFA224F9C8CFD9C1357E1D0EBD5161F1B78904E690FD9262240903B │ │ │ │ -BB058327198421490F9CCB0D66DCECC7AFAE1D68DD4296379580F5C28D018040 │ │ │ │ -D85A9CCC55B27FE6A49F5E342B504B2F845FCE01BABE1CD39A83C5A955F0C907 │ │ │ │ -4E8D518E6967D67A3F5AD51DF6A3824BF31469F3A1CA8DDCABBA1A70E16D2F52 │ │ │ │ -3658CFB91B72800A9894E9C963927D1BA8B8239D29203772B30B51B2E69157DF │ │ │ │ -835E55FA590E03EAF1019EBEA53D3123EA2F39543A10F57C51644F1B07CA947A │ │ │ │ -8AB41E86FFB3F9C9B515B956B6348B9D80D55FC7F08F931FE5E87BB02EBA7F59 │ │ │ │ -B6BB32701216E798CDE9F5C9EBA5AB61A1E702E307829AD5BF7AA35C7D00C0FB │ │ │ │ -944A6CCB60C7AFC937C5B16CD4B6F3872AA99B9A75FBB67706AA98BAFEA02247 │ │ │ │ -7AF6C34024C9280F585D2E7DFF88D19B30F89239A8E522F831048DF04128F863 │ │ │ │ -48FB3A922EFDF8FA1BDAA265327FF1EDDABE82FC7506033DE0413DB2155879AE │ │ │ │ -E6D0652383593C4A608C29FAFD85D14AE789C4B30CB336F769212A3078C31920 │ │ │ │ -416462EC3EDAC2F7AB483B0806291AEFA8AF9BF5B7FB1AECF2B53272DEF71F7E │ │ │ │ -A07FC656ABB150DE2225E9B17CEB4AB19871C16E8A9491030D6820B8921AC965 │ │ │ │ -8A22262473D9E4757A0C12677CF74342A0E86CA14A0319C067644DFC866D961A │ │ │ │ -9C35BF2C4898FB8530CE80671C095DCA0AE666BC961A2320218F2BBD8D5FB2FB │ │ │ │ -CEE80579B3E1673D3F0C3646295A8D4086F12D3C97C4EBF5790952BFF543B03A │ │ │ │ -DE24198BE329BAC065069C94236618AD964ECF56A74FDFEC80E1ED44B77E9F4A │ │ │ │ -599F26ADC7DC8A32BCFEBFDB166CF5ABA2BE71E5E20A8194913E747815B90489 │ │ │ │ -E1D100013AC34EE367ACEDF0BA85AB0774D50180819B1B347ED8D8A5E7C855DB │ │ │ │ -A8A7A59FAF415086BA1196C96F04FE9F9225AEF179966971203B79EFAB8C7B74 │ │ │ │ -D725D5AA3B0D154B17A8EB5D16F2E43AA8E8C81908527A2F60812051C6FF5AB1 │ │ │ │ -98949FE7C59B1FD50BE5FD81EC3D397DA2983E846986C257D80E3736E4C28AC6 │ │ │ │ -07810CDA1C5413D66B2C8F057808605DDB5FB1368B2AC3293A10A333777D7A65 │ │ │ │ -16D14055CE750EDA4DFC58496B259A24479669E0785DEF9960876C1C33CECE4F │ │ │ │ -BC9041FAEF111DEFE87AA0B111F296858FEBFC51B2C6BD3B64796EA748673E29 │ │ │ │ -C7DEC2038EDCEAE2A3C5DC1B076B03EF60BA5AE70E6F3B91E7A541A5A0E7D856 │ │ │ │ -CE2EF368C9714E42220AC60114A5068F242107A3B166BD5CB5D8CFC94117B0B6 │ │ │ │ -70A6190039BD94F2BA141CAB6DF2134402CADB61D69E652E5AE36DB15E1F7BF7 │ │ │ │ -7E5C072F3D05B43F505A6C9DA3D3FCB1502AB3752F47C63E7BE808114BF7E2C4 │ │ │ │ -695C9453B008D69F53229E2414DAB72CA3FEAA8CD17AB48AC6E245336AFED7DE │ │ │ │ -4D64EEA3D1C8EE4CEAFF8E4BAD0AEE63034141640058359B1D43123466E30770 │ │ │ │ -134B61B5181E4F06DA46A96D1559FB1BA50BA0E2FF08840309F2213205FA9005 │ │ │ │ -CEE2A7D961F91ADA4A49E64C61AC2B3219C4B82912C1945BBAB6020D83622000 │ │ │ │ -198640F1640383B4FE9BF182E26CA82C9E8501B968E5685EA60B47BA7A8CA132 │ │ │ │ -45FB77524B0DDEA85A4FF8F406F7D7CF05965AB7DAFC2769A5FF24174568125A │ │ │ │ -52A47C8FB13C595CDC6674874066A02B8947E8E0E3A7E21246F083B15E85711E │ │ │ │ -75C80FD46CDCAF5A6A6F9C1E69E05734DBEEC9B29330E955CD3F6EC3430477B8 │ │ │ │ -B8F2C9CF14FF0DC389D15BAA7C4B06BA40E96205F0670A254DAC0C37DABD7653 │ │ │ │ -BCA05F704E35EBBAA15986251313CFD5E779D25C728CC48FDD4D1C057CF67BF1 │ │ │ │ -E567A10104CBE962F62A19481D9C1335879D3AC2D076CE0862222E14C3A15EF7 │ │ │ │ -481F9D85AAF1A6459657C71E174867F30B316691444A8B │ │ │ │ +2F2CF265A67D34469B3FF1541D72B9B0B9AFB330FB72CB4D9444809EE3E5547C │ │ │ │ +80FD855F1733F58FB223DBBE8D1E7E062138E3F3554A7A07EB9C00BB1712A05D │ │ │ │ +624AB5E1D9A596177E566E14EC543AF373D6737BBA050C7478A65B851C2B285C │ │ │ │ +216A86A2C8607B03CEB9DED58C9BB5E9282CBFAA3CC2BA792FB5A4E3054FBFAF │ │ │ │ +8875C1396824B8E12C4B838BB34D41DB2DFC4C96F2237620EFA9C4FDFA969CCA │ │ │ │ +02CBC8203772884CB1652AA46485C52019D47B16F35F548035C0B263BDDB677A │ │ │ │ +A51564759CBE2847EE0835D3BF4D8F63970B594574AE314938F4019D4A350E32 │ │ │ │ +AB25DCCD4D43ECC7ABCFA07DBD7BBDFCEB8908AFBFC28E8F7517222B89C453A6 │ │ │ │ +89FDF47AC918C44F4AEE7607C5237DBB341B32032BD7B842E3147A09F1D236BF │ │ │ │ +B36493E9849967F12ED58C4CFD280FE501E1B70FC0222A6D4CCAD56EF1C0BA7D │ │ │ │ +4021FEA4EBA2806EF25C397AF9DBE171332A8029FE5C5FF2A99FA9AE577CEDC6 │ │ │ │ +6221A4205DF59039F7393F53EA4A871176B5B4C28362293C4D7E83F65055A0B5 │ │ │ │ +F4B68C67E93B8E5D620F528409DC57D72616176C70C2DF1DB79A59171F7C8CF5 │ │ │ │ +56A7E9DF32C224D2A21920F40CC41C6C40D746C87E43ED4F9E185AFB42350E36 │ │ │ │ +9B220BA858ED232D3F24C48347FFD672DE399BC35B7F5E06AFDDA6927EA4D5D9 │ │ │ │ +E040DC7DD6A25E2DA097A21202B200B6357BC9D699D2FB8E0A58805AC1A11012 │ │ │ │ +525006BE140A0E861305D741ECE34CFD94D6B170BFABD912019E18A58DB380A9 │ │ │ │ +663A40686D4A45ABD040CE58E5B4C2D7960D10E2C9E661CE495AC13AB7467572 │ │ │ │ +F129670B7C7E719C81FC705C96C18C18D843527305C75A266020DD8A08D987D1 │ │ │ │ +0BEBA61B7F9B8785C1425E494E877DCFB98A26AF5A6D5EE20842CB64FAF85CCE │ │ │ │ +8FD627F42F0D484FC1115EBBD5A3B9E0268118AF7513BA0741E4BB708E730543 │ │ │ │ +071E483CB976549AD97524F6B71D9D2CF5812929D38B9720BC0BC9F2ACDEF91B │ │ │ │ +4799D62E1667FC0E3867EC479121A84E20388B3D64278B3B6F925FED734339FC │ │ │ │ +EB7C78EA97EF0EBAA609BF2DD101C3B25245A5C2B9C49E56074B0800859A1A80 │ │ │ │ +4629F4968A555029F26507E04DAF9C1ECBF091E835F3930C8F8393A8E8EB838E │ │ │ │ +4EB967D23BEE1834192F2BDA9E3BDA217FAA8CE5190E29D2AEBACE260E61925C │ │ │ │ +B8205D9C7BB2F3E67FC27032E69A65582B2C48D242F80DFE46BB61DD6BE81385 │ │ │ │ +2452B5E864F486A1E25BE2429C413A0EFE2AC32140809F568A95D7791A77FCD0 │ │ │ │ +9A03F0C72AB05FCD4CEAF76AF6A99D2F315DD9569EE1AC46DF94E8DEA3C46AF2 │ │ │ │ +D8E41241EF46A90B22D4B9C0A12EFFB4998972AEC3C672C3DC910E6B82A8934C │ │ │ │ +66E87FC3AF0900BD91601E7D9F818B359609AB9061991C9C293D86B12A2BB846 │ │ │ │ +90B9AFEB636B79B44E54FF9AD44557C01FB1221E2E84693D2FF09964AF4E5D56 │ │ │ │ +974681AA4ED67EF1093BC873CF388D94225FD3DA1B2A2186B219517F33E09C0D │ │ │ │ +C3A15868DFFCC1FA6224CD19D7A2AC14953150F1E63AB7DD62475C62EF398D5C │ │ │ │ +A4A498589568A6C649C45E66C22D2A25899C58EEF62D1E54C6F63C9A3817354E │ │ │ │ +351FEB1DEFA55FDA327B524F8EC0A596EABA350CB1C56BB44AA52BCB59DC14FB │ │ │ │ +F283D70E99C467DECF8C55165B1C16394B596C720851D7B7D55FF13D90FD8B21 │ │ │ │ +024615E17D0A067AC68EF53C1F214F6A580D77CF1E2E95D62D94EDE481343D17 │ │ │ │ +C2718C2B3B901CB6F7F5F9AC1E11E7AE23A9AA7FBF245352B982F70266C46E64 │ │ │ │ +4AFC110A09EAC5F3B11A19DF1AA8C278059DA186527B55816205193F21BCCF62 │ │ │ │ +3F9B71B3F6166A317A7F008C4A186A59824651C304209C1C76C4C64695A99E8E │ │ │ │ +AF32B75C9BED3FD6B142ACC4CFD69F3D300FBE730F540ECD43105E6E716FA1D6 │ │ │ │ +79E4214B1FF815C6259A91D02505AAEF5EB94FC1CD51654CF93E1B1E94DE6D63 │ │ │ │ +7B2206E588C825A0F39E41C8982BD8ED65A78396B90C381C5E772886E3A81373 │ │ │ │ +34A61E7C0418B9B57C2530287ADCAB7C9C74A7C6D8B6C9BE346943D85314B17B │ │ │ │ +0D1106F12CD7B7E3AE47B78B5C96CF649FC1AEE2610C946524FF46DA1C64D50F │ │ │ │ +53FC98DD04822D472A29403F4C252C98147C24D4BA2409E335651A88B6DD4655 │ │ │ │ +F05FB56C7C9417F1CD89DDDBD3ECF5E45D5DE2C9A6D5D41EF8EF3AF8E2C121C1 │ │ │ │ +900164A22FEE5D38ADA97B2D64AD8952878F49F5BA845E5ECFAC7C59991B8D9C │ │ │ │ +DBBCB12B147D1204B4BB8FA8A7B6DE00CCD319CE3491A5E0D281A5EE6E3C625D │ │ │ │ +406CC1A67036E3F19DA6B476A27344C8F0B82385EEF3F2A9C736DBC8B3DBB8FE │ │ │ │ +D9B983EDA86EBC6999F4B6BD33F4F4804E385013EA315FEF814ECBD4A2D57F2A │ │ │ │ +099133E2F8D8C25F21176A6BFF977CB303C5E516F18FB43B7C55F092EB4C424E │ │ │ │ +226103857958475BC48E8A3E7EF480A56FAA54209D5A821CBB36E72D31B5A2D9 │ │ │ │ +FECE0C8AA709EBA8B039EE35A8680C60842C003C1D334557B5B1EF32824FA373 │ │ │ │ +6AA33F01D69D037EDB98AC262022734F2353470C873F455D57732EFD362815B9 │ │ │ │ +E6D9A7F48F4CB3E534B1F9940D9B6E393AE97EFA7854C7049DF43ABF299E636B │ │ │ │ +3A9EB261FCB747E1AEC7B6514F0819CED21526B8067E31F7B2B51C155046E6BF │ │ │ │ +396EF846110D14B1D027C207F2C2BD3465CA7D9D2AC76D5DEAFE5E6A4DAB0A31 │ │ │ │ +84EE6C28F30A540ECDB8BBEE2B31F80AE947750210E23822254E6AC578CEDE91 │ │ │ │ +F935A973F096D52CE80F168FE4E74534F5CCFF53ACBC83D8808FD66CD153A0E3 │ │ │ │ +EF654189F6FC82F27E8049749A1EA747CFB668D5620AF6C548D0AE0BA9809F66 │ │ │ │ +70D4B313A5884EB396EABCC4C0775B15D36B3AC0B089E148082732CDF6EE119C │ │ │ │ +A05ADD9AED5210FDF2F463B9AA5CA65613D91F3454268249847CA3BBFB239F6B │ │ │ │ +D746156842B13F96FF883E27F59A643BD874ABF6AE4A427C5DCD7A2F4D6B2669 │ │ │ │ +B49B80C80C2D11DF8E51173B8F88B6AE2810BE7CF7216E97D999D12427D73FC2 │ │ │ │ +1DDA3F058B0DA99D1E04097FB53B30A6D3B9627367348EBD8E8E65FBF7811CCE │ │ │ │ +2D780F5624CF534C74CDB543F59D3AF5BA88F718EA11D307538CB679927B73D3 │ │ │ │ +BAE7AB97DB00682E68E48F32B91B0A7790C6C6CFF04829A3CB6569CADF78862C │ │ │ │ +A22D3BF42AEFAC7C0B8CC479EA50B3423ED5F75229CC15830CC7C54BEBA4BEBF │ │ │ │ +46453B63FC94226562FC196674E8575B6BE5D8BA304405B9A557555291F01045 │ │ │ │ +1FD759AEFFDAF3EF94780CBDE5EDC05EAFD23B5D12B77065D513DF11A2838AFF │ │ │ │ +06816C6E4BB01BEF71DDFC152E8C7882C53225D760464683C24920481D09F02A │ │ │ │ +B3D5BBD21E447C779102B7518F5F5918E5A2B9CB329ECAF3201D35A749A1D729 │ │ │ │ +A59150689B01C3BA8784E2A2379AD41E9C8B5D02290FA9C3B4FD15C4641D44FF │ │ │ │ +4A9B545FBB0CA5A4B3C18FEC4F546B31566DDB248F92FE83449096900517CDBE │ │ │ │ +FC3467886D6F9265E9FC1F74DAAFFEBACC65079232FBB6DE46CE4644C9F40EA2 │ │ │ │ +3B9DA420B2F37E4CB8430620358614F5B123045B8F6D084483A146B755635B29 │ │ │ │ +35759D5B0BF554E79D55109CD814368EEF7934041E68642315F3B603DC3C4118 │ │ │ │ +951872F3A0EE63392C877DA61AFB1786977366B939FD5EE116F7A505399B9759 │ │ │ │ +B2E265F84B6FB9ED45775AA6F0AE0470B9D38905ECC4A4C3F00F9C2FB8C376B5 │ │ │ │ +72C7A2BC6796C6C5E098038941B5E7E815FF7E79B464D306F920BF5E29B6B773 │ │ │ │ +031F8BBEC439DE97AF7953941FA33CD4B0BD4FFF2BF01472C4185813A10D0C00 │ │ │ │ +C1A9B71A8C05F2128415FA8FAF04A4DCBBC40E971CBD99FF8FE0107DCB67903E │ │ │ │ +76FCED2E549DC08E73C59A8A6C45927C97A1321E054FDEA5C490888F4B6846A1 │ │ │ │ +061D981DEE8C8EBD4068D9796B5FD52E1123C08237AC1BB2EEEFA3180B8DFCDB │ │ │ │ +57519FAAC488B7B04B691F0B2AD8C069213CDD921BA2ABFD412DA92BD41D7DF9 │ │ │ │ +00FB85A9B9FED378A9C7787ED4531146712E6524911BC5872F8BC1A7C4CE8ABD │ │ │ │ +A0459305951AB2DFA58343D531770ADE8E486EC73225B4BEEA507CEB591571AA │ │ │ │ +554AC168225C06C2B5D749345621B7615A9E375519FE56472DD31FD1B17BE7A3 │ │ │ │ +FC69F940E8A85F7EFC1071EACD95F95B565372276662612C8231D506BDDF4054 │ │ │ │ +A6D90EDF1A07E6CBFCE61A0B5E2B19E5259DCEFA417E3FD0E22D45A713209608 │ │ │ │ +88342026CA34BE747D95C7D5D65EF9421AB1E21DF415D166AFF74E57ADD92B70 │ │ │ │ +DDFDCE42BE4F36665413D0D941B86162775DDAA45DE7D7263E6D99957582CF1D │ │ │ │ +C4B272E9A588DA870E64A82F0F2242B5B274276D29BB6080B6AAE3B31BC572FE │ │ │ │ +E358DA15F5EC7927749BD60FF77FBC6CF35063434DF6C3727F02AECD7BBD34D0 │ │ │ │ +07F27DFFD5F6F88D0B86B518CEE3DDE71FE6DFF3A641F0018260086D3910E4EF │ │ │ │ +A16E867FF1265B8F49E7D312C478176897DCF7C17C2E67A136CDD7AF555EB0F9 │ │ │ │ +700824E93D794E67CF83D49A5A4FD2C232E7FFA51441C18E05866BA451D7FCF2 │ │ │ │ +7608073B580ECBE22C5BC03333985EF21355480E3CA470ED188DFC6974ECDEBB │ │ │ │ +53A1110212F4735DD7CD22E3254F16275937BE51C8D302C97EF5D12D3F77DF81 │ │ │ │ +CA76B943F6E9E603DB4730621A60600549E86EB9A992D61C5DE8595BE55A3436 │ │ │ │ +E1D8E97E15F5A5A105CD11747EB6E1D224A72F49FA63CA7977035DA12BAD01DB │ │ │ │ +4FEB3431417029FF9DA1521132E2F9B01105A1A8AC53A0BDBFA0004285D611C7 │ │ │ │ +39CA3F4A9E79E2266A5C5A66B3ED989B1E7DA2D05DB334298DAE1E5061648A6C │ │ │ │ +2FABF28548B059735FBDF706065919B9D9313E25108D57EA3FCED3A018B917A4 │ │ │ │ +3F4592A98C8D2F1579D50621C5B8425E3FA5A670A742B3935348AA00DB310C41 │ │ │ │ +86CCE514B56F4346B72882ECAA170EE255051292D8F0945E34C316132F7DF35B │ │ │ │ +62DC2C2B2D4BEBB8C56326C9D81B2118A7822D092CD686EF8427A7EDF9F9AF97 │ │ │ │ +39B5644F2845304D474730F4ED01F6F88F713E5E7EA7FD0BC080530873D37036 │ │ │ │ +D92E75C1D99620CAF0899996675B936DAAB961C36D12EFE1B932265CFDEF3660 │ │ │ │ +4EB5F0FAC820783E03C951CA0B7C7019ABFB0C6FFFFAA4AD3D95E64B20E66D53 │ │ │ │ +004E8C88E7A4557D010F9066A7D8383B479E304B39BA │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -6744,15 +6738,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 65 /A put │ │ │ │ dup 66 /B put │ │ │ │ dup 67 /C put │ │ │ │ dup 71 /G put │ │ │ │ @@ -6956,174 +6949,170 @@ │ │ │ │ B36258037B5F0DF7D78C26C1D24931A18A2606939F9933100C723ED2FD991F4C │ │ │ │ 98CCB4F15E381B4886FE0E928D4989A0257051C547165291D35FA5BCF359E153 │ │ │ │ 7EF69FEC09DBE6A9E866BAE054F56E86CA2D299F8DCB88685B932117314A73CB │ │ │ │ 5954C6D639CEB6F8A0A1F4D9414F1CA7CF3DEDEE81F75D8B5CEB205425442B32 │ │ │ │ 8703A8A79A51613E3E6A46C9B7B1052C0A5491130E312ED3A0A2F32C5D52B15F │ │ │ │ 9621BA9E1688463FEA43F72D5FDB6E8D0739003C1D8A04E1589A7FD3F405364F │ │ │ │ CD0677FB7EADC0D62CB762350689F751F19E6389284C97A5163CAD892E9A7043 │ │ │ │ -AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8CC30D683C461 │ │ │ │ -AD9C4BDC977B04018DEACFD28A494A97EA00BAEA3EC87A55A4A443515B0AF101 │ │ │ │ -B7D5B60ACDA971F89630C5CC19878930158C50457F7C5A5BB17C51B847C0104F │ │ │ │ -FC6A24E01DFBBE38D0C2EB515147F88C5F8686799909779F22074AD8B869B5C5 │ │ │ │ -AB16E955F051B0CDE308F51C53C411B5A1F345AD252ACE84A5A4C362EA070955 │ │ │ │ -4FDC64B1E47CE12C3AECEEE68623F3C1CCB36CD3E55D11D97595874D7ECB1FC3 │ │ │ │ -1C3469C3045E80C6E99ECCBEF59092AE5E66CCAE3B89FB8037B6705151D7E62B │ │ │ │ -86809B7FEC9C7A242A8B369F6EF0D06F7CCF47D5458F960A2AA1FAABCABBACA9 │ │ │ │ -F2F33876F9C61FAC3B10FB6AD648E27DB482CDC5DFEBA251002DDA29686D7513 │ │ │ │ -88071E86B1D8C780863E73226E34B7636F6C9B0A1A3DCD1CCF175EA67B2740B0 │ │ │ │ -E78071E5FE6402317474D179D05EFE1ADB5000021C65B15E00610A0BF6A7DDBD │ │ │ │ -2BFF3B997734AE6FB52D4CE40010373491A70C412483250CE35ABEA693614EB9 │ │ │ │ -484ACD4D96D6393F0E9AE117DDAAA14205F3A7B1F655B2A26106016F32C7A5C1 │ │ │ │ -9C82315C947861F1FA5DC517C21F471FCA2AEF505B2C9984F71093EFCE59E581 │ │ │ │ -5B83212ED710AE172F026C8E091CC5FEE1C8D5026A43F3B42134B3D0C47B6FC3 │ │ │ │ -DDD73B9253FA9955932CFF099C5AB34641677E777B5CA37272CF5738EECC05BE │ │ │ │ -29C10056BB5338C6826561AA3369FB210065CFF850CB84BA6C47E027629CCA0D │ │ │ │ -A9B21FEAA0B44D521B1E4C945CC9D0F1FFA29EF87B516D7A7138818E4722A0D2 │ │ │ │ -23CB86BCED8A56157B02A26FA2E073D7D6D12C85782A6DEDF2C4197A22A45F4C │ │ │ │ -9C4670DB8A537E91FF6A05598716FB720C9086419D4CE4AA05D10E914E734BC4 │ │ │ │ -A7557643841476FCC0A5DEF317AC0E4159E4F73ED716A7F9B2025F687F5ABBF6 │ │ │ │ -E8512809C427C03C8EE1570EC2001DF551BDD5DB73004579846401AFEE84CAAE │ │ │ │ -3C34B369671A543B77E69392C29D4FB0E046352689EC1F35F36E3E259DA35743 │ │ │ │ -7C65C2DF42D5E0B416582B44939A4EBFDBEB939417D9DE7C27C92CA9B32B7FAD │ │ │ │ -65E1DEAD635CA05B32624B06CF99D75ABB9AE2CD328A99A29EA103946C94AFB2 │ │ │ │ -0220225C323071303A260A44FDA16EE98DFB108531232F063DDBBEB6CB011F0F │ │ │ │ -C9277E1854AF6F2CA84F1254847CB52355680048A7B69321D79941CB5317984F │ │ │ │ -8A2CAC941D1B4B02DEB64152FB8D9DF631D41F393B67AEE3526AC8F91B67DB0E │ │ │ │ -CFB19D319B6BFDA72CED58E3F213DD2E945C3BCC0CA70A629E9A9250F891BE97 │ │ │ │ -DEC8C5D8221F5D6689FF375E455BE3768EDB8436626E9E3FA09C8041F83C74BA │ │ │ │ -38E7ECE73E71311B9C0ABB5571CA95CD87F0EE072DDF65DA3414EA8F5FA0B5AA │ │ │ │ -BCC4C425F63D4B940BF9377C91F9E00D96C782926B75384413F606017BDF1E7E │ │ │ │ -863972A92DF89A57D5078B4F79C03623862E68D74AC7E464217DCA2D0AA1F260 │ │ │ │ -DAAFF729A4EE268B19FCC88AF68A70CEE6B00D7642A1B464CB90FEC415EF0286 │ │ │ │ -CD4BCE9A415C9CAA0139B552ABFC27E2E696752AEBCBB0128EBE65E3530D7BDE │ │ │ │ -71E57013976B41C2DBA14C79BD2D3A4223D2D3243608AEA9A842D818F977EE8B │ │ │ │ -EC8A655C9597DFE809BB68E0F89E5792101FFBE16AF1B98575A0A6B4634C7D2E │ │ │ │ -5EE774C8FE021C580436011CC22CA13548D0F54FDC153FD7DF6741774E11BC8D │ │ │ │ -D2C69C4758E242256C054618FA63086989E5C4B2A7DC521920523100E0997D07 │ │ │ │ -A48EBE35DD1332171836B5194EDFC7F049BF646B9BE7C0855A446D63A855EE0D │ │ │ │ -3D753BE66A6194455A1D4EEC7988D1BA34DC05A4EDFE9DE49E6D16DC5C69099C │ │ │ │ -0EC423A5D4037E900EA85BF1B801C8124045014A6FB8943B4678B97F1657BD30 │ │ │ │ -D7FFC70C97A863C0ABD2C8FC275A97FB8E7EDDFEA1AB805DEF48B4D41FEBAF2A │ │ │ │ -1ED158999CA195E7CDDB87DA048E9A99F04DD8E0DA2E682A2FE9038B091555FA │ │ │ │ -39D56A95D5A7371904F8943AF7CA648A174FE3B7E8BAA18F77DB5186AE54F67F │ │ │ │ -D8DCD004C8134A5F5DAB90A60953CDE6C88C6868CCCE090434CF0142A10C1B2F │ │ │ │ -0CB38A21BE63EF2AAFAB80674110A7C3CD8C50223011F5F0C8471BEC1A2A9275 │ │ │ │ -1C86D6AD0921C57E552241DD136479A659CFF8E13156C29E448D30479EFB88A3 │ │ │ │ -47DC1BE504D05DF2AA1F4AC28E84000F893E3250EB4B5148498146C211BA7D48 │ │ │ │ -B1C2B7FABC1B9BEEA91FA0FB8689D9072E675AADC6A4D23C7CA20474AB37BEBC │ │ │ │ -87071D1ADAD1B8207C00C4A2C17337BCB3A7F86822B8F986F0FD0DC74775D19A │ │ │ │ -6F17CBC0F3C0E0208704B443C277D47B8EAC51CFF7BEB62FC4377C7908E3A0AE │ │ │ │ -A13CCFC44AEFD9FB733BB6BE0F1F4F9AC650E3A7280E3F59CF96F5088A0295BE │ │ │ │ -B8633E71B86B1257C7CC0A4C6A5FE701E805BBDF3FAF155ECB672FCE8050AECF │ │ │ │ -9FCBE7552807EFCC5F5C23487C40D5C3769E3E0749982E88CBC2AA5C1A47CD0B │ │ │ │ -D5F45B019F2FA414135598AFD483C8FBA29F07E08FBA65B3D3038A5E342F5D58 │ │ │ │ -3A79DDC4D274B3DADB5A8304F8ED72CF2BFCD67580010C56757FB1480CCB63C8 │ │ │ │ -63EF95752E9810C9FE5E7923F300516EAC003A256FDBBC123DD5B48F7B1002AE │ │ │ │ -6EB46E3C28CD6045BCBA3DD90C6814E7F1542772CA2E9418E8942BF8A466ADF1 │ │ │ │ -82625CCE2BDB2E2BB5D97C0E085506C430E58709A4F1FAEC1AD6530AFD8D8194 │ │ │ │ -66D1705CEB26068A8CFCD7A9B878EF961B5543241E5637785CF34892841E8C26 │ │ │ │ -2C4A84C0A6131B2D3535966A3E40AF0E985659C9266514C2DBA1EA86B95EC1F0 │ │ │ │ -B4DABF9C566D7949AABA037F3E30F4E2D1C31619E65BC1478A7CFCE2E697B36C │ │ │ │ -33258800CEBF2730D812FD6149CCF34726E27211BB29120EE7CD21570A6FD669 │ │ │ │ -C50598FF694423412BDBCF70A6EE6B2D12F823FB88F241F4B4220701F7DDC062 │ │ │ │ -9F14B3F22844A35A548F71E0F64643FD98ECAF1B6961D9D5D0B6EE4E3274B14C │ │ │ │ -A06D6396F1D2F1D9FA5773E00537A5E8291BCCC2870ADB288EB9830A8E1F87E5 │ │ │ │ -598AB9CC81B4A803CFC7B177051A5B4F81B4E301C205310DC79034856AA13A16 │ │ │ │ -ED7DD08794ECB545E31FFE9EDEF88DDF2824D0AE624CB648EFA60990015872E4 │ │ │ │ -A071AE17CD5B20DBD256C0C797214873AB8AE114DE66A0FEDF8BCED4D2E5DA34 │ │ │ │ -A85ABF03721966AD53A3A1F2CC61F6CFB72631EAB1787512EAADE61E11161CA4 │ │ │ │ -0596C3931E9C602518D66C828240E1F46A3BBDE678EDA40CFE69FF136B8DAB8B │ │ │ │ -C180C41985ADC3BBAE88EC8D4CFC570B416DBC25D3E9BBF46341F9A28BD21FFB │ │ │ │ -F5E7D5A3E9D4BC6CCB2BF3DE8FCCEC2A8E4C41CF5BCFFE4A0544A38DA424B026 │ │ │ │ -034D109746BC7BF56712F5967D24EDF3BE7B4C00C1EEE2CFC0301F8D4A617E93 │ │ │ │ -A3A9FEA252D946B86D791C446CE09A2E9AEEAB25CAEE073F6269E7AEACA7023E │ │ │ │ -BAEF85B0D8BBF4C07FAF9AB02983504BD33219692F19BBC071FBE7AC49483D2C │ │ │ │ -D4751FAF8F95BDA8F401BC2AB3EE4C736B0D244D3BC0C16476FAE677FE320E51 │ │ │ │ -7608784AB794A645CA37B93253A07B444896FE3897B56C5644CC6CB9DB6BE371 │ │ │ │ -2C7E89CF806F37D3711F2560E004DDDC5CDB562F8F7ABC02CD350BF58994F35D │ │ │ │ -CDDFAEDF76F41B757BC1101B527FC584972B564D22420D2EAAA5C48132EF8C38 │ │ │ │ -CD97FAA63274C790DCC37B85BA78C0C2878DB0F1D23F064BAB74CEA461EF5CE5 │ │ │ │ -7425D2AE291D57D9933144574D127D985E9B83C385A6B761F0A6B75D38494701 │ │ │ │ -3BCC1D4AAEE4B46668DE04245CEEC7B5861BC1333001C36E03808D07E64D6FA3 │ │ │ │ -21711578570BC05B27F1EAD0831CC426FF490D5CE623D2A539789A86F67900A6 │ │ │ │ -E4A42820C56FC9CFC1BCFF8A1EDCAD2607C810A619501989420B2A0F91B238AE │ │ │ │ -514B57CBEE38642C9B3565C2D7E0917BE20E4BC2CFB3520F75AAE9EDFC9346EB │ │ │ │ -3C598B554015DE20B9E9A631039B093A556863CE5B2A1F08521F08FBECFB9A28 │ │ │ │ -FF37B68751248AE6704F6E16A1571AC1DD9228E87FDFBD4C0F8F26B257409AEF │ │ │ │ -13767B171BE8C82A7CE4163DBD6DABF75BE005319C50666C98A00B0F905D5738 │ │ │ │ -B520228D50736C7D4525FC38EFC9787732179264919E359FD821B8BDA584B7E3 │ │ │ │ -29A9D637C45CCE08D2103181F00DF80151F915DDCD0788B5BAEE17741F32932B │ │ │ │ -ECACFD1537920FF8A2EA0AA983176A75D4CE04E42DD3C142362E06868AB296E7 │ │ │ │ -1F1C87867329A6E15640F18C336EAC9AC373FA834B6E790A92C863A618DC4692 │ │ │ │ -CA402B5C7EEADED67DF4B3FD46815B2C609A053EE57E2E4F462BBA5CB6FBEBBD │ │ │ │ -AD4D6EF3400B256784C765D153832F1C1FF14265F28ACDED8694FA5BA23073D9 │ │ │ │ -11E50A1943624BAD5B68B449B817E0A9682707D5B26246419DF0B2604C0FD551 │ │ │ │ -F58FFA274CC7CBDFEAA4B3774FD8F09FBE0AC5DC3BCFAE405464ADFF7D190D95 │ │ │ │ -F4AD4FB5841ACD115CF9B52115C561F70AD00062A8E1217F4134792DE8EF051D │ │ │ │ -9CDECD881B186DC7E8ED9B0123D03D42AD470307F62E64E6DAE27613CF36DD92 │ │ │ │ -E2CF8880A9D1B1E43E8380E984EABF741185FBCBEFA5180044BF49EAD81321E6 │ │ │ │ -A863C5DFEFC9C038554AE488AE39AA8132636F82B693F52210652C62F0545CA4 │ │ │ │ -1A421459472BBCB8D514F3A7705700948327B90F1073A9C61480AEE9CCD5C347 │ │ │ │ -D11F49B599F7964C022FF7246DE826AFEA2CB29AC598907C5E141794D216481D │ │ │ │ -A55EBE81ED441E4547CECFBDF73C5DAEFAA02C244532A406A76EB5A89340B31E │ │ │ │ -3F57DB00F5237B0A6839F46C82AE99774555CDD15956BA11BA743A4F08CAF162 │ │ │ │ -B38516D820A2D138614E0512AAA6567B7F3E1893009FEBF69022B40043869CC3 │ │ │ │ -E15174637E6AC061F8554FB946D042B137A86D977BFC0AC68425F8BDB6AFEB43 │ │ │ │ -61BDBF9A1291C3754F64C3A7239DADB51FE8620D0606AB65A361E7EF74215BF0 │ │ │ │ -575FC9512D8668B08C6BD1099E4DA8FC2BCAC65FACAD37B5407144D04B73FE19 │ │ │ │ -3457ED5A6B59248BC6D7AF5681F64B8FCA0BE67B745EC4AABAEDC5CB894AF3BD │ │ │ │ -8F25528B2338B1572F7875CC54AEE9665B9F40B2750DB7E9AE9C66226925692F │ │ │ │ -579D344C2A7225EC6D9F903B883E9C15352238DDFBCD87AD746EC0311A2C7D28 │ │ │ │ -9D686F03CDD098BC8B8C6A8E32121A2E329CF383F006139C0EBE21B3696789F8 │ │ │ │ -6F31F72FC7BD25844123F404CF833DF759BAF560351C971695F0EF66FB2E7C7A │ │ │ │ -11A849CF26393C175F9079A2D9B1BDC641665DFE3617925EC254483176818324 │ │ │ │ -624FE1D27B9652E5B8D18FF4D71AB0CC510AED207ADEC1A874B538DE3CC57659 │ │ │ │ -7BB2834FE9C29D727692C852B53AEB670FC140D8899049F0137E3479329BFE41 │ │ │ │ -D010440FC7A0C1A8AF7E1C81FDF776E0DA7ABBF2B922C39DDD80DD05B811F35C │ │ │ │ -A43140E2C819E336CA6B6F0C932488495E1938C7503158D4D723E05C4386B461 │ │ │ │ -946B5D3E97F1AC3614DC8EB94B026F549CCD1ACCEE14833B3FA35EA0F9B8771F │ │ │ │ -709A53B7D26CC37CF4F252571F17988963678608AB402C4F7EB2093642D68F5D │ │ │ │ -51490E399E8467037E54E2B5870CBC85014CC15BAF5396FF09349C57DB0B5FEF │ │ │ │ -5C1ECF76D92EDBAFCE775E4550992D0456959E2C144ADE2912915F6C36431063 │ │ │ │ -93D8F2C135508CC0CB2C5490625629CB3DF16E5F2517077B43EF0243E45715E0 │ │ │ │ -9DBC7056EBDB0DC54A237DCA2B8D670BA42C7762AC27D370417A33CB5D20E56F │ │ │ │ -8B5A39E32EE873C36BE82C24E4424F079774323A63E552192DFCA37649642A34 │ │ │ │ -9BFF25E64EFEA841B8EA35A7DDC63DAD1266BCCC9B960822ADA75A81217DE527 │ │ │ │ -B544C0727CABB6384A0FCB8AA9436AC987F16D336CEF9F047E4086AF84A8729F │ │ │ │ -CA555B109ECAAA4CF9E228AF1D9176FA19E3C775B069594514F17C9578CD295A │ │ │ │ -1B26D030E825089BF3D4CEC107F70C2D264A3B840101BAC9269C24D148A3AC8F │ │ │ │ -9C87B10A7A8ABEBFB87274076DC69BEC509162C03CE799BEDE4F80E5CFFCA40B │ │ │ │ -18DF8911BD3480EADCC70EABA6113D1BA5B1F11F89717C0B12D48FD12CACC821 │ │ │ │ -67490B923A753CD18F1AA6D995EB10C1013E570B5099C1F9C939EF45E3D71C5C │ │ │ │ -3986BE5570A9EEC53725FF9901FFE089C9D09785BDDE82AB9B90173494280661 │ │ │ │ -1AAD28B258E60EE93FBE7D09C7E9A4DEB0D9C28C382EC350B24D3E26B6927272 │ │ │ │ -EE9FA03DEC64A27F367F2BDE6C3D1214DA0ACD6BB079E7C75CCE64A657C543DA │ │ │ │ -D1584173721CBC051E09C847FBDCDDD5DF3BBF62E3E2FD5E9526817358CDA723 │ │ │ │ -E55EB782D0C3D471EC5BEEA45C8AA3800955816E6C8E4AA0BD5EE6D6B62BECDC │ │ │ │ -5784978B667988816E83E51A87F86B267E8031D3FDAE85EDCFA0F7F155AB136C │ │ │ │ -53371DFD833ED75175BD7CE575A953DB9BE109100C83B2D2613CF62E236DCB64 │ │ │ │ -989FA9B5A59154600B77BB5AE7F316BDBF3BF8279D19D9E56CB4DEF15881A08A │ │ │ │ -3A6872C5A7F7483476BC45C3B281665C593D1E6594EC971D864AD7CF54F7E0FD │ │ │ │ -F84B5D532F221FD65D0138274CADCB03CC551EE6D55E7F16724CAA7D143452F5 │ │ │ │ -3A848081190B978FEC7FE4D8DDF8DB46FB40D2CEE74BFCCD75825CAD19D5F5D6 │ │ │ │ -3FF86B8A3F205ED68F7A1711B92005FA72A843B6AA4842D0FA2A9B51C599F9B5 │ │ │ │ -EF805F84328808443B77B5583016699A3FDC339BF5E949F13956F191E3EED360 │ │ │ │ -CC40E9EF0377F49C13AE3521AF1B2793A9EAB77F457C9C9188F9E348C10A881D │ │ │ │ -E6246E509EE419E26320AE8083A9AAB623A29A561B0F168BE711D3668B86BCAF │ │ │ │ -9EE429F5D46BE4CC8CCAE520CE9693EE49F8BBA498F6C38E17958582E4CB5A41 │ │ │ │ -8F47D273CF312F8BE4D2DBFC52FB68A1B1CFEFE8C704A701E00B3453B3D2889C │ │ │ │ -A94C015F3DFF9EC398BD29D233DD0F8180870EFB5B5768FBBF0FE5A87E24E485 │ │ │ │ -11B1D8860085A4DB3C9A0E008DF9395151A77B4B586C08D3944A7C8DD8E72C54 │ │ │ │ -6E39B69A6F712395C110E2CBB1742E43A92DB468C29B02B4703E53199B164DD1 │ │ │ │ -CABD1E96B0786E3E6A63CBA86B65A763B8CE3B06767791CB6768EFACC152E410 │ │ │ │ -CD9BF30094F9A54681F411C5F46841122E9BB2F681E4F75CBF50DC44F961350C │ │ │ │ -75E40FFA2DF3284ED49DDCA12FBADA1A507529BA0AF4BD2DC2681F0CAB94FB12 │ │ │ │ -F05F2881759D88CA1A2FBF926ED33259AF17261D11A88C9467100D1B4328B2DC │ │ │ │ -9A6C9A8F1ACA0E9DE45994C6B324EF3FB1BDF7E17CC30391975CB09D1800B2A4 │ │ │ │ -ED5A664B40 │ │ │ │ +AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8CDFE0CECB764 │ │ │ │ +1D3459669942B17D3825972CAC8ABE85D65653F80D780A1DD8CE08BC9C7DFDA2 │ │ │ │ +C9F2AB7C6CEB4FE5A158ADCFDBCD6B4F3C9CE40724AE4FAE30F0C406B5CE2F7D │ │ │ │ +64487C640627136AD6FBDD1DB07602D6898F36B41F3F05E8D372458B8B1DC1CB │ │ │ │ +8931B0B6AA5B9301DF1AD61A1DF72E6E1E9367DDB31A278C8FB7D8CAF5B0F397 │ │ │ │ +0F36CD8D13B3C2E65B5EFBAE8124826EBFE1AB2F2774E3AF8C5A15513E552173 │ │ │ │ +AB61A24BD189EF65413EB261484556C37471697B37B76A93EE13D66B9391CA99 │ │ │ │ +8249134A33B4D675F994F30428B52B3907F4A97FB4D2B3C070180B50C16179AE │ │ │ │ +03DF9709FF1DA296703240F859F20E991422B38AB0D364FED870A0059BC9601E │ │ │ │ +37D09EEE73271CD255F8DF03C6CB4B41037FC77131835E0CEC55F01E2A34318B │ │ │ │ +7BF1F13A7997335A19249102A48BE6579F9CE29482F18FF1C32793B52B6C6550 │ │ │ │ +8403DBD0D9235174A5AAC21AB9714B6F2718BE7E558D59AB96B2EDEBA3047BA3 │ │ │ │ +73CE874904C5DB61A19C3C41057220A74199972C0E8E8BE2CCAC8B15A421A9BE │ │ │ │ +ACD4C3FFFC6CCCCA140CD7A07CC47946CFCAECB183BCFAF3FAC46A0164E5E410 │ │ │ │ +27D6739A041B24D30FDF1EFB5E60F9BD968B9C06AB87A979278981AA3CDFE761 │ │ │ │ +E9CB6D81A34E20480D9968989E8E0846106385A4677049FB769435FEED1870AD │ │ │ │ +2D3C38DA135A490DA92E89F4F50BEAEAFCA5C00FEEFB302D102F6B4AC7FF2028 │ │ │ │ +E114191AF9CD7A5EA5E33896A210821683FEB23B5BEDBF9A721A3603D8DBB817 │ │ │ │ +560764585434A28CCEF2129D42A73CF8631BAD718E4DF0C31E4B37697404ABB7 │ │ │ │ +91F8E5F32D64F329A2B1B95282FD945BF03E78A777AA48717C2B6ED6465188E3 │ │ │ │ +B9BEB015F1DC2F3D24D59B0C100115EC1F33073B2A4D0D435C8886FFF8520437 │ │ │ │ +05D06939B0ED070D3CBB072396541A67B2777AB9C04B8DE0E0BD20071B0610EB │ │ │ │ +27CB02FF3E08A242B2514C24721B3A6BA3B816D56D38EF19990C00CA99FF41A0 │ │ │ │ +BCC0092867AB390163764166D78689DD9D910FA555FCC874429CF8D329663E4D │ │ │ │ +5FBE8495941194174AE416581EDC54AB91726D16241B62918CDA8F96690C2004 │ │ │ │ +CEE23CC25C69FFF95439143D1E621D1748754887E155500187A10376480500D9 │ │ │ │ +2BA9332035DD92111662D33ECBE8423A549077B43BFBB44CF299BFC7048C7AC7 │ │ │ │ +D2CC1E630028317C6FFE3A2D1231897E8B578A32D387212F1BDF1A360F4C901A │ │ │ │ +9931D7AD211C9DD95A85225961FB00C0AF50761D94502E5DB43782EBAA2E07D3 │ │ │ │ +3E3C10FFEB55FCF7ED7E1F0931CC53CF6CE17B35F23B024406BCD45D7B6BBB3B │ │ │ │ +2808490F5ECED46AC315F503E420842D6FFB59C39586559CAC133099B224271C │ │ │ │ +54C57CE4B0A613E4E2331F3E4ABBD268B6EDC03400A2640ADCAD0BD35B7BDDCA │ │ │ │ +1AB107E764D043D5DD929486A6D1CC5E04480AE6CF586ABC8352C107BFDA344B │ │ │ │ +FBA35C5EFDBAEC45BE94A482CCC96231D5B1E53A8BC0D0334DEEFD472541D936 │ │ │ │ +1BAC20A85E1E9B3C15808F8032DD661DC826BBB00BCCBC60E3670023C48ACC70 │ │ │ │ +83848633E6A326B767A9343BE767B77BE4B4E46B0CF4E9C2C8C838A6D43DD577 │ │ │ │ +188B51E4F548304E73DEA1A1911C7B0A9D84FFC74BC9F8A839164B92305A1F37 │ │ │ │ +67C3B65F33179D71C6DE664F2F639DF46692B262A9C28FAD848E8B062F38BA08 │ │ │ │ +F266DAEB9B10CFFF452721E805BF4AEC4D9C23816EF9E112781D53309ACF1617 │ │ │ │ +1EACF53262AE8C2EF72CC7DE01C7B70780B5960E20BA9809B8320781F09F040B │ │ │ │ +9934D1C62E750D9EB367DAC9DF94388190ED1D900C00077A52271D668C2AD8CD │ │ │ │ +A0613C301417C000AAC4738E0DFE5AB5DA48870DAA48C6F1DA83E1407C9A35AC │ │ │ │ +0EB8200556DBBCA66EC4934B04B228A2BACA0D6B4359D7F9C5CBAB0191C15E89 │ │ │ │ +F00E65EC30C439F65980BBF081E39016C4EC12057935E26FAAF5EA8945CA0A96 │ │ │ │ +F9BBEEADA178C8A85180C851270B65A205094F69E5387D61C6BF7C7FBD981817 │ │ │ │ +92301E9AEE8D68AD1EF84B4E65AB4C7BAC3E6B11CAAEE2F12C3190D143520EEE │ │ │ │ +10FBC1B0DC87D2A0A09C701C6509C944BE88CD2327262006C431B9AA93DC5C90 │ │ │ │ +567889235FF38582D64BFC89B2019EAEBF891F41E97428DC4D0E2568F1E93151 │ │ │ │ +4ABDDD13D13D5B68B402DD6E6993A9A1D4BB7037CEAB74E5321A840659690F14 │ │ │ │ +5687261EA80D376D88FD36C2B8AFDDF29C256A66805388F26495709294CCAA48 │ │ │ │ +8CFDD509E23BAB3B3857D8A4D0112D991C5F75E80D9B5B0DF90F3ADADE331487 │ │ │ │ +69F244D18B53690A25413E14E49F95D8E84BC0FCDC5DE5CC9A0932DBF6E1A3FC │ │ │ │ +49918FB22385FC89443353F1F032FF97651E6496A8265AFA75846C70B44FB363 │ │ │ │ +EF4FA3E20972925EFAA60B0F50E34524F0317C0A22D545CEBEC2EE9290BA3FAF │ │ │ │ +11A6153322E387ACB44DE865102F270DC293E798FD73358E0104F1D43BC3952D │ │ │ │ +F76DBBADCFEC4370FAB7DBB81FF30F33642A833546057E54DC12C93FB43759CE │ │ │ │ +0A6BF5AFD352A1BB18341A12751776E5C03E2F13A338EA313A688C1FA5E0DAB6 │ │ │ │ +A44960755C0C279F34221A1482F59FEC5474A670BB5DC15876616DD5B4704733 │ │ │ │ +10CA514F3CA5152EB31899EBA50FF119FE6AFE1AA964032B024F59D78E904810 │ │ │ │ +4C87151EEC9CB0D797B1E7372BFE5D4451F1EDC375FD2541C1E4AD9B12C0AF7B │ │ │ │ +9AF731E566A76425A676FDA8412D08A5E22075BCA9783F5BBF6BDCF838E75C67 │ │ │ │ +0B3E418B04A5FE589BBEE3FE2D3A1C054F3C41632D0EA78FCD473440A23AA68A │ │ │ │ +7F00B6DD1AD961E4677BE669FEB62F126CB540E3455A139DAE8040E0EFDFA42A │ │ │ │ +A915CB14CE5F60519656271342CE4733F2A50AD0B2C6C828AE3FF45E8BB103F1 │ │ │ │ +1A324EF419095859E42A74FF986CCE4ACC8208F22F3354769C71CBD762E29845 │ │ │ │ +B6C5BDED00790AD645DF018680290CB8B5A657DC11F42B5C40DD992BFF5DED30 │ │ │ │ +ECE573C30C421720C9EB766123F1B763C5D69036EA4727684D98EEC10290066D │ │ │ │ +9D214BDCA12536B9EFFD8E9EB9FE919D414F81343B5A3B4879E8A1F562CBD001 │ │ │ │ +4AD8998430C6DB248880A0C66E125E270288BA04F08465B08FDFBE2A27E5A474 │ │ │ │ +2D7290A07F5CB058FDFBAC0E366EED6BEDC454C5E67BCD918CCD7D62A767F52F │ │ │ │ +9981C3694A2E3DD162106126C13A727E7AA5AED25F483FFC592050DFE12DB400 │ │ │ │ +547E88F2904B2ABD7915DE40D93C0CDA0CD0AED820BA82D2513A07F40682DC58 │ │ │ │ +F7FC9CCE24FE5619E1FA8E41195C5685D7E0A34A5E8DD8EB40AAC8DC7C726E82 │ │ │ │ +F7BCE71C6E4D3DE65D2DBFB058D07DCE2C8BE6C01626D0DCC2AD0336A3A43AD2 │ │ │ │ +D696266447266C818A113A998B5089B5EE563048038F7B0E2C403FDAE54E5005 │ │ │ │ +B4562CC7407F51D800BDA090656F46FF9F24E9F194140ED1811ECE2D1F5330C9 │ │ │ │ +11E1502DD9177E5FD8FA142757BB584B6C9075A085C0C9FAB414944C03E07279 │ │ │ │ +442B0AA8D2B61AEFDDFA7AE510D8700DE0AD2671035CAC92148504CF97B2DAF5 │ │ │ │ +748CC96260BD8FBB89F03D06F7417774988DC5E7EDD15BB79C3522811489AEDC │ │ │ │ +7982ECCEBC4C2A3A2076049BE8C7A776018585C260A168C7287B345E8B27B0AE │ │ │ │ +DE3DDBDDC24DA824A14E22E8C4600A05A0D4CA10CDEE1A2E56DF76EE9B5A1B9A │ │ │ │ +5FB85B2081C7A07DC86E50E4909DA19F62C352B0691496C2436DC51D99516B2F │ │ │ │ +835357E985939A5CE7A7910D9302C2C764226DEC5631593FF0E4CCB049F07320 │ │ │ │ +B1998684BD31FBC612AE35A5381C4688FE8E665C65B73628806F67FABB7C02DB │ │ │ │ +64DBF1BD54D5D2E2875F2F146968C6BC59B829F49227400BE163612D5A6445D7 │ │ │ │ +A0B08080BE46612831875D9D2497014F7BE9E5A5087927C235B8D60F816325AE │ │ │ │ +610C5252AEFE8279A5C87876B304B1C6A1E9D4D95F13A6FD72778754F24101AF │ │ │ │ +71AA6C436B823B1A2FD914700B8E4C2341DFEF3B91D65E590C7CCF6C2769E069 │ │ │ │ +69F9D1A4DE56C5734CBA101CB6071FABA941787E3028B3AF8DF3C1F9CAACC6A8 │ │ │ │ +CC9CAB81A63FFB5A291F2EC06EEDEA28D65CF010B482CAF99F26A4FEF2F870B6 │ │ │ │ +08B1BB92C705AD0F9FCB3CE7E4FCB2007A888CC20486DD14809707DEDED1E456 │ │ │ │ +221F992809200A128D4B1C890F5406B0F34DF3F277335394E9795909A0591DD5 │ │ │ │ +1F6C6079881DED3638E955EABFFBBB6A88D3CB0E85084A8B92BB9A6D0B44F01F │ │ │ │ +18D9C356C4A337032370FEC73A0955CC810A840ECFB6DDA3BDFF432FD76B5CE6 │ │ │ │ +9F43C43782703C8D1AC79C46514C9C1E2A64C86E2E1525E1B1CA36E007D29338 │ │ │ │ +667B458056EFE0BB6489737526F38B3E050291C032C5DD7E420C47AFA24A9206 │ │ │ │ +99BB1837B838B2DDEBE5AF17832CCEFECD9F2168300BACDA52B0BD9930E78052 │ │ │ │ +3A415F517A57F3B892EC35CC2E9282581995F8AE6CAA95516EC0CC3649CEAE66 │ │ │ │ +36E93E5336CCDC89E2901D54D5F848837C70922C44C463E5C1A4ACF87F00DBA0 │ │ │ │ +81B4BF5811CD4B1808C0B41F392DC8E77E00FB559B9E8A447CF44AE3710BC2A5 │ │ │ │ +FCCB177DE3D4E55549F207A6B4C604FF8C33A205ABA417A9724557443EFA6C3A │ │ │ │ +6D21D4A2CE49359ED67F09CE3F47C3D434E5084BF279014387F748B1EF6E6585 │ │ │ │ +605BCAB4154087AC324FCBA19B17FF747459F6F52549112F15D6FE8A368B398C │ │ │ │ +0E861BD70E7BF301D6DDAF6CEED781153C5BC50F251AE81E5C2774B88C26BB4B │ │ │ │ +FE9476DB3A587F183BC866E7CC47B4523DCAEB1A863EA636E8C4D4D82189AC17 │ │ │ │ +53958B35260B5B0DD9CF2DC4ABBB3757F2198EFED4DACC5251E45EB0AF379061 │ │ │ │ +06CBE14BF4F9FC5817CD111A643ADBFFFE457D27DFD83801015FFE4B6A83C487 │ │ │ │ +43F4D2E8FE4BC43AFC8DF0CE1A60628525A9B86FA5E9E233BA5C1A3632009010 │ │ │ │ +A9444204FF3761B93B04C0F073B73BDEFF83B8BB406C6E3D7D8343B27359B241 │ │ │ │ +4AD88BC543B1234DF2B2A9AF702574C46BA784F1D37BB0AEEB3A674C29A90F31 │ │ │ │ +26C2D56E690E215A54C9EBDC88700B704E1ACBF2A59249A44DA96309F2A9A749 │ │ │ │ +1176B92E2D541C691E0D0B0CBFC917F88E66DAEB12FC2D04015089FB6D0BB674 │ │ │ │ +30E8E7EACE3F4662ED05BB9189E1DE7731D17A8FBC645A09F3B882816D58C160 │ │ │ │ +EF89BF27922EC2F00BC5DA1C120E60AAD1D5A0AD66DF4C5E0C2F4CFBCD198A90 │ │ │ │ +431122D927F01AB22D536987051B00C34C7E476D8D7F21FC0618718341FF6289 │ │ │ │ +94475F13962E72FFDD2F3D762C15BD20DCD8D2E1D844F749CF24B393667316B5 │ │ │ │ +63BF422709AAE4AE4E0F66293A2CF7CBC34E09E25BBE1876CCAE1CE6270C1347 │ │ │ │ +D1520C347DD09930A3B929414B1B29ED17BFA53CAC2E58AE403F4C3C5EC32511 │ │ │ │ +08CAD095523D60928E40E4DBE6BF95D0428DD67E341498566F2E8BCBC5198D02 │ │ │ │ +4BF0371B2ACE7493C83051011A939337B6D3313388CA167A0ECC45E5C6C3BC94 │ │ │ │ +1683E520E84D9FBE12684B54077E244055143BA85F97F0DA5A2EEDA8F107FA24 │ │ │ │ +60A48ED9C6DC98D365ABF17F19A0527DFB9564EBAF18EEACF5D1D7A15BC753B8 │ │ │ │ +F2EECB90A1FAB4858A784A65636F5879F2AB48D5826198BC67A25A9D5902053D │ │ │ │ +D1CA96D794FC0D59AB2A65837042A3648B84BFD3A217761CFCEE09813ECB7ABD │ │ │ │ +39C7BD7ECC0AB321F2BCD2E841A04755696D352703FCAA06385D593B86F1BFA0 │ │ │ │ +BF18359DCEA0754F86F41AC3E2318BD770D0F4734CF772D644FF6A821E72BA8B │ │ │ │ +9B293F8822136FB8F2AFAAD38C7ADBF0D98A1C3EAED5710406F04ABF3E96FD06 │ │ │ │ +DF12ABE1F8B3228A2F02FAC4BEF0DDEC54945E6ADB0C8D23AF0F0149F60E452F │ │ │ │ +7DBED22DDC52D0F1A5972617303A36530FF1D6903EBB6A279567644F4D95FFE9 │ │ │ │ +6B6D42E11E88D0EF21D2C295435F026137AABDAC4F1333DDDF452FFEAB42ADB7 │ │ │ │ +978BAD76F2B6078E88DB9650D32290C1BFCD08A985FA60C0813A816C9ACC104D │ │ │ │ +B84AA24951F1DE2A0262CF789AA75EBAF878FB0D3525A2FE3C7C2DED569CAA99 │ │ │ │ +7884010C6209BEF4096E0718EFCF4DB8F9B1D7E633BC060B2A22AFCE21EF817D │ │ │ │ +BE29949F271B1CEB8E0666D9502B34EBBF014CE2F410D93BDEB2DACE13BA9144 │ │ │ │ +6ED264959DE1E4A206F43CD815EDFE7EB91C9E5EB5D4B242DF20F5E6A127A782 │ │ │ │ +8B565B9F3DD2461CE84FD02BCA7F18BC483CB8BE6AC926898A638528EFCA6B31 │ │ │ │ +E5ABAB1AA806C559DDF02EE1E5C8160EDDDF87B6F6A623175C26426413FF647B │ │ │ │ +D26AB24DFDB32D85822195B20CBFAAB4CC448FF67FEE206DC91F681C0817E09B │ │ │ │ +384F0B9FDB3862B19AF1E7CF168443FEED7C722BAA8C4E52EEFD2AC6F7200A3F │ │ │ │ +67359C3AADF23AB9DC68EC0F5950F4EFA6720C2F15CDF2AB47F3E9E6334FB6C4 │ │ │ │ +017DAF8B0703FDBCE37FE0D30E97BFC21627C0EB39E233C4365403201C5A398A │ │ │ │ +2BDC909A763AD36DDE38E4C2433C3A8EF74CBFBDC5DA096C9E700E96EDBFC1C1 │ │ │ │ +86991054C136EA52B4AB5A7876849554E61AA0641BC5EDE990D58AF4B543C241 │ │ │ │ +F86512AD9923150A95E377A701664D9FDF0A9B15A4D0A6BD3810E6F73D310AF3 │ │ │ │ +88D21FB6AC2881F15137E84D8C98C3964938D6774099B70999D4546CA6F8304F │ │ │ │ +F01C9227EDFB2E7A3771BEA176A939832F969C2F502D17F7FD794CDCB7D79454 │ │ │ │ +29B3DCCAA5E0F1B44EC9D7ABC89A36DB6C0B505377E43AB5B3A120155AA849BC │ │ │ │ +E881BBE35833E0D9C7E76D3954557F380B8FFE8C23015DEB4CD85A2816900569 │ │ │ │ +45C8F930FE3CECF7408C6A96E7ACFE299A07C15C5B52D01AE15E3E665A1494BA │ │ │ │ +679B974FA2A40A520E0B174F1CE7EA9DA1C5C8E54380FD24D5EAD4D3144ADA2A │ │ │ │ +97DAB2356EAF57EA3455526A978D48B22A205B0566B5223C81E8202C3769AA2D │ │ │ │ +5CB4DACFE5A804826E82465B819672811489B3D7D2C4C3EF4C01AADC73AB93AE │ │ │ │ +BCB18DAA8D38194FD96CE32D80FDB6092569896EE6630288DDE7277809654F1D │ │ │ │ +F1F3750B85226FFBA22AE6F724DC23E180E7D8DE72A97B1F5898CC97BD824DC1 │ │ │ │ +54D86F53465C45437B439B9DFDD3D0E9FEDD025B44C5BB57F994DF6000CAF83B │ │ │ │ +BE │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -7537,15 +7526,15 @@ │ │ │ │ 44 2[44 44 1[44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ 44 44 1[44 44 44 2[44 37[{}70 83.022 /CMTT10 rf /Fh 141[51 │ │ │ │ 1[51 7[51 6[51 25[51 71[{}5 99.6264 /CMTT12 rf /Fi 135[59 │ │ │ │ 2[62 44 44 46 1[62 56 62 93 31 1[34 31 62 56 34 51 62 │ │ │ │ 50 62 54 10[85 1[78 62 84 11[70 2[81 1[85 11[56 56 56 │ │ │ │ 56 56 2[31 46[{}33 99.6264 /CMBX12 rf /Fj 139[32 33 33 │ │ │ │ 2[42 46 4[23 1[42 1[37 46 37 46 42 12[60 4[65 8[54 13[42 │ │ │ │ -2[42 2[42 42 42 3[23 44[{}21 83.022 /CMSL10 rf /Fk 133[31 │ │ │ │ +2[42 2[42 1[42 3[23 44[{}20 83.022 /CMSL10 rf /Fk 133[31 │ │ │ │ 37 37 51 37 39 27 28 28 1[39 35 39 59 20 2[20 39 35 22 │ │ │ │ 31 39 31 39 35 9[72 53 1[51 39 52 1[48 55 1[65 44 2[25 │ │ │ │ 53 3[54 51 50 53 3[55 3[35 35 35 35 35 35 35 35 35 35 │ │ │ │ 1[20 24 20 31[39 12[{}53 66.4176 /CMR8 rf │ │ │ │ %DVIPSBitmapFont: Fl tcrm0600 6 1 │ │ │ │ /EN0 load IEn S/IEn X FBB FMat/FMat[0.02 0 0 -0.02 0 │ │ │ │ 0]N/FBB[-11 -15 87 40]N │ │ │ │ @@ -7578,15 +7567,15 @@ │ │ │ │ E00007CCF8003F8C7F007F0C3F80FC0C0FC0781E0780601E0180001E0000001E0000001E │ │ │ │ 0000001E0000001E0000000C00001A1D7C9E23>42 D E │ │ │ │ /Ft load 0 Ft currentfont 66.6667 scalefont put/FMat │ │ │ │ X/FBB X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fu 137[51 54 38 38 38 1[54 49 54 1[27 2[27 54 49 30 │ │ │ │ 43 54 43 54 49 13[54 3[76 7[77 3[70 69 73 8[49 2[49 2[49 │ │ │ │ -49 49 3[27 44[{}30 99.6264 /CMR12 rf /Fv 139[51 52 51 │ │ │ │ +1[49 3[27 44[{}29 99.6264 /CMR12 rf /Fv 139[51 52 51 │ │ │ │ 1[73 66 73 111 3[36 1[66 40 58 73 58 1[66 12[96 73 3[103 │ │ │ │ 1[122 6[86 70[{}19 143.462 /CMR17 rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ TeXDict begin │ │ │ │ %%BeginPaperSize: Letter │ │ │ │ @@ -7597,15 +7586,15 @@ │ │ │ │ %%EndPaperSize │ │ │ │ end │ │ │ │ %%EndSetup │ │ │ │ %%Page: 1 1 │ │ │ │ TeXDict begin 1 0 bop 333 739 a Fv(Ordering)44 b(Sparse)f(Matrices)g │ │ │ │ (and)h(T)-11 b(ransforming)41 b(F)-11 b(ron)l(t)43 b(T)-11 │ │ │ │ b(rees)958 1023 y Fu(Clev)m(e)35 b(Ashcraft,)e(Bo)s(eing)f(Shared)i │ │ │ │ -(Services)g(Group)2942 987 y Ft(*)1586 1262 y Fu(Octob)s(er)e(18,)g │ │ │ │ +(Services)g(Group)2942 987 y Ft(*)1586 1262 y Fu(Octob)s(er)e(28,)g │ │ │ │ (2025)0 1924 y Fs(1)135 b(In)l(tro)t(duction)0 2165 y │ │ │ │ Fr(If)38 b(the)g(ultimate)g(goal)f(is)g(to)h(solv)n(e)e(linear)h │ │ │ │ (systems)g(of)h(the)g(form)f Fq(AX)46 b Fr(=)40 b Fq(B)t │ │ │ │ Fr(,)g(one)d(m)n(ust)h(compute)g(an)f Fq(A)j Fr(=)g Fq(LD)r(U)9 │ │ │ │ b Fr(,)0 2265 y Fq(A)25 b Fr(=)e Fq(U)241 2234 y Fp(T)294 │ │ │ │ 2265 y Fq(D)r(U)37 b Fr(or)27 b Fq(A)e Fr(=)f Fq(U)803 │ │ │ │ 2234 y Fp(H)865 2265 y Fq(D)r(U)38 b Fr(factorization,)27 │ │ │ │ @@ -7687,15 +7676,15 @@ │ │ │ │ (ARP)-6 b(A)0 5328 y(Con)n(tract)33 b(D)n(ABT63-95-C-0122)f(and)g(the)g │ │ │ │ (DoD)g(High)f(P)n(erformance)h(Computing)g(Mo)r(dernization)g(Program)f │ │ │ │ (Common)h(HPC)f(Soft)n(w)n(are)0 5407 y(Supp)r(ort)25 │ │ │ │ b(Initiativ)n(e.)1929 5656 y Fr(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fr(2)327 b Fj(Orderings)26 │ │ │ │ b(and)h(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1442 100 1755 │ │ │ │ -4 v 1947 w(Octob)r(er)27 b(18,)g(2025)0 390 y Fs(2)135 │ │ │ │ +4 v 1947 w(Octob)r(er)27 b(28,)g(2025)0 390 y Fs(2)135 │ │ │ │ b(Sparse)45 b(matrix)h(orderings)0 605 y Fr(The)22 b(past)h(few)f(y)n │ │ │ │ (ears)f(ha)n(v)n(e)g(seen)h(a)g(resurgence)f(of)i(in)n(terest)f(and)g │ │ │ │ (accompan)n(ying)e(impro)n(v)n(emen)n(t)h(in)i(algorithms)e(and)h │ │ │ │ (soft-)0 705 y(w)n(are)27 b(to)i(order)e(sparse)g(matrices.)39 │ │ │ │ b(The)29 b(minim)n(um)g(degree)f(algorithm,)f(sp)r(eci\014cally)h(the)h │ │ │ │ (m)n(ultiple)h(external)d(minim)n(um)0 804 y(degree)c(algorithm)g([19)o │ │ │ │ (],)h(w)n(as)f(the)i(preferred)d(algorithm)h(of)h(c)n(hoice)f(for)g │ │ │ │ @@ -7798,15 +7787,15 @@ │ │ │ │ y(matrices\),)27 b(there)h(is)f(an)g(easier)g(w)n(a)n(y)-7 │ │ │ │ b(.)35 b(One)28 b(can)f(create)g(an)g Fg(IVL)f Fr(ob)5 │ │ │ │ b(ject)28 b(from)f(the)h Fg(InpMtx)d Fr(ob)5 b(ject,)27 │ │ │ │ b(as)g(follo)n(ws.)0 5108 y Fg(InpMtx)128 b(*A)43 b(;)0 │ │ │ │ 5208 y(IVL)260 b(*adjIVL)41 b(;)0 5407 y(adjIVL)g(=)i │ │ │ │ (InpMtx_fullAdjace)o(nc)o(y\(A)o(\))37 b(;)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ -TeXDict begin 3 2 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 3 2 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1782 4 v 1945 w(Orderings)f(and)i(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)326 b Fr(3)881 448 y(Figure)27 b(1:)36 │ │ │ │ b(A)28 b(3)18 b Fo(\002)g Fr(4)27 b(9-p)r(oin)n(t)g(grid)g(with)h(its)g │ │ │ │ (adjacency)f(structure)p 481 1707 119 4 v 670 1707 V │ │ │ │ 481 1519 V 670 1519 V 481 1330 V 670 1330 V 481 1141 │ │ │ │ V 670 1141 V 446 1659 4 95 v 635 1659 V 824 1659 V 446 │ │ │ │ 1470 V 635 1470 V 824 1470 V 446 1281 V 635 1281 V 824 │ │ │ │ @@ -7861,15 +7850,15 @@ │ │ │ │ b(w)n(e)g(can)g(construct)h(an)f(ordering.)35 b(There)27 │ │ │ │ b(are)g(four)g(c)n(hoices:)125 5407 y Ff(\210)42 b Fr(minim)n(um)28 │ │ │ │ b(degree,)e(\(actually)i(m)n(ultiple)g(external)f(minim)n(um)h(degree,) │ │ │ │ e(from)i([19)o(]\),)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fr(4)327 b Fj(Orderings)26 │ │ │ │ b(and)h(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1442 100 1755 │ │ │ │ -4 v 1947 w(Octob)r(er)27 b(18,)g(2025)125 390 y Ff(\210)42 │ │ │ │ +4 v 1947 w(Octob)r(er)27 b(28,)g(2025)125 390 y Ff(\210)42 │ │ │ │ b Fr(generalized)26 b(nested)h(dissection,)125 571 y │ │ │ │ Ff(\210)42 b Fr(m)n(ultisection,)27 b(and)125 752 y Ff(\210)42 │ │ │ │ b Fr(the)28 b(b)r(etter)g(of)f(generalized)f(nested)i(dissection)f(and) │ │ │ │ h(m)n(ultisection.)0 954 y(Minim)n(um)g(degree)f(tak)n(es)f(the)i │ │ │ │ (least)f(amoun)n(t)h(of)f(CPU)h(time.)37 b(Generalized)27 │ │ │ │ b(nested)g(dissection)h(and)f(m)n(ultisection)h(b)r(oth)0 │ │ │ │ 1054 y(require)c(the)i(a)e(partition)h(of)g(the)h(graph,)e(whic)n(h)i │ │ │ │ @@ -7940,15 +7929,15 @@ │ │ │ │ (great)g(deal)h(of)g(monitoring)g(and)g(debug)g(co)r(de)g(in)g(the)h │ │ │ │ (soft)n(w)n(are.)37 b(Large)26 b(v)-5 b(alues)28 b(of)g │ │ │ │ Fg(msglvl)208 5407 y Fr(ma)n(y)d(result)h(in)g(large)f(message)f │ │ │ │ (\014les.)37 b(T)-7 b(o)25 b(see)h(the)h(statistics)e(generated)g │ │ │ │ (during)h(the)g(ordering,)f(use)h Fg(msglvl)41 b(=)i(1)p │ │ │ │ Fr(.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ -TeXDict begin 5 4 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 5 4 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1782 4 v 1945 w(Orderings)f(and)i(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)326 b Fr(5)125 390 y Ff(\210)42 b Fr(The)19 │ │ │ │ b Fg(seed)g Fr(parameter)f(is)i(used)f(as)h(a)f(random)g(n)n(um)n(b)r │ │ │ │ (er)g(seed.)34 b(\(There)20 b(are)f(man)n(y)g(places)g(in)h(the)g │ │ │ │ (graph)f(partitioning)208 490 y(and)k(minim)n(um)i(degree)d(algorithms) │ │ │ │ h(where)g(randomness)f(pla)n(ys)h(a)g(part.)35 b(Using)24 │ │ │ │ b(a)f(random)g(n)n(um)n(b)r(er)g(seed)h(ensures)208 589 │ │ │ │ @@ -8021,15 +8010,15 @@ │ │ │ │ 5308 y(really)c(little)i(di\013erence)f(in)h(ordering)d(qualit)n(y)-7 │ │ │ │ b(,)27 b(while)f(the)h(minim)n(um)g(degree)e(ordering)f(tak)n(es)i(m)n │ │ │ │ (uc)n(h)g(less)g(time)g(than)h(the)0 5407 y(other)g(orderings.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fr(6)327 b Fj(Orderings)26 │ │ │ │ b(and)h(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1442 100 1755 │ │ │ │ -4 v 1947 w(Octob)r(er)27 b(18,)g(2025)125 390 y Fr(Let)33 │ │ │ │ +4 v 1947 w(Octob)r(er)27 b(28,)g(2025)125 390 y Fr(Let)33 │ │ │ │ b(us)g(no)n(w)f(lo)r(ok)h(at)g(a)g(random)f(triangulation)g(of)h(a)g │ │ │ │ (unit)g(cub)r(e.)54 b(This)34 b(matrix)e(has)h(13824)e(ro)n(ws)g(and)i │ │ │ │ (columns.)0 490 y(Eac)n(h)28 b(face)h(of)g(the)h(cub)r(e)g(has)f(a)g │ │ │ │ (22)18 b Fo(\002)h Fr(22)29 b(regular)e(grid)i(of)g(p)r(oin)n(ts.)42 │ │ │ │ b(The)29 b(remainder)g(of)g(the)h(v)n(ertices)e(are)g(placed)h(in)h │ │ │ │ (the)0 589 y(in)n(terior)c(using)i(quasi-random)d(p)r(oin)n(ts,)j(and)f │ │ │ │ (the)h(Delauney)g(triangulation)e(is)i(computed.)1189 │ │ │ │ @@ -8097,15 +8086,15 @@ │ │ │ │ (;)0 5113 y(ETree_initFromGr)o(aph)o(Wi)o(th)o(Per)o(ms)o(\(ve)o(tr)o │ │ │ │ (ee,)e(graph,)k(newToOld,)f(oldToNew\))g(;)0 5308 y Fr(The)21 │ │ │ │ b Fg(vetree)e Fr(ob)5 b(ject)21 b(in)g(the)h(co)r(de)f(fragmen)n(t)f │ │ │ │ (ab)r(o)n(v)n(e)g(is)h(a)g Fe(vertex)j(elimination)h(tr)l(e)l(e)c │ │ │ │ Fr([20)o(],)h([26],)g(where)f(eac)n(h)f(fron)n(t)h(con)n(tains)0 │ │ │ │ 5407 y(one)27 b(v)n(ertex.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ -TeXDict begin 7 6 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 7 6 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1782 4 v 1945 w(Orderings)f(and)i(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)326 b Fr(7)888 448 y(Figure)27 b(2:)36 │ │ │ │ b(R2D100:)g(randomly)26 b(triangulated,)h(100)f(grid)h(p)r(oin)n(ts)109 │ │ │ │ 2355 y @beginspecial 0 @llx 0 @lly 300 @urx 300 @ury │ │ │ │ 2160 @rwi 2160 @rhi @setspecial │ │ │ │ %%BeginDocument: R2D100.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ @@ -8983,15 +8972,15 @@ │ │ │ │ 5407 y Fk(V)-6 b(ertex)24 b Fc(j)j Fk(is)c(the)i(paren)n(t)f(of)g │ │ │ │ Fc(i)f Fk(if)g Fc(j)k Fk(is)c(the)h(\014rst)g(v)n(ertex)h(greater)f │ │ │ │ (than)h Fc(i)e Fk(suc)n(h)h(that)h Fc(L)2434 5417 y Fb(j;i)2524 │ │ │ │ 5407 y Fa(6)p Fk(=)20 b(0.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fr(8)327 b Fj(Orderings)26 │ │ │ │ b(and)h(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1442 100 1755 │ │ │ │ -4 v 1947 w(Octob)r(er)27 b(18,)g(2025)701 1332 y Fr(Figure)g(3:)36 │ │ │ │ +4 v 1947 w(Octob)r(er)27 b(28,)g(2025)701 1332 y Fr(Figure)g(3:)36 │ │ │ │ b(V)-7 b(ertex)28 b(elimination)f(tree)g(for)h(R2D100,)e(100)g(ro)n(ws) │ │ │ │ g(and)i(columns)450 4440 y @beginspecial 0 @llx 0 @lly │ │ │ │ 600 @urx 600 @ury 3600 @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: vtree.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%BoundingBox: 0 0 600 600 │ │ │ │ /CSH { │ │ │ │ @@ -9441,15 +9430,15 @@ │ │ │ │ grestore │ │ │ │ │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 9 9 │ │ │ │ -TeXDict begin 9 8 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 9 8 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1782 4 v 1945 w(Orderings)f(and)i(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)326 b Fr(9)0 390 y(sup)r(erimp)r(osed)27 │ │ │ │ b(on)g(the)h(structure)f(of)g(the)g(factor)g Fq(L)p Fr(.)36 │ │ │ │ b(Note)28 b(this)f(one)g(imp)r(ortan)n(t)g(prop)r(ert)n(y:)36 │ │ │ │ b(within)28 b(an)n(y)e(blo)r(c)n(k)h(column)0 490 y(and)g(b)r(elo)n(w)h │ │ │ │ (the)g(diagonal)e(blo)r(c)n(k,)h(a)g(ro)n(w)f(is)i(either)f(zero)g(or)g │ │ │ │ (dense.)125 615 y(The)g(co)r(de)h(fragmen)n(t)e(to)i(con)n(v)n(ert)e(a) │ │ │ │ @@ -9530,15 +9519,15 @@ │ │ │ │ g(p)r(oin)n(t)0 5407 y(\014nite)22 b(di\013erence)f(op)r(erator,)g │ │ │ │ (when)g(ordered)f(b)n(y)h(nested)g(dissection,)h(has)f(a)g(ro)r(ot)f │ │ │ │ (sup)r(erno)r(de)h(with)h Fq(k)3182 5377 y Fn(2)3240 │ │ │ │ 5407 y Fr(ro)n(ws)e(and)h(columns.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fr(10)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)0 489 y Fr(Figure)22 │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)0 489 y Fr(Figure)22 │ │ │ │ b(4:)35 b(T)-7 b(op:)34 b(v)n(ertex)22 b(elimination)h(tree)g(with)g │ │ │ │ (the)h(v)n(ertices)e(mapp)r(ed)h(to)g(the)h(fundamen)n(tal)f(sup)r │ │ │ │ (erno)r(de)g(that)g(con)n(tains)0 589 y(them.)37 b(Bottom:)g(fundamen)n │ │ │ │ (tal)28 b(sup)r(erno)r(de)f(tree.)450 3696 y @beginspecial │ │ │ │ 0 @llx 0 @lly 600 @urx 600 @ury 3600 @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: fsvtree.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ @@ -10332,15 +10321,15 @@ │ │ │ │ grestore │ │ │ │ │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 11 11 │ │ │ │ -TeXDict begin 11 10 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 11 10 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1741 4 v 1904 w(Orderings)f(and)h(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)327 b Fr(11)610 1332 y(Figure)27 b(5:)36 │ │ │ │ b(Blo)r(c)n(k)27 b(structure)g(of)h Fq(L)f Fr(with)h(the)g(fundamen)n │ │ │ │ (tal)f(sup)r(erno)r(de)h(partition.)450 4440 y @beginspecial │ │ │ │ 0 @llx 0 @lly 550 @urx 550 @ury 3600 @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: fsmtx.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ @@ -10686,15 +10675,15 @@ │ │ │ │ xnw ynw dx dy nrow ncol sn_info draw_sn_overlay │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fr(12)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)0 864 y Fr(Figure)33 │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)0 864 y Fr(Figure)33 │ │ │ │ b(6:)48 b(T)-7 b(op:)49 b(fundamen)n(tal)33 b(sup)r(erno)r(de)g(tree)h │ │ │ │ (with)g(the)f(sup)r(erno)r(des)g(mapp)r(ed)h(to)g(the)f(amalgamated)f │ │ │ │ (sup)r(erno)r(de)0 964 y(that)c(con)n(tains)f(them.)37 │ │ │ │ b(Bottom:)g(amalgamated)25 b(sup)r(erno)r(de)j(tree.)450 │ │ │ │ 4071 y @beginspecial 0 @llx 0 @lly 600 @urx 600 @ury │ │ │ │ 3600 @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: amvtree.eps │ │ │ │ @@ -11301,15 +11290,15 @@ │ │ │ │ grestore │ │ │ │ │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 13 13 │ │ │ │ -TeXDict begin 13 12 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 13 12 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1741 4 v 1904 w(Orderings)f(and)h(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)327 b Fr(13)594 1332 y(Figure)26 b(7:)37 │ │ │ │ b(Blo)r(c)n(k)27 b(structure)g(of)g Fq(L)h Fr(with)g(the)g(amalgamated) │ │ │ │ e(sup)r(erno)r(de)h(partition.)450 4440 y @beginspecial │ │ │ │ 0 @llx 0 @lly 550 @urx 550 @ury 3600 @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: ammtx.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ @@ -11609,15 +11598,15 @@ │ │ │ │ xnw ynw dx dy nrow ncol sn_info draw_sn_overlay │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fr(14)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)0 390 y Fr(The)k(data)f │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)0 390 y Fr(The)k(data)f │ │ │ │ (structure)g(for)g(a)h(top)f(lev)n(el)g(sup)r(erno)r(de)h(can)f(b)r(e)h │ │ │ │ (v)n(ery)f(large,)g(to)r(o)g(large)g(to)g(\014t)h(in)n(to)g(memory)-7 │ │ │ │ b(.)45 b(In)31 b(a)f(parallel)0 490 y(en)n(vironmen)n(t,)d(w)n(e)h │ │ │ │ (follo)n(w)g(the)g(con)n(v)n(en)n(tion)f(that)h(eac)n(h)g(no)r(de)g(in) │ │ │ │ g(the)h(tree)f(is)g(handled)g(b)n(y)g(one)g(pro)r(cess.)37 │ │ │ │ b(Ha)n(ving)27 b(a)h(v)n(ery)0 589 y(large)e(no)r(de)i(at)f(the)h(top)g │ │ │ │ (lev)n(els)f(of)g(the)h(tree)g(will)f(sev)n(erely)f(decrease)h(the)h │ │ │ │ @@ -11707,15 +11696,15 @@ │ │ │ │ (an)i(fundamen)n(tal)f(sup)r(erno)r(de)h(tree)f(with)h(a)f(call)h(to)f │ │ │ │ Fg(ETree)p 2994 5208 27 4 v 29 w(mergeFrontsOne\(\))17 │ │ │ │ b Fr(with)208 5308 y Fg(maxzeros)40 b(=)j(0)p Fr(.)36 │ │ │ │ b(W)-7 b(e)26 b(see)g(that)g(the)h(n)n(um)n(b)r(er)e(of)h(fron)n(ts)g │ │ │ │ (decreases)e(b)n(y)i(one)f(and)h(the)g(n)n(um)n(b)r(er)g(of)g(en)n │ │ │ │ (tries)f(do)r(es)h(not)208 5407 y(c)n(hange.)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ -TeXDict begin 15 14 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 15 14 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1741 4 v 1904 w(Orderings)f(and)h(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)327 b Fr(15)0 615 y(Figure)24 b(8:)35 b(Left:)h(tree)24 │ │ │ │ b(after)h(the)g(large)e(sup)r(erno)r(des)h(ha)n(v)n(e)g(b)r(een)h │ │ │ │ (split.)36 b(Righ)n(t:)g(tree)24 b(with)h(no)r(des)g(mapp)r(ed)g(bac)n │ │ │ │ (k)f(to)g(their)0 715 y(amalgamated)i(sup)r(erno)r(de.)450 │ │ │ │ 3822 y @beginspecial 0 @llx 0 @lly 600 @urx 600 @ury │ │ │ │ 3600 @rwi 3600 @rhi @setspecial │ │ │ │ @@ -12349,15 +12338,15 @@ │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fr(16)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)420 595 y Fr(Figure)g(9:)37 │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)420 595 y Fr(Figure)g(9:)37 │ │ │ │ b(Blo)r(c)n(k)27 b(structure)g(of)g Fq(L)g Fr(with)h(the)g(amalgamated) │ │ │ │ e(and)i(split)g(sup)r(erno)r(de)f(partition.)450 3702 │ │ │ │ y @beginspecial 0 @llx 0 @lly 550 @urx 550 @ury 3600 │ │ │ │ @rwi 3600 @rhi @setspecial │ │ │ │ %%BeginDocument: spmtx.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%BoundingBox: 0.000 0.000 550.000 550.000 │ │ │ │ @@ -12677,15 +12666,15 @@ │ │ │ │ b(2021347776)692 4948 y(merge)26 b(an)n(y)p 1114 4978 │ │ │ │ V 99 w(0.012)279 b(597)232 b(85366)142 b(3753241)154 │ │ │ │ b(2035158539)692 5048 y(split)p 1114 5078 V 316 w(0.043)279 │ │ │ │ b(643)190 b(115139)142 b(3753241)154 b(2035158539)692 │ │ │ │ 5148 y(\014nal)p 1114 5177 V 316 w(0.423)279 b(643)190 │ │ │ │ b(115128)142 b(3752694)154 b(2034396840)p eop end │ │ │ │ %%Page: 17 17 │ │ │ │ -TeXDict begin 17 16 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 17 16 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1741 4 v 1904 w(Orderings)f(and)h(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)327 b Fr(17)125 390 y Ff(\210)42 b Fr(The)33 │ │ │ │ b(second)f(step)i(is)f(also)f(a)h(call)f(to)i Fg(ETree)p │ │ │ │ 1665 390 27 4 v 29 w(mergeFrontsOne\(\))o Fr(,)29 b(this)k(time)h(with) │ │ │ │ g Fg(maxzeros)40 b(=)j(1000)p Fr(.)52 b(Here)208 490 │ │ │ │ y(w)n(e)30 b(merge)h(fron)n(ts)f(with)i(only)f(one)f(c)n(hild)i(with)f │ │ │ │ (that)h(c)n(hild,)g(in)f(other)g(w)n(ords,)g(only)g(c)n(hains)f(of)h │ │ │ │ @@ -12796,15 +12785,15 @@ │ │ │ │ (column\))g(or)f(BLAS3)0 5407 y(k)n(ernel)f(\(when)g │ │ │ │ Fq(X)31 b Fr(and)25 b Fq(Y)43 b Fr(are)23 b(matrices\).)36 │ │ │ │ b(When)25 b(fron)n(ts)e(are)h(small,)h(particularly)e(with)i(one)f(in)n │ │ │ │ (ternal)g(ro)n(w)f(and)h(column,)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fr(18)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)0 390 y Fr(the)g(submatrices)e │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)0 390 y Fr(the)g(submatrices)e │ │ │ │ (that)i(tak)n(e)f(part)g(are)f(v)n(ery)g(small.)36 b(The)27 │ │ │ │ b(o)n(v)n(erhead)d(for)i(the)g(computations)g(tak)n(es)g(far)g(more)f │ │ │ │ (time)i(than)0 490 y(the)h(computations)f(themselv)n(es.)125 │ │ │ │ 612 y(This)35 b(m)n(ultistep)h(pro)r(cess)e(of)h(merging,)i(merging)d │ │ │ │ (again,)i(etc,)h(and)f(\014nally)f(splitting)g(the)h(fron)n(t)f(trees)g │ │ │ │ (is)g(tedious.)0 712 y(There)27 b(are)g(simple)g(metho)r(ds)h(that)g │ │ │ │ (do)f(the)h(pro)r(cess)f(in)h(one)f(step.)0 894 y Fg(ETree)129 │ │ │ │ @@ -12899,15 +12888,15 @@ │ │ │ │ b(of)f Fg(64)g Fr(is)h(what)f(w)n(e)g(customarily)g(use.)0 │ │ │ │ 5103 y Fs(References)42 5308 y Fr([1])41 b(P)-7 b(.)35 │ │ │ │ b(Amesto)n(y)-7 b(,)37 b(T.)f(Da)n(vis,)h(and)e(I.)h(Du\013.)62 │ │ │ │ b(An)36 b(appro)n(ximate)e(minim)n(um)i(degree)f(ordering)f(algorithm.) │ │ │ │ 59 b Fe(SIAM)37 b(J.)171 5407 y(Matrix)30 b(A)n(nal.)g(Appl.)p │ │ │ │ Fr(,)f(17:886{905,)23 b(1996.)p eop end │ │ │ │ %%Page: 19 19 │ │ │ │ -TeXDict begin 19 18 bop 0 100 a Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +TeXDict begin 19 18 bop 0 100 a Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 704 100 1741 4 v 1904 w(Orderings)f(and)h(F)-7 b(ron)n(t)27 │ │ │ │ b(T)-7 b(rees)327 b Fr(19)844 448 y(T)-7 b(able)27 b(3:)36 │ │ │ │ b(R3D13824:)f(the)28 b(in\015uence)g(of)f Fg(maxzeros)e │ │ │ │ Fr(and)i Fg(maxsize)p Fr(.)p 1241 639 4 100 v 1674 609 │ │ │ │ a(factor)942 b(solv)n(e)276 b(total)440 709 y Fg(maxzeros)96 │ │ │ │ b(maxsize)p 1241 738 V 97 w Fr(init)105 b(CPU)g(m\015ops)99 │ │ │ │ b(p)r(ostpro)r(cess)f(CPU)i(m\015ops)k(CPU)p 390 742 │ │ │ │ @@ -12989,15 +12978,15 @@ │ │ │ │ (Partitioning)f(and)h(sparse)f(matrix)h(ordering)e(Pac)n(k)-5 │ │ │ │ b(age.)34 b(T)-7 b(ec)n(hnical)27 b(Rep)r(ort)171 5407 │ │ │ │ y(Users)g(Man)n(ual,)f(IBM)i(T.J.)f(W)-7 b(atson)28 b(Researc)n(h)e │ │ │ │ (Cen)n(ter,)h(New)h(Y)-7 b(ork,)27 b(1996.)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fr(20)327 b Fj(Orderings)25 │ │ │ │ b(and)j(F)-7 b(ron)n(t)27 b(T)-7 b(rees)p 1484 100 1713 │ │ │ │ -4 v 1905 w(Octob)r(er)27 b(18,)g(2025)0 390 y Fr([13])41 │ │ │ │ +4 v 1905 w(Octob)r(er)27 b(28,)g(2025)0 390 y Fr([13])41 │ │ │ │ b(B.)24 b(Hendric)n(kson)e(and)i(R.)g(Leland.)31 b(An)24 │ │ │ │ b(impro)n(v)n(ed)f(sp)r(ectral)g(graph)g(partitioning)g(algorithm)g │ │ │ │ (for)h(mapping)f(parallel)171 490 y(computations.)28 │ │ │ │ b(T)-7 b(ec)n(hnical)23 b(Rep)r(ort)f(SAND92-1460,)g(Sandia)h(National) │ │ │ │ f(Lab)r(oratories,)g(Albuquerque,)h(NM,)h(1992.)0 656 │ │ │ │ y([14])41 b(B.)f(Hendric)n(kson)f(and)h(R.)g(Leland.)74 │ │ │ │ b(The)40 b(Chaco)f(user's)g(guide.)74 b(T)-7 b(ec)n(hnical)39 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -1,11 +1,11 @@ │ │ │ │ │ Ordering Sparse Matrices and Transforming Front Trees │ │ │ │ │ ∗ │ │ │ │ │ Cleve Ashcraft, Boeing Shared Services Group │ │ │ │ │ - October 18, 2025 │ │ │ │ │ + October 28, 2025 │ │ │ │ │ 1 Introduction │ │ │ │ │ If the ultimate goal is to solve linear systems of the form AX = B, one must compute an A = LDU, │ │ │ │ │ A=UTDU orA=UHDU factorization, depending on whether the matrix A is nonsymmetric, symmetric │ │ │ │ │ or Hermitian. D is a diagonal or block diagonal matrix, L is unit lower triangular, and U is unit upper │ │ │ │ │ triangular. A is sparse, but the sparsity structure of L and U will likely be much larger than that of A, │ │ │ │ │ i.e., they will suffer fill-in. It is crucial to find a permutation matrix such that the factors of PAPT have as │ │ │ │ │ moderate fill-in as can be reasonably expected. │ │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ │ Section 2 introduces some background on sparse matrix orderings and describes the SPOOLES or- │ │ │ │ │ dering software. Section 3 presents the front tree object that controls the factorization, and its various │ │ │ │ │ transformations to improve performance. │ │ │ │ │ ∗P. O. Box 24346, Mail Stop 7L-21, Seattle, Washington 98124. This research was supported in part by the DARPA │ │ │ │ │ Contract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software │ │ │ │ │ Support Initiative. │ │ │ │ │ 1 │ │ │ │ │ - 2 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 2 Orderings and Front Trees October 28, 2025 │ │ │ │ │ 2 Sparse matrix orderings │ │ │ │ │ Thepast few years have seen a resurgence of interest and accompanying improvement in algorithms and soft- │ │ │ │ │ ware to order sparse matrices. The minimum degree algorithm, specifically the multiple external minimum │ │ │ │ │ degree algorithm [19], was the preferred algorithm of choice for the better part of a decade. Alternative min- │ │ │ │ │ imum priority codes have recently pushed multiple minimum degree aside, including approximate minimum │ │ │ │ │ degree [1] and approximate deficiency [21], [25]. They offer improved quality or improved run time, and on │ │ │ │ │ occasion, both. │ │ │ │ │ @@ -81,15 +81,15 @@ │ │ │ │ │ One can construct the IVL object directly. There are methods to set the number of lists, to set the size │ │ │ │ │ of a list, to copy entries in a list into the object. It resizes itself as necessary. However, if one already has │ │ │ │ │ the matrix entries of A stored in an InpMtx object (which is the way that SPOOLES deals with sparse │ │ │ │ │ matrices), there is an easier way. One can create an IVL object from the InpMtx object, as follows. │ │ │ │ │ InpMtx *A ; │ │ │ │ │ IVL *adjIVL ; │ │ │ │ │ adjIVL = InpMtx_fullAdjacency(A) ; │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 3 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 3 │ │ │ │ │ Figure 1: A 3×4 9-point grid with its adjacency structure │ │ │ │ │ IVL : integer vector list object : │ │ │ │ │ type 1, chunked storage │ │ │ │ │ 12 lists, 12 maximum lists, 70 tsize, 4240 total bytes │ │ │ │ │ 1 chunks, 70 active entries, 1024 allocated, 6.84 % used │ │ │ │ │ 0 : 0 1 3 4 │ │ │ │ │ 9 10 11 1 : 0 1 2 3 4 5 │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ This is an initializer for the Graph object, one that takes as input a complete IVL adjacency object. The │ │ │ │ │ 0 and NULL fields are not applicable here. (The Graph object is sophisticated — it can have weighted or │ │ │ │ │ unweighted vertices, weighted or unweighted edges, or both, and it can have boundary vertices. Neither is │ │ │ │ │ relevant now.) │ │ │ │ │ 2.2 Constructing an ordering │ │ │ │ │ Once we have a Graph object, we can construct an ordering. There are four choices: │ │ │ │ │ • minimum degree, (actually multiple external minimum degree, from [19]), │ │ │ │ │ - 4 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 4 Orderings and Front Trees October 28, 2025 │ │ │ │ │ • generalized nested dissection, │ │ │ │ │ • multisection, and │ │ │ │ │ • the better of generalized nested dissection and multisection. │ │ │ │ │ Minimum degree takes the least amount of CPU time. Generalized nested dissection and multisection both │ │ │ │ │ require the a partition of the graph, which can be much more expensive to compute than a minimum degree │ │ │ │ │ ordering. By and large, for larger graphs nested dissection generates better orderings than minimum degree, │ │ │ │ │ and the difference in quality increases as the graph size increases. Multisection is an ordering which almost │ │ │ │ │ @@ -161,15 +161,15 @@ │ │ │ │ │ etree = orderViaBestOfNDandMS(graph, maxdomainsize, maxzeros, │ │ │ │ │ maxsize, seed, msglvl, msgFile) ; │ │ │ │ │ Now let us describe the different parameters. │ │ │ │ │ • The msglvl and msgFile parameters are used to control output. When msglvl = 0, there is no │ │ │ │ │ output. When msglvl > 0, output goes to the msgFile file. The SPOOLES library is a research │ │ │ │ │ code, we have left a great deal of monitoring and debug code in the software. Large values of msglvl │ │ │ │ │ mayresult in large message files. To see the statistics generated during the ordering, use msglvl = 1. │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 5 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 5 │ │ │ │ │ • Theseedparameterisusedasarandomnumberseed. (Therearemanyplacesinthegraphpartitioning │ │ │ │ │ and minimum degree algorithms where randomness plays a part. Using a random number seed ensures │ │ │ │ │ repeatability.) │ │ │ │ │ • maxdomainsize is used for the nested dissection and multisection orderings. This parameter is used │ │ │ │ │ during the graph partition. Any subgraph that is larger than maxdomainsize is split. We recommend │ │ │ │ │ using a value of neqns/16 or neqns/32. Note: maxdomainsize must be greater than zero. │ │ │ │ │ • maxzeros and maxsize are used to transform the front tree. In effect, we have placed the ordering │ │ │ │ │ @@ -203,15 +203,15 @@ │ │ │ │ │ 10102 4.6 210364 10651916 6.2 211089 10722231 │ │ │ │ │ 10103 4.6 215795 11760095 6.4 217141 11606103 │ │ │ │ │ 10104 4.6 210989 10842091 6.1 212828 11168728 │ │ │ │ │ 10105 4.8 209201 10335761 6.1 210468 10582750 │ │ │ │ │ For the nested dissection and multisection orderings, we used maxdomainsize = 100. We see that there is │ │ │ │ │ really little difference in ordering quality, while the minimum degree ordering takes much less time than the │ │ │ │ │ other orderings. │ │ │ │ │ - 6 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 6 Orderings and Front Trees October 28, 2025 │ │ │ │ │ Let us now look at a random triangulation of a unit cube. This matrix has 13824 rows and columns. │ │ │ │ │ Each face of the cube has a 22×22 regular grid of points. The remainder of the vertices are placed in the │ │ │ │ │ interior using quasi-random points, and the Delauney triangulation is computed. │ │ │ │ │ minimum degree nested dissection │ │ │ │ │ seed CPU #entries #ops CPU #entries #ops │ │ │ │ │ 10101 9.2 5783892 6119141542 27.8 3410222 1921402246 │ │ │ │ │ 10102 8.8 5651678 5959584620 31.4 3470063 1998795621 │ │ │ │ │ @@ -245,15 +245,15 @@ │ │ │ │ │ ETree *vetree ; │ │ │ │ │ int *newToOld, *oldToNew ; │ │ │ │ │ Graph *graph ; │ │ │ │ │ vetree = ETree_new() ; │ │ │ │ │ ETree_initFromGraphWithPerms(vetree, graph, newToOld, oldToNew) ; │ │ │ │ │ Thevetreeobjectinthecodefragmentaboveisavertex elimination tree [20], [26], where each front contains │ │ │ │ │ one vertex. │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 7 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 7 │ │ │ │ │ Figure 2: R2D100: randomly triangulated, 100 grid points │ │ │ │ │ 48 49 51 50 55 91 8 11 10 9 │ │ │ │ │ 52 │ │ │ │ │ 53 69 54 17 18 │ │ │ │ │ 67 95 │ │ │ │ │ 70 19 │ │ │ │ │ 66 68 5 3 │ │ │ │ │ @@ -300,15 +300,15 @@ │ │ │ │ │ tree [2] has these property: any node in the tree is │ │ │ │ │ • either a leaf, │ │ │ │ │ • or has two or more children, │ │ │ │ │ • or its nonzero structure is not contained in that of its one child. │ │ │ │ │ The top tree in Figure 4 shows the vertex elimination tree with the “front” number of each vertex superim- │ │ │ │ │ posed on the vertex. The bottom tree is the fundamental supernode tree. Figure 5 shows the block partition │ │ │ │ │ 1Vertex j is the parent of i if j is the first vertex greater than i such that Lj,i 6= 0. │ │ │ │ │ - 8 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 8 Orderings and Front Trees October 28, 2025 │ │ │ │ │ Figure 3: Vertex elimination tree for R2D100, 100 rows and columns │ │ │ │ │ 99 │ │ │ │ │ 98 │ │ │ │ │ 97 │ │ │ │ │ 96 │ │ │ │ │ 95 │ │ │ │ │ 94 │ │ │ │ │ @@ -327,15 +327,15 @@ │ │ │ │ │ 7 17 31 39 55 65 71 78 81 │ │ │ │ │ 6 11 16 27 30 38 53 54 64 75 77 80 │ │ │ │ │ 2 5 8 10 13 15 22 26 29 37 52 59 63 76 79 │ │ │ │ │ 1 4 9 12 14 25 28 36 51 58 62 │ │ │ │ │ 0 3 24 35 49 50 57 60 61 │ │ │ │ │ 23 34 48 56 │ │ │ │ │ 33 │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 9 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 9 │ │ │ │ │ superimposed on the structure of the factor L. Note this one important property: within any block column │ │ │ │ │ and below the diagonal block, a row is either zero or dense. │ │ │ │ │ The code fragment to convert a tree into a fundamental supernode tree is given below. │ │ │ │ │ ETree *fsetree, *vetree ; │ │ │ │ │ int maxzeros ; │ │ │ │ │ IV *nzerosIV ; │ │ │ │ │ nzerosIV = IV_new() ; │ │ │ │ │ @@ -368,15 +368,15 @@ │ │ │ │ │ This method will merge a node with all of its children if it will not result in more than maxzeros zeros inside │ │ │ │ │ the new block. On input, nzerosIV object keeps count of the number of zeroes already in the blocks of │ │ │ │ │ fsetree, and on return it will contain the number of zeros in the blocks of ametree. │ │ │ │ │ 3.4 Splitting large fronts │ │ │ │ │ There is one final step to constructing the tree that governs the factorization and solve. Large matrices will │ │ │ │ │ generate large supernodes at the topmost levels of the tree. For example, a k × k × k grid with a 27 point │ │ │ │ │ finite difference operator, when ordered by nested dissection, has a root supernode with k2 rows and columns. │ │ │ │ │ - 10 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 10 Orderings and Front Trees October 28, 2025 │ │ │ │ │ Figure 4: Top: vertex elimination tree with the vertices mapped to the fundamental supernode that contains │ │ │ │ │ them. Bottom: fundamental supernode tree. │ │ │ │ │ 71 │ │ │ │ │ 71 │ │ │ │ │ 71 │ │ │ │ │ 71 │ │ │ │ │ 71 │ │ │ │ │ @@ -407,17 +407,17 @@ │ │ │ │ │ 2 5 10 15 23 26 34 43 44 49 53 57 58 67 │ │ │ │ │ 1 4 7 9 12 14 18 22 25 33 42 48 52 56 63 66 │ │ │ │ │ 0 3 8 11 13 21 24 32 41 47 50 51 60 62 65 │ │ │ │ │ 20 31 39 40 46 61 64 │ │ │ │ │ 19 30 38 │ │ │ │ │ 29 │ │ │ │ │ 28 │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 11 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 11 │ │ │ │ │ Figure 5: Block structure of L with the fundamental supernode partition. │ │ │ │ │ - 12 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 12 Orderings and Front Trees October 28, 2025 │ │ │ │ │ Figure 6: Top: fundamental supernode tree with the supernodes mapped to the amalgamated supernode │ │ │ │ │ that contains them. Bottom: amalgamated supernode tree. │ │ │ │ │ 24 │ │ │ │ │ 24 │ │ │ │ │ 24 │ │ │ │ │ 24 │ │ │ │ │ 24 │ │ │ │ │ @@ -442,17 +442,17 @@ │ │ │ │ │ 6 10 13 15 │ │ │ │ │ 10 │ │ │ │ │ 24 │ │ │ │ │ 4 12 18 23 │ │ │ │ │ 0 1 2 3 9 11 14 17 19 22 │ │ │ │ │ 7 8 10 13 15 16 20 21 │ │ │ │ │ 5 6 │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 13 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 13 │ │ │ │ │ Figure 7: Block structure of L with the amalgamated supernode partition. │ │ │ │ │ - 14 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 14 Orderings and Front Trees October 28, 2025 │ │ │ │ │ The data structure for a top level supernode can be very large, too large to fit into memory. In a parallel │ │ │ │ │ environment, we follow the convention that each node in the tree is handled by one process. Having a very │ │ │ │ │ large node at the top levels of the tree will severely decrease the parallelism available to the computations. │ │ │ │ │ The solution to both problems, large data structures and limited parallelism, is to split large supernodes │ │ │ │ │ into pieces. We can specify a maximum size for the nodes in the tree, and split the large supernode into pieces │ │ │ │ │ no larger than this maximum size. This will keep the data structures to a manageable size and increase the │ │ │ │ │ available parallelism. We call the resulting tree the front tree because it represents the final computational │ │ │ │ │ @@ -488,15 +488,15 @@ │ │ │ │ │ of front trees. The original front tree came from our nested dissection ordering. │ │ │ │ │ There are 13824 rows and columns in the matrix, and 6001 fronts in the nested dissection tree. While │ │ │ │ │ there is an average of two rows and columns per front, most of the fronts are singleton fronts at the lower │ │ │ │ │ levels of the tree. The top level front has 750 internal rows and columns. │ │ │ │ │ • In the first step we create an fundamental supernode tree with a call to ETree mergeFrontsOne()with │ │ │ │ │ maxzeros = 0. We see that the number of fronts decreases by one and the number of entries does not │ │ │ │ │ change. │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 15 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 15 │ │ │ │ │ Figure 8: Left: tree after the large supernodes have been split. Right: tree with nodes mapped back to their │ │ │ │ │ amalgamated supernode. │ │ │ │ │ 26 │ │ │ │ │ 26 │ │ │ │ │ 26 │ │ │ │ │ 26 │ │ │ │ │ 27 │ │ │ │ │ @@ -525,26 +525,26 @@ │ │ │ │ │ 28 │ │ │ │ │ 27 │ │ │ │ │ 26 │ │ │ │ │ 5 13 20 25 │ │ │ │ │ 4 10 12 19 21 24 │ │ │ │ │ 0 1 2 3 8 9 11 15 18 22 23 │ │ │ │ │ 6 7 14 16 17 │ │ │ │ │ - 16 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 16 Orderings and Front Trees October 28, 2025 │ │ │ │ │ Figure 9: Block structure of L with the amalgamated and split supernode partition. │ │ │ │ │ Table 1: R3D13824: front tree transformations │ │ │ │ │ CPU #fronts #indices # entries #operations │ │ │ │ │ original 6001 326858 3459359 1981403337 │ │ │ │ │ fs tree 0.040 6000 326103 3459359 1981403337 │ │ │ │ │ merge one 0.032 3477 158834 3497139 2000297117 │ │ │ │ │ merge all 0.020 748 95306 3690546 2021347776 │ │ │ │ │ merge any 0.012 597 85366 3753241 2035158539 │ │ │ │ │ split 0.043 643 115139 3753241 2035158539 │ │ │ │ │ final 0.423 643 115128 3752694 2034396840 │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 17 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 17 │ │ │ │ │ • The second step is also a call to ETree mergeFrontsOne(), this time with maxzeros = 1000. Here │ │ │ │ │ we merge fronts with only one child with that child, in other words, only chains of nodes can merge │ │ │ │ │ together. Note how the number of fronts is decreased by almost one half, and the number of factor │ │ │ │ │ entries and operations increase by 1%. │ │ │ │ │ • The third step is a call to ETree mergeFrontsAll()with maxzeros = 1000, where we try to merge a │ │ │ │ │ node with all of its children if possible. The number of fronts decreases again by a factor of five, while │ │ │ │ │ the number of factor entries and operations increases by 7% and 2%, respectively, when compared with │ │ │ │ │ @@ -582,15 +582,15 @@ │ │ │ │ │ the final front tree, for the intra-front computations are a small fraction of the total number of operations. │ │ │ │ │ The solve time improves dramatically when small fronts are merged together into larger fronts. Our │ │ │ │ │ solves are submatrix algorithms, where the fundamental kernel is an operation Y := B −L X and │ │ │ │ │ J J J,I I │ │ │ │ │ X :=Y −U Y ,andisdesigned to be a BLAS2 kernel (when X and Y have a single column) or BLAS3 │ │ │ │ │ J J I,J J │ │ │ │ │ kernel (when X and Y are matrices). When fronts are small, particularly with one internal row and column, │ │ │ │ │ - 18 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 18 Orderings and Front Trees October 28, 2025 │ │ │ │ │ the submatrices that take part are very small. The overhead for the computations takes far more time than │ │ │ │ │ the computations themselves. │ │ │ │ │ This multistep process of merging, merging again, etc, and finally splitting the front trees is tedious. │ │ │ │ │ There are simple methods that do the process in one step. │ │ │ │ │ ETree *etree, *etree2, *etree3 ; │ │ │ │ │ int maxfrontsize, maxzeros, seed ; │ │ │ │ │ etree2 = ETree_transform(etree, NULL, maxzeros, maxfrontsize, seed) ; │ │ │ │ │ @@ -624,15 +624,15 @@ │ │ │ │ │ computations in the factorization and solve. If maxsize is too large, then too much of the computations in │ │ │ │ │ the factorization is done inside a front, which uses a slow kernel. If maxsize is too small, then the fronts are │ │ │ │ │ too small to get much computational efficiency. We recommend using a value between 32 and 96. Luckily, │ │ │ │ │ the factor and solve times are fairly flat within this range. A value of 64 is what we customarily use. │ │ │ │ │ References │ │ │ │ │ [1] P. Amestoy, T. Davis, and I. Duff. An approximate minimum degree ordering algorithm. SIAM J. │ │ │ │ │ Matrix Anal. Appl., 17:886–905, 1996. │ │ │ │ │ - October 18, 2025 Orderings and Front Trees 19 │ │ │ │ │ + October 28, 2025 Orderings and Front Trees 19 │ │ │ │ │ Table 3: R3D13824: the influence of maxzeros and maxsize. │ │ │ │ │ factor solve total │ │ │ │ │ maxzeros maxsize init CPU mflops postprocess CPU mflops CPU │ │ │ │ │ 0 ∞ 3.3 129.8 15.3 5.3 7.8 7.1 146.2 │ │ │ │ │ 10 ∞ 3.5 129.2 15.3 3.3 5.3 10.5 141.3 │ │ │ │ │ 100 ∞ 3.0 119.3 16.7 2.0 3.9 14.4 128.2 │ │ │ │ │ 1000 ∞ 3.0 121.8 16.7 1.4 3.5 17.0 129.7 │ │ │ │ │ @@ -665,15 +665,15 @@ │ │ │ │ │ Trans. Math. Software, 6:302–325, 1983. │ │ │ │ │ [10] J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal., 10:345–363, │ │ │ │ │ 1973. │ │ │ │ │ [11] J. A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice- │ │ │ │ │ Hall, Englewood Cliffs, NJ, 1981. │ │ │ │ │ [12] A. Gupta. WGPP: Watson Graph Partitioning and sparse matrix ordering Package. Technical Report │ │ │ │ │ Users Manual, IBM T.J. Watson Research Center, New York, 1996. │ │ │ │ │ - 20 Orderings and Front Trees October 18, 2025 │ │ │ │ │ + 20 Orderings and Front Trees October 28, 2025 │ │ │ │ │ [13] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel │ │ │ │ │ computations. Technical Report SAND92-1460, Sandia National Laboratories, Albuquerque, NM, 1992. │ │ │ │ │ [14] B. Hendrickson and R. Leland. The Chaco user’s guide. Technical Report SAND93-2339, Sandia │ │ │ │ │ National Laboratories, Albuquerque, NM, 1993. │ │ │ │ │ [15] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested dissection ordering. │ │ │ │ │ SIAM J. Sci. Comput., 20:468–489, 1998. │ │ │ │ │ [16] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. │ │ ├── ./usr/share/doc/spooles-doc/GPart.ps.gz │ │ │ ├── GPart.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o GPart.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1788,15 +1788,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1990,81 +1989,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5502,15 +5496,15 @@ │ │ │ │ 3[42 4[86 1[80 9[56 56 56 56 56 56 56 56 2[31 37 45[{}35 │ │ │ │ 99.6264 /CMBX12 rf /Fc 139[62 1[62 16[62 16[62 8[62 71[{}5 │ │ │ │ 119.552 /CMTT12 rf /Fd 255[55{}1 66.4176 /CMSY8 rf /Fe │ │ │ │ 134[71 2[71 75 52 53 55 1[75 67 75 112 2[41 37 75 67 │ │ │ │ 41 61 75 60 75 65 13[75 2[92 11[103 16[67 67 67 2[37 │ │ │ │ 46[{}27 119.552 /CMBX12 rf /Ff 132[52 6[41 4[52 58 46[49 │ │ │ │ 63[{}5 90.9091 /CMBX10 rf /Fg 139[35 1[36 2[45 9[40 1[40 │ │ │ │ -51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf /Fh 156[83 46 78[61 61 18[{}4 83.022 /CMEX10 │ │ │ │ rf /Fi 145[45 3[25 35 35 45 45 9[61 61 31[45 4[0 3[61 │ │ │ │ 28[71 71 1[71 17[71{}15 90.9091 /CMSY10 rf /Fj 146[62 │ │ │ │ 1[37 1[24 17[67 20[53 66[{}5 66.4176 /CMMI8 rf /Fk 204[35 │ │ │ │ 35 35 35 4[55 43[{}5 66.4176 /CMR8 rf /Fl 134[45 14[37 │ │ │ │ 5[47 10[53 1[86 53 2[56 16[69 68 2[71 45 71 25 25 46[58 │ │ │ │ 11[{}15 90.9091 /CMMI10 rf /Fm 136[60 1[49 30 37 38 1[46 │ │ │ │ @@ -5662,15 +5656,15 @@ │ │ │ │ b(W)-8 b(e)36 b(examine)g(t)m(w)m(o)227 5294 y(\(p)s(ossibly\))j │ │ │ │ (di\013eren)m(t)h(min-cuts)g(and)e(ev)-5 b(aluate)41 │ │ │ │ b(the)f(partitions)g(induced)e(via)i(their)g(minimal)f(w)m(eigh)m(t)227 │ │ │ │ 5407 y(separators,)31 b(and)f(accept)i(a)f(b)s(etter)f(partition)h(if)g │ │ │ │ (presen)m(t.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fp(2)p 136 100 1106 4 v │ │ │ │ -1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 0 399 a Fp(This)e(pro)s(cess)h(w)m(e)g(call)i │ │ │ │ Fo(DDSEP)p Fp(,)d(whic)m(h)h(is)g(short)f(for)h Fo(D)p │ │ │ │ Fm(omain)k Fo(D)p Fm(e)-5 b(c)g(omp)g(osition)35 b Fo(SEP)p │ │ │ │ Fm(ar)-5 b(ator)p Fp(,)32 b(explained)e(in)g(more)0 511 │ │ │ │ y(detail)i(in)e([)p Ff(?)p Fp(])h(and)f([)p Ff(?)p Fp(].)0 │ │ │ │ 827 y Fe(1.1)135 b(Data)46 b(Structures)0 1056 y Fp(The)40 │ │ │ │ b Fo(GPart)e Fp(structure)i(has)f(a)i(p)s(oin)m(ter)f(to)h(a)f │ │ │ │ @@ -5727,15 +5721,15 @@ │ │ │ │ (di\013eren)m(t)g(stages)h(of)f(the)g Fo(DDSEP)e Fp(algorithm,)k(and)d │ │ │ │ (collects)j(statistics)f(ab)s(out)f(the)0 5166 y(CPU)d(time)h(sp)s(en)m │ │ │ │ (t)f(in)g(eac)m(h)i(stage.)137 5407 y Fn(\210)45 b Fp(These)30 │ │ │ │ b(parameters)h(are)g(used)e(to)j(generate)f(the)g(domain)f(decomp)s │ │ │ │ (osition.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1106 4 v 1287 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fp(3)330 399 y Ff({)45 b Fo(int)i(minweight)p │ │ │ │ Fp(:)38 b(minim)m(um)30 b(target)i(w)m(eigh)m(t)g(for)e(a)h(domain)330 │ │ │ │ 541 y Ff({)45 b Fo(int)i(maxweight)p Fp(:)38 b(maxim)m(um)31 │ │ │ │ b(target)h(w)m(eigh)m(t)f(for)g(a)f(domain)330 683 y │ │ │ │ Ff({)45 b Fo(double)h(freeze)p Fp(:)51 b(m)m(ultiplier)37 │ │ │ │ b(used)e(to)i(freeze)g(v)m(ertices)h(of)e(high)g(degree)h(in)m(to)g │ │ │ │ (the)f(m)m(ultisector.)427 796 y(If)h(the)h(degree)g(of)g │ │ │ │ @@ -5801,15 +5795,15 @@ │ │ │ │ (of)g Fc(GPart)e Fe(metho)t(ds)0 5294 y Fp(This)e(section)j(con)m │ │ │ │ (tains)f(brief)f(descriptions)g(including)f(protot)m(yp)s(es)i(of)f │ │ │ │ (all)h(metho)s(ds)f(that)h(b)s(elong)f(to)h(the)0 5407 │ │ │ │ y Fo(GPart)29 b Fp(ob)5 b(ject.)42 b(There)29 b(are)i(no)f(IO)g(metho)s │ │ │ │ (ds.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fp(4)p 136 100 1106 4 v │ │ │ │ -1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 0 399 a Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 599 y Fp(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 712 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 959 y(1.)46 b Fo(GPart)h(*)g │ │ │ │ (GPart_new)e(\()j(void)e(\))i(;)227 1113 y Fp(This)28 │ │ │ │ b(metho)s(d)g(simply)h(allo)s(cates)i(storage)f(for)e(the)h │ │ │ │ @@ -5871,15 +5865,15 @@ │ │ │ │ 5253 y Fp(This)30 b(metho)s(d)g(sets)g(the)h Fo(msglvl)e │ │ │ │ Fp(and)g Fo(msgFile)g Fp(\014elds.)227 5407 y Fm(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fp(If)30 b Fo(gpart)f │ │ │ │ Fp(is)i Fo(NULL)p Fp(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g │ │ │ │ (the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1106 4 v 1287 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fp(5)0 399 y Fb(1.2.3)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)111 599 y Fp(1.)46 b Fo(void)h(GPart_setCweights)c(\()k │ │ │ │ (GPart)g(*gpart)f(\))h(;)227 753 y Fp(This)26 b(metho)s(d)g(sets)g(the) │ │ │ │ h(comp)s(onen)m(t)g(w)m(eigh)m(ts)g(v)m(ector)h Fo(cweightsIV)p │ │ │ │ Fp(.)c(W)-8 b(e)28 b(assume)e(that)h(the)f Fo(compidsIV)227 │ │ │ │ 866 y Fp(v)m(ector)33 b(has)f(b)s(een)e(set)i(prior)f(to)i(en)m(tering) │ │ │ │ f(this)f(metho)s(d.)44 b(The)31 b(w)m(eigh)m(t)i(of)e(a)h(comp)s(onen)m │ │ │ │ @@ -5961,15 +5955,15 @@ │ │ │ │ b Fp(If)29 b Fo(gpart)p Fp(,)f Fo(g)h Fp(or)h Fo(domid)e │ │ │ │ Fp(is)h Fo(NULL)p Fp(,)f(or)i(if)f Fo(v)g Fp(is)g(out)h(of)g(range)f │ │ │ │ (\(i.e.,)j Fo(v)25 b Fl(<)f Fp(0)30 b(or)g Fo(nvtx)24 │ │ │ │ b Fi(\024)h Fo(v)p Fp(\),)227 5407 y(an)31 b(error)f(message)h(is)f │ │ │ │ (prin)m(ted)g(and)g(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fp(6)p 136 100 1106 4 v │ │ │ │ -1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 111 399 a Fp(6.)46 b Fo(IV)h(*)h(GPart_bndWeightsIV) │ │ │ │ 43 b(\()k(GPart)g(*gpart)f(\))h(;)227 549 y Fp(This)27 │ │ │ │ b(metho)s(d)g(returns)f(an)h Fo(IV)g Fp(ob)5 b(ject)28 │ │ │ │ b(that)g(con)m(tains)g(the)g(w)m(eigh)m(ts)h(of)e(the)h(v)m(ertices)h │ │ │ │ (on)e(the)g(b)s(oundaries)227 661 y(of)k(the)f(comp)s(onen)m(ts.)227 │ │ │ │ 811 y Fm(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fp(If)30 │ │ │ │ b Fo(gpart)f Fp(or)i Fo(g)f Fp(is)g Fo(NULL)p Fp(,)g(an)g(error)g │ │ │ │ @@ -6042,15 +6036,15 @@ │ │ │ │ (that)h(represen)m(ts)f(the)h(connectivit)m(y)i(of)e(the)g(domains)f │ │ │ │ (and)g(segmen)m(ts.)41 b(Eac)m(h)30 b(segmen)m(t)227 │ │ │ │ 5407 y(is)36 b(an)f(\\edge")i(that)g(connects)f(t)m(w)m(o)h(\\adjacen)m │ │ │ │ (t")h(domains.)56 b(This)34 b(allo)m(ws)j(us)e(to)h(use)g(a)g(v)-5 │ │ │ │ b(arian)m(t)36 b(of)g(the)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1106 4 v 1287 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fp(7)227 399 y(Kernighan-Lin)k(algorithm)h(to)g │ │ │ │ (\014nd)e(an)h(\\edge")i(separator)e(formed)g(of)g(segmen)m(ts,)j(whic) │ │ │ │ m(h)d(is)g(really)i(a)227 511 y(v)m(ertex)30 b(separator,)h(a)e(subset) │ │ │ │ f(of)h(\010.)40 b(The)29 b Fo(alpha)e Fp(parameter)j(is)f(used)f(in)h │ │ │ │ (the)g(cost)h(function)e(ev)-5 b(aluation)227 670 y(for)33 │ │ │ │ b(the)f(partition,)i(cost)q(\([)p Fl(S;)15 b(B)5 b(;)15 │ │ │ │ b(W)e Fp(]\))30 b(=)f Fi(j)p Fl(S)5 b Fi(j)1776 551 y │ │ │ │ @@ -6151,15 +6145,15 @@ │ │ │ │ y Fp(=)83 b Fi(f)p Fl(y)28 b Fi(2)d Fl(Y)50 b Fi(j)31 │ │ │ │ b Fl(y)d Fi(2)d Fl(Ad)-10 b(j)5 b Fp(\()p Fl(B)26 b Fi(n)21 │ │ │ │ b Fl(Y)f Fp(\))30 b(and)g Fl(y)e Fi(2)d Fl(Ad)-10 b(j)5 │ │ │ │ b Fp(\()p Fl(W)34 b Fi(n)21 b Fl(Y)f Fp(\))p Fi(g)p eop │ │ │ │ end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fp(8)p 136 100 1106 4 v │ │ │ │ -1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fo(GPart)28 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 227 399 a Fp(The)e Fo(YVmapIV)e Fp(ob)5 │ │ │ │ b(ject)30 b(con)m(tains)g(the)g(list)f(of)h(v)m(ertices)g(in)f(the)g │ │ │ │ (wide)g(separator)h Fl(Y)20 b Fp(.)40 b(The)29 b Fo(IV)f │ │ │ │ Fp(ob)5 b(ject)30 b(that)227 511 y(is)i(returned,)g(\(called)h │ │ │ │ Fo(YCmapIV)d Fp(in)i(the)g(calling)i(metho)s(d\))e(con)m(tains)h(the)f │ │ │ │ (subscripts)f(of)h(the)g Fl(Y)3561 525 y Fk(0)3600 511 │ │ │ │ y Fp(,)h Fl(Y)3711 525 y Fk(1)3750 511 y Fp(,)g Fl(Y)3861 │ │ │ │ @@ -6272,15 +6266,15 @@ │ │ │ │ b(or)40 b(che)-5 b(cking:)52 b Fp(If)36 b Fo(gpart)e │ │ │ │ Fp(is)j Fo(NULL)p Fp(,)e(or)h(if)h Fo(nlevel)c Fl(<)i │ │ │ │ Fp(0,)j(or)f(if)f Fo(alpha)e Fl(<)g Fp(0)p Fl(:)p Fp(0,)39 │ │ │ │ b(an)e(error)e(message)j(is)227 5407 y(prin)m(ted)30 │ │ │ │ b(and)g(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1106 4 v 1287 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fp(9)0 399 y Fb(1.2.7)112 b(Recursiv)m(e)38 │ │ │ │ b(Bisection)f(metho)s(d)0 589 y Fp(There)30 b(is)g(presen)m(tly)h(one)g │ │ │ │ (metho)s(d)e(to)j(construct)e(the)h(domain/separator)g(tree.)111 │ │ │ │ 787 y(1.)46 b Fo(DSTree)g(*)i(GPart_RBviaDDsep)43 b(\()48 │ │ │ │ b(GPart)e(*gpart,)g(DDsepInfo)f(*info)h(\))i(;)227 932 │ │ │ │ y Fp(This)c(metho)s(d)f(p)s(erforms)f(a)j(recursiv)m(e)f(bisection)h │ │ │ │ (of)f(the)h(graph)e(using)h(the)g Fo(DDSEP)e Fp(algorithm)k(and)227 │ │ │ │ @@ -6345,15 +6339,15 @@ │ │ │ │ 2663 5150 V 32 w(setDefaultFields\(\))c Fp(is)32 b(called)227 │ │ │ │ 5263 y(to)f(set)g(the)g(default)f(v)-5 b(alues.)227 5407 │ │ │ │ y Fm(Err)g(or)34 b(che)-5 b(cking:)40 b Fp(If)30 b Fo(info)g │ │ │ │ Fp(is)g Fo(NULL)p Fp(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f │ │ │ │ (the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fp(10)p 182 100 1083 4 │ │ │ │ -v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 111 399 a Fp(4.)46 b Fo(void)h(DDsepInfo_free)d(\()j │ │ │ │ (DDsepInfo)f(*info)g(\))h(;)227 545 y Fp(This)33 b(metho)s(d)g(c)m(hec) │ │ │ │ m(ks)h(to)g(see)g(whether)f Fo(info)f Fp(is)h Fo(NULL)p │ │ │ │ Fp(.)g(If)g(so,)h(an)f(error)g(message)i(is)e(prin)m(ted)g(and)g(the) │ │ │ │ 227 658 y(program)f(exits.)46 b(Otherwise,)32 b(it)g(releases)h(an)m(y) │ │ │ │ g(storage)g(b)m(y)f(a)g(call)h(to)g Fo(DDsepInfo)p 3141 │ │ │ │ 658 29 4 v 31 w(clearData\(\))c Fp(then)227 771 y(free's)i(the)f │ │ │ │ @@ -6408,15 +6402,15 @@ │ │ │ │ (place)g(no)s(des)e(of)h(high)g(degree)h(in)m(to)g(the)f(m)m │ │ │ │ (ultisector.)42 b(If)29 b(the)427 5294 y(external)34 │ │ │ │ b(degree)f(of)g(a)g(v)m(ertex)h(is)f Fo(freeze)d Fp(times)k(the)f(a)m │ │ │ │ (v)m(erage)i(degree,)f(then)e(it)i(is)e(placed)h(in)g(the)427 │ │ │ │ 5407 y(m)m(ultisector.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1083 4 v 1264 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fp(11)337 399 y Fn(\210)45 b Fp(The)30 │ │ │ │ b Fm(tar)-5 b(get)32 b Fp(minim)m(um)d(w)m(eigh)m(t)j(for)e(a)h(domain) │ │ │ │ f(is)h Fo(minweight)p Fp(.)337 551 y Fn(\210)45 b Fp(The)30 │ │ │ │ b Fm(tar)-5 b(get)32 b Fp(maxim)m(um)e(w)m(eigh)m(t)i(for)e(a)h(domain) │ │ │ │ f(is)g Fo(maxweight)p Fp(.)337 703 y Fn(\210)45 b Fp(The)30 │ │ │ │ b Fo(seed)f Fp(parameter)i(is)g(a)f(random)g(n)m(um)m(b)s(er)f(seed.) │ │ │ │ 337 856 y Fn(\210)45 b Fp(The)39 b Fo(outIVfile)d Fp(parameter)k(is)f │ │ │ │ @@ -6487,15 +6481,15 @@ │ │ │ │ f(the)g(output)g(\014le)g(|)g(if)g Fo(msgFile)e Fp(is)j │ │ │ │ Fo(stdout)p Fp(,)f(then)g(the)427 5294 y(output)29 b(\014le)h(is)f │ │ │ │ Fm(stdout)p Fp(,)i(otherwise)f(a)f(\014le)h(is)f(op)s(ened)g(with)g │ │ │ │ Fm(app)-5 b(end)31 b Fp(status)e(to)i(receiv)m(e)g(an)m(y)e(output)427 │ │ │ │ 5407 y(data.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fp(12)p 182 100 1083 │ │ │ │ -4 v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fn(\210)45 b Fp(The)23 b │ │ │ │ Fo(inGraphFile)d Fp(parameter)k(is)f(the)h(input)e(\014le)i(for)f(the)g │ │ │ │ Fo(Graph)f Fp(ob)5 b(ject.)39 b(It)24 b(m)m(ust)f(b)s(e)f(of)i(the)f │ │ │ │ (form)427 511 y Fo(*.graphf)18 b Fp(or)j Fo(*.graphb)p │ │ │ │ Fp(.)35 b(The)19 b Fo(Graph)g Fp(ob)5 b(ject)21 b(is)g(read)f(from)g │ │ │ │ (the)g(\014le)h(via)f(the)h Fo(Graph)p 3368 511 29 4 │ │ │ │ v 33 w(readFromFile\(\))427 624 y Fp(metho)s(d.)337 770 │ │ │ │ @@ -6568,15 +6562,15 @@ │ │ │ │ e(partition)h(ev)-5 b(aluation)32 b(function.)337 5294 │ │ │ │ y Fn(\210)45 b Fp(The)i Fo(maxdomweight)e Fp(parameter)j(con)m(trols)g │ │ │ │ (the)g(recursiv)m(e)g(bisection)h(|)e(no)g(subgraph)f(with)427 │ │ │ │ 5407 y(w)m(eigh)m(t)32 b(less)f(than)f Fo(maxdomweight)d │ │ │ │ Fp(is)j(further)f(split.)p eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1083 4 v 1264 100 a Fo(GPart)29 │ │ │ │ -b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fm(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fp(13)337 399 y Fn(\210)45 b Fp(The)c │ │ │ │ Fo(DDoption)e Fp(parameter)j(con)m(trols)h(the)f(initial)h │ │ │ │ (domain/segmen)m(t)g(partition)f(on)f(eac)m(h)i(sub-)427 │ │ │ │ 511 y(graph.)60 b(When)37 b Fo(DDDoption)45 b(=)j(1)37 │ │ │ │ b Fp(w)m(e)g(use)g(the)g(\014shnet)f(algorithm)i(for)f(eac)m(h)h │ │ │ │ (subgraph.)59 b(When)427 624 y Fo(DDDoption)46 b(=)h(1)32 │ │ │ │ b Fp(w)m(e)h(use)f(the)h(\014shnet)e(algorithm)j(once)f(for)f(the)g(en) │ │ │ │ @@ -6648,15 +6642,15 @@ │ │ │ │ f(has)f(t)m(w)m(o)i(la)m(y)m(ers)f(but)f(need)g(not)h(b)s(e)f │ │ │ │ (bipartite.)500 5407 y Ff({)45 b Fo(nlayer)h(>)i(2)30 │ │ │ │ b Fp(|)g(eac)m(h)i(net)m(w)m(ork)f(has)f Fo(option/2)e │ │ │ │ Fp(la)m(y)m(ers)k(on)e(eac)m(h)i(side)e(of)h(the)f(separator.)p │ │ │ │ eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fp(14)p 182 100 1083 │ │ │ │ -4 v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fo(GPart)29 b Fg(:)41 b Fm(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 337 399 a Fn(\210)45 b Fp(The)34 b │ │ │ │ Fo(outDSTreeFile)d Fp(parameter)k(is)f(the)h(output)f(\014le)g(for)g │ │ │ │ (the)h Fo(DSTree)e Fp(ob)5 b(ject.)53 b(It)35 b(m)m(ust)f(b)s(e)g(of) │ │ │ │ 427 511 y(the)29 b(form)f Fo(*.dstreef)e Fp(or)j Fo(*.dstreeb)p │ │ │ │ Fp(.)37 b(If)29 b Fo(outDSTreeFile)24 b Fp(is)29 b(not)g │ │ │ │ Fo("none")p Fp(,)e(the)i Fo(DSTree)e Fp(ob)5 b(ject)427 │ │ │ │ 624 y(is)31 b(written)f(to)h(the)g(\014le)f(via)h(the)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -30,15 +30,15 @@ │ │ │ │ │ condensed into the source while the nodes in W \Y are condensed into the sink. The rest of │ │ │ │ │ the network is formed using the structure of the subgraph induced by Y. Given a min-cut of │ │ │ │ │ b │ │ │ │ │ the network we can identify a separator S ⊆ Y that has minimal weight. We examine two │ │ │ │ │ (possibly) different min-cuts and evaluate the partitions induced via their minimal weight │ │ │ │ │ separators, and accept a better partition if present. │ │ │ │ │ 1 │ │ │ │ │ - 2 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 2 GPart : DRAFT October 28, 2025 │ │ │ │ │ This process we call DDSEP, which is short for Domain Decomposition SEParator, explained in more │ │ │ │ │ detail in [?] and [?]. │ │ │ │ │ 1.1 Data Structures │ │ │ │ │ The GPart structure has a pointer to a Graph object and other fields that contain information │ │ │ │ │ about the partition of the graph. │ │ │ │ │ The following fields are always active. │ │ │ │ │ • Graph *graph : pointer to the Graph object │ │ │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ • GPart *sib : pointer to a sibling GPart object │ │ │ │ │ • IV vtxMapIV : an IV object of size nvtx + nvbnd, contains a map from the vertices of the │ │ │ │ │ graph to either the vertices of its parent or to the vertices of the root graph │ │ │ │ │ The DDsepInfo helper-object is used during the DDSEP recursive bisection process. It contains │ │ │ │ │ input parameters for the different stages of the DDSEP algorithm, and collects statistics about the │ │ │ │ │ CPUtime spent in each stage. │ │ │ │ │ • These parameters are used to generate the domain decomposition. │ │ │ │ │ - GPart : DRAFT October 18, 2025 3 │ │ │ │ │ + GPart : DRAFT October 28, 2025 3 │ │ │ │ │ – int minweight: minimum target weight for a domain │ │ │ │ │ – int maxweight: maximum target weight for a domain │ │ │ │ │ – double freeze: multiplier used to freeze vertices of high degree into the multisector. │ │ │ │ │ If the degree of v is more than freeze times the median degree, v is placed into the │ │ │ │ │ multisector. │ │ │ │ │ – int seed: random number seed │ │ │ │ │ – int DDoption: If 1, a new domain decomposition is constructed for each subgraph. If │ │ │ │ │ @@ -98,15 +98,15 @@ │ │ │ │ │ – int ntreeobj: number of tree objects in the tree, used to set gpart->id and used to │ │ │ │ │ initialize the DSTree object. │ │ │ │ │ – int msglvl : message level │ │ │ │ │ – FILE *msgFile : message file pointer │ │ │ │ │ 1.2 Prototypes and descriptions of GPart methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ GPart object. There are no IO methods. │ │ │ │ │ - 4 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 4 GPart : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. GPart * GPart_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the GPart structure and then sets the default fields │ │ │ │ │ by a call to GPart setDefaultFields(). │ │ │ │ │ 2. void GPart_setDefaultFields ( GPart *gpart ) ; │ │ │ │ │ @@ -132,15 +132,15 @@ │ │ │ │ │ compidsIV and cweightsIV IV objects are initialized. The remaining fields are not changed │ │ │ │ │ from their default values. │ │ │ │ │ Error checking: If gpart or g is NULL, or if g->nvtx ≤ 0, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 2. void GPart_setMessageInfo ( GPart *gpart, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method sets the msglvl and msgFile fields. │ │ │ │ │ Error checking: If gpart is NULL, an error message is printed and the program exits. │ │ │ │ │ - GPart : DRAFT October 18, 2025 5 │ │ │ │ │ + GPart : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. void GPart_setCweights ( GPart *gpart ) ; │ │ │ │ │ This method sets the component weights vector cweightsIV. We assume that the compidsIV │ │ │ │ │ vector has been set prior to entering this method. The weight of a component is not simply │ │ │ │ │ the sum of the weights of the vertices with that component’s id. We accept the separator or │ │ │ │ │ multisector vertices (those v with compids[v] == 0) but then find the connected components │ │ │ │ │ of the remaining vertices, renumbering the compidsIV vector where necessary. Thus, ncomp │ │ │ │ │ @@ -171,15 +171,15 @@ │ │ │ │ │ This method determines whether the vertex v is adjacent to just one domain or not. We use │ │ │ │ │ this method to make a separator or multisector minimal. If the vertex is adjacent to only one │ │ │ │ │ domain, the return value is 1 and *pdomid is set to the domain’s id. If a vertex is adjacent │ │ │ │ │ to zero or two or more domains, the return value is zero. If a vertex belongs to a domain, it │ │ │ │ │ is considered adjacent to that domain. │ │ │ │ │ Error checking: If gpart, g or domid is NULL, or if v is out of range (i.e., v < 0 or nvtx ≤ v), │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ - 6 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 6 GPart : DRAFT October 28, 2025 │ │ │ │ │ 6. IV * GPart_bndWeightsIV ( GPart *gpart ) ; │ │ │ │ │ This method returns an IV object that contains the weights of the vertices on the boundaries │ │ │ │ │ of the components. │ │ │ │ │ Error checking: If gpart or g is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.4 Domain decomposition methods │ │ │ │ │ There are presently two methods that create a domain decomposition of a graph or a subgraph. │ │ │ │ │ 1. void GPart_DDviaFishnet ( GPart *gpart, double frac, int minweight, │ │ │ │ │ @@ -209,15 +209,15 @@ │ │ │ │ │ double cpus[] ) ; │ │ │ │ │ This method takes a domain decomposition {Φ,Ω ,...,Ω } defined by the compidsIV vector │ │ │ │ │ 1 m │ │ │ │ │ and generates a two set partition [S,B,W]. We first compute the map from vertices to │ │ │ │ │ domains and segments (the segments partition the interface nodes Φ). We then construct the │ │ │ │ │ bipartite graph that represents the connectivity of the domains and segments. Each segment │ │ │ │ │ is an “edge” that connects two “adjacent” domains. This allows us to use a variant of the │ │ │ │ │ - GPart : DRAFT October 18, 2025 7 │ │ │ │ │ + GPart : DRAFT October 28, 2025 7 │ │ │ │ │ Kernighan-Lin algorithm to find an “edge” separator formed of segments, which is really a │ │ │ │ │ vertex separator, a subset of Φ. The alpha parameter is used in the cost function evaluation │ │ │ │ │ for the partition, cost([S,B,W]) = |S|1+αmax{|B|,|W|}. The seed parameter is used │ │ │ │ │ min{|B|,|W|} │ │ │ │ │ to randomize the algorithm. One can make several runswith different seeds and chose the best │ │ │ │ │ partition. The cpus[] array is used to store execution times for segments of the algorithm: │ │ │ │ │ cpus[0] stores the time to compute the domain/segment map; cpus[2] stores the time to │ │ │ │ │ @@ -253,15 +253,15 @@ │ │ │ │ │ 0 │ │ │ │ │ Y = {y∈Y | y∈Adj(B\Y) and y ∈/ Adj(W \Y)} │ │ │ │ │ 1 │ │ │ │ │ Y = {y∈Y | y∈/ Adj(B \Y) and y ∈ Adj(W \Y)} │ │ │ │ │ 2 │ │ │ │ │ Y = {y∈Y | y∈Adj(B\Y) and y ∈Adj(W \Y)} │ │ │ │ │ 3 │ │ │ │ │ - 8 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 8 GPart : DRAFT October 28, 2025 │ │ │ │ │ The YVmapIV object contains the list of vertices in the wide separator Y . The IV object that │ │ │ │ │ is returned, (called YCmapIV in the calling method) contains the subscripts of the Y , Y , Y │ │ │ │ │ 0 1 2 │ │ │ │ │ or Y sets that contains each vertex. │ │ │ │ │ 3 │ │ │ │ │ Error checking: If gpart, g or YVmapIV is NULL, or if nvtx ≤ 0, or if YVmapIV is empty, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ @@ -303,15 +303,15 @@ │ │ │ │ │ improves it (if possible). The methods returns the cost of a (possibly) new two-set partition │ │ │ │ │ b b c │ │ │ │ │ [S,B,W] defined by the compidsIV vector. The wide separator Y that is constructed is │ │ │ │ │ centered around S, i.e., Y includes all nodes in B and W that are nlayer distance or less │ │ │ │ │ from S. This method calls GPart smoothYSep(). │ │ │ │ │ Error checking: If gpart is NULL, or if nlevel < 0, or if alpha < 0.0, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ - GPart : DRAFT October 18, 2025 9 │ │ │ │ │ + GPart : DRAFT October 28, 2025 9 │ │ │ │ │ 1.2.7 Recursive Bisection method │ │ │ │ │ There is presently one method to construct the domain/separator tree. │ │ │ │ │ 1. DSTree * GPart_RBviaDDsep ( GPart *gpart, DDsepInfo *info ) ; │ │ │ │ │ This method performs a recursive bisection of the graph using the DDSEP algorithm and │ │ │ │ │ returns a DSTree object that represents the domain/separator tree and the map from vertices │ │ │ │ │ to domains and separators. The DDsepInfo structure contains all the parameters to the │ │ │ │ │ different steps of the DDSEP algorithm (the fishnet method to find the domain decomposition, │ │ │ │ │ @@ -341,15 +341,15 @@ │ │ │ │ │ info->DDoption = 1 ; info->msglvl = 0 ; │ │ │ │ │ info->nlayer = 3 ; info->msgFile = stdout ; │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void DDsepInfo_clearData ( DDsepInfo *info ) ; │ │ │ │ │ This method checks to see whether info is NULL. DDsepInfo setDefaultFields() is called │ │ │ │ │ to set the default values. │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 10 GPart : DRAFT October 28, 2025 │ │ │ │ │ 4. void DDsepInfo_free ( DDsepInfo *info ) ; │ │ │ │ │ This method checks to see whether info is NULL. If so, an error message is printed and the │ │ │ │ │ program exits. Otherwise, it releases any storage by a call to DDsepInfo clearData() then │ │ │ │ │ free’s the storage for the structure with a call to free(). │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ 5. void DDsepInfo_writeCpuTimes ( DDsepInfo *info, FILE *msgFile ) ; │ │ │ │ │ This method writes a breakdown of the CPU times in a meaningful format. Here is sample │ │ │ │ │ @@ -379,15 +379,15 @@ │ │ │ │ │ data. │ │ │ │ │ • TheinGraphFileparameteristheinputfilefortheGraphobject. It mustbeof theform │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The freeze parameter is used to place nodes of high degree into the multisector. If the │ │ │ │ │ external degree of a vertex is freeze times the average degree, then it is placed in the │ │ │ │ │ multisector. │ │ │ │ │ - GPart : DRAFT October 18, 2025 11 │ │ │ │ │ + GPart : DRAFT October 28, 2025 11 │ │ │ │ │ • The target minimum weight for a domain is minweight. │ │ │ │ │ • The target maximum weight for a domain is maxweight. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The outIVfile parameter is the output file for the IV object that contains the map │ │ │ │ │ from vertices to components. If outIVfile is "none", then there is no output, otherwise │ │ │ │ │ outIVfile must be of the form *.ivf or *.ivb. │ │ │ │ │ 2. testTwoSetViaBKL msglvl msgFile inGraphFile inIVfile │ │ │ │ │ @@ -417,15 +417,15 @@ │ │ │ │ │ problems. It reads in a Graph object and an IV object that holds the map from vertices to │ │ │ │ │ components (e.g., the output from the driver program testTwoSetViaBKL) from two files, │ │ │ │ │ smooths the separator and then optionally writes out the new component ids map to a file. │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ • The msgFile parameter determines the output file — if msgFile is stdout, then the │ │ │ │ │ output file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ - 12 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 12 GPart : DRAFT October 28, 2025 │ │ │ │ │ • TheinGraphFileparameteristheinputfilefortheGraphobject. It mustbeof theform │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The inIVfile parameter is the input file for the IV object that contains the map from │ │ │ │ │ vertices to domains and multisector. It inIVfile must be of the form *.ivf or *.ivb. │ │ │ │ │ • The option parameter specifies the type of network optimization problem that will be │ │ │ │ │ solved. │ │ │ │ │ @@ -457,15 +457,15 @@ │ │ │ │ │ • The target maximum weight for a domain is maxweight. │ │ │ │ │ • The freeze parameter is used to place nodes of high degree into the multisector. If the │ │ │ │ │ external degree of a vertex is freeze times the average degree, then it is placed in the │ │ │ │ │ multisector. │ │ │ │ │ • The alpha parameter controls the partition evaluation function. │ │ │ │ │ • The maxdomweight parameter controls the recursive bisection — no subgraph with │ │ │ │ │ weight less than maxdomweight is further split. │ │ │ │ │ - GPart : DRAFT October 18, 2025 13 │ │ │ │ │ + GPart : DRAFT October 28, 2025 13 │ │ │ │ │ • The DDoption parameter controls the initial domain/segment partition on each sub- │ │ │ │ │ graph. When DDDoption = 1 we use the fishnet algorithm for each subgraph. When │ │ │ │ │ DDDoption = 1 we use the fishnet algorithm once for the entire graph and this is then │ │ │ │ │ projected down onto each subgraph. │ │ │ │ │ • The nlayer parameter governs the smoothing process by specifying the type of network │ │ │ │ │ optimization problem that will be solved. │ │ │ │ │ – nlayer = 1 — each network has two layers and is bipartite. │ │ │ │ │ @@ -496,15 +496,15 @@ │ │ │ │ │ DDDoption = 1 we use the fishnet algorithm once for the entire graph and this is then │ │ │ │ │ projected down onto each subgraph. │ │ │ │ │ • The nlayer parameter governs the smoothing process by specifying the type of network │ │ │ │ │ optimization problem that will be solved. │ │ │ │ │ – nlayer = 1 — each network has two layers and is bipartite. │ │ │ │ │ – nlayer = 2 — each network has two layers but need not be bipartite. │ │ │ │ │ – nlayer > 2 — each network has option/2 layers on each side of the separator. │ │ │ │ │ - 14 GPart : DRAFT October 18, 2025 │ │ │ │ │ + 14 GPart : DRAFT October 28, 2025 │ │ │ │ │ • The outDSTreeFile parameter is the output file for the DSTree object. It must be of │ │ │ │ │ the form *.dstreef or *.dstreeb. If outDSTreeFile is not "none", the DSTree object │ │ │ │ │ is written to the file via the DSTree writeToFile() method. │ │ │ │ │ Index │ │ │ │ │ DDsepInfo clearData(), 9 │ │ │ │ │ DDsepInfo free(), 10 │ │ │ │ │ DDsepInfo new(), 9 │ │ ├── ./usr/share/doc/spooles-doc/Graph.ps.gz │ │ │ ├── Graph.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Graph.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1202,15 +1202,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1404,81 +1403,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5633,15 +5627,15 @@ │ │ │ │ A72D>136 D E │ │ │ │ /Fc load 0 Fc currentfont 91.25 scalefont put/FMat X/FBB │ │ │ │ X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fd 134[71 2[71 75 52 53 55 1[75 67 75 112 2[41 37 75 │ │ │ │ 67 41 61 75 60 75 65 13[75 2[92 11[103 16[67 67 67 2[37 │ │ │ │ 46[{}27 119.552 /CMBX12 rf /Fe 139[35 1[36 2[45 9[40 │ │ │ │ -1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Ff 141[39 1[39 7[39 6[39 10[39 9[39 │ │ │ │ 2[39 1[39 1[39 69[{}9 74.7198 /CMTT9 rf /Fg 135[41 1[41 │ │ │ │ 43 30 30 30 41 43 38 43 64 21 1[23 21 43 38 23 34 1[34 │ │ │ │ 43 38 12[55 37[21 1[21 44[{}24 74.7198 /CMR9 rf /Fh 206[30 │ │ │ │ 49[{}1 49.8132 /CMR6 rf /Fi 145[45 3[25 50[0 4[61 16[91 │ │ │ │ 6[71 4[71 71 17[71 25 1[{}10 90.9091 /CMSY10 rf /Fj 136[65 │ │ │ │ 44 52 30[53 2[56 3[69 7[71 1[67 6[71 1[71 25 28[54 30[{}12 │ │ │ │ @@ -5762,15 +5756,15 @@ │ │ │ │ Fo(\()p Fk(v)q Fo(\))p 0 5322 1560 4 v 104 5375 a Fh(1)138 │ │ │ │ 5407 y Fg(The)26 b Ff(EGraph)h Fg(ob)t(ject)g(represen)n(ts)e(a)h │ │ │ │ (graph)g(of)h(the)e(matrix,)h(but)f(stores)h(a)g(list)h(of)f(co)n(v)n │ │ │ │ (ering)g(cliques)g(in)g(an)g Ff(IVL)g Fg(ob)t(ject.)1927 │ │ │ │ 5656 y Fo(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fo(2)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 0 399 a Fo(and)36 b(it)i(is)f(the)g(smallest)h │ │ │ │ (graph)e(with)h(this)g(prop)s(ert)m(y)-8 b(.)60 b(The)36 │ │ │ │ b(compression)h(is)g Fl(loss-less)p Fo(,)j(for)d(giv)m(en)h │ │ │ │ Fk(G)p Fo(\()p Fk(V)q Fj(;)15 b Fk(E)p Fo(\))0 511 y(and)30 │ │ │ │ b Fj(\036)p Fo(,)i(w)m(e)f(can)g(reconstruct)h(the)f(unit)f(w)m(eigh)m │ │ │ │ (t)j(graph)d Fj(G)p Fo(\()p Fj(V)5 b(;)15 b(E)5 b Fo(\).)44 │ │ │ │ b(In)31 b(e\013ect,)h(w)m(e)g(can)f(w)m(ork)g(with)g(the)g(natural)0 │ │ │ │ @@ -5828,15 +5822,15 @@ │ │ │ │ 5049 y Fd(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g │ │ │ │ Fb(Graph)e Fd(metho)t(ds)0 5294 y Fo(This)e(section)j(con)m(tains)f │ │ │ │ (brief)f(descriptions)g(including)f(protot)m(yp)s(es)i(of)f(all)h │ │ │ │ (metho)s(ds)f(that)h(b)s(elong)f(to)h(the)0 5407 y Fn(Graph)29 │ │ │ │ b Fo(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1106 4 v 1287 100 a Fn(Graph)29 │ │ │ │ -b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(3)0 399 y Fa(1.2.1)112 b(Basic)38 │ │ │ │ b(metho)s(ds)0 605 y Fo(As)d(usual,)h(there)f(are)g(four)f(basic)h │ │ │ │ (metho)s(ds)g(to)g(supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e │ │ │ │ (default)f(\014elds,)h(clearing)0 718 y(an)m(y)31 b(allo)s(cated)h │ │ │ │ (data,)f(and)f(free'ing)h(the)g(ob)5 b(ject.)111 982 │ │ │ │ y(1.)46 b Fn(Graph)h(*)g(Graph_new)e(\()j(void)e(\))i(;)227 │ │ │ │ 1143 y Fo(This)28 b(metho)s(d)g(simply)h(allo)s(cates)i(storage)f(for)e │ │ │ │ @@ -5905,15 +5899,15 @@ │ │ │ │ b(alid)42 b(\(they)f(m)m(ust)h(b)s(e)227 5407 y Fn(IVL)p │ │ │ │ 377 5407 V 34 w(CHUNKED)p Fo(,)27 b Fn(IVL)p 943 5407 │ │ │ │ V 33 w(SOLO)h Fo(or)g Fn(IVL)p 1449 5407 V 34 w(UNKNOWN)p │ │ │ │ Fo(\).)f(an)i(error)f(message)i(is)e(prin)m(ted)h(and)f(the)g(program)h │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fo(4)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 111 399 a Fo(2.)46 b Fn(void)h(Graph_init2)e(\()i │ │ │ │ (Graph)f(*graph,)g(int)h(type,)g(int)f(nvtx,)h(int)g(nvbnd,)f(int)h │ │ │ │ (nedges,)466 511 y(int)g(totvwght,)e(int)i(totewght,)e(IVL)i(*adjIVL,)f │ │ │ │ (int)h(*vwghts,)e(IVL)i(*ewghtIVL\))227 665 y Fo(This)41 │ │ │ │ b(metho)s(d)f(is)h(used)f(b)m(y)h(the)h(IO)e(read)h(metho)s(ds.)72 │ │ │ │ b(When)41 b(a)h Fn(Graph)d Fo(ob)5 b(ject)42 b(is)g(read)f(from)f(a)i │ │ │ │ (\014le,)227 778 y(the)35 b Fn(IVL)e Fo(ob)5 b(ject\(s\))35 │ │ │ │ @@ -5996,15 +5990,15 @@ │ │ │ │ (compressed)f(graph.)227 5294 y(The)33 b(map)f Fj(\036)e │ │ │ │ Fo(:)g Fj(V)49 b Fi(7!)30 b Fk(V)k Fo(is)f(then)g(constructed)g(\(see)h │ │ │ │ (the)f(In)m(tro)s(duction)g(in)f(this)h(section\))h(and)f(put)f(in)m │ │ │ │ (to)227 5407 y(an)f Fn(IV)e Fo(ob)5 b(ject)32 b(that)f(is)f(then)g │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1106 4 v 1287 100 a Fn(Graph)29 │ │ │ │ -b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(5)227 399 y Fl(Err)-5 b(or)33 b(che)-5 │ │ │ │ b(cking:)40 b Fo(If)28 b Fn(graph)g Fo(is)h Fn(NULL)f │ │ │ │ Fo(or)h Fn(nvtx)47 b(<=)g(0)p Fo(,)29 b(an)g(error)g(message)h(is)f │ │ │ │ (prin)m(ted)f(and)h(the)g(program)227 511 y(exits.)111 │ │ │ │ 726 y(2.)46 b Fn(Graph)h(*)g(Graph_compress)92 b(\()47 │ │ │ │ b(Graph)g(*graph,)e(int)i(map[],)f(int)h(coarseType)e(\))j(;)227 │ │ │ │ 839 y(Graph)f(*)g(Graph_compress2)d(\()j(Graph)g(*graph,)e(IV)j │ │ │ │ @@ -6066,15 +6060,15 @@ │ │ │ │ (adj\()p Fn(v)p Fo(\).)227 5294 y Fl(Err)-5 b(or)39 b(che)-5 │ │ │ │ b(cking:)50 b Fo(If)35 b Fn(graph)f Fo(is)i Fn(NULL)p │ │ │ │ Fo(,)e(or)i Fn(v)f Fo(is)h(out)f(of)h(range,)h(an)f(error)f(message)h │ │ │ │ (is)g(prin)m(ted)f(and)g(the)227 5407 y(program)30 b(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fo(6)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 111 399 a Fo(3.)46 b Fn(int)h(Graph_adjAndSize)d(\() │ │ │ │ j(Graph)f(*graph,)g(int)h(u,)g(int)g(*pusize,)f(int)h(**puadj\))e(;)227 │ │ │ │ 545 y Fo(This)31 b(metho)s(d)f(\014lls)h Fn(*pusize)f │ │ │ │ Fo(with)h(the)g(size)h(of)f(the)h(adjacency)g(list)g(for)f │ │ │ │ Fn(u)g Fo(and)f Fn(*puadj)g Fo(p)s(oin)m(ts)h(to)h(the)227 │ │ │ │ 658 y(start)f(of)g(the)f(list)h(v)m(ector.)227 804 y │ │ │ │ Fl(Err)-5 b(or)32 b(che)-5 b(cking:)40 b Fo(If)28 b Fn(graph)f │ │ │ │ @@ -6162,15 +6156,15 @@ │ │ │ │ b(ject)30 b(in)m(v)-5 b(alid.)227 5294 y(The)38 b(graph)g(partitioning) │ │ │ │ h(metho)s(ds)e(map)h(the)h(v)m(ertices)g(bac)m(k)g(to)g(their)g │ │ │ │ (original)g(v)-5 b(alues.)65 b(Presen)m(tly)-8 b(,)227 │ │ │ │ 5407 y(only)31 b(graphs)e(with)i(unit)e(edge)j(w)m(eigh)m(ts)f(are)g │ │ │ │ (allo)m(w)m(ed)h(as)f(input.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1106 4 v 1287 100 a Fn(Graph)29 │ │ │ │ -b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(7)227 399 y Fl(Err)-5 b(or)32 b(che)-5 │ │ │ │ b(cking:)39 b Fo(If)28 b Fn(graph)f Fo(is)h Fn(NULL)f │ │ │ │ Fo(or)h Fn(icomp)46 b(<)i(0)27 b Fo(or)i Fn(compids)d │ │ │ │ Fo(or)i Fn(pmap)f Fo(is)h Fn(NULL)p Fo(,)f(an)h(error)g(message)227 │ │ │ │ 511 y(is)j(prin)m(ted)f(and)f(the)i(program)f(exits.)111 │ │ │ │ 691 y(8.)46 b Fn(int)h(Graph_isSymmetric)c(\()48 b(Graph)e(*graph)g(\)) │ │ │ │ i(;)227 837 y Fo(This)36 b(metho)s(d)g(returns)f Fn(1)i │ │ │ │ @@ -6254,15 +6248,15 @@ │ │ │ │ (tered)h(from)f Fn(fprintf)p Fo(,)f(zero)i(is)f(returned.)227 │ │ │ │ 5407 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 │ │ │ │ b Fn(graph)f Fo(or)i Fn(fp)e Fo(are)i Fn(NULL)e Fo(an)i(error)f │ │ │ │ (message)h(is)g(prin)m(ted)e(and)h(zero)h(is)g(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fo(8)p 136 100 1106 4 v │ │ │ │ -1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(18,)g │ │ │ │ +1288 w Fn(Graph)28 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)h(28,)g │ │ │ │ (2025)p 2795 100 V 111 399 a Fo(6.)46 b Fn(int)h │ │ │ │ (Graph_writeToBinaryFile)42 b(\()47 b(Graph)f(*graph,)g(FILE)h(*fp)g │ │ │ │ (\))g(;)227 554 y Fo(This)27 b(metho)s(d)g(writes)h(a)g │ │ │ │ Fn(Graph)e Fo(ob)5 b(ject)29 b(to)f(a)g(binary)f(\014le.)40 │ │ │ │ b(If)27 b(there)h(are)g(no)g(errors)f(in)g(writing)h(the)g(data,)227 │ │ │ │ 667 y(the)j(v)-5 b(alue)31 b Fn(1)f Fo(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ @@ -6328,15 +6322,15 @@ │ │ │ │ (\(the)i(\014rst)d(graph)h(need)h(not)g(b)s(e)f(unit)g(w)m(eigh)m(t\),) │ │ │ │ k(and)c(constructs)h(the)227 5294 y(natural)24 b(compressed)f(graph.)38 │ │ │ │ b(The)23 b(equiv)-5 b(alence)25 b(map)e(and)g(compressed)g(graph)g(are) │ │ │ │ h(optionally)h(written)227 5407 y(out)31 b(to)g(\014les.)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1106 4 v 1287 100 a Fn(Graph)29 │ │ │ │ -b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2747 100 V 1106 w Fo(9)337 399 y Fc(\210)45 b Fo(The)28 │ │ │ │ b Fn(msglvl)f Fo(parameter)i(determines)g(the)g(amoun)m(t)g(of)f │ │ │ │ (output)h(|)f(taking)i Fn(msglvl)46 b(>=)h(3)28 b Fo(means)427 │ │ │ │ 511 y(that)j(all)h(ob)5 b(jects)31 b(are)f(written)h(to)g(the)f │ │ │ │ (message)i(\014le.)337 660 y Fc(\210)45 b Fo(The)33 b │ │ │ │ Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ @@ -6421,15 +6415,15 @@ │ │ │ │ y Fn(outGraphFile)24 b Fo(is)j(of)h(the)f(form)g Fn(*.graphf)p │ │ │ │ Fo(\),)f(or)h(a)h(binary)f(\014le)g(\(if)g Fn(outGraphFile)d │ │ │ │ Fo(is)k(of)f(the)g(form)427 5214 y Fn(*.graphb)p Fo(\).)111 │ │ │ │ 5407 y(4.)46 b Fn(mkGridGraph)f(msglvl)h(msgFile)g(stencil)g(n1)h(n2)g │ │ │ │ (n3)g(outFile)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fo(10)p 182 100 1083 4 │ │ │ │ -v 1265 w Fn(Graph)29 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)g(18,)i │ │ │ │ +v 1265 w Fn(Graph)29 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 227 399 a Fo(This)c(driv)m(er)h(program)g(creates)h │ │ │ │ (a)f(Graph)g(ob)5 b(ject)29 b(for)g(a)g(\014nite)g(di\013erence)h(op)s │ │ │ │ (erator)f(on)g(a)g Fn(n1)17 b Fi(\002)g Fn(n2)g Fi(\002)g │ │ │ │ Fn(n3)227 511 y Fo(regular)31 b(grid.)337 707 y Fc(\210)45 │ │ │ │ b Fo(The)28 b Fn(msglvl)f Fo(parameter)i(determines)g(the)g(amoun)m(t)g │ │ │ │ (of)f(output)h(|)f(taking)i Fn(msglvl)46 b(>=)h(3)28 │ │ │ │ b Fo(means)427 820 y(that)j(all)h(ob)5 b(jects)31 b(are)f(written)h(to) │ │ │ │ @@ -6500,15 +6494,15 @@ │ │ │ │ Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ 5294 y(message)27 b(\014le)f(is)g Fl(stdout)p Fo(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fl(app)-5 b(end)28 │ │ │ │ b Fo(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 5407 │ │ │ │ y(data.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1083 4 v 1264 100 a Fn(Graph)29 │ │ │ │ -b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)41 b Fl(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2725 100 V 1083 w Fo(11)337 399 y Fc(\210)45 b Fo(The)37 │ │ │ │ b Fn(inFile)f Fo(parameter)i(is)g(the)g(input)e(\014le)i(for)f(the)h │ │ │ │ Fn(Graph)e Fo(ob)5 b(ject.)64 b(It)37 b(m)m(ust)h(b)s(e)f(of)h(the)f │ │ │ │ (form)427 511 y Fn(*.graphf)18 b Fo(or)j Fn(*.graphb)p │ │ │ │ Fo(.)35 b(The)19 b Fn(Graph)g Fo(ob)5 b(ject)21 b(is)g(read)f(from)g │ │ │ │ (the)g(\014le)h(via)f(the)h Fn(Graph)p 3368 511 29 4 │ │ │ │ v 33 w(readFromFile\(\))427 624 y Fo(metho)s(d.)111 1065 │ │ │ │ @@ -6567,15 +6561,15 @@ │ │ │ │ 5294 y(for)36 b Fn(radius)46 b(=)i(1)36 b Fo(on)g(the)g(left)h(and)f │ │ │ │ Fn(radius)46 b(=)i(2)35 b Fo(on)i(the)f(righ)m(t.)59 │ │ │ │ b(The)36 b(domains)g(are)g(3)25 b Fi(\002)f Fo(3)36 b(subgrids)227 │ │ │ │ 5407 y(whose)30 b(v)m(ertices)i(ha)m(v)m(e)g(lab)s(els)f(equal)g(to)g │ │ │ │ (zero.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fo(12)p 182 100 1083 │ │ │ │ -4 v 1265 w Fn(Graph)29 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)g(18,)i │ │ │ │ +4 v 1265 w Fn(Graph)29 b Fe(:)41 b Fl(DRAFT)30 b Fe(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2817 100 V 429 1927 a @beginspecial 0 @llx 0 │ │ │ │ @lly 600 @urx 600 @ury 1943 @rwi 1943 @rhi @setspecial │ │ │ │ %%BeginDocument: ../../Graph/doc/rad1.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%BoundingBox: 0.0 0.0 600.0 600.0 │ │ │ │ /radius 15 def │ │ │ │ /Helvetica findfont 18.75 scalefont setfont │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ │ weight vertices in the weighted vertex. The weight of an edge is w(u,v), the number of (u,v) edges │ │ │ │ │ in the unit weight graph where u ∈ u and v ∈ v. │ │ │ │ │ Thenaturalcompressedgraph[?],[?]isveryimportantformanymatricesfromstructralanalysis │ │ │ │ │ and computational fluid mechanics. This type of graph has one special property: │ │ │ │ │ w(u,v) = w(u)·w(v) │ │ │ │ │ 1The EGraph object represents a graph of the matrix, but stores a list of covering cliques in an IVL object. │ │ │ │ │ 1 │ │ │ │ │ - 2 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 2 Graph : DRAFT October 28, 2025 │ │ │ │ │ and it is the smallest graph with this property. The compression is loss-less, for given G(V,E) │ │ │ │ │ and φ, we can reconstruct the unit weight graph G(V,E). In effect, we can work with the natural │ │ │ │ │ compressed graph to find separators and orderings and map back to the unit weight graph. The │ │ │ │ │ savings in time and space can be considerable. │ │ │ │ │ The Graph object has a method to find the φ map for the natural compressed graph; it requires │ │ │ │ │ O(|V|) space and O(|E|) time. There is a method to compress a graph (i.e., given G(V,E) and │ │ │ │ │ an arbitrary φ, construct G(V,E)) and a method to expand a graph (i.e., given G(V,E) and an │ │ │ │ │ @@ -57,15 +57,15 @@ │ │ │ │ │ • int totewght : total edge weight │ │ │ │ │ • IVL *adjIVL : pointer to IVL object to hold adjacency lists │ │ │ │ │ • int *vwghts : pointer to a vertex to hold vertex weights non-NULL if type % 2 == 1 │ │ │ │ │ • IVL *ewghtIVL : pointer to IVL object to hold edge weight lists, non-NULL if type / 2 == 1 │ │ │ │ │ 1.2 Prototypes and descriptions of Graph methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Graph object. │ │ │ │ │ - Graph : DRAFT October 18, 2025 3 │ │ │ │ │ + Graph : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Graph * Graph_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Graph structure and then sets the default fields │ │ │ │ │ by a call to Graph setDefaultFields(). │ │ │ │ │ 2. void Graph_setDefaultFields ( Graph *graph ) ; │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ int adjType, int ewghtType ) ; │ │ │ │ │ Thisisthebasicinitializer method. Anypreviousdataisclearedwithacall toGraph clearData(). │ │ │ │ │ Thenthescalar fields are set and the adjIVL object is initialized. If type is 1 or 3, the vwghts │ │ │ │ │ vector is initialized to zeros. If type is 2 or 3, the ewghtIVL object is initialized. │ │ │ │ │ Error checking: If graph is NULL, type is invalid (type must be in [0,3]), nvtx is non- │ │ │ │ │ positive, nvbnd or nedges is negative, or adjType of ewghtType is invalid (they must be │ │ │ │ │ IVL CHUNKED, IVL SOLO or IVL UNKNOWN). an error message is printed and the program exits. │ │ │ │ │ - 4 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 4 Graph : DRAFT October 28, 2025 │ │ │ │ │ 2. void Graph_init2 ( Graph *graph, int type, int nvtx, int nvbnd, int nedges, │ │ │ │ │ int totvwght, int totewght, IVL *adjIVL, int *vwghts, IVL *ewghtIVL) │ │ │ │ │ This method is used by the IO read methods. When a Graph object is read from a file, │ │ │ │ │ the IVL object(s) must be initialized and then read in from the file. Therefore, we need an │ │ │ │ │ initialization method that allows us to set pointers to the IVL objects and the vwghts vector. │ │ │ │ │ Note, adjIVL, vwghts and ewghtIVL are owned by the Graph object and will be free’d when │ │ │ │ │ the Graph object is free’d. │ │ │ │ │ @@ -130,15 +130,15 @@ │ │ │ │ │ 1.2.3 Compress and Expand methods │ │ │ │ │ These three methods find an equivalence map for the natural compressed graph, compress a graph, │ │ │ │ │ and expand a graph. │ │ │ │ │ 1. IV * Graph_equivMap ( Graph *graph ) ; │ │ │ │ │ This method constructs the equivalence map from the graph to its natural compressed graph. │ │ │ │ │ The map φ : V 7→ V is then constructed (see the Introduction in this section) and put into │ │ │ │ │ an IV object that is then returned. │ │ │ │ │ - Graph : DRAFT October 18, 2025 5 │ │ │ │ │ + Graph : DRAFT October 28, 2025 5 │ │ │ │ │ Error checking: If graph is NULL or nvtx <= 0, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 2. Graph * Graph_compress ( Graph *graph, int map[], int coarseType ) ; │ │ │ │ │ Graph * Graph_compress2 ( Graph *graph, IV *mapIV, int coarseType ) ; │ │ │ │ │ This Graph and map objects (map[] or mapIV) are checked and if any errors are found, │ │ │ │ │ the appropriate message is printed and the program exits. The compressed graph object │ │ │ │ │ is constructed and returned. Note, the compressed graph does not have a boundary, even │ │ │ │ │ @@ -164,15 +164,15 @@ │ │ │ │ │ 1. int Graph_sizeOf ( Graph *graph ) ; │ │ │ │ │ This method returns the number of bytes taken by this object. │ │ │ │ │ Error checking: If graph is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. Graph_externalDegree ( Graph *graph, int v ) ; │ │ │ │ │ This method returns the weight of adj(v). │ │ │ │ │ Error checking: If graph is NULL, or v is out of range, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - 6 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 6 Graph : DRAFT October 28, 2025 │ │ │ │ │ 3. int Graph_adjAndSize ( Graph *graph, int u, int *pusize, int **puadj) ; │ │ │ │ │ This method fills *pusize with the size of the adjacency list for u and *puadj points to the │ │ │ │ │ start of the list vector. │ │ │ │ │ Error checking: If graph is NULL, or if u < 0 or u >= nvtx or if pusize or puadj is NULL, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 4. int Graph_adjAndEweights ( Graph *graph, int u, int *pusize, │ │ │ │ │ int **puadj, int **puewghts) ; │ │ │ │ │ @@ -205,15 +205,15 @@ │ │ │ │ │ list for the vertex in the parent graph. Each adjacency list for a boundary vertex of the │ │ │ │ │ subgraph is new storage, and only these lists are free’d when the subgraph is free’d. A map │ │ │ │ │ vector is created that maps the subgraphs’s vertices (both internal and boundary) into the │ │ │ │ │ parent graph’s vertices; the address of the map vector is put into *pmap. The adjacency lists │ │ │ │ │ for the subgraph are overwritten by the map[] vector. This renders the graph object invalid. │ │ │ │ │ The graph partitioning methods map the vertices back to their original values. Presently, │ │ │ │ │ only graphs with unit edge weights are allowed as input. │ │ │ │ │ - Graph : DRAFT October 18, 2025 7 │ │ │ │ │ + Graph : DRAFT October 28, 2025 7 │ │ │ │ │ Error checking: If graph is NULL or icomp < 0 or compids or pmap is NULL, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 8. int Graph_isSymmetric ( Graph *graph ) ; │ │ │ │ │ This method returns 1 if the graph is symmetric (i.e., edge (i,j) is present if and only if │ │ │ │ │ edge (j,i) is present) and 0 otherwise. │ │ │ │ │ Error checking: If graph is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.6 IO methods │ │ │ │ │ @@ -242,15 +242,15 @@ │ │ │ │ │ file and returns the value returned from the called routine. │ │ │ │ │ Error checking: If graph or fn are NULL, or if fn is not of the form *.graphf (for a formatted │ │ │ │ │ file) or *.graphb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 5. int Graph_writeToFormattedFile ( Graph *graph, FILE *fp ) ; │ │ │ │ │ This method writes a Graph object to a formatted file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If graph or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - 8 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 8 Graph : DRAFT October 28, 2025 │ │ │ │ │ 6. int Graph_writeToBinaryFile ( Graph *graph, FILE *fp ) ; │ │ │ │ │ This method writes a Graph object to a binary file. If there are no errors in writing the data, │ │ │ │ │ the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If graph or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 7. int Graph_writeForHumanEye ( Graph *graph, FILE *fp ) ; │ │ │ │ │ This method writes a Graph object to a file in a human readable format. The method │ │ │ │ │ Graph writeStats()is called to write out the header and statistics. The value 1 is returned. │ │ │ │ │ @@ -276,15 +276,15 @@ │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ 2. compressGraph msglvl msgFile inGraphFile coarseType outMapFile outGraphFile │ │ │ │ │ This driver program reads in a Graph object from a file, computes the equivalence map to │ │ │ │ │ its natural compressed graph (the first graph need not be unit weight), and constructs the │ │ │ │ │ natural compressed graph. The equivalence map and compressed graph are optionally written │ │ │ │ │ out to files. │ │ │ │ │ - Graph : DRAFT October 18, 2025 9 │ │ │ │ │ + Graph : DRAFT October 28, 2025 9 │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ that all objects are written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • TheinGraphFileparameteristheinputfilefortheGraphobject. It mustbeof theform │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ @@ -317,15 +317,15 @@ │ │ │ │ │ (if inMapFile is of the form *.ivf), or a binary file (if inMapFile is of the form *.ivb). │ │ │ │ │ • The outGraphFile parameter is the output file for the compressed Graph object. If │ │ │ │ │ outGraphFile is none then the Graph object is not written to a file. Otherwise, │ │ │ │ │ the Graph writeToFile() method is called to write the graph to a formatted file (if │ │ │ │ │ outGraphFile is of the form *.graphf), or a binary file (if outGraphFile is of the form │ │ │ │ │ *.graphb). │ │ │ │ │ 4. mkGridGraph msglvl msgFile stencil n1 n2 n3 outFile │ │ │ │ │ - 10 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 10 Graph : DRAFT October 28, 2025 │ │ │ │ │ This driver program creates a Graph object for a finite difference operator on a n1×n2×n3 │ │ │ │ │ regular grid. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ that all objects are written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ @@ -355,15 +355,15 @@ │ │ │ │ │ Graph isSymmetric() method. This was useful in one application where the Graph object │ │ │ │ │ was constructed improperly. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the Graph object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ - Graph : DRAFT October 18, 2025 11 │ │ │ │ │ + Graph : DRAFT October 28, 2025 11 │ │ │ │ │ • The inFile parameter is the input file for the Graph object. It must be of the form │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ 7. testWirebasket msglvl msgFile inGraphFile inStagesFile │ │ │ │ │ outStagesFile radius │ │ │ │ │ This driver program reads in a Graph object and and a file that contains the stages ids of the │ │ │ │ │ vertices, (stage equal to zero means the vertex is in the Schur complement), and overwrites the │ │ │ │ │ @@ -386,15 +386,15 @@ │ │ │ │ │ the form *.ivf or *.ivb. The IV object is written to the file via the IV writeToFile() │ │ │ │ │ method. │ │ │ │ │ • The radius parameter is used to define the stage of a Schur complement vertex, namely │ │ │ │ │ the stage is the number of domains that are found within radius edges of the vertex. │ │ │ │ │ The two plots below illustrate the wirebasket stages for a 15×15 grid. They show the stages │ │ │ │ │ for radius = 1 on the left and radius = 2 on the right. The domains are 3 × 3 subgrids │ │ │ │ │ whose vertices have labels equal to zero. │ │ │ │ │ - 12 Graph : DRAFT October 18, 2025 │ │ │ │ │ + 12 Graph : DRAFT October 28, 2025 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 │ │ │ │ │ 2 2 2 4 2 2 2 4 2 2 2 4 2 2 2 2 2 4 4 4 2 4 4 4 2 4 4 4 2 2 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 │ │ │ │ │ 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 │ │ ├── ./usr/share/doc/spooles-doc/I2Ohash.ps.gz │ │ │ ├── I2Ohash.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o I2Ohash.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2423,15 +2423,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2625,81 +2624,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4344,16 +4338,16 @@ │ │ │ │ 205[35 50[{}1 66.4176 /CMR8 rf /Fc 150[24 105[{}1 66.4176 │ │ │ │ /CMMI8 rf /Fd 142[83 32[88 80[{}2 83.022 /CMEX10 rf /Fe │ │ │ │ 143[76 91[71 20[{}2 90.9091 /CMSY10 rf /Ff 133[50 59 │ │ │ │ 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}24 99.6264 /CMBX12 │ │ │ │ rf /Fg 139[62 62 3[62 4[62 1[62 2[62 1[62 62 62 17[62 │ │ │ │ 5[62 22[62 50[{}12 119.552 /CMTT12 rf /Fh 139[35 1[36 │ │ │ │ -2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 │ │ │ │ -44[{}14 90.9091 /CMSL10 rf /Fi 134[44 3[49 30 37 38 1[46 │ │ │ │ +2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 │ │ │ │ +44[{}13 90.9091 /CMSL10 rf /Fi 134[44 3[49 30 37 38 1[46 │ │ │ │ 46 51 2[42 1[28 46 42 1[42 46 42 1[46 12[65 1[66 11[59 │ │ │ │ 62 69 2[68 6[28 58[{}23 90.9091 /CMTI10 rf /Fj 134[71 │ │ │ │ 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 41 61 75 60 │ │ │ │ 1[65 13[75 2[92 11[103 16[67 67 67 2[37 46[{}25 119.552 │ │ │ │ /CMBX12 rf │ │ │ │ %DVIPSBitmapFont: Fk tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ @@ -4467,15 +4461,15 @@ │ │ │ │ 5294 y Fk(\210)45 b Fl(I2OP)i(*baseI2OP)35 b Fm(:)j(p)s(oin)m(ter)g(to) │ │ │ │ h(an)f Fl(I2OP)f Fm(ob)5 b(ject)39 b(that)f(k)m(eeps)h(trac)m(k)g(of)f │ │ │ │ (all)h(the)f Fl(I2OP)f Fm(ob)5 b(jects)38 b(that)227 │ │ │ │ 5407 y(ha)m(v)m(e)32 b(b)s(een)e(allo)s(cated)i(b)m(y)e(the)h(hash)e │ │ │ │ (table.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fm(2)p 136 100 1058 4 v │ │ │ │ -1240 w Fl(I2Ohash)28 b Fh(:)41 b Fi(DRAFT)30 b Fh(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fl(I2Ohash)28 b Fh(:)41 b Fi(DRAFT)30 b Fh(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 137 399 a Fk(\210)45 b Fl(I2OP)i(*freeI2OP)28 │ │ │ │ b Fm(:)i(p)s(oin)m(ter)h(to)g(the)f(\014rst)g Fl(I2OP)f │ │ │ │ Fm(ob)5 b(ject)31 b(on)g(the)f(free)h(list.)137 604 y │ │ │ │ Fk(\210)45 b Fl(I2OP)i(**heads)26 b Fm(:)39 b(p)s(oin)m(ter)29 │ │ │ │ b(to)f(a)h(v)m(ector)g(of)g(p)s(oin)m(ters)f(to)g Fl(I2OP)f │ │ │ │ Fm(ob)5 b(jects,)30 b(used)d(to)i(hold)e(a)i(p)s(oin)m(ter)f(to)h(the) │ │ │ │ 227 717 y(\014rst)h Fl(I2OP)f Fm(ob)5 b(ject)31 b(in)f(eac)m(h)i(list.) │ │ │ │ @@ -4527,15 +4521,15 @@ │ │ │ │ b(cking:)40 b Fm(If)30 b Fl(hashtable)e Fm(is)j Fl(NULL)p │ │ │ │ Fm(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g(the)g(program)h │ │ │ │ (exits.)0 5202 y Ff(1.2.2)112 b(Initializer)38 b(metho)s(ds)0 │ │ │ │ 5407 y Fm(There)30 b(is)g(one)h(initializer)h(metho)s(d.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1058 4 v 1239 100 a Fl(I2Ohash)29 │ │ │ │ -b Fh(:)40 b Fi(DRAFT)121 b Fh(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fh(:)40 b Fi(DRAFT)121 b Fh(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2795 100 V 1058 w Fm(3)111 399 y(1.)46 b Fl(void)h(I2Ohash_init)d(\()k │ │ │ │ (I2Ohash)e(*hashtable,)e(int)j(nlist,)f(int)h(nobj,)g(int)g(grow)f(\))i │ │ │ │ (;)227 542 y Fm(This)d(metho)s(d)h(is)g(the)g(basic)g(initializer)i │ │ │ │ (metho)s(d.)87 b(It)46 b(clears)h(an)m(y)g(previous)e(data)i(with)f(a)g │ │ │ │ (call)h(to)227 655 y Fl(I2Ohash)p 569 655 29 4 v 33 w(clearData\(\))p │ │ │ │ Fm(.)36 b(It)27 b(allo)s(cates)i(storage)f(for)e Fl(nlist)f │ │ │ │ Fm(lists)i(and)f(if)g Fl(nobj)g Fm(is)g(p)s(ositiv)m(e,)j(it)e(loads)g │ │ │ │ @@ -4613,15 +4607,15 @@ │ │ │ │ b(metho)s(d)g(prin)m(ts)g(the)g(hash)g(table)h(in)f(a)h(h)m │ │ │ │ (uman-readable)f(format.)227 5294 y Fi(Err)-5 b(or)41 │ │ │ │ b(che)-5 b(cking:)56 b Fm(If)38 b Fl(hashtable)e Fm(or)i │ │ │ │ Fl(fp)f Fm(is)i Fl(NULL)p Fm(,)e(an)h(error)g(message)h(is)f(prin)m │ │ │ │ (ted)g(and)g(the)g(program)227 5407 y(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fm(4)p 136 100 1058 4 v │ │ │ │ -1240 w Fl(I2Ohash)28 b Fh(:)41 b Fi(DRAFT)30 b Fh(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fl(I2Ohash)28 b Fh(:)41 b Fi(DRAFT)30 b Fh(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 0 399 a Fj(1.3)135 b(Driv)l(er)46 │ │ │ │ b(programs)g(for)f(the)g Fg(I2Ohash)58 b(object)111 626 │ │ │ │ y Fm(1.)46 b Fl(test_hash)g(msglvl)g(msgFile)f(size)i(grow)g(maxkey)f │ │ │ │ (nent)g(seed)227 777 y Fm(This)34 b(driv)m(er)h(program)g(tests)h(the)f │ │ │ │ Fl(I2Ohash)e Fm(insert)i(metho)s(d.)54 b(It)35 b(inserts)f(a)i(n)m(um)m │ │ │ │ (b)s(er)d(of)i(triples)h(in)m(to)g(a)227 890 y(hash)d(table)h(and)e │ │ │ │ (prin)m(ts)h(out)g(the)h(\\measure")g(of)f(ho)m(w)g(w)m(ell)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ │ • int nlist : number of lists in the hash table │ │ │ │ │ • int grow : when no I2OP objects are available to insert a new triple, │ │ │ │ │ the object can allocate grow more I2OP objects and put them on the free list. │ │ │ │ │ • nitem : number of items in the hash table. │ │ │ │ │ • I2OP *baseI2OP : pointer to an I2OP object that keeps track of all the I2OP objects that │ │ │ │ │ have been allocated by the hash table. │ │ │ │ │ 1 │ │ │ │ │ - 2 I2Ohash : DRAFT October 18, 2025 │ │ │ │ │ + 2 I2Ohash : DRAFT October 28, 2025 │ │ │ │ │ • I2OP *freeI2OP : pointer to the first I2OP object on the free list. │ │ │ │ │ • I2OP **heads : pointer to a vector of pointers to I2OP objects, used to hold a pointer to the │ │ │ │ │ first I2OP object in each list. │ │ │ │ │ Acorrectly initialized and nontrivial I2Ohash object will have nlist > 0. If grow is zero and │ │ │ │ │ a new triple is given to the hash table to be inserted, a fatal error occurs. │ │ │ │ │ 1.2 Prototypes and descriptions of I2Ohash methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ │ Error checking: If hashtable is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void I2Ohash_free ( I2Ohash *hashtable ) ; │ │ │ │ │ This method releases any storage by a call to I2Ohash clearData() then free’s the storage │ │ │ │ │ for the structure with a call to free(). │ │ │ │ │ Error checking: If hashtable is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.2 Initializer methods │ │ │ │ │ There is one initializer method. │ │ │ │ │ - I2Ohash : DRAFT October 18, 2025 3 │ │ │ │ │ + I2Ohash : DRAFT October 28, 2025 3 │ │ │ │ │ 1. void I2Ohash_init ( I2Ohash *hashtable, int nlist, int nobj, int grow ) ; │ │ │ │ │ This method is the basic initializer method. It clears any previous data with a call to │ │ │ │ │ I2Ohash clearData(). It allocates storage for nlist lists and if nobj is positive, it loads the │ │ │ │ │ free list with nobj I2OP objects. │ │ │ │ │ Error checking: If hashtable is NULL, or if nlist ≤ 0, or if nobj and grow are both zero, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ the triples are evenly distributed among nlist/k lists, the value is √k. │ │ │ │ │ Error checking: If hashtable is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ 1. void I2Ohash_writeForHumanEye ( I2Ohash *hashtable, FILE *fp ) ; │ │ │ │ │ This method prints the hash table in a human-readable format. │ │ │ │ │ Error checking: If hashtable or fp is NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 4 I2Ohash : DRAFT October 18, 2025 │ │ │ │ │ + 4 I2Ohash : DRAFT October 28, 2025 │ │ │ │ │ 1.3 Driver programs for the I2Ohash object │ │ │ │ │ 1. test_hash msglvl msgFile size grow maxkey nent seed │ │ │ │ │ This driver program tests the I2Ohash insert method. It inserts a number of triples into a │ │ │ │ │ hash table and prints out the “measure” of how well distributed the entries are in the hash │ │ │ │ │ table. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ ├── ./usr/share/doc/spooles-doc/IIheap.ps.gz │ │ │ ├── IIheap.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o IIheap.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1276,15 +1276,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1478,81 +1477,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3723,15 +3717,15 @@ │ │ │ │ {restore}if │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 235[71 20[{}1 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 11[42 6[80 14[56 56 56 2[31 46[{}22 99.6264 /CMBX12 rf │ │ │ │ /Fc 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fd 143[62 │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fd 143[62 │ │ │ │ 7[62 2[62 3[62 23[62 73[{}5 119.552 /CMTT12 rf │ │ │ │ %DVIPSBitmapFont: Fe tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3839,15 +3833,15 @@ │ │ │ │ b(and)f(descriptions)g(of)g Fd(IIheap)d Ff(metho)t(ds)0 │ │ │ │ 5294 y Fk(This)f(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 5407 y Fj(IIheap)29 b Fk(ob)5 b(ject.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 1082 4 v │ │ │ │ -1264 w Fj(IIheap)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fj(IIheap)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 0 399 a Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 601 y Fk(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 714 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 965 y(1.)46 b Fj(IIheap)g(*)i │ │ │ │ (IIheap_new)d(\()i(void)g(\))g(;)227 1121 y Fk(This)25 │ │ │ │ b(metho)s(d)g(simply)f(allo)s(cates)k(storage)f(for)e(the)h │ │ │ │ @@ -3899,15 +3893,15 @@ │ │ │ │ (;)227 5251 y Fk(This)30 b(metho)s(d)g(returns)f(the)h(n)m(um)m(b)s(er) │ │ │ │ f(of)i(b)m(ytes)g(tak)m(en)g(b)m(y)g(this)f(ob)5 b(ject.)227 │ │ │ │ 5407 y Fi(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 │ │ │ │ b Fj(heap)g Fk(is)g Fj(NULL)p Fk(,)f(an)i(error)f(message)h(is)g(prin)m │ │ │ │ (ted)f(and)f(the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1082 4 v 1263 100 a Fj(IIheap)29 │ │ │ │ -b Fc(:)41 b Fi(DRAFT)121 b Fc(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fc(:)41 b Fi(DRAFT)121 b Fc(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fk(3)111 399 y(2.)46 b Fj(void)h(IIheap_root)e(\()i │ │ │ │ (IIheap)f(*heap,)g(int)h(*pkey,)f(int)h(*pvalue)f(\))h(;)227 │ │ │ │ 549 y Fk(This)32 b(metho)s(d)g(\014lls)h Fj(*pid)e Fk(and)i │ │ │ │ Fj(*pkey)e Fk(with)h(the)h(k)m(ey)h(and)e(v)-5 b(alue,)34 │ │ │ │ b(resp)s(ectiv)m(ely)-8 b(,)35 b(of)e(the)g(ro)s(ot)g(elemen)m(t,)227 │ │ │ │ 662 y(an)e(elemen)m(t)g(with)f(minim)m(um)g(v)-5 b(alue.)41 │ │ │ │ b(If)30 b Fj(size)47 b(==)g(0)30 b Fk(then)g Fj(-1)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ location loc │ │ │ │ │ A correctly initialized and nontrivial IIheap object will have maxsize > 0 and 0 <= size < │ │ │ │ │ maxsize. │ │ │ │ │ 1.2 Prototypes and descriptions of IIheap methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ IIheap object. │ │ │ │ │ 1 │ │ │ │ │ - 2 IIheap : DRAFT October 18, 2025 │ │ │ │ │ + 2 IIheap : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. IIheap * IIheap_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the IIheap structure and then sets the default fields │ │ │ │ │ by a call to IIheap setDefaultFields(). │ │ │ │ │ 2. void IIheap_setDefaultFields ( IIheap *heap ) ; │ │ │ │ │ @@ -49,15 +49,15 @@ │ │ │ │ │ IVinit(). The entries in the three vectors are set to -1. │ │ │ │ │ Error checking: If heap is NULL, or if maxsize ≤ 0, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. int IIheap_sizeOf ( IIheap *heap ) ; │ │ │ │ │ This method returns the number of bytes taken by this object. │ │ │ │ │ Error checking: If heap is NULL, an error message is printed and the program exits. │ │ │ │ │ - IIheap : DRAFT October 18, 2025 3 │ │ │ │ │ + IIheap : DRAFT October 28, 2025 3 │ │ │ │ │ 2. void IIheap_root ( IIheap *heap, int *pkey, int *pvalue ) ; │ │ │ │ │ This method fills *pid and *pkey with the key and value, respectively, of the root element, │ │ │ │ │ an element with minimum value. If size == 0 then -1 is returned. │ │ │ │ │ Error checking: If heap, pkey or pvalue is NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 3. void IIheap_insert ( IIheap *heap, int key, int value ) ; │ │ │ │ │ This method inserts the pair (key,value) into the heap. │ │ ├── ./usr/share/doc/spooles-doc/IV.ps.gz │ │ │ ├── IV.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o IV.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1608,15 +1608,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1810,81 +1809,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3758,16 +3752,16 @@ │ │ │ │ 2[31 46[{}25 99.6264 /CMBX12 rf /Fb 139[62 4[62 4[62 │ │ │ │ 4[62 1[62 62 11[62 12[62 73[{}8 119.552 /CMTT12 rf /Fc │ │ │ │ 134[71 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 41 │ │ │ │ 61 75 60 1[65 13[75 2[92 11[103 16[67 67 67 2[37 46[{}25 │ │ │ │ 119.552 /CMBX12 rf /Fd 138[49 30 37 38 1[46 46 51 74 │ │ │ │ 1[42 1[28 46 42 1[42 46 42 1[46 12[65 1[66 11[59 62 69 │ │ │ │ 2[68 6[28 58[{}23 90.9091 /CMTI10 rf /Fe 139[35 1[36 │ │ │ │ -2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 │ │ │ │ -44[{}14 90.9091 /CMSL10 rf /Ff 152[45 45 102[{}2 90.9091 │ │ │ │ +2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 │ │ │ │ +44[{}13 90.9091 /CMSL10 rf /Ff 152[45 45 102[{}2 90.9091 │ │ │ │ /CMSY10 rf │ │ │ │ %DVIPSBitmapFont: Fg tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3895,15 +3889,15 @@ │ │ │ │ b(ject.)44 b(Originally)32 b(its)g(use)f(w)m(as)g(restricted)h(to)h │ │ │ │ (reading)e(and)g(writing)g Fi(*.iv)p Ff(f)p Fi(f,b)p │ │ │ │ Ff(g)0 5407 y Fj(\014les,)g(but)e(no)m(w)i Fi(IV)e Fj(ob)5 │ │ │ │ b(jects)32 b(app)s(ear)d(m)m(uc)m(h)i(more)f(frequen)m(tly)h(in)f(new)g │ │ │ │ (dev)m(elopmen)m(t.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 136 100 1182 4 v │ │ │ │ -1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 0 399 a Fc(1.1)135 b(Data)46 b(Structure)0 │ │ │ │ 620 y Fj(The)30 b Fi(IV)g Fj(structure)g(has)g(four)f(\014elds.)137 │ │ │ │ 791 y Fg(\210)45 b Fi(int)i(size)29 b Fj(:)41 b(presen)m(t)30 │ │ │ │ b(size)i(of)e(the)h(v)m(ector.)137 965 y Fg(\210)45 b │ │ │ │ Fi(int)i(maxsize)29 b Fj(:)40 b(maxim)m(um)30 b(size)i(of)e(the)h(v)m │ │ │ │ (ector.)137 1139 y Fg(\210)45 b Fi(int)i(owned)30 b Fj(:)44 │ │ │ │ b(o)m(wner)32 b(\015ag)g(for)f(the)h(data.)46 b(When)31 │ │ │ │ @@ -3963,15 +3957,15 @@ │ │ │ │ Fj(then)i(free's)h(the)g(storage)h(for)f(the)227 5264 │ │ │ │ y(structure)h(with)g(a)h(call)h(to)f Fi(free\(\))p Fj(.)227 │ │ │ │ 5407 y Fd(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 │ │ │ │ b Fi(iv)g Fj(is)h Fi(NULL)p Fj(,)e(an)h(error)g(message)i(is)e(prin)m │ │ │ │ (ted)g(and)g(the)g(program)h(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1182 4 v 1364 100 a Fi(IV)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fj(3)0 399 y Fa(1.2.2)112 b(Instance)38 │ │ │ │ b(metho)s(ds)0 606 y Fj(These)33 b(metho)s(d)f(allo)m(w)j(access)g(to)e │ │ │ │ (information)h(in)f(the)g(data)h(\014elds)e(without)i(explicitly)g │ │ │ │ (follo)m(wing)h(p)s(oin)m(ters.)0 719 y(There)g(is)h(o)m(v)m(erhead)h │ │ │ │ (in)m(v)m(olv)m(ed)h(with)d(these)h(metho)s(d)g(due)f(to)h(the)g │ │ │ │ (function)g(call)h(and)e(error)h(c)m(hec)m(king)h(inside)0 │ │ │ │ 832 y(the)31 b(metho)s(ds.)111 1097 y(1.)46 b Fi(int)h(IV_owned)f(\()h │ │ │ │ @@ -4029,15 +4023,15 @@ │ │ │ │ Fi(value)p Fj(.)227 5294 y Fd(Err)-5 b(or)32 b(che)-5 │ │ │ │ b(cking:)40 b Fj(If)27 b Fi(iv)p Fj(,)i Fi(loc)47 b(<)g(0)28 │ │ │ │ b Fj(or)g Fi(loc)47 b(>=)g(size)p Fj(,)28 b(or)g(if)h │ │ │ │ Fi(vec)e Fj(is)h Fi(NULL)g Fj(an)g(error)g(message)h(is)f(prin)m(ted) │ │ │ │ 227 5407 y(and)i(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 136 100 1182 4 v │ │ │ │ -1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 0 399 a Fa(1.2.3)112 b(Initializer)38 b(metho)s(ds)111 │ │ │ │ 596 y Fj(1.)46 b Fi(void)h(IV_init)f(\()h(IV)g(*iv,)g(int)g(size,)f │ │ │ │ (int)h(*entries)f(\))h(;)227 747 y Fj(This)36 b(metho)s(d)g │ │ │ │ (initializes)j(the)d(ob)5 b(ject)38 b(giv)m(en)f(a)g(size)h(for)e(the)h │ │ │ │ (v)m(ector)h(and)e(a)h(p)s(ossible)f(p)s(oin)m(ter)g(to)i(the)227 │ │ │ │ 860 y(v)m(ectors)28 b(storage.)41 b(An)m(y)26 b(previous)g(data)h(with) │ │ │ │ f(a)h(call)g(to)g Fi(IV)p 2277 860 29 4 v 34 w(clearData\(\))p │ │ │ │ @@ -4118,15 +4112,15 @@ │ │ │ │ (dangerous)f(metho)s(d)g(to)h(use)g(b)s(ecause)f(the)h(state)h(of)227 │ │ │ │ 5407 y(the)j(v)m(ector)h(is)e(lost,)j(namely)e Fi(vec)p │ │ │ │ Fj(,)g(the)g(base)f(of)h(the)f(en)m(tries,)j(is)e(corrupted.)58 │ │ │ │ b(If)35 b(the)i(ob)5 b(ject)37 b(o)m(wns)g(its)p eop │ │ │ │ end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1182 4 v 1364 100 a Fi(IV)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fj(5)227 399 y(en)m(tries)d(and)e Fi(IV)p │ │ │ │ 792 399 29 4 v 34 w(free\(\))p Fj(,)g Fi(IV)p 1262 399 │ │ │ │ V 34 w(setSize\(\))e Fj(or)j Fi(IV)p 1958 399 V 34 w(setMaxsize\(\))d │ │ │ │ Fj(is)j(called)h(b)s(efore)f(the)g(base)g(has)g(b)s(een)227 │ │ │ │ 511 y(shifted)h(bac)m(k)g(to)g(its)h(original)f(p)s(osition,)h(a)f │ │ │ │ (segmen)m(tation)i(violation)f(will)f(lik)m(ely)i(result.)40 │ │ │ │ b(This)28 b(is)g(a)i(v)m(ery)227 624 y(useful)g(metho)s(d,)g(but)g(use) │ │ │ │ @@ -4189,15 +4183,15 @@ │ │ │ │ (in)f(the)g(v)m(ector.)40 b(Let)25 b Fi(k)f Fj(b)s(e)g(en)m(try)g │ │ │ │ Fi(i)g Fj(in)g(the)h(v)m(ector.)40 b(If)24 b Fi(tags[k])46 │ │ │ │ b(!=)227 5407 y(keepTag)p Fj(,)28 b(the)i(en)m(try)g(is)g(mo)m(v)m(ed)g │ │ │ │ (to)h(the)f(end)f(of)g(the)h(v)m(ector,)i(otherwise)e(it)g(is)g(mo)m(v) │ │ │ │ m(ed)g(to)h(the)f(b)s(eginning)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fj(6)p 136 100 1182 4 v │ │ │ │ -1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 227 399 a Fj(of)f(the)g(v)m(ector.)42 b(The)29 │ │ │ │ b(size)h(of)g(the)g(v)m(ector)h(is)e(reset)i(to)f(b)s(e)f(the)g(n)m(um) │ │ │ │ m(b)s(er)g(of)g(tagged)i(en)m(tries)g(that)f(are)g(no)m(w)227 │ │ │ │ 511 y(in)g(the)h(leading)g(lo)s(cations.)227 660 y Fd(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 b Fi(iv)g Fj(of)h │ │ │ │ Fi(tags)e Fj(is)h Fi(NULL)f Fj(an)i(error)f(message)h(is)g(prin)m(ted)f │ │ │ │ (and)f(the)i(program)f(exits.)111 844 y(9.)46 b Fi(void)h │ │ │ │ @@ -4258,15 +4252,15 @@ │ │ │ │ b(ject)39 b(b)m(y)f(one)h(and)e(returns)g(the)h(new)227 │ │ │ │ 5146 y(v)-5 b(alue.)227 5294 y Fd(Err)g(or)38 b(che)-5 │ │ │ │ b(cking:)49 b Fj(If)34 b Fi(iv)g Fj(is)h Fi(NULL)f Fj(or)g(if)h │ │ │ │ Fi(loc)f Fj(is)h(out)g(of)f(range,)j(an)d(error)h(message)h(is)e(prin)m │ │ │ │ (ted)h(and)f(the)227 5407 y(program)c(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1182 4 v 1364 100 a Fi(IV)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fj(7)66 399 y(15.)46 b Fi(int)h(IV_findValue)e(\()i │ │ │ │ (IV)g(*iv,)g(int)g(value)f(\))i(;)227 547 y Fj(This)30 │ │ │ │ b(metho)s(d)f(lo)s(oks)i(for)e Fi(value)g Fj(in)h(its)g(en)m(tries.)42 │ │ │ │ b(If)29 b Fi(value)g Fj(is)h(presen)m(t,)g(the)h(\014rst)e(lo)s(cation) │ │ │ │ j(is)e(returned,)227 660 y(otherwise)h Fi(-1)f Fj(is)g(returned.)40 │ │ │ │ b(The)30 b(cost)h(is)f(linear)h(in)f(the)h(n)m(um)m(b)s(er)e(of)h(en)m │ │ │ │ (tries.)227 808 y Fd(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ @@ -4339,15 +4333,15 @@ │ │ │ │ b Fi(iv)g Fj(or)h Fi(fn)f Fj(are)i Fi(NULL)p Fj(,)d(or)i(if)g │ │ │ │ Fi(fn)f Fj(is)h(not)g(of)g(the)g(form)g Fi(*.ivf)e Fj(\(for)i(a)g │ │ │ │ (formatted)g(\014le\))227 5407 y(or)f Fi(*.ivb)e Fj(\(for)h(a)h(binary) │ │ │ │ e(\014le\),)j(an)e(error)g(message)h(is)g(prin)m(ted)f(and)f(the)i │ │ │ │ (metho)s(d)f(returns)f(zero.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fj(8)p 136 100 1182 4 v │ │ │ │ -1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fi(IV)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 111 399 a Fj(2.)46 b Fi(int)h(IV_readFromFormattedFile)41 │ │ │ │ b(\()48 b(IV)f(*iv,)g(FILE)f(*fp)h(\))h(;)227 550 y Fj(This)27 │ │ │ │ b(metho)s(d)g(reads)h(in)f(an)g Fi(IV)g Fj(ob)5 b(ject)29 │ │ │ │ b(from)e(a)h(formatted)g(\014le.)40 b(If)27 b(there)h(are)g(no)g │ │ │ │ (errors)f(in)g(reading)h(the)227 663 y(data,)k(the)e(v)-5 │ │ │ │ b(alue)31 b Fi(1)f Fj(is)g(returned.)40 b(If)30 b(an)g(IO)g(error)g(is) │ │ │ │ g(encoun)m(tered)h(from)f Fi(fscanf)p Fj(,)f(zero)i(is)g(returned.)227 │ │ │ │ @@ -4427,15 +4421,15 @@ │ │ │ │ y(v)-5 b(alue)31 b Fi(1)f Fj(is)h(returned.)227 5407 │ │ │ │ y Fd(Err)-5 b(or)27 b(che)-5 b(cking:)36 b Fj(If)22 b │ │ │ │ Fi(iv)g Fj(or)g Fi(fp)g Fj(or)g Fi(pierr)f Fj(are)i Fi(NULL)p │ │ │ │ Fj(,)e(an)i(error)f(message)h(is)g(prin)m(ted)e(and)h(zero)h(is)g │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1182 4 v 1364 100 a Fi(IV)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fj(9)66 399 y(10.)46 b Fi(int)h(IV_writeForMatlab)c │ │ │ │ (\()48 b(IV)f(*iv,)g(char)f(*name,)g(FILE)h(*fp)g(\))g(;)227 │ │ │ │ 549 y Fj(This)37 b(metho)s(d)h(writes)f(the)i(en)m(tries)f(of)g(the)g │ │ │ │ (v)m(ector)i(to)e(a)g(\014le)g(suitable)h(to)f(b)s(e)g(read)f(b)m(y)h │ │ │ │ (Matlab.)64 b(The)227 662 y(c)m(haracter)31 b(string)e │ │ │ │ Fi(name)f Fj(is)h(the)g(name)g(of)g(the)g(v)m(ector,)i(e.g,)g(if)e │ │ │ │ Fi(name)46 b(=)i("A")p Fj(,)28 b(then)h(w)m(e)g(ha)m(v)m(e)h(lines)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -24,15 +24,15 @@ │ │ │ │ │ IV setMaxsize() methods) than it is to duplicate code to work on an int vector. │ │ │ │ │ Onemustchoose where to use this object. There is a substantial performance penalty for doing the │ │ │ │ │ simplest operations, and so when we need to manipulate an int vector inside a loop, we extract │ │ │ │ │ out the size and pointer to the base array from the IV object. On the other hand, the convenience │ │ │ │ │ makes it a widely used object. Originally its use was restricted to reading and writing *.iv{f,b} │ │ │ │ │ files, but now IV objects appear much more frequently in new development. │ │ │ │ │ 1 │ │ │ │ │ - 2 IV : DRAFT October 18, 2025 │ │ │ │ │ + 2 IV : DRAFT October 28, 2025 │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The IV structure has four fields. │ │ │ │ │ • int size : present size of the vector. │ │ │ │ │ • int maxsize : maximum size of the vector. │ │ │ │ │ • int owned : owner flag for the data. When owned = 1, storage for maxsize int’s has been │ │ │ │ │ allocated by this object and can be free’d by the object. When nowned = 0 but maxsize > │ │ │ │ │ 0, this object points to entries that have been allocated elsewhere, and these entries will not │ │ │ │ │ @@ -58,15 +58,15 @@ │ │ │ │ │ the storage for vec is free’d by a call to IVfree(). The structure’s default fields are then set │ │ │ │ │ with a call to IV setDefaultFields(). │ │ │ │ │ Error checking: If iv is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void IV_free ( IV *iv ) ; │ │ │ │ │ This method releases any storage by a call to IV clearData() then free’s the storage for the │ │ │ │ │ structure with a call to free(). │ │ │ │ │ Error checking: If iv is NULL, an error message is printed and the program exits. │ │ │ │ │ - IV : DRAFT October 18, 2025 3 │ │ │ │ │ + IV : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ These method allow access to information in the data fields without explicitly following pointers. │ │ │ │ │ There is overhead involved with these method due to the function call and error checking inside │ │ │ │ │ the methods. │ │ │ │ │ 1. int IV_owned ( IV *iv ) ; │ │ │ │ │ This method returns the value of owned. If owned = 1, then the object owns the data pointed │ │ │ │ │ to by vec and will free this data with a call to IVfree() when its data is cleared by a call to │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ the vector. │ │ │ │ │ Error checking: If iv, psize or pentries is NULL an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 7. void IV_setEntry ( IV *iv, int loc, int value ) ; │ │ │ │ │ This method sets the loc’th entry of the vector to value. │ │ │ │ │ Error checking: If iv, loc < 0 or loc >= size, or if vec is NULL an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ - 4 IV : DRAFT October 18, 2025 │ │ │ │ │ + 4 IV : DRAFT October 28, 2025 │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ 1. void IV_init ( IV *iv, int size, int *entries ) ; │ │ │ │ │ This method initializes the object given a size for the vector and a possible pointer to the │ │ │ │ │ vectors storage. Any previous data with a call to IV clearData(). If entries != NULL then │ │ │ │ │ the vec field is set to entries, the size and maxsize fields are set to size , and owned is │ │ │ │ │ set to zero because the object does not own the entries. If entries is NULL and if size > 0 │ │ │ │ │ then a vector is allocated by the object, and the object owns this storage. │ │ │ │ │ @@ -128,15 +128,15 @@ │ │ │ │ │ Error checking: If iv is NULL or newsize < 0, or if 0 < maxsize < newsize and owned == │ │ │ │ │ 0, an error message is printed and the program exits. │ │ │ │ │ 1.2.4 Utility methods │ │ │ │ │ 1. void IV_shiftBase ( IV *iv, int offset ) ; │ │ │ │ │ This method shifts the base entries of the vector and decrements the present size and max- │ │ │ │ │ imum size of the vector by offset. This is a dangerous method to use because the state of │ │ │ │ │ the vector is lost, namely vec, the base of the entries, is corrupted. If the object owns its │ │ │ │ │ - IV : DRAFT October 18, 2025 5 │ │ │ │ │ + IV : DRAFT October 28, 2025 5 │ │ │ │ │ entries and IV free(), IV setSize() or IV setMaxsize() is called before the base has been │ │ │ │ │ shifted back to its original position, a segmentation violation will likely result. This is a very │ │ │ │ │ useful method, but use with caution. │ │ │ │ │ Error checking: If iv is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. void IV_push ( IV *iv, int val ) ; │ │ │ │ │ This method pushes an entry onto the vector. If the vector is full, i.e., if size = maxsize │ │ │ │ │ - 1, then the size of the vector is doubled if possible. If the storage cannot grow, i.e., if the │ │ │ │ │ @@ -164,15 +164,15 @@ │ │ │ │ │ the program exits. │ │ │ │ │ 7. int IV_sizeOf ( IV *iv ) ; │ │ │ │ │ This method returns the number of bytes taken by the object. │ │ │ │ │ Error checking: If iv is NULL an error message is printed and the program exits. │ │ │ │ │ 8. void IV_filterKeep ( IV *iv, int tags[], int keepTag ) ; │ │ │ │ │ This method examines the entries in the vector. Let k be entry i in the vector. If tags[k] != │ │ │ │ │ keepTag, the entry is moved to the end of the vector, otherwise it is moved to the beginning │ │ │ │ │ - 6 IV : DRAFT October 18, 2025 │ │ │ │ │ + 6 IV : DRAFT October 28, 2025 │ │ │ │ │ of the vector. The size of the vector is reset to be the number of tagged entries that are now │ │ │ │ │ in the leading locations. │ │ │ │ │ Error checking: If iv of tags is NULL an error message is printed and the program exits. │ │ │ │ │ 9. void IV_filterPurge ( IV *iv, int tags[], int purgeTag ) ; │ │ │ │ │ This method examines the entries in the vector. Let k be entry i in the vector. If tags[k] == │ │ │ │ │ purgeTag, the entry is moved to the end of the vector, otherwise it is moved to the beginning │ │ │ │ │ of the vector. The size of the vector is reset to be the number of untagged entries that are │ │ │ │ │ @@ -201,15 +201,15 @@ │ │ │ │ │ Error checking: If iv is NULL or if loc is out of range, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 14. int IV_decrement ( IV *iv, int loc ) ; │ │ │ │ │ This method decrements the loc’th location of the iv object by one and returns the new │ │ │ │ │ value. │ │ │ │ │ Error checking: If iv is NULL or if loc is out of range, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - IV : DRAFT October 18, 2025 7 │ │ │ │ │ + IV : DRAFT October 28, 2025 7 │ │ │ │ │ 15. int IV_findValue ( IV *iv, int value ) ; │ │ │ │ │ This method looks for value in its entries. If value is present, the first location is returned, │ │ │ │ │ otherwise -1 is returned. The cost is linear in the number of entries. │ │ │ │ │ Error checking: If iv is NULL, an error message is printed and the program exits. │ │ │ │ │ 16. int IV_findValueAscending ( IV *iv, int value ) ; │ │ │ │ │ Thismethodlooksforvalueinitsentries. Ifvalueispresent, alocation isreturned, otherwise │ │ │ │ │ -1 is returned. This method assumes that the entries are sorted in ascending order. The cost │ │ │ │ │ @@ -238,15 +238,15 @@ │ │ │ │ │ is size, followed by the size entries found in vec[]. │ │ │ │ │ 1. int IV_readFromFile ( IV *iv, char *fn ) ; │ │ │ │ │ This method reads an IV object from a formatted file. It tries to open the file and if it is │ │ │ │ │ successful, it then calls IV readFromFormattedFile() or IV readFromBinaryFile(), closes │ │ │ │ │ the file and returns the value returned from the called routine. │ │ │ │ │ Error checking: If iv or fn are NULL, or if fn is not of the form *.ivf (for a formatted file) │ │ │ │ │ or *.ivb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ - 8 IV : DRAFT October 18, 2025 │ │ │ │ │ + 8 IV : DRAFT October 28, 2025 │ │ │ │ │ 2. int IV_readFromFormattedFile ( IV *iv, FILE *fp ) ; │ │ │ │ │ This method reads in an IV object from a formatted file. If there are no errors in reading the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If iv or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 3. int IV_readFromBinaryFile ( IV *iv, FILE *fp ) ; │ │ │ │ │ This method reads in an IV object from a binary file. If there are no errors in reading the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ @@ -274,15 +274,15 @@ │ │ │ │ │ This method writes the header and statistics to a file. The value 1 is returned. │ │ │ │ │ Error checking: If iv or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 9. int IV_fp80 ( IV *iv, FILE *fp, int column, int *pierr ) ; │ │ │ │ │ This method is just a wrapper around the IVfp80() method for an int method. The entries │ │ │ │ │ in the vector are found on lines with eighty columns and are separated by a whitespace. The │ │ │ │ │ value 1 is returned. │ │ │ │ │ Error checking: If iv or fp or pierr are NULL, an error message is printed and zero is returned. │ │ │ │ │ - IV : DRAFT October 18, 2025 9 │ │ │ │ │ + IV : DRAFT October 28, 2025 9 │ │ │ │ │ 10. int IV_writeForMatlab ( IV *iv, char *name, FILE *fp ) ; │ │ │ │ │ This method writes the entries of the vector to a file suitable to be read by Matlab. The │ │ │ │ │ character string name is the name of the vector, e.g, if name = "A", then we have lines of the │ │ │ │ │ form │ │ │ │ │ A(1) = 32 ; │ │ │ │ │ A(2) = -433 ; │ │ │ │ │ ... │ │ ├── ./usr/share/doc/spooles-doc/IVL.ps.gz │ │ │ ├── IVL.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o IVL.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1855,15 +1855,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2057,81 +2056,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3820,15 +3814,15 @@ │ │ │ │ 62 56 1[51 62 50 1[54 11[86 5[84 1[106 67 2[42 6[80 10[56 │ │ │ │ 56 56 56 56 56 56 2[31 46[{}32 99.6264 /CMBX12 rf /Fb │ │ │ │ 169[62 9[62 2[62 73[{}3 119.552 /CMTT12 rf /Fc 152[45 │ │ │ │ 45 99[71 2[{}3 90.9091 /CMSY10 rf /Fd 137[42 49 30 37 │ │ │ │ 38 1[46 46 51 1[23 42 1[28 46 42 1[42 46 42 1[46 12[65 │ │ │ │ 1[66 11[59 62 69 2[68 6[28 58[{}24 90.9091 /CMTI10 rf │ │ │ │ /Fe 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -3945,15 +3939,15 @@ │ │ │ │ Fi(IVL)e Fj(ob)5 b(ject)32 b(is)e(free'd.)227 5407 y(The)g(storage)i │ │ │ │ (managemen)m(t)g(is)e(handled)g(b)m(y)g Fi(IVL)p 1972 │ │ │ │ 5407 V 34 w(setList\(\))d Fj(and)j Fi(IVL)p 2786 5407 │ │ │ │ V 34 w(setPointerToList\(\))p Fj(.)1927 5656 y(1)p eop │ │ │ │ end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 136 100 1159 4 v │ │ │ │ -1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 137 399 a Ff(\210)45 b Fi(int)i(maxnlist)28 │ │ │ │ b Fj(:)41 b(maxim)m(um)30 b(n)m(um)m(b)s(er)f(of)i(lists.)227 │ │ │ │ 543 y Fi(int)47 b(nlist)29 b Fj(:)41 b(n)m(um)m(b)s(er)29 │ │ │ │ b(of)h(lists.)227 688 y(W)-8 b(e)33 b(ma)m(y)g(not)f(kno)m(w)g(ho)m(w)g │ │ │ │ (man)m(y)g(lists)g(w)m(e)h(will)f(need)g(for)f(the)h(ob)5 │ │ │ │ b(ject)33 b(|)f Fi(maxnlist)d Fj(is)j(the)h(dimension)227 │ │ │ │ 801 y(of)j(the)f Fi(sizes[])e Fj(and)i Fi(p)p 1102 801 │ │ │ │ @@ -4022,15 +4016,15 @@ │ │ │ │ Fj(,)e(and)h Fi(sizes)p Fj(,)f Fi(p)p 2126 5262 V 34 │ │ │ │ w(vec)h Fj(and)g Fi(chunk)e Fj(are)j Fi(NULL)p Fj(.)227 │ │ │ │ 5407 y Fd(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 │ │ │ │ b Fi(ivl)g Fj(is)g Fi(NULL)p Fj(,)g(an)g(error)g(message)h(is)g(prin)m │ │ │ │ (ted)f(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1159 4 v 1340 100 a Fi(IVL)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fj(3)111 399 y(3.)46 b Fi(void)h(IVL_clearData)d(\()k │ │ │ │ (IVL)e(*ivl)h(\))h(;)227 566 y Fj(This)32 b(metho)s(d)f(clears)i(an)m │ │ │ │ (y)g(data)f(allo)s(cated)j(b)m(y)d(this)g(ob)5 b(ject)33 │ │ │ │ b(and)e(then)h(sets)h(the)f(default)g(\014elds)g(with)g(a)227 │ │ │ │ 679 y(call)j(to)g Fi(IVL)p 662 679 29 4 v 33 w(setDefaultFields\(\))p │ │ │ │ Fj(.)46 b(An)m(y)34 b(storage)i(held)d(b)m(y)h(the)g │ │ │ │ Fi(Ichunk)e Fj(structures)h(is)h(free'd,)h(and)227 792 │ │ │ │ @@ -4080,15 +4074,15 @@ │ │ │ │ (storage)h(incremen)m(t)f(to)g Fi(incr)p Fj(.)227 5294 │ │ │ │ y Fd(Err)-5 b(or)27 b(che)-5 b(cking:)36 b Fj(If)21 b │ │ │ │ Fi(ivl)g Fj(is)i Fi(NULL)e Fj(or)h Fi(incr)f Fj(is)h(negativ)m(e,)k(an) │ │ │ │ c(error)f(message)j(is)e(prin)m(ted)f(and)h(the)g(program)227 │ │ │ │ 5407 y(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 136 100 1159 4 v │ │ │ │ -1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 0 399 a Fa(1.2.3)112 b(Initialization)39 b(and)f(resizing)g │ │ │ │ (metho)s(ds)111 606 y Fj(1.)46 b Fi(void)h(IVL_init1)e(\()j(IVL)f │ │ │ │ (*ivl,)f(int)h(type,)f(int)h(maxnlist)f(\))h(;)227 767 │ │ │ │ y Fj(This)34 b(metho)s(d)g(is)g(used)g(when)f(only)i(the)f(n)m(um)m(b)s │ │ │ │ (er)f(of)i(lists)g(is)f(kno)m(wn.)52 b(An)m(y)35 b(previous)e(data)j │ │ │ │ (is)e(cleared)227 879 y(with)c(a)f(call)i(to)g Fi(IVL)p │ │ │ │ 935 879 29 4 v 33 w(clearData\(\))p Fj(.)37 b(The)30 │ │ │ │ @@ -4169,15 +4163,15 @@ │ │ │ │ b Fi(ivl)h Fj(is)g Fi(NULL)f Fj(or)i(if)f Fi(newmaxnlist)d │ │ │ │ Fj(is)k(negativ)m(e,)i(an)d(error)g(message)h(is)g(prin)m(ted)f(and)227 │ │ │ │ 5198 y(the)j(program)f(exits.)111 5407 y(6.)46 b Fi(void)h │ │ │ │ (IVL_setNlist)d(\()k(IVL)f(*ivl,)f(int)h(newnlist)f(\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1159 4 v 1340 100 a Fi(IVL)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fj(5)227 399 y(This)39 b(metho)s(d)f(is)h(used)g(to)g │ │ │ │ (c)m(hange)i(the)e(n)m(um)m(b)s(er)f(of)h(lists.)68 b(If)38 │ │ │ │ b Fi(newnlist)46 b(>)h(maxnlist)p Fj(,)40 b(storage)g(for)227 │ │ │ │ 511 y(the)h(lists)g(is)f(increased)g(via)h(a)g(call)g(to)g(the)g │ │ │ │ Fi(IVL)p 1956 511 29 4 v 33 w(setMaxnlist\(\))c Fj(metho)s(d.)70 │ │ │ │ b(Then)39 b Fi(nlist)g Fj(is)h(set)h(to)227 624 y Fi(newnlist)p │ │ │ │ Fj(.)227 852 y Fd(Err)-5 b(or)39 b(che)-5 b(cking:)50 │ │ │ │ @@ -4222,15 +4216,15 @@ │ │ │ │ (ossibly\))i(p)s(oin)m(ter)f(to)h(a)g(list)f(of)h(en)m(tries.)68 │ │ │ │ b(The)39 b(b)s(eha)m(vior)g(of)h(the)227 5407 y(metho)s(d)30 │ │ │ │ b(dep)s(ends)f(on)h(the)g(t)m(yp)s(e)h(of)g(the)f Fi(ivl)g │ │ │ │ Fj(ob)5 b(ject.)41 b(Here)31 b(is)f(the)h(\015o)m(w)f(c)m(hart:)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fj(6)p 136 100 1159 4 v │ │ │ │ -1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 605 311 2918 4 v 605 2506 4 2196 v 663 414 │ │ │ │ a Fj(if)g Fi(ilist)46 b(>=)h(maxnlist)28 b Fj(then)898 │ │ │ │ 527 y(the)j(n)m(um)m(b)s(er)e(of)h(lists)h(is)g(increased)f(via)h(a)g │ │ │ │ (call)h(to)f Fi(IVL)p 2816 527 29 4 v 33 w(setMaxnlist\(\))663 │ │ │ │ 640 y Fj(endif)663 753 y(if)g Fi(ilist)46 b(>=)h(nlist)29 │ │ │ │ b Fj(then)898 866 y Fi(nlist)g Fj(is)i(increased)663 │ │ │ │ 979 y(endif)663 1092 y(if)g Fi(isize)46 b(=)i(0)30 b │ │ │ │ @@ -4275,15 +4269,15 @@ │ │ │ │ Fj(These)30 b(metho)s(ds)g(return)f(some)i(simple)f(information)h(ab)s │ │ │ │ (out)f(the)h(ob)5 b(ject.)227 5407 y Fd(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fj(If)30 b Fi(ivl)g Fj(is)g Fi(NULL)f │ │ │ │ Fj(then)i(an)f(error)g(message)h(is)g(prin)m(ted)f(and)f(the)i(program) │ │ │ │ f(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1159 4 v 1340 100 a Fi(IVL)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fj(7)111 399 y(3.)46 b Fi(int)h(IVL_sortUp)e(\()j │ │ │ │ (IVL)f(*ivl)f(\))i(;)227 559 y Fj(This)30 b(metho)s(d)g(sorts)g(eac)m │ │ │ │ (h)i(list)f(in)m(to)g(ascending)g(order.)227 720 y Fd(Err)-5 │ │ │ │ b(or)28 b(che)-5 b(cking:)37 b Fj(If)23 b Fi(ivl)g Fj(is)g │ │ │ │ Fi(NULL)g Fj(or)g Fi(nlist)46 b(<)i(0)23 b Fj(then)g(an)h(error)f │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(the)h(program)227 │ │ │ │ 833 y(exits.)111 1042 y(4.)46 b Fi(int)h(*)h(IVL_equivMap1)c(\()j(IVL)g │ │ │ │ @@ -4353,15 +4347,15 @@ │ │ │ │ Fi(IVL)f Fj(ob)5 b(ject)31 b(that)g(con)m(tains)h(en)m(tries)f(for)f │ │ │ │ (the)h(uncompressed)e(graph.)227 5407 y Fd(Err)-5 b(or)30 │ │ │ │ b(che)-5 b(cking:)38 b Fj(If)26 b Fi(ivl)f Fj(or)h Fi(eqmapIV)e │ │ │ │ Fj(is)i Fi(NULL)p Fj(,)f(an)h(error)f(message)i(is)f(prin)m(ted)g(and)f │ │ │ │ (the)h(program)g(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fj(8)p 136 100 1159 4 v │ │ │ │ -1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1340 w Fi(IVL)30 b Fe(:)g Fd(DRAFT)h Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2742 100 V 0 399 a Fa(1.2.6)112 b(Miscellaneous)40 b(metho)s(ds)111 │ │ │ │ 598 y Fj(1.)46 b Fi(IVL)h(*)h(IVL_make9P)d(\()i(int)g(n1,)g(int)g(n2,)g │ │ │ │ (int)g(ncomp)f(\))h(;)227 752 y Fj(This)35 b(metho)s(d)g(returns)f(an)h │ │ │ │ Fi(IVL)f Fj(ob)5 b(ject)36 b(that)g(con)m(tains)h(the)e(full)g │ │ │ │ (adjacency)i(structure)d(for)h(a)h(9-p)s(oin)m(t)227 │ │ │ │ 865 y(op)s(erator)31 b(on)f(a)h Fi(n1)20 b Fc(\002)g │ │ │ │ Fi(n2)29 b Fj(grid)h(with)g Fi(ncomp)f Fj(comp)s(onen)m(ts)i(at)g(eac)m │ │ │ │ @@ -4427,15 +4421,15 @@ │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ Fi(fscanf)p Fj(,)f(zero)i(is)g(returned.)227 5407 y Fd(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 b Fi(ivl)g Fj(or)g │ │ │ │ Fi(fp)g Fj(are)h Fi(NULL)e Fj(an)h(error)g(message)i(is)e(prin)m(ted)g │ │ │ │ (and)g(zero)h(is)f(returned.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1159 4 v 1340 100 a Fi(IVL)29 │ │ │ │ -b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2695 100 V 1159 w Fj(9)111 399 y(3.)46 b Fi(int)h │ │ │ │ (IVL_readFromBinaryFile)42 b(\()47 b(IVL)g(*ivl,)g(FILE)f(*fp)h(\))h(;) │ │ │ │ 227 556 y Fj(This)25 b(metho)s(d)g(reads)g(an)g Fi(IVL)g │ │ │ │ Fj(ob)5 b(ject)26 b(from)f(a)h(binary)f(\014le.)39 b(If)25 │ │ │ │ b(there)h(are)f(no)h(errors)f(in)g(reading)g(the)h(data,)227 │ │ │ │ 669 y(the)31 b(v)-5 b(alue)31 b Fi(1)f Fj(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ @@ -4504,15 +4498,15 @@ │ │ │ │ (the)f(ob)5 b(ject)29 b(to)f Fi(outFile)337 5294 y Ff(\210)45 │ │ │ │ b Fj(The)28 b Fi(msglvl)f Fj(parameter)i(determines)g(the)g(amoun)m(t)g │ │ │ │ (of)f(output)h(|)f(taking)i Fi(msglvl)46 b(>=)h(3)28 │ │ │ │ b Fj(means)427 5407 y(the)j Fi(IVL)e Fj(ob)5 b(ject)32 │ │ │ │ b(is)e(written)g(to)i(the)e(message)i(\014le.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fj(10)p 182 100 1136 4 │ │ │ │ -v 1318 w Fi(IVL)29 b Fe(:)i Fd(DRAFT)f Fe(Octob)s(er)h(18,)g(2025)p │ │ │ │ +v 1318 w Fi(IVL)29 b Fe(:)i Fd(DRAFT)f Fe(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2765 100 V 337 399 a Ff(\210)45 b Fj(The)33 b Fi(msgFile)e │ │ │ │ Fj(parameter)j(determines)f(the)h(message)g(\014le)f(|)h(if)f │ │ │ │ Fi(msgFile)e Fj(is)i Fi(stdout)p Fj(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Fd(stdout)p Fj(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fd(app)-5 b(end)28 │ │ │ │ b Fj(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 770 y Ff(\210)45 b Fj(The)25 b Fi(inFile)e │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ Each list is allocated separately using the IVinit() function. When the IVL object is │ │ │ │ │ free’d, each list is free’d separately using the IVfree() function. │ │ │ │ │ – IVL UNKNOWN │ │ │ │ │ This storage mode is available for the cases where storage for a list is aliased to another │ │ │ │ │ location. Absolutely no free’ing of data is done when the IVL object is free’d. │ │ │ │ │ The storage management is handled by IVL setList() and IVL setPointerToList(). │ │ │ │ │ 1 │ │ │ │ │ - 2 IVL : DRAFT October 18, 2025 │ │ │ │ │ + 2 IVL : DRAFT October 28, 2025 │ │ │ │ │ • int maxnlist : maximum number of lists. │ │ │ │ │ int nlist : number of lists. │ │ │ │ │ We may not know how many lists we will need for the object — maxnlist is the dimension │ │ │ │ │ of the sizes[] and p vec[] arrays and nlist is the present number of active lists. When │ │ │ │ │ we initialize the object using one of the IVL init{1,2,3}() methods, we set nlist equal to │ │ │ │ │ maxnlist. We resize the object using IVL setMaxnlist(). │ │ │ │ │ • int tsize : total number of list entries. │ │ │ │ │ @@ -57,15 +57,15 @@ │ │ │ │ │ 1. IVL * IVL_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the IVL structure and then sets the default fields by │ │ │ │ │ a call to IVL setDefaultFields(). │ │ │ │ │ 2. void IVL_setDefaultFields ( IVL *ivl ) ; │ │ │ │ │ This method sets the default fields of the object — type = IVL NOTYPE, maxnlist, nlist │ │ │ │ │ and tsize are zero, incr is 1024, and sizes, p vec and chunk are NULL. │ │ │ │ │ Error checking: If ivl is NULL, an error message is printed and the program exits. │ │ │ │ │ - IVL : DRAFT October 18, 2025 3 │ │ │ │ │ + IVL : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void IVL_clearData ( IVL *ivl ) ; │ │ │ │ │ This method clears any data allocated by this object and then sets the default fields with a │ │ │ │ │ call to IVL setDefaultFields(). Any storage held by the Ichunk structures is free’d, and │ │ │ │ │ if sizes or p vec are not NULL, they are free’d. │ │ │ │ │ Error checking: If ivl is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void IVL_free ( IVL *ivl ) ; │ │ │ │ │ This method releases any storage by a call to IVL clearData() then free’s the storage for │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ 5. int IVL_incr ( IVL *ivl ) ; │ │ │ │ │ This method returns incr, the storage increment. │ │ │ │ │ Error checking: If ivl is NULL, an error message is printed and the program exits. │ │ │ │ │ 6. int IVL_setincr ( IVL *ivl, int incr ) ; │ │ │ │ │ This method sets the storage increment to incr. │ │ │ │ │ Error checking: If ivl is NULL or incr is negative, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 4 IVL : DRAFT October 18, 2025 │ │ │ │ │ + 4 IVL : DRAFT October 28, 2025 │ │ │ │ │ 1.2.3 Initialization and resizing methods │ │ │ │ │ 1. void IVL_init1 ( IVL *ivl, int type, int maxnlist ) ; │ │ │ │ │ This method is used when only the number of lists is known. Any previous data is cleared │ │ │ │ │ with a call to IVL clearData(). The type field is set. If maxnlist > 0, storage is allocated │ │ │ │ │ for the sizes[] and p vec[] arrays and nlist is set to maxnlist. │ │ │ │ │ Error checking: If ivl is NULL or type is invalid or maxnlist is negative, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ @@ -124,15 +124,15 @@ │ │ │ │ │ newmaxnlist == maxnlist,nothingisdone. Otherwise,newstorageforsizes[]andp vec[] │ │ │ │ │ is allocated, the information for the first nlist lists is copied over, and the old storage │ │ │ │ │ free’d. Note, maxnlist is set to newmaxnlist and nlist is set to the minimum of nlist and │ │ │ │ │ newmaxnlist. │ │ │ │ │ Error checking: If ivl is NULL or if newmaxnlist is negative, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 6. void IVL_setNlist ( IVL *ivl, int newnlist ) ; │ │ │ │ │ - IVL : DRAFT October 18, 2025 5 │ │ │ │ │ + IVL : DRAFT October 28, 2025 5 │ │ │ │ │ This method is used to change the number of lists. If newnlist > maxnlist, storage for │ │ │ │ │ the lists is increased via a call to the IVL setMaxnlist() method. Then nlist is set to │ │ │ │ │ newnlist. │ │ │ │ │ Error checking: If ivl is NULL, or if newnlist is negative, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 1.2.4 List manipulation methods │ │ │ │ │ 1. void IVL_listAndSize ( IVL *ivl, int ilist, int *psize, int **pivec) ; │ │ │ │ │ @@ -151,15 +151,15 @@ │ │ │ │ │ if so an error message is printed and the program exits. In method IVL firstInList(), if │ │ │ │ │ sizes[ilist] > 0 and p vec[ilist] = NULL, an error message is printed and the program │ │ │ │ │ exits. In method IVL nextInList(), if pi is not in the valid range for list ilist, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 3. void IVL_setList ( IVL *ivl, int ilist, int isize, int ivec[] ) ; │ │ │ │ │ This method sets the size and (possibly) pointer to a list of entries. The behavior of the │ │ │ │ │ method depends on the type of the ivl object. Here is the flow chart: │ │ │ │ │ - 6 IVL : DRAFT October 18, 2025 │ │ │ │ │ + 6 IVL : DRAFT October 28, 2025 │ │ │ │ │ if ilist >= maxnlist then │ │ │ │ │ the number of lists is increased via a call to IVL setMaxnlist() │ │ │ │ │ endif │ │ │ │ │ if ilist >= nlist then │ │ │ │ │ nlist is increased │ │ │ │ │ endif │ │ │ │ │ if isize = 0 then │ │ │ │ │ @@ -189,15 +189,15 @@ │ │ │ │ │ Error checking: If ivl is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int IVL_min ( IVL *ivl ) ; │ │ │ │ │ int IVL_max ( IVL *ivl ) ; │ │ │ │ │ int IVL_maxListSize ( IVL *ivl ) ; │ │ │ │ │ int IVL_sum ( IVL *ivl ) ; │ │ │ │ │ These methods return some simple information about the object. │ │ │ │ │ Error checking: If ivl is NULL then an error message is printed and the program exits. │ │ │ │ │ - IVL : DRAFT October 18, 2025 7 │ │ │ │ │ + IVL : DRAFT October 28, 2025 7 │ │ │ │ │ 3. int IVL_sortUp ( IVL *ivl ) ; │ │ │ │ │ This method sorts each list into ascending order. │ │ │ │ │ Error checking: If ivl is NULL or nlist < 0 then an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 4. int * IVL_equivMap1 ( IVL *ivl ) ; │ │ │ │ │ IV * IVL_equivMap2 ( IVL *ivl ) ; │ │ │ │ │ Two lists are equivalent if their contents are identical. These methods are used to find the │ │ │ │ │ @@ -226,15 +226,15 @@ │ │ │ │ │ and the program exits. │ │ │ │ │ 8. IVL * IVL_expand ( IVL *ivl, IV *eqmapIV ) ; │ │ │ │ │ This method was created in support of a symbolic factorization. An IVL object is constructed │ │ │ │ │ using a compressed graph. it must be expanded to reflect the compressed graph. The number │ │ │ │ │ of lists does not change (there is one list per front) but the size of each list may change. so │ │ │ │ │ we create and return a new IVL object that contains entries for the uncompressed graph. │ │ │ │ │ Error checking: If ivl or eqmapIV is NULL, an error message is printed and the program exits. │ │ │ │ │ - 8 IVL : DRAFT October 18, 2025 │ │ │ │ │ + 8 IVL : DRAFT October 28, 2025 │ │ │ │ │ 1.2.6 Miscellaneous methods │ │ │ │ │ 1. IVL * IVL_make9P ( int n1, int n2, int ncomp ) ; │ │ │ │ │ This method returns an IVL object that contains the full adjacency structure for a 9-point │ │ │ │ │ operator on a n1×n2 grid with ncomp components at each grid point. │ │ │ │ │ Error checking: If n1, n2 or ncomp is less than or equal to zero, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 2. IVL * IVL_make13P ( int n1, int n2 ) ; │ │ │ │ │ @@ -261,15 +261,15 @@ │ │ │ │ │ and returns the value returned from the called routine. │ │ │ │ │ Error checking: If ivl or fn are NULL, or if fn is not of the form *.ivlf (for a formatted file) │ │ │ │ │ or *.ivlb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 2. int IVL_readFromFormattedFile ( IVL *ivl, FILE *fp ) ; │ │ │ │ │ This method reads an IVL object from a formatted file. If there are no errors in reading the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If ivl or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - IVL : DRAFT October 18, 2025 9 │ │ │ │ │ + IVL : DRAFT October 28, 2025 9 │ │ │ │ │ 3. int IVL_readFromBinaryFile ( IVL *ivl, FILE *fp ) ; │ │ │ │ │ This method reads an IVL object from a binary file. If there are no errors in reading the data, │ │ │ │ │ the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ Error checking: If ivl or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 4. int IVL_writeToFile ( IVL *ivl, char *fn ) ; │ │ │ │ │ This method writes an IVL object to a file. If the the file can be opened successfully, the │ │ │ │ │ method calls IVL writeFromFormattedFile() or IVL writeFromBinaryFile(), closes the │ │ │ │ │ @@ -293,15 +293,15 @@ │ │ │ │ │ Error checking: If ivl or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 1.3 Driver programs for the IVL object │ │ │ │ │ This section contains brief descriptions of six driver programs. │ │ │ │ │ 1. testIO msglvl msgFile inFile outFile │ │ │ │ │ This driver program reads in a IVL object from inFile and writes out the object to outFile │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the IVL object is written to the message file. │ │ │ │ │ - 10 IVL : DRAFT October 18, 2025 │ │ │ │ │ + 10 IVL : DRAFT October 28, 2025 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The inFileparameter is the input file for the IVL object. It must be of the form *.ivlf │ │ │ │ │ or *.ivlb. The IVL object is read from the file via the IVL readFromFile() method. │ │ │ │ │ • The outFile parameter is the output file for the IVL object. It must be of the form │ │ │ │ │ *.ivlf or *.ivlb. The IVL object is written to the file via the IVL writeToFile() │ │ ├── ./usr/share/doc/spooles-doc/Ideq.ps.gz │ │ │ ├── Ideq.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Ideq.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1255,15 +1255,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1457,81 +1456,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3212,15 +3206,15 @@ │ │ │ │ {restore}if │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 195[71 60[{}1 90.9091 /CMMI10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 46 2[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}24 99.6264 /CMBX12 │ │ │ │ rf /Fc 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 │ │ │ │ -2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fd 142[62 │ │ │ │ +2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fd 142[62 │ │ │ │ 11[62 62 26[62 73[{}4 119.552 /CMTT12 rf │ │ │ │ %DVIPSBitmapFont: Fe tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3321,15 +3315,15 @@ │ │ │ │ y Ff(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g │ │ │ │ Fd(Ideq)e Ff(metho)t(ds)0 5294 y Fi(This)25 b(section)h(con)m(tains)h │ │ │ │ (brief)e(descriptions)h(including)f(protot)m(yp)s(es)h(of)f(all)i │ │ │ │ (metho)s(ds)d(that)j(b)s(elong)e(to)h(the)g Fh(Ideq)0 │ │ │ │ 5407 y Fi(ob)5 b(ject.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fi(2)p 136 100 1130 4 v │ │ │ │ -1311 w Fh(Ideq)30 b Fc(:)40 b Fg(DRAFT)30 b Fc(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fh(Ideq)30 b Fc(:)40 b Fg(DRAFT)30 b Fc(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Fb(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 616 y Fi(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 729 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 1021 y(1.)46 b Fh(Ideq)h(*)g │ │ │ │ (Ideq_new)f(\()h(void)g(\))g(;)227 1194 y Fi(This)32 │ │ │ │ b(metho)s(d)f(simply)h(allo)s(cates)i(storage)g(for)e(the)g │ │ │ │ @@ -3386,15 +3380,15 @@ │ │ │ │ b(metho)s(d)f(then)i(returns)e Fh(1)p Fi(.)227 5294 y │ │ │ │ Fg(Err)-5 b(or)28 b(che)-5 b(cking:)37 b Fi(If)23 b Fh(deq)g │ │ │ │ Fi(is)g Fh(NULL)p Fi(,)g(or)h(if)f Fh(newsize)h Fa(<)h │ │ │ │ Fi(0,)g(an)f(error)f(message)i(is)e(prin)m(ted)g(and)g(the)h(program) │ │ │ │ 227 5407 y(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1130 4 v 1311 100 a Fh(Ideq)29 │ │ │ │ -b Fc(:)41 b Fg(DRAFT)121 b Fc(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fc(:)41 b Fg(DRAFT)121 b Fc(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fi(3)0 399 y Fb(1.2.3)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)111 603 y Fi(1.)46 b Fh(void)h(Ideq_clear)e(\()i(Ideq)g │ │ │ │ (*deq)g(\))g(;)227 762 y Fi(This)30 b(metho)s(d)g(clears)h(the)g │ │ │ │ (dequeue.)40 b(The)30 b Fh(head)f Fi(and)h Fh(tail)f │ │ │ │ Fi(\014elds)h(are)h(set)f(to)i Fh(-1)p Fi(.)227 921 y │ │ │ │ Fg(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fi(If)30 b Fh(deq)g │ │ │ │ Fi(is)g Fh(NULL)p Fi(,)g(an)g(error)g(message)h(is)g(prin)m(ted)f(and)g │ │ │ │ @@ -3465,15 +3459,15 @@ │ │ │ │ y(Otherwise,)f(the)f(item)h(is)g(placed)f(in)m(to)i(the)e(list)h(and)f │ │ │ │ Fh(1)g Fi(is)h(returned.)227 5407 y Fg(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fi(If)30 b Fh(deq)g Fi(is)g Fh(NULL)p │ │ │ │ Fi(,)g(an)g(error)g(message)h(is)g(prin)m(ted)f(and)g(the)g(program)g │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fi(4)p 136 100 1130 4 v │ │ │ │ -1311 w Fh(Ideq)30 b Fc(:)40 b Fg(DRAFT)30 b Fc(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fh(Ideq)30 b Fc(:)40 b Fg(DRAFT)30 b Fc(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Fb(1.2.4)112 b(IO)38 b(metho)s(ds)111 │ │ │ │ 595 y Fi(1.)46 b Fh(void)h(Ideq_writeForHumanEye)42 b(\()47 │ │ │ │ b(Ideq)g(*deq)g(\))g(;)227 745 y Fi(This)31 b(metho)s(d)g(write)h(the)f │ │ │ │ (state)i(of)f(the)f(ob)5 b(ject,)33 b(\(the)f(size,)h(head)f(and)e │ │ │ │ (tail\))k(and)c(the)i(list)g(of)g(en)m(tries)g(to)227 │ │ │ │ 858 y(a)f(\014le.)227 1008 y Fg(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fi(If)30 b Fh(deq)g Fi(or)g Fh(fp)g Fi(is)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ • IV iv : an IV object to hold the list vector. │ │ │ │ │ A correctly initialized and nontrivial Ideq object will have maxsize > 0. When the dequeue is │ │ │ │ │ empty, head = tail = -1. │ │ │ │ │ 1.2 Prototypes and descriptions of Ideq methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the Ideq │ │ │ │ │ object. │ │ │ │ │ 1 │ │ │ │ │ - 2 Ideq : DRAFT October 18, 2025 │ │ │ │ │ + 2 Ideq : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Ideq * Ideq_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Ideq structure and then sets the default fields │ │ │ │ │ by a call to Ideq setDefaultFields(). │ │ │ │ │ 2. void Ideq_setDefaultFields ( Ideq *deq ) ; │ │ │ │ │ @@ -47,15 +47,15 @@ │ │ │ │ │ initializer. │ │ │ │ │ If the present size of the list (the number of entries between head and tail inclusive) is larger │ │ │ │ │ than newsize, the method returns -1. Otherwise, a new int vector is allocated and filled │ │ │ │ │ with the entries in the list. The old int vector is free’d, the new vector is spliced into the IV │ │ │ │ │ object, and the head, tail and maxsize fields are set. The method then returns 1. │ │ │ │ │ Error checking: If deq is NULL, or if newsize < 0, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - Ideq : DRAFT October 18, 2025 3 │ │ │ │ │ + Ideq : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. void Ideq_clear ( Ideq *deq ) ; │ │ │ │ │ This method clears the dequeue. The head and tail fields are set to -1. │ │ │ │ │ Error checking: If deq is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int Ideq_head ( Ideq *deq ) ; │ │ │ │ │ This method returns the value at the head of the list without removing that value. If head │ │ │ │ │ == -1 then -1 is returned. Note, the list may be nonempty and the first value may be -1, so │ │ │ │ │ @@ -82,15 +82,15 @@ │ │ │ │ │ may signal an empty list or a terminating element. │ │ │ │ │ Error checking: If deq is NULL, an error message is printed and the program exits. │ │ │ │ │ 7. int Ideq_insertAtTail ( Ideq *deq, int val ) ; │ │ │ │ │ This method inserts a value val into the list at the tail of the list. If there is no room in │ │ │ │ │ the list, -1 is returned and the dequeue must be resized using the Ideq resize() method. │ │ │ │ │ Otherwise, the item is placed into the list and 1 is returned. │ │ │ │ │ Error checking: If deq is NULL, an error message is printed and the program exits. │ │ │ │ │ - 4 Ideq : DRAFT October 18, 2025 │ │ │ │ │ + 4 Ideq : DRAFT October 28, 2025 │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ 1. void Ideq_writeForHumanEye ( Ideq *deq ) ; │ │ │ │ │ This method write the state of the object, (the size, head and tail) and the list of entries to │ │ │ │ │ a file. │ │ │ │ │ Error checking: If deq or fp is NULL, an error message is printed and the program exits. │ │ │ │ │ Index │ │ │ │ │ Ideq clear(), 3 │ │ ├── ./usr/share/doc/spooles-doc/InpMtx.ps.gz │ │ │ ├── InpMtx.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o InpMtx.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2762,15 +2762,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2964,81 +2963,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5607,16 +5601,16 @@ │ │ │ │ 56 56 56 56 56 56 56 56 56 1[31 37 31 44[{}41 99.6264 │ │ │ │ /CMBX12 rf /Ff 135[62 3[62 3[62 1[62 32[62 3[62 73[{}6 │ │ │ │ 119.552 /CMTT12 rf /Fg 201[0 32[65 65 17[65 1[65{}5 83.022 │ │ │ │ /CMSY10 rf /Fh 134[71 2[71 75 52 53 55 1[75 67 75 112 │ │ │ │ 2[41 37 75 67 41 61 75 60 75 65 13[75 2[92 11[103 16[67 │ │ │ │ 67 67 2[37 46[{}27 119.552 /CMBX12 rf /Fi 132[48 38[66 │ │ │ │ 4[72 75 8[63 10[27 58[{}6 83.022 /CMBX10 rf /Fj 139[32 │ │ │ │ -1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 │ │ │ │ -42 3[23 44[{}14 83.022 /CMSL10 rf /Fk 148[35 27 23 20[39 │ │ │ │ +1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 │ │ │ │ +3[23 44[{}13 83.022 /CMSL10 rf /Fk 148[35 27 23 20[39 │ │ │ │ 11[54 12[20 59[{}6 58.1154 /CMMI7 rf /Fl 134[41 47 1[40 │ │ │ │ 10[43 34 29 7[44 7[48 69 21[63 62 2[65 1[65 23 46[47 │ │ │ │ 53 11[{}16 83.022 /CMMI10 rf /Fm 137[38 45 28 34 35 1[42 │ │ │ │ 42 47 1[21 38 1[25 42 38 1[38 42 38 1[42 12[59 1[61 11[54 │ │ │ │ 56 63 2[62 6[25 12[30 45[{}25 83.022 /CMTI10 rf │ │ │ │ %DVIPSBitmapFont: Fn tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ @@ -5755,15 +5749,15 @@ │ │ │ │ Fp(.)101 5308 y(5.)42 b(Create)18 b(an)h Fo(IVL)g Fp(ob)5 │ │ │ │ b(ject)19 b(that)h(con)n(tains)e(the)i(full)h(adjacency)d(of)i │ │ │ │ Fl(A)r Fp(+)r Fl(A)2384 5277 y Fk(T)2456 5308 y Fp(b)n(y)g(calling)e │ │ │ │ (the)i Fo(InpMtx)p 3222 5308 V 29 w(fullAdjacency\(\))208 │ │ │ │ 5407 y Fp(metho)r(d.)1929 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fp(2)p 125 100 1157 4 v │ │ │ │ -1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(18,)h │ │ │ │ +1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(28,)h │ │ │ │ (2025)p 2743 100 V 101 390 a Fp(6.)42 b(Create)26 b(a)h │ │ │ │ Fo(Graph)f Fp(ob)5 b(ject)27 b(using)h(the)g Fo(Graph)p │ │ │ │ 1627 390 27 4 v 29 w(init2\(\))d Fp(metho)r(d)j(and)f(the)h │ │ │ │ Fo(IVL)f Fp(ob)5 b(ject)27 b(as)g(an)g(input)i(argumen)n(t.)0 │ │ │ │ 591 y(A)i(similar)e(functionalit)n(y)i(exists)f(for)f(creating)h(a)f │ │ │ │ Fo(Graph)g Fp(ob)5 b(ject)30 b(from)g(a)g(linear)f(com)n(bination)h(of) │ │ │ │ g(t)n(w)n(o)g Fo(InpMtx)e Fp(ob)5 b(jects)0 691 y(that)33 │ │ │ │ @@ -5855,15 +5849,15 @@ │ │ │ │ b(alues.)301 5308 y Fi({)41 b Fo(INPMTX)p 659 5308 V │ │ │ │ 29 w(SORTED)25 b Fp(|)j(data)f(is)h(sorted)f(and)g(distinct)i(triples,) │ │ │ │ e(the)h(primary)f(k)n(ey)g(is)h(the)g(\014rst)f(co)r(ordinate,)g(the) │ │ │ │ 390 5407 y(secondary)f(k)n(ey)h(is)g(the)h(second)f(co)r(ordinate.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1157 4 v 1323 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2704 100 V 1157 w Fp(3)301 390 y Fi({)41 b Fo(INPMTX)p │ │ │ │ 659 390 27 4 v 29 w(BY)p 776 390 V 31 w(VECTORS)32 b │ │ │ │ Fp(|)i(data)h(is)f(sorted)g(and)h(distinct)g(v)n(ectors.)57 │ │ │ │ b(All)35 b(en)n(tries)f(in)h(a)f(v)n(ector)f(share)h(some-)390 │ │ │ │ 490 y(thing)41 b(in)g(common.)75 b(F)-7 b(or)40 b(example,)k(when)d │ │ │ │ Fo(coordType)c Fp(is)j Fo(INPMTX)p 2688 490 V 29 w(BY)p │ │ │ │ 2805 490 V 31 w(ROWS)p Fp(,)f Fo(INPMTX)p 3338 490 V │ │ │ │ @@ -5961,15 +5955,15 @@ │ │ │ │ Fo(0)h Fp(other-)208 5242 y(wise.)125 5407 y Fn(\210)42 │ │ │ │ b Fo(INPMTX)p 477 5407 V 28 w(IS)p 593 5407 V 31 w(SORTED\(mtx\))23 │ │ │ │ b Fp(returns)k Fo(1)g Fp(if)h(the)g(en)n(tries)f(are)g(stored)g(as)g │ │ │ │ (sorted)f(pairs)h(or)g(triples,)g(and)h Fo(0)f Fp(otherwise.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fp(4)p 125 100 1157 4 v │ │ │ │ -1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(18,)h │ │ │ │ +1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(28,)h │ │ │ │ (2025)p 2743 100 V 125 390 a Fn(\210)42 b Fo(INPMTX)p │ │ │ │ 477 390 27 4 v 28 w(IS)p 593 390 V 31 w(BY)p 712 390 │ │ │ │ V 31 w(VECTORS\(mtx\))22 b Fp(returns)27 b Fo(1)g Fp(if)i(the)f(en)n │ │ │ │ (tries)e(are)h(stored)g(as)g(v)n(ectors,)f(and)h Fo(0)g │ │ │ │ Fp(otherwise.)125 560 y Fn(\210)42 b Fo(INPMTX)p 477 │ │ │ │ 560 V 28 w(IS)p 593 560 V 31 w(INDICES)p 932 560 V 28 │ │ │ │ w(ONLY\(mtx\))24 b Fp(returns)j Fo(1)h Fp(if)g(the)g(en)n(tries)f(are)f │ │ │ │ @@ -6037,15 +6031,15 @@ │ │ │ │ 776 5137 V 31 w(COLUMNS)24 b Fp({)k(storage)d(b)n(y)j(column)f(triples) │ │ │ │ 307 5272 y Fn(\210)42 b Fo(INPMTX)p 659 5272 V 29 w(BY)p │ │ │ │ 776 5272 V 31 w(CHEVRONS)24 b Fp({)j(storage)f(b)n(y)h(c)n(hevron)f │ │ │ │ (triples)307 5407 y Fn(\210)42 b Fo(INPMTX)p 659 5407 │ │ │ │ V 29 w(CUSTOM)25 b Fp({)i(custom)h(t)n(yp)r(e)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1157 4 v 1323 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2704 100 V 1157 w Fp(5)208 390 y Fm(Err)l(or)j(che)l(cking:)38 │ │ │ │ b Fp(If)28 b Fo(inpmtx)e Fp(is)h Fo(NULL)p Fp(,)f(an)i(error)d(message) │ │ │ │ h(is)i(prin)n(ted)f(and)h(the)g(program)d(exits.)101 │ │ │ │ 559 y(2.)42 b Fo(int)g(InpMtx_storageMo)o(de)37 b(\()43 │ │ │ │ b(InpMtx)e(*inpmtx)g(\))i(;)208 693 y Fp(This)27 b(metho)r(d)h(returns) │ │ │ │ f(the)h(storage)e(mo)r(de.)307 862 y Fn(\210)42 b Fo(INPMTX)p │ │ │ │ 659 862 27 4 v 29 w(NO)p 776 862 V 31 w(MODE)26 b Fp({)h(none)g(sp)r │ │ │ │ @@ -6105,15 +6099,15 @@ │ │ │ │ (*inpmtx)g(\))i(;)208 5273 y Fp(This)27 b(metho)r(d)h(returns)f(the)h │ │ │ │ (base)f(address)f(of)i(the)g Fo(ivec2[])d Fp(v)n(ector.)208 │ │ │ │ 5407 y Fm(Err)l(or)30 b(che)l(cking:)38 b Fp(If)28 b │ │ │ │ Fo(inpmtx)e Fp(is)h Fo(NULL)p Fp(,)f(an)i(error)d(message)h(is)i(prin)n │ │ │ │ (ted)f(and)h(the)g(program)d(exits.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fp(6)p 125 100 1157 4 v │ │ │ │ -1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(18,)h │ │ │ │ +1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(28,)h │ │ │ │ (2025)p 2743 100 V 60 390 a Fp(11.)41 b Fo(double)g(*)i(InpMtx_dvec)c │ │ │ │ (\()k(InpMtx)e(*inpmtx)g(\))i(;)208 524 y Fp(This)27 │ │ │ │ b(metho)r(d)h(returns)f(the)h(base)f(address)f(of)i(the)g │ │ │ │ Fo(dvec[])d Fp(v)n(ector.)208 658 y Fm(Err)l(or)30 b(che)l(cking:)38 │ │ │ │ b Fp(If)28 b Fo(inpmtx)e Fp(is)h Fo(NULL)p Fp(,)f(an)i(error)d(message) │ │ │ │ h(is)i(prin)n(ted)f(and)h(the)g(program)d(exits.)60 825 │ │ │ │ y(12.)41 b Fo(int)h(*)h(InpMtx_vecids)38 b(\()43 b(InpMtx)f(*inpmtx)e │ │ │ │ @@ -6185,15 +6179,15 @@ │ │ │ │ (b)r(er)g(of)g(en)n(tries)g(in)h(the)g(indices)g(and)f(en)n(tries)g(v)n │ │ │ │ (ectors.)208 5308 y Fm(Err)l(or)35 b(che)l(cking:)50 │ │ │ │ b Fp(If)33 b Fo(inpmtx)e Fp(is)i Fo(NULL)p Fp(,)f(or)g(if)h │ │ │ │ Fo(newnent)d Fl(<)i Fp(0,)i(an)f(error)e(message)h(is)h(prin)n(ted)g │ │ │ │ (and)g(the)g(program)208 5407 y(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1157 4 v 1323 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2704 100 V 1157 w Fp(7)60 390 y(19.)41 b Fo(void)g(InpMtx_setMaxnvec)o │ │ │ │ (tor)c(\()43 b(InpMtx)e(*inpmtx,)f(int)j(newmaxnvector)38 │ │ │ │ b(\))43 b(;)208 516 y Fp(This)27 b(metho)r(d)h(sets)g(the)g(maxin)n(um) │ │ │ │ f(n)n(um)n(b)r(er)g(of)h(v)n(ectors.)208 641 y Fm(Err)l(or)38 │ │ │ │ b(che)l(cking:)58 b Fp(If)38 b Fo(inpmtx)c Fp(is)j Fo(NULL)p │ │ │ │ Fp(,)f(or)g(if)h Fo(newmaxnvector)d Fl(<)k Fp(0,)h(an)e(error)e │ │ │ │ (message)h(is)h(prin)n(ted)g(and)g(the)208 741 y(program)25 │ │ │ │ @@ -6280,15 +6274,15 @@ │ │ │ │ Fp(,)18 b(as)23 b(appropri-)208 5182 y(ate.)208 5308 │ │ │ │ y Fm(Err)l(or)30 b(che)l(cking:)41 b Fp(If)28 b Fo(inpmtx)e │ │ │ │ Fp(is)j Fo(NULL)d Fp(or)i Fo(newMode)d Fp(is)k(in)n(v)-5 │ │ │ │ b(alid,)28 b(an)g(error)f(message)g(is)h(prin)n(ted)g(and)g(the)h │ │ │ │ (program)208 5407 y(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fp(8)p 125 100 1157 4 v │ │ │ │ -1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(18,)h │ │ │ │ +1322 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)28 b Fj(Octob)r(er)e(28,)h │ │ │ │ (2025)p 2743 100 V 0 390 a Fe(1.2.4)112 b(Input)38 b(metho)s(ds)101 │ │ │ │ 570 y Fp(1.)k Fo(void)f(InpMtx_inputEntry)c(\()43 b(InpMtx)e(*inpmtx,)g │ │ │ │ (int)h(row,)g(int)g(col)h(\))g(;)208 669 y(void)e(InpMtx_inputRealE)o │ │ │ │ (ntr)o(y)c(\()44 b(InpMtx)d(*inpmtx,)f(int)i(row,)g(int)h(col,)e │ │ │ │ (double)h(value)f(\))i(;)208 769 y(void)e(InpMtx_inputCompl)o(exE)o(nt) │ │ │ │ o(ry)c(\()43 b(InpMtx)e(*inpmtx,)g(int)h(row,)g(int)g(col,)1602 │ │ │ │ 869 y(double)f(real,)h(double)f(imag)h(\))h(;)208 1003 │ │ │ │ @@ -6379,15 +6373,15 @@ │ │ │ │ 43 b(InpMtx)e(*inpmtx,)g(int)h(nrow,)f(int)i(col,)338 │ │ │ │ 5308 y(int)g(rowstride,)c(int)j(colstride,)e(int)i(rowind[],)e(int)i │ │ │ │ (colind[],)e(double)h(mtxent[])g(\))i(;)208 5407 y(void)e │ │ │ │ (InpMtx_inputCompl)o(exM)o(at)o(rix)c(\()43 b(InpMtx)e(*inpmtx,)f(int)j │ │ │ │ (nrow,)e(int)h(col,)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 83 100 1157 4 v 1323 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2704 100 V 1157 w Fp(9)338 390 y Fo(int)43 b(rowstride,)c(int)j │ │ │ │ (colstride,)e(int)i(rowind[],)e(int)i(colind[],)e(double)h(mtxent[])g │ │ │ │ (\))i(;)208 526 y Fp(This)25 b(metho)r(d)h(places)f(a)g(dense)g │ │ │ │ (submatrix)g(in)n(to)g(the)h(matrix)f(ob)5 b(ject.)36 │ │ │ │ b(The)25 b(co)r(ordinate)g(t)n(yp)r(e)g(of)h(the)g(ob)5 │ │ │ │ b(ject)25 b(m)n(ust)208 625 y(b)r(e)h Fo(INPMTX)p 588 │ │ │ │ 625 27 4 v 28 w(BY)p 704 625 V 31 w(ROWS)p Fp(,)e Fo(INPMTX)p │ │ │ │ @@ -6487,15 +6481,15 @@ │ │ │ │ (the)g(global)e(and)i(lo)r(cal)f(n)n(um)n(b)r(erings.)208 │ │ │ │ 5407 y Fm(Err)l(or)e(che)l(cking:)37 b Fp(If)23 b Fo(A)p │ │ │ │ Fp(,)f Fo(rowmapIV)e Fp(or)i Fo(colmapIV)d Fp(is)k Fo(NULL)p │ │ │ │ Fp(,)e(an)h(error)f(message)g(is)i(prin)n(ted)g(and)f(the)h(program)e │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fp(10)p 166 100 1136 4 │ │ │ │ -v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 101 390 a Fp(4.)42 b Fo(void)f(InpMtx_permute)d(\() │ │ │ │ 43 b(InpMtx)f(*inpmtx,)e(int)i(rowOldToNew[],)c(int)k(colOldToNew[])d │ │ │ │ (\))k(;)208 528 y Fp(This)28 b(metho)r(d)g(p)r(erm)n(utes)g(the)h(ro)n │ │ │ │ (ws)d(and)i(or)g(columns)g(of)g(the)g(matrix.)38 b(If)29 │ │ │ │ b Fo(rowOldToNew)23 b Fp(and)28 b Fo(colOldToNew)c Fp(are)208 │ │ │ │ 628 y(b)r(oth)29 b Fo(NULL)p Fp(,)e(or)h(if)h(there)g(are)f(no)g(en)n │ │ │ │ (tries)g(in)i(the)f(matrix,)f(the)i(metho)r(d)f(returns.)40 │ │ │ │ @@ -6599,15 +6593,15 @@ │ │ │ │ 29 w(BY)p 3830 5208 V 30 w(VECTORS)p Fp(,)208 5308 y(or)i(if)j │ │ │ │ Fo(inputMode)18 b Fp(is)j(not)h Fo(SPOOLES)p 1320 5308 │ │ │ │ V 28 w(REAL)f Fp(or)f Fo(SPOOLES)p 1948 5308 V 29 w(COMPLEX)p │ │ │ │ Fp(,)f(an)i(error)f(message)g(is)i(prin)n(ted)f(and)h(the)g(program)208 │ │ │ │ 5407 y(exits.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(11)101 390 y(2.)42 b Fo(void)f(InpMtx_nonsym_mmm)o │ │ │ │ (Vec)o(to)o(r)d(\()43 b(InpMtx)e(*A,)h(DenseMtx)e(*Y,)j(double)e │ │ │ │ (alpha[],)f(DenseMtx)g(*X)j(\))g(;)208 490 y(void)e(InpMtx_sym_mmmVec)o │ │ │ │ (tor)c(\()43 b(InpMtx)e(*A,)h(DenseMtx)f(*Y,)h(double)f(alpha[],)f │ │ │ │ (DenseMtx)h(*X)h(\))i(;)208 589 y(void)d(InpMtx_herm_mmmVe)o(cto)o(r)c │ │ │ │ (\()44 b(InpMtx)d(*A,)h(DenseMtx)e(*Y,)j(double)e(alpha[],)f(DenseMtx)g │ │ │ │ (*X)j(\))g(;)208 689 y(void)e(InpMtx_nonsym_mmm)o(Vec)o(to)o(r_T)c(\() │ │ │ │ @@ -6711,15 +6705,15 @@ │ │ │ │ Fp(-13)98 b(en)n(tries)27 b(of)h Fo(X)f Fp(are)f Fo(NULL)1889 │ │ │ │ 5319 y Fp(-14)98 b(t)n(yp)r(es)28 b(of)f Fo(A)p Fp(,)h │ │ │ │ Fo(X)f Fp(and)g Fo(Y)g Fp(are)g(not)h(iden)n(tical)1889 │ │ │ │ 5419 y(-15)98 b(n)n(um)n(b)r(er)27 b(of)h(columns)f(in)h │ │ │ │ Fo(X)f Fp(and)h Fo(Y)f Fp(are)g(not)g(equal)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fp(12)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 101 390 a Fp(4.)42 b Fo(int)g(InpMtx_nonsym_gm)o(vm) │ │ │ │ 37 b(\()43 b(InpMtx)e(*A,)i(double)e(beta[],)f(int)j(ny,)f(double)f │ │ │ │ (y[],)1297 490 y(double)g(alpha[],)g(int)h(nx,)g(double)f(x[])i(\))g(;) │ │ │ │ 208 589 y(int)f(InpMtx_sym_gmvm)37 b(\()43 b(InpMtx)f(*A,)g(double)f │ │ │ │ (beta[],)g(int)h(ny,)g(double)f(y[],)1166 689 y(double)h(alpha[],)e │ │ │ │ (int)i(nx,)h(double)e(x[])h(\))h(;)208 789 y(int)f(InpMtx_herm_gmvm)37 │ │ │ │ b(\()43 b(InpMtx)e(*A,)h(double)g(beta[],)e(int)j(ny,)f(double)f(y[],) │ │ │ │ @@ -6813,15 +6807,15 @@ │ │ │ │ 5280 y Fo(inpmtxA)c Fp(con)n(tains)j(the)h(en)n(tries)f(in)h │ │ │ │ Fl(A)p Fp(.)208 5407 y Fm(Err)l(or)i(che)l(cking:)38 │ │ │ │ b Fp(If)28 b Fo(inpmtxA)d Fp(is)j Fo(NULL)p Fp(,)e(an)h(error)f │ │ │ │ (message)g(is)h(prin)n(ted)h(and)f(the)h(program)e(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(13)0 390 y Fe(1.2.8)112 b(Submatrix)39 │ │ │ │ b(extraction)e(metho)s(d)101 569 y Fp(1.)42 b Fo(int)g │ │ │ │ (InpMtx_initFromS)o(ub)o(mat)o(ri)o(x)c(\()43 b(InpMtx)e(*B,)h(InpMtx)f │ │ │ │ (*A,)i(IV)f(*BrowsIV,)731 669 y(IV)g(*BcolsIV,)e(int)j(symmetryflag,)38 │ │ │ │ b(int)k(msglvl,)f(FILE)h(*msgFile)e(\))j(;)208 802 y │ │ │ │ Fp(This)27 b(metho)r(d)g(\014lls)h Fo(B)e Fp(with)i(the)g(submatrix)e │ │ │ │ (formed)h(from)g(the)g(ro)n(ws)f(and)h(columns)g(of)g │ │ │ │ @@ -6911,15 +6905,15 @@ │ │ │ │ b(The)29 b(second)g(metho)r(d)g(mo)n(v)n(es)208 5407 │ │ │ │ y Fl(a)252 5419 y Fk(i;j)353 5407 y Fp(for)22 b Fl(i)h(>)g(j)28 │ │ │ │ b Fp(to)23 b Fl(a)818 5419 y Fk(j;i)892 5407 y Fp(,)i(\(If)f(the)f │ │ │ │ (matrix)g(is)g(Hermitian,)h(the)f(sign)g(of)g(the)h(imaginary)d(part)i │ │ │ │ (of)g(an)g(en)n(try)f(is)h(dealt)h(with)p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fp(14)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 208 390 a Fp(in)g(the)g(correct)f(fashion.\))36 │ │ │ │ b(In)27 b(other)g(w)n(ords,)e(using)i(these)g(metho)r(ds)g(will)g │ │ │ │ (restore)f(the)h(lo)n(w)n(er)f(or)g(upp)r(er)h(triangular)208 │ │ │ │ 490 y(structure)g(after)g(a)g(p)r(erm)n(utation.)208 │ │ │ │ 641 y Fm(Err)l(or)38 b(che)l(cking:)56 b Fp(If)37 b Fo(inpmtx)d │ │ │ │ Fp(is)i Fo(NULL)p Fp(,)f(or)h(if)h Fo(coordType)32 b │ │ │ │ Fp(is)37 b(in)n(v)-5 b(alid,)38 b(an)e(error)f(message)g(is)h(prin)n │ │ │ │ @@ -7014,15 +7008,15 @@ │ │ │ │ 5120 y(-6)98 b Fo(symflag)25 b Fp(is)j(in)n(v)-5 b(alid)1985 │ │ │ │ 5220 y(-7)98 b Fo(\(symflag,inputMod)o(e\))21 b Fp(in)n(v)-5 │ │ │ │ b(alid)1985 5319 y(-8)98 b Fo(\(symflag,nrow,nco)o(l\))21 │ │ │ │ b Fp(in)n(v)-5 b(alid)1985 5419 y(-9)98 b Fo(nitem)26 │ │ │ │ b Fp(negativ)n(e)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(15)0 390 y Fe(1.2.10)113 b(IO)37 │ │ │ │ b(metho)s(ds)0 568 y Fp(There)k(are)f(the)i(usual)f(eigh)n(t)g(IO)g │ │ │ │ (routines.)78 b(The)42 b(\014le)f(structure)g(of)g(a)g │ │ │ │ Fo(InpMtx)e Fp(ob)5 b(ject)42 b(is)f(simple:)65 b(The)41 │ │ │ │ b(\014rst)g(en-)0 667 y(tries)i(in)h(the)g(\014le)g(are)e │ │ │ │ Fo(coordType)p Fp(,)i Fo(storageMode)p Fp(,)f Fo(inputMode)p │ │ │ │ Fp(,)h Fo(nent)e Fp(and)h Fo(nvector)p Fp(.)82 b(If)44 │ │ │ │ @@ -7121,15 +7115,15 @@ │ │ │ │ (written)h(out.)37 b(The)27 b(v)-5 b(alue)28 b Fo(1)f │ │ │ │ Fp(is)h(returned.)208 5407 y Fm(Err)l(or)i(che)l(cking:)38 │ │ │ │ b Fp(If)28 b Fo(inpmtx)e Fp(or)g Fo(fp)h Fp(are)g Fo(NULL)p │ │ │ │ Fp(,)f(an)h(error)f(message)g(is)h(prin)n(ted)h(and)f(zero)g(is)g │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fp(16)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 101 390 a Fp(8.)42 b Fo(int)g(InpMtx_writeStat)o(s) │ │ │ │ 37 b(\()44 b(InpMtx)d(*inpmtx,)f(FILE)i(*fp)g(\))h(;)208 │ │ │ │ 520 y Fp(This)27 b(metho)r(d)h(writes)f(the)h(statistics)g(ab)r(out)f │ │ │ │ (the)h(ob)5 b(ject)28 b(to)f(a)g(\014le.)37 b(h)n(uman.)g(The)28 │ │ │ │ b(v)-5 b(alue)27 b Fo(1)g Fp(is)h(returned.)208 649 y │ │ │ │ Fm(Err)l(or)i(che)l(cking:)38 b Fp(If)28 b Fo(inpmtx)e │ │ │ │ Fp(or)g Fo(fp)h Fp(are)g Fo(NULL)p Fp(,)f(an)h(error)f(message)g(is)h │ │ │ │ @@ -7211,15 +7205,15 @@ │ │ │ │ Fk(T)1319 5268 y Fp(,)28 b(diagonal)e(edges)h(included.)p │ │ │ │ 0 5330 1560 4 v 92 5384 a Fc(1)127 5407 y Fb(http://math.nist.gov/mc)q │ │ │ │ (sd/S)q(taf)q(f/KR)q(emi)q(ngto)q(n/h)q(arwe)q(ll)p 1890 │ │ │ │ 5407 22 4 v 32 w(io/harwell)p 2271 5407 V 28 w(io.html)p │ │ │ │ eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(17)307 390 y Fn(\210)42 b Fp(The)19 │ │ │ │ b Fo(msglvl)e Fp(parameter)g(determines)i(the)h(amoun)n(t)e(of)h │ │ │ │ (output)h(|)f(taking)f Fo(msglvl)41 b(>=)i(3)19 b Fp(means)f(the)h │ │ │ │ Fo(InpMtx)390 490 y Fp(ob)5 b(ject)28 b(is)f(written)h(to)f(the)h │ │ │ │ (message)e(\014le.)307 627 y Fn(\210)42 b Fp(The)32 b │ │ │ │ Fo(msgFile)c Fp(parameter)i(determines)h(the)h(message)e(\014le)i(|)f │ │ │ │ (if)h Fo(msgFile)d Fp(is)i Fo(stdout)p Fp(,)f(then)i(the)g(message)390 │ │ │ │ @@ -7317,15 +7311,15 @@ │ │ │ │ b(ject)23 b(from)g(the)g(\014le)h Fo(inFile)d Fp(that)i(holds)g(a)g │ │ │ │ (matrix)g Fl(A)p Fp(.)36 b(It)23 b(then)h(creates)208 │ │ │ │ 5407 y(a)j Fo(Graph)e Fp(ob)5 b(ject)28 b(for)f Fl(B)g │ │ │ │ Fp(=)c Fl(A)1141 5377 y Fk(T)1193 5407 y Fl(A)28 b Fp(and)g(writes)f │ │ │ │ (it)h(to)f(the)h(\014le)g Fo(outFile)p Fp(.)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fp(18)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 307 390 a Fn(\210)42 b Fp(The)19 b │ │ │ │ Fo(msglvl)e Fp(parameter)g(determines)i(the)h(amoun)n(t)e(of)h(output)h │ │ │ │ (|)f(taking)f Fo(msglvl)41 b(>=)i(3)19 b Fp(means)f(the)h │ │ │ │ Fo(InpMtx)390 490 y Fp(ob)5 b(ject)28 b(is)f(written)h(to)f(the)h │ │ │ │ (message)e(\014le.)307 618 y Fn(\210)42 b Fp(The)32 b │ │ │ │ Fo(msgFile)c Fp(parameter)i(determines)h(the)h(message)e(\014le)i(|)f │ │ │ │ (if)h Fo(msgFile)d Fp(is)i Fo(stdout)p Fp(,)f(then)i(the)g(message)390 │ │ │ │ @@ -7420,15 +7414,15 @@ │ │ │ │ (generate)g(a)g Fo(type)42 b(1)22 b(Graph)e Fp(ob)5 b(ject)23 │ │ │ │ b(\(w)n(eigh)n(ted)f(v)n(ertices,)g(unit)i(w)n(eigh)n(t)e(edges\))208 │ │ │ │ 5407 y(from)27 b(a)g(\014le)h(that)g(con)n(tained)f(the)h(adjacency)e │ │ │ │ (structure)h(of)h(a)f(matrix)g(in)h(the)g(follo)n(wing)f(form.)p │ │ │ │ eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(19)469 390 y Fo(nvtx)42 b(nadj)469 │ │ │ │ 490 y(vwghts[nvtx])469 589 y(offsets[nvtx+1])469 689 │ │ │ │ y(indices[nadj])208 878 y Fp(There)33 b(are)g Fo(nvtx)f │ │ │ │ Fp(v)n(ertices)h(in)h(the)g(graph)f(and)g(the)i(adjacency)e(v)n(ector)f │ │ │ │ (has)i Fo(nadj)e Fp(en)n(tries.)55 b(It)34 b(w)n(as)f(not)h(kno)n(wn) │ │ │ │ 208 978 y(whether)27 b(the)h(adjacency)f(structure)h(con)n(tained)f │ │ │ │ Fo(\(v,v\))e Fp(en)n(tries)i(or)g(if)i(it)f(w)n(as)f(only)g(the)h(upp)r │ │ │ │ @@ -7520,15 +7514,15 @@ │ │ │ │ Fp(ob)5 b(ject)32 b(|)g(m)n(ust)g(b)r(e)h(of)f(the)h(form)e │ │ │ │ Fo(*.coordsf)e Fp(or)390 5278 y Fo(*.coordsb)p Fp(.)307 │ │ │ │ 5407 y Fn(\210)42 b Fp(The)28 b Fo(coordType)c Fp(determines)j(the)h │ │ │ │ (co)r(ordinate)f(t)n(yp)r(e)g(for)g(the)h Fo(InpMtx)e │ │ │ │ Fp(ob)5 b(ject.)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fp(20)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 456 390 a Fi({)41 b Fo(1)28 b Fp(|)f(storage)f(of)i │ │ │ │ (en)n(tries)f(b)n(y)g(ro)n(ws)456 516 y Fi({)41 b Fo(2)28 │ │ │ │ b Fp(|)f(storage)f(of)i(en)n(tries)f(b)n(y)g(columns)456 │ │ │ │ 642 y Fi({)41 b Fo(3)28 b Fp(|)f(storage)f(of)i(en)n(tries)f(b)n(y)g(c) │ │ │ │ n(hevrons)307 795 y Fn(\210)42 b Fp(The)28 b Fo(seed)f │ │ │ │ Fp(parameter)f(is)i(used)g(as)f(a)h(random)f(n)n(um)n(b)r(er)h(seed)g │ │ │ │ (to)f(determine)i(the)f(ro)n(w)f(and)g(column)h(p)r(erm)n(u-)390 │ │ │ │ @@ -7597,15 +7591,15 @@ │ │ │ │ y Fp(whic)n(h)24 b(can)h(b)r(e)g(used)g(to)g(generate)e(the)i(follo)n │ │ │ │ (wing)f(matlab)h(plot.)36 b(An)25 b(example)f(is)h(giv)n(en)f(b)r(elo)n │ │ │ │ (w)h(for)f(the)h Fa(bcsstk23)208 5407 y Fp(matrix,)i(where)g │ │ │ │ Fo(npts)42 b(=)h(200)p Fp(,)26 b Fo(tausmall)41 b(=)i(1.e-10)25 │ │ │ │ b Fp(and)i Fo(taubig)42 b(=)h(1.e100)p Fp(.)p eop end │ │ │ │ %%Page: 21 21 │ │ │ │ TeXDict begin 21 20 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(21)1154 1747 y @beginspecial 47 │ │ │ │ @llx 197 @lly 550 @urx 604 @ury 2160 @rwi 1728 @rhi @setspecial │ │ │ │ %%BeginDocument: ../../InpMtx/doc/BCSSTK23.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%Creator: MATLAB, The Mathworks, Inc. │ │ │ │ %%Title: profile.eps │ │ │ │ %%CreationDate: 03/13/97 09:20:11 │ │ │ │ @@ -8012,15 +8006,15 @@ │ │ │ │ b(It)390 5308 y(m)n(ust)40 b(b)r(e)f(of)h(the)f(form)g │ │ │ │ Fo(*.inpmtxf)d Fp(or)j Fo(*.inpmtxb)p Fp(.)68 b(The)39 │ │ │ │ b Fo(InpMtx)e Fp(ob)5 b(ject)39 b(is)h(written)f(to)g(the)h(\014le)g │ │ │ │ (via)390 5407 y(the)28 b Fo(InpMtx)p 802 5407 V 29 w(writeToFile\(\))22 │ │ │ │ b Fp(metho)r(d.)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fp(22)p 166 100 1136 │ │ │ │ -4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(18,)g │ │ │ │ +4 v 1301 w Fo(InpMtx)25 b Fj(:)37 b Fm(DRAFT)27 b Fj(Octob)r(er)g(28,)g │ │ │ │ (2025)p 2764 100 V 60 390 a Fp(12.)41 b Fo(testMMM)f(msglvl)h(msgFile)g │ │ │ │ (dataType)f(symflag)h(coordType)f(transpose)556 490 y(nrow)i(ncol)g │ │ │ │ (nitem)g(nrhs)g(seed)f(alphaReal)f(alphaImag)208 623 │ │ │ │ y Fp(This)32 b(driv)n(er)f(program)f(tests)i(the)h(matrix-matrix)e(m)n │ │ │ │ (ultiply)h(metho)r(ds.)52 b(This)32 b(driv)n(er)f(program)f(generates)h │ │ │ │ Fl(A)p Fp(,)i(a)208 723 y Fo(nrow)14 b Fg(\002)i Fo(ncol)25 │ │ │ │ b Fp(matrix)h(using)g Fo(nitem)f Fp(input)i(en)n(tries,)f │ │ │ │ @@ -8122,15 +8116,15 @@ │ │ │ │ (um)n(b)r(er)f(of)h(columns)f(in)h Fl(X)34 b Fp(and)27 │ │ │ │ b Fl(Y)19 b Fp(.)307 5407 y Fn(\210)42 b Fp(The)21 b │ │ │ │ Fo(seed)e Fp(parameter)g(is)h(a)g(random)g(n)n(um)n(b)r(er)g(seed)g │ │ │ │ (used)g(to)h(\014ll)f(the)h(matrix)f(en)n(tries)g(with)h(random)f(n)n │ │ │ │ (um)n(b)r(ers.)p eop end │ │ │ │ %%Page: 23 23 │ │ │ │ TeXDict begin 23 22 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(23)307 390 y Fn(\210)42 b Fo(alphaReal)24 │ │ │ │ b Fp(and)k Fo(alphaImag)c Fp(form)j(the)h Fl(\013)g Fp(scalar)e(in)i │ │ │ │ (the)g(m)n(ultiply)-7 b(.)307 523 y Fn(\210)42 b Fo(betaReal)25 │ │ │ │ b Fp(and)i Fo(betaImag)d Fp(form)k(the)g Fl(\014)k Fp(scalar)26 │ │ │ │ b(in)h(the)h(m)n(ultiply)-7 b(.)60 706 y(14.)41 b Fo(testGMVM)f(msglvl) │ │ │ │ h(msgFile)g(dataType)f(symflag)h(coordType)e(transpose)600 │ │ │ │ 805 y(nrow)j(ncol)g(nitem)f(seed)h(alphaReal)e(alphaImag)g(betaReal)g │ │ │ │ @@ -8313,15 +8307,15 @@ │ │ │ │ 5105 y Fo(InpMtx)p 2261 5105 V 28 w(supportNonsym\(\))p │ │ │ │ Fp(,)f(9)1992 5206 y Fo(InpMtx)p 2261 5206 V 28 w(supportNonsymH\(\))p │ │ │ │ Fp(,)g(9)1992 5307 y Fo(InpMtx)p 2261 5307 V 28 w(supportNonsymT\(\))p │ │ │ │ Fp(,)g(9)1992 5407 y Fo(InpMtx)p 2261 5407 V 28 w(supportSym\(\))p │ │ │ │ Fp(,)h(9)1908 5656 y(24)p eop end │ │ │ │ %%Page: 25 25 │ │ │ │ TeXDict begin 25 24 bop 83 100 1136 4 v 1302 100 a Fo(InpMtx)25 │ │ │ │ -b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fj(:)37 b Fm(DRAFT)110 b Fj(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2683 100 V 1136 w Fp(25)0 390 y Fo(InpMtx)p 269 390 27 │ │ │ │ 4 v 29 w(supportSymH\(\))p Fp(,)22 b(9)0 490 y Fo(InpMtx)p │ │ │ │ 269 490 V 29 w(sym)p 430 490 V 30 w(gmmm\(\))p Fp(,)j(11)0 │ │ │ │ 589 y Fo(InpMtx)p 269 589 V 29 w(sym)p 430 589 V 30 w(gmvm\(\))p │ │ │ │ Fp(,)g(11)0 689 y Fo(InpMtx)p 269 689 V 29 w(sym)p 430 │ │ │ │ 689 V 30 w(mmm\(\))p Fp(,)h(10)0 789 y Fo(InpMtx)p 269 │ │ │ │ 789 V 29 w(vecids\(\))p Fp(,)e(6)0 888 y Fo(InpMtx)p │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -28,15 +28,15 @@ │ │ │ │ │ be efficient to have sufficient elbow room to minimize the number of sorts and compressions. In this │ │ │ │ │ case, a tight upper bound on the necessary storage is the sum of the sizes of the elemental matrices. │ │ │ │ │ The entries are assembled by a call to InpMtx changeStorageMode(). │ │ │ │ │ T │ │ │ │ │ 5. CreateanIVLobjectthatcontainsthefull adjacencyofA+A bycallingtheInpMtx fullAdjacency() │ │ │ │ │ method. │ │ │ │ │ 1 │ │ │ │ │ - 2 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 2 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 6. Create a Graph object using the Graph init2() method and the IVL object as an input argument. │ │ │ │ │ A similar functionality exists for creating a Graph object from a linear combination of two InpMtx objects │ │ │ │ │ that contains the matrices A and B. The InpMtx fullAdjacency2() method returns an IVL object with │ │ │ │ │ the full adjacency of (A+B)+(A+B)T. These two methods are called by the DPencil fullAdjacency() │ │ │ │ │ methods to return the full adjacency of a matrix pencil. │ │ │ │ │ Here is a common sequence of events to use this object when we want to assemble the entries of a sparse │ │ │ │ │ matrix. │ │ │ │ │ @@ -68,15 +68,15 @@ │ │ │ │ │ j,j j,k k,j │ │ │ │ │ – INPMTX CUSTOM — custom coordinates. │ │ │ │ │ • int storageMode : mode of storage │ │ │ │ │ – INPMTX RAW DATA — data is raw pairs or triples, two coordinates and (optionally) one or two │ │ │ │ │ double precision values. │ │ │ │ │ – INPMTX SORTED — data is sorted and distinct triples, the primary key is the first coordinate, the │ │ │ │ │ secondary key is the second coordinate. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 3 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 3 │ │ │ │ │ – INPMTX BY VECTORS — data is sorted and distinct vectors. All entries in a vector share some- │ │ │ │ │ thing in common. For example, when coordType is INPMTX BY ROWS, INPMTX BY COLUMNS or │ │ │ │ │ INPMTX BY CHEVRONS, row vectors, column vectors, or chevron vectors are stored, respectively. │ │ │ │ │ WhencoordTypeis INPMTX CUSTOM, a custom type, entries in the same vector have something in │ │ │ │ │ common but it need not be a common row, column or chevron coordinate. │ │ │ │ │ • int inputMode : mode of data input │ │ │ │ │ – INPMTX INDICES ONLY — only indices are stored, not entries. │ │ │ │ │ @@ -106,15 +106,15 @@ │ │ │ │ │ • INPMTX IS BY COLUMNS(mtx) returns 1 if the entries are stored by columns, and 0 otherwise. │ │ │ │ │ • INPMTX IS BY CHEVRONS(mtx) returns 1 if the entries are stored by chevrons, and 0 otherwise. │ │ │ │ │ • INPMTX IS BY CUSTOM(mtx) returns 1 if the entries are stored by some custom coordinate, and 0 │ │ │ │ │ otherwise. │ │ │ │ │ • INPMTX IS RAW DATA(mtx) returns 1 if the entries are stored as unsorted pairs or triples, and 0 other- │ │ │ │ │ wise. │ │ │ │ │ • INPMTX IS SORTED(mtx) returns 1 if the entries are stored as sorted pairs or triples, and 0 otherwise. │ │ │ │ │ - 4 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 4 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ • INPMTX IS BY VECTORS(mtx) returns 1 if the entries are stored as vectors, and 0 otherwise. │ │ │ │ │ • INPMTX IS INDICES ONLY(mtx) returns 1 if the entries are not stored, and 0 otherwise. │ │ │ │ │ • INPMTX IS REAL ENTRIES(mtx) returns 1 if the entries are real, and 0 otherwise. │ │ │ │ │ • INPMTX IS COMPLEX ENTRIES(mtx) returns 1 if the entries are complex, and 0 otherwise. │ │ │ │ │ 1.2 Prototypes and descriptions of InpMtx methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the InpMtx object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ 1. int InpMtx_coordType ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the coordinate type. │ │ │ │ │ • INPMTX NO TYPE – none specified │ │ │ │ │ • INPMTX BY ROWS – storage by row triples │ │ │ │ │ • INPMTX BY COLUMNS – storage by column triples │ │ │ │ │ • INPMTX BY CHEVRONS – storage by chevron triples │ │ │ │ │ • INPMTX CUSTOM – custom type │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 5 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 5 │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int InpMtx_storageMode ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the storage mode. │ │ │ │ │ • INPMTX NO MODE – none specified │ │ │ │ │ • INPMTX RAW DATA – raw triples │ │ │ │ │ • INPMTX SORTED – sorted and distinct triples │ │ │ │ │ • INPMTX BY VECTORS – vectors by the first coordinate │ │ │ │ │ @@ -176,15 +176,15 @@ │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 9. int * InpMtx_ivec1 ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the base address of the ivec1[] vector. │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 10. int * InpMtx_ivec2 ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the base address of the ivec2[] vector. │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - 6 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 6 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 11. double * InpMtx_dvec ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the base address of the dvec[] vector. │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 12. int * InpMtx_vecids ( InpMtx *inpmtx ) ; │ │ │ │ │ This method returns the base address of the vecids[] vector. │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 13. int * InpMtx_sizes ( InpMtx *inpmtx ) ; │ │ │ │ │ @@ -217,15 +217,15 @@ │ │ │ │ │ This method sets the maxinum number of entries in the indices and entries vectors. │ │ │ │ │ Error checking: If inpmtx is NULL, or if newmaxnent < 0, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 18. void InpMtx_setNent ( InpMtx *inpmtx, int newnent ) ; │ │ │ │ │ This method sets the present number of entries in the indices and entries vectors. │ │ │ │ │ Error checking: If inpmtx is NULL, or if newnent < 0, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 7 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 7 │ │ │ │ │ 19. void InpMtx_setMaxnvector ( InpMtx *inpmtx, int newmaxnvector ) ; │ │ │ │ │ This method sets the maxinum number of vectors. │ │ │ │ │ Error checking: If inpmtx is NULL, or if newmaxnvector < 0, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 20. void InpMtx_setNvector ( InpMtx *inpmtx, int newnvector ) ; │ │ │ │ │ This method sets the present number of vectors. │ │ │ │ │ Error checking: If inpmtx is NULL, or if newnvector < 0, an error message is printed and the program │ │ │ │ │ @@ -261,15 +261,15 @@ │ │ │ │ │ exits. │ │ │ │ │ 3. void InpMtx_changeStorageMode ( InpMtx *inpmtx, int newMode ) ; │ │ │ │ │ If storageMode = newMode, the method returns. Otherwise, a translation between the three valid │ │ │ │ │ modes is made by calling InpMtx sortAndCompress()and InpMtx convertToVectors(),as appropri- │ │ │ │ │ ate. │ │ │ │ │ Error checking: If inpmtx is NULL or newMode is invalid, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 8 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 8 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.2.4 Input methods │ │ │ │ │ 1. void InpMtx_inputEntry ( InpMtx *inpmtx, int row, int col ) ; │ │ │ │ │ void InpMtx_inputRealEntry ( InpMtx *inpmtx, int row, int col, double value ) ; │ │ │ │ │ void InpMtx_inputComplexEntry ( InpMtx *inpmtx, int row, int col, │ │ │ │ │ double real, double imag ) ; │ │ │ │ │ This method places a single entry into the matrix object. The coordinate type of the object must be │ │ │ │ │ INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The triple is formed and inserted into │ │ │ │ │ @@ -307,15 +307,15 @@ │ │ │ │ │ Error checking: If inpmtx is NULL, or chv or chvsize are negative, or chvind or chvent are NULL, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 5. void InpMtx_inputMatrix ( InpMtx *inpmtx, int nrow, int col, │ │ │ │ │ int rowstride, int colstride, int rowind[], int colind[] ) ; │ │ │ │ │ void InpMtx_inputRealMatrix ( InpMtx *inpmtx, int nrow, int col, │ │ │ │ │ int rowstride, int colstride, int rowind[], int colind[], double mtxent[] ) ; │ │ │ │ │ void InpMtx_inputComplexMatrix ( InpMtx *inpmtx, int nrow, int col, │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 9 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 9 │ │ │ │ │ int rowstride, int colstride, int rowind[], int colind[], double mtxent[] ) ; │ │ │ │ │ This method places a dense submatrix into the matrix object. The coordinate type of the object must │ │ │ │ │ be INPMTX BY ROWS, INPMTX BY COLUMNS or INPMTX BY CHEVRONS. The individual entries of the matrix │ │ │ │ │ are placed into the vector storage as triples, and the vectors are resized if necessary. │ │ │ │ │ Error checking: If inpmtx is NULL, or col or row are negative, or rowstride or colstride are less │ │ │ │ │ than 1, or rowind, colind or mtxent are NULL, an error message is printed and the program exits. │ │ │ │ │ 6. void InpMtx_inputTriples ( InpMtx *inpmtx, int ntriples, │ │ │ │ │ @@ -351,15 +351,15 @@ │ │ │ │ │ and A will contain only part of the larger global matrix A. Finding the row an column support enables │ │ │ │ │ one to construct local data structures for X and the product αAX. │ │ │ │ │ Error checking: If A or supIV is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void InpMtx_mapEntries ( InpMtx *A, IV *rowmapIV, IV *colmapIV ) ; │ │ │ │ │ These methods are used to map a matrix from one numbering system to another. The primary use of │ │ │ │ │ this method is to map a part of a distributed matrix between the global and local numberings. │ │ │ │ │ Error checking: If A, rowmapIV or colmapIV is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 10 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 4. void InpMtx_permute ( InpMtx *inpmtx, int rowOldToNew[], int colOldToNew[] ) ; │ │ │ │ │ This method permutes the rows and or columns of the matrix. If rowOldToNew and colOldToNew are │ │ │ │ │ both NULL, or if there are no entries in the matrix, the method returns. Note, either rowOldToNew or │ │ │ │ │ colOldToNew can be NULL. If coordType == INPMTX BY CHEVRONS, then the coordinates are changed │ │ │ │ │ to row coordinates. The coordinates are then mapped to their new values. The storageMode is set to │ │ │ │ │ 1, (raw triples). │ │ │ │ │ Error checking: If inpmtx is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -395,15 +395,15 @@ │ │ │ │ │ InpMtx nonsym mmm H() Y := Y +αA X nonsymmetric complex │ │ │ │ │ A, X and Y must all be real or all be complex. When A is real, then α = alpha[0]. When A is complex, │ │ │ │ │ then α = alpha[0] + i* alpha[1]. The values of α must be loaded into an array of length 1 or 2. │ │ │ │ │ Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or │ │ │ │ │ INPMTX BY CHEVRONS,orifstorageModeisnotoneofINPMTX RAW DATA,INPMTX SORTEDorINPMTX BY VECTORS, │ │ │ │ │ or if inputModeis not SPOOLES REAL or SPOOLES COMPLEX,an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 11 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 11 │ │ │ │ │ 2. void InpMtx_nonsym_mmmVector ( InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X ) ; │ │ │ │ │ void InpMtx_sym_mmmVector ( InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X ) ; │ │ │ │ │ void InpMtx_herm_mmmVector ( InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X ) ; │ │ │ │ │ void InpMtx_nonsym_mmmVector_T ( InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X ) ; │ │ │ │ │ void InpMtx_nonsym_mmmVector_H ( InpMtx *A, DenseMtx *Y, double alpha[], DenseMtx *X ) ; │ │ │ │ │ These five methods perform the following computations. │ │ │ │ │ InpMtx nonsym mmm() y := y +αAx nonsymmetric real or complex │ │ │ │ │ @@ -443,15 +443,15 @@ │ │ │ │ │ -1 A is NULL -9 alpha is NULL │ │ │ │ │ -2 type of A is invalid -10 X is NULL │ │ │ │ │ -3 indices of entries of A are NULL -11 type of X is invalid │ │ │ │ │ -4 beta is NULL -12 bad dimensions and strides for X │ │ │ │ │ -5 Y is NULL -13 entries of X are NULL │ │ │ │ │ -6 type of Y is invalid -14 types of A, X and Y are not identical │ │ │ │ │ -7 bad dimensions and strides for Y -15 number of columns in X and Y are not equal │ │ │ │ │ - 12 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 12 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 4. int InpMtx_nonsym_gmvm ( InpMtx *A, double beta[], int ny, double y[], │ │ │ │ │ double alpha[], int nx, double x[] ) ; │ │ │ │ │ int InpMtx_sym_gmvm ( InpMtx *A, double beta[], int ny, double y[], │ │ │ │ │ double alpha[], int nx, double x[] ) ; │ │ │ │ │ int InpMtx_herm_gmvm ( InpMtx *A, double beta[], int ny, double y[], │ │ │ │ │ double alpha[], int nx, double x[] ) ; │ │ │ │ │ int InpMtx_nonsym_gmvm_T ( InpMtx *A, double beta[], int ny, double y[], │ │ │ │ │ @@ -492,15 +492,15 @@ │ │ │ │ │ Error checking: If inpmtxAisNULL,orifthecoordinatetypeisnotINPMTX BY ROWSorINPMTX BY COLUMNS, │ │ │ │ │ or if the storage mode is not INPMTX BY VECTORS, an error message is printed and the program exits. │ │ │ │ │ 3. IVL * InpMtx_adjForATA ( InpMtx *inpmtxA ) ; │ │ │ │ │ T │ │ │ │ │ This method creates and returns an IVL object that holds the full adjacency structure of A A, where │ │ │ │ │ inpmtxA contains the entries in A. │ │ │ │ │ Error checking: If inpmtxA is NULL, an error message is printed and the program exits. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 13 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 13 │ │ │ │ │ 1.2.8 Submatrix extraction method │ │ │ │ │ 1. int InpMtx_initFromSubmatrix ( InpMtx *B, InpMtx *A, IV *BrowsIV, │ │ │ │ │ IV *BcolsIV, int symmetryflag, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method fills B with the submatrix formed from the rows and columns of A found in BrowsIV and │ │ │ │ │ BcolsIV. The row and column indices in B are local with respect to BrowsIV and BcolsIV. │ │ │ │ │ Whensymmetryflagis SPOOLES SYMMETRICor SPOOLES HERMITIAN, then we assume that when i 6= j, │ │ │ │ │ A orA isstored, but not both. (A could be stored by rows of its upper triangle, or by columns of │ │ │ │ │ @@ -538,15 +538,15 @@ │ │ │ │ │ void InpMtx_mapToUpperTriangleH ( InpMtx *inpmtx ) ; │ │ │ │ │ If the InpMtxobject holds only the loweror upper triangle of a matrix (as when the matrix is symmetric │ │ │ │ │ or Hermitian), and is then permuted, it is not likely that the permuted object will only have entries in │ │ │ │ │ the lower or upper triangle. The first method moves a for i < j to a . The second method moves │ │ │ │ │ i,j j,i │ │ │ │ │ a for i > j to a , (If the matrix is Hermitian, the sign of the imaginary part of an entry is dealt with │ │ │ │ │ i,j j,i │ │ │ │ │ - 14 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 14 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ in the correct fashion.) In other words, using these methods will restore the lower or upper triangular │ │ │ │ │ structure after a permutation. │ │ │ │ │ Error checking: If inpmtx is NULL, or if coordType is invalid, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 5. void InpMtx_log10profile ( InpMtx *inpmtx, int npts, DV *xDV, DV *yDV, │ │ │ │ │ double tausmall, double taubig, │ │ │ │ │ int *pnzero, int *pnsmall, int *pnbig ) ; │ │ │ │ │ @@ -582,15 +582,15 @@ │ │ │ │ │ returned. If nitem is not positive, -9 is returned. Otherwise, 1 is returned. │ │ │ │ │ Return codes: │ │ │ │ │ 1 normal return -5 nrow or ncol negative │ │ │ │ │ -1 inpmtx is NULL -6 symflag is invalid │ │ │ │ │ -2 inputMode invalid -7 (symflag,inputMode)invalid │ │ │ │ │ -3 coordType invalid -8 (symflag,nrow,ncol)invalid │ │ │ │ │ -4 storageMode invalid -9 nitem negative │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 15 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 15 │ │ │ │ │ 1.2.10 IO methods │ │ │ │ │ There are the usual eight IO routines. The file structure of a InpMtx object is simple: The first en- │ │ │ │ │ tries in the file are coordType, storageMode, inputMode, nent and nvector. If nent > 0, then the │ │ │ │ │ ivec1IV and ivec2IV vectors follow, If nent > 0 and inputMode = SPOOLES REAL or SPOOLES COMPLEX, │ │ │ │ │ the dvecDVvectorfollows. If storageMode = INPMTX BY VECTORSand nvector > 0, the vecidsIV,sizesIV │ │ │ │ │ and offsetsIV vectors follow. │ │ │ │ │ 1. int InpMtx_readFromFile ( InpMtx *inpmtx, char *fn ) ; │ │ │ │ │ @@ -624,15 +624,15 @@ │ │ │ │ │ is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If inpmtx or fp is NULL, an error message is printed and the method returns zero. │ │ │ │ │ 7. int InpMtx_writeForHumanEye ( InpMtx *inpmtx, FILE *fp ) ; │ │ │ │ │ Thismethodwritestheobjecttoafilesuitableforreadingbyahuman. ThemethodInpMtx writeStats() │ │ │ │ │ is called to write out the header and statistics. The data is written out in the appropriate way, e.g., if │ │ │ │ │ the storage mode is by triples, triples are written out. The value 1 is returned. │ │ │ │ │ Error checking: If inpmtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 16 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 16 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 8. int InpMtx_writeStats ( InpMtx *inpmtx, FILE *fp ) ; │ │ │ │ │ This method writes the statistics about the object to a file. human. The value 1 is returned. │ │ │ │ │ Error checking: If inpmtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 9. void InpMtx_writeForMatlab ( InpMtx *mtx, char *mtxname, FILE *fp ) ; │ │ │ │ │ This method writes out a InpMtx object to a file in a Matlab format. A sample line is │ │ │ │ │ a(10,5) = -1.550328201511e-01 + 1.848033378871e+00*i ; │ │ │ │ │ for complex matrices, or │ │ │ │ │ @@ -663,15 +663,15 @@ │ │ │ │ │ to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if │ │ │ │ │ outFile is of the form *.inpmtxb). │ │ │ │ │ 2. testFullAdj msglvl msgFile nvtx nent seed │ │ │ │ │ This driver program tests the InpMtx fullAdjacency() method. If first generates a InpMtx object │ │ │ │ │ filled with random entries of a matrix A and then constructs an IVL object that contains the full │ │ │ │ │ adjacency structure of A +AT, diagonal edges included. │ │ │ │ │ 1http://math.nist.gov/mcsd/Staff/KRemington/harwell io/harwell io.html │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 17 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 17 │ │ │ │ │ • Themsglvlparameterdeterminestheamountofoutput—takingmsglvl >= 3meanstheInpMtx │ │ │ │ │ object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The nvtx parameter is the number of rows and columns in A. │ │ │ │ │ • The nent parameter is an upper bound on the number of entries in A. (Since the locations of the │ │ │ │ │ entries are generated via random numbers, there may be duplicate entries.) │ │ │ │ │ @@ -707,15 +707,15 @@ │ │ │ │ │ • The outFile parameter is the output file for the InpMtx object. If outFile is none then the │ │ │ │ │ InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is called │ │ │ │ │ to write the object to a formatted file (if outFile is of the form *.inpmtxf), or a binary file (if │ │ │ │ │ outFile is of the form *.inpmtxb). │ │ │ │ │ 5. createGraphForATA msglvl msgFile inFile outFile │ │ │ │ │ This driver program reads in InpMtx object from the file inFile that holds a matrix A. It then creates │ │ │ │ │ a Graph object for B = ATA and writes it to the file outFile. │ │ │ │ │ - 18 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 18 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ • Themsglvlparameterdeterminestheamountofoutput—takingmsglvl >= 3meanstheInpMtx │ │ │ │ │ object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The inFile parameter is the input file for the InpMtx object. It must be of the form *.inpmtxf │ │ │ │ │ or *.inpmtxb. The InpMtx object is read from the file via the InpMtx readFromFile() method. │ │ │ │ │ • The outFile parameter is the output file for the InpMtx object. If outFile is none then the │ │ │ │ │ @@ -752,15 +752,15 @@ │ │ │ │ │ binary file (if outGraphFile is of the form *.graphb). │ │ │ │ │ • The flag parameter is used to specify whether the offsets and indices are 0-indexed (as in C) or │ │ │ │ │ 1-indexed (as in Fortran). If they are 1-indexed, the offsets and indices are decremented prior to │ │ │ │ │ loading into the InpMtx object. │ │ │ │ │ 7. weightedAdjToGraph msglvl msgFile inAdjacencyFile outGraphFile flag │ │ │ │ │ This driver program was used to generate a type 1 Graph object (weighted vertices, unit weight edges) │ │ │ │ │ from a file that contained the adjacency structure of a matrix in the following form. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 19 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 19 │ │ │ │ │ nvtx nadj │ │ │ │ │ vwghts[nvtx] │ │ │ │ │ offsets[nvtx+1] │ │ │ │ │ indices[nadj] │ │ │ │ │ There are nvtx vertices in the graph and the adjacency vector has nadj entries. It was not known │ │ │ │ │ whether the adjacency structure contained (v,v) entries or if it was only the upper or lower triangle. │ │ │ │ │ Our Graph object is symmetric with loops, i.e., (u,v) is present if and only if (v,u) is present, and │ │ │ │ │ @@ -798,15 +798,15 @@ │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any message data. │ │ │ │ │ • The EGraphFile is the file that holds the EGraph object — must be of the form *.egraphf or │ │ │ │ │ *.egraphb. │ │ │ │ │ • The CoordsFile is the file that holds the Coords object — must be of the form *.coordsf or │ │ │ │ │ *.coordsb. │ │ │ │ │ • The coordType determines the coordinate type for the InpMtx object. │ │ │ │ │ - 20 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 20 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ – 1 — storage of entries by rows │ │ │ │ │ – 2 — storage of entries by columns │ │ │ │ │ – 3 — storage of entries by chevrons │ │ │ │ │ • The seed parameter is used as a random number seed to determine the row and column permu- │ │ │ │ │ tations for the matrix-vector multiply. │ │ │ │ │ • The outInpMtxFileparameteris the output file for the InpMtx object. If outInpMtxFileis none │ │ │ │ │ then the InpMtx object is not written to a file. Otherwise, the InpMtx writeToFile() method is │ │ │ │ │ @@ -839,15 +839,15 @@ │ │ │ │ │ profile plot. The message file will contain line of the form. │ │ │ │ │ data = [ ... │ │ │ │ │ x1 y1 │ │ │ │ │ ... │ │ │ │ │ xnpts ynpts ] ; │ │ │ │ │ which can be used to generate the following matlab plot. An example is given below for the bcsstk23 │ │ │ │ │ matrix, where npts = 200, tausmall = 1.e-10 and taubig = 1.e100. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 21 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 21 │ │ │ │ │ BCSSTK23: profile of magnitudes of matrix entries │ │ │ │ │ 1600 │ │ │ │ │ 1400 │ │ │ │ │ 1200 │ │ │ │ │ 1000 │ │ │ │ │ 800 │ │ │ │ │ # of entries │ │ │ │ │ @@ -883,15 +883,15 @@ │ │ │ │ │ • n1 is the number of points in the first direction. │ │ │ │ │ • n2 is the number of points in the second direction. │ │ │ │ │ • n3 is the number of points in the third direction. │ │ │ │ │ • Theseedparameterisarandomnumberseedusedtofillthematrixentrieswithrandomnumbers. │ │ │ │ │ • The outFile parameter is the output file for the InpMtx object that holds the matrix. It │ │ │ │ │ must be of the form *.inpmtxf or *.inpmtxb. The InpMtx object is written to the file via │ │ │ │ │ the InpMtx writeToFile() method. │ │ │ │ │ - 22 InpMtx : DRAFT October 18, 2025 │ │ │ │ │ + 22 InpMtx : DRAFT October 28, 2025 │ │ │ │ │ 12. testMMM msglvl msgFile dataType symflag coordType transpose │ │ │ │ │ nrow ncol nitem nrhs seed alphaReal alphaImag │ │ │ │ │ This driver program tests the matrix-matrix multiply methods. This driver program generates A, a │ │ │ │ │ nrow×ncol matrix using nitem input entries, X and Y, nrow×nrhs matrices, and all are filled with │ │ │ │ │ T H │ │ │ │ │ random numbers. It then computes Y := Y + αAX, Y := Y + αA X or Y := Y + αA X. The │ │ │ │ │ program’s output is a file which when sent into Matlab, outputs the error in the computation. │ │ │ │ │ @@ -930,15 +930,15 @@ │ │ │ │ │ T │ │ │ │ │ Y := βY +αA X. │ │ │ │ │ • nrowA is the number of rows in A │ │ │ │ │ • ncolA is the number of columns in A │ │ │ │ │ • nitem is the number of matrix entries that are assembled into the matrix. │ │ │ │ │ • nrhs is the number of columns in X and Y. │ │ │ │ │ • Theseedparameterisarandomnumberseedusedtofillthematrixentrieswithrandomnumbers. │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 23 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 23 │ │ │ │ │ • alphaReal and alphaImag form the α scalar in the multiply. │ │ │ │ │ • betaReal and betaImag form the β scalar in the multiply. │ │ │ │ │ 14. testGMVM msglvl msgFile dataType symflag coordType transpose │ │ │ │ │ nrow ncol nitem seed alphaReal alphaImag betaReal betaImag │ │ │ │ │ Thisdriverprogramteststhegeneralizedmatrix-vectormultiplymethods. ItgeneratesA, anrow×ncol │ │ │ │ │ matrix using nitem input entries, x and y, and fills the matrices with random numbers. It then │ │ │ │ │ T H │ │ │ │ │ @@ -1013,15 +1013,15 @@ │ │ │ │ │ InpMtx inputRealTriples(), 9 InpMtx sortAndCompress(), 13 │ │ │ │ │ InpMtx inputRow(), 8 InpMtx storageMode(), 5 │ │ │ │ │ InpMtx inputTriples(), 9 InpMtx supportNonsym(), 9 │ │ │ │ │ InpMtx ivec1(), 5 InpMtx supportNonsymH(), 9 │ │ │ │ │ InpMtx ivec2(), 5 InpMtx supportNonsymT(), 9 │ │ │ │ │ InpMtx log10profile(), 13 InpMtx supportSym(), 9 │ │ │ │ │ 24 │ │ │ │ │ - InpMtx : DRAFT October 18, 2025 25 │ │ │ │ │ + InpMtx : DRAFT October 28, 2025 25 │ │ │ │ │ InpMtx supportSymH(), 9 │ │ │ │ │ InpMtx sym gmmm(), 11 │ │ │ │ │ InpMtx sym gmvm(), 11 │ │ │ │ │ InpMtx sym mmm(), 10 │ │ │ │ │ InpMtx vecids(), 6 │ │ │ │ │ InpMtx vector(), 6 │ │ │ │ │ InpMtx writeForHumanEye(), 15 │ │ ├── ./usr/share/doc/spooles-doc/LinSol.ps.gz │ │ │ ├── LinSol.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o LinSol.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2990,15 +2990,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -3192,81 +3191,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -6542,15 +6536,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 65 /A put │ │ │ │ dup 66 /B put │ │ │ │ dup 67 /C put │ │ │ │ dup 71 /G put │ │ │ │ @@ -6757,191 +6750,186 @@ │ │ │ │ B36258037B5F0DF7D78C26C1D24931A18A2606939F9933100C723ED2FD991F4C │ │ │ │ 98CCB4F15E381B4886FE0E928D4989A0257051C547165291D35FA5BCF359E153 │ │ │ │ 7EF69FEC09DBE6A9E866BAE054F56E86CA2D299F8DCB88685B932117314A73CB │ │ │ │ 5954C6D639CEB6F8A0A1F4D9414F1CA7CF3DEDEE81F75D8B5CEB205425442B32 │ │ │ │ 8703A8A79A51613E3E6A46C9B7B1052C0A5491130E312ED3A0A2F32C5D52B15F │ │ │ │ 9621BA9E1688463FEA43F72D5FDB6E8D0739003C1D8A04E1589A7FD3F405364F │ │ │ │ CD0677FB7EADC0D62CB762350689F751F19E6389284C97A5163CAD892E9A7043 │ │ │ │ -AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8C984FA8F1926 │ │ │ │ -1964201C49E4C82C0ECDF4896E6BABF6B0DFA6FFF1E3F2558FD1C5ADA2E9EBC4 │ │ │ │ -DA9F186FD56C1256CCBFCC77C9A783B786A3D5D0C5AC2187DD75FDD78FCB48A1 │ │ │ │ -3B2EFA314B9F0F4F4E53D48620BF2D227BE7B15D92DB6493AD6855D32BAD5643 │ │ │ │ -08B1B5E6F46C8C55D6828D8DE5818D3BB4BEF6B4403E6EEAEC8CE6B2E2F77033 │ │ │ │ -EEF6A2F39598B850897BD1249D88BC663EFDFF9A72C364D0FC44D1EA87951645 │ │ │ │ -4BEE78F0D0911D02BD4C03634D19DF18D881569ED8BA1B595DB17505ACE28573 │ │ │ │ -B71E84F6DCDF79ED0DC42644951F34FF8D52AFD77B32E0D585B720AF48DEB000 │ │ │ │ -97759076768A4B3847F9FE6498A5AB9AFF8DA200858C16BC905E2365D5AC34A8 │ │ │ │ -3899DBC7D2E0FA90553D3E71D6C7993637A309F2DE2888882DB9F7855D34FDD8 │ │ │ │ -230D01AC3DFE4D174DFF9EDAAEC7482082BD18B8780FBEADEAABE6A6FBD131E1 │ │ │ │ -69F23F9157516413F06B9EE1EC9D16C577546CB89D74F4082D857D928B1C8993 │ │ │ │ -5A4B8E3BD91C3A0B54840C9308FF33B1DA788213D6746514014A52CC2B3C504E │ │ │ │ -EDC311E76DEE25635B5F9D71FA0F27AD138D2F374AF459B835EC29FD26F1CDF3 │ │ │ │ -00CDE58E3A577742D9CCE1BD121CC033967A96D14DE9F26B3E01D6EC1ADB3F3E │ │ │ │ -DC5FA135472889403466BAE63848F3FB96315A3FE24C9198F74FEAA924105F23 │ │ │ │ -F75C2C0CB9B339872FF8EC86142053A542922011C7FC8FB56DC5BD30C0345462 │ │ │ │ -02FAB6F8645999E1A26A44BC47CC497DD8C0568FB66B079A05121D2EFD16F256 │ │ │ │ -7BC50B1A758C21A8968F14AE85B5D489CE17809DC955D474A7B53BF081FB2DA0 │ │ │ │ -15DA74735068AFF0BD3261F39745D09695A2926BCA7B7C3F049E8989D086FD41 │ │ │ │ -10A2D090C35F6A66278E570A8E82F48CB9F89B906FFE5C582529B986762B40F7 │ │ │ │ -5168A92E2D607B357A0C0A8C1404CA43C342F2089F4A933AFEE7423268EEE8FD │ │ │ │ -E4529160733E86012749D3F893FB08D2930D572451427A92889A613485AB1947 │ │ │ │ -D48350C67095F2385F7D55488A5F35BC515A3404E0BFC642385C6EAB69E3D7C1 │ │ │ │ -BE6C5AF22CD4F3D97C82A3F8F3A7B9996D1660E0C08A65D4F07ADA13663343A2 │ │ │ │ -54826E1C60CAAE01F299185C92EBC8DE482068E462C46E52845A570571CFC78B │ │ │ │ -345183BF72765F4E6A0AEB2C3DDAB259B6B5F514AB22AD4DF989ABFBAB6F0ED2 │ │ │ │ -DC9C03C55979B733475CD2B295F8DD99208816FF226DCD8FECAC34E2D9CA04D6 │ │ │ │ -23AE8524FAA96FB05EB4433EB82783AE6055DC8FEA32E5707ED2FD6E6A8FB668 │ │ │ │ -1BD0FF19BEFADD63F0D0A638C2829F5AD7D28C74C960451A1E9871057A796832 │ │ │ │ -5637EE91244838210A6B1A436335627FE456DFA6C4B93AEBE7F5B3C2723D5E6F │ │ │ │ -BECB93F86635E04383FCC871AF08E7CD7BC2C37262861D05FCFC234F2FEF93C4 │ │ │ │ -D659641ED15AF8FC09B2CF4C3499846907178430EE21893F9F38962111F3F130 │ │ │ │ -248CF9B48E933C5CFF91BE4770CB6B718F8DF4F505B4B51C033DD47943999613 │ │ │ │ -A4CF8789BEE31BFA53C68109D5F9B27074B36096DF3D6EFB46D897B8E20A6EBE │ │ │ │ -50DE014438E5A017CA81C8EC4B52FF79C9588801EBA69FC9943CE5896968C914 │ │ │ │ -A0AAEFAE3F3833E576F0F23DA3B3C3D41AE00988EE40219F2E0B9364A8344AD4 │ │ │ │ -21BFA6AA76ADA9E3262DC90A4362F4F03A2431E9679714F747387CE80C6AFC03 │ │ │ │ -DAA9195B6C282CD2B7284B3E66D9D62687E4F9F2E8267595BBDA15D61E1EC29E │ │ │ │ -A91666935F46D215A6F26FA22AD017348401D96C4746EBF0AC1C07157AFA3BE4 │ │ │ │ -7B17427CDDFB35C55B5FB164C647CC072E2368E79E89C1EA1622D530C1514E9B │ │ │ │ -0C42B885981FD4153ABE5DA4E93AD917347A88A544FCDB95BF42BB59E90FAF93 │ │ │ │ -7613D90F57522EA9DCD909DB0EF8B36BC387BE4F30BE45A6F86FA4ED3D2B1599 │ │ │ │ -8DC8FEB7D6B57D7F85B4352F48BD77FE56DB187FCB152C350377EB086A9CCEA0 │ │ │ │ -273B3809206979D875A6E4E0348D664B0A0EA3536DA94287BB6D17D255C0E995 │ │ │ │ -13B17F0EDBC18A920492AE8C9879CFA65D694A28FC3755A2EC7A8184F9B477DA │ │ │ │ -14D6EF3CE3371265B5A16BC56BF74942072B0E99085DF0F827D794588AF62171 │ │ │ │ -9E13734DF45C018F09C722B00404D43FDF7533B234317B296C9C729B8D5E3134 │ │ │ │ -3E411C9B8CBACFBD4EB450FBF49812D6D8D786387C15C9D572CFC762E8C679C7 │ │ │ │ -9E5FAE236799B67FE52FE09293414FDFCD10ED460E6BEBAB4BAEDBEFB739EBA2 │ │ │ │ -B410AFB5CC071954876AED0BF9A6438F2B3D612C5D66B607DC624F09F44BA890 │ │ │ │ -9223ABD9972707A28C08615DA3C1CB4FF4BB8CC5D9B87FB78A6C0E56C3B91F12 │ │ │ │ -3D54561245934CBCFA625FF538045C6621883BDDA7C22A91B4185548B1E7E64B │ │ │ │ -25DB4D92FD250C58E001A64A5FC9D5A8EF90DEECE1D874739F891AD5D0451195 │ │ │ │ -26B2C3D2943063EFD0EBC2441CDCC68D9DD6548235A458C18752AC5947F8B9D4 │ │ │ │ -753CE4497D2E40599CEC2C35621946997C8494F4B9479A1752CA0B0B00D4F93B │ │ │ │ -EE9A067C2DEC56DA7E2A681659F5CD2BF401D50B9E6BACD5C3971DBF7E6240A0 │ │ │ │ -4D1C16C2ADBDE2D51CDB61394031D0B88620A902A10E5B8F76AE71525D87DDC8 │ │ │ │ -BD3DE9211DC5C74C392362A3EEE44E2ADFEB1EE5FD6739C71A4FD242A5D5C9B2 │ │ │ │ -24FF4FA7BA1DB1FBD0B5E61F24A0B6FC9145DD2D30DD0B30CD8BB4CCCDA98E35 │ │ │ │ -EA466726316DBBB28FFA01829DE83D296A353BA9C6CB47E3C26DB3C15C4F3E63 │ │ │ │ -048F8549A642287BE733DE5B698773C6D268D891515816F305001A0BF8D107B2 │ │ │ │ -797D6815335D66C1E4B0222411F155293961E2F5E05866718C3074271062D723 │ │ │ │ -7279513D10ECC29704E9A694C93F4018707A5132016BB3BDCA7B311F1DB8EA32 │ │ │ │ -EB22BD569A223A870EA39A37B63B7EE8AD1A53A67B235BEA0EBD1EDA70CED58E │ │ │ │ -A92C8AFCB20939509D542A8E7C650D2F216C5365517A9948F62E4DCC7942E580 │ │ │ │ -0A9742D98894626432E1E5926CDCD22D38490A3B2CBF4A7221C365DF5DF2964C │ │ │ │ -9B75B4154DC32E8E3A23086806F8C026963134B85BD690259A77B06A24564459 │ │ │ │ -AD4BDF8277BFF05AD73ABDF0A16615278FE07EE2BA5718F2FDCF2B75AC0ED484 │ │ │ │ -A3AA1DF9BA6DE8A7928F1A3CDA83B4A180C8330F2ED6A68CB8AAB39CAFE4F954 │ │ │ │ -344C554737AD7D5994E9A957A53BAACB080FA97C9F5B2596F74BBD5EE10D7230 │ │ │ │ -3A63C9C57A91A72EF9626B53B842862125BBBCAB09AAAC267E9ABDCD3516D9DE │ │ │ │ -EDEB0E7BD7387F496742637BA8B4BE4197AED5819D5CD3707C3F87477C7C4BBA │ │ │ │ -C25B9BF6A0AA52B2AF3269052634E762E0198B10AFC3A291CC263B4D3AFEF197 │ │ │ │ -9F29814E0D16C5045887016952D261E37C00B4EB74C141E46AB7A44EBA30C2C0 │ │ │ │ -E3C58C5B3A8D89BA00008677D625E9115A554730CF61A74F7F587653E2D22116 │ │ │ │ -050707BB20CB06E9E2388CD59936929F2A3A921426FFAC12AB05E9A2A4432B7B │ │ │ │ -B620D362AB2E8559705EFC5950A2E831F1D7D23ED1FCA2A1C32805E1F93C1461 │ │ │ │ -750A49D3C535220410D5A96BB1CDE4EF2B39628FED708D6DB6D18538B35E1A8B │ │ │ │ -F9ED0598871E3CF2FFB82AF2623BF045D0E812484FE8BBF1001AD9972A397471 │ │ │ │ -D5E02B1A710CB83AC57AB387D2518891ECF1717AB8CD2DE3E664F01B73D0361B │ │ │ │ -7F24E3784861710EFFF34CD1FD1BE8E75EB259114DC81E87101F875574E27232 │ │ │ │ -B608A1F9E2D44FAED3CA557EB3AD751260B621A67F0C79C07D6BF179FAF2B379 │ │ │ │ -8BA54FD8071A682FC68023EA58D37C277F6C17372A53B054FA33CD568A49556F │ │ │ │ -F1871A242CDFB3281222208BF11EF08D0737A26ECA16581432B7E5CB35D55B82 │ │ │ │ -FDE30A05A4259B90A8138541A9B9C63EB312007D2C3B8A1EEF0B6AE16268C131 │ │ │ │ -B8DF6418343D14DAF61115D2D22AE3D16DD726F0D37E29978398C783C7486C57 │ │ │ │ -E52DD412FBC3E4515A267028E94BC7C72F1C0241561CD19DFEC7A74D0E6AFF7A │ │ │ │ -87C9483D2E3AF27760CE819F83D87980E80E5F7658B9C2734AF2DDE1BED81E27 │ │ │ │ -3EA261529667581511F7851B543F390F8C5717094F11F3BA98F07CCD83E94360 │ │ │ │ -3C848F59641CF1BE1A0DBEBC4E706E9BF6902E9D89BA2067C7D272C03F37CEF9 │ │ │ │ -4FA424D5472F127798799DE42884F16ED1A34E86D5B1BAF135653B078A2EA12B │ │ │ │ -1B83B4989A60D22FB987C96C6B9DE29F5A9C1E78F54816D4D55A616D5A7DEB35 │ │ │ │ -FA28D8EF2E2EAF106B7CA9058F97718C3A687BE2FEC66094C48931BE6C2EBAB6 │ │ │ │ -C0AED10ED329FD1E5B93D5046629E5BDA89A645DC78805240A67919B88BA67E9 │ │ │ │ -51476A2524804613C20B23BA1F2D87588C5835759A1CD3F69A70793D051F5DDD │ │ │ │ -5FCCE09F8AEECBA1CEFD3CC7DA1E85C63F58907AA0F2C10471C4108138514C65 │ │ │ │ -5954E80C27985129F7333ED609DE1F36F57660F572CE77E7EC6889D3856C14CD │ │ │ │ -650712DF806A0D4B881E721C279E13685957C67D1AC32E9FEDE1AF1EAD0B80D5 │ │ │ │ -08F25F764D5A5948BA3E4BBD11FC62957DF2DF041B9C52065ED9868B78A9F8D1 │ │ │ │ -A7D248B93DF1E197D692971421D3800B97E2B03AB49B1DA0F4E080BCC6DDF63D │ │ │ │ -17B8AC8E1CA4F352F9015C0688BD5639A97A9BED90F6A3EB93E589B49051E2AF │ │ │ │ -82D0DD8D9675EBEC23DC8DF4F605F2E0F7A5A3622789656A5919681E20CA2824 │ │ │ │ -09D2AC81030F1A613E9B1A92CBD81BFD16D9BBDE72A0794DDA5098069F2AE428 │ │ │ │ -B565AFC3CF26AD8E6E7A8B0F349FD9A2B16779385B70E2AF077607C1675D78CA │ │ │ │ -DFEA384D747C17EBBF1D40508C3C58171A3AD22D501699EB5ADADF1992A121F3 │ │ │ │ -A6D5AF2DBD8AB5ACB77AE6BA1CFD08FBFEDF6985550522D71343CDB942649A9D │ │ │ │ -24BF4C073649206FC408AE1A6FD1111E3947EB2E2F71C41C268091F5436431B8 │ │ │ │ -C0D22BCBC06B041512D3B11483677B9B3EBE82E826C2CD3CB42D3CB8358B366E │ │ │ │ -1B308A4B501400DD7A95E2033D00676A9CB792BE6CE6EC0B0B69A0CE57F5C26C │ │ │ │ -71F7C74C2618159EAF173E3A342AAB47B49773343514C5CA17D2CC3F008215B3 │ │ │ │ -08C753560E7517BCFE5D1B87B352D48D91E84E51A16B45EF29994A3ED09F9C5C │ │ │ │ -7CACB7670DF14056B0D33D98D4D635DD2B5F997D434FDFF35293E740AE43E01F │ │ │ │ -DC65017525C79A73E261E751C7A4FEFBD96B03ED10CDE44538376F3F6D490BDB │ │ │ │ -47C604F256F9DB2FF067F080357D987B5BD01FF33F0BC1B43D473833EBFB82E4 │ │ │ │ -4AD24111453A61E948763E73B702E25CB2C01A1505C587B38FB69E46BBB3CA0E │ │ │ │ -8516201F7E2A4D4B5207A95F6C3AE4052342F88B54AF2F51610CA818CA5D2DA8 │ │ │ │ -E9BA4B3210A9CFF9A8B67BCC6584A31AB07F4583C8E7559D4E74A30A1BE80DEC │ │ │ │ -52EF16A865AA4AB60F4C38945A4D9E558915ED5E6C8D474F91247338F905E171 │ │ │ │ -71DD3E1ADAFB4D55C66456D5781624761FE6677D01BB063647F6E178A34F7823 │ │ │ │ -8E66DDC768AFD0C87182CA87E35D5C67107CEA8756FAA7AC4AF291030CD3636A │ │ │ │ -4877BB8D4A62EA476CFB36642256C2B68FC3E8E181A4326E1CA7AF17737C2DCC │ │ │ │ -1CCC7298E2D0A9D1846855B1735DD6FB9F2FB5828C38A715280D62DC57F3E8CD │ │ │ │ -4AF175486A3899F04440F6B4C597AD7B6333E0214DBDD1E85F4CFA5F1C190B06 │ │ │ │ -98E3833A056B6F0C27462BD856B7353B6A41D9C7AB9E7E6738B39C400383881E │ │ │ │ -5ED0F7F123599E3A6048D9CA4D75864C7FE9FC292C7F367BED3646644441E5C5 │ │ │ │ -1778622E04255777D24C2BAF59C44019C5625B6AFD21E05E1F8B773D1EF1BC62 │ │ │ │ -922FB0DFCBC7302D3A764B665B8E52D2F4D271763E02F402D91CB3F41A3F7F3D │ │ │ │ -31BFA0079CAC826F8277E1C017E33650E24F951C792C9A67222B479104C1CD08 │ │ │ │ -FC4A20A89C4F42DAC3A9B2D2424EEB8F26D0FE1104842F1DF91B0B1AF0B2A308 │ │ │ │ -48EF2649F43E78A3F4FC7632D206DE4E6CB73B60083EA656CB1DD59BB774B6D6 │ │ │ │ -D215D651C9920A0622CF3065336F72A315BE7DB4CED6F3FE6A2262BFB1FF90CE │ │ │ │ -C3624FA7126FCBF68C4083EB04605C8E59F102F2181DC218C45266697FBE14C6 │ │ │ │ -960905CFBE28E8CCBC459908184C907206FA5855C6B2DB13815A5439980E6819 │ │ │ │ -4495927CDEE1C43F03804FE02EB93AA2DCC6451AA88C9A30C21BEF1857788137 │ │ │ │ -742553E9EA3115B3FCA1DE5E50ABCD68B348710E0703837669F5BD8A9E08B72F │ │ │ │ -1B41910032EE69B33C3B1BFD2C4AA0984336AADADD95AAED39D3C993976D5929 │ │ │ │ -DA195BA76E81F4D47BC094C6D1E9C7B006680C90F3473ACE92CE703CBB921F3E │ │ │ │ -51F04CBECEEBC0C293A8D3F562CBA90D932097E1D8B10AE9E12EC8B38AB405A8 │ │ │ │ -4D13C20B342BBF5DB5F2BD66726A54E056105D07C2056EE101D89A6FC18A4F9B │ │ │ │ -A0DAF6889872E7CC3BE73169009C7D6EF683F23B7EE09C9D21C681454F191489 │ │ │ │ -C80338740FB9AAF28B49C10B79A4FBB36DC02DE6ABF3785DB915C234C6D18608 │ │ │ │ -7499185EBC749D49C522BB6EAA402B42C0AC3A56E6395E4C929172EBCB540C87 │ │ │ │ -738B4CEE6CB9A0BE7A4850351B3CBF6C72B7CEF59069CFDD34AF8A58E0E4163D │ │ │ │ -189589C6E0B6F00C4A661856BE3480A6DF190120796804489390254921076EDE │ │ │ │ -151CA0569F9B67E10217BECD741475AE26EEDFB30D0041DC7570625B88896A00 │ │ │ │ -509D252D72549A776A4AD75E924789EC3E435E98B4A0C15EB8338DD8FF02DBC8 │ │ │ │ -847C311699B1589B3CEF5E30F773C6BBDA0D2D0EB652F420BBEE88F286B92C05 │ │ │ │ -6C4261382D236D7001758BD12AC9124B7D46445D719191D9A43B1C589F127ED3 │ │ │ │ -D04709E7950AE0D1FB4038937BC302462023D6058A5BE131ABF766D2A6FD532D │ │ │ │ -A8DBAD9D5216496DADA019148BFBE052E2961195F6E628B27C611F59C75FD686 │ │ │ │ -DDE2A153D5AA15DD041BD488486113C7573E3DB9EE614074A3940015BA6EA324 │ │ │ │ -E5D733E5F8AEEDAF125841CD0C2383A08F3AA6EC1A6065AB9F04FF4E36BD83E0 │ │ │ │ -3C364E7E3F80A8ABB4FE26BB9DB16BE3E8BADFF07B3403E6713E87B283821779 │ │ │ │ -F827A232A8850B1DAD4CF2F33CDA0244DABD7263D62A2AF951DBC41575081A56 │ │ │ │ -08C31A896D8A82656036C65400CE024820F21A474C2BD13FFE1A203D156F2047 │ │ │ │ -96D1AF3542538EFEFE3924703466A95706CD78734469EB72FE5B8962AE9CCAAD │ │ │ │ -3330408D53ECDCB6E34199F2F0C05797856B53FBD526061CD770EC6B0853948E │ │ │ │ -DCDF72D38F8FB4D7CEB849C4C01DE710AA91477C4B39EF75AA0F0B853DF1116A │ │ │ │ -BF2DEDF0A69EE8488A2380483B74EDA9B484164A097E4EDAC099D7DD275F9FEB │ │ │ │ -FB78D5C3354C175115E16D9DD5817BFBF125A96396C6EA04EB40EC4E8740EC10 │ │ │ │ -2167B7C807A1A6A637A9BEBDAC1870282257473E9C895162A957B7D4E4659109 │ │ │ │ -FD867797A03D51B09AFC020955DC2961B2880FCBE3E4F78BB902DE853F599E29 │ │ │ │ -F95EAC071815A06C2273625245134FAD58C50D160A23EE42AAB0E836035205F9 │ │ │ │ -E44D43DBC64F8955C2F60533715AA8499D721AC9CE44B7E0E7165ECDDB1B52B8 │ │ │ │ -E56F42E259DD3A16C20DFB1DEAA51BB6F8349F9307C6A0F252B42F9A01B71EC1 │ │ │ │ -9B83B6DF3A0FE2A76F2873A2BFE559B1A119EE80840DACA7FCB0B78F70ED7A40 │ │ │ │ -3462AC9E09971B0F7DF04A58F750AE54D7C6E7680AA223DAF8D1C34964E4432E │ │ │ │ -961C4F718E1E35D59AEF8EE29605A0052D1F154EE9DD2ABCBBFE56186A4B2822 │ │ │ │ -450BC76438750B829D017C4E05138E6376946E8FA699468CC30AF6DD217982A8 │ │ │ │ -E42427B084B71CBC75E0106F5F94BD6038DFAD8F56A0EC55AC79FE9D1B8FAF05 │ │ │ │ -1A89A312C822B0846BE0025797AD21A543401F717F02BA980C48670351C3BFBC │ │ │ │ -DC68EAA00261552340CAD079C241F2A11316DCD7E19D5512931295F6FD21666E │ │ │ │ -FB702542E71C7A59504D741984C2FF6D77B3F9DA119238020D0C5343EB796AFB │ │ │ │ -7BEB2428F3533E1CA1093FBA29D928A2FAB2226347E83421EEBF6B1FB8434A8A │ │ │ │ -D9048AEB9C00EA015FFE7544728ED2669974B6833337144B2881B30FB26BAD5C │ │ │ │ -DB │ │ │ │ +AFEC5A36E7D86F5EE345576F3AE6927C6F5B2A095817E7796AB8CE8D804ABD10 │ │ │ │ +1E55279D43DB0A8AA34C2C7FB2165C3BBCE87A453BAE55F39C5E29D5D4B2A6EB │ │ │ │ +EB45A7BEB16C72CD52870BA9A94A9884D94956A14048820F57EB1B5A8B90D309 │ │ │ │ +143B0BCEECE106E038E9D4C7C557EF67ABF2794970B8CBF7DE1866DCD4EFC87D │ │ │ │ +CE1135B0B2D86BC9947BF48478CCCB8CB606B00EE99BE47A157FF1AFDDBB6FE3 │ │ │ │ +925FC35D965EE4B0C3853422926D812D873D3E2DE83040B16BFFBB5479411127 │ │ │ │ +963771F38CB46367E6CFFABB63979A663D3BC05776171072B0FD91600A5DBAE9 │ │ │ │ +399D64C1C46C2CED1E365E3847C4F7C1F8827C661D5EA0B0884C447A0E7652F4 │ │ │ │ +2B0E3DFD9915D59A9FF39B8790CABC6762A58717FA6A4AB297FF809B4810671F │ │ │ │ +B50BCC1EB9DA77F3DE919CE7FD7A1B855CC4FBEF6C3F785A43A6977779F3CC9B │ │ │ │ +E592D073A542DE0863E030912121B351179C691509777C3EEE62523A5788C3B5 │ │ │ │ +48E6EAEB79E2F4E9003B31D423D3B298DE0AD603F881067E30A90713DCCE9E48 │ │ │ │ +1B0FEBD02D5EDEECC71B1F68DD74740C644540E6E4E34B249EE2363A9AD3E268 │ │ │ │ +FC1B86D681EB6E9884DD91E94603C2132966F6AD3D1B692ECEE3DC5CF2A34161 │ │ │ │ +C80F4C6F18B30089028C61B9EB4341F403299AEFB1DB859B12DA13AD19935A7D │ │ │ │ +B7BDE6F22501639E7065336166A79CB88706982B66870F033795D6FBD840B8D0 │ │ │ │ +04B4BF30B379654D3A4A7203B15C538F85771378515DDD001C33932E9A89CAE7 │ │ │ │ +8C5C5B27202D8B296E68A0A7E559E7101B2172CCA1EE1FF50D1DAC2AED3CDD60 │ │ │ │ +E51DF64DB79501BCF58065CE81CFC0F46B7DB8E5DE62BEFE4624BCE422A1F901 │ │ │ │ +502D6538BB121CC48600F1949F1D90D429B9D3FED64713D588255607243FA103 │ │ │ │ +4537262F9308AE0AAF836DB1AC63611CED9AE00D7F53ABA1D1BC8F0A95C2EBBD │ │ │ │ +AEA24EBA558433A5366AE76E7BCE64F6A37F6EDB7AB7C9866C1BEF57083D66B3 │ │ │ │ +F77AC8F986240692633B1D06A10F3708F1186ED2389FBB64D68C08B71F6F3D3F │ │ │ │ +B86C5A49BD3C24DB1111E6DC8A7878E7A4C4198588CDD7207652AD3FC37D4372 │ │ │ │ +62495A7C3BBB84B66259FA08965C6AF62C62C7034B4A55791EF510FECBC69606 │ │ │ │ +1CDB0D9C9BDE6E9B25EE8CB57F6FE831CF1D203365F12EE43D5FE3857C639027 │ │ │ │ +C676AAF6EFDF434141F87F5AE45CC22F6A11C56B96D87D91B55BD77F501A64BC │ │ │ │ +9C85C0C5976420C76FC705B1DBC63B5399622F9AF0FA5437AA7DECBC21ADF51C │ │ │ │ +9A072D389E7607CECE9A6BEE3503C646572D32FE59976DFF4B2F8AA59CC5A747 │ │ │ │ +19DBF94721E1975F3D3C773F7F16BCC75C7481C0A0DB8C26D02408FB8C0AF00D │ │ │ │ +7BF0BEFE1BA6E603A818C85426BF009C052E9F8B9EA90787752B728211E38D57 │ │ │ │ +FD3BBEA661C0E9232ED9529B02B01C5F0406CFC5A73E91E754E61DBEFAAF7C1E │ │ │ │ +30BA20C235568570796905BCA8921856613774A4EB9B2247F4C3AAA42DF84EC9 │ │ │ │ +4ECCD654611AE70EA4A7F8A3DD890EEED39D8EDF9EE4F443429EC37B3F923838 │ │ │ │ +D6F064C3BB1A931460F8C64ED400FEFA445526CA0745944CF105813D86B42CA5 │ │ │ │ +94B4B5C77DF0AE56A46A8F7CFC730C6A25826CCCC3181A6CD1CC879C4F58D491 │ │ │ │ +04DDCF171B5E4068B80C5CB08D23DE871AC19790FAB377B27B22D480B4713AF2 │ │ │ │ +F9D905556132CA2667ED3CEEDBE95C1F0405D63260B6AB3214F3214A44C34B2F │ │ │ │ +A3F3D3DEE4BFB9295E37A25E22E68334EA45B755638A5A5725E20047A0944B41 │ │ │ │ +A21F8A43F8D8A3AF5AE9A4BAE56815E5E70D89C857EB2F9379DD81681A8BE37F │ │ │ │ +1114FA60F6844A184748DAE462A5B5E390A470ED29E13F6B8DED74F6E3A6CD45 │ │ │ │ +0FB70FFB716B520D78CC07A2A0C80877040CEC720C5E784BC9DB8A2261E7A10B │ │ │ │ +AE82EA84120A6B3D6AED7D6E3AFA35D8794280A11D7DBE256DF969AE1333D13A │ │ │ │ +9B239CC0AC5453EEC505A64E4A03AF9EAF50CC3D6015AC9252F07BA4067AB1D0 │ │ │ │ +25BD91E409B267D7A4CBD210564A94F786F03EF0159EC9B136B36EFEBB372EF6 │ │ │ │ +AC5E8B832EFE8D5BF7727CCE94F81B2B3C3B46A2BDA7825B668AFAF7F6A853BE │ │ │ │ +AAF26CF7DCEB4CD853EF6BC9EA12DAE3880E387CCDD290B7BB206C200CC197FD │ │ │ │ +37003A232CE09CD82770749FA40F3A38880464B8F2035D3F7E1C5F2EC17FD552 │ │ │ │ +9C99500D6D860CFCCB280273832B84C83367E0FE86AAF7F192009C4C953B1C07 │ │ │ │ +436041EA42D098FA28E0D113B8811B9A8AE7387647B83FBF9227FB8671DC9F1B │ │ │ │ +6E016B06997FD636AB32B408E9B601CD3D4E7346F319A40335190690A2343396 │ │ │ │ +15E126D42FE8AC86CED18129D04870718EBA6632223A44B4E36FBFFBA982398A │ │ │ │ +0B735F9BC757D9F3A4760004D1BBBF231215E9CE88AB1FD6693694C502110C62 │ │ │ │ +517F494BA8CC2F7197008014C2F1DDEBB5682189E809AC4DE373C870EDF9D36D │ │ │ │ +79FA668C38CCF1045414141CECE085AE65D441C776C629713C361E5E39C1C36F │ │ │ │ +330FE2FDE5500172C7F56B1AF44B8BFB3B44A143ABE1CA0EB48BF99FD2DD411C │ │ │ │ +843D72E92EA11ED3D4CB43B8FEF9F5C1BF7BF52EBD7B82AB5ABB9E03A793E371 │ │ │ │ +828CE8C6CCD5DE11047BE8E6BEEDE9EC7F122A635F3870491E3646BDB3AC77C7 │ │ │ │ +88F83B5AD0F4BD68CC132ADE3FEC2684B568C10C3188CED70182919DDAFA3282 │ │ │ │ +15C5879CE24F47D3D50E37ABC02D5F98C6CA85D73A242C2E162E56F475CD529A │ │ │ │ +19B0440E9482A8659D2C0B4E3352CF5B81CB956078C6AC45458C2EE42122950F │ │ │ │ +345ECC1A5121761B9634658AEC39AA30A1F4466AC7A18F9BBD0002061B4073A0 │ │ │ │ +8457CB1C972FFCC0892CEA80395C8506BE23D8748E6C830952C5E77FF7D1093B │ │ │ │ +1A8681D4E2E67E2C0FFB90C157B04DB34A0B712A9D70BC856FF91BBA85BB36DB │ │ │ │ +78D6FCBEC7C48D4FE76A15214D291861C402EFDF2B1579A7C044E178F89F6E7B │ │ │ │ +29E1406219539310FEBD0A74824C4F9601B7671614D871E7B35A3F8E83C9D2DD │ │ │ │ +211B4E26DD8F6113C6D0CFC468A824914132700417E0B0701B856471B2CDCEBC │ │ │ │ +22503682A0C11C1E004B6CA071C71FF4F9666D1F2E2984F8FA66276A126EF344 │ │ │ │ +BCE65AC1F8E4569C0A1B49A5F730B3D43DA468921796FE5910C2DA812987C34A │ │ │ │ +80FA2D306AF9C66A77507012D21361A2C1041C284F6391E8573539792C36B43F │ │ │ │ +12D0502FE87DBF5C9D4425838D725D69F87FF832C43CC40B84949E2D1126591B │ │ │ │ +DB6AFE20664C3E74C86D0ABC7D54C076C029DA54C8E6481ADEA90B5FA5CAE60A │ │ │ │ +095D7F2740E66A483BD983158479690A65BADDFD7FFBDCFE76E6FEB4899DADFC │ │ │ │ +035E2528B8B10B03553A9E5ECA172A591DA79A1214E663038733C80A435B8517 │ │ │ │ +CB57DC405731CFB37E08571CAFBE72F173D64D2CBF08BAD9D4D4B09514A3EE89 │ │ │ │ +3D7D09C8E02B469DB762FC65DFD1438B5EEC62899552571CD395687637539F0C │ │ │ │ +0333EFE52F08598CC05523394E0F254778650EA55F2D8BEEB725B997AB4B4BE1 │ │ │ │ +F5EFE4426D40E9AD8DB8FC25D1F2FFD91D11A2F7D6FA8874EFEC219689C8668C │ │ │ │ +F58BF7EB3BE9C2635C21AF0E9E91B34B0F22400B12BDF0B0612EDF44E47FCCB6 │ │ │ │ +44D69B015BA0095E47AFA9D69BF6A94F9638DAC2A7E860841ABA9D2D9449D5DB │ │ │ │ +BC57E14F4DCC8D88706945027F9F366D159B8F5745AD900916F4C7C8FEAD7BA8 │ │ │ │ +11917C908A998A6C7216D27703DD9DCE66B79A636BC4C845BDF3D605A16E7C9A │ │ │ │ +008CC4E1FB7C15065DA7C2C1440511868365B900CB04CCC320272589C6F61D91 │ │ │ │ +A7390F6088CC1F92F2CF0EED88E07D080E8B3DC3F96A51DBC38BB26829FD8D46 │ │ │ │ +CA09136DDDA6D4D0E5721FE76CC9F1161DD2841309A050931E590BC611640993 │ │ │ │ +08B31111C4228389DF61FA81AD66E37E3A89726912387DA9A4D7A1D2696036FA │ │ │ │ +5115133D2499438F93CF3CBD028894EC42A24CF4FFFFD648C6D982B908FDFFCB │ │ │ │ +0942FFD924BE5892AAFA554EF2B4E1F6CF2BF8CFD5413B4D2473EF262E97B38D │ │ │ │ +67FB405D69E0DBAEC4D066E802201C79D7F230F960E0EC7D97879711C31613B1 │ │ │ │ +7D83ACF4F8B369D745CCA87E1A9FA9B0DA4B9186F1D6943376EF0572ED3E4BA1 │ │ │ │ +B2AD6FF4317D5A6E445B658E47B1032AF11183912493BBF09F6B9337D3137E5E │ │ │ │ +86D8506CC0D767DF4431E7F4892508D9A21097C62154E0B91E219039BCCAE102 │ │ │ │ +A8539BF145E2BD54F57B7FA29EDAB38521BEFDED41FA72B17E3FF5FEBA8CC74F │ │ │ │ +16119735B2361BECA429F18E818F14B853037B5ACA3DA096C2D4D845F54A9F68 │ │ │ │ +4C588F9F3711922E1B746D0E47A63B0F44B1465856687AEBC166718638824F1D │ │ │ │ +119CC987B328EC4E8D7B61FAA8C4AF84717637F4F62A76A534FFB8E895AC34BC │ │ │ │ +235317A51458F2CF4C0C4B0095820286ADBA8A8452723B1F7C9F328B2E3BC9C6 │ │ │ │ +045D5671E9AACCCA0FB6A6998D3F5F1A0F7467DF0397E8DF14058A0AD9EE063C │ │ │ │ +EC50310B5311629DDDF26EF87611E4D40241E824BC7FA74B8723F29BA8ECA6A3 │ │ │ │ +8C7DFCD0D87AD3288921FF26B6AC9138DB15DD366D56655E6C82174CE5409C9E │ │ │ │ +0CB0CDAE5C847E0524D96A8DC412BAD9DF56653F208738A4117625D2616C2571 │ │ │ │ +B6EC5AA858CEA5A0E5F35D00044A1D75186A04B472215ECC063C06D80812860B │ │ │ │ +D8CF41AFBA3EF3817F4CAEEF0C1FFC331C931304DB8E6CB7D1D300E184FBCC67 │ │ │ │ +843A2CB3187901366FBF449FE41F37B7FCDD997BEAFBFE5EC88369F315BFFC38 │ │ │ │ +3EE7EB544E2C412D144795A1F7C43FE6B7C0FF30DC76EF7A432849B30D925A7C │ │ │ │ +34D1B115BB9ECD5B663005BA777E901E4D4878DCFC9945821165FB6D41A347CD │ │ │ │ +EE0AC8F185936F5F0A5E1CA5ACBE0751F4C92DD6F80B602568ADDB549E816ED6 │ │ │ │ +70BBBEDE5D1B5526ACF247DFE0AF506C80546CB6AF4217889EBA46F9C1C4F700 │ │ │ │ +2CDD72DCA6C6AA253745D36E26AF12AF004D1F59C44693FFCB2C1520691738ED │ │ │ │ +96C9D2DA691B2F0886A708663F3FC8E38EF6D526BDEE9E88666597B44C811005 │ │ │ │ +8EEF07551A985DAFF6073266A2BEB4B52BE3C856E0F1DDB5023E83E44B515149 │ │ │ │ +7E2A3F539B0FE9DEE753FCF72EE0D457F17C1F06E4015D962A9415D0D836F79D │ │ │ │ +86E03357EC6A1922D7D8A4C17981E85E1727BB03226B8ACCFA87EAB8B3F0DA86 │ │ │ │ +D9AE8539B7CD8BC53B465AD3CFD7E62B5D390F3F86E7E398B81D753C15506471 │ │ │ │ +4F0B6ECD23A5BC20BF73BC81A3D9B61E16FFA284F2A6280EF34DC53538F58874 │ │ │ │ +703A763BE2DBD18D74BC33B3C13EFE69F3753D29EDC5197A70F80E73CC9E4AFB │ │ │ │ +74EF9C18AB8D9DA95CEADBA3CE381EE896BBE7AB82095092D402912693FFCFE5 │ │ │ │ +5C7D049EB548AD9221B004FAA3673A0F1DF86C618D62CB88BAAB1461CEC21190 │ │ │ │ +C8D6F7BE021866AC2EF9B9A085E0B8A33AB21BA9D192382632FAEFE29E0CECF6 │ │ │ │ +CF9FE4AF3B6602453F9222CE3EA3A146784331F51374E2CDA1A842F6367BEBFE │ │ │ │ +BDC1A3F657CAD8F53D2409B6A495F6EEFBCD2A47E93BA7132346A982AE10A214 │ │ │ │ +01B17641582439DE67AC11A47713B739788A67513B3DEF427310C33F0F7E271E │ │ │ │ +F9A10EA30B45FC58FFFFEA6672FD04842799C690D10DAE583B8B002E956D4EDA │ │ │ │ +BA926D5E012A7B315256F6998A09C2E28198EF32CB93101E47CFAC4E2616047C │ │ │ │ +499069F656BDAD3DBC74CF2C7FBFACC010F141059DE54F461D7E0A124E14BF03 │ │ │ │ +92DE436886902CAA83C0A1F234649C5606E4B3F6C6C80C5775A12A27333F1A60 │ │ │ │ +6681A93B13B7C47FCA1948003DD87D959A2FE2AD1BAC6E6BDA0446B731319CF4 │ │ │ │ +EBB9E321070672926AECC8D3B6E6E17FA6B61711E4F5EDC6F32FC50BB7720B82 │ │ │ │ +10C737482760037F5A7B9872F2EB8DF221D9962036862F00537FF5A32E9C6F52 │ │ │ │ +D24845DB697C2E7B635BF5A77C657E62C5F5FD25E9785FDC140E563B61300F8B │ │ │ │ +D329416FB929DF9F985EFD75E070BB6CF0CA2B9F5B214F555C754ED571E76784 │ │ │ │ +5910BBCEB2A4E49FB0EC68832F284C9E41E43AF3A3105BCDD4DE422816D3A21B │ │ │ │ +312D5245A6DDB33AE0AB4F1060A949AC31CB43D639C9F540834260E008256391 │ │ │ │ +8D84C5E9460F2D4C2A34AD46D331302AC34E1FC25897DD08665C706872189F98 │ │ │ │ +8C038D7811FDB95A3D5756EB386D1B97818486510C7718293CA788FF75148244 │ │ │ │ +B5083A3B279ED66EB955E2CC7465B3935F3DF511E9AE9462C13AA1431337F9AA │ │ │ │ +F4C0558ADAD4459656A585D6F4E63A549182D1220F58FAF7487E8F732B8B4588 │ │ │ │ +CA735BBBDD50C51DCE1F9E961A5F459BCA7EAE9B58C31B739556594EC89A9FAD │ │ │ │ +8387088CB83CF5B177BA7FEDCA08993DCEF326ED120DC74611CCC776BE4A8A6F │ │ │ │ +346F0F97C923A1E625DDDBFE65BE384679DC43604E980C677CDDAF2A7709E7CF │ │ │ │ +D8530C33D68EC108114F0D04E5B06032B0515E8CA5670C41C9C895518CBE7683 │ │ │ │ +32794ECE186100F51784DA23C2D293BD441CDDF20E43F5AB75D4241796BCDEB9 │ │ │ │ +E8861617F62F64E99CA9D47038F2CF8A26118FFC47E391E91DFB1049DFE844AB │ │ │ │ +474A6F857CD669434086F42D60C147B604AC31DE3BB4D5F6F45F146B7E6DBEE7 │ │ │ │ +CD00A510C7DF34CB4B7813F74399F935F652FFCC4F22A8DBB0FE3A2C097A8B0B │ │ │ │ +1B45E292417C5D578A32D6DA0F0E4FF3058F2B8F42618B401B3AB46EADB2EDDD │ │ │ │ +6DB68C501F0C2B311B57C8C8391C12719AC34C8621ACE53A280EA706E735A145 │ │ │ │ +FFA32E485DE1CDA790466E73C3F99E9856A0ABB460EFE59AF4D5D4F07D453927 │ │ │ │ +F449310EEA2C82D765F161EED60C6AE8CEB7CBAE7E5C9A77A1449FF13A46690C │ │ │ │ +12405E8230C947197499228CB7172993CF21BEDDB480E2210C9F0AF3DBA8DAA4 │ │ │ │ +2D9F34BC6A0285E6C6A8F31DAA8D0253B3B6FAB7FDB9CE7A99E626C807786FD1 │ │ │ │ +54D204B6C0786892F619C0C7024272E5E27D0C115DA6D9753A28D326EF46002B │ │ │ │ +07135077E06AC5FD632E89807C4F2FD47D25B6FF2973DCE95128796E46CB0AF4 │ │ │ │ +23853D54451C57AEF4CA1646D180826F6E789DCC207F824F49B504C71C2B625D │ │ │ │ +4A121516FC1DD7FC7B8D676CE88E0C5F6211F9A93D4C4EF3003E1BAA0B9EBFE4 │ │ │ │ +73D5AB4F41C8BDD4A931A3107A3BCFC4D7C64295E8858FD24DFBB7A230087CC1 │ │ │ │ +4AB94788C336239E6D788493E965571B71BA0A8D4594A12978D2F3258106D111 │ │ │ │ +3C84EDB48ECD7D10378B254200DE737DE8C29461D9931E58E3445CAFDB24E604 │ │ │ │ +B79D2DCCA20793978E3A8E752F1BA5D815FFAEB7E16BB51BDFD222471E08B5C0 │ │ │ │ +CF83224019A79F65DD699DD17A0BE65457B41207C097F4DA1A0A352490B6CCE0 │ │ │ │ +AEEB3D1822998E75299E8047DE2DCF36A74F1211F808DC2E2BC4480ABD46EF7B │ │ │ │ +9B6966DCAB5E0559F2DEBA2E1F5C4448D0E65D8AA1CCE68A22C9A3689F08EB49 │ │ │ │ +7B76656242DFCCB653658FA445EBFCA99A9A491781192B6C5C3A0D5DA30F4952 │ │ │ │ +064085B6726C9ACDF56A1434C7C776733BCCAD7354BDF5657C2E20880AD0B51F │ │ │ │ +6B4EAB2AC8B3743F20861591F77B47A50C0E08C9FCC6F87A7062D7B07890A593 │ │ │ │ +8DE6A1903790EE10D64EEBD8C556C9F089BBF633E5740A9028B1CC8DEAB5D089 │ │ │ │ +B94EFBC7F0879E6FAA36307E0B05712056C178F59F38E94C6160D7CF55D0E67D │ │ │ │ +2784D760E096CF177E8AB41C82BD3289FAE7824400DA1F2C2B0041227498DDF4 │ │ │ │ +94783F17A1E23DC5581FB1181234630C02AB2FF6E8202E52C7037C6AA0226035 │ │ │ │ +A3CCCF42EDBDF3C9A084E6AB17A47947EEEBACDE8ABD963D85DD92FA43C59E2F │ │ │ │ +373B6E0415AD665C53066399BAAC11368D720D69B61AC705611AD06CF081F5BB │ │ │ │ +39F01A22923EC6D983A9898CD8D0188E2EDBA8C98F9F1A12FB6E50100F │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -7407,15 +7395,15 @@ │ │ │ │ rf /Fh 149[27 23 20[39 11[54 12[20 59[{}5 58.1154 /CMMI7 │ │ │ │ rf /Fi 157[46 44[55 55 55 55 50[{}5 83.022 /CMEX10 rf │ │ │ │ /Fj 137[40 48 2[37 3[50 1[25 1[34 29 1[40 1[39 1[36 1[44 │ │ │ │ 7[48 69 2[57 4[53 3[57 2[36 4[69 2[62 2[65 1[65 23 23 │ │ │ │ 58[{}23 83.022 /CMMI10 rf /Fk 135[102 3[75 1[79 1[108 │ │ │ │ 1[108 4[54 108 2[88 108 2[94 29[140 138 146 11[97 97 │ │ │ │ 97 97 97 49[{}18 172.188 /CMBX12 rf /Fl 139[32 1[33 2[42 │ │ │ │ -9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 42 3[23 44[{}14 │ │ │ │ +9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 3[23 44[{}13 │ │ │ │ 83.022 /CMSL10 rf /Fm 130[44 1[44 44 44 44 44 44 44 44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ 44 1[44 1[44 44 44 44 44 44 44 44 44 44 44 44 1[44 44 │ │ │ │ 44 44 44 2[44 44 44 44 44 44 44 44 44 2[44 44 44 44 44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ 44 44 44 1[44 44 44 33[{}84 83.022 /CMTT10 rf /Fn 131[232 │ │ │ │ 2[123 123 1[123 129 90 92 95 1[129 116 129 194 65 1[71 │ │ │ │ @@ -7433,15 +7421,15 @@ │ │ │ │ rf /Fq 133[34 41 41 55 41 43 30 30 30 1[43 38 43 64 21 │ │ │ │ 2[21 43 38 23 34 43 34 43 38 9[79 2[55 43 57 1[52 60 │ │ │ │ 1[70 48 2[28 58 3[59 55 54 58 7[38 38 38 38 38 38 38 │ │ │ │ 38 38 38 1[21 26 21 44[{}50 74.7198 /CMR9 rf /Fr 205[30 │ │ │ │ 30 49[{}2 49.8132 /CMR6 rf /Fs 205[35 35 49[{}2 66.4176 │ │ │ │ /CMR8 rf /Ft 133[43 3[51 54 38 38 38 1[54 49 54 1[27 │ │ │ │ 2[27 54 49 30 43 54 43 54 49 13[54 72 1[66 76 7[77 3[70 │ │ │ │ -69 73 8[49 2[49 2[49 49 49 3[27 44[{}33 99.6264 /CMR12 │ │ │ │ +69 73 8[49 2[49 2[49 1[49 3[27 44[{}32 99.6264 /CMR12 │ │ │ │ rf /Fu 172[90 2[110 121 2[97 6[106 69[{}5 143.462 /CMBX12 │ │ │ │ rf /Fv 134[70 2[70 73 51 52 51 70 73 66 73 111 36 1[40 │ │ │ │ 36 1[66 40 58 1[58 73 66 9[137 3[73 3[103 2[83 6[90 18[66 │ │ │ │ 3[36 46[{}27 143.462 /CMR17 rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ @@ -7457,15 +7445,15 @@ │ │ │ │ %%Page: 1 1 │ │ │ │ TeXDict begin 1 0 bop 1103 1879 a Fv(W)-11 b(rapp)t(er)44 │ │ │ │ b(Ob)7 b(jects)43 b(for)g(Solving)1099 2062 y(a)g(Linear)g(System)g(of) │ │ │ │ g(Equations)1306 2245 y(using)g Fu(SPOOLES)g Fv(2.2)1052 │ │ │ │ 2635 y Ft(Clev)m(e)35 b(Ashcraft)699 2751 y(Bo)s(eing)e(Shared)g │ │ │ │ (Services)i(Group)1995 2715 y Fs(1)2483 2635 y Ft(P)m(eter)f(Sc)m │ │ │ │ (hartz)2342 2751 y(CSAR)f(Corp)s(oration)3162 2715 y │ │ │ │ -Fs(2)1586 3013 y Ft(Octob)s(er)f(18,)g(2025)104 4919 │ │ │ │ +Fs(2)1586 3013 y Ft(Octob)s(er)f(28,)g(2025)104 4919 │ │ │ │ y Fr(1)138 4951 y Fq(P)-6 b(.)35 b(O.)g(Bo)n(x)f(24346,)39 │ │ │ │ b(Mail)d(Stop)e(7L-21,)k(Seattle,)g(W)-6 b(ashington)34 │ │ │ │ b(98124.)64 b(This)35 b(researc)n(h)g(w)n(as)h(supp)r(orted)e(in)g │ │ │ │ (part)h(b)n(y)e(the)0 5042 y(D)n(ARP)-6 b(A)20 b(Con)n(tract)j(D)n │ │ │ │ (ABT63-95-C-0122)i(and)d(the)f(DoD)h(High)g(P)n(erformance)i(Computing) │ │ │ │ f(Mo)r(dernization)g(Program)h(Common)0 5133 y(HPC)i(Soft)n(w)n(are)h │ │ │ │ (Supp)r(ort)d(Initiativ)n(e.)104 5193 y Fr(2)138 5224 │ │ │ │ @@ -7595,15 +7583,15 @@ │ │ │ │ (descriptions)f(of)34 b Fm(BridgeMPI)24 b Fo(metho)r(ds)29 │ │ │ │ b(.)42 b(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.) │ │ │ │ h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 b(32)1929 5656 y(1)p eop │ │ │ │ end │ │ │ │ %%Page: 2 4 │ │ │ │ TeXDict begin 2 3 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(2)315 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(2)315 │ │ │ │ 390 y(5.3.1)94 b(Basic)27 b(metho)r(ds)74 b(.)42 b(.)f(.)h(.)f(.)h(.)f │ │ │ │ (.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.) │ │ │ │ h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 │ │ │ │ b(32)315 515 y(5.3.2)h(Instance)27 b(metho)r(ds)j(.)41 │ │ │ │ b(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h │ │ │ │ (.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.) │ │ │ │ f(.)h(.)f(.)93 b(33)315 639 y(5.3.3)h(P)n(arameter)25 │ │ │ │ @@ -7727,15 +7715,15 @@ │ │ │ │ b(structures)h(for)f Fj(A)p Fo(,)h Fj(X)34 b Fo(and)26 │ │ │ │ b Fj(Y)46 b Fo(ma)n(y)26 b(b)r(e)i(distributed,)f(and)g(all)f(w)n │ │ │ │ (orking)g(data)g(structures)g(that)h(con)n(tain)g(the)g(factor)1929 │ │ │ │ 5656 y(3)p eop end │ │ │ │ %%Page: 4 6 │ │ │ │ TeXDict begin 4 5 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(4)0 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(4)0 │ │ │ │ 390 y(matrices)j(and)h(their)h(supp)r(orting)e(information)h(are)f │ │ │ │ (distributed.)45 b(The)30 b(MPI)g(co)r(de)g(is)g(m)n(uc)n(h)g(more)g │ │ │ │ (complex)f(than)i(the)0 490 y(serial)19 b(or)g(m)n(ultithreaded)h(co)r │ │ │ │ (des,)h(for)e(not)h(only)g(are)f(the)h(factor)f(and)h(solv)n(es)e │ │ │ │ (parallel)h(and)h(distributed)g(\(as)f(is)h(the)h(sym)n(b)r(olic)0 │ │ │ │ 589 y(factorization\),)j(but)h(there)g(is)f(a)h(great)e(deal)h(of)h │ │ │ │ (supp)r(ort)f(co)r(de)h(necessary)e(b)r(ecause)h(of)h(the)g │ │ │ │ @@ -7839,15 +7827,15 @@ │ │ │ │ b(is)g(the)h(natural)e(data)g(structure)h(for)f(the)i(assem)n(bly)e(of) │ │ │ │ h(the)0 5407 y(matrix)27 b(en)n(tries)g(in)n(to)g(the)h(\\fron)n(ts")e │ │ │ │ (used)i(to)f(factor)g(the)h(matrix.)1929 5656 y(5)p eop │ │ │ │ end │ │ │ │ %%Page: 6 8 │ │ │ │ TeXDict begin 6 7 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(6)125 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(6)125 │ │ │ │ 390 y(The)i Fm(InpMtx)e Fo(ob)5 b(ject)29 b(can)f(hold)g(one)h(of)f │ │ │ │ (three)h(t)n(yp)r(es)f(of)h(en)n(tries)f(as)g(\\indices)g(only")f(\(no) │ │ │ │ i(en)n(tries)f(are)f(presen)n(t\),)i(real)0 490 y(en)n(tries,)22 │ │ │ │ b(or)e(complex)h(en)n(tries.)34 b(The)22 b(t)n(yp)r(e)f(is)g(sp)r │ │ │ │ (eci\014ed)h(b)n(y)f(the)g Fm(inputMode)d Fo(parameter)i(to)h(the)h │ │ │ │ Fm(InpMtx)p 3296 490 27 4 v 29 w(init\(\))d Fo(metho)r(d.)125 │ │ │ │ 678 y Ff(\210)42 b Fm(INPMTX)p 477 678 V 28 w(INDICES)p │ │ │ │ @@ -7937,15 +7925,15 @@ │ │ │ │ b(,)27 b(real)g(en)n(tries,)g(or)f(complex)h(en)n(tries.)37 │ │ │ │ b(Here)27 b(are)f(the)i(protot)n(yp)r(es)f(b)r(elo)n(w.)125 │ │ │ │ 5407 y Ff(\210)42 b Fo(Input)28 b(metho)r(ds)g(for)f(\\indices)g(only") │ │ │ │ g(mo)r(de.)p eop end │ │ │ │ %%Page: 7 9 │ │ │ │ TeXDict begin 7 8 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(7)208 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(7)208 │ │ │ │ 390 y Fm(void)41 b(InpMtx_inputEntry)c(\()43 b(InpMtx)e(*mtxA,)g(int)i │ │ │ │ (row,)f(int)g(col)g(\))i(;)208 490 y(void)d(InpMtx_inputRow)d(\()43 │ │ │ │ b(InpMtx)e(*mtxA,)g(int)i(row,)f(int)g(rowsize,)e(int)i(rowind[])f(\))i │ │ │ │ (;)208 589 y(void)e(InpMtx_inputColum)o(n)d(\()43 b(InpMtx)e(*mtxA,)g │ │ │ │ (int)h(col,)g(int)h(colsize,)d(int)i(colind[])f(\))i(;)208 │ │ │ │ 689 y(void)e(InpMtx_inputMatri)o(x)d(\()43 b(InpMtx)e(*mtxA,)g(int)h │ │ │ │ (nrow,)g(int)g(ncol,)g(int)g(rowstride,)1341 789 y(int)g(colstride,)e │ │ │ │ @@ -8000,15 +7988,15 @@ │ │ │ │ b(=)43 b(ij)g(+)g(1)g(;)392 4980 y(entries[count])38 │ │ │ │ b(=)43 b(-1.0)f(;)392 5080 y(count++)f(;)262 5180 y(})262 │ │ │ │ 5279 y(if)h(\()h(jj)g(<)g(n2)g(\))g({)392 5379 y(indices[count])38 │ │ │ │ b(=)43 b(ij)g(+)g(n1)g(;)p eop end │ │ │ │ %%Page: 8 10 │ │ │ │ TeXDict begin 8 9 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(8)392 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(8)392 │ │ │ │ 390 y Fm(entries[count])38 b(=)43 b(-1.0)f(;)392 490 │ │ │ │ y(count++)f(;)262 589 y(})262 689 y(InpMtx_inputRea)o(lR)o(ow\()o(mt)o │ │ │ │ (xA,)c(ij,)42 b(count,)f(indices,)f(entries\))h(;)131 │ │ │ │ 789 y(})0 888 y(})0 988 y(InpMtx_changeSto)o(rag)o(eM)o(od)o(e\(m)o(tx) │ │ │ │ o(A,)c(INPMTX_BY_VECTORS)o(\))g(;)0 1169 y Fo(The)24 │ │ │ │ b(pro)r(cess)f(b)r(egins)i(b)n(y)f(allo)r(cating)f(an)h │ │ │ │ Fm(InpMtx)e Fo(ob)5 b(ject)24 b Fm(mtxA)e Fo(using)i(the)h │ │ │ │ @@ -8089,15 +8077,15 @@ │ │ │ │ 5308 y(void)f(DenseMtx_columnI)o(nd)o(ice)o(s)37 b(\()44 │ │ │ │ b(DenseMtx)c(*mtx,)h(int)i(*pncol,)d(int)j(*pcolind)d(\))j(;)0 │ │ │ │ 5407 y(double)e(*)i(DenseMtx_entries)37 b(\()43 b(DenseMtx)e(*mtx)h(\)) │ │ │ │ h(;)p eop end │ │ │ │ %%Page: 9 11 │ │ │ │ TeXDict begin 9 10 bop 83 100 781 4 v 946 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)f(2025)p 3080 100 V 781 w Fo(9)0 │ │ │ │ +b(Octob)r(er)27 b(28,)f(2025)p 3080 100 V 781 w Fo(9)0 │ │ │ │ 390 y(W)-7 b(e)28 b(w)n(ould)f(use)h(them)g(as)f(follo)n(ws.)0 │ │ │ │ 578 y Fm(double)128 b(*entries)41 b(;)0 678 y(int)260 │ │ │ │ b(ncol,)42 b(nrow,)f(*colind,)g(*rowind)f(;)0 877 y(DenseMtx_rowIndi)o │ │ │ │ (ces)o(\(m)o(tx)o(,)e(&nrow,)j(&rowind\))f(;)0 977 y(DenseMtx_columnI)o │ │ │ │ (ndi)o(ce)o(s\()o(mtx)o(,)d(&ncol,)42 b(&colind\))e(;)0 │ │ │ │ 1076 y(entries)h(=)i(DenseMtx_entries)o(\(m)o(tx\))37 │ │ │ │ b(;)0 1264 y Fo(W)-7 b(e)35 b(can)f(no)n(w)g(\014ll)h(the)g(indices)f │ │ │ │ @@ -8154,15 +8142,15 @@ │ │ │ │ (ile)37 b(\()43 b(InpMtx)e(*obj,)g(FILE)h(*fp)h(\))g(;)125 │ │ │ │ 5407 y Ff(\210)f Fm(int)g(InpMtx)p 651 5407 V 29 w(readFromBinaryFi)o │ │ │ │ (le)37 b(\()43 b(InpMtx)e(*obj,)h(FILE)g(*fp)g(\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 10 12 │ │ │ │ TeXDict begin 10 11 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(10)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(10)125 │ │ │ │ 390 y Ff(\210)42 b Fm(int)g(InpMtx)p 651 390 27 4 v 29 │ │ │ │ w(writeToFile)d(\()k(InpMtx)e(*obj,)h(char)g(*filename)d(\))44 │ │ │ │ b(;)125 556 y Ff(\210)e Fm(int)g(InpMtx)p 651 556 V 29 │ │ │ │ w(writeToFormatted)o(Fi)o(le)37 b(\()43 b(InpMtx)e(*obj,)h(FILE)g(*fp)g │ │ │ │ (\))h(;)125 722 y Ff(\210)f Fm(int)g(InpMtx)p 651 722 │ │ │ │ V 29 w(writeToBinaryFil)o(e)37 b(\()44 b(InpMtx)d(*obj,)g(FILE)h(*fp)g │ │ │ │ (\))i(;)125 888 y Ff(\210)e Fm(int)g(InpMtx)p 651 888 │ │ │ │ @@ -8289,15 +8277,15 @@ │ │ │ │ 5321 y Fo(The)28 b(en)n(tire)f(listing)g(of)h(this)g(serial)e(driv)n │ │ │ │ (er)h(is)g(found)h(in)g(App)r(endix)g(A.)38 b(W)-7 b(e)28 │ │ │ │ b(no)n(w)f(extract)f(parts)h(of)h(the)g(co)r(de.)1908 │ │ │ │ 5656 y(11)p eop end │ │ │ │ %%Page: 12 14 │ │ │ │ TeXDict begin 12 13 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(12)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(12)125 │ │ │ │ 390 y Ff(\210)42 b Fo(Deco)r(de)27 b(the)h(input.)208 │ │ │ │ 606 y Fm(msglvl)302 b(=)43 b(atoi\(argv[1]\))c(;)208 │ │ │ │ 706 y(msgFileName)82 b(=)43 b(argv[6])e(;)208 805 y(neqns)346 │ │ │ │ b(=)43 b(atoi\(argv[3]\))c(;)208 905 y(type)390 b(=)43 │ │ │ │ b(atoi\(argv[4]\))c(;)208 1005 y(symmetryflag)f(=)43 │ │ │ │ b(atoi\(argv[5]\))c(;)208 1104 y(mtxFileName)82 b(=)43 │ │ │ │ b(argv[6])e(;)208 1204 y(rhsFileName)82 b(=)43 b(argv[7])e(;)208 │ │ │ │ @@ -8354,15 +8342,15 @@ │ │ │ │ b(alen)n(tly)e(,)28 b(the)h(n)n(um)n(b)r(er)f(of)g(columns)208 │ │ │ │ 5106 y(in)f Fj(Y)19 b Fo(.)125 5272 y Ff(\210)42 b Fo(Create)26 │ │ │ │ b(and)i(setup)g(the)g Fm(Bridge)d Fo(ob)5 b(ject.)p eop │ │ │ │ end │ │ │ │ %%Page: 13 15 │ │ │ │ TeXDict begin 13 14 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(13)208 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(13)208 │ │ │ │ 390 y Fm(bridge)41 b(=)i(Bridge_new\(\))38 b(;)208 490 │ │ │ │ y(Bridge_setMatri)o(xPa)o(ra)o(ms)o(\(br)o(id)o(ge,)f(neqns,)k(type,)g │ │ │ │ (symmetryflag\))e(;)208 589 y(Bridge_setMessa)o(geI)o(nf)o(o\()o(bri)o │ │ │ │ (dg)o(e,)e(msglvl,)k(msgFile\))f(;)208 689 y(rc)i(=)h │ │ │ │ (Bridge_setup\(brid)o(ge,)37 b(mtxA\))k(;)208 888 y Fo(The)19 │ │ │ │ b Fm(Bridge)d Fo(ob)5 b(ject)19 b(is)g(allo)r(cated)f(b)n(y)g │ │ │ │ Fm(Bridge)p 1687 888 27 4 v 29 w(new\(\))p Fo(,)h(and)g(v)-5 │ │ │ │ @@ -8420,15 +8408,15 @@ │ │ │ │ 5172 y Fp({)41 b Fm(int)i(maxsize)24 b Fo(:)37 b(maxim)n(um)28 │ │ │ │ b(size)f(of)h(a)f(fron)n(t)g(when)h(the)g(fron)n(ts)f(are)f(split.)301 │ │ │ │ 5305 y Fp({)41 b Fm(int)i(seed)26 b Fo(:)37 b(random)26 │ │ │ │ b(n)n(um)n(b)r(er)i(seed.)p eop end │ │ │ │ %%Page: 14 16 │ │ │ │ TeXDict begin 14 15 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(14)301 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(14)301 │ │ │ │ 390 y Fp({)41 b Fm(double)g(compressCutoff)22 b Fo(:)36 │ │ │ │ b(if)28 b(the)g Fm(Neqns)d Fj(<)i Fm(compressCutoff)21 │ │ │ │ b Fc(\003)27 b Fm(neqns)p Fo(,)e(then)j(the)f(compressed)f(graph)390 │ │ │ │ 490 y(is)i(formed,)f(ordered)f(and)i(used)f(to)h(create)e(the)i(sym)n │ │ │ │ (b)r(olic)g(factorization.)125 642 y Ff(\210)42 b Fo(Matrix)27 │ │ │ │ b(parameters:)301 795 y Fp({)41 b Fm(int)i(type)26 b │ │ │ │ Fo(:)37 b(t)n(yp)r(e)27 b(of)h(en)n(tries,)f Fm(SPOOLES)p │ │ │ │ @@ -8527,15 +8515,15 @@ │ │ │ │ Fo(:)100 b(time)28 b(to)f(solv)n(e)2242 5319 y Fm(cpus[12])d │ │ │ │ Fo(:)100 b(time)28 b(to)f(p)r(erm)n(ute)h(solution)2242 │ │ │ │ 5419 y Fm(cpus[13])c Fo(:)100 b(total)27 b(solv)n(e)g(time)p │ │ │ │ eop end │ │ │ │ %%Page: 15 17 │ │ │ │ TeXDict begin 15 16 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(15)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(15)0 │ │ │ │ 390 y Fe(3.3)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)58 │ │ │ │ b Fd(Bridge)42 b Fe(metho)t(ds)0 597 y Fo(This)22 b(section)f(con)n │ │ │ │ (tains)g(brief)h(descriptions)f(including)h(protot)n(yp)r(es)f(of)h │ │ │ │ (all)g(metho)r(ds)g(that)g(b)r(elong)g(to)f(the)i Fm(Bridge)c │ │ │ │ Fo(ob)5 b(ject.)0 854 y Fb(3.3.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 1032 y Fo(As)21 b(usual,)g(there)f(are)g(four)g(basic)g(metho)r(ds)g │ │ │ │ (to)h(supp)r(ort)f(ob)5 b(ject)20 b(creation,)h(setting)f(default)h │ │ │ │ @@ -8595,15 +8583,15 @@ │ │ │ │ Fm(*pobj)e Fo(with)i(its)f Fm(newToOldIV)d Fo(p)r(oin)n(ter.)208 │ │ │ │ 5362 y Fg(R)l(eturn)k(value:)38 b Fo(1)27 b(for)g(a)g(normal)g(return,) │ │ │ │ g(-1)g(if)34 b Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 │ │ │ │ b Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)p eop end │ │ │ │ %%Page: 16 18 │ │ │ │ TeXDict begin 16 17 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(16)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(16)101 │ │ │ │ 390 y(3.)42 b Fm(int)g(Bridge_frontETre)o(e)37 b(\()44 │ │ │ │ b(Bridge)d(*bridge,)f(ETree)i(**pobj)f(\))i(;)208 523 │ │ │ │ y Fo(This)27 b(metho)r(d)h(\014lls)g Fm(*pobj)e Fo(with)i(its)f │ │ │ │ Fm(frontETree)d Fo(p)r(oin)n(ter.)208 656 y Fg(R)l(eturn)k(value:)38 │ │ │ │ b Fo(1)27 b(for)g(a)g(normal)g(return,)g(-1)g(if)34 b │ │ │ │ Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 b │ │ │ │ Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)101 822 y(4.)42 b │ │ │ │ @@ -8666,15 +8654,15 @@ │ │ │ │ Fo(1)27 b(for)g(a)g(normal)g(return,)g(-1)g(if)34 b Fm(bridge)25 │ │ │ │ b Fo(is)j Fm(NULL)p Fo(,)e(-2)h(if)34 b Fm(msglvl)26 │ │ │ │ b Fj(>)h Fo(0)g(and)g Fm(msgFile)e Fo(is)j Fm(NULL)p │ │ │ │ Fo(.)p eop end │ │ │ │ %%Page: 17 19 │ │ │ │ TeXDict begin 17 18 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(17)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(17)0 │ │ │ │ 390 y Fb(3.3.4)112 b(Setup)38 b(metho)s(ds)101 568 y │ │ │ │ Fo(1.)k Fm(int)g(Bridge_setup)d(\()k(Bridge)e(*bridge,)f(InpMtx)h │ │ │ │ (*mtxA)h(\))h(;)208 701 y Fo(This)38 b(metho)r(d)i(orders)d(the)i │ │ │ │ (graph,)h(generates)d(the)j(fron)n(t)e(tree,)j(computes)e(the)g(sym)n │ │ │ │ (b)r(olic)f(factorization,)i(and)208 801 y(creates)26 │ │ │ │ b(the)i(t)n(w)n(o)f(p)r(erm)n(utation)g(v)n(ectors.)208 │ │ │ │ 934 y Fg(R)l(eturn)h(value:)38 b Fo(1)27 b(for)g(a)g(normal)g(return,)g │ │ │ │ @@ -8791,15 +8779,15 @@ │ │ │ │ b(4.2)f(describ)r(es)h(the)g(in)n(ternal)f(data)h(\014elds)g(of)g(the)g │ │ │ │ Fm(BridgeMT)d Fo(ob)5 b(ject.)36 b(Section)26 b(3.3)f(con)n(tains)g │ │ │ │ (the)0 5407 y(protot)n(yp)r(es)h(and)i(descriptions)f(of)g(all)h │ │ │ │ Fm(Bridge)d Fo(metho)r(ds.)1908 5656 y(18)p eop end │ │ │ │ %%Page: 19 21 │ │ │ │ TeXDict begin 19 20 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(19)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(19)0 │ │ │ │ 390 y Fe(4.1)135 b(A)45 b(quic)l(k)g(lo)t(ok)g(at)h(the)f(m)l │ │ │ │ (ultithreaded)h(driv)l(er)g(program)0 596 y Fo(The)28 │ │ │ │ b(en)n(tire)f(listing)g(of)h(this)g(m)n(ultithreaded)f(driv)n(er)g(is)g │ │ │ │ (found)h(in)g(App)r(endix)g(B.)37 b(W)-7 b(e)28 b(no)n(w)f(extract)g │ │ │ │ (parts)g(of)g(the)h(co)r(de.)125 785 y Ff(\210)42 b Fo(Deco)r(de)27 │ │ │ │ b(the)h(input.)208 998 y Fm(msglvl)302 b(=)43 b(atoi\(argv[1]\))c(;)208 │ │ │ │ 1097 y(msgFileName)82 b(=)43 b(argv[6])e(;)208 1197 y(neqns)346 │ │ │ │ @@ -8858,15 +8846,15 @@ │ │ │ │ b(=)j(DenseMtx_new\(\))37 b(;)208 5308 y(rc)42 b(=)h(DenseMtx_readFrom) │ │ │ │ o(Fil)o(e\()o(mtx)o(Y,)37 b(mtxFileName\))i(;)208 5407 │ │ │ │ y(DenseMtx_dimens)o(ion)o(s\()o(mt)o(xY,)e(&nrow,)k(&nrhs\))g(;)p │ │ │ │ eop end │ │ │ │ %%Page: 20 22 │ │ │ │ TeXDict begin 20 21 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(20)208 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(20)208 │ │ │ │ 390 y(The)h Fm(nrhs)f Fo(parameter)g(con)n(tains)g(the)i(n)n(um)n(b)r │ │ │ │ (er)f(of)g(righ)n(t)g(hand)g(sides,)g(or)g(equiv)-5 b(alen)n(tly)e(,)28 │ │ │ │ b(the)h(n)n(um)n(b)r(er)f(of)g(columns)208 490 y(in)f │ │ │ │ Fj(Y)19 b Fo(.)125 656 y Ff(\210)42 b Fo(Create)26 b(and)i(setup)g(the) │ │ │ │ g Fm(BridgeMT)c Fo(ob)5 b(ject.)208 855 y Fm(bridge)41 │ │ │ │ b(=)i(BridgeMT_new\(\))38 b(;)208 955 y(BridgeMT_setMat)o(rix)o(Pa)o │ │ │ │ (ra)o(ms\()o(br)o(idg)o(e,)f(neqns,)k(type,)h(symmetryflag\))c(;)208 │ │ │ │ @@ -8923,15 +8911,15 @@ │ │ │ │ Fo(.)32 b(When)27 b Fm(1)p Fo(,)f Fm(mtxY)e Fo(needs)i(to)f(b)r(e)i(p)r │ │ │ │ (erm)n(uted)f(in)n(to)f(the)i(new)f(ordering,)208 5106 │ │ │ │ y(and)h Fm(mtxX)f Fo(is)h(returned)h(in)g(the)f(original)g(ordering.)p │ │ │ │ eop end │ │ │ │ %%Page: 21 23 │ │ │ │ TeXDict begin 21 22 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(21)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(21)0 │ │ │ │ 390 y Fe(4.2)135 b(The)45 b Fd(BridgeMT)c Fe(Data)46 │ │ │ │ b(Structure)0 596 y Fo(The)28 b Fm(BridgeMT)c Fo(structure)j(has)g(the) │ │ │ │ h(follo)n(wing)f(\014elds.)125 784 y Ff(\210)42 b Fo(Graph)27 │ │ │ │ b(parameters:)301 949 y Fp({)41 b Fm(int)i(neqns)25 b │ │ │ │ Fo(:)37 b(n)n(um)n(b)r(er)27 b(of)h(equations,)f(i.e.,)h(n)n(um)n(b)r │ │ │ │ (er)f(of)h(v)n(ertices)e(in)i(the)g(graph.)301 1081 y │ │ │ │ Fp({)41 b Fm(int)i(nedges)25 b Fo(:)37 b(n)n(um)n(b)r(er)27 │ │ │ │ @@ -9011,15 +8999,15 @@ │ │ │ │ b Fm(SubMtxManager)d(*mtxmanager)33 b Fo(:)55 b(ob)5 │ │ │ │ b(ject)37 b(that)g(manages)f(the)h Fm(SubMtx)d Fo(ob)5 │ │ │ │ b(jects)37 b(that)g(store)f(the)h(factor)390 5407 y(en)n(tries)27 │ │ │ │ b(and)h(are)e(used)i(in)g(the)g(solv)n(es.)p eop end │ │ │ │ %%Page: 22 24 │ │ │ │ TeXDict begin 22 23 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(22)301 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(22)301 │ │ │ │ 390 y Fp({)41 b Fm(FrontMtx)f(*frontmtx)24 b Fo(:)37 │ │ │ │ b(ob)5 b(ject)28 b(that)g(stores)e(the)i Fj(L)p Fo(,)f │ │ │ │ Fj(D)j Fo(and)d Fj(U)37 b Fo(factor)27 b(matrices.)301 │ │ │ │ 523 y Fp({)41 b Fm(IV)i(*oldToNewIV)23 b Fo(:)28 b(ob)5 │ │ │ │ b(ject)27 b(that)h(stores)e(old-to-new)h(p)r(erm)n(utation)g(v)n │ │ │ │ (ector.)301 656 y Fp({)41 b Fm(IV)i(*newToOldIV)23 b │ │ │ │ Fo(:)28 b(ob)5 b(ject)27 b(that)h(stores)e(new-to-old)h(p)r(erm)n │ │ │ │ @@ -9095,15 +9083,15 @@ │ │ │ │ (supp)r(ort)f(ob)5 b(ject)20 b(creation,)h(setting)f(default)h │ │ │ │ (\014elds,)h(clearing)d(an)n(y)h(allo)r(cated)0 5251 │ │ │ │ y(data,)27 b(and)h(free'ing)f(the)h(ob)5 b(ject.)p eop │ │ │ │ end │ │ │ │ %%Page: 23 25 │ │ │ │ TeXDict begin 23 24 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(23)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(23)101 │ │ │ │ 390 y(1.)42 b Fm(BridgeMT)e(*)j(BridgeMT_new)c(\()k(void)f(\))h(;)208 │ │ │ │ 521 y Fo(This)27 b(metho)r(d)h(simply)g(allo)r(cates)f(storage)f(for)h │ │ │ │ (the)h Fm(BridgeMT)d Fo(structure)i(and)g(then)i(sets)e(the)h(default)g │ │ │ │ (\014elds)g(b)n(y)f(a)208 621 y(call)g(to)g Fm(BridgeMT)p │ │ │ │ 818 621 27 4 v 28 w(setDefaultFields\()o(\))p Fo(.)101 │ │ │ │ 783 y(2.)42 b Fm(int)g(BridgeMT_setDefa)o(ul)o(tFi)o(el)o(ds)37 │ │ │ │ b(\()43 b(BridgeMT)e(*bridge)f(\))j(;)208 913 y Fo(The)27 │ │ │ │ @@ -9169,15 +9157,15 @@ │ │ │ │ Fm(*pobj)e Fo(with)i(its)f Fm(symbfacIVL)d Fo(p)r(oin)n(ter.)208 │ │ │ │ 5407 y Fg(R)l(eturn)k(value:)38 b Fo(1)27 b(for)g(a)g(normal)g(return,) │ │ │ │ g(-1)g(if)34 b Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 │ │ │ │ b Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)p eop end │ │ │ │ %%Page: 24 26 │ │ │ │ TeXDict begin 24 25 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(24)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(24)101 │ │ │ │ 390 y(5.)42 b Fm(int)g(BridgeMT_mtxmana)o(ge)o(r)c(\()43 │ │ │ │ b(BridgeMT)d(*bridge,)g(SubMtxManager)f(**pobj)i(\))i(;)208 │ │ │ │ 523 y Fo(This)27 b(metho)r(d)h(\014lls)g Fm(*pobj)e Fo(with)i(its)f │ │ │ │ Fm(mtxmanager)d Fo(p)r(oin)n(ter.)208 656 y Fg(R)l(eturn)k(value:)38 │ │ │ │ b Fo(1)27 b(for)g(a)g(normal)g(return,)g(-1)g(if)34 b │ │ │ │ Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 b │ │ │ │ Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)101 822 y(6.)42 b │ │ │ │ @@ -9240,15 +9228,15 @@ │ │ │ │ (int)j(lookahead,)c(PatchAndGoInfo)f(*patchinfo)h(\))k(;)208 │ │ │ │ 5258 y Fo(This)27 b(metho)r(d)h(sets)g(parameters)d(needed)j(for)f(the) │ │ │ │ h(factorization.)208 5391 y Fg(R)l(eturn)g(value:)p eop │ │ │ │ end │ │ │ │ %%Page: 25 27 │ │ │ │ TeXDict begin 25 26 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(25)1135 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(25)1135 │ │ │ │ 377 y(1)99 b(normal)27 b(return)1107 477 y(-1)99 b Fm(bridge)25 │ │ │ │ b Fo(is)j Fm(NULL)1107 576 y Fo(-2)99 b Fm(sparsityflag)23 │ │ │ │ b Fo(is)k(in)n(v)-5 b(alid)1107 676 y(-3)99 b Fm(pivotingflag)23 │ │ │ │ b Fo(is)k(in)n(v)-5 b(alid)2278 427 y(-4)98 b Fm(tau)27 │ │ │ │ b Fj(<)g Fo(2.0)2278 526 y(-5)98 b Fm(droptol)25 b Fj(<)i │ │ │ │ Fo(0.0)2278 626 y(-6)98 b Fm(lookahead)24 b Fj(<)k Fo(0)101 │ │ │ │ 871 y(4.)42 b Fm(int)g(BridgeMT_setMess)o(ag)o(esI)o(nf)o(o)c(\()43 │ │ │ │ @@ -9313,15 +9301,15 @@ │ │ │ │ b Fm(maptype)30 b Fo(is)i(not)g(one)f(of)h(1,)h(2,)g(3)f(or)f(4,)i(the) │ │ │ │ f(default)h(map)f(is)g(used:)45 b(domain)32 b(decomp)r(osition)g(with) │ │ │ │ 208 5232 y Fm(cutoff)25 b Fo(=)i(1/\(2*)p Fm(nthread)p │ │ │ │ Fo(\).)208 5365 y Fg(R)l(eturn)h(value:)p eop end │ │ │ │ %%Page: 26 28 │ │ │ │ TeXDict begin 26 27 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(26)618 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(26)618 │ │ │ │ 377 y(1)99 b(normal)26 b(return,)i(factorization)e(did)i(complete)590 │ │ │ │ 477 y(-1)99 b Fm(bridge)25 b Fo(is)i Fm(NULL)2393 377 │ │ │ │ y Fo(-2)99 b Fm(nthread)24 b Fj(<)k Fo(1)2393 477 y(-5)99 │ │ │ │ b Fm(frontETree)23 b Fo(is)28 b(not)f(presen)n(t)101 │ │ │ │ 672 y(2.)42 b Fm(int)g(BridgeMT_factor)37 b(\()43 b(BridgeMT)e │ │ │ │ (*bridge,)f(InpMtx)h(*mtxA,)g(int)i(permuteflag,)38 b(int)43 │ │ │ │ b(*perror)d(\))j(;)208 805 y Fo(This)24 b(metho)r(d)g(p)r(erm)n(utes)g │ │ │ │ @@ -9420,15 +9408,15 @@ │ │ │ │ b(5.2)e(describ)r(es)h(the)h(in)n(ternal)f(data)g(\014elds)g(of)h(the)g │ │ │ │ Fm(BridgeMPI)c Fo(ob)5 b(ject.)48 b(Section)31 b(3.3)g(con)n(tains)0 │ │ │ │ 5264 y(the)d(protot)n(yp)r(es)e(and)i(descriptions)f(of)g(all)h │ │ │ │ Fm(Bridge)d Fo(metho)r(ds.)1908 5656 y(27)p eop end │ │ │ │ %%Page: 28 30 │ │ │ │ TeXDict begin 28 29 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(28)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(28)0 │ │ │ │ 390 y Fe(5.1)135 b(A)45 b(quic)l(k)g(lo)t(ok)g(at)h(the)f(MPI)f(driv)l │ │ │ │ (er)i(program)0 594 y Fo(The)28 b(en)n(tire)f(listing)g(of)h(this)g │ │ │ │ (MPI)f(driv)n(er)f(is)i(found)g(in)g(App)r(endix)g(C.)37 │ │ │ │ b(W)-7 b(e)28 b(no)n(w)f(extract)g(parts)g(of)g(the)h(co)r(de.)125 │ │ │ │ 769 y Ff(\210)42 b Fo(Deco)r(de)27 b(the)h(input.)208 │ │ │ │ 966 y Fm(msglvl)302 b(=)43 b(atoi\(argv[1]\))c(;)208 │ │ │ │ 1065 y(msgFileName)82 b(=)43 b(argv[6])e(;)208 1165 y(neqns)346 │ │ │ │ @@ -9494,15 +9482,15 @@ │ │ │ │ (the)g(other)g(pro)r(cessors.)33 b(If)25 b(an)g(error)e(o)r(ccured)h │ │ │ │ (reading)208 5407 y(in)j(the)h(matrix,)g(all)f(pro)r(cessors)e(call)i │ │ │ │ Fm(MPI)p 1541 5407 V 30 w(Finalize\(\))d Fo(and)j(exit.)p │ │ │ │ eop end │ │ │ │ %%Page: 29 31 │ │ │ │ TeXDict begin 29 30 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(29)125 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(29)125 │ │ │ │ 390 y Ff(\210)42 b Fo(Create)26 b(and)i(setup)g(the)g │ │ │ │ Fm(BridgeMPI)c Fo(ob)5 b(ject.)208 589 y Fm(bridge)41 │ │ │ │ b(=)i(BridgeMPI_new\(\))37 b(;)208 689 y(BridgeMPI_setMP)o(Ipa)o(ra)o │ │ │ │ (ms)o(\(br)o(id)o(ge,)g(nproc,)k(myid,)g(MPI_COMM_WORLD\))d(;)208 │ │ │ │ 789 y(BridgeMPI_setMa)o(tri)o(xP)o(ar)o(ams)o(\(b)o(rid)o(ge)o(,)f │ │ │ │ (neqns,)42 b(type,)f(symmetryflag\))d(;)208 888 y(BridgeMPI_setMe)o │ │ │ │ (ssa)o(ge)o(In)o(fo\()o(br)o(idg)o(e,)f(msglvl,)k(msgFile\))f(;)208 │ │ │ │ @@ -9560,15 +9548,15 @@ │ │ │ │ Fo(.)32 b(When)27 b Fm(1)p Fo(,)f Fm(mtxY)e Fo(needs)i(to)f(b)r(e)i(p)r │ │ │ │ (erm)n(uted)f(in)n(to)f(the)i(new)f(ordering,)208 5239 │ │ │ │ y(and)h Fm(mtxX)f Fo(is)h(returned)h(in)g(the)f(original)g(ordering.)p │ │ │ │ eop end │ │ │ │ %%Page: 30 32 │ │ │ │ TeXDict begin 30 31 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(30)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(30)0 │ │ │ │ 390 y Fe(5.2)135 b(The)45 b Fd(BridgeMPI)40 b Fe(Data)46 │ │ │ │ b(Structure)0 595 y Fo(The)28 b Fm(BridgeMPI)c Fo(structure)j(has)g │ │ │ │ (the)h(follo)n(wing)e(\014elds.)125 776 y Ff(\210)42 │ │ │ │ b Fo(Graph)27 b(parameters:)301 939 y Fp({)41 b Fm(int)i(neqns)25 │ │ │ │ b Fo(:)37 b(n)n(um)n(b)r(er)27 b(of)h(equations,)f(i.e.,)h(n)n(um)n(b)r │ │ │ │ (er)f(of)h(v)n(ertices)e(in)i(the)g(graph.)301 1068 y │ │ │ │ Fp({)41 b Fm(int)i(nedges)25 b Fo(:)37 b(n)n(um)n(b)r(er)27 │ │ │ │ @@ -9653,15 +9641,15 @@ │ │ │ │ y(they)d(form,)f(the)h(n)n(um)n(b)r(er)g(of)f(in)n(ternal)g(and)h │ │ │ │ (external)e(ro)n(ws)g(for)h(eac)n(h)g(fron)n(t,)h(and)f(the)h(map)g │ │ │ │ (from)f(v)n(ertices)f(to)390 5407 y(the)j(fron)n(t)f(where)g(it)h(is)g │ │ │ │ (con)n(tained.)p eop end │ │ │ │ %%Page: 31 33 │ │ │ │ TeXDict begin 31 32 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(31)301 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(31)301 │ │ │ │ 390 y Fp({)41 b Fm(IVL)i(*symbfacIVL)23 b Fo(:)k(ob)5 │ │ │ │ b(ject)28 b(that)g(con)n(tains)e(the)i(sym)n(b)r(olic)f(factorization)g │ │ │ │ (of)g(the)h(matrix.)301 510 y Fp({)41 b Fm(SubMtxManager)d(*mtxmanager) │ │ │ │ 33 b Fo(:)55 b(ob)5 b(ject)37 b(that)g(manages)f(the)h │ │ │ │ Fm(SubMtx)d Fo(ob)5 b(jects)37 b(that)g(store)f(the)h(factor)390 │ │ │ │ 610 y(en)n(tries)27 b(and)h(are)e(used)i(in)g(the)g(solv)n(es.)301 │ │ │ │ 729 y Fp({)41 b Fm(FrontMtx)f(*frontmtx)24 b Fo(:)37 │ │ │ │ @@ -9749,15 +9737,15 @@ │ │ │ │ Fo(:)99 b(solv)n(e)2257 5220 y Fm(cpus[19])25 b Fo(:)99 │ │ │ │ b(gather)27 b(solution)2257 5319 y Fm(cpus[20])e Fo(:)99 │ │ │ │ b(p)r(erm)n(ute)28 b(solution)2257 5419 y Fm(cpus[21])d │ │ │ │ Fo(:)99 b(total)28 b(solv)n(e)e(time)p eop end │ │ │ │ %%Page: 32 34 │ │ │ │ TeXDict begin 32 33 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(32)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(32)0 │ │ │ │ 390 y Fe(5.3)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)58 │ │ │ │ b Fd(BridgeMPI)40 b Fe(metho)t(ds)0 597 y Fo(This)32 │ │ │ │ b(section)f(con)n(tains)g(brief)h(descriptions)f(including)h(protot)n │ │ │ │ (yp)r(es)e(of)i(all)f(metho)r(ds)h(that)h(b)r(elong)e(to)h(the)g │ │ │ │ Fm(BridgeMPI)0 697 y Fo(ob)5 b(ject.)0 954 y Fb(5.3.1)112 │ │ │ │ b(Basic)38 b(metho)s(ds)0 1132 y Fo(As)21 b(usual,)g(there)f(are)g │ │ │ │ (four)g(basic)g(metho)r(ds)g(to)h(supp)r(ort)f(ob)5 b(ject)20 │ │ │ │ @@ -9812,15 +9800,15 @@ │ │ │ │ 4561 V 27 w(clearData\(\))c Fo(and)k(then)h(free)f(the)g(space)g(for) │ │ │ │ 208 4660 y Fm(bridge)p Fo(.)208 4793 y Fg(R)l(eturn)28 │ │ │ │ b(value:)38 b Fo(1)27 b(for)g(a)g(normal)g(return,)g(-1)g(if)34 │ │ │ │ b Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)p eop end │ │ │ │ %%Page: 33 35 │ │ │ │ TeXDict begin 33 34 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(33)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(33)0 │ │ │ │ 390 y Fb(5.3.2)112 b(Instance)38 b(metho)s(ds)101 568 │ │ │ │ y Fo(1.)k Fm(int)g(BridgeMPI_oldToN)o(ew)o(IV)37 b(\()43 │ │ │ │ b(BridgeMPI)d(*bridge,)h(IV)h(**pobj)f(\))j(;)208 701 │ │ │ │ y Fo(This)27 b(metho)r(d)h(\014lls)g Fm(*pobj)e Fo(with)i(its)f │ │ │ │ Fm(oldToNewIV)d Fo(p)r(oin)n(ter.)208 834 y Fg(R)l(eturn)k(value:)38 │ │ │ │ b Fo(1)27 b(for)g(a)g(normal)g(return,)g(-1)g(if)34 b │ │ │ │ Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 b │ │ │ │ @@ -9892,15 +9880,15 @@ │ │ │ │ 5151 y Fg(R)l(eturn)28 b(value:)38 b Fo(1)27 b(for)g(a)g(normal)g │ │ │ │ (return,)g(-1)g(if)34 b Fm(bridge)25 b Fo(is)j Fm(NULL)p │ │ │ │ Fo(.)e(-2)h(if)34 b Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)p │ │ │ │ eop end │ │ │ │ %%Page: 34 36 │ │ │ │ TeXDict begin 34 35 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(34)60 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(34)60 │ │ │ │ 390 y(12.)41 b Fm(int)h(BridgeMPI_Xloc)c(\()43 b(BridgeMPI)d(*bridge,)g │ │ │ │ (DenseMtx)g(**pobj)h(\))j(;)208 523 y Fo(This)27 b(metho)r(d)h(\014lls) │ │ │ │ g Fm(*pobj)e Fo(with)i(its)f Fm(Xloc)f Fo(p)r(oin)n(ter.)208 │ │ │ │ 656 y Fg(R)l(eturn)i(value:)38 b Fo(1)27 b(for)g(a)g(normal)g(return,)g │ │ │ │ (-1)g(if)34 b Fm(bridge)25 b Fo(is)j Fm(NULL)p Fo(.)e(-2)h(if)34 │ │ │ │ b Fm(pobj)26 b Fo(is)i Fm(NULL)p Fo(.)60 822 y(13.)41 │ │ │ │ b Fm(int)h(BridgeMPI_Yloc)c(\()43 b(BridgeMPI)d(*bridge,)g(DenseMtx)g │ │ │ │ @@ -9957,15 +9945,15 @@ │ │ │ │ 5137 y Fo(-2)99 b Fm(maxdomainsize)23 b Fc(\024)k Fo(0)2096 │ │ │ │ 4987 y(-3)98 b Fm(maxsize)25 b Fc(\024)i Fo(0)2096 5087 │ │ │ │ y(-4)98 b Fm(compressCutoff)22 b Fj(>)28 b Fo(1)p eop │ │ │ │ end │ │ │ │ %%Page: 35 37 │ │ │ │ TeXDict begin 35 36 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(35)101 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(35)101 │ │ │ │ 390 y(4.)42 b Fm(int)g(BridgeMPI_setFac)o(to)o(rPa)o(ra)o(ms)37 │ │ │ │ b(\()43 b(BridgeMPI)d(*bridge,)g(int)j(sparsityflag,)38 │ │ │ │ b(int)k(pivotingflag,)818 490 y(double)f(tau,)h(double)f(droptol,)f │ │ │ │ (int)j(lookahead,)c(PatchAndGoInfo)f(*patchinfo)h(\))k(;)208 │ │ │ │ 623 y Fo(This)27 b(metho)r(d)h(sets)g(parameters)d(needed)j(for)f(the)h │ │ │ │ (factorization.)208 756 y Fg(R)l(eturn)g(value:)1135 │ │ │ │ 933 y Fo(1)99 b(normal)27 b(return)1107 1033 y(-1)99 │ │ │ │ @@ -10024,15 +10012,15 @@ │ │ │ │ y Ff(\210)42 b Fo(2)27 b(|)h(balanced)f(map)307 4991 │ │ │ │ y Ff(\210)42 b Fo(3)27 b(|)h(subtree-subset)f(map)307 │ │ │ │ 5124 y Ff(\210)42 b Fo(4)27 b(|)h(domain)f(decomp)r(osition)g(map)p │ │ │ │ eop end │ │ │ │ %%Page: 36 38 │ │ │ │ TeXDict begin 36 37 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(36)208 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(36)208 │ │ │ │ 390 y(The)22 b(wrap)g(map)h(and)g(balanced)f(map)g(are)g(not)h │ │ │ │ (recommended.)35 b(The)23 b(subtree-subset)f(map)g(is)h(a)f(go)r(o)r(d) │ │ │ │ h(map)f(with)h(a)208 490 y(v)n(ery)j(w)n(ell)i(balanced)f(nested)g │ │ │ │ (dissection)h(ordering.)35 b(The)28 b(domain)f(decomp)r(osition)h(map)f │ │ │ │ (is)h(recommended)f(when)208 589 y(the)j(nested)h(dissection)e(tree)h │ │ │ │ (is)h(im)n(balanced)e(or)g(for)h(the)h(m)n(ultisection)f(ordering.)43 │ │ │ │ b(The)31 b(domain)f(decomp)r(osition)208 689 y(map)i(requires)g(a)g │ │ │ │ @@ -10114,15 +10102,15 @@ │ │ │ │ 174 4973 y(-----------------)o(--)o(-)0 5073 y(*/)0 5172 │ │ │ │ y(if)i(\()g(argc)f(!=)h(10)f(\))i({)131 5272 y(fprintf\(stdout,)479 │ │ │ │ 5372 y("\\n\\n)e(usage)f(:)j(\045s)e(msglvl)g(msgFile)e(neqns)i(type)g │ │ │ │ (symmetryflag")1908 5656 y Fo(37)p eop end │ │ │ │ %%Page: 38 40 │ │ │ │ TeXDict begin 38 39 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(38)479 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(38)479 │ │ │ │ 390 y Fm("\\n)391 b(mtxFile)41 b(rhsFile)g(seed")479 │ │ │ │ 490 y("\\n)130 b(msglvl)85 b(--)42 b(message)f(level")479 │ │ │ │ 589 y("\\n)261 b(0)43 b(--)g(no)f(output")479 689 y("\\n)261 │ │ │ │ b(1)43 b(--)g(timings)d(and)j(statistics")479 789 y("\\n)261 │ │ │ │ b(2)43 b(and)f(greater)f(--)i(lots)f(of)g(output")479 │ │ │ │ 888 y("\\n)130 b(msgFile)41 b(--)h(message)f(file")479 │ │ │ │ 988 y("\\n)130 b(neqns)f(--)42 b(#)i(of)e(equations")479 │ │ │ │ @@ -10160,15 +10148,15 @@ │ │ │ │ b(\045s")349 4973 y("\\n)f(neqns)347 b(=)43 b(\045d")349 │ │ │ │ 5073 y("\\n)f(type)391 b(=)43 b(\045d")349 5172 y("\\n)f(symmetryflag)d │ │ │ │ (=)k(\045d")349 5272 y("\\n)f(mtxFile)259 b(=)43 b(\045s")349 │ │ │ │ 5372 y("\\n)f(rhsFile)259 b(=)43 b(\045s")p eop end │ │ │ │ %%Page: 39 41 │ │ │ │ TeXDict begin 39 40 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(39)349 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(39)349 │ │ │ │ 390 y Fm("\\n)42 b(solFile)259 b(=)43 b(\045s")349 490 │ │ │ │ y("\\n)f(seed)391 b(=)43 b(\045d")349 589 y("\\n",)349 │ │ │ │ 689 y(argv[0],)d(msglvl,)h(argv[2],)f(neqns,)h(type,)h(symmetryflag,) │ │ │ │ 349 789 y(mtxFileName,)c(rhsFileName,)h(solFileName,)g(seed\))i(;)0 │ │ │ │ 988 y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 1088 y(/*)131 1187 y(----------------)o(--)131 │ │ │ │ @@ -10205,15 +10193,15 @@ │ │ │ │ y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(--)131 │ │ │ │ 5172 y(create)g(and)h(setup)g(a)h(Bridge)e(object)131 │ │ │ │ 5272 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(--)0 │ │ │ │ 5372 y(*/)p eop end │ │ │ │ %%Page: 40 42 │ │ │ │ TeXDict begin 40 41 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(40)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(40)0 │ │ │ │ 390 y Fm(bridge)41 b(=)i(Bridge_new\(\))c(;)0 490 y(Bridge_setMatrix)o │ │ │ │ (Par)o(am)o(s\()o(bri)o(dg)o(e,)e(neqns,)k(type,)h(symmetryflag\))c(;)0 │ │ │ │ 589 y(Bridge_setMessag)o(eIn)o(fo)o(\(b)o(rid)o(ge)o(,)g(msglvl,)i │ │ │ │ (msgFile\))h(;)0 689 y(rc)i(=)g(Bridge_setup\(bri)o(dg)o(e,)37 │ │ │ │ b(mtxA\))42 b(;)0 789 y(if)h(\()g(rc)g(!=)f(1)i(\))f({)131 │ │ │ │ 888 y(fprintf\(stderr,)37 b("\\n)42 b(error)g(return)f(\045d)i(from)f │ │ │ │ (Bridge_setup\(\)",)37 b(rc\))42 b(;)131 988 y(exit\(-1\))e(;)0 │ │ │ │ @@ -10255,15 +10243,15 @@ │ │ │ │ (matrix")349 5272 y("\\n)173 b(CPU)42 b(\0458.3f)g(:)h(time)f(to)h │ │ │ │ (initialize)c(factor)i(matrix")349 5372 y("\\n)173 b(CPU)42 │ │ │ │ b(\0458.3f)g(:)h(time)f(to)h(compute)d(factorization")p │ │ │ │ eop end │ │ │ │ %%Page: 41 43 │ │ │ │ TeXDict begin 41 42 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(41)349 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(41)349 │ │ │ │ 390 y Fm("\\n)173 b(CPU)42 b(\0458.3f)g(:)h(time)f(to)h(post-process)38 │ │ │ │ b(factorization")349 490 y("\\n)k(CPU)g(\0458.3f)g(:)h(total)f │ │ │ │ (factorization)c(time\\n",)349 589 y(bridge->cpus[5])o(,)g │ │ │ │ (bridge->cpus[6])o(,)g(bridge->cpus[7])o(,)349 689 y(bridge->cpus[8])o │ │ │ │ (,)g(bridge->cpus[9])o(\))g(;)0 789 y(fprintf\(msgFile,)f("\\n\\n)k │ │ │ │ (factorization)e(statistics")349 888 y("\\n)j(\045d)h(pivots,)d(\045d)j │ │ │ │ (pivot)f(tests,)f(\045d)i(delayed)d(vertices")349 988 │ │ │ │ @@ -10310,15 +10298,15 @@ │ │ │ │ (---)o(--)o(--)o(-*/)0 5172 y(if)43 b(\()g(strcmp\(solFileNa)o(me)o(,) │ │ │ │ 38 b("none"\))i(!=)j(0)g(\))g({)0 5272 y(/*)131 5372 │ │ │ │ y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)p │ │ │ │ eop end │ │ │ │ %%Page: 42 44 │ │ │ │ TeXDict begin 42 43 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(42)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(42)131 │ │ │ │ 390 y Fm(write)41 b(the)i(solution)d(matrix)h(to)i(a)g(file)131 │ │ │ │ 490 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)0 │ │ │ │ 589 y(*/)131 689 y(rc)g(=)g(DenseMtx_writeT)o(oFi)o(le)o(\(mt)o(xX)o(,) │ │ │ │ 38 b(solFileName\))g(;)131 789 y(if)43 b(\()g(rc)f(!=)h(1)g(\))h({)262 │ │ │ │ 888 y(fprintf\(msgFile)o(,)610 988 y("\\n)f(fatal)e(error)h(writing)e │ │ │ │ (mtxX)i(to)h(file)f(\045s,)g(rc)h(=)g(\045d",)610 1088 │ │ │ │ y(solFileName,)c(rc\))j(;)262 1187 y(fflush\(msgFile\))37 │ │ │ │ @@ -10365,15 +10353,15 @@ │ │ │ │ 4973 y(-----------------)o(--)o(-)174 5073 y(get)i(input)e(parameters) │ │ │ │ 174 5172 y(-----------------)o(--)o(-)0 5272 y(*/)0 5372 │ │ │ │ y(if)i(\()g(argc)f(!=)h(11)f(\))i({)1908 5656 y Fo(43)p │ │ │ │ eop end │ │ │ │ %%Page: 44 46 │ │ │ │ TeXDict begin 44 45 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(44)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(44)131 │ │ │ │ 390 y Fm(fprintf\(stdout,)392 490 y("\\n\\n)42 b(usage)f(:)i(\045s)g │ │ │ │ (msglvl)e(msgFile)g(neqns)h(type)f(symmetryflag)e(")392 │ │ │ │ 589 y("\\n)391 b(mtxFile)41 b(rhsFile)g(solFile)f(seed)i(nthread\\n") │ │ │ │ 392 689 y("\\n)130 b(msglvl)84 b(--)43 b(message)e(level")392 │ │ │ │ 789 y("\\n)261 b(0)43 b(--)f(no)h(output")392 888 y("\\n)261 │ │ │ │ b(1)43 b(--)f(timings)f(and)i(statistics")392 988 y("\\n)261 │ │ │ │ b(2)43 b(and)f(greater)f(--)i(lots)e(of)i(output")392 │ │ │ │ @@ -10413,15 +10401,15 @@ │ │ │ │ y(fprintf\(msgFile,)349 5073 y("\\n\\n)j(\045s)i(input)e(:")349 │ │ │ │ 5172 y("\\n)h(msglvl)303 b(=)43 b(\045d")349 5272 y("\\n)f(msgFile)259 │ │ │ │ b(=)43 b(\045s")349 5372 y("\\n)f(neqns)347 b(=)43 b(\045d")p │ │ │ │ eop end │ │ │ │ %%Page: 45 47 │ │ │ │ TeXDict begin 45 46 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(45)349 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(45)349 │ │ │ │ 390 y Fm("\\n)42 b(type)391 b(=)43 b(\045d")349 490 y("\\n)f │ │ │ │ (symmetryflag)d(=)k(\045d")349 589 y("\\n)f(mtxFile)259 │ │ │ │ b(=)43 b(\045s")349 689 y("\\n)f(rhsFile)259 b(=)43 b(\045s")349 │ │ │ │ 789 y("\\n)f(solFile)259 b(=)43 b(\045s")349 888 y("\\n)f(nthread)259 │ │ │ │ b(=)43 b(\045d")349 988 y("\\n",)349 1088 y(argv[0],)d(msglvl,)h │ │ │ │ (argv[2],)f(neqns,)h(type,)h(symmetryflag,)349 1187 y(mtxFileName,)c │ │ │ │ (rhsFileName,)h(solFileName,)g(nthread\))h(;)0 1287 y(/*--------------) │ │ │ │ @@ -10459,15 +10447,15 @@ │ │ │ │ (--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(--)o(-*/)0 5272 y(/*)131 5372 │ │ │ │ y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(-)p │ │ │ │ eop end │ │ │ │ %%Page: 46 48 │ │ │ │ TeXDict begin 46 47 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(46)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(46)131 │ │ │ │ 390 y Fm(create)41 b(and)h(setup)g(a)h(BridgeMT)d(object)131 │ │ │ │ 490 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(-)0 │ │ │ │ 589 y(*/)0 689 y(bridge)h(=)i(BridgeMT_new\(\))38 b(;)0 │ │ │ │ 789 y(BridgeMT_setMatr)o(ixP)o(ar)o(am)o(s\(b)o(ri)o(dge)o(,)f(neqns,)k │ │ │ │ (type,)h(symmetryflag\))c(;)0 888 y(BridgeMT_setMess)o(age)o(In)o(fo)o │ │ │ │ (\(br)o(id)o(ge,)f(msglvl,)j(msgFile\))h(;)0 988 y(rc)i(=)g │ │ │ │ (BridgeMT_setup\(b)o(ri)o(dge)o(,)37 b(mtxA\))42 b(;)0 │ │ │ │ @@ -10508,15 +10496,15 @@ │ │ │ │ 4973 y(bridge->cpus[5])o(\))e(;)0 5073 y(if)43 b(\()g(msglvl)e(>)i(0)g │ │ │ │ (\))h({)131 5172 y(fprintf\(msgFile,)37 b("\\n)42 b(total)g(factor)f │ │ │ │ (operations)e(=)k(\045.0f",)479 5272 y(DV_sum\(bridge->cu)o(mop)o(sD)o │ │ │ │ (V\)\))37 b(;)131 5372 y(fprintf\(msgFile,)p eop end │ │ │ │ %%Page: 47 49 │ │ │ │ TeXDict begin 47 48 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(47)479 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(47)479 │ │ │ │ 390 y Fm("\\n)43 b(upper)e(bound)h(on)h(speedup)d(due)j(to)f(load)g │ │ │ │ (balance)f(=)i(\045.2f",)479 490 y(DV_sum\(bridge->cu)o(mop)o(sD)o │ │ │ │ (V\)/)o(DV)o(_m)o(ax\()o(br)o(idg)o(e-)o(>c)o(umo)o(ps)o(DV\))o(\))37 │ │ │ │ b(;)131 589 y(fprintf\(msgFile,)g("\\n)42 b(operations)e(distributions) │ │ │ │ e(over)k(threads"\))e(;)131 689 y(DV_writeForHuman)o(Ey)o(e\()o(bri)o │ │ │ │ (dg)o(e->)o(cu)o(mop)o(sD)o(V,)d(msgFile\))j(;)131 789 │ │ │ │ y(fflush\(msgFile\))d(;)0 888 y(})0 988 y(/*--------------)o(---)o(--)o │ │ │ │ @@ -10557,15 +10545,15 @@ │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 4973 y(/*)131 5073 y(----------------)o(--)o(--)o(---)o(-) │ │ │ │ 131 5172 y(setup)k(the)i(parallel)d(solve)131 5272 y(----------------)o │ │ │ │ (--)o(--)o(---)o(-)0 5372 y(*/)p eop end │ │ │ │ %%Page: 48 50 │ │ │ │ TeXDict begin 48 49 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(48)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(48)0 │ │ │ │ 390 y Fm(rc)43 b(=)g(BridgeMT_solveSe)o(tu)o(p\(b)o(ri)o(dge)o(\))37 │ │ │ │ b(;)0 490 y(fprintf\(msgFile,)g("\\n\\n)k(-----)h(PARALLEL)e(SOLVE)i │ │ │ │ (SETUP)f(-----\\n"\))f(;)0 589 y(fprintf\(msgFile,)349 │ │ │ │ 689 y("\\n)173 b(CPU)42 b(\0458.3f)g(:)h(time)f(to)h(setup)e(parallel)f │ │ │ │ (solve",)349 789 y(bridge->cpus[11)o(]\))d(;)0 888 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 │ │ │ │ @@ -10608,15 +10596,15 @@ │ │ │ │ 262 5073 y(fprintf\(msgFile)o(,)610 5172 y("\\n)f(fatal)e(error)h │ │ │ │ (writing)e(mtxX)i(to)h(file)f(\045s,)g(rc)h(=)g(\045d",)610 │ │ │ │ 5272 y(solFileName,)c(rc\))j(;)262 5372 y(fflush\(msgFile\))37 │ │ │ │ b(;)p eop end │ │ │ │ %%Page: 49 51 │ │ │ │ TeXDict begin 49 50 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(49)262 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(49)262 │ │ │ │ 390 y Fm(exit\(-1\))40 b(;)131 490 y(})0 589 y(})0 689 │ │ │ │ y(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o │ │ │ │ (-*/)0 789 y(/*)131 888 y(----------------)o(--)o(--)o(-)131 │ │ │ │ 988 y(free)i(the)g(working)f(data)131 1088 y(----------------)o(--)o │ │ │ │ (--)o(-)0 1187 y(*/)0 1287 y(InpMtx_free\(mtxA)o(\))d(;)0 │ │ │ │ 1386 y(DenseMtx_free\(mt)o(xX\))f(;)0 1486 y(DenseMtx_free\(mt)o(xY\))g │ │ │ │ @@ -10660,15 +10648,15 @@ │ │ │ │ (the)h(number)e(of)i(process)131 5272 y(----------------)o(--)o(--)o │ │ │ │ (---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o │ │ │ │ (--)o(---)o(--)o(---)o(-)0 5372 y(*/)1908 5656 y Fo(50)p │ │ │ │ eop end │ │ │ │ %%Page: 51 53 │ │ │ │ TeXDict begin 51 52 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(51)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(51)0 │ │ │ │ 390 y Fm(MPI_Init\(&argc,)37 b(&argv\))k(;)0 490 y(MPI_Comm_rank\(MP)o │ │ │ │ (I_C)o(OM)o(M_)o(WOR)o(LD)o(,)d(&myid\))j(;)0 589 y(MPI_Comm_size\(MP)o │ │ │ │ (I_C)o(OM)o(M_)o(WOR)o(LD)o(,)d(&nproc\))i(;)0 689 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 │ │ │ │ 789 y(/*)174 888 y(-----------------)o(--)o(-)174 988 │ │ │ │ y(get)j(input)e(parameters)174 1088 y(-----------------)o(--)o(-)0 │ │ │ │ @@ -10708,15 +10696,15 @@ │ │ │ │ 4873 y(fprintf\(stderr,)37 b("\\n)42 b(fatal)g(error)f(in)i(\045s")610 │ │ │ │ 4973 y("\\n)g(unable)e(to)h(open)g(file)g(\045s\\n",)610 │ │ │ │ 5073 y(argv[0],)e(argv[2]\))h(;)262 5172 y(MPI_Finalize\(\))c(;)262 │ │ │ │ 5272 y(return\(0\))i(;)131 5372 y(})p eop end │ │ │ │ %%Page: 52 54 │ │ │ │ TeXDict begin 52 53 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(52)131 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(52)131 │ │ │ │ 390 y Fm(CVfree\(buffer\))38 b(;)0 490 y(})0 589 y(neqns)347 │ │ │ │ b(=)43 b(atoi\(argv[3]\))38 b(;)0 689 y(type)391 b(=)43 │ │ │ │ b(atoi\(argv[4]\))38 b(;)0 789 y(symmetryflag)h(=)k(atoi\(argv[5]\))38 │ │ │ │ b(;)0 888 y(mtxFileName)83 b(=)43 b(argv[6])d(;)0 988 │ │ │ │ y(rhsFileName)83 b(=)43 b(argv[7])d(;)0 1088 y(solFileName)83 │ │ │ │ b(=)43 b(argv[8])d(;)0 1187 y(seed)391 b(=)43 b(atoi\(argv[9]\))38 │ │ │ │ b(;)0 1287 y(fprintf\(msgFile,)349 1386 y("\\n\\n)j(\045s)i(input)e(:") │ │ │ │ @@ -10754,15 +10742,15 @@ │ │ │ │ (broadcasts)c(the)k(error)e(return)g(to)i(the)f(other)g(processors)131 │ │ │ │ 5372 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(-)p │ │ │ │ eop end │ │ │ │ %%Page: 53 55 │ │ │ │ TeXDict begin 53 54 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(53)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(53)0 │ │ │ │ 390 y Fm(*/)0 490 y(MPI_Bcast\(\(void)37 b(*\))43 b(&rc,)f(1,)h │ │ │ │ (MPI_INT,)d(0,)j(MPI_COMM_WORLD\))37 b(;)0 589 y(if)43 │ │ │ │ b(\()g(rc)g(!=)f(1)i(\))f({)131 689 y(MPI_Finalize\(\))38 │ │ │ │ b(;)131 789 y(return\(-1\))h(;)0 888 y(})0 988 y(/*--------------)o │ │ │ │ (---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o(--)o(-*/)0 │ │ │ │ 1088 y(/*)131 1187 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ @@ -10802,15 +10790,15 @@ │ │ │ │ 5073 y(----------------)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(---)o(--)0 5172 y(*/)0 5272 y(bridge)g(=)i(BridgeMPI_new\(\))38 │ │ │ │ b(;)0 5372 y(BridgeMPI_setMPI)o(par)o(am)o(s\()o(bri)o(dg)o(e,)f │ │ │ │ (nproc,)k(myid,)h(MPI_COMM_WORLD\))37 b(;)p eop end │ │ │ │ %%Page: 54 56 │ │ │ │ TeXDict begin 54 55 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(54)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(54)0 │ │ │ │ 390 y Fm(BridgeMPI_setMat)o(rix)o(Pa)o(ra)o(ms\()o(br)o(idg)o(e,)37 │ │ │ │ b(neqns,)k(type,)h(symmetryflag\))c(;)0 490 y(BridgeMPI_setMes)o(sag)o │ │ │ │ (eI)o(nf)o(o\(b)o(ri)o(dge)o(,)f(msglvl,)k(msgFile\))f(;)0 │ │ │ │ 589 y(/*)131 689 y(----------------)o(-)131 789 y(setup)h(the)i │ │ │ │ (problem)131 888 y(----------------)o(-)0 988 y(*/)0 │ │ │ │ 1088 y(rc)g(=)g(BridgeMPI_setup\()o(br)o(idg)o(e,)37 │ │ │ │ b(mtxA\))42 b(;)0 1187 y(fprintf\(msgFile,)349 1287 y("\\n\\n)f(-----)h │ │ │ │ @@ -10852,15 +10840,15 @@ │ │ │ │ (FACTOR)h(SETUP)h(-----\\n"\))e(;)0 5172 y(fprintf\(msgFile,)349 │ │ │ │ 5272 y("\\n)173 b(CPU)42 b(\0458.3f)g(:)h(time)f(to)h(setup)e(parallel) │ │ │ │ f(factorization",)349 5372 y(bridge->cpus[7])o(\))e(;)p │ │ │ │ eop end │ │ │ │ %%Page: 55 57 │ │ │ │ TeXDict begin 55 56 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(55)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(55)0 │ │ │ │ 390 y Fm(if)43 b(\()g(msglvl)e(>)i(0)g(\))h({)131 490 │ │ │ │ y(fprintf\(msgFile,)37 b("\\n)42 b(total)g(factor)f(operations)e(=)k │ │ │ │ (\045.0f")479 589 y("\\n)g(upper)e(bound)h(on)h(speedup)d(due)j(to)f │ │ │ │ (load)g(balance)f(=)i(\045.2f",)479 689 y(DV_sum\(bridge->cu)o(mop)o │ │ │ │ (sD)o(V\),)479 789 y(DV_sum\(bridge->cu)o(mop)o(sD)o(V\)/)o(DV)o(_m)o │ │ │ │ (ax\()o(br)o(idg)o(e-)o(>c)o(umo)o(ps)o(DV\))o(\))37 │ │ │ │ b(;)131 888 y(fprintf\(msgFile,)g("\\n)42 b(operations)e(distributions) │ │ │ │ @@ -10909,15 +10897,15 @@ │ │ │ │ (\0458.3f,)g(overall)f(mflops)i(\0458.3f",)349 5172 y(1.e-6*nfactorop)o │ │ │ │ (s/b)o(ri)o(dge)o(->)o(cpu)o(s[)o(11)o(],)349 5272 y(1.e-6*nfactorop)o │ │ │ │ (s/b)o(ri)o(dge)o(->)o(cpu)o(s[)o(13)o(]\))37 b(;)0 5372 │ │ │ │ y(fflush\(msgFile\))g(;)p eop end │ │ │ │ %%Page: 56 58 │ │ │ │ TeXDict begin 56 57 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(56)0 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(56)0 │ │ │ │ 390 y Fm(/*--------------)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o │ │ │ │ (--)o(--)o(---)o(--)o(---)o(--)o(--)o(---)o(--)o(---)o(--)o(---)o(--)o │ │ │ │ (--)o(-*/)0 490 y(/*)131 589 y(----------------)o(--)o(--)o(---)o(-)131 │ │ │ │ 689 y(setup)41 b(the)i(parallel)d(solve)131 789 y(----------------)o │ │ │ │ (--)o(--)o(---)o(-)0 888 y(*/)0 988 y(rc)j(=)g(BridgeMPI_solveS)o(et)o │ │ │ │ (up\()o(br)o(idg)o(e\))37 b(;)0 1088 y(fprintf\(msgFile,)g("\\n\\n)k │ │ │ │ (-----)h(PARALLEL)e(SOLVE)i(SETUP)f(-----\\n")349 1187 │ │ │ │ @@ -10960,15 +10948,15 @@ │ │ │ │ 5172 y("\\n)173 b(CPU)42 b(\0458.3f)g(:)h(time)f(to)h(permute)d │ │ │ │ (solution)g(into)i(old)h(ordering")349 5272 y("\\n)f(CPU)g(\0458.3f)g │ │ │ │ (:)h(total)f(solve)f(time")349 5372 y("\\n\\n)g(solve:)g(raw)i(mflops)e │ │ │ │ (\0458.3f,)g(overall)g(mflops)g(\0458.3f",)p eop end │ │ │ │ %%Page: 57 59 │ │ │ │ TeXDict begin 57 58 bop 83 100 760 4 v 925 100 a Fp(SPOOLES)32 │ │ │ │ b(2.2)f(W)-8 b(rapp)s(er)32 b(Ob)5 b(jects)28 b Fl(:)120 │ │ │ │ -b(Octob)r(er)27 b(18,)g(2025)p 3060 100 V 760 w Fo(57)349 │ │ │ │ +b(Octob)r(er)27 b(28,)g(2025)p 3060 100 V 760 w Fo(57)349 │ │ │ │ 390 y Fm(bridge->cpus[15)o(],)37 b(bridge->cpus[16],)g │ │ │ │ (bridge->cpus[17])o(,)349 490 y(bridge->cpus[18)o(],)g │ │ │ │ (bridge->cpus[19],)g(bridge->cpus[20])o(,)349 589 y(bridge->cpus[21)o │ │ │ │ (],)349 689 y(1.e-6*nsolveops)o(/br)o(id)o(ge-)o(>c)o(pus)o([1)o(8])o │ │ │ │ (,)349 789 y(1.e-6*nsolveops)o(/br)o(id)o(ge-)o(>c)o(pus)o([2)o(1])o │ │ │ │ (\))h(;)0 888 y(fflush\(msgFile\))f(;)0 988 y(if)43 b(\()g(myid)f(==)h │ │ │ │ (0)g(\))g({)131 1088 y(if)g(\()g(msglvl)e(>)i(0)g(\))g({)262 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -1,13 +1,13 @@ │ │ │ │ │ Wrapper Objects for Solving │ │ │ │ │ a Linear System of Equations │ │ │ │ │ using SPOOLES 2.2 │ │ │ │ │ Cleve Ashcraft Peter Schartz │ │ │ │ │ Boeing Shared Services Group1 CSARCorporation2 │ │ │ │ │ - October 18, 2025 │ │ │ │ │ + October 28, 2025 │ │ │ │ │ 1P. O. Box 24346, Mail Stop 7L-21, Seattle, Washington 98124. This research was supported in part by the │ │ │ │ │ DARPAContract DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common │ │ │ │ │ HPCSoftware Support Initiative. │ │ │ │ │ 228035 Dorothy Drive, Agoura Hills, CA 91301. This research was supported in part by the DARPA Contract │ │ │ │ │ DABT63-95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software │ │ │ │ │ Support Initiative. │ │ │ │ │ Abstract │ │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ │ 4.3.5 Factor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 │ │ │ │ │ 4.3.6 Solve methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 │ │ │ │ │ 5 The MPI Wrapper Object and Driver 27 │ │ │ │ │ 5.1 Aquick look at the MPI driver program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 │ │ │ │ │ 5.2 The BridgeMPI Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 │ │ │ │ │ 5.3 Prototypes and descriptions of BridgeMPI methods . . . . . . . . . . . . . . . . . . . . . . . . 32 │ │ │ │ │ 1 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 2 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 2 │ │ │ │ │ 5.3.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 │ │ │ │ │ 5.3.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 │ │ │ │ │ 5.3.3 Parameter methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 │ │ │ │ │ 5.3.4 Setup methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 │ │ │ │ │ 5.3.5 Factor methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 │ │ │ │ │ 5.3.6 Solve methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 │ │ │ │ │ A testWrapper.c — A Serial Driver Program 37 │ │ │ │ │ @@ -104,15 +104,15 @@ │ │ │ │ │ the user must generate two SPOOLES objects — a InpMtx object for A and DenseMtx objects for Y and │ │ │ │ │ X. This process is described in section 2. │ │ │ │ │ Serial code has one process and one address space. Multithreaded code can have multiple threads sharing │ │ │ │ │ one address space. The SPOOLES library utilizes multiple threads only in the factorization and solve steps. │ │ │ │ │ All other operations act on the global data structures using serial methods. In the MPI environment, the │ │ │ │ │ data structures for A, X and Y may be distributed, and all working data structures that contain the factor │ │ │ │ │ 3 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 4 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 4 │ │ │ │ │ matrices and their supporting information are distributed. The MPI code is much more complex than the │ │ │ │ │ serial or multithreaded codes, for not only are the factor and solves parallel and distributed (as is the symbolic │ │ │ │ │ factorization), but there is a great deal of support code necessary because of the distributed data structures. │ │ │ │ │ ThewrappermethodsdescribedinthispaperdonotexerciseallthefunctionalityoftheMPIenvironment. │ │ │ │ │ This is due to the present state of the CSAR-Nastran code from CSAR, where the matrix A and right hand │ │ │ │ │ side Y are generated on one processor. We chose to do all the serial preprocessing │ │ │ │ │ • generate a graph of the matrix, │ │ │ │ │ @@ -150,15 +150,15 @@ │ │ │ │ │ • INPMTX BY COLUMNS, where r(i,j) = j, c(i,j) = i. │ │ │ │ │ • INPMTX BY CHEVRONS, where r(i,j) = min(i,j), c(i,j) = j −i. │ │ │ │ │ Rows and columns are self-explanatory, the first coordinate r(i,j) is either the row or column of ai,j. The │ │ │ │ │ j-th “chevron” is composed of the diagonal entry aj,j, entries in the j-th row of the upper triangle, and │ │ │ │ │ entries in the j-th column of the lower triangle. It is the natural data structure for the assembly of the │ │ │ │ │ matrix entries into the “fronts” used to factor the matrix. │ │ │ │ │ 5 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 6 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 6 │ │ │ │ │ The InpMtx object can hold one of three types of entries as “indices only” (no entries are present), real │ │ │ │ │ entries, or complex entries. The type is specified by the inputModeparameter to the InpMtx init() method. │ │ │ │ │ • INPMTX INDICES ONLY where the triples langler(i,j),c(i,j),−i are really only pairs, i.e., no numerical │ │ │ │ │ values are present. This mode is useful for assembling graphs. │ │ │ │ │ • SPOOLES REAL where ai,j is a real number, a double value. │ │ │ │ │ • SPOOLES COMPLEX where a is a complex number, really two consecutive double values. │ │ │ │ │ i,j │ │ │ │ │ @@ -192,15 +192,15 @@ │ │ │ │ │ to assemble finite element matrices.) The knowledgeable user can change the storage mode as necessary, │ │ │ │ │ and thus avoiding expensive sorts when possible. For example, after reading in the matrix data from the │ │ │ │ │ CSAR-Nastran file, the entries are already in sorted form, and the explicit sort can be avoided. │ │ │ │ │ Now let us see how we “input” information into the InpMtx object. There are several input methods, │ │ │ │ │ e.g., single entries, rows, columns, and submatrices, and each input method has three types of input, e.g, │ │ │ │ │ indices only, real entries, or complex entries. Here are the prototypes below. │ │ │ │ │ • Input methods for “indices only” mode. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 7 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 7 │ │ │ │ │ void InpMtx_inputEntry ( InpMtx *mtxA, int row, int col ) ; │ │ │ │ │ void InpMtx_inputRow ( InpMtx *mtxA, int row, int rowsize, int rowind[] ) ; │ │ │ │ │ void InpMtx_inputColumn ( InpMtx *mtxA, int col, int colsize, int colind[] ) ; │ │ │ │ │ void InpMtx_inputMatrix ( InpMtx *mtxA, int nrow, int ncol, int rowstride, │ │ │ │ │ int colstride, int rowind[], colind[] ) ; │ │ │ │ │ • Input methods for real entries. │ │ │ │ │ void InpMtx_inputRealEntry ( InpMtx *mtxA, int row, int col, double value ) ; │ │ │ │ │ @@ -238,15 +238,15 @@ │ │ │ │ │ if ( ii < n1 ) { │ │ │ │ │ indices[count] = ij + 1 ; │ │ │ │ │ entries[count] = -1.0 ; │ │ │ │ │ count++ ; │ │ │ │ │ } │ │ │ │ │ if ( jj < n2 ) { │ │ │ │ │ indices[count] = ij + n1 ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 8 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 8 │ │ │ │ │ entries[count] = -1.0 ; │ │ │ │ │ count++ ; │ │ │ │ │ } │ │ │ │ │ InpMtx_inputRealRow(mtxA, ij, count, indices, entries) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ; │ │ │ │ │ @@ -279,15 +279,15 @@ │ │ │ │ │ 0,1,...,ncol−1. The entries are not initialized. Zero the entries with a call to DenseMtx zero(). (This is │ │ │ │ │ crucial when loading a sparse right hand side into the DenseMtx object.) │ │ │ │ │ Once we have the DenseMtx object initialized, we want to be able to access the row indices, the column │ │ │ │ │ indices and the entries. We do this through instance methods. │ │ │ │ │ void DenseMtx_rowIndices ( DenseMtx *mtx, int *pnrow, int *prowind ) ; │ │ │ │ │ void DenseMtx_columnIndices ( DenseMtx *mtx, int *pncol, int *pcolind ) ; │ │ │ │ │ double * DenseMtx_entries ( DenseMtx *mtx ) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 9 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 9 │ │ │ │ │ Wewould use them as follows. │ │ │ │ │ double *entries ; │ │ │ │ │ int ncol, nrow, *colind, *rowind ; │ │ │ │ │ DenseMtx_rowIndices(mtx, &nrow, &rowind) ; │ │ │ │ │ DenseMtx_columnIndices(mtx, &ncol, &colind) ; │ │ │ │ │ entries = DenseMtx_entries(mtx) ; │ │ │ │ │ We can now fill the indices or the entries. The location of the (irow,jcol) entry is found at offset = │ │ │ │ │ @@ -317,15 +317,15 @@ │ │ │ │ │ The three driver programs that we describe in the next sections read A and Y from files and write X to a │ │ │ │ │ file. So the first thing we know is that the InpMtx and DenseMtx objects can read and write themselves from │ │ │ │ │ and to files. This convention is supported by most of the objects in the SPOOLES library. In fact, there │ │ │ │ │ is a common protocol that is followed. Let us take a look at the common IO methods for the InpMtx. │ │ │ │ │ • int InpMtx readFromFile ( InpMtx *obj, char *filename ) ; │ │ │ │ │ • int InpMtx readFromFormattedFile ( InpMtx *obj, FILE *fp ) ; │ │ │ │ │ • int InpMtx readFromBinaryFile ( InpMtx *obj, FILE *fp ) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 10 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 10 │ │ │ │ │ • int InpMtx writeToFile ( InpMtx *obj, char *filename ) ; │ │ │ │ │ • int InpMtx writeToFormattedFile ( InpMtx *obj, FILE *fp ) ; │ │ │ │ │ • int InpMtx writeToBinaryFile ( InpMtx *obj, FILE *fp ) ; │ │ │ │ │ • int InpMtx writeForHumanEye ( InpMtx *obj, FILE *fp ) ; │ │ │ │ │ There are corresponding methods for the DenseMtx object, just replace “Inp” by “Dense” in the above │ │ │ │ │ prototypes. │ │ │ │ │ Two methods take as input char * file names. Each object can be archived in its own file with a │ │ │ │ │ @@ -375,15 +375,15 @@ │ │ │ │ │ ordering, factor and solve processes. │ │ │ │ │ Section 3.1 takes a quick look at the Bridge driver program (whose complete listing is found in Ap- │ │ │ │ │ pendix A). Section 3.2 describes the internal data fields of the Bridge object. Section 3.3 contains the │ │ │ │ │ prototypes and descriptions of all Bridge methods. │ │ │ │ │ 3.1 Aquick look at serial driver program │ │ │ │ │ The entire listing of this serial driver is found in Appendix A. We now extract parts of the code. │ │ │ │ │ 11 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 12 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 12 │ │ │ │ │ • Decode the input. │ │ │ │ │ msglvl = atoi(argv[1]) ; │ │ │ │ │ msgFileName = argv[6] ; │ │ │ │ │ neqns = atoi(argv[3]) ; │ │ │ │ │ type = atoi(argv[4]) ; │ │ │ │ │ symmetryflag = atoi(argv[5]) ; │ │ │ │ │ mtxFileName = argv[6] ; │ │ │ │ │ @@ -414,15 +414,15 @@ │ │ │ │ │ • Read in the DenseMtx object for Y. │ │ │ │ │ mtxY = DenseMtx_new() ; │ │ │ │ │ rc = DenseMtx_readFromFile(mtxY, mtxFileName) ; │ │ │ │ │ DenseMtx_dimensions(mtxY, &nrow, &nrhs) ; │ │ │ │ │ The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns │ │ │ │ │ in Y . │ │ │ │ │ • Create and setup the Bridge object. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 13 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 13 │ │ │ │ │ bridge = Bridge_new() ; │ │ │ │ │ Bridge_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ Bridge_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ rc = Bridge_setup(bridge, mtxA) ; │ │ │ │ │ TheBridgeobjectisallocatedbyBridge new(),andvariousparametersareset. Theactualorderingof │ │ │ │ │ the matrix, symbolic factorization, and permutation creation are performed inside the Bridge setup() │ │ │ │ │ method. │ │ │ │ │ @@ -451,15 +451,15 @@ │ │ │ │ │ • Ordering parameters: │ │ │ │ │ – int maxdomainsize : maximum size of a subgraph to not split any further during the nested │ │ │ │ │ dissection process. │ │ │ │ │ – int maxnzeros : maximum number of zeros to allow in a front during the supernode amalgama- │ │ │ │ │ tion process. │ │ │ │ │ – int maxsize : maximum size of a front when the fronts are split. │ │ │ │ │ – int seed : random number seed. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 14 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 14 │ │ │ │ │ – double compressCutoff : if the Neqns < compressCutoff ∗ neqns, then the compressed graph │ │ │ │ │ is formed, ordered and used to create the symbolic factorization. │ │ │ │ │ • Matrix parameters: │ │ │ │ │ – int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX, default value is SPOOLES REAL. │ │ │ │ │ – int symmetryflag: type of symmetry for the matrix, SPOOLES SYMMETRIC, SPOOLES HERMITIAN │ │ │ │ │ or SPOOLES NONSYMMETRIC, default value is SPOOLES SYMMETRIC. │ │ │ │ │ • Factorization parameters: │ │ │ │ │ @@ -496,15 +496,15 @@ │ │ │ │ │ cpus[0] : time to construct Graph cpus[7] : time to factor matrix │ │ │ │ │ cpus[1] : time to compress Graph cpus[8] : time to post-process matrix │ │ │ │ │ cpus[2] : time to order Graph cpus[9] : total factor time │ │ │ │ │ cpus[3] : time for symbolic factorization cpus[10] : time to permute rhs │ │ │ │ │ cpus[4] : total setup time cpus[11] : time to solve │ │ │ │ │ cpus[5] : time to permute matrix cpus[12] : time to permute solution │ │ │ │ │ cpus[6] : time to initialize front matrix cpus[13] : total solve time │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 15 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 15 │ │ │ │ │ 3.3 Prototypes and descriptions of Bridge methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the Bridge object. │ │ │ │ │ 3.3.1 Basic methods │ │ │ │ │ Asusual, there are four basic methods to support object creation, setting default fields, clearing any allocated │ │ │ │ │ data, and free’ing the object. │ │ │ │ │ 1. Bridge * Bridge_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Bridge structure and then sets the default fields by a call │ │ │ │ │ @@ -531,15 +531,15 @@ │ │ │ │ │ 3.3.2 Instance methods │ │ │ │ │ 1. int Bridge_oldToNewIV ( Bridge *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its oldToNewIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 2. int Bridge_newToOldIV ( Bridge *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its newToOldIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 16 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 16 │ │ │ │ │ 3. int Bridge_frontETree ( Bridge *bridge, ETree **pobj ) ; │ │ │ │ │ This method fills *pobj with its frontETree pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 4. int Bridge_symbfacIVL ( Bridge *bridge, IVL **pobj ) ; │ │ │ │ │ This method fills *pobj with its symbfacIVL pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 5. int Bridge_mtxmanager ( Bridge *bridge, SubMtxManager **pobj ) ; │ │ │ │ │ @@ -568,15 +568,15 @@ │ │ │ │ │ Return value: │ │ │ │ │ 1 normal return -3 pivotingflag is invalid │ │ │ │ │ -1 bridge is NULL -4 tau < 2.0 │ │ │ │ │ -2 sparsityflag is invalid -5 droptol < 0.0 │ │ │ │ │ 4. int Bridge_setMessagesInfo ( Bridge *bridge, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method sets the message level and file. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL, -2 if msglvl > 0 and msgFile is NULL. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 17 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 17 │ │ │ │ │ 3.3.4 Setup methods │ │ │ │ │ 1. int Bridge_setup ( Bridge *bridge, InpMtx *mtxA ) ; │ │ │ │ │ This method orders the graph, generates the front tree, computes the symbolic factorization, and │ │ │ │ │ creates the two permutation vectors. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL, -2 if mtxA is NULL. │ │ │ │ │ 2. int Bridge_factorStats ( Bridge *bridge, int type, int symmetryflag, int *pnfront, │ │ │ │ │ int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops ) ; │ │ │ │ │ @@ -635,15 +635,15 @@ │ │ │ │ │ (if pivoting is requested), the drop tolerance (for an approximate factorization), and so on. Rather than │ │ │ │ │ burden the user with the knowledge of and setting these parameters, there are decent default values built │ │ │ │ │ into the object. │ │ │ │ │ Section 4.1 takes a quick look at the BridgeMT driver program (whose complete listing is found in │ │ │ │ │ Appendix B). Section 4.2 describes the internal data fields of the BridgeMT object. Section 3.3 contains the │ │ │ │ │ prototypes and descriptions of all Bridge methods. │ │ │ │ │ 18 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 19 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 19 │ │ │ │ │ 4.1 Aquick look at the multithreaded driver program │ │ │ │ │ The entire listing of this multithreaded driver is found in Appendix B. We now extract parts of the code. │ │ │ │ │ • Decode the input. │ │ │ │ │ msglvl = atoi(argv[1]) ; │ │ │ │ │ msgFileName = argv[6] ; │ │ │ │ │ neqns = atoi(argv[3]) ; │ │ │ │ │ type = atoi(argv[4]) ; │ │ │ │ │ @@ -675,15 +675,15 @@ │ │ │ │ │ rc = InpMtx_readFromFile(mtxA, mtxFileName) ; │ │ │ │ │ The rc parameter is the error return. In the driver it is tested for an error, but we omit this from the │ │ │ │ │ present discussion. │ │ │ │ │ • Read in the DenseMtx object for Y. │ │ │ │ │ mtxY = DenseMtx_new() ; │ │ │ │ │ rc = DenseMtx_readFromFile(mtxY, mtxFileName) ; │ │ │ │ │ DenseMtx_dimensions(mtxY, &nrow, &nrhs) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 20 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 20 │ │ │ │ │ The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns │ │ │ │ │ in Y . │ │ │ │ │ • Create and setup the BridgeMT object. │ │ │ │ │ bridge = BridgeMT_new() ; │ │ │ │ │ BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ rc = BridgeMT_setup(bridge, mtxA) ; │ │ │ │ │ @@ -711,15 +711,15 @@ │ │ │ │ │ DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ; │ │ │ │ │ DenseMtx_zero(mtxX) ; │ │ │ │ │ rc = BridgeMT_solve(bridge, permuteflag, mtxX, mtxY) ; │ │ │ │ │ The DenseMtx object mtxX is created and initialized to be the same type and size as mtxY. Its entries │ │ │ │ │ are explicitly zeroed (this is not necessary but is a good idea in general). The solution is then solved. │ │ │ │ │ Again, note the presence of permuteflag. When 1, mtxY needs to be permuted into the new ordering, │ │ │ │ │ and mtxX is returned in the original ordering. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 21 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 21 │ │ │ │ │ 4.2 The BridgeMT Data Structure │ │ │ │ │ The BridgeMT structure has the following fields. │ │ │ │ │ • Graph parameters: │ │ │ │ │ – int neqns : number of equations, i.e., number of vertices in the graph. │ │ │ │ │ – int nedges : number of edges (includes (u,v), (v,u) and (u,u)). │ │ │ │ │ – int Neqns : number of equations in the compressed graph. │ │ │ │ │ – int Nedges : number of edges in the compressed graph. │ │ │ │ │ @@ -751,15 +751,15 @@ │ │ │ │ │ • Pointers to objects: │ │ │ │ │ – ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree │ │ │ │ │ they form, the number of internal and external rows for each front, and the map from vertices to │ │ │ │ │ the front where it is contained. │ │ │ │ │ – IVL *symbfacIVL : object that contains the symbolic factorization of the matrix. │ │ │ │ │ – SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor │ │ │ │ │ entries and are used in the solves. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 22 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 22 │ │ │ │ │ – FrontMtx *frontmtx : object that stores the L, D and U factor matrices. │ │ │ │ │ – IV *oldToNewIV : object that stores old-to-new permutation vector. │ │ │ │ │ – IV *newToOldIV : object that stores new-to-old permutation vector. │ │ │ │ │ • Multithreaded information: │ │ │ │ │ – int nthread : number of threads to be used during the factor and solve. │ │ │ │ │ – int lookahead : this parameter is used to possibly reduce the idle time of threads during the │ │ │ │ │ factorization. When lookahead is 0, the factorization uses the least amount of working storage │ │ │ │ │ @@ -790,15 +790,15 @@ │ │ │ │ │ cpus[7] : time to initialize front matrix cpus[15] : total solve time │ │ │ │ │ 4.3 Prototypes and descriptions of BridgeMT methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the BridgeMT │ │ │ │ │ object. │ │ │ │ │ 4.3.1 Basic methods │ │ │ │ │ Asusual, there are four basic methods to support object creation, setting default fields, clearing any allocated │ │ │ │ │ data, and free’ing the object. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 23 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 23 │ │ │ │ │ 1. BridgeMT * BridgeMT_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the BridgeMT structure and then sets the default fields by a │ │ │ │ │ call to BridgeMT setDefaultFields(). │ │ │ │ │ 2. int BridgeMT_setDefaultFields ( BridgeMT *bridge ) ; │ │ │ │ │ The structure’s fields are set to default values: │ │ │ │ │ • neqns = nedges = Neqns = Nedges = 0. │ │ │ │ │ • maxdomainsize = maxnzeros = maxsize = seed = -1. compressCutoff = 0. │ │ │ │ │ @@ -828,15 +828,15 @@ │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 3. int BridgeMT_frontETree ( BridgeMT *bridge, ETree **pobj ) ; │ │ │ │ │ This method fills *pobj with its frontETree pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 4. int BridgeMT_symbfacIVL ( BridgeMT *bridge, IVL **pobj ) ; │ │ │ │ │ This method fills *pobj with its symbfacIVL pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 24 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 24 │ │ │ │ │ 5. int BridgeMT_mtxmanager ( BridgeMT *bridge, SubMtxManager **pobj ) ; │ │ │ │ │ This method fills *pobj with its mtxmanager pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 6. int BridgeMT_frontmtx ( BridgeMT *bridge, FrontMtx **pobj ) ; │ │ │ │ │ This method fills *pobj with its frontmtx pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 7. int BridgeMT_ownersIV ( BridgeMT *bridge, IV **pobj ) ; │ │ │ │ │ @@ -865,15 +865,15 @@ │ │ │ │ │ 1 normal return -3 maxsize ≤ 0 │ │ │ │ │ -1 bridge is NULL -4 compressCutoff> 1 │ │ │ │ │ -2 maxdomainsize ≤ 0 │ │ │ │ │ 3. int BridgeMT_setFactorParams ( BridgeMT *bridge, int sparsityflag, int pivotingflag, │ │ │ │ │ double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo ) ; │ │ │ │ │ This method sets parameters needed for the factorization. │ │ │ │ │ Return value: │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 25 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 25 │ │ │ │ │ 1 normal return -4 tau < 2.0 │ │ │ │ │ -1 bridge is NULL -5 droptol < 0.0 │ │ │ │ │ -2 sparsityflag is invalid -6 lookahead < 0 │ │ │ │ │ -3 pivotingflag is invalid │ │ │ │ │ 4. int BridgeMT_setMessagesInfo ( BridgeMT *bridge, int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method sets the message level and file. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL, -2 if msglvl > 0 and msgFile is NULL. │ │ │ │ │ @@ -905,15 +905,15 @@ │ │ │ │ │ Thewrapmapandbalancedmaparenotrecommended. Thesubtree-subsetmapisagoodmapwitha │ │ │ │ │ very well balanced nested dissection ordering. The domain decomposition map is recommended when │ │ │ │ │ the nested dissection tree is imbalanced or for the multisection ordering. The domain decomposition │ │ │ │ │ map requires a cutoff parameter in [0,1] which specifies the relative size of a subtree that forms a │ │ │ │ │ domain. If maptype is not one of 1, 2, 3 or 4, the default map is used: domain decomposition with │ │ │ │ │ cutoff = 1/(2*nthread). │ │ │ │ │ Return value: │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 26 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 26 │ │ │ │ │ 1 normal return, factorization did complete -2 nthread < 1 │ │ │ │ │ -1 bridge is NULL -5 frontETree is not present │ │ │ │ │ 2. int BridgeMT_factor ( BridgeMT *bridge, InpMtx *mtxA, int permuteflag, int *perror ) ; │ │ │ │ │ This method permutes the matrix into the new ordering (if permuteflagis 1), factors the matrix, and │ │ │ │ │ then post-processes the factors. │ │ │ │ │ Return value: │ │ │ │ │ 1 normal return, factorization did complete -1 bridge is NULL │ │ │ │ │ @@ -960,15 +960,15 @@ │ │ │ │ │ burden the user with the knowledge of and setting these parameters, there are decent default values built │ │ │ │ │ into the object. Using the BridgeMPI object to solve a linear system of equations can be broken down into │ │ │ │ │ three steps. │ │ │ │ │ Section 5.1 takes a quick look at the BridgeMPI driver program (whose complete listing is found in │ │ │ │ │ Appendix C). Section 5.2 describes the internal data fields of the BridgeMPI object. Section 3.3 contains │ │ │ │ │ the prototypes and descriptions of all Bridge methods. │ │ │ │ │ 27 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 28 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 28 │ │ │ │ │ 5.1 Aquick look at the MPI driver program │ │ │ │ │ The entire listing of this MPI driver is found in Appendix C. We now extract parts of the code. │ │ │ │ │ • Decode the input. │ │ │ │ │ msglvl = atoi(argv[1]) ; │ │ │ │ │ msgFileName = argv[6] ; │ │ │ │ │ neqns = atoi(argv[3]) ; │ │ │ │ │ type = atoi(argv[4]) ; │ │ │ │ │ @@ -1001,15 +1001,15 @@ │ │ │ │ │ • Processor 0 reads in the DenseMtx object for Y. │ │ │ │ │ mtxY = DenseMtx_new() ; │ │ │ │ │ rc = DenseMtx_readFromFile(mtxY, mtxFileName) ; │ │ │ │ │ DenseMtx_dimensions(mtxY, &nrow, &nrhs) ; │ │ │ │ │ The nrhs parameter contains the number of right hand sides, or equivalently, the number of columns │ │ │ │ │ in Y . Processor 0 then broadcasts the error return to the other processors. If an error occured reading │ │ │ │ │ in the matrix, all processors call MPI Finalize() and exit. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 29 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 29 │ │ │ │ │ • Create and setup the BridgeMPI object. │ │ │ │ │ bridge = BridgeMPI_new() ; │ │ │ │ │ BridgeMPI_setMPIparams(bridge, nproc, myid, MPI_COMM_WORLD) ; │ │ │ │ │ BridgeMPI_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ BridgeMPI_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ rc = BridgeMPI_setup(bridge, mtxA) ; │ │ │ │ │ The BridgeMPI object is allocated by BridgeMPI new(), and various parameters are set. The actual │ │ │ │ │ @@ -1037,15 +1037,15 @@ │ │ │ │ │ mtxX = DenseMtx_new() ; │ │ │ │ │ DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ; │ │ │ │ │ DenseMtx_zero(mtxX) ; │ │ │ │ │ All processors then cooperate to compute the solution X. │ │ │ │ │ rc = BridgeMPI_solve(bridge, permuteflag, mtxX, mtxY) ; │ │ │ │ │ Again, note the presence of permuteflag. When 1, mtxY needs to be permuted into the new ordering, │ │ │ │ │ and mtxX is returned in the original ordering. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 30 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 30 │ │ │ │ │ 5.2 The BridgeMPI Data Structure │ │ │ │ │ The BridgeMPI structure has the following fields. │ │ │ │ │ • Graph parameters: │ │ │ │ │ – int neqns : number of equations, i.e., number of vertices in the graph. │ │ │ │ │ – int nedges : number of edges (includes (u,v), (v,u) and (u,u)). │ │ │ │ │ – int Neqns : number of equations in the compressed graph. │ │ │ │ │ – int Nedges : number of edges in the compressed graph. │ │ │ │ │ @@ -1078,15 +1078,15 @@ │ │ │ │ │ factorization. When lookahead is 0, the factorization uses the least amount of working storage │ │ │ │ │ but threads can be idle. Larger values of lookahead tend to increase the working storage but │ │ │ │ │ may decrease the execution time. Values of lookahead greater than nthread are not useful. │ │ │ │ │ • Pointers to objects: │ │ │ │ │ – ETree *frontETree : object that defines the factorizations, e.g., the number of fronts, the tree │ │ │ │ │ they form, the number of internal and external rows for each front, and the map from vertices to │ │ │ │ │ the front where it is contained. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 31 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 31 │ │ │ │ │ – IVL *symbfacIVL : object that contains the symbolic factorization of the matrix. │ │ │ │ │ – SubMtxManager *mtxmanager : object that manages the SubMtx objects that store the factor │ │ │ │ │ entries and are used in the solves. │ │ │ │ │ – FrontMtx *frontmtx : object that stores the L, D and U factor matrices. │ │ │ │ │ – IV *oldToNewIV : object that stores old-to-new permutation vector. │ │ │ │ │ – IV *newToOldIV : object that stores new-to-old permutation vector. │ │ │ │ │ • MPI information: │ │ │ │ │ @@ -1124,15 +1124,15 @@ │ │ │ │ │ cpus[4] : broadcast the front tree cpus[15] : permute rhs │ │ │ │ │ cpus[5] : broadcast symbolic factor cpus[16] : distribute rhs │ │ │ │ │ cpus[6] : total setup time cpus[17] : create solution matrix │ │ │ │ │ cpus[7] : setup the factorization cpus[18] : solve │ │ │ │ │ cpus[8] : permute matrix cpus[19] : gather solution │ │ │ │ │ cpus[9] : distribute matrix cpus[20] : permute solution │ │ │ │ │ cpus[10] : initialize front matrix cpus[21] : total solve time │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 32 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 32 │ │ │ │ │ 5.3 Prototypes and descriptions of BridgeMPI methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the BridgeMPI │ │ │ │ │ object. │ │ │ │ │ 5.3.1 Basic methods │ │ │ │ │ Asusual, there are four basic methods to support object creation, setting default fields, clearing any allocated │ │ │ │ │ data, and free’ing the object. │ │ │ │ │ 1. BridgeMPI * BridgeMPI_new ( void ) ; │ │ │ │ │ @@ -1157,15 +1157,15 @@ │ │ │ │ │ 3. int BridgeMPI_clearData ( BridgeMPI *bridge ) ; │ │ │ │ │ Thismethodclearstheobjectandfree’sanyowneddata. ItthencallsBridgeMPI setDefaultFields(). │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. │ │ │ │ │ 4. int BridgeMPI_free ( BridgeMPI *bridge ) ; │ │ │ │ │ This method releases any storage by a call to BridgeMPI clearData() and then free the space for │ │ │ │ │ bridge. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 33 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 33 │ │ │ │ │ 5.3.2 Instance methods │ │ │ │ │ 1. int BridgeMPI_oldToNewIV ( BridgeMPI *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its oldToNewIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 2. int BridgeMPI_newToOldIV ( BridgeMPI *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its newToOldIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ @@ -1192,15 +1192,15 @@ │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 10. int BridgeMPI_rowmapIV ( BridgeMPI *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its rowmapIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 11. int BridgeMPI_ownedColumns ( BridgeMPI *bridge, IV **pobj ) ; │ │ │ │ │ This method fills *pobj with its ownedColumnsIV pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 34 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 34 │ │ │ │ │ 12. int BridgeMPI_Xloc ( BridgeMPI *bridge, DenseMtx **pobj ) ; │ │ │ │ │ This method fills *pobj with its Xloc pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 13. int BridgeMPI_Yloc ( BridgeMPI *bridge, DenseMtx **pobj ) ; │ │ │ │ │ This method fills *pobj with its Yloc pointer. │ │ │ │ │ Return value: 1 for a normal return, -1 if bridge is NULL. -2 if pobj is NULL. │ │ │ │ │ 14. int BridgeMPI_nproc ( BridgeMPI *bridge, int *pnproc ) ; │ │ │ │ │ @@ -1227,15 +1227,15 @@ │ │ │ │ │ 3. int BridgeMPI_setOrderingParams ( BridgeMPI *bridge, int maxdomainsize, int maxnzeros, │ │ │ │ │ int maxsize, int seed, double compressCutoff ) ; │ │ │ │ │ This method sets parameters needed for the ordering. │ │ │ │ │ Return value: │ │ │ │ │ 1 normal return -3 maxsize ≤ 0 │ │ │ │ │ -1 bridge is NULL -4 compressCutoff> 1 │ │ │ │ │ -2 maxdomainsize ≤ 0 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 35 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 35 │ │ │ │ │ 4. int BridgeMPI_setFactorParams ( BridgeMPI *bridge, int sparsityflag, int pivotingflag, │ │ │ │ │ double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo ) ; │ │ │ │ │ This method sets parameters needed for the factorization. │ │ │ │ │ Return value: │ │ │ │ │ 1 normal return -4 tau < 2.0 │ │ │ │ │ -1 bridge is NULL -5 droptol < 0.0 │ │ │ │ │ -2 sparsityflag is invalid -6 lookahead < 0 │ │ │ │ │ @@ -1264,15 +1264,15 @@ │ │ │ │ │ 1. int BridgeMPI_factorSetup ( BridgeMPI *bridge, int maptype, double cutoff ) ; │ │ │ │ │ This method constructs the map from fronts to owning processors, and computes the number of factor │ │ │ │ │ operations that each thread will execute. The maptype parameter can be one of four values: │ │ │ │ │ • 1 — wrap map │ │ │ │ │ • 2 — balanced map │ │ │ │ │ • 3 — subtree-subset map │ │ │ │ │ • 4 — domain decomposition map │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 36 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 36 │ │ │ │ │ Thewrapmapandbalancedmaparenotrecommended. Thesubtree-subsetmapisagoodmapwitha │ │ │ │ │ very well balanced nested dissection ordering. The domain decomposition map is recommended when │ │ │ │ │ the nested dissection tree is imbalanced or for the multisection ordering. The domain decomposition │ │ │ │ │ map requires a cutoff parameter in [0,1] which specifies the relative size of a subtree that forms a │ │ │ │ │ domain. If maptype is not one of 1, 2, 3 or 4, the default map is used: domain decomposition with │ │ │ │ │ cutoff = 1/(2*nthread). │ │ │ │ │ Return value: 1 normal return, factorization did complete, -1 bridge is NULL, -2 frontETree is not │ │ │ │ │ @@ -1328,15 +1328,15 @@ │ │ │ │ │ get input parameters │ │ │ │ │ -------------------- │ │ │ │ │ */ │ │ │ │ │ if ( argc != 10 ) { │ │ │ │ │ fprintf(stdout, │ │ │ │ │ "\n\n usage : %s msglvl msgFile neqns type symmetryflag" │ │ │ │ │ 37 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 38 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 38 │ │ │ │ │ "\n mtxFile rhsFile seed" │ │ │ │ │ "\n msglvl -- message level" │ │ │ │ │ "\n 0 -- no output" │ │ │ │ │ "\n 1 -- timings and statistics" │ │ │ │ │ "\n 2 and greater -- lots of output" │ │ │ │ │ "\n msgFile -- message file" │ │ │ │ │ "\n neqns -- # of equations" │ │ │ │ │ @@ -1380,15 +1380,15 @@ │ │ │ │ │ "\n msglvl = %d" │ │ │ │ │ "\n msgFile = %s" │ │ │ │ │ "\n neqns = %d" │ │ │ │ │ "\n type = %d" │ │ │ │ │ "\n symmetryflag = %d" │ │ │ │ │ "\n mtxFile = %s" │ │ │ │ │ "\n rhsFile = %s" │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 39 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 39 │ │ │ │ │ "\n solFile = %s" │ │ │ │ │ "\n seed = %d" │ │ │ │ │ "\n", │ │ │ │ │ argv[0], msglvl, argv[2], neqns, type, symmetryflag, │ │ │ │ │ mtxFileName, rhsFileName, solFileName, seed) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ @@ -1431,15 +1431,15 @@ │ │ │ │ │ DenseMtx_dimensions(mtxY, &nrow, &nrhs) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ -------------------------------- │ │ │ │ │ create and setup a Bridge object │ │ │ │ │ -------------------------------- │ │ │ │ │ */ │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 40 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 40 │ │ │ │ │ bridge = Bridge_new() ; │ │ │ │ │ Bridge_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ Bridge_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ rc = Bridge_setup(bridge, mtxA) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ fprintf(stderr, "\n error return %d from Bridge_setup()", rc) ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ @@ -1483,15 +1483,15 @@ │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ fprintf(msgFile, "\n\n ----- FACTORIZATION -----\n") ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n CPU %8.3f : time to permute original matrix" │ │ │ │ │ "\n CPU %8.3f : time to initialize factor matrix" │ │ │ │ │ "\n CPU %8.3f : time to compute factorization" │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 41 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 41 │ │ │ │ │ "\n CPU %8.3f : time to post-process factorization" │ │ │ │ │ "\n CPU %8.3f : total factorization time\n", │ │ │ │ │ bridge->cpus[5], bridge->cpus[6], bridge->cpus[7], │ │ │ │ │ bridge->cpus[8], bridge->cpus[9]) ; │ │ │ │ │ fprintf(msgFile, "\n\n factorization statistics" │ │ │ │ │ "\n %d pivots, %d pivot tests, %d delayed vertices" │ │ │ │ │ "\n %d entries in D, %d entries in L, %d entries in U", │ │ │ │ │ @@ -1535,15 +1535,15 @@ │ │ │ │ │ DenseMtx_writeForHumanEye(mtxX, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ if ( strcmp(solFileName, "none") != 0 ) { │ │ │ │ │ /* │ │ │ │ │ ----------------------------------- │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 42 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 42 │ │ │ │ │ write the solution matrix to a file │ │ │ │ │ ----------------------------------- │ │ │ │ │ */ │ │ │ │ │ rc = DenseMtx_writeToFile(mtxX, solFileName) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n fatal error writing mtxX to file %s, rc = %d", │ │ │ │ │ @@ -1595,15 +1595,15 @@ │ │ │ │ │ /* │ │ │ │ │ -------------------- │ │ │ │ │ get input parameters │ │ │ │ │ -------------------- │ │ │ │ │ */ │ │ │ │ │ if ( argc != 11 ) { │ │ │ │ │ 43 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 44 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 44 │ │ │ │ │ fprintf(stdout, │ │ │ │ │ "\n\n usage : %s msglvl msgFile neqns type symmetryflag " │ │ │ │ │ "\n mtxFile rhsFile solFile seed nthread\n" │ │ │ │ │ "\n msglvl -- message level" │ │ │ │ │ "\n 0 -- no output" │ │ │ │ │ "\n 1 -- timings and statistics" │ │ │ │ │ "\n 2 and greater -- lots of output" │ │ │ │ │ @@ -1647,15 +1647,15 @@ │ │ │ │ │ seed = atoi(argv[9]) ; │ │ │ │ │ nthread = atoi(argv[10]) ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n\n %s input :" │ │ │ │ │ "\n msglvl = %d" │ │ │ │ │ "\n msgFile = %s" │ │ │ │ │ "\n neqns = %d" │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 45 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 45 │ │ │ │ │ "\n type = %d" │ │ │ │ │ "\n symmetryflag = %d" │ │ │ │ │ "\n mtxFile = %s" │ │ │ │ │ "\n rhsFile = %s" │ │ │ │ │ "\n solFile = %s" │ │ │ │ │ "\n nthread = %d" │ │ │ │ │ "\n", │ │ │ │ │ @@ -1699,15 +1699,15 @@ │ │ │ │ │ DenseMtx_writeForHumanEye(mtxY, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ DenseMtx_dimensions(mtxY, &nrow, &nrhs) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ---------------------------------- │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 46 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 46 │ │ │ │ │ create and setup a BridgeMT object │ │ │ │ │ ---------------------------------- │ │ │ │ │ */ │ │ │ │ │ bridge = BridgeMT_new() ; │ │ │ │ │ BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ rc = BridgeMT_setup(bridge, mtxA) ; │ │ │ │ │ @@ -1751,15 +1751,15 @@ │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n CPU %8.3f : time to setup parallel factorization", │ │ │ │ │ bridge->cpus[5]) ; │ │ │ │ │ if ( msglvl > 0 ) { │ │ │ │ │ fprintf(msgFile, "\n total factor operations = %.0f", │ │ │ │ │ DV_sum(bridge->cumopsDV)) ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 47 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 47 │ │ │ │ │ "\n upper bound on speedup due to load balance = %.2f", │ │ │ │ │ DV_sum(bridge->cumopsDV)/DV_max(bridge->cumopsDV)) ; │ │ │ │ │ fprintf(msgFile, "\n operations distributions over threads") ; │ │ │ │ │ DV_writeForHumanEye(bridge->cumopsDV, msgFile) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ @@ -1803,15 +1803,15 @@ │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------ │ │ │ │ │ setup the parallel solve │ │ │ │ │ ------------------------ │ │ │ │ │ */ │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 48 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 48 │ │ │ │ │ rc = BridgeMT_solveSetup(bridge) ; │ │ │ │ │ fprintf(msgFile, "\n\n ----- PARALLEL SOLVE SETUP -----\n") ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n CPU %8.3f : time to setup parallel solve", │ │ │ │ │ bridge->cpus[11]) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ @@ -1855,15 +1855,15 @@ │ │ │ │ │ */ │ │ │ │ │ rc = DenseMtx_writeToFile(mtxX, solFileName) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n fatal error writing mtxX to file %s, rc = %d", │ │ │ │ │ solFileName, rc) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 49 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 49 │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ --------------------- │ │ │ │ │ free the working data │ │ │ │ │ @@ -1906,15 +1906,15 @@ │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ find out the identity of this process and the number of process │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ */ │ │ │ │ │ 50 │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 51 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 51 │ │ │ │ │ MPI_Init(&argc, &argv) ; │ │ │ │ │ MPI_Comm_rank(MPI_COMM_WORLD, &myid) ; │ │ │ │ │ MPI_Comm_size(MPI_COMM_WORLD, &nproc) ; │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ -------------------- │ │ │ │ │ get input parameters │ │ │ │ │ @@ -1958,15 +1958,15 @@ │ │ │ │ │ if ( (msgFile = fopen(buffer, "w")) == NULL ) { │ │ │ │ │ fprintf(stderr, "\n fatal error in %s" │ │ │ │ │ "\n unable to open file %s\n", │ │ │ │ │ argv[0], argv[2]) ; │ │ │ │ │ MPI_Finalize() ; │ │ │ │ │ return(0) ; │ │ │ │ │ } │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 52 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 52 │ │ │ │ │ CVfree(buffer) ; │ │ │ │ │ } │ │ │ │ │ neqns = atoi(argv[3]) ; │ │ │ │ │ type = atoi(argv[4]) ; │ │ │ │ │ symmetryflag = atoi(argv[5]) ; │ │ │ │ │ mtxFileName = argv[6] ; │ │ │ │ │ rhsFileName = argv[7] ; │ │ │ │ │ @@ -2010,15 +2010,15 @@ │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ } │ │ │ │ │ } │ │ │ │ │ /* │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ processor 0 broadcasts the error return to the other processors │ │ │ │ │ --------------------------------------------------------------- │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 53 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 53 │ │ │ │ │ */ │ │ │ │ │ MPI_Bcast((void *) &rc, 1, MPI_INT, 0, MPI_COMM_WORLD) ; │ │ │ │ │ if ( rc != 1 ) { │ │ │ │ │ MPI_Finalize() ; │ │ │ │ │ return(-1) ; │ │ │ │ │ } │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ @@ -2062,15 +2062,15 @@ │ │ │ │ │ ------------------------------------------ │ │ │ │ │ create and setup a BridgeMPI object │ │ │ │ │ set the MPI, matrix and message parameters │ │ │ │ │ ------------------------------------------ │ │ │ │ │ */ │ │ │ │ │ bridge = BridgeMPI_new() ; │ │ │ │ │ BridgeMPI_setMPIparams(bridge, nproc, myid, MPI_COMM_WORLD) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 54 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 54 │ │ │ │ │ BridgeMPI_setMatrixParams(bridge, neqns, type, symmetryflag) ; │ │ │ │ │ BridgeMPI_setMessageInfo(bridge, msglvl, msgFile) ; │ │ │ │ │ /* │ │ │ │ │ ----------------- │ │ │ │ │ setup the problem │ │ │ │ │ ----------------- │ │ │ │ │ */ │ │ │ │ │ @@ -2114,15 +2114,15 @@ │ │ │ │ │ MPI_Finalize() ; │ │ │ │ │ exit(-1) ; │ │ │ │ │ } │ │ │ │ │ fprintf(msgFile, "\n\n ----- PARALLEL FACTOR SETUP -----\n") ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n CPU %8.3f : time to setup parallel factorization", │ │ │ │ │ bridge->cpus[7]) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 55 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 55 │ │ │ │ │ if ( msglvl > 0 ) { │ │ │ │ │ fprintf(msgFile, "\n total factor operations = %.0f" │ │ │ │ │ "\n upper bound on speedup due to load balance = %.2f", │ │ │ │ │ DV_sum(bridge->cumopsDV), │ │ │ │ │ DV_sum(bridge->cumopsDV)/DV_max(bridge->cumopsDV)) ; │ │ │ │ │ fprintf(msgFile, "\n operations distributions over processors") ; │ │ │ │ │ DV_writeForHumanEye(bridge->cumopsDV, msgFile) ; │ │ │ │ │ @@ -2166,15 +2166,15 @@ │ │ │ │ │ tstats[0], tstats[1], tstats[2], │ │ │ │ │ tstats[3], tstats[4], tstats[5]) ; │ │ │ │ │ fprintf(msgFile, │ │ │ │ │ "\n\n factorization: raw mflops %8.3f, overall mflops %8.3f", │ │ │ │ │ 1.e-6*nfactorops/bridge->cpus[11], │ │ │ │ │ 1.e-6*nfactorops/bridge->cpus[13]) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 56 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 56 │ │ │ │ │ /*--------------------------------------------------------------------*/ │ │ │ │ │ /* │ │ │ │ │ ------------------------ │ │ │ │ │ setup the parallel solve │ │ │ │ │ ------------------------ │ │ │ │ │ */ │ │ │ │ │ rc = BridgeMPI_solveSetup(bridge) ; │ │ │ │ │ @@ -2218,15 +2218,15 @@ │ │ │ │ │ "\n CPU %8.3f : time to distribute rhs " │ │ │ │ │ "\n CPU %8.3f : time to initialize solution matrix " │ │ │ │ │ "\n CPU %8.3f : time to solve linear system" │ │ │ │ │ "\n CPU %8.3f : time to gather solution " │ │ │ │ │ "\n CPU %8.3f : time to permute solution into old ordering" │ │ │ │ │ "\n CPU %8.3f : total solve time" │ │ │ │ │ "\n\n solve: raw mflops %8.3f, overall mflops %8.3f", │ │ │ │ │ - SPOOLES 2.2 Wrapper Objects : October 18, 2025 57 │ │ │ │ │ + SPOOLES 2.2 Wrapper Objects : October 28, 2025 57 │ │ │ │ │ bridge->cpus[15], bridge->cpus[16], bridge->cpus[17], │ │ │ │ │ bridge->cpus[18], bridge->cpus[19], bridge->cpus[20], │ │ │ │ │ bridge->cpus[21], │ │ │ │ │ 1.e-6*nsolveops/bridge->cpus[18], │ │ │ │ │ 1.e-6*nsolveops/bridge->cpus[21]) ; │ │ │ │ │ fflush(msgFile) ; │ │ │ │ │ if ( myid == 0 ) { │ │ ├── ./usr/share/doc/spooles-doc/Lock.ps.gz │ │ │ ├── Lock.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Lock.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1513,15 +1513,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1715,81 +1714,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3002,15 +2996,15 @@ │ │ │ │ TeXDict begin 40258437 52099151 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 133[50 59 4[44 44 46 2[56 62 93 31 2[31 62 │ │ │ │ 2[51 62 50 1[54 11[86 11[42 6[80 14[56 56 56 2[31 46[{}22 │ │ │ │ 99.6264 /CMBX12 rf /Fb 144[62 3[62 7[62 22[62 76[{}4 │ │ │ │ 119.552 /CMTT12 rf /Fc 141[38 2[46 51 2[42 1[28 46 42 │ │ │ │ 1[42 1[42 14[65 1[66 11[59 62 69 2[68 6[28 58[{}16 90.9091 │ │ │ │ /CMTI10 rf /Fd 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 │ │ │ │ -1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fe tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -3119,15 +3113,15 @@ │ │ │ │ 5231 y(F)-8 b(or)31 b(POSIX)f(threads)g(w)m(e)h(ha)m(v)m(e)g │ │ │ │ Fg(pthread)p 1714 5231 V 33 w(mutex)p 1987 5231 V 33 │ │ │ │ w(t)47 b(*mutex)p Fh(.)227 5407 y(F)-8 b(or)31 b(no)g(threads)f(w)m(e)g │ │ │ │ (ha)m(v)m(e)i Fg(void)47 b(*mutex)p Fh(.)1927 5656 y(1)p │ │ │ │ eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fh(2)p 136 100 1130 4 v │ │ │ │ -1311 w Fg(Lock)30 b Fd(:)40 b Fc(DRAFT)30 b Fd(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fg(Lock)30 b Fd(:)40 b Fc(DRAFT)30 b Fd(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Ff(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Fb(Lock)e Ff(metho)t(ds)0 │ │ │ │ 628 y Fa(1.2.1)112 b(Basic)38 b(metho)s(ds)0 823 y Fh(As)d(usual,)h │ │ │ │ (there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g(supp)s(ort)e(ob)5 │ │ │ │ b(ject)36 b(creation,)i(setting)e(default)f(\014elds,)h(clearing)0 │ │ │ │ 936 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f(free'ing)h(the)g(ob)5 │ │ │ │ b(ject.)111 1164 y(1.)46 b Fg(Lock)h(*)g(Lock_new)f(\()h(void)g(\))g(;) │ │ │ │ @@ -3187,15 +3181,15 @@ │ │ │ │ (*lock)h(\))g(;)227 5258 y Fh(This)30 b(metho)s(d)g(lo)s(c)m(ks)h(the)f │ │ │ │ (lo)s(c)m(k.)227 5407 y Fc(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fh(If)30 b Fg(lock)g Fh(is)g Fg(NULL)p Fh(,)f(an)i(error)f(message)h │ │ │ │ (is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1130 4 v 1311 100 a Fg(Lock)29 │ │ │ │ -b Fd(:)41 b Fc(DRAFT)121 b Fd(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fd(:)41 b Fc(DRAFT)121 b Fd(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fh(3)111 399 y(2.)46 b Fg(void)h(Lock_unlock)e(\()i │ │ │ │ (Lock)g(*lock)f(\))i(;)227 549 y Fh(This)30 b(metho)s(d)g(unlo)s(c)m │ │ │ │ (ks)g(the)g(lo)s(c)m(k.)227 699 y Fc(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fh(If)30 b Fg(lock)g Fh(is)g Fg(NULL)p │ │ │ │ Fh(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f(the)i(program)f │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ • int nlocks : number of locks made. │ │ │ │ │ • int nunlocks : number of unlocks made. │ │ │ │ │ • the mutual exclusion lock │ │ │ │ │ For Solaris threads we have mutex t *mutex. │ │ │ │ │ For POSIX threads we have pthread mutex t *mutex. │ │ │ │ │ For no threads we have void *mutex. │ │ │ │ │ 1 │ │ │ │ │ - 2 Lock : DRAFT October 18, 2025 │ │ │ │ │ + 2 Lock : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of Lock methods │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Lock * Lock_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Lock structure and then sets the default fields │ │ │ │ │ by a call to Lock setDefaultFields(). │ │ │ │ │ @@ -53,15 +53,15 @@ │ │ │ │ │ thread package, lockflag != 0 means the lock will be initialized to synchronize only threads │ │ │ │ │ in this process. │ │ │ │ │ Error checking: If lock is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. void Lock_lock ( Lock *lock ) ; │ │ │ │ │ This method locks the lock. │ │ │ │ │ Error checking: If lock is NULL, an error message is printed and the program exits. │ │ │ │ │ - Lock : DRAFT October 18, 2025 3 │ │ │ │ │ + Lock : DRAFT October 28, 2025 3 │ │ │ │ │ 2. void Lock_unlock ( Lock *lock ) ; │ │ │ │ │ This method unlocks the lock. │ │ │ │ │ Error checking: If lock is NULL, an error message is printed and the program exits. │ │ │ │ │ Index │ │ │ │ │ Lock clearData(), 2 │ │ │ │ │ Lock free(), 2 │ │ │ │ │ Lock init(), 2 │ │ ├── ./usr/share/doc/spooles-doc/MPI.ps.gz │ │ │ ├── MPI.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o MPI.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1204,15 +1204,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1406,81 +1405,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4897,15 +4891,15 @@ │ │ │ │ cleartomark │ │ │ │ {restore}if │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 175[88 80[{}1 83.022 /CMEX10 rf /Fb 152[42 │ │ │ │ 42 69[83 28[42 65 2[{}5 83.022 /CMSY10 rf /Fc 175[62 │ │ │ │ 2[62 3[62 73[{}3 119.552 /CMTT12 rf /Fd 139[32 1[33 2[42 │ │ │ │ -9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 42 3[23 44[{}14 │ │ │ │ +9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 3[23 44[{}13 │ │ │ │ 83.022 /CMSL10 rf /Fe 132[48 59[45 63[{}2 83.022 /CMBX10 │ │ │ │ rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ @@ -5056,15 +5050,15 @@ │ │ │ │ Fh(A)301 5278 y Fe({)41 b Fn(0)27 b(\()p Fl(SPOOLES)p │ │ │ │ 804 5278 V 29 w(SYMMETRIC)p Fn(\))d({)k(symmetric)f(matrix)301 │ │ │ │ 5407 y Fe({)41 b Fn(1)27 b(\()p Fl(SPOOLES)p 804 5407 │ │ │ │ V 29 w(HERMITIAN)p Fn(\))d({)k(hermitian)f(matrix)1929 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 301 390 a Fe({)41 b Fn(2)27 b(\()p Fl(SPOOLES)p │ │ │ │ 804 390 27 4 v 29 w(NONSYMMETRIC)p Fn(\))c({)k(nonsymmetric)g(matrix) │ │ │ │ 125 559 y Ff(\210)42 b Fl(opflag)25 b Fn(|)i(op)r(eration)g(\015ag)g │ │ │ │ (for)g(the)h(m)n(ultiply)301 728 y Fe({)41 b Fn(0)27 │ │ │ │ b(\()p Fl(MMM)p 628 728 V 31 w(WITH)p 835 728 V 30 w(A)p │ │ │ │ Fn(\))g(|)h(p)r(erform)f Fh(Y)42 b Fn(:=)22 b Fh(Y)37 │ │ │ │ b Fn(+)18 b Fh(\013AX)301 862 y Fe({)41 b Fn(1)27 b(\()p │ │ │ │ @@ -5146,15 +5140,15 @@ │ │ │ │ (ws)f(to)208 5308 y(pro)r(cesses.)35 b(The)27 b(messages)f(that)h(will) │ │ │ │ h(b)r(e)f(sen)n(t)h(require)e Fl(nproc)f Fn(consecutiv)n(e)h(tags)h(|)g │ │ │ │ (the)h(\014rst)f(is)g(the)h(parameter)208 5407 y Fl(firsttag)p │ │ │ │ Fn(.)33 b(On)28 b(return,)f(the)h Fl(stats[])d Fn(v)n(ector)h(con)n │ │ │ │ (tains)g(the)i(follo)n(wing)f(information.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1227 4 v 1393 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fn(3)556 377 y Fl(stats[0])97 b Fn(|)i(#)28 │ │ │ │ b(of)g(messages)e(sen)n(t)344 b Fl(stats[1])96 b Fn(|)k(#)28 │ │ │ │ b(of)f(b)n(ytes)g(sen)n(t)556 477 y Fl(stats[2])97 b │ │ │ │ Fn(|)i(#)28 b(of)g(messages)e(receiv)n(ed)198 b Fl(stats[3])96 │ │ │ │ b Fn(|)k(#)28 b(of)f(b)n(ytes)g(receiv)n(ed)208 711 y(Note,)g(the)h(v) │ │ │ │ -5 b(alues)27 b(in)h Fl(stats[])c Fn(are)j Fm(incr)l(emente)l(d)p │ │ │ │ Fn(,)g(i.e.,)h(the)g Fl(stats[])c Fn(v)n(ector)i(is)h(not)h(zero)r(ed)e │ │ │ │ @@ -5254,15 +5248,15 @@ │ │ │ │ 5319 y Fl(stats[0])97 b Fn(|)i(#)28 b(of)g(messages)e(sen)n(t)344 │ │ │ │ b Fl(stats[1])96 b Fn(|)k(#)28 b(of)f(b)n(ytes)g(sen)n(t)556 │ │ │ │ 5419 y Fl(stats[2])97 b Fn(|)i(#)28 b(of)g(messages)e(receiv)n(ed)198 │ │ │ │ b Fl(stats[3])96 b Fn(|)k(#)28 b(of)f(b)n(ytes)g(receiv)n(ed)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 208 390 a Fn(Note,)g(the)h(v)-5 b(alues)27 │ │ │ │ b(in)h Fl(stats[])c Fn(are)j Fm(incr)l(emente)l(d)p Fn(,)g(i.e.,)h(the) │ │ │ │ g Fl(stats[])c Fn(v)n(ector)i(is)h(not)h(zero)r(ed)e(at)i(the)g(start)e │ │ │ │ (of)i(the)208 490 y(metho)r(d,)g(and)f(so)g(can)g(b)r(e)h(used)g(to)f │ │ │ │ (accum)n(ulated)g(information)g(with)h(m)n(ultiple)h(calls.)208 │ │ │ │ 632 y Fm(Err)l(or)38 b(che)l(cking:)55 b Fn(If)37 b Fl(firsttag)j(<)j │ │ │ │ (0)36 b Fn(or)f Fl(firsttag)40 b(+)j(nproc)35 b Fn(is)g(larger)g(than)h │ │ │ │ @@ -5352,15 +5346,15 @@ │ │ │ │ Fl(msglvl)41 b(>)i(0)28 b Fn(and)g Fl(msgFile)e Fn(is)i │ │ │ │ Fl(NULL)p Fn(,)f(or)g(if)i Fl(firsttag)40 b(<)208 5407 │ │ │ │ y(0)27 b Fn(is)g(larger)f(than)i(the)g(largest)e(a)n(v)-5 │ │ │ │ b(ailable)26 b(tag,)h(an)h(error)d(message)h(is)i(prin)n(ted)f(and)h │ │ │ │ (the)g(program)d(exits.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1227 4 v 1393 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fn(5)0 390 y Fj(1.2.2)112 b(Gather)38 │ │ │ │ b(and)h(scatter)e(metho)s(ds)0 568 y Fn(These)24 b(metho)r(d)g(gather)f │ │ │ │ (and)h(scatter/add)e(ro)n(ws)h(of)h Fl(DenseMtx)c Fn(ob)5 │ │ │ │ b(jects.)35 b(These)24 b(op)r(erations)f(are)g(p)r(erformed)g(during)h │ │ │ │ (the)0 668 y(distributed)19 b(matrix-matrix)e(m)n(ultiply)-7 │ │ │ │ b(.)34 b(The)18 b(gather)g(op)r(eration)f Fh(X)2150 638 │ │ │ │ y Fg(q)2143 688 y(supp)2309 668 y Fb( )23 b Fh(X)i Fn(is)18 │ │ │ │ @@ -5444,15 +5438,15 @@ │ │ │ │ 208 5208 y(IVL)f(*)h(SymbFac_MPI_init)o(Fro)o(mP)o(enc)o(il)37 │ │ │ │ b(\()43 b(ETree)f(*etree,)e(IV)j(*frontOwnersIV,)1733 │ │ │ │ 5308 y(Pencil)e(*pencil,)f(int)j(stats[],)d(int)i(msglvl,)1733 │ │ │ │ 5407 y(FILE)g(*msgFile,)e(int)i(firsttag,)e(MPI_Comm)g(comm)i(\))h(;)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fn(6)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 208 390 a Fn(These)19 b(metho)r(ds)h(are)e(used)i(in)g │ │ │ │ (place)f(of)h(the)g Fl(Symbfac)p 1907 390 27 4 v 28 w(initFrom)p │ │ │ │ Fb(f)p Fl(InpMtx,P)o(en)o(cil)o Fb(g)p Fl(\()o(\))14 │ │ │ │ b Fn(metho)r(ds)19 b(to)h(compute)g(the)208 490 y(sym)n(b)r(olic)27 │ │ │ │ b(factorization.)37 b(The)28 b Fl(ETree)e Fn(ob)5 b(ject)28 │ │ │ │ b(is)g(assumed)f(to)h(b)r(e)h(replicated)e(o)n(v)n(er)f(the)j(pro)r │ │ │ │ (cesses.)36 b(The)28 b Fl(InpMtx)208 589 y Fn(and)i Fl(Pencil)e │ │ │ │ @@ -5542,15 +5536,15 @@ │ │ │ │ (es)2053 5170 y Fl(cpus[10])96 b Fn({)j(c)n(hec)n(k)27 │ │ │ │ b(for)g(receiv)n(ed)f(messages)2053 5269 y Fl(cpus[11])96 │ │ │ │ b Fn({)j(p)r(ost)28 b(initial)g(sends)2053 5369 y Fl(cpus[12])96 │ │ │ │ b Fn({)j(c)n(hec)n(k)27 b(for)g(sen)n(t)g(messages)p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1227 4 v 1393 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fn(7)208 390 y(On)g(return,)g(the)h │ │ │ │ Fl(stats[])d Fn(v)n(ector)h(has)h(the)h(follo)n(wing)f(information.)963 │ │ │ │ 563 y Fl(stats[0])118 b Fn(|)100 b(#)28 b(of)f(piv)n(ots)963 │ │ │ │ 663 y Fl(stats[1])118 b Fn(|)100 b(#)28 b(of)f(piv)n(ot)h(tests)963 │ │ │ │ 762 y Fl(stats[2])118 b Fn(|)100 b(#)28 b(of)f(dela)n(y)n(ed)g(ro)n(ws) │ │ │ │ f(and)i(columns)963 862 y Fl(stats[3])118 b Fn(|)100 │ │ │ │ b(#)28 b(of)f(en)n(tries)g(in)h(D)963 962 y Fl(stats[4])118 │ │ │ │ @@ -5634,15 +5628,15 @@ │ │ │ │ Fl(frontsizesIV)c Fn(ob)5 b(ject)19 b(needs)g(to)g(b)r(e)h(made)f │ │ │ │ (global)f(on)h(eac)n(h)f(pro)r(cessor.)208 5407 y(This)26 │ │ │ │ b(metho)r(ds)h(tak)n(es)e(the)i(individual)f(en)n(tries)g(of)g(an)g │ │ │ │ Fl(IV)g Fn(ob)5 b(ject)26 b(whose)g(o)n(wners)f(are)g(sp)r(eci\014ed)h │ │ │ │ (b)n(y)h(the)f Fl(ownersIV)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fn(8)p 125 100 1227 4 v │ │ │ │ -1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(18,)h(2025)p │ │ │ │ +1392 w Fl(MPI)27 b Fd(:)g Fm(DRAFT)h Fd(Octob)r(er)e(28,)h(2025)p │ │ │ │ 2673 100 V 208 390 a Fn(ob)5 b(ject,)33 b(and)g(comm)n(unicates)f(the)h │ │ │ │ (en)n(tries)f(around)g(the)h(pro)r(cessors)e(un)n(til)i(the)g(global)f │ │ │ │ Fl(IV)g Fn(ob)5 b(ject)33 b(is)f(presen)n(t)g(on)208 │ │ │ │ 490 y(eac)n(h.)h(The)20 b(messages)e(that)i(will)g(b)r(e)g(sen)n(t)f │ │ │ │ (require)g(at)g(most)h Fl(nproc)d Fn(consecutiv)n(e)i(tags)g(|)h(the)g │ │ │ │ (\014rst)f(is)h(the)g(parameter)208 589 y Fl(firsttag)p │ │ │ │ Fn(.)208 740 y Fm(Err)l(or)28 b(che)l(cking:)38 b Fn(If)26 │ │ │ │ @@ -5720,15 +5714,15 @@ │ │ │ │ b(+)j(2*nfront)27 b Fn(is)j(larger)f(than)h(the)h(largest)d(a)n(v)-5 │ │ │ │ b(ailable)29 b(tag,)i(or)e(if)i Fl(msglvl)41 b(>)i(0)30 │ │ │ │ b Fn(and)g Fl(msgFile)208 5407 y Fn(is)d Fl(NULL)p Fn(,)f(an)h(error)f │ │ │ │ (message)g(is)i(prin)n(ted)f(and)h(the)g(program)d(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 83 100 1227 4 v 1393 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2634 100 V 1227 w Fn(9)0 390 y Fj(1.2.7)112 b(Matrix-matrix)39 │ │ │ │ b(m)m(ultiply)f(metho)s(ds)0 573 y Fn(The)28 b(usual)f(sequence)g(of)h │ │ │ │ (ev)n(en)n(ts)e(is)i(as)f(follo)n(ws.)125 771 y Ff(\210)42 │ │ │ │ b Fn(Set)28 b(up)f(the)h(data)g(structure)f(via)g(a)g(call)g(to)h │ │ │ │ Fl(MatMul)p 1887 771 27 4 v 28 w(MPI)p 2047 771 V 31 │ │ │ │ w(setup\(\))p Fn(.)125 946 y Ff(\210)42 b Fn(Con)n(v)n(ert)26 │ │ │ │ b(the)i(lo)r(cal)f Fh(A)925 916 y Fg(q)989 946 y Fn(matrix)g(to)h(lo)r │ │ │ │ @@ -5805,15 +5799,15 @@ │ │ │ │ 5270 y(metho)r(ds,)c(p)r(erformed)h(indep)r(enden)n(tly)g(on)f(eac)n(h) │ │ │ │ g(pro)r(cessor.)208 5407 y Fm(Err)l(or)j(che)l(cking:)38 │ │ │ │ b Fn(If)28 b Fl(info)e Fn(or)h Fl(A)g Fn(is)h Fl(NULL)p │ │ │ │ Fn(,)e(an)h(error)f(message)g(is)i(prin)n(ted)f(and)h(the)g(program)d │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fn(10)p 166 100 1206 4 │ │ │ │ -v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 101 390 a Fn(3.)42 b Fl(void)f(MatMul_MPI_mmm)d(\()43 │ │ │ │ b(MatMulInfo)d(*info,)h(DenseMtx)f(*Yloc,)h(double)g(alpha[],)g(InpMtx) │ │ │ │ g(*A,)600 490 y(DenseMtx)f(*Xloc,)h(int)i(stats[],)d(int)i(msglvl,)f │ │ │ │ (FILE)h(*msgFile,)e(MPI_Comm)g(comm\))h(;)208 623 y Fn(This)35 │ │ │ │ b(metho)r(d)g(computes)g(a)g(distributed)h(matrix-matrix)e(m)n(ultiply) │ │ │ │ h Fh(Y)55 b Fn(:=)35 b Fh(Y)42 b Fn(+)23 b Fh(\013AX)7 │ │ │ │ b Fn(,)37 b Fh(Y)55 b Fn(:=)35 b Fh(Y)42 b Fn(+)23 b │ │ │ │ @@ -5895,15 +5889,15 @@ │ │ │ │ b(A)28 b(no)r(de)g(other)f(than)h Fl(root)p Fn(,)f(clears)f(the)j(data) │ │ │ │ e(in)h(its)208 5274 y(IV)f(ob)5 b(ject,)28 b(receiv)n(es)e(the)i(IV)g │ │ │ │ (ob)5 b(ject)27 b(from)h(the)g(ro)r(ot)e(and)i(returns)f(a)g(p)r(oin)n │ │ │ │ (ter)g(to)h(it.)208 5407 y Fm(Err)l(or)i(che)l(cking:)38 │ │ │ │ b Fn(None)28 b(presen)n(tly)-7 b(.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 83 100 1206 4 v 1372 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2613 100 V 1206 w Fn(11)0 390 y Fj(1.2.9)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)101 565 y Fn(1.)k Fl(IVL)g(*)h(InpMtx_MPI_fullA)o(dja)o │ │ │ │ (ce)o(ncy)37 b(\()43 b(InpMtx)e(*inpmtx,)f(int)j(stats[],)1646 │ │ │ │ 664 y(int)f(msglvl,)f(FILE)h(*msgFile,)e(MPI_Comm)g(comm)i(\))h(;)208 │ │ │ │ 764 y(IVL)f(*)h(Pencil_MPI_fullA)o(dja)o(ce)o(ncy)37 │ │ │ │ b(\()43 b(Pencil)e(*pencil,)f(int)j(stats[],)1646 863 │ │ │ │ y(int)f(msglvl,)f(FILE)h(*msgFile,)e(MPI_Comm)g(comm)i(\))h(;)208 │ │ │ │ @@ -5989,15 +5983,15 @@ │ │ │ │ (cessor)d(m)n(ust)j(send)f(to)h(all)f(others.)208 5308 │ │ │ │ y(This)g(metho)r(d)i(uses)e(tags)g(in)i(the)f(range)e │ │ │ │ Fl([tag,tag+nproc-1\))o Fn(.)32 b(On)c(return,)f(the)i(follo)n(wing)e │ │ │ │ (statistics)g(will)h(ha)n(v)n(e)208 5407 y(b)r(een)g(added.)p │ │ │ │ eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fn(12)p 166 100 1206 │ │ │ │ -4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 556 377 a Fl(stats[0])97 b Fn(|)i(#)28 b(of)g(messages)e │ │ │ │ (sen)n(t)344 b Fl(stats[1])96 b Fn(|)k(#)28 b(of)f(b)n(ytes)g(sen)n(t) │ │ │ │ 556 477 y Fl(stats[2])97 b Fn(|)i(#)28 b(of)g(messages)e(receiv)n(ed) │ │ │ │ 198 b Fl(stats[3])96 b Fn(|)k(#)28 b(of)f(b)n(ytes)g(receiv)n(ed)208 │ │ │ │ 688 y(This)g(metho)r(d)h(is)g Fm(safe)g Fn(in)g(the)g(sense)f(that)h │ │ │ │ (it)g(uses)f(only)h Fl(MPI)p 2162 688 27 4 v 30 w(Sendrecv\(\))p │ │ │ │ Fn(.)208 829 y Fm(Err)l(or)35 b(che)l(cking:)50 b Fn(If)34 │ │ │ │ @@ -6068,15 +6062,15 @@ │ │ │ │ Fh(q)s Fl(.input)c Fn(and)j(righ)n(t)f(hand)h(side)g(en)n(tries)f(from) │ │ │ │ h(\014le)g Fl(rhs.)o Fh(q)s Fl(.input)m Fn(.)47 b(The)31 │ │ │ │ b(format)g(for)208 4993 y(the)d(matrix)f(\014les)g(is)h(as)f(follo)n │ │ │ │ (ws:)208 5208 y Fl(neqns)41 b(neqns)h(nent)208 5308 y(irow)f(jcol)h │ │ │ │ (entry)208 5407 y(...)85 b(...)h(...)p eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 83 100 1206 4 v 1372 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2613 100 V 1206 w Fn(13)208 390 y(where)j Fl(neqns)g │ │ │ │ Fn(is)h(the)h(global)e(n)n(um)n(b)r(er)i(of)f(equations)g(and)g │ │ │ │ Fl(nent)f Fn(is)h(the)h(n)n(um)n(b)r(er)f(of)h(en)n(tries)e(in)i(this)g │ │ │ │ (\014le.)49 b(There)208 490 y(follo)n(ws)22 b Fl(nent)h │ │ │ │ Fn(lines,)h(eac)n(h)f(con)n(taining)g(a)g(ro)n(w)g(index,)i(a)e(column) │ │ │ │ h(index)g(and)f(one)h(or)f(t)n(w)n(o)g(\015oating)g(p)r(oin)n(t)h(n)n │ │ │ │ (um)n(b)r(ers,)208 589 y(one)j(if)h(real,)f(t)n(w)n(o)f(if)j(complex.) │ │ │ │ @@ -6153,15 +6147,15 @@ │ │ │ │ (and)g(either)g Fl(nrhs)e Fn(or)i Fl(2*nrhs)d Fn(\015oating)i(p)r(oin)n │ │ │ │ (t)i(n)n(um)n(b)r(ers,)e(the)i(\014rst)f(if)208 5407 │ │ │ │ y(real,)e(the)i(second)f(if)h(complex.)37 b(Use)27 b(the)h(script)g │ │ │ │ (\014le)f Fl(do)p 1997 5407 27 4 v 31 w(patchAndGo)d │ │ │ │ Fn(for)j(testing.)p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fn(14)p 166 100 1206 │ │ │ │ -4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 307 390 a Ff(\210)42 b Fn(The)23 b Fl(msglvl)e │ │ │ │ Fn(parameter)g(determines)i(the)h(amoun)n(t)e(of)h(output.)36 │ │ │ │ b(Use)23 b Fl(msglvl)41 b(=)i(1)23 b Fn(for)g(just)g(timing)g(output.) │ │ │ │ 307 528 y Ff(\210)42 b Fn(The)32 b Fl(msgFile)c Fn(parameter)i │ │ │ │ (determines)h(the)h(message)e(\014le)i(|)f(if)h Fl(msgFile)d │ │ │ │ Fn(is)i Fl(stdout)p Fn(,)f(then)i(the)g(message)390 628 │ │ │ │ y(\014le)c(is)f Fm(stdout)p Fn(,)h(otherwise)e(a)i(\014le)f(is)h(op)r │ │ │ │ @@ -6245,15 +6239,15 @@ │ │ │ │ (incremen)n(t)h(for)g Fl(X)p Fn(.)307 5269 y Ff(\210)42 │ │ │ │ b Fl(inc2)26 b Fn(is)i(the)g(column)f(incremen)n(t)h(for)f │ │ │ │ Fl(X)p Fn(.)307 5407 y Ff(\210)42 b Fn(The)28 b Fl(seed)e │ │ │ │ Fn(parameter)g(is)h(a)h(random)e(n)n(um)n(b)r(er)i(seed.)p │ │ │ │ eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 83 100 1206 4 v 1372 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2613 100 V 1206 w Fn(15)101 390 y(4.)42 b Fl(testGraph_Bcast)37 │ │ │ │ b(msglvl)k(msgFile)g(type)h(nvtx)g(nitem)f(root)h(seed)208 │ │ │ │ 528 y Fn(This)35 b(driv)n(er)g(program)f(tests)h(the)h(distributed)h │ │ │ │ Fl(Graph)p 2007 528 27 4 v 29 w(MPI)p 2168 528 V 30 w(Bcast\(\))c │ │ │ │ Fn(metho)r(d.)62 b(Pro)r(cessor)33 b Fl(root)h Fn(generates)g(a)208 │ │ │ │ 628 y(random)g(graph)f(of)i(t)n(yp)r(e)g Fl(type)f Fn(\(see)g(the)i(do) │ │ │ │ r(cumen)n(tation)e(for)h(the)g Fl(Graph)e Fn(ob)5 b(ject)35 │ │ │ │ @@ -6347,15 +6341,15 @@ │ │ │ │ (linear)f(system)g(is)h(real)f(or)g(complex.)40 b(Use)28 │ │ │ │ b Fl(1)h Fn(for)f(real)g(and)g Fl(2)390 5270 y Fn(for)f(complex.)307 │ │ │ │ 5407 y Ff(\210)42 b Fn(The)28 b Fl(symmetryflag)23 b │ │ │ │ Fn(parameter)j(denotes)h(the)h(presence)f(or)f(absence)h(of)h(symmetry) │ │ │ │ -7 b(.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fn(16)p 166 100 1206 │ │ │ │ -4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 456 390 a Fe({)41 b Fn(Use)f Fl(0)g Fn(for)f(a)g(real)g(or)g │ │ │ │ (complex)g(symmetric)g(matrix)g Fh(A)p Fn(.)74 b(A)40 │ │ │ │ b(\()p Fh(U)2703 360 y Fg(T)2782 390 y Fn(+)26 b Fh(I)7 │ │ │ │ b Fn(\))p Fh(D)r Fn(\()p Fh(I)34 b Fn(+)26 b Fh(U)9 b │ │ │ │ Fn(\))40 b(factorization)e(is)545 490 y(computed.)456 │ │ │ │ 601 y Fe({)j Fn(Use)28 b Fl(1)f Fn(for)g(a)h(complex)f(Hermitian)g │ │ │ │ (matrix)g Fh(A)p Fn(.)38 b(A)28 b(\()p Fh(U)2273 571 │ │ │ │ @@ -6455,15 +6449,15 @@ │ │ │ │ 5279 y(blo)r(c)n(k)h(of)g(storage,)f(w)n(e)h(could)h(ha)n(v)n(e)e(used) │ │ │ │ i(the)f Fl(MPI)p 1835 5279 V 31 w(Alltoallv\(\))c Fn(metho)r(d.)208 │ │ │ │ 5407 y(Use)k(the)h(script)f(\014le)h Fl(do)p 968 5407 │ │ │ │ V 31 w(IVL)p 1131 5407 V 30 w(alltoall)c Fn(for)j(testing.)p │ │ │ │ eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 83 100 1206 4 v 1372 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2613 100 V 1206 w Fn(17)307 390 y Ff(\210)42 b Fn(The)23 │ │ │ │ b Fl(msglvl)e Fn(parameter)g(determines)i(the)h(amoun)n(t)e(of)h │ │ │ │ (output.)36 b(Use)23 b Fl(msglvl)41 b(=)i(1)23 b Fn(for)g(just)g │ │ │ │ (timing)g(output.)307 524 y Ff(\210)42 b Fn(The)32 b │ │ │ │ Fl(msgFile)c Fn(parameter)i(determines)h(the)h(message)e(\014le)i(|)f │ │ │ │ (if)h Fl(msgFile)d Fn(is)i Fl(stdout)p Fn(,)f(then)i(the)g(message)390 │ │ │ │ 624 y(\014le)c(is)f Fm(stdout)p Fn(,)h(otherwise)e(a)i(\014le)f(is)h │ │ │ │ @@ -6564,15 +6558,15 @@ │ │ │ │ (the)h(message)e(\014le)i(|)f(if)h Fl(msgFile)d Fn(is)i │ │ │ │ Fl(stdout)p Fn(,)f(then)i(the)g(message)390 5407 y(\014le)c(is)f │ │ │ │ Fm(stdout)p Fn(,)h(otherwise)e(a)i(\014le)f(is)h(op)r(ened)f(with)i │ │ │ │ Fm(app)l(end)g Fn(status)e(to)g(receiv)n(e)g(an)n(y)g(output)h(data.)p │ │ │ │ eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fn(18)p 166 100 1206 │ │ │ │ -4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 307 390 a Ff(\210)42 b Fn(The)28 b Fl(nrowA)d │ │ │ │ Fn(parameter)i(is)g(the)h(n)n(um)n(b)r(er)f(of)h(ro)n(ws)e(in)i │ │ │ │ Fh(A)p Fn(.)307 524 y Ff(\210)42 b Fn(The)28 b Fl(ncolA)d │ │ │ │ Fn(parameter)i(is)g(the)h(n)n(um)n(b)r(er)f(of)h(columns)f(in)h │ │ │ │ Fh(A)p Fn(.)307 658 y Ff(\210)42 b Fn(The)28 b Fl(nentA)d │ │ │ │ Fn(parameter)i(is)g(the)h(n)n(um)n(b)r(er)f(of)h(en)n(tries)f(to)g(b)r │ │ │ │ (e)h(put)h(in)n(to)e Fh(A)p Fn(.)307 792 y Ff(\210)42 │ │ │ │ @@ -6664,15 +6658,15 @@ │ │ │ │ Fl(msgFile)c Fn(parameter)i(determines)h(the)h(message)e(\014le)i(|)f │ │ │ │ (if)h Fl(msgFile)d Fn(is)i Fl(stdout)p Fn(,)f(then)i(the)g(message)390 │ │ │ │ 5407 y(\014le)c(is)f Fm(stdout)p Fn(,)h(otherwise)e(a)i(\014le)f(is)h │ │ │ │ (op)r(ened)f(with)i Fm(app)l(end)g Fn(status)e(to)g(receiv)n(e)g(an)n │ │ │ │ (y)g(output)h(data.)p eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 83 100 1206 4 v 1372 100 a Fl(MPI)26 │ │ │ │ -b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)i Fm(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2613 100 V 1206 w Fn(19)307 390 y Ff(\210)42 b Fn(The)28 │ │ │ │ b Fl(neqns)d Fn(parameter)i(is)g(the)h(n)n(um)n(b)r(er)f(of)h │ │ │ │ (equations)f(for)g(the)h(matrix.)307 518 y Ff(\210)42 │ │ │ │ b Fn(The)28 b Fl(seed)e Fn(parameter)g(is)h(a)h(random)e(n)n(um)n(b)r │ │ │ │ (er)i(seed.)307 647 y Ff(\210)42 b Fn(The)24 b Fl(coordType)c │ │ │ │ Fn(parameter)i(de\014nes)i(the)g(co)r(ordinate)e(t)n(yp)r(e)i(that)g │ │ │ │ (will)g(b)r(e)g(used)f(during)g(the)h(redistribution.)390 │ │ │ │ @@ -6767,15 +6761,15 @@ │ │ │ │ (necessary)e(parts)h(of)g(a)h(sym)n(b)r(olic)f(factorization)f(for)h │ │ │ │ (eac)n(h)g(pro)r(cessor.)71 b(The)40 b(pro-)208 5407 │ │ │ │ y(gram)34 b(reads)g(in)i(the)g(global)f Fl(Graph)e Fn(and)j │ │ │ │ Fl(ETree)d Fn(ob)5 b(jects.)60 b(Eac)n(h)35 b(pro)r(cessor)e(creates)i │ │ │ │ (a)g(global)f Fl(InpMtx)f Fn(ob)5 b(ject)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fn(20)p 166 100 1206 │ │ │ │ -4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(18,)g(2025)p │ │ │ │ +4 v 1371 w Fl(MPI)26 b Fd(:)i Fm(DRAFT)f Fd(Octob)r(er)g(28,)g(2025)p │ │ │ │ 2694 100 V 208 390 a Fn(from)j(the)i(structure)e(of)h(the)h(graph)e │ │ │ │ (and)h(computes)f(a)h(global)f(sym)n(b)r(olic)h(factorization)e(ob)5 │ │ │ │ b(ject)31 b(using)g(the)g(serial)208 490 y Fl(SymbFac)p │ │ │ │ 521 490 27 4 v 28 w(initFromInpMtx\(\))23 b Fn(metho)r(d.)43 │ │ │ │ b(The)30 b(pro)r(cessors)d(then)j(compute)f(a)h(map)f(from)g(fron)n(ts) │ │ │ │ g(to)g(pro)r(cessors,)208 589 y(and)g(eac)n(h)f(pro)r(cessor)f(thro)n │ │ │ │ (ws)h(a)n(w)n(a)n(y)f(the)i(uno)n(wned)g(matrix)g(en)n(tries)f(from)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -31,15 +31,15 @@ │ │ │ │ │ scatter/added into Y. │ │ │ │ │ TheMatMulInfoobjectstoresallthenecessaryinformationtomakethishappen. ThereisoneMatMulInfo │ │ │ │ │ object per processor. It has the following fields. │ │ │ │ │ • symflag — symmetry flag for A │ │ │ │ │ – 0 (SPOOLES SYMMETRIC) – symmetric matrix │ │ │ │ │ – 1 (SPOOLES HERMITIAN) – hermitian matrix │ │ │ │ │ 1 │ │ │ │ │ - 2 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 2 MPI : DRAFT October 28, 2025 │ │ │ │ │ – 2 (SPOOLES NONSYMMETRIC) – nonsymmetric matrix │ │ │ │ │ • opflag — operation flag for the multiply │ │ │ │ │ – 0 (MMM WITH A) — perform Y := Y +αAX │ │ │ │ │ – 1 (MMM WITH AT) — perform Y := Y +αATX │ │ │ │ │ – 2 (MMM WITH AH) — perform Y := Y +αAHX │ │ │ │ │ • IV *XownedIV — list of rows of X that are owned by this processor, these form the rows of Xq. │ │ │ │ │ • IV *XsupIV — list of rows of X that are accessed by this processor, these form the rows of Xq │ │ │ │ │ @@ -73,15 +73,15 @@ │ │ │ │ │ In a distributed environment, data must be distributed, and sometimes during a computation, data must be │ │ │ │ │ re-distributed. These methods split and redistribute four data objects. │ │ │ │ │ 1. void DenseMtx_MPI_splitByRows ( DenseMtx *mtx, IV *mapIV, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ This method splits and redistributes the DenseMtx object based on the mapIV object that maps rows to │ │ │ │ │ processes. The messages that will be sent require nproc consecutive tags — the first is the parameter │ │ │ │ │ firsttag. On return, the stats[] vector contains the following information. │ │ │ │ │ - MPI : DRAFT October 18, 2025 3 │ │ │ │ │ + MPI : DRAFT October 28, 2025 3 │ │ │ │ │ stats[0] — #ofmessagessent stats[1] — #ofbytessent │ │ │ │ │ stats[2] — #ofmessagesreceived stats[3] — #ofbytesreceived │ │ │ │ │ Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the │ │ │ │ │ method, and so can be used to accumulated information with multiple calls. │ │ │ │ │ Error checking: If mtx or rowmapIV is NULL, or if msglvl > 0 and msgFile is NULL, or if firsttag < │ │ │ │ │ 0 or firsttag + nproc is larger than the largest available tag, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ @@ -117,15 +117,15 @@ │ │ │ │ │ use the chevron coordinate type to store the matrix entries. This method will redistribute a matrix │ │ │ │ │ by rows if the coordinate type is 1 (for rows) and mapIV is a row map. Similarly, this method will │ │ │ │ │ redistribute a matrix by columns if the coordinate type is 2 (for columns) and mapIV is a column map. │ │ │ │ │ See the InpMtx object for details. The messages that will be sent require nproc consecutive tags — the │ │ │ │ │ first is the parameter firsttag. On return, the stats[] vector contains the following information. │ │ │ │ │ stats[0] — #ofmessagessent stats[1] — #ofbytessent │ │ │ │ │ stats[2] — #ofmessagesreceived stats[3] — #ofbytesreceived │ │ │ │ │ - 4 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 4 MPI : DRAFT October 28, 2025 │ │ │ │ │ Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the │ │ │ │ │ method, and so can be used to accumulated information with multiple calls. │ │ │ │ │ Error checking: If firsttag < 0 or firsttag + nproc is larger than the largest available tag, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 5. InpMtx * InpMtx_MPI_splitFromGlobal ( InpMtx *Aglobal, InpMtx *Alocal, │ │ │ │ │ IV *mapIV, int root, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ │ knownpriortoenteringthis method. Onreturn, the stats[]vectorcontainsthe followinginformation. │ │ │ │ │ stats[0] — #ofmessagessent stats[1] — #ofbytessent │ │ │ │ │ stats[2] — #ofmessagesreceived stats[3] — #ofbytesreceived │ │ │ │ │ Note, the values in stats[] are incremented, i.e., the stats[] vector is not zeroed at the start of the │ │ │ │ │ method, and so can be used to accumulated information with multiple calls. │ │ │ │ │ Error checking: If mtx or rowmapIV is NULL, or if msglvl > 0 and msgFile is NULL, or if firsttag < │ │ │ │ │ 0 is larger than the largest available tag, an error message is printed and the program exits. │ │ │ │ │ - MPI : DRAFT October 18, 2025 5 │ │ │ │ │ + MPI : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.2 Gather and scatter methods │ │ │ │ │ These method gather and scatter/add rows of DenseMtx objects. These operations are performed during the │ │ │ │ │ distributed matrix-matrixmultiply. ThegatheroperationXq ←XisperformedbyDenseMtx MPI gatherRows(), │ │ │ │ │ P supp │ │ │ │ │ while the scatter/add operation Y q := Y q + Yr is performed by DenseMtx MPI scatterAddRows(). │ │ │ │ │ r supp │ │ │ │ │ 1. void DenseMtx_MPI_gatherRows ( DenseMtx *Y, DenseMtx *X, IVL *sendIVL, │ │ │ │ │ @@ -202,15 +202,15 @@ │ │ │ │ │ 1.2.3 Symbolic Factorization methods │ │ │ │ │ 1. IVL * SymbFac_MPI_initFromInpMtx ( ETree *etree, IV *frontOwnersIV, │ │ │ │ │ InpMtx *inpmtx, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ IVL * SymbFac_MPI_initFromPencil ( ETree *etree, IV *frontOwnersIV, │ │ │ │ │ Pencil *pencil, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ - 6 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 6 MPI : DRAFT October 28, 2025 │ │ │ │ │ ThesemethodsareusedinplaceoftheSymbfac initFrom{InpMtx,Pencil}()methodstocomputethe │ │ │ │ │ symbolic factorization. The ETree object is assumed to be replicated over the processes. The InpMtx │ │ │ │ │ and Pencil objects are partitioned among the processes. Therefore, to compute the IVL object that │ │ │ │ │ contains the symbolic factorization is a distributed, cooperative process. At the end of the symbolic │ │ │ │ │ factorization, each process will own a portion of the IVL object. The IVL object is neither replicated │ │ │ │ │ nor partitioned (except in trivial cases), but the IVL object on each process contains just a portion, │ │ │ │ │ usually not much more than what it needs to know for its part of the factorization and solves. │ │ │ │ │ @@ -247,15 +247,15 @@ │ │ │ │ │ cpus[0] – initialize fronts cpus[7] – extract postponed data │ │ │ │ │ cpus[1] – load original entries cpus[8] – store factor entries │ │ │ │ │ cpus[2] – update fronts cpus[9] – post initial receives │ │ │ │ │ cpus[3] – insert aggregate data cpus[10] – check for received messages │ │ │ │ │ cpus[4] – assemble aggregate data cpus[11] – post initial sends │ │ │ │ │ cpus[5] – assemble postponed data cpus[12] – check for sent messages │ │ │ │ │ cpus[6] – factor fronts │ │ │ │ │ - MPI : DRAFT October 18, 2025 7 │ │ │ │ │ + MPI : DRAFT October 28, 2025 7 │ │ │ │ │ Onreturn, the stats[] vector has the following information. │ │ │ │ │ stats[0] — #ofpivots │ │ │ │ │ stats[1] — #ofpivot tests │ │ │ │ │ stats[2] — #ofdelayed rows and columns │ │ │ │ │ stats[3] — #ofentries in D │ │ │ │ │ stats[4] — #ofentries in L │ │ │ │ │ stats[5] — #ofentries in U │ │ │ │ │ @@ -293,15 +293,15 @@ │ │ │ │ │ Error checking: If frontmtx, frontOwnersIV or stats is NULL, or if firsttag < 0 or firsttag + │ │ │ │ │ nproc, is larger than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 3. void IV_MPI_allgather ( IV *iv, IV *ownersIV, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ After a factorization with pivoting, the frontsizesIVobject needs to be made globalon eachprocessor. │ │ │ │ │ This methods takes the individual entries of an IV object whose owners are specified by the ownersIV │ │ │ │ │ - 8 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 8 MPI : DRAFT October 28, 2025 │ │ │ │ │ object, and communicates the entries around the processors until the global IV object is present on │ │ │ │ │ each. The messagesthat will be sent require at most nprocconsecutive tags — the first is the parameter │ │ │ │ │ firsttag. │ │ │ │ │ Error checking: If iv, ownersIV or stats is NULL, or if firsttag < 0 or firsttag + nproc, is larger │ │ │ │ │ than the largest available tag, or if msglvl > 0 and msgFile is NULL, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ 4. void IVL_MPI_allgather ( IVL *ivl, IV *ownersIV, int stats[], int msglvl, │ │ │ │ │ @@ -334,15 +334,15 @@ │ │ │ │ │ stats[4] — #ofsolution messages received │ │ │ │ │ stats[5] — #ofaggregatemessages received │ │ │ │ │ stats[6] — #ofsolution bytes received │ │ │ │ │ stats[7] — #ofaggregatebytes received │ │ │ │ │ Error checking: If frontmtx, mtxX,mtxB, mtxmanager,solvemap,cpusorstatsisNULL,oriffirsttag │ │ │ │ │ < 0 or firsttag + 2*nfront is larger than the largest available tag, or if msglvl > 0 and msgFile │ │ │ │ │ is NULL, an error message is printed and the program exits. │ │ │ │ │ - MPI : DRAFT October 18, 2025 9 │ │ │ │ │ + MPI : DRAFT October 28, 2025 9 │ │ │ │ │ 1.2.7 Matrix-matrix multiply methods │ │ │ │ │ The usual sequence of events is as follows. │ │ │ │ │ • Set up the data structure via a call to MatMul MPI setup(). │ │ │ │ │ • Convert the local Aq matrix to local indices via a call to MatMul setLocalIndices(). │ │ │ │ │ • Compute the matrix-matrix multiply with a call to MatMul MPI mmm(). Inside this method, the MPI │ │ │ │ │ methods DenseMtx MPI gatherRows()and DenseMtx MPI scatterAddRows()are called, along with a │ │ │ │ │ serial InpMtx matrix-matrix multiply method. │ │ │ │ │ @@ -371,15 +371,15 @@ │ │ │ │ │ 2. void MatMul_setLocalIndices ( MatMulInfo *info, InpMtx *A ) ; │ │ │ │ │ void MatMul_setGlobalIndices ( MatMulInfo *info, InpMtx *A ) ; │ │ │ │ │ The first method maps the indices of A (which are assumed to be global) into local indices. The second │ │ │ │ │ method maps the indices of A (which are assumed to be local) back into global indices. It uses the │ │ │ │ │ XmapIV, XsupIV YmapIV and YsupIV objects that are contained in the info object. These are serial │ │ │ │ │ methods, performed independently on each processor. │ │ │ │ │ Error checking: If info or A is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 10 MPI : DRAFT October 28, 2025 │ │ │ │ │ 3. void MatMul_MPI_mmm ( MatMulInfo *info, DenseMtx *Yloc, double alpha[], InpMtx *A, │ │ │ │ │ DenseMtx *Xloc, int stats[], int msglvl, FILE *msgFile, MPI_Comm comm) ; │ │ │ │ │ This method computes a distributed matrix-matrix multiply Y := Y + αAX, Y := Y + αATX or │ │ │ │ │ H │ │ │ │ │ Y := Y +αA X, depending on how the info object was set up. NOTE: A must have local indices, │ │ │ │ │ use MatMul setLocalIndices() to convert from global to local indices. Xloc and Yloc contain the │ │ │ │ │ owned rows of X and Y, respectively. │ │ │ │ │ @@ -413,15 +413,15 @@ │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 4. IV * IV_MPI_Bcast ( IV *obj, int root, │ │ │ │ │ int msglvl, FILE *msgFile, MPI_Comm comm ) ; │ │ │ │ │ This method is a broadcast method for an IV object. The root processor broadcasts its IV object to │ │ │ │ │ the other nodes and returns a pointer to its IV object. A node other than root, clears the data in its │ │ │ │ │ IV object, receives the IV object from the root and returns a pointer to it. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ - MPI : DRAFT October 18, 2025 11 │ │ │ │ │ + MPI : DRAFT October 28, 2025 11 │ │ │ │ │ 1.2.9 Utility methods │ │ │ │ │ 1. IVL * InpMtx_MPI_fullAdjacency ( InpMtx *inpmtx, int stats[], │ │ │ │ │ int msglvl, FILE *msgFile, MPI_Comm comm ) ; │ │ │ │ │ IVL * Pencil_MPI_fullAdjacency ( Pencil *pencil, int stats[], │ │ │ │ │ int msglvl, FILE *msgFile, MPI_Comm comm ) ; │ │ │ │ │ These methods are used to return an IVL object that contains the full adjacency structure of the │ │ │ │ │ graph of the matrix or matrix pencil. The matrix or matrix pencil is distributed among the processes, │ │ │ │ │ @@ -458,15 +458,15 @@ │ │ │ │ │ IVL_MPI_alltoall ( IVL *sendIVL, IVL *recvIVL, int stats[], int msglvl, │ │ │ │ │ FILE *msgFile, int firsttag, MPI_Comm comm ) ; │ │ │ │ │ This method is used during the setup for matrix-vector multiplies. Each processor has computed │ │ │ │ │ the vertices it needs from other processors, these lists are contained in sendIVL. On return, recvIVL │ │ │ │ │ contains the lists of vertices this processor must send to all others. │ │ │ │ │ This method uses tags in the range [tag,tag+nproc-1). On return, the following statistics will have │ │ │ │ │ been added. │ │ │ │ │ - 12 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 12 MPI : DRAFT October 28, 2025 │ │ │ │ │ stats[0] — #ofmessagessent stats[1] — #ofbytessent │ │ │ │ │ stats[2] — #ofmessagesreceived stats[3] — #ofbytesreceived │ │ │ │ │ This method is safe in the sense that it uses only MPI Sendrecv(). │ │ │ │ │ Error checking: If sendIVL or stats is NULL, or if msglvl > 0 and msgFile is NULL, or if tag < 0 │ │ │ │ │ or tag + nproc is larger than the largest available tag, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 5. void * makeSendRecvIVLs ( IV *supportedIV, IV *globalmapIV, IVL *sendIVL, IVL *recvIVL, │ │ │ │ │ @@ -497,15 +497,15 @@ │ │ │ │ │ the matrix, factoring the matrix, and solving the system. Use the script file do AllInOne for testing. │ │ │ │ │ The files names for the matrix and right hand side entries are hardcoded. Processor q reads in matrix │ │ │ │ │ entries from file matrix.q.input and right hand side entries from file rhs.q.input. The format for │ │ │ │ │ the matrix files is as follows: │ │ │ │ │ neqns neqns nent │ │ │ │ │ irow jcol entry │ │ │ │ │ ... ... ... │ │ │ │ │ - MPI : DRAFT October 18, 2025 13 │ │ │ │ │ + MPI : DRAFT October 28, 2025 13 │ │ │ │ │ where neqns is the global number of equations and nent is the number of entries in this file. There │ │ │ │ │ follows nent lines, each containing a row index, a column index and one or two floating point numbers, │ │ │ │ │ one if real, two if complex. The format for the right hand side file is similar: │ │ │ │ │ nrow nrhs │ │ │ │ │ irow entry ... entry │ │ │ │ │ ... ... ... ... │ │ │ │ │ where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There follows │ │ │ │ │ @@ -540,15 +540,15 @@ │ │ │ │ │ one if real, two if complex. The format for the right hand side file is similar: │ │ │ │ │ nrow nrhs │ │ │ │ │ irow entry ... entry │ │ │ │ │ ... ... ... ... │ │ │ │ │ where nrow is the number of rows in this file and nrhs is the number of rigght and sides. There follows │ │ │ │ │ nrow lines, each containing a row index and either nrhs or 2*nrhs floating point numbers, the first if │ │ │ │ │ real, the second if complex. Use the script file do patchAndGo for testing. │ │ │ │ │ - 14 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 14 MPI : DRAFT October 28, 2025 │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ @@ -582,15 +582,15 @@ │ │ │ │ │ • The type parameter specifies whether the linear system is real (type = 1) or complex (type = │ │ │ │ │ 2). │ │ │ │ │ • nrow is the number of rows in X. │ │ │ │ │ • ncol is the number of columns in X. │ │ │ │ │ • inc1 is the row increment for X. │ │ │ │ │ • inc2 is the column increment for X. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ - MPI : DRAFT October 18, 2025 15 │ │ │ │ │ + MPI : DRAFT October 28, 2025 15 │ │ │ │ │ 4. testGraph_Bcast msglvl msgFile type nvtx nitem root seed │ │ │ │ │ This driver program tests the distributed Graph MPI Bcast() method. Processor root generates a │ │ │ │ │ random graph of type type (see the documentation for the Graph object in chapter ??) with nvtx │ │ │ │ │ vertices. The random graph is constructed via an InpMtx object using nitem edges. Processor root │ │ │ │ │ then sends its Graph object to the other processors. Each processor computes a checksum for its object, │ │ │ │ │ and the error are collected on processor 0. Use the script file do Graph Bcast for testing. │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ @@ -625,15 +625,15 @@ │ │ │ │ │ • The n3 parameter is the number of grid points in the third direction. │ │ │ │ │ • The maxzeros parameter is the maximum number of zero entries allowed in a front. │ │ │ │ │ • The maxsize parameter is the maximum number of internal rows and columns allowed in a front. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The type parameter specifies whether the linear system is real or complex. Use 1 for real and 2 │ │ │ │ │ for complex. │ │ │ │ │ • The symmetryflag parameter denotes the presence or absence of symmetry. │ │ │ │ │ - 16 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 16 MPI : DRAFT October 28, 2025 │ │ │ │ │ – Use 0 for a real or complex symmetric matrix A. A (UT + I)D(I + U) factorization is │ │ │ │ │ computed. │ │ │ │ │ – Use 1 for a complex Hermitian matrix A. A (UH +I)D(I +U) factorization is computed. │ │ │ │ │ – Use 2 for a real or complex nonsymmetric matrix A. A (L + I)D(I + U) factorization is │ │ │ │ │ computed. │ │ │ │ │ • The sparsityflag parameter denotes a direct or approximate factorization. Valid values are 0 │ │ │ │ │ for a direct factorization and 1 is for an approximate factorization. │ │ │ │ │ @@ -671,15 +671,15 @@ │ │ │ │ │ IVL object with nproc lists. List iproc contains a set of ids of items that this processor will receive │ │ │ │ │ from processor iproc. The processors then call IVL MPI allgather to create their “send” IVL object, │ │ │ │ │ where list iproc contains a set of ids of items that this processor will send to processor iproc. The set │ │ │ │ │ of lists in all the “receive” IVL objects is exactly the same as the set of lists in all the “send” objects. │ │ │ │ │ This is an “all-to-all” scatter/gather operation. Had the lists be stored contiguously or at least in one │ │ │ │ │ block of storage, we could have used the MPI Alltoallv() method. │ │ │ │ │ Use the script file do IVL alltoall for testing. │ │ │ │ │ - MPI : DRAFT October 18, 2025 17 │ │ │ │ │ + MPI : DRAFT October 28, 2025 17 │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The n parameter is an upper bound on list size and element value. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 8. testIVL_allgather msglvl msgFile nlist seed │ │ │ │ │ This driver program tests the distributed IVL MPI allgather() method. Each processor generates │ │ │ │ │ @@ -716,15 +716,15 @@ │ │ │ │ │ local coordinates. The matrix-matrix multiply is computed, and then all the Yq local matrices are │ │ │ │ │ gathered onto processor zero into Y , which is then compared with Z that was computed using a serial │ │ │ │ │ matrix-matrix multiply. The error is written to the message file by processor zero. Use the script file │ │ │ │ │ do MMM for testing. │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ - 18 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 18 MPI : DRAFT October 28, 2025 │ │ │ │ │ • The nrowA parameter is the number of rows in A. │ │ │ │ │ • The ncolA parameter is the number of columns in A. │ │ │ │ │ • The nentA parameter is the number of entries to be put into A. │ │ │ │ │ • The nrowX parameter is the number of rows in X. │ │ │ │ │ • The coordTypeparameter defines the coordinate type that will be used during the redistribution. │ │ │ │ │ Valid values are 1 for rows, 2 for columns and 3 for chevrons. │ │ │ │ │ • The inputMode parameter defines the mode of input. Valid values are 1 for real entries and 2 for │ │ │ │ │ @@ -759,15 +759,15 @@ │ │ │ │ │ This driver program tests the distributed InpMtx MPI splitFromGlobal() method to split a InpMtx │ │ │ │ │ sparse matrix object. Process root reads in the InpMtx object. A random map is generated (the same │ │ │ │ │ maponall processes) and the object is scattered from processor root to the other processors. Use the │ │ │ │ │ script file do ScatterInpMtx for testing. │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ - MPI : DRAFT October 18, 2025 19 │ │ │ │ │ + MPI : DRAFT October 28, 2025 19 │ │ │ │ │ • The neqns parameter is the number of equations for the matrix. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The coordTypeparameter defines the coordinate type that will be used during the redistribution. │ │ │ │ │ Valid values are 1 for rows, 2 for columns and 3 for chevrons. │ │ │ │ │ • The inputMode parameter defines the mode of input. Valid values are 0 for indices only, 1 for │ │ │ │ │ real entries and 2 for complex entries. │ │ │ │ │ • The inInpMtxFile parameter is the name of the file that contain the InpMtx object. │ │ │ │ │ @@ -802,15 +802,15 @@ │ │ │ │ │ • The inputMode parameter defines the mode of input. Valid values are 0 for indices only, 1 for │ │ │ │ │ real entries and 2 for complex entries. │ │ │ │ │ • The inInpMtxFile parameter is the name of the file that contain the InpMtx object. │ │ │ │ │ 15. testSymbFac msglvl msgFile inGraphFile inETreeFile seed │ │ │ │ │ This driver program tests the distributed SymbFac MPI initFromInpMtx() method that forms a IVL │ │ │ │ │ object that contains the necessary parts of a symbolic factorization for each processor. The pro- │ │ │ │ │ gram reads in the global Graph and ETree objects. Each processor creates a global InpMtx object │ │ │ │ │ - 20 MPI : DRAFT October 18, 2025 │ │ │ │ │ + 20 MPI : DRAFT October 28, 2025 │ │ │ │ │ from the structure of the graph and computes a global symbolic factorization object using the serial │ │ │ │ │ SymbFac initFromInpMtx() method. The processors then compute a map from fronts to processors, │ │ │ │ │ and each processor throws away the unowned matrix entries from the InpMtx object. The processors │ │ │ │ │ then compute their necessary symbolic factorizations in parallel. For a check, they compare the two │ │ │ │ │ symbolic factorizations for error. Use the script file do symbfac for testing. │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ ├── ./usr/share/doc/spooles-doc/MSMD.ps.gz │ │ │ ├── MSMD.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o MSMD.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1227,15 +1227,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1429,81 +1428,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5199,15 +5193,15 @@ │ │ │ │ 68[{}15 99.6264 /CMTT12 rf /Fc 131[112 1[50 59 59 1[59 │ │ │ │ 62 44 44 46 1[62 56 62 93 31 1[34 31 62 56 34 51 62 50 │ │ │ │ 62 54 11[86 5[84 5[42 3[74 2[80 7[31 4[56 56 56 56 56 │ │ │ │ 2[31 33[62 12[{}37 99.6264 /CMBX12 rf /Fd 134[71 2[71 │ │ │ │ 75 52 53 55 1[75 67 75 112 2[41 37 75 67 41 61 75 60 │ │ │ │ 75 65 13[75 2[92 11[103 14[67 67 67 67 67 2[37 46[{}29 │ │ │ │ 119.552 /CMBX12 rf /Fe 139[35 1[36 2[45 9[40 1[40 51 │ │ │ │ -18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf /Ff 141[39 12[39 16[39 14[39 69[{}4 74.7198 │ │ │ │ /CMTT9 rf /Fg 133[34 41 41 55 41 1[30 30 30 1[43 38 43 │ │ │ │ 64 21 41 23 21 43 1[23 34 43 34 43 38 12[55 37[21 1[21 │ │ │ │ 31[43 12[{}27 74.7198 /CMR9 rf /Fh 206[30 49[{}1 49.8132 │ │ │ │ /CMR6 rf /Fi 132[52 6[41 4[52 58 46[49 63[{}5 90.9091 │ │ │ │ /CMBX10 rf /Fj 148[47 6[47 100[{}2 90.9091 /CMMI10 rf │ │ │ │ /Fk 134[44 2[42 49 30 37 38 1[46 46 51 1[23 42 28 28 │ │ │ │ @@ -5322,15 +5316,15 @@ │ │ │ │ b Ff(ETree)g Fg(ob)t(ject)g(has)f(the)g Ff(Tree)h Fg(ob)t(ject)g(that)f │ │ │ │ (de\014nes)f(the)h(connectivit)n(y)g(of)h(the)e(fron)n(ts,)j(kno)n(ws)e │ │ │ │ (the)g(in)n(ternal)g(and)g(external)0 5407 y(size)k(of)f(eac)n(h)g │ │ │ │ (fron)n(t,)g(and)f(has)h(a)g(map)g(from)g(the)g(v)n(ertices)g(to)g(the) │ │ │ │ f(fron)n(ts.)1927 5656 y Fo(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fo(2)p 136 100 1135 4 v │ │ │ │ -1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 0 399 a Fo(W)-8 b(e)32 b(in)m(tend)e(to)h(add)f(more)g │ │ │ │ (priorities,)h(e.g.,)h(appro)m(ximate)g(de\014ciency)e(from)g([)p │ │ │ │ Fi(?)q Fo(],)h([)p Fi(?)p Fo(])g(and)f([)p Fi(?)p Fo(].)141 │ │ │ │ 534 y(Cho)s(ose)37 b(a)h(priorit)m(y)-8 b(,)40 b(then)d(sp)s(ecify)g │ │ │ │ (the)h(de\014nition)f(of)h(a)f Fk(step)p Fo(,)j(ho)m(w)e(to)g(c)m(ho)s │ │ │ │ (ose)g(an)g(indep)s(enden)m(t)e(set)i(of)0 647 y(v)m(ertices)32 │ │ │ │ b(to)g(eliminate)g(at)f(a)g(time.)42 b(Then)29 b(pro)m(vide)i(a)g(map)f │ │ │ │ @@ -5393,15 +5387,15 @@ │ │ │ │ b Fo(:)39 b(an)27 b(ob)5 b(ject)28 b(that)f(comm)m(unicate)i(parameter) │ │ │ │ f(c)m(hoices)g(from)f(the)g(caller)h(to)g(the)f Fn(MSMD)f │ │ │ │ Fo(ob)5 b(ject)227 5407 y(and)30 b(information)h(and)e(statistics)k │ │ │ │ (from)d(the)g Fn(MSMD)f Fo(ob)5 b(ject)32 b(to)f(the)f(caller.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1135 4 v 1316 100 a Fn(MSMD)29 │ │ │ │ -b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fo(3)137 399 y Fm(\210)45 b Fn(MSMDstageInfo)25 │ │ │ │ b Fo(:)40 b(an)28 b(ob)5 b(ject)29 b(that)g(con)m(tains)h(statistics)g │ │ │ │ (for)e(a)h(stage)h(of)e(elimination,)i(e.g.,)h(n)m(um)m(b)s(er)c(of)227 │ │ │ │ 511 y(steps,)k(n)m(um)m(b)s(er)e(of)h(v)m(ertices)i(eliminated,)g(w)m │ │ │ │ (eigh)m(t)g(of)f(v)m(ertices)h(eliminated,)f(etc.)137 │ │ │ │ 702 y Fm(\210)45 b Fn(MSMDvtx)29 b Fo(:)40 b(an)31 b(ob)5 │ │ │ │ b(ject)31 b(that)g(mo)s(dels)f(a)h(v)m(ertex.)0 917 y(A)f(user)g(needs) │ │ │ │ @@ -5463,15 +5457,15 @@ │ │ │ │ Fn(stepType)h(>)h(1)22 b Fo(|)g(an)g(indep)s(enden)m(t)f(set)i(of)f(v)m │ │ │ │ (ertices)i(is)e(eliminated)i(whose)e(priorities)g(lie)h(b)s(et)m(w)m │ │ │ │ (een)427 5407 y(the)31 b(minim)m(um)e(priorit)m(y)i(and)f(the)h(minim)m │ │ │ │ (um)e(priorit)m(y)i(m)m(ultiplied)g(b)m(y)f Fn(stepType)p │ │ │ │ Fo(.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fo(4)p 136 100 1135 4 v │ │ │ │ -1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 227 399 a Fo(The)f(default)h(v)-5 b(alue)31 │ │ │ │ b(is)f Fn(1)p Fo(,)g(m)m(ultiple)h(elimination)h(of)f(v)m(ertices)h │ │ │ │ (with)e(minim)m(um)f(priorit)m(y)-8 b(.)137 625 y Fm(\210)45 │ │ │ │ b Fn(int)i(seed)26 b Fo(|)g(a)h(seed)g(used)f(for)h(a)g(random)f(n)m │ │ │ │ (um)m(b)s(er)f(generator,)k(this)e(in)m(tro)s(duces)f(a)i(necessary)f │ │ │ │ (random)227 738 y(elemen)m(t)32 b(to)f(the)g(ordering.)137 │ │ │ │ 964 y Fm(\210)45 b Fn(int)i(msglvl)33 b Fo({)i(message)g(lev)m(el)h │ │ │ │ @@ -5518,15 +5512,15 @@ │ │ │ │ 5181 y Fm(\210)45 b Fn(IV)i(ivtmpIV)29 b Fo({)i Fn(IV)e │ │ │ │ Fo(ob)5 b(ject)32 b(that)f(holds)e(an)i(in)m(teger)g(temp)s(orary)f(v)m │ │ │ │ (ector.)137 5407 y Fm(\210)45 b Fn(IV)i(reachIV)29 b │ │ │ │ Fo({)i Fn(IV)e Fo(ob)5 b(ject)32 b(that)f(holds)e(the)i(reac)m(h)g(v)m │ │ │ │ (ector.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1135 4 v 1316 100 a Fn(MSMD)29 │ │ │ │ -b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fo(5)0 399 y Fc(1.1.3)112 b Fb(MSMDstageInfo)41 │ │ │ │ b Fc(:)50 b(statistics)38 b(ob)6 b(ject)37 b(for)h(a)f(stage)h(of)g │ │ │ │ (the)f(elimination)0 596 y Fo(This)30 b(ob)5 b(ject)31 │ │ │ │ b(stores)g(information)f(ab)s(out)g(the)h(elimination)h(pro)s(cess)e │ │ │ │ (at)h(a)g(stage)g(of)g(the)f(elimination.)137 838 y Fm(\210)45 │ │ │ │ b Fn(int)i(nstep)29 b Fo(|)h(n)m(um)m(b)s(er)f(of)i(elimination)h │ │ │ │ (steps)e(in)g(this)g(stage)137 1028 y Fm(\210)45 b Fn(int)i(nfront)29 │ │ │ │ @@ -5570,15 +5564,15 @@ │ │ │ │ b Fo({)h(v)m(ertex)g(on)f(reac)m(h)h(set)330 5260 y Fi({)45 │ │ │ │ b Fn('I')30 b Fo({)h(v)m(ertex)g(found)e(to)i(b)s(e)f │ │ │ │ (indistinguishable)g(to)h(another)330 5407 y Fi({)45 │ │ │ │ b Fn('B')30 b Fo({)h(b)s(oundary)d(v)m(ertex,)k(to)f(b)s(e)e │ │ │ │ (eliminated)j(in)e(another)h(stage)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fo(6)p 136 100 1135 4 v │ │ │ │ -1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 137 399 a Fm(\210)45 b Fn(int)i(stage)29 b │ │ │ │ Fo(|)h(stage)i(of)f(the)f(v)m(ertex.)42 b(Stage)32 b(0)e(no)s(des)g │ │ │ │ (are)h(eliminated)g(b)s(efore)f(stage)i(1)f(no)s(des,)e(etc.)137 │ │ │ │ 581 y Fm(\210)45 b Fn(int)i(wght)29 b Fo(|)i(w)m(eigh)m(t)g(of)g(the)g │ │ │ │ (v)m(ertex)137 763 y Fm(\210)45 b Fn(int)i(nadj)29 b │ │ │ │ Fo(|)i(size)g(of)f(the)h Fn(adj)e Fo(v)m(ector)137 945 │ │ │ │ y Fm(\210)45 b Fn(int)i(*adj)27 b Fo(|)i(for)f(an)g(uneliminated)g(v)m │ │ │ │ @@ -5637,15 +5631,15 @@ │ │ │ │ Fo(then)i(free's)g(the)g(storage)227 5260 y(for)h(the)h(structure)f │ │ │ │ (with)g(a)h(call)g(to)g Fn(free\(\))p Fo(.)227 5407 y │ │ │ │ Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b Fn(info)g │ │ │ │ Fo(is)g Fn(NULL)p Fo(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f │ │ │ │ (the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1135 4 v 1316 100 a Fn(MSMD)29 │ │ │ │ -b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fo(7)0 399 y Fc(1.2.2)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)0 596 y Fo(There)30 b(are)h(t)m(w)m(o)g(utilit)m(y)h │ │ │ │ (metho)s(ds,)e(one)h(to)g(prin)m(t)f(the)g(ob)5 b(ject,)32 │ │ │ │ b(one)f(to)g(c)m(hec)m(k)h(to)f(see)g(if)f(it)h(is)f(v)-5 │ │ │ │ b(alid.)111 835 y(1.)46 b Fn(void)h(MSMDinfo_print)d(\()j(MSMDinfo)f │ │ │ │ (*info,)g(FILE)h(*fp)f(\))i(;)227 986 y Fo(This)30 b(metho)s(d)g(prin)m │ │ │ │ (ts)g(out)g(the)h(information)f(to)h(a)g(\014le.)227 │ │ │ │ @@ -5700,15 +5694,15 @@ │ │ │ │ Fo(then)k(free's)g(the)h(storage)g(for)227 5256 y(the)d(structure)f │ │ │ │ (with)g(a)h(call)g(to)g Fn(free\(\))p Fo(.)227 5407 y │ │ │ │ Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b Fn(msmd)g │ │ │ │ Fo(is)g Fn(NULL)p Fo(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f │ │ │ │ (the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fo(8)p 136 100 1135 4 v │ │ │ │ -1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fn(MSMD)30 b Fe(:)g Fk(DRAFT)g Fe(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 0 399 a Fc(1.3.2)112 b(Initialization)39 b(metho)s(ds)f(|)g │ │ │ │ (public)0 595 y Fo(There)30 b(is)g(one)h(initialization)i(metho)s(d.) │ │ │ │ 111 834 y(1.)46 b Fn(void)h(MSMD_init)e(\()j(MSMD)e(*msmd,)g(Graph)h │ │ │ │ (*graph,)f(int)g(stages[],)g(MSMD)g(*info)h(\))g(;)227 │ │ │ │ 985 y Fo(This)35 b(metho)s(d)h(initializes)i(the)e Fn(MSMD)f │ │ │ │ Fo(ob)5 b(ject)37 b(prior)e(to)i(an)e(ordering.)58 b(It)36 │ │ │ │ b(is)g(called)h(b)m(y)f Fn(MSMD)p 3539 985 29 4 v 33 │ │ │ │ @@ -5777,15 +5771,15 @@ │ │ │ │ b(ject)34 b(with)f(the)h(new-to-old)g(p)s(erm)m(utation)227 │ │ │ │ 5407 y(of)i(the)f(v)m(ertices,)j(resizing)e(the)f Fn(IV)g │ │ │ │ Fo(ob)5 b(ject)36 b(if)f(necessary)-8 b(.)56 b(If)34 │ │ │ │ b Fn(oldToNewIV)f Fo(is)i(not)g Fn(NULL)p Fo(,)f(this)h(metho)s(d)p │ │ │ │ eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1135 4 v 1316 100 a Fn(MSMD)29 │ │ │ │ -b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fo(9)227 399 y(\014lls)i(the)h Fn(IV)f │ │ │ │ Fo(ob)5 b(ject)35 b(with)f(the)g(old-to-new)i(p)s(erm)m(utation)e(of)h │ │ │ │ (the)f(v)m(ertices,)k(resizing)d(the)f Fn(IV)g Fo(ob)5 │ │ │ │ b(ject)35 b(if)227 511 y(necessary)-8 b(.)227 661 y Fk(Err)j(or)33 │ │ │ │ b(che)-5 b(cking:)40 b Fo(If)28 b Fn(msmd)g Fo(is)h Fn(NULL)p │ │ │ │ Fo(,)f(or)h(if)g Fn(newToOldIV)d Fo(and)j Fn(oldToNewIV)d │ │ │ │ Fo(is)j Fn(NULL)p Fo(,)f(an)h(error)g(message)227 774 │ │ │ │ @@ -5845,15 +5839,15 @@ │ │ │ │ y Fn(MSMD)p 425 5258 V 34 w(clearEdgeList\(\))p Fo(.)227 │ │ │ │ 5407 y Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 │ │ │ │ b Fn(msmd)g Fo(or)g Fn(info)f Fo(is)i Fn(NULL)p Fo(,)e(an)h(error)g │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fo(10)p 182 100 1112 4 │ │ │ │ -v 1294 w Fn(MSMD)29 b Fe(:)i Fk(DRAFT)f Fe(Octob)s(er)g(18,)i(2025)p │ │ │ │ +v 1294 w Fn(MSMD)29 b Fe(:)i Fk(DRAFT)f Fe(Octob)s(er)g(28,)i(2025)p │ │ │ │ 2789 100 V 111 399 a Fo(6.)46 b Fn(void)h(MSMD_cleanSubtreeList)42 │ │ │ │ b(\()47 b(MSMD)g(*msmd,)f(MSMDvtx)g(*v,)h(MSMD)f(*info)h(\))g(;)227 │ │ │ │ 547 y Fo(This)34 b(metho)s(d)h(cleans)h(the)f(list)h(of)f(subtrees)f │ │ │ │ (for)h(v)m(ertex)h Fn(v)p Fo(,)g(remo)m(ving)g(an)m(y)f(no)s(de)g(whic) │ │ │ │ m(h)f(is)h(no)g(longer)227 660 y(the)c(ro)s(ot)g(of)f(a)h(subtree)f(of) │ │ │ │ g(eliminated)i(no)s(des.)227 809 y Fk(Err)-5 b(or)30 │ │ │ │ b(che)-5 b(cking:)38 b Fo(If)25 b Fn(msmd)p Fo(,)h Fn(v)f │ │ │ │ @@ -5920,15 +5914,15 @@ │ │ │ │ (of)g(a)f(v)m(ertex,)i(used)e(for)g(debugging.)227 5407 │ │ │ │ y Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 b │ │ │ │ Fn(v)g Fo(or)h Fn(fp)f Fo(is)g Fn(NULL)p Fo(,)f(an)i(error)f(message)h │ │ │ │ (is)g(prin)m(ted)e(and)h(the)h(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1112 4 v 1293 100 a Fn(MSMD)29 │ │ │ │ -b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)i Fk(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2696 100 V 1112 w Fo(11)0 399 y Fd(1.5)135 b(Driv)l(er)46 │ │ │ │ b(programs)g(for)f(the)g Fa(MSMD)e Fd(ob)7 b(ject)0 631 │ │ │ │ y Fo(This)30 b(section)h(con)m(tains)h(brief)e(descriptions)g(of)g │ │ │ │ (four)g(driv)m(er)g(programs.)111 881 y(1.)46 b Fn(orderViaMMD)f │ │ │ │ (msglvl)h(msgFile)g(inGraphFile)f(seed)h(compressFlag)f(prioType)370 │ │ │ │ 994 y(stepType)h(outOldToNewIVfile)d(outNewToOldIVfile)g(outETreeFile) │ │ │ │ 227 1149 y Fo(This)28 b(driv)m(er)g(program)g(orders)f(a)i(graph)f │ │ │ │ @@ -5992,15 +5986,15 @@ │ │ │ │ y(the)34 b(old-to-new)h(p)s(erm)m(utation)f(v)m(ector.)52 │ │ │ │ b(If)34 b Fn(outOldToNewIVfile)29 b Fo(is)34 b Fn("none")p │ │ │ │ Fo(,)f(then)g(there)h(is)g(no)427 5407 y(output,)d(otherwise)f │ │ │ │ Fn(outOldToNewIVfile)c Fo(m)m(ust)k(b)s(e)g(of)g(the)h(form)f │ │ │ │ Fn(*.ivf)f Fo(or)h Fn(*.ivb)p Fo(.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fo(12)p 182 100 1112 │ │ │ │ -4 v 1294 w Fn(MSMD)29 b Fe(:)i Fk(DRAFT)f Fe(Octob)s(er)g(18,)i(2025)p │ │ │ │ +4 v 1294 w Fn(MSMD)29 b Fe(:)i Fk(DRAFT)f Fe(Octob)s(er)g(28,)i(2025)p │ │ │ │ 2789 100 V 337 399 a Fm(\210)45 b Fo(The)38 b Fn(outNewToOldIVfile)c │ │ │ │ Fo(parameter)39 b(is)f(the)h(output)f(\014le)h(for)f(the)h │ │ │ │ Fn(IV)e Fo(ob)5 b(ject)40 b(that)f(con)m(tains)427 511 │ │ │ │ y(the)34 b(new-to-old)h(p)s(erm)m(utation)f(v)m(ector.)52 │ │ │ │ b(If)34 b Fn(outNewToOldIVfile)29 b Fo(is)34 b Fn("none")p │ │ │ │ Fo(,)f(then)g(there)h(is)g(no)427 624 y(output,)d(otherwise)f │ │ │ │ Fn(outNewToOldIVfile)c Fo(m)m(ust)k(b)s(e)g(of)g(the)h(form)f │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -21,15 +21,15 @@ │ │ │ │ │ • approximate external degree, (d from [?]) and [?], or │ │ │ │ │ ˜ │ │ │ │ │ • half external and half approximate, (d from [?]), or │ │ │ │ │ • a constant priority (to induce maximal independent set elimination). │ │ │ │ │ 1The ETree object has the Tree object that defines the connectivity of the fronts, knows the internal and external │ │ │ │ │ size of each front, and has a map from the vertices to the fronts. │ │ │ │ │ 1 │ │ │ │ │ - 2 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 2 MSMD : DRAFT October 28, 2025 │ │ │ │ │ We intend to add more priorities, e.g., approximate deficiency from [?], [?] and [?]. │ │ │ │ │ Choose a priority, then specify the definition of a step, how to choose an independent set of │ │ │ │ │ vertices to eliminate at a time. Then provide a map from each vertex to the stage at which it will │ │ │ │ │ be eliminated. │ │ │ │ │ Presently there is one ordering method, MSMD order(). It orders the vertices by stages, i.e. │ │ │ │ │ vertices in stage k will be ordered before vertices in stage k + 1. Inside each stage the vertices are │ │ │ │ │ ordered by steps. At each step an independent set of vertices is eliminated, and the choice is based │ │ │ │ │ @@ -57,15 +57,15 @@ │ │ │ │ │ The tools are largely written so any of these three algorithms can be prototyped in a small amount │ │ │ │ │ of time and effort. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ There are four typed objects. │ │ │ │ │ • MSMD : the main object. │ │ │ │ │ • MSMDinfo : an object that communicate parameter choices from the caller to the MSMD object │ │ │ │ │ and information and statistics from the MSMD object to the caller. │ │ │ │ │ - MSMD : DRAFT October 18, 2025 3 │ │ │ │ │ + MSMD : DRAFT October 28, 2025 3 │ │ │ │ │ • MSMDstageInfo : an object that contains statistics for a stage of elimination, e.g., number of │ │ │ │ │ steps, number of vertices eliminated, weight of vertices eliminated, etc. │ │ │ │ │ • MSMDvtx : an object that models a vertex. │ │ │ │ │ Auser needs to understand the MSMDinfo object, so this is where we will start our description. │ │ │ │ │ 1.1.1 MSMDinfo : define your algorithm │ │ │ │ │ • int compressFlag – define initial and subsequent compressions of the graph. │ │ │ │ │ Wecompress a graph using a checksum technique. At some point in the elimination, vertices │ │ │ │ │ @@ -93,15 +93,15 @@ │ │ │ │ │ • double stepType — define the elimination steps. │ │ │ │ │ – stepType == 0 — only one vertex of minimum priority is eliminated at each step, e.g., │ │ │ │ │ as used in SPARSPAK’s GENQMD, YSMP’s ordering, and AMD [?]. │ │ │ │ │ – stepType == 1 — an independent set of vertices of minimum priority is eliminated at │ │ │ │ │ each step, e.g., as used in GENMMD, multiple minimum degree. │ │ │ │ │ – stepType > 1—anindependentsetofvertices iseliminated whoseprioritieslie between │ │ │ │ │ the minimum priority and the minimum priority multiplied by stepType. │ │ │ │ │ - 4 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 4 MSMD : DRAFT October 28, 2025 │ │ │ │ │ The default value is 1, multiple elimination of vertices with minimum priority. │ │ │ │ │ • int seed — a seed used for a random number generator, this introduces a necessary random │ │ │ │ │ element to the ordering. │ │ │ │ │ • int msglvl – message level for statistics, diagnostics and monitoring. The default value is │ │ │ │ │ zero, no statistics. Set msglvl to one and get elimination monitoring. Increase msglvl slowly │ │ │ │ │ to get more mostly debug information. │ │ │ │ │ • FILE *msgFile – message file, default is stdout. │ │ │ │ │ @@ -119,15 +119,15 @@ │ │ │ │ │ • IIheap *heap – pointer to a IIheap object that maintains the priority queue. │ │ │ │ │ • IP *baseIP – pointer to the base IP objects, used to hold subtree lists │ │ │ │ │ • IP *freeIP – pointer to the list of free IP objects │ │ │ │ │ • int incrIP – integer that holds the increment factor for the IP objects. │ │ │ │ │ • MSMDvtx *vertices – pointer to vector of MSMDvtx objects that represent the vertices. │ │ │ │ │ • IV ivtmpIV – IV object that holds an integer temporary vector. │ │ │ │ │ • IV reachIV – IV object that holds the reach vector. │ │ │ │ │ - MSMD : DRAFT October 18, 2025 5 │ │ │ │ │ + MSMD : DRAFT October 28, 2025 5 │ │ │ │ │ 1.1.3 MSMDstageInfo : statistics object for a stage of the elimination │ │ │ │ │ This object stores information about the elimination process at a stage of the elimination. │ │ │ │ │ • int nstep — number of elimination steps in this stage │ │ │ │ │ • int nfront — number of fronts created at this stage │ │ │ │ │ • int welim — weight of the vertices eliminated at this stage │ │ │ │ │ • int nfind — number of front indices │ │ │ │ │ • int nzf — number of factor entries (for a Cholesky factorization) │ │ │ │ │ @@ -148,15 +148,15 @@ │ │ │ │ │ – ’L’ – eliminated leaf vertex │ │ │ │ │ – ’E’ – eliminated interior vertex │ │ │ │ │ – ’O’ – outmatched vertex │ │ │ │ │ – ’D’ – vertex on degree (priority) heap │ │ │ │ │ – ’R’ – vertex on reach set │ │ │ │ │ – ’I’ – vertex found to be indistinguishable to another │ │ │ │ │ – ’B’ – boundary vertex, to be eliminated in another stage │ │ │ │ │ - 6 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 6 MSMD : DRAFT October 28, 2025 │ │ │ │ │ • int stage — stage of the vertex. Stage 0 nodes are eliminated before stage 1 nodes, etc. │ │ │ │ │ • int wght — weight of the vertex │ │ │ │ │ • int nadj — size of the adj vector │ │ │ │ │ • int *adj — for an uneliminated vertex, adj points to a list of uncovered adjacent edges; for │ │ │ │ │ an eliminated vertex, adj points points to a list of its boundary vertices (only valid when the │ │ │ │ │ vertex is a leaf of the elimination tree or a root of a subtree of uneliminated vertices). │ │ │ │ │ • int bndwght — for an eliminated vertex, the weight of the vertices on its boundary. │ │ │ │ │ @@ -181,15 +181,15 @@ │ │ │ │ │ This method clears any data owned by the object and then sets the structure’s default fields │ │ │ │ │ with a call to MSMDinfo setDefaultFields(). │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void MSMDinfo_free ( MSMDinfo *info ) ; │ │ │ │ │ This method releases any storage by a call to MSMDinfo clearData() then free’s the storage │ │ │ │ │ for the structure with a call to free(). │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ - MSMD : DRAFT October 18, 2025 7 │ │ │ │ │ + MSMD : DRAFT October 28, 2025 7 │ │ │ │ │ 1.2.2 Utility methods │ │ │ │ │ There are two utility methods, one to print the object, one to check to see if it is valid. │ │ │ │ │ 1. void MSMDinfo_print ( MSMDinfo *info, FILE *fp ) ; │ │ │ │ │ This method prints out the information to a file. │ │ │ │ │ Error checking: If info or fp is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int MSMDinfo_isValid ( MSMDinfo *info ) ; │ │ │ │ │ This method checks that the object is valid. The return value is 1 for a valid object, 0 for an │ │ │ │ │ @@ -213,15 +213,15 @@ │ │ │ │ │ This method clears any data owned by the object, then sets the structure’s default fields with │ │ │ │ │ a call to MSMD setDefaultFields(). │ │ │ │ │ Error checking: If msmd is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void MSMD_free ( MSMD *msmd ) ; │ │ │ │ │ This method releases any storage by a call to MSMD clearData() then free’s the storage for │ │ │ │ │ the structure with a call to free(). │ │ │ │ │ Error checking: If msmd is NULL, an error message is printed and the program exits. │ │ │ │ │ - 8 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 8 MSMD : DRAFT October 28, 2025 │ │ │ │ │ 1.3.2 Initialization methods — public │ │ │ │ │ There is one initialization method. │ │ │ │ │ 1. void MSMD_init ( MSMD *msmd, Graph *graph, int stages[], MSMD *info ) ; │ │ │ │ │ This method initializes the MSMD object prior to an ordering. It is called by MSMD order() │ │ │ │ │ method, and so it is currently a private method for the object. However, when designing more │ │ │ │ │ complicated ordering methods, this object is necessary to set up the data structures. There │ │ │ │ │ are two input arguments: graph is a pointer to a Graph object that holds the adjacency lists │ │ │ │ │ @@ -249,15 +249,15 @@ │ │ │ │ │ 1.3.4 Extraction methods — public │ │ │ │ │ There are two methods to extract the ordering. The first fills one or two IV objects with the │ │ │ │ │ permutation vector(s). The second returns an ETree object that holds the front tree for the │ │ │ │ │ ordering. │ │ │ │ │ 1. void MSMD_fillPerms ( MSMD *msmd, IV *newToOldIV, IV *oldToNewIV ) ; │ │ │ │ │ If newToOldIV is not NULL, this method fills the IV object with the new-to-old permutation │ │ │ │ │ of the vertices, resizing the IV object if necessary. If oldToNewIV is not NULL, this method │ │ │ │ │ - MSMD : DRAFT October 18, 2025 9 │ │ │ │ │ + MSMD : DRAFT October 28, 2025 9 │ │ │ │ │ fills the IV object with the old-to-new permutation of the vertices, resizing the IV object if │ │ │ │ │ necessary. │ │ │ │ │ Error checking: If msmd is NULL, or if newToOldIV and oldToNewIV is NULL, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 2. ETree * MSMD_frontETree ( MSMD *msmd ) ; │ │ │ │ │ This method constructs and returns a ETree object that contains the front tree for the │ │ │ │ │ ordering. │ │ │ │ │ @@ -283,15 +283,15 @@ │ │ │ │ │ The order of the nodes in the reach set may be permuted, but any indistinguishable nodes in │ │ │ │ │ the reach set are not purged from the reach set. │ │ │ │ │ Error checking: If msmd or info is NULL, an error message is printed and the program exits. │ │ │ │ │ 5. void MSMD_cleanReachSet ( MSMD *msmd, MSMD *info ) ; │ │ │ │ │ This method cleans the nodes in the reach set by calling MSMD cleanSubtreeList() and │ │ │ │ │ MSMD clearEdgeList(). │ │ │ │ │ Error checking: If msmd or info is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 10 MSMD : DRAFT October 28, 2025 │ │ │ │ │ 6. void MSMD_cleanSubtreeList ( MSMD *msmd, MSMDvtx *v, MSMD *info ) ; │ │ │ │ │ This method cleans the list of subtrees for vertex v, removing any node which is no longer │ │ │ │ │ the root of a subtree of eliminated nodes. │ │ │ │ │ Error checking: If msmd, v or info is NULL, an error message is printed and the program exits. │ │ │ │ │ 7. void MSMD_cleanEdgeList ( MSMD *msmd, MSMDvtx *v, MSMD *info ) ; │ │ │ │ │ This method cleans the list of uncovered edges for vertex v, removing any edge (v,w) where │ │ │ │ │ v and w share a common adjacent subtree. │ │ │ │ │ @@ -317,15 +317,15 @@ │ │ │ │ │ the program exits. │ │ │ │ │ 1.4 Prototypes and descriptions of MSMDvtx methods │ │ │ │ │ TheMSMDvtxobject is private so would not normally be accessed by the user. There is one method │ │ │ │ │ to print out the object. │ │ │ │ │ 1. void MSMDvtx_print ( MSMDvtx *v, FILE *fp ) ; │ │ │ │ │ This method prints a human-readable representation of a vertex, used for debugging. │ │ │ │ │ Error checking: If v or fp is NULL, an error message is printed and the program exits. │ │ │ │ │ - MSMD : DRAFT October 18, 2025 11 │ │ │ │ │ + MSMD : DRAFT October 28, 2025 11 │ │ │ │ │ 1.5 Driver programs for the MSMD object │ │ │ │ │ This section contains brief descriptions of four driver programs. │ │ │ │ │ 1. orderViaMMD msglvl msgFile inGraphFile seed compressFlag prioType │ │ │ │ │ stepType outOldToNewIVfile outNewToOldIVfile outETreeFile │ │ │ │ │ This driver program orders a graph using the multiple minimum degree algorithm — exactly │ │ │ │ │ which algorithm is controlled by the input parameters. │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ @@ -355,15 +355,15 @@ │ │ │ │ │ SPARSPAK. │ │ │ │ │ – stepType == 1 — regular multiple elimination, e.g., GENMMD. │ │ │ │ │ – stepType > 1 — vertices whose priority lies between the minimum priority and │ │ │ │ │ stepType times the minimum priority are eligible for elimination at a step. │ │ │ │ │ • The outOldToNewIVfile parameter is the output file for the IV object that contains │ │ │ │ │ the old-to-new permutation vector. If outOldToNewIVfile is "none", then there is no │ │ │ │ │ output, otherwise outOldToNewIVfile must be of the form *.ivf or *.ivb. │ │ │ │ │ - 12 MSMD : DRAFT October 18, 2025 │ │ │ │ │ + 12 MSMD : DRAFT October 28, 2025 │ │ │ │ │ • The outNewToOldIVfile parameter is the output file for the IV object that contains │ │ │ │ │ the new-to-old permutation vector. If outNewToOldIVfile is "none", then there is no │ │ │ │ │ output, otherwise outNewToOldIVfile must be of the form *.ivf or *.ivb. │ │ │ │ │ • The outETreeFile parameter is the output file for the ETree object that contains the │ │ │ │ │ front tree for the ordering. If outETreeFileis "none", then there is no output, otherwise │ │ │ │ │ outETreeFile must be of the form *.etreef or *.etreeb. │ │ │ │ │ 2. orderViaND msglvl msgFile inGraphFile inDSTreeFile seed compressFlag │ │ ├── ./usr/share/doc/spooles-doc/MT.ps.gz │ │ │ ├── MT.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o MT.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1599,15 +1599,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1801,81 +1800,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5010,17 +5004,17 @@ │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fd 133[50 59 59 1[59 62 44 44 46 1[62 56 62 93 31 2[31 │ │ │ │ 62 2[51 62 50 1[54 13[62 5[106 6[70 16[56 56 56 56 56 │ │ │ │ 2[31 37 45[{}29 99.6264 /CMBX12 rf /Fe 171[62 6[62 77[{}2 │ │ │ │ 119.552 /CMTT12 rf /Ff 134[71 2[71 75 52 53 55 1[75 67 │ │ │ │ 75 112 37 2[37 75 67 41 61 75 60 1[65 13[75 2[92 11[103 │ │ │ │ 16[67 67 67 2[37 46[{}26 119.552 /CMBX12 rf /Fg 139[32 │ │ │ │ -1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 │ │ │ │ -42 3[23 44[{}14 83.022 /CMSL10 rf /Fh 136[55 1[45 28 │ │ │ │ -34 35 1[42 42 47 1[21 38 1[25 42 38 1[38 42 38 1[42 9[83 │ │ │ │ +1[33 2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 │ │ │ │ +3[23 44[{}13 83.022 /CMSL10 rf /Fh 136[55 1[45 28 34 │ │ │ │ +35 1[42 42 47 1[21 38 1[25 42 38 1[38 42 38 1[42 9[83 │ │ │ │ 2[59 1[61 11[54 56 63 2[62 6[25 58[{}25 83.022 /CMTI10 │ │ │ │ rf /Fi 133[44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 1[44 1[44 1[44 1[44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 44 1[44 44 44 44 │ │ │ │ 44 44 44 44 44 44 2[44 44 1[44 1[44 44 44 44 44 44 44 │ │ │ │ 44 44 44 44 44 1[44 1[44 44 44 40[{}72 83.022 /CMTT10 │ │ │ │ rf /Fj 148[42 3[42 42 81[65 16[42 65 1[65{}7 83.022 /CMSY10 │ │ │ │ @@ -5145,15 +5139,15 @@ │ │ │ │ (ultithreaded)h(solv)n(es)e(di\013ers)i(b)n(y)f(one)h(parameter,)e(a)h │ │ │ │ Fi(SolveMap)e Fn(ob)5 b(ject)27 b(that)h(maps)g(the)g(submatrices)0 │ │ │ │ 5407 y(of)g(the)g(factor)e(matrix)h(to)h(the)g(threads)f(that)h(will)f │ │ │ │ (compute)h(with)g(them.)1929 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 125 100 1005 4 v │ │ │ │ 1170 w Fi(Multithreaded)22 b Fg(:)37 b Fh(DRAFT)27 b │ │ │ │ -Fg(Octob)r(er)g(18,)g(2025)p 2896 100 V 0 390 a Ff(1.1)135 │ │ │ │ +Fg(Octob)r(er)g(28,)g(2025)p 2896 100 V 0 390 a Ff(1.1)135 │ │ │ │ b(Data)46 b(Structure)0 597 y Fn(There)23 b(are)g(no)g(m)n │ │ │ │ (ultithreaded)h(sp)r(eci\014c)f(data)h(structures.)34 │ │ │ │ b(See)24 b(the)g Fi(Lock)e Fn(ob)5 b(ject)23 b(whic)n(h)h(is)f(used)h │ │ │ │ (to)f(hide)h(the)g(particular)0 697 y(m)n(utual)k(exclusion)f(device)g │ │ │ │ (used)h(b)n(y)f(a)g(thread)g(library)-7 b(.)0 998 y Ff(1.2)135 │ │ │ │ b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g Fe(MT)f │ │ │ │ Ff(metho)t(ds)0 1205 y Fn(This)25 b(section)f(con)n(tains)g(brief)g │ │ │ │ @@ -5262,15 +5256,15 @@ │ │ │ │ 2351 5308 V 28 w(mmm\(A,)42 b(Y,)g(3.22,)g(X,)h(nthread,)d(msglvl,)208 │ │ │ │ 5407 y(msgFile\))p Fn(,)31 b(for)i(this)h(ma)n(y)f(result)g(in)h(a)f │ │ │ │ (segmen)n(tation)g(violation.)53 b(The)34 b(v)-5 b(alues)33 │ │ │ │ b(of)h Fm(\013)g Fn(m)n(ust)f(b)r(e)h(loaded)f(in)n(to)g(an)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1005 4 v 1170 100 a Fi(Multithreaded)23 │ │ │ │ -b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2856 100 V 1005 w Fn(3)208 390 y(arra)n(y)e(of)i(length)h(1)f(or)f(2.) │ │ │ │ 36 b(The)27 b(n)n(um)n(b)r(er)f(of)g(threads)g(is)g(sp)r(eci\014ed)h(b) │ │ │ │ n(y)f(the)h Fi(nthread)d Fn(parameter;)h(if,)i Fi(nthread)d │ │ │ │ Fn(is)i Fi(1)p Fn(,)208 490 y(the)k(serial)e(metho)r(d)i(is)g(called.) │ │ │ │ 43 b(The)30 b Fi(msglvl)d Fn(and)j Fi(msgFile)c Fn(parameters)i(are)h │ │ │ │ (used)h(for)f(diagnostics)f(during)i(the)208 589 y(creation)c(of)i(the) │ │ │ │ g(threads')f(individual)g(data)g(structures.)208 722 │ │ │ │ @@ -5373,15 +5367,15 @@ │ │ │ │ r(oned)i(data.)307 5274 y Fc(\210)42 b Fi(cpus[6])25 │ │ │ │ b Fn(|)j(time)g(sp)r(en)n(t)g(to)f(factor)g(the)h(fron)n(ts.)307 │ │ │ │ 5407 y Fc(\210)42 b Fi(cpus[7])25 b Fn(|)j(time)g(sp)r(en)n(t)g(to)f │ │ │ │ (extract)g(p)r(ostp)r(oned)h(data.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 125 100 1005 4 v │ │ │ │ 1170 w Fi(Multithreaded)22 b Fg(:)37 b Fh(DRAFT)27 b │ │ │ │ -Fg(Octob)r(er)g(18,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ +Fg(Octob)r(er)g(28,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ b Fi(cpus[8])25 b Fn(|)j(time)g(sp)r(en)n(t)g(to)f(store)g(the)h │ │ │ │ (factor)e(en)n(tries.)307 524 y Fc(\210)42 b Fi(cpus[9])25 │ │ │ │ b Fn(|)j(miscellaneous)e(time.)208 691 y(On)h(return,)g(the)h │ │ │ │ Fi(stats[])d Fn(v)n(ector)h(is)i(\014lled)g(with)g(the)g(follo)n(wing)e │ │ │ │ (information.)307 859 y Fc(\210)42 b Fi(stats[0])25 b │ │ │ │ Fn(|)i(n)n(um)n(b)r(er)h(of)f(piv)n(ots.)307 993 y Fc(\210)42 │ │ │ │ b Fi(stats[1])25 b Fn(|)i(n)n(um)n(b)r(er)h(of)f(piv)n(ot)g(tests.)307 │ │ │ │ @@ -5453,15 +5447,15 @@ │ │ │ │ Fm(U)9 b Fn(\))p Fm(X)30 b Fn(=)22 b Fm(B)31 b Fn(or)26 │ │ │ │ b(\()p Fm(L)15 b Fn(+)h Fm(I)7 b Fn(\))p Fm(D)r Fn(\()p │ │ │ │ Fm(I)24 b Fn(+)15 b Fm(U)9 b Fn(\))p Fm(X)30 b Fn(=)22 │ │ │ │ b Fm(B)t Fn(.)37 b(En)n(tries)25 b(of)h Fm(B)31 b Fn(are)25 │ │ │ │ b Fh(r)l(e)l(ad)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1005 4 v 1170 100 a Fi(Multithreaded)23 │ │ │ │ -b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2856 100 V 1005 w Fn(5)208 390 y(from)31 b Fi(mtxB)g │ │ │ │ Fn(and)h(en)n(tries)g(of)g Fm(X)39 b Fn(are)31 b(written)i(to)f │ │ │ │ Fi(mtxX)p Fn(.)e(Therefore,)j Fi(mtxX)d Fn(and)j Fi(mtxB)d │ │ │ │ Fn(can)i(b)r(e)h(the)g(same)e(ob)5 b(ject.)208 490 y(\(Note,)25 │ │ │ │ b(this)h(do)r(es)e(not)h(hold)g(true)g(for)f(an)h(MPI)f(factorization)g │ │ │ │ (with)h(piv)n(oting.\))36 b(The)25 b(submatrix)f(manager)f(ob)5 │ │ │ │ b(ject)208 589 y(manages)31 b(the)j(w)n(orking)d(storage.)51 │ │ │ │ @@ -5544,15 +5538,15 @@ │ │ │ │ b Fn(using)34 b(m)n(ultithreaded)f(factors)g(and)208 │ │ │ │ 5407 y(solv)n(es.)i(Use)28 b(the)g(script)f(\014le)h │ │ │ │ Fi(do)p 1237 5407 27 4 v 30 w(gridMT)d Fn(for)i(testing.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fn(6)p 125 100 1005 4 v │ │ │ │ 1170 w Fi(Multithreaded)22 b Fg(:)37 b Fh(DRAFT)27 b │ │ │ │ -Fg(Octob)r(er)g(18,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ +Fg(Octob)r(er)g(28,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ b Fn(The)23 b Fi(msglvl)e Fn(parameter)g(determines)i(the)h(amoun)n(t)e │ │ │ │ (of)h(output.)36 b(Use)23 b Fi(msglvl)41 b(=)i(1)23 b │ │ │ │ Fn(for)g(just)g(timing)g(output.)307 524 y Fc(\210)42 │ │ │ │ b Fn(The)32 b Fi(msgFile)c Fn(parameter)i(determines)h(the)h(message)e │ │ │ │ (\014le)i(|)f(if)h Fi(msgFile)d Fn(is)i Fi(stdout)p Fn(,)f(then)i(the)g │ │ │ │ (message)390 624 y(\014le)c(is)f Fh(stdout)p Fn(,)h(otherwise)e(a)i │ │ │ │ (\014le)f(is)h(op)r(ened)f(with)i Fh(app)l(end)g Fn(status)e(to)g │ │ │ │ @@ -5626,15 +5620,15 @@ │ │ │ │ 5221 y(Use)g(the)h(script)f(\014le)h Fi(do)p 968 5221 │ │ │ │ V 31 w(patchAndGo)23 b Fn(for)k(testing.)307 5407 y Fc(\210)42 │ │ │ │ b Fn(The)23 b Fi(msglvl)e Fn(parameter)g(determines)i(the)h(amoun)n(t)e │ │ │ │ (of)h(output.)36 b(Use)23 b Fi(msglvl)41 b(=)i(1)23 b │ │ │ │ Fn(for)g(just)g(timing)g(output.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 83 100 1005 4 v 1170 100 a Fi(Multithreaded)23 │ │ │ │ -b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2856 100 V 1005 w Fn(7)307 390 y Fc(\210)42 b Fn(The)32 │ │ │ │ b Fi(msgFile)c Fn(parameter)i(determines)h(the)h(message)e(\014le)i(|)f │ │ │ │ (if)h Fi(msgFile)d Fn(is)i Fi(stdout)p Fn(,)f(then)i(the)g(message)390 │ │ │ │ 490 y(\014le)c(is)f Fh(stdout)p Fn(,)h(otherwise)e(a)i(\014le)f(is)h │ │ │ │ (op)r(ened)f(with)i Fh(app)l(end)g Fn(status)e(to)g(receiv)n(e)g(an)n │ │ │ │ (y)g(output)h(data.)307 620 y Fc(\210)42 b Fn(The)28 │ │ │ │ b Fi(type)e Fn(parameter)g(sp)r(eci\014es)h(a)h(real)e(or)h(complex)g │ │ │ │ @@ -5714,15 +5708,15 @@ │ │ │ │ y Fl(H)3756 5308 y Fj(\003)g Fm(X)i Fn(.)208 5407 y(The)27 │ │ │ │ b(program's)f(output)i(is)f(a)g(\014le)h(whic)n(h)g(when)f(sen)n(t)h │ │ │ │ (in)n(to)f(Matlab,)h(outputs)f(the)h(error)e(in)i(the)g(computation.)p │ │ │ │ eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fn(8)p 125 100 1005 4 v │ │ │ │ 1170 w Fi(Multithreaded)22 b Fg(:)37 b Fh(DRAFT)27 b │ │ │ │ -Fg(Octob)r(er)g(18,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ +Fg(Octob)r(er)g(28,)g(2025)p 2896 100 V 307 390 a Fc(\210)42 │ │ │ │ b Fn(The)19 b Fi(msglvl)e Fn(parameter)g(determines)i(the)h(amoun)n(t)e │ │ │ │ (of)h(output)h(|)f(taking)f Fi(msglvl)41 b(>=)i(3)19 │ │ │ │ b Fn(means)f(the)h Fi(InpMtx)390 490 y Fn(ob)5 b(ject)28 │ │ │ │ b(is)f(written)h(to)f(the)h(message)e(\014le.)307 624 │ │ │ │ y Fc(\210)42 b Fn(The)32 b Fi(msgFile)c Fn(parameter)i(determines)h │ │ │ │ (the)h(message)e(\014le)i(|)f(if)h Fi(msgFile)d Fn(is)i │ │ │ │ Fi(stdout)p Fn(,)f(then)i(the)g(message)390 724 y(\014le)c(is)f │ │ │ │ @@ -5807,15 +5801,15 @@ │ │ │ │ 5138 y Fa({)41 b Fi(type)h(=)i(2)f(\(SPOOLES)p 1295 5138 │ │ │ │ V 28 w(NONSYMMETRIC\))390 5273 y Fn(for)27 b Fm(A)h Fn(real)f(or)g │ │ │ │ (complex)g(nonsymmetric.)307 5407 y Fc(\210)42 b Fn(The)28 │ │ │ │ b Fi(sparsityflag)23 b Fn(parameter)j(signals)g(a)h(direct)h(or)e │ │ │ │ (appro)n(ximate)g(factorization.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 83 100 1005 4 v 1170 100 a Fi(Multithreaded)23 │ │ │ │ -b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(18,)f(2025)p │ │ │ │ +b Fg(:)36 b Fh(DRAFT)111 b Fg(Octob)r(er)27 b(28,)f(2025)p │ │ │ │ 2856 100 V 1005 w Fn(9)456 390 y Fa({)41 b Fi(sparsityflag)e(=)k(0)g │ │ │ │ (\(FRONTMTX)p 1687 390 27 4 v 28 w(DENSE)p 1935 390 V │ │ │ │ 29 w(FRONTS\))26 b Fn(implies)j(a)f(direct)h(factorization,)f(the)h │ │ │ │ (fron)n(ts)f(will)545 490 y(b)r(e)g(stored)f(as)g(dense)h(submatrices.) │ │ │ │ 456 607 y Fa({)41 b Fi(sparsityflag)e(=)k(1)g(\(FRONTMTX)p │ │ │ │ 1687 607 V 28 w(SPARSE)p 1979 607 V 29 w(FRONTS\))29 │ │ │ │ b Fn(implies)j(an)g(appro)n(ximate)e(factorization.)48 │ │ │ │ @@ -5903,15 +5897,15 @@ │ │ │ │ b Fi(n2)27 b Fn(is)h(the)g(n)n(um)n(b)r(er)f(of)g(p)r(oin)n(ts)h(in)g │ │ │ │ (the)g(second)f(grid)g(direction.)307 5407 y Fc(\210)42 │ │ │ │ b Fi(n3)27 b Fn(is)h(the)g(n)n(um)n(b)r(er)f(of)g(p)r(oin)n(ts)h(in)g │ │ │ │ (the)g(third)g(grid)e(direction.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fn(10)p 166 100 984 4 │ │ │ │ v 1148 w Fi(Multithreaded)23 b Fg(:)37 b Fh(DRAFT)27 │ │ │ │ -b Fg(Octob)r(er)g(18,)g(2025)p 2917 100 V 307 390 a Fc(\210)42 │ │ │ │ +b Fg(Octob)r(er)g(28,)g(2025)p 2917 100 V 307 390 a Fc(\210)42 │ │ │ │ b Fn(The)28 b Fi(seed)e Fn(parameter)g(is)h(a)h(random)e(n)n(um)n(b)r │ │ │ │ (er)i(seed.)307 523 y Fc(\210)42 b Fn(The)28 b Fi(nrhs)e │ │ │ │ Fn(parameter)g(is)h(the)h(n)n(um)n(b)r(er)g(of)f(righ)n(t)g(hand)h │ │ │ │ (sides)f(to)h(solv)n(e)e(as)h(one)g(blo)r(c)n(k.)307 │ │ │ │ 656 y Fc(\210)42 b Fn(The)28 b Fi(type)e Fn(parameter)g(sp)r(eci\014es) │ │ │ │ h(a)h(real)e(or)h(complex)g(linear)g(system.)456 789 │ │ │ │ y Fa({)41 b Fi(type)h(=)i(1)f(\(SPOOLES)p 1295 789 27 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -35,15 +35,15 @@ │ │ │ │ │ by independent topological traversals of the front tree. It is the list and working storage data structures (the │ │ │ │ │ ChvList, ChvManager and SubMtxManager objects) that have locks. What is done is common code between │ │ │ │ │ the serial and multithreaded environments, it is the choreography, i.e., who does what, that differs. │ │ │ │ │ Most of these same comments apply to the multithreaded solve methods. The calling sequences between │ │ │ │ │ the serial and multithreaded solves differs by one parameter, a SolveMap object that maps the submatrices │ │ │ │ │ of the factor matrix to the threads that will compute with them. │ │ │ │ │ 1 │ │ │ │ │ - 2 Multithreaded : DRAFT October 18, 2025 │ │ │ │ │ + 2 Multithreaded : DRAFT October 28, 2025 │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ There are no multithreaded specific data structures. See the Lock object which is used to hide the particular │ │ │ │ │ mutual exclusion device used by a thread library. │ │ │ │ │ 1.2 Prototypes and descriptions of MT methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods found in the MT source directory. │ │ │ │ │ 1.2.1 Matrix-matrix multiply methods │ │ │ │ │ Therearefivemethodstomultiplyavectortimesadensematrix. Thefirstthreemethods,calledInpMtx MT nonsym mmm*(), │ │ │ │ │ @@ -79,15 +79,15 @@ │ │ │ │ │ This method computes the matrix-vector product y := y+αA x, where y is found in the Y DenseMtx │ │ │ │ │ object, α is real or complex in alpha[], A is found in the A Inpmtx object, and x is found in the X │ │ │ │ │ DenseMtx object. If any of the input objects are NULL, an error message is printed and the program │ │ │ │ │ exits. A, X and Y must all be real or all be complex. When A is real, then α = alpha[0]. When A │ │ │ │ │ is complex, then α = alpha[0] + i* alpha[1]. This means that one cannot call the methods with │ │ │ │ │ a constant as the third parameter, e.g., InpMtx MT nonsym mmm(A, Y, 3.22, X, nthread, msglvl, │ │ │ │ │ msgFile), for this may result in a segmentation violation. The values of α must be loaded into an │ │ │ │ │ - Multithreaded : DRAFT October 18, 2025 3 │ │ │ │ │ + Multithreaded : DRAFT October 28, 2025 3 │ │ │ │ │ array of length 1 or 2. The number of threads is specified by the nthread parameter; if, nthread is 1, │ │ │ │ │ the serial method is called. The msglvl and msgFile parameters are used for diagnostics during the │ │ │ │ │ creation of the threads’ individual data structures. │ │ │ │ │ Error checking: If A, Y or X are NULL, or if coordType is not INPMTX BY ROWS, INPMTX BY COLUMNS or │ │ │ │ │ INPMTX BY CHEVRONS,orifstorageModeisnotoneofINPMTX RAW DATA,INPMTX SORTEDorINPMTX BY VECTORS, │ │ │ │ │ or if inputModeis not SPOOLES REAL or SPOOLES COMPLEX,an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ @@ -124,15 +124,15 @@ │ │ │ │ │ • cpus[1] — time spent initializing the fronts and loading the original entries. │ │ │ │ │ • cpus[2] — time spent accumulating updates from descendents. │ │ │ │ │ • cpus[3] — time spent inserting aggregate fronts. │ │ │ │ │ • cpus[4] — time spent removing and assembling aggregate fronts. │ │ │ │ │ • cpus[5] — time spent assembling postponed data. │ │ │ │ │ • cpus[6] — time spent to factor the fronts. │ │ │ │ │ • cpus[7] — time spent to extract postponed data. │ │ │ │ │ - 4 Multithreaded : DRAFT October 18, 2025 │ │ │ │ │ + 4 Multithreaded : DRAFT October 28, 2025 │ │ │ │ │ • cpus[8] — time spent to store the factor entries. │ │ │ │ │ • cpus[9] — miscellaneous time. │ │ │ │ │ Onreturn, the stats[] vector is filled with the following information. │ │ │ │ │ • stats[0] — number of pivots. │ │ │ │ │ • stats[1] — number of pivot tests. │ │ │ │ │ • stats[2] — number of delayed rows and columns. │ │ │ │ │ • stats[3] — number of entries in D. │ │ │ │ │ @@ -164,15 +164,15 @@ │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 1.2.4 Multithreaded Solve method │ │ │ │ │ 1. void FrontMtx_MT_solve ( FrontMtx *frontmtx, DenseMtx *mtxX, DenseMtx *mtxB, │ │ │ │ │ SubMtxManager *mtxmanager, SolveMap *solvemap, │ │ │ │ │ double cpus[], int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method is used to solve one of three linear systems of equations using a multithreaded solve — │ │ │ │ │ (UT +I)D(I +U)X =B, (UH +I)D(I +U)X =B or (L+I)D(I+U)X =B. Entries of B are read │ │ │ │ │ - Multithreaded : DRAFT October 18, 2025 5 │ │ │ │ │ + Multithreaded : DRAFT October 28, 2025 5 │ │ │ │ │ from mtxB and entries of X are written to mtxX. Therefore, mtxX and mtxB can be the same object. │ │ │ │ │ (Note, this does not hold true for an MPI factorization with pivoting.) The submatrix manager object │ │ │ │ │ manages the working storage. The solvemap object contains the map from submatrices to threads. │ │ │ │ │ The map from fronts to processes that own them is given in the ownersIV object. On return the │ │ │ │ │ cpus[] vector is filled with the following. The stats[] vector is not currently used. │ │ │ │ │ • cpus[0] — set up the solves │ │ │ │ │ • cpus[1] — fetch right hand side and store solution │ │ │ │ │ @@ -206,15 +206,15 @@ │ │ │ │ │ ¿ 0 and msgFile is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.3 Driver programs for the multithreaded functions │ │ │ │ │ 1. allInOneMT msglvl msgFile type symmetryflag pivotingflag │ │ │ │ │ matrixFileName rhsFileName seed nthread │ │ │ │ │ This driver program reads in a matrix A and right hand side B, generates the graph for A and orders │ │ │ │ │ the matrix, factors A and solves the linear system AX = B for X using multithreaded factors and │ │ │ │ │ solves. Use the script file do gridMT for testing. │ │ │ │ │ - 6 Multithreaded : DRAFT October 18, 2025 │ │ │ │ │ + 6 Multithreaded : DRAFT October 28, 2025 │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ @@ -249,15 +249,15 @@ │ │ │ │ │ Thisdriverprogramisusedtotestthe“patch-and-go”functionalityforafactorizationwithoutpivoting. │ │ │ │ │ Whensmalldiagonalpivotelements are found, one of three actions are taken. See the PatchAndGoInfo │ │ │ │ │ object for more information. │ │ │ │ │ The program reads in a matrix A and right hand side B, generates the graph for A and orders the │ │ │ │ │ matrix, factors A and solves the linear system AX = B for X using multithreaded factors and solves. │ │ │ │ │ Use the script file do patchAndGo for testing. │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ - Multithreaded : DRAFT October 18, 2025 7 │ │ │ │ │ + Multithreaded : DRAFT October 28, 2025 7 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ – type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric, │ │ │ │ │ @@ -294,15 +294,15 @@ │ │ │ │ │ • The nthread parameter is the number of threads. │ │ │ │ │ 3. testMMM msglvl msgFile dataType symflag storageMode transpose │ │ │ │ │ nrow ncol nitem nrhs seed alphaReal alphaImag nthread │ │ │ │ │ ThisdriverprogramgeneratesA, anrow×ncolmatrixusingniteminputentries,X andY,nrow×nrhs │ │ │ │ │ T H │ │ │ │ │ matrices, is filled with random numbers. It then computes Y +α∗A∗X,Y +α∗A ∗X orY +α∗A ∗X. │ │ │ │ │ The program’s output is a file which when sent into Matlab, outputs the error in the computation. │ │ │ │ │ - 8 Multithreaded : DRAFT October 18, 2025 │ │ │ │ │ + 8 Multithreaded : DRAFT October 28, 2025 │ │ │ │ │ • Themsglvlparameterdeterminestheamountofoutput—takingmsglvl >= 3meanstheInpMtx │ │ │ │ │ object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • dataType is the type of entries, 0 for real, 1 for complex. │ │ │ │ │ • symflag is the symmetry flag, 0 for symmetric, 1 for Hermitian, 2 for nonsymmetric. │ │ │ │ │ • storageModeisthestoragemodefortheentries,1forbyrows,2forbycolumns, 3forbychevrons. │ │ │ │ │ @@ -336,15 +336,15 @@ │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ – type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric, │ │ │ │ │ – type = 1 (SPOOLES HERMITIAN) for A complex Hermitian, │ │ │ │ │ – type = 2 (SPOOLES NONSYMMETRIC) │ │ │ │ │ for A real or complex nonsymmetric. │ │ │ │ │ • The sparsityflag parameter signals a direct or approximate factorization. │ │ │ │ │ - Multithreaded : DRAFT October 18, 2025 9 │ │ │ │ │ + Multithreaded : DRAFT October 28, 2025 9 │ │ │ │ │ – sparsityflag = 0 (FRONTMTX DENSE FRONTS) implies a direct factorization, the fronts will │ │ │ │ │ be stored as dense submatrices. │ │ │ │ │ – sparsityflag = 1 (FRONTMTX SPARSE FRONTS) implies an approximate factorization. The │ │ │ │ │ fronts will be stored as sparse submatrices, where the entries in the triangular factors will be │ │ │ │ │ subjected to a drop tolerance test — if the magnitude of an entry is droptol or larger, it will │ │ │ │ │ be stored, otherwise it will be dropped. │ │ │ │ │ • The pivotingflag parameter signals whether pivoting for stability will be enabled or not. │ │ │ │ │ @@ -382,15 +382,15 @@ │ │ │ │ │ X F │ │ │ │ │ • The msglvlparameterdetermines the amount of output. Use msglvl = 1 for just timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ │ │ │ file is stdout, otherwise a file is opened with append status to receive any output data. │ │ │ │ │ • n1 is the number of points in the first grid direction. │ │ │ │ │ • n2 is the number of points in the second grid direction. │ │ │ │ │ • n3 is the number of points in the third grid direction. │ │ │ │ │ - 10 Multithreaded : DRAFT October 18, 2025 │ │ │ │ │ + 10 Multithreaded : DRAFT October 28, 2025 │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The nrhs parameter is the number of right hand sides to solve as one block. │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The nthread parameter is the number of threads. │ │ │ │ │ • The maptype parameter determines the type of map from fronts to processes to be used during │ │ ├── ./usr/share/doc/spooles-doc/Network.ps.gz │ │ │ ├── Network.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Network.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1541,15 +1541,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1743,81 +1742,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4680,15 +4674,15 @@ │ │ │ │ 46[{}24 99.6264 /CMBX12 rf /Fb 136[62 2[62 1[62 2[62 │ │ │ │ 3[62 5[62 22[62 78[{}7 119.552 /CMTT12 rf /Fc 134[71 │ │ │ │ 3[75 52 53 55 1[75 67 75 112 3[37 75 1[41 61 75 60 1[65 │ │ │ │ 13[75 2[92 11[103 17[67 67 2[37 46[{}22 119.552 /CMBX12 │ │ │ │ rf /Fd 141[38 2[46 51 2[42 1[28 46 42 1[42 1[42 14[65 │ │ │ │ 1[66 11[59 62 69 2[68 6[28 58[{}16 90.9091 /CMTI10 rf │ │ │ │ /Fe 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Ff 212[55 │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Ff 212[55 │ │ │ │ 43[{}1 66.4176 /CMR8 rf /Fg 255[55{}1 66.4176 /CMSY8 │ │ │ │ rf /Fh 168[67 13[31 6[53 6[20 59[{}4 66.4176 /CMMI8 rf │ │ │ │ /Fi 132[52 123[{}1 90.9091 /CMBX10 rf │ │ │ │ %DVIPSBitmapFont: Fj tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -4821,15 +4815,15 @@ │ │ │ │ y Fn(b)s(ecomes)k(t)m(w)m(o)h(edges,)h(\()p Fl(x;)15 │ │ │ │ b(y)2871 5261 y Fg(\000)2930 5294 y Fn(\))33 b(and)g(\()p │ │ │ │ Fl(y)3261 5261 y Ff(+)3320 5294 y Fl(;)15 b(x)p Fn(\),)34 │ │ │ │ b(b)s(oth)e(with)227 5407 y(in\014nite)e(capacit)m(y)-8 │ │ │ │ b(.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 136 100 1058 4 v │ │ │ │ -1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 137 399 a Fj(\210)45 b Fn(An)33 b(edge)g(\()p │ │ │ │ Fl(y)s(;)15 b(z)t Fn(\))35 b(where)d Fl(y)g Fk(2)e Fl(Y)1313 │ │ │ │ 413 y Fh(I)1385 399 y Fn(and)i Fl(z)i Fk(2)29 b Fl(Y)1783 │ │ │ │ 413 y Fh(W)1897 399 y Fn(b)s(ecomes)k(t)m(w)m(o)h(edges,)h(\()p │ │ │ │ Fl(y)2790 366 y Ff(+)2849 399 y Fl(;)15 b(z)t Fn(\))34 │ │ │ │ b(and)e(\()p Fl(z)t(;)15 b(y)3352 366 y Fg(\000)3412 │ │ │ │ 399 y Fn(\),)34 b(b)s(oth)e(with)227 511 y(in\014nite)e(capacit)m(y)-8 │ │ │ │ @@ -4906,15 +4900,15 @@ │ │ │ │ b Fm(Network)e Fn(ob)5 b(ject)32 b(has)e(six)g(\014elds.)137 │ │ │ │ 5294 y Fj(\210)45 b Fm(int)i(nnode)24 b Fn(|)i(the)f(n)m(um)m(b)s(er)f │ │ │ │ (of)i(no)s(des)f(in)g(the)h(net)m(w)m(ork,)h(including)e(the)h(source)f │ │ │ │ (\(no)s(de)h(0\))g(and)f(the)g(sink)227 5407 y(\(no)s(de)30 │ │ │ │ b Fm(nnode-1)p Fn(\).)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1058 4 v 1239 100 a Fm(Network)29 │ │ │ │ -b Fe(:)40 b Fd(DRAFT)121 b Fe(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fe(:)40 b Fd(DRAFT)121 b Fe(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2795 100 V 1058 w Fn(3)137 399 y Fj(\210)45 b Fm(int)i(narc)29 │ │ │ │ b Fn(|)i(the)f(n)m(um)m(b)s(er)f(of)i(arcs)f(in)g(the)h(net)m(w)m(ork) │ │ │ │ 137 601 y Fj(\210)45 b Fm(int)i(ntrav)29 b Fn(|)h(the)h(n)m(um)m(b)s │ │ │ │ (er)e(of)h(arc)h(tra)m(v)m(ersals)h(that)f(w)m(e)g(made)g(to)g(\014nd)e │ │ │ │ (a)h(max)h(\015o)m(w.)137 803 y Fj(\210)45 b Fm(Arc)i(**inheads)29 │ │ │ │ b Fn(|)h(p)s(oin)m(ter)h(to)h(a)f(v)m(ector)h(of)f(p)s(oin)m(ters)g(to) │ │ │ │ h Fm(Arc)p Fn(,)e Fm(inheads[v])e Fn(p)s(oin)m(ts)j(to)g(the)g(\014rst) │ │ │ │ @@ -4961,15 +4955,15 @@ │ │ │ │ b(and)f(descriptions)g(of)g Fb(Network)d Fc(metho)t(ds)0 │ │ │ │ 5294 y Fn(This)f(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 5407 y Fm(Network)28 b Fn(ob)5 b(ject.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 136 100 1058 4 v │ │ │ │ -1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 0 399 a Fa(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 589 y Fn(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 702 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 894 y(1.)46 b Fm(Network)g(*)i │ │ │ │ (Network_new)c(\()k(void)e(\))i(;)227 1038 y Fn(This)39 │ │ │ │ b(metho)s(d)f(simply)h(allo)s(cates)i(storage)g(for)e(the)g │ │ │ │ @@ -5034,15 +5028,15 @@ │ │ │ │ y Fm(firstNode)n Fn(,)d(or)g(if)f Fm(secondNode)29 b │ │ │ │ Fk(\024)j Fn(0,)k(or)e(if)h Fm(nnode)30 b Fk(\024)i Fm(secondNode)m │ │ │ │ Fn(,)k(or)e(if)h Fm(capacity)29 b Fk(\024)j Fn(0,)k(an)e(error)227 │ │ │ │ 5407 y(message)e(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1058 4 v 1239 100 a Fm(Network)29 │ │ │ │ -b Fe(:)40 b Fd(DRAFT)121 b Fe(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fe(:)40 b Fd(DRAFT)121 b Fe(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2795 100 V 1058 w Fn(5)0 399 y Fa(1.2.3)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)111 610 y Fn(1.)46 b Fm(void)h(Network_findMaxFlow)42 │ │ │ │ b(\()48 b(Network)e(*network)f(\))j(;)227 777 y Fn(This)37 │ │ │ │ b(metho)s(d)g(\014nds)f(a)i(maxim)m(um)g(\015o)m(w)g(o)m(v)m(er)h(the)f │ │ │ │ (net)m(w)m(ork)g(b)m(y)g(rep)s(eatedly)g(calling)h(the)f(metho)s(d)f │ │ │ │ (to)227 889 y(\014nd)30 b(an)h(augmen)m(ting)i(path)e(and)g(then)g(the) │ │ │ │ h(metho)s(d)e(to)j(augmen)m(t)f(the)f(path.)44 b(It)32 │ │ │ │ @@ -5118,15 +5112,15 @@ │ │ │ │ (then)g Fm(mark[v])46 b(=)h(2)p Fn(.)227 5294 y Fd(Err)-5 │ │ │ │ b(or)32 b(che)-5 b(cking:)39 b Fn(If)28 b Fm(network)p │ │ │ │ Fn(,)f Fm(deq)g Fn(or)i Fm(mark)e Fn(is)h Fm(NULL)p Fn(,)f(or)i(if)f │ │ │ │ Fm(nnode)c Fk(\024)h Fn(0,)k(an)f(error)g(message)h(is)f(prin)m(ted)227 │ │ │ │ 5407 y(and)i(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fn(6)p 136 100 1058 4 v │ │ │ │ -1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fm(Network)28 b Fe(:)41 b Fd(DRAFT)30 b Fe(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 0 399 a Fa(1.2.4)112 b(IO)38 b(metho)s(ds)0 │ │ │ │ 595 y Fn(There)30 b(are)h(t)m(w)m(o)g(IO)f(routines)g(for)h(debugging)f │ │ │ │ (purp)s(oses.)111 832 y(1.)46 b Fm(void)h(Network_writeForHumanEye)41 │ │ │ │ b(\()48 b(Network)d(*network,)h(FILE)g(*fp)h(\))h(;)227 │ │ │ │ 983 y Fn(This)20 b(metho)s(d)f(writes)i(the)f(net)m(w)m(ork)h(to)g(a)g │ │ │ │ (\014le)f(in)g(a)h(h)m(uman)e(readable)i(format.)38 b(The)20 │ │ │ │ b(metho)s(d)f Fm(Network)p 3762 983 29 4 v 33 w(writeStats\(\))227 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -31,15 +31,15 @@ │ │ │ │ │ B B │ │ │ │ │ Similarly, an edge (x,y) where x ∈ Y and y ∈ Y is not found in the network. │ │ │ │ │ W W │ │ │ │ │ • An edge (x,y) where x ∈ Y and y ∈ Y becomes two edges, (x,y−) and (y+,x), both with │ │ │ │ │ B I │ │ │ │ │ infinite capacity. │ │ │ │ │ 1 │ │ │ │ │ - 2 Network : DRAFT October 18, 2025 │ │ │ │ │ + 2 Network : DRAFT October 28, 2025 │ │ │ │ │ • An edge (y,z) where y ∈ Y and z ∈ Y becomes two edges, (y+,z) and (z,y−), both with │ │ │ │ │ I W │ │ │ │ │ infinite capacity. │ │ │ │ │ + − + − │ │ │ │ │ • An edge (x,y) where x ∈ Y and y ∈ Y becomes two edges, (x ,y ) and (y ,x ), both with │ │ │ │ │ I I │ │ │ │ │ infinite capacity. │ │ │ │ │ @@ -71,15 +71,15 @@ │ │ │ │ │ • ArcChunk – a structure that holds the storage for a number of arcs. Since we do not require │ │ │ │ │ the number of arcs to be known in advance when initializing the Network object, we allo- │ │ │ │ │ cate chunks of space to hold the arcs as necessary. Each chunks holds space for nnode arc │ │ │ │ │ structures. │ │ │ │ │ The Network object has six fields. │ │ │ │ │ • int nnode — the number of nodes in the network, including the source (node 0) and the sink │ │ │ │ │ (node nnode-1). │ │ │ │ │ - Network : DRAFT October 18, 2025 3 │ │ │ │ │ + Network : DRAFT October 28, 2025 3 │ │ │ │ │ • int narc — the number of arcs in the network │ │ │ │ │ • int ntrav — the number of arc traversals that we made to find a max flow. │ │ │ │ │ • Arc **inheads — pointer to a vector of pointers to Arc, inheads[v] points to the first arc │ │ │ │ │ in the in-list for node v. │ │ │ │ │ • Arc **outheads — pointer to a vector of pointers to Arc, outheads[v] points to the first │ │ │ │ │ arc in the out-list for node v. │ │ │ │ │ • ArcChunk *chunk — pointer to the first ArcChunk structure. │ │ │ │ │ @@ -99,15 +99,15 @@ │ │ │ │ │ • int size — the total number of Arc structures in this chunk. │ │ │ │ │ • int inuse — the number of active Arc structures in this chunk. │ │ │ │ │ • Arc *base — pointer to the first Arc structure in this chunk. │ │ │ │ │ • ArcChunk *next — pointer to the next ArcChunk structure in the list of chunks. │ │ │ │ │ 1.2 Prototypes and descriptions of Network methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Network object. │ │ │ │ │ - 4 Network : DRAFT October 18, 2025 │ │ │ │ │ + 4 Network : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Network * Network_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Network structure and then sets the default │ │ │ │ │ fields by a call to Network setDefaultFields(). │ │ │ │ │ 2. void Network_setDefaultFields ( Network *network ) ; │ │ │ │ │ @@ -135,15 +135,15 @@ │ │ │ │ │ 3. void Network_addArc ( Network *network, int firstNode, secondNode, │ │ │ │ │ int capacity, int flow ) ; │ │ │ │ │ This method adds an arc from firstNode to secondNode with flow flow and capacity │ │ │ │ │ capacity. The arc is inserted in the out-list for firstNode and the in-list for secondNode. │ │ │ │ │ Error checking: If network is NULL, or if nnode ≤ 0, or if firstNode ≤ 0, or if nnode ≤ │ │ │ │ │ firstNode, or if secondNode ≤ 0, or if nnode ≤ secondNode, or if capacity ≤ 0, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ - Network : DRAFT October 18, 2025 5 │ │ │ │ │ + Network : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. void Network_findMaxFlow ( Network *network ) ; │ │ │ │ │ This method finds a maximum flow over the network by repeatedly calling the method to │ │ │ │ │ find an augmenting path and then the method to augment the path. It uses an Ideq object │ │ │ │ │ to maintain a priority dequeue. │ │ │ │ │ Error checking: If network is NULL, or if nnode ≤ 0, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ @@ -172,15 +172,15 @@ │ │ │ │ │ and the program exits. │ │ │ │ │ 5. void Network_findMincutFromSink ( Network *network, Ideq deq, int mark[]) ; │ │ │ │ │ This method finds the min-cut closest to the sink by traversing a tree of flow-alternating │ │ │ │ │ paths into the sink. On return, mark[v] = 1 if the node v is in the component that contains │ │ │ │ │ the source. If the node v is in the component that contains the sink, then mark[v] = 2. │ │ │ │ │ Error checking: If network, deq or mark is NULL, or if nnode ≤ 0, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ - 6 Network : DRAFT October 18, 2025 │ │ │ │ │ + 6 Network : DRAFT October 28, 2025 │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ There are two IO routines for debugging purposes. │ │ │ │ │ 1. void Network_writeForHumanEye ( Network *network, FILE *fp ) ; │ │ │ │ │ Thismethodwritesthenetworktoafileinahumanreadableformat. ThemethodNetwork writeStats() │ │ │ │ │ is called to write out the header and statistics. Then the in-list and out-lists for the nodes in │ │ │ │ │ the network are printed. │ │ │ │ │ Error checking: If network or fp is NULL, an error message is printed and the program exits. │ │ ├── ./usr/share/doc/spooles-doc/PatchAndGoInfo.ps.gz │ │ │ ├── PatchAndGoInfo.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o PatchAndGoInfo.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2039,15 +2039,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2241,81 +2240,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4772,15 +4766,15 @@ │ │ │ │ 1[62 5[62 65[{}12 119.552 /CMTT12 rf /Fc 149[25 2[45 │ │ │ │ 45 81[71 18[25 1[{}5 90.9091 /CMSY10 rf /Fd 132[52 123[{}1 │ │ │ │ 90.9091 /CMBX10 rf /Fe 134[71 3[75 52 53 55 1[75 67 75 │ │ │ │ 112 3[37 75 1[41 61 75 60 1[65 13[75 2[92 11[103 17[67 │ │ │ │ 67 2[37 46[{}22 119.552 /CMBX12 rf /Ff 141[38 2[46 51 │ │ │ │ 2[42 1[28 46 42 1[42 1[42 14[65 1[66 11[59 62 69 2[68 │ │ │ │ 6[28 58[{}16 90.9091 /CMTI10 rf /Fg 139[35 1[36 2[45 │ │ │ │ -9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Fh 255[55{}1 66.4176 /CMSY8 rf /Fi │ │ │ │ 220[48 48 34[{}2 83.022 /CMEX10 rf /Fj 149[29 24 20[41 │ │ │ │ 21[55 2[20 59[{}5 66.4176 /CMMI8 rf /Fk 205[35 35 49[{}2 │ │ │ │ 66.4176 /CMR8 rf /Fl 149[37 31 16[75 11[62 7[75 1[69 │ │ │ │ 68 2[71 2[25 59[{}9 90.9091 /CMMI10 rf │ │ │ │ %DVIPSBitmapFont: Fm tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ @@ -4912,15 +4906,15 @@ │ │ │ │ (a)g(ro)m(w)g(and)g(column)g(is)g(to)g(b)s(e)g(eliminated.)61 │ │ │ │ b(If)227 5407 y(the)35 b(magnitude)g(is)g(smaller)g(than)f(a)i │ │ │ │ (user-supplied)d(parameter,)j(the)f(diagonal)h(en)m(try)f(is)g(set)g │ │ │ │ (to)h(some)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fo(2)p 136 100 891 4 v │ │ │ │ 1073 w Fn(PatchAndGoInfo)26 b Fg(:)41 b Ff(DRAFT)30 b │ │ │ │ -Fg(Octob)s(er)g(18,)i(2025)p 3010 100 V 227 399 a Fo(m)m(ultiple)27 │ │ │ │ +Fg(Octob)s(er)g(28,)i(2025)p 3010 100 V 227 399 a Fo(m)m(ultiple)27 │ │ │ │ b(of)f(the)h(largest)g(o\013diagonal)h(en)m(try)f(in)f(that)g(ro)m(w)h │ │ │ │ (and)e(column)h(of)h(the)f(fron)m(t,)h(the)g(lo)s(cation)h(and)227 │ │ │ │ 511 y(p)s(erturbation)i(is)g(noted,)h(and)f(the)g(factorization)j(pro)s │ │ │ │ (ceeds.)141 728 y(Other)27 b(strategies)h(can)f(b)s(e)g(added)f(to)i │ │ │ │ (the)f Fn(PatchAndGoInfo)c Fo(ob)5 b(ject.)40 b(F)-8 │ │ │ │ b(or)28 b(example,)g(if)f(a)g(matrix)g(is)g(b)s(eing)0 │ │ │ │ 841 y(factored)34 b(that)g(is)g(b)s(eliev)m(ed)g(to)g(b)s(e)f(p)s │ │ │ │ @@ -4975,15 +4969,15 @@ │ │ │ │ Fn(toosmall)d Fo(=)h Fn(fudge)227 5255 y Fo(=)h(0.0,)i(and)e │ │ │ │ Fn(fudgeIV)e Fo(=)i Fn(fudgeDV)f Fo(=)h Fn(NULL)f Fo(.)227 │ │ │ │ 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 │ │ │ │ b Fn(info)g Fo(is)g Fn(NULL)p Fo(,)f(an)i(error)f(message)h(is)g(prin)m │ │ │ │ (ted)f(and)f(the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 891 4 v 1072 100 a Fn(PatchAndGoInfo)27 │ │ │ │ -b Fg(:)40 b Ff(DRAFT)122 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)40 b Ff(DRAFT)122 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2962 100 V 891 w Fo(3)111 399 y(3.)46 b Fn(void)h │ │ │ │ (PatchAndGoInfo_clearData)41 b(\()48 b(PatchAndGoInfo)43 │ │ │ │ b(*info)k(\))g(;)227 549 y Fo(This)35 b(metho)s(d)f(clears)i(an)m(y)g │ │ │ │ (data)f(o)m(wned)g(b)m(y)g(the)h(ob)5 b(ject.)56 b(If)34 │ │ │ │ b Fn(fudgeIV)f Fo(is)i(not)h Fn(NULL)e Fo(it)h(is)h(free'd)f(b)m(y)g(a) │ │ │ │ 227 662 y(call)c(to)f Fn(IV)p 605 662 29 4 v 34 w(free\(\))p │ │ │ │ Fo(.)38 b(If)29 b Fn(fudgeDV)e Fo(is)i(not)h Fn(NULL)e │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -26,15 +26,15 @@ │ │ │ │ │ If A is singular, the solution X = 0 and X = A−1B is perfectly acceptable. In other │ │ │ │ │ 1,1 1 2 2,2 2 │ │ │ │ │ cases, the location of the singularity can be communicated back to the user to supply useful │ │ │ │ │ information about the finite element model. One common practice is to not use pivoting, but │ │ │ │ │ to check the magnitude of the diagonal entry as a row and column is to be eliminated. If │ │ │ │ │ the magnitude is smaller than a user-supplied parameter, the diagonal entry is set to some │ │ │ │ │ 1 │ │ │ │ │ - 2 PatchAndGoInfo : DRAFT October 18, 2025 │ │ │ │ │ + 2 PatchAndGoInfo : DRAFT October 28, 2025 │ │ │ │ │ multiple of the largest offdiagonal entry in that row and column of the front, the location and │ │ │ │ │ perturbation is noted, and the factorization proceeds. │ │ │ │ │ Other strategies can be added to the PatchAndGoInfo object. For example, if a matrix is being │ │ │ │ │ factored that is believed to be positive definite, and a negative value is found in a pivot element, │ │ │ │ │ one could abort the factorization, or perturb the element so that it is positive. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The PatchAndGoInfo structure has five fields. │ │ │ │ │ @@ -58,15 +58,15 @@ │ │ │ │ │ 1. PatchAndGoInfo * PatchAndGoInfo_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the PatchAndGoInfo structure and then sets the │ │ │ │ │ default fields by a call to PatchAndGoInfo setDefaultFields(). │ │ │ │ │ 2. void PatchAndGoInfo_setDefaultFields ( PatchAndGoInfo *info ) ; │ │ │ │ │ This method sets the structure’s fields to default values: strategy = -1, toosmall = fudge │ │ │ │ │ =0.0, and fudgeIV = fudgeDV = NULL . │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ - PatchAndGoInfo : DRAFT October 18, 2025 3 │ │ │ │ │ + PatchAndGoInfo : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void PatchAndGoInfo_clearData ( PatchAndGoInfo *info ) ; │ │ │ │ │ This method clears any data owned by the object. If fudgeIV is not NULL it is free’d by a │ │ │ │ │ call to IV free(). If fudgeDV is not NULL it is free’d by a call to DV free(). The structure’s │ │ │ │ │ default fields are then set with a call to PatchAndGoInfo setDefaultFields(). │ │ │ │ │ Error checking: If info is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void PatchAndGoInfo_free ( PatchAndGoInfo *info ) ; │ │ │ │ │ This method releases any storage by a call to PatchAndGoInfo clearData() then free’s the │ │ ├── ./usr/share/doc/spooles-doc/Pencil.ps.gz │ │ │ ├── Pencil.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Pencil.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1880,15 +1880,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2082,81 +2081,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4107,16 +4101,16 @@ │ │ │ │ TeXDict begin 40258437 52099151 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 171[41 84[{}1 66.4176 /CMMI8 rf /Fb 152[45 │ │ │ │ 45 102[{}2 90.9091 /CMSY10 rf /Fc 133[50 59 4[44 44 3[56 │ │ │ │ 62 93 31 2[31 62 2[51 62 50 1[54 11[86 5[84 5[42 6[80 │ │ │ │ 13[56 56 56 56 2[31 46[{}23 99.6264 /CMBX12 rf /Fd 141[38 │ │ │ │ 2[46 51 2[42 1[28 46 42 1[42 1[42 14[65 1[66 11[59 62 │ │ │ │ 69 2[68 6[28 58[{}16 90.9091 /CMTI10 rf /Fe 139[35 1[36 │ │ │ │ -2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 │ │ │ │ -44[{}14 90.9091 /CMSL10 rf /Ff 145[62 1[62 2[62 3[62 │ │ │ │ +2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 │ │ │ │ +44[{}13 90.9091 /CMSL10 rf /Ff 145[62 1[62 2[62 3[62 │ │ │ │ 1[62 18[62 80[{}6 119.552 /CMTT12 rf /Fg 132[52 6[41 │ │ │ │ 4[52 9[48 22[82 19[29 58[{}6 90.9091 /CMBX10 rf │ │ │ │ %DVIPSBitmapFont: Fh tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ @@ -4216,15 +4210,15 @@ │ │ │ │ b(and)f(descriptions)g(of)g Ff(Pencil)d Fi(metho)t(ds)0 │ │ │ │ 5294 y Fl(This)f(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 5407 y Fj(Pencil)29 b Fl(ob)5 b(ject.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fl(2)p 136 100 1153 4 v │ │ │ │ -1335 w Fj(Chv)30 b Fe(:)40 b Fd(DRAFT)31 b Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fj(Chv)30 b Fe(:)40 b Fd(DRAFT)31 b Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 0 399 a Fc(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 600 y Fl(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 712 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 962 y(1.)46 b Fj(Pencil)g(*)i │ │ │ │ (Pencil_new)d(\()i(void)g(\))g(;)227 1117 y Fl(This)25 │ │ │ │ b(metho)s(d)g(simply)f(allo)s(cates)k(storage)f(for)e(the)h │ │ │ │ @@ -4282,15 +4276,15 @@ │ │ │ │ b Fl(metho)s(d)k(for)h(eac)m(h)i(of)e(its)h(t)m(w)m(o)g(ma-)227 │ │ │ │ 5252 y(trices.)227 5407 y Fd(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fl(If)30 b Fj(pencil)f Fl(is)h Fj(NULL)p │ │ │ │ Fl(,)g(an)g(error)g(message)i(is)e(prin)m(ted)g(and)g(zero)h(is)f │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1153 4 v 1335 100 a Fj(Chv)29 │ │ │ │ -b Fe(:)41 b Fd(DRAFT)121 b Fe(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fe(:)41 b Fd(DRAFT)121 b Fe(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2700 100 V 1153 w Fl(3)111 399 y(3.)46 b Fj(void)h │ │ │ │ (Pencil_sortAndCompress)42 b(\()47 b(Pencil)f(*pencil)g(\))h(;)227 │ │ │ │ 554 y Fl(This)20 b(metho)s(d)h(simply)f(calls)i(the)f │ │ │ │ Fj(InpMtx)p 1662 554 29 4 v 33 w(sortAndCompress\(\))16 │ │ │ │ b Fl(metho)s(d)k(for)h(eac)m(h)h(of)f(its)g(t)m(w)m(o)i(matrices.)227 │ │ │ │ 709 y Fd(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fl(If)30 │ │ │ │ b Fj(pencil)f Fl(is)h Fj(NULL)p Fl(,)g(an)g(error)g(message)i(is)e │ │ │ │ @@ -4353,15 +4347,15 @@ │ │ │ │ b(en)m(tries)j(in)f(the)h(lo)m(w)m(er)g(triangle)h(are)f(dropp)s(ed.)68 │ │ │ │ b(If)40 b Fj(randomflag)e Fl(is)i(one,)k(the)227 5407 │ │ │ │ y(en)m(tries)31 b(are)g(\014lled)f(with)g(random)g(n)m(um)m(b)s(ers)f │ │ │ │ (using)h(the)g Fj(Drand)f Fl(random)h(n)m(um)m(b)s(er)f(generator)j │ │ │ │ Fj(drand)p Fl(.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fl(4)p 136 100 1153 4 v │ │ │ │ -1335 w Fj(Chv)30 b Fe(:)40 b Fd(DRAFT)31 b Fe(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1335 w Fj(Chv)30 b Fe(:)40 b Fd(DRAFT)31 b Fe(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2747 100 V 227 399 a Fg(Note:)52 b Fl(this)36 b(metho)s(d)g(w)m(as)g │ │ │ │ (created)i(for)e(an)g(MPI)g(application.)59 b(If)36 b │ │ │ │ Fj(myid)f Fl(is)h(zero,)j(then)d(the)g(\014les)h(are)227 │ │ │ │ 511 y(read)30 b(in,)g(otherwise)h(just)e(stubs)g(are)h(created)h(for)f │ │ │ │ (the)g(in)m(ternal)h(matrix)f(ob)5 b(jects.)41 b(In)30 │ │ │ │ b(our)f(MPI)h(driv)m(ers,)227 624 y(pro)s(cess)d(zero)i(reads)e(in)g │ │ │ │ (the)h(matrices)g(and)f(then)g(starts)h(the)g(pro)s(cess)f(to)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -16,15 +16,15 @@ │ │ │ │ │ • InpMtx *inpmtxB : pointer to the matrix object for B. If inpmtxB is NULL, then B is the │ │ │ │ │ identity matrix. │ │ │ │ │ • double sigma[2] : real or complex scalar shift value. │ │ │ │ │ 1.2 Prototypes and descriptions of Pencil methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Pencil object. │ │ │ │ │ 1 │ │ │ │ │ - 2 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 2 Chv : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Pencil * Pencil_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Pencil structure and then sets the default fields │ │ │ │ │ by a call to Pencil setDefaultFields(). │ │ │ │ │ 2. void Pencil_setDefaultFields ( Pencil *pencil ) ; │ │ │ │ │ @@ -48,15 +48,15 @@ │ │ │ │ │ 1. void Pencil_changeCoordType ( Pencil *pencil, int newType ) ; │ │ │ │ │ ThismethodsimplycallstheInpMtx changeCoordType()methodforeachofitstwomatrices. │ │ │ │ │ Error checking: If pencil is NULL, an error message is printed and zero is returned. │ │ │ │ │ 2. void Pencil_changeStorageMode ( Pencil *pencil, int newMode ) ; │ │ │ │ │ This method simply calls the InpMtx changeStorageMode() method for each of its two ma- │ │ │ │ │ trices. │ │ │ │ │ Error checking: If pencil is NULL, an error message is printed and zero is returned. │ │ │ │ │ - Chv : DRAFT October 18, 2025 3 │ │ │ │ │ + Chv : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void Pencil_sortAndCompress ( Pencil *pencil ) ; │ │ │ │ │ ThismethodsimplycallstheInpMtx sortAndCompress()methodforeachofitstwomatrices. │ │ │ │ │ Error checking: If pencil is NULL, an error message is printed and zero is returned. │ │ │ │ │ 4. void Pencil_convertToVectors ( Pencil *pencil ) ; │ │ │ │ │ ThismethodsimplycallstheInpMtx sortAndCompress()methodforeachofitstwomatrices. │ │ │ │ │ Error checking: If pencil is NULL, an error message is printed and zero is returned. │ │ │ │ │ 5. void Pencil_mapToLowerTriangle ( Pencil *pencil ) ; │ │ │ │ │ @@ -83,15 +83,15 @@ │ │ │ │ │ 1. Pencil * Pencil_setup ( int myid, int symflag, char *inpmtxAfile, │ │ │ │ │ double sigma[], char *inpmtxBfile, int randomflag, Drand *drand, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method is used to read in the matrices from two files and initialize the objects. If │ │ │ │ │ the file name is “none”, then no matrix is read. If symflag is SPOOLES SYMMETRIC or │ │ │ │ │ SPOOLES HERMITIAN, entries in the lower triangle are dropped. If randomflag is one, the │ │ │ │ │ entries are filled with random numbers using the Drand random number generator drand. │ │ │ │ │ - 4 Chv : DRAFT October 18, 2025 │ │ │ │ │ + 4 Chv : DRAFT October 28, 2025 │ │ │ │ │ Note: this method was created for an MPI application. If myid is zero, then the files are │ │ │ │ │ read in, otherwise just stubs are created for the internal matrix objects. In our MPI drivers, │ │ │ │ │ process zero reads in the matrices and then starts the process to distribute them to the other │ │ │ │ │ processes. │ │ │ │ │ Error checking: If pencil or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 2. int Pencil_readFromFiles ( Pencil *pencil, char *fnA, char *fnB ) ; │ │ │ │ │ This method reads the two InpMtx objects from two files. If fnA is “none”, then A is not │ │ ├── ./usr/share/doc/spooles-doc/Perm.ps.gz │ │ │ ├── Perm.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Perm.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1014,15 +1014,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1216,81 +1215,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3516,15 +3510,15 @@ │ │ │ │ cleartomark │ │ │ │ {restore}if │ │ │ │ %%EndFont │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 133[50 59 4[44 44 46 2[56 62 93 31 2[31 62 │ │ │ │ 2[51 62 50 1[54 11[86 5[84 5[42 6[80 13[56 56 56 56 2[31 │ │ │ │ 46[{}24 99.6264 /CMBX12 rf /Fb 139[35 1[36 2[45 9[40 │ │ │ │ -1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Fc 141[62 4[62 7[62 20[62 80[{}4 │ │ │ │ 119.552 /CMTT12 rf /Fd 222[91 32[71{}2 90.9091 /CMSY10 │ │ │ │ rf /Fe 132[52 123[{}1 90.9091 /CMBX10 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -3620,15 +3614,15 @@ │ │ │ │ b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g Fc(Perm)e │ │ │ │ Fh(metho)t(ds)0 5294 y Fj(This)25 b(section)h(con)m(tains)h(brief)e │ │ │ │ (descriptions)h(including)f(protot)m(yp)s(es)h(of)f(all)i(metho)s(ds)d │ │ │ │ (that)j(b)s(elong)e(to)h(the)g Fi(Perm)0 5407 y Fj(ob)5 │ │ │ │ b(ject.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fj(2)p 136 100 1135 4 v │ │ │ │ -1316 w Fi(PERM)30 b Fb(:)g Fg(DRAFT)g Fb(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fi(PERM)30 b Fb(:)g Fg(DRAFT)g Fb(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 0 399 a Fa(1.2.1)112 b(Basic)38 b(metho)s(ds)0 │ │ │ │ 601 y Fj(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g │ │ │ │ (supp)s(ort)e(ob)5 b(ject)36 b(creation,)i(setting)e(default)f │ │ │ │ (\014elds,)h(clearing)0 714 y(an)m(y)31 b(allo)s(cated)h(data,)f(and)f │ │ │ │ (free'ing)h(the)g(ob)5 b(ject.)111 965 y(1.)46 b Fi(Perm)h(*)g │ │ │ │ (Perm_new)f(\()h(void)g(\))g(;)227 1121 y Fj(This)32 │ │ │ │ b(metho)s(d)f(simply)h(allo)s(cates)i(storage)g(for)e(the)g │ │ │ │ @@ -3685,15 +3679,15 @@ │ │ │ │ (um)m(b)s(er)f(of)i(b)m(ytes)g(tak)m(en)g(b)m(y)g(this)f(ob)5 │ │ │ │ b(ject.)227 5407 y Fg(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fj(If)30 b Fi(perm)g Fj(is)g Fi(NULL)p Fj(,)f(an)i(error)f(message)h │ │ │ │ (is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1135 4 v 1316 100 a Fi(PERM)29 │ │ │ │ -b Fb(:)i Fg(DRAFT)121 b Fb(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fb(:)i Fg(DRAFT)121 b Fb(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fj(3)111 399 y(2.)46 b Fi(int)h(Perm_checkPerm)d(\()k │ │ │ │ (Perm)e(*perm)h(\))g(;)227 557 y Fj(This)39 b(metho)s(d)g(c)m(hec)m(ks) │ │ │ │ i(the)f(v)-5 b(alidit)m(y)41 b(of)e(the)h Fi(Perm)e Fj(ob)5 │ │ │ │ b(ject.)69 b(If)39 b Fi(oldToNew)f Fj(is)h(presen)m(t,)j(it)e(is)g(c)m │ │ │ │ (hec)m(k)m(ed)227 670 y(to)c(see)f(that)g(it)h(is)f(a)g(true)f(p)s(erm) │ │ │ │ m(utation)h(v)m(ector,)j(i.e.,)f(a)e(one-one)h(and)e(on)m(to)i(map)e │ │ │ │ (from)h Fi([0,size\))d Fj(to)227 783 y Fi([0,size\))p │ │ │ │ @@ -3755,15 +3749,15 @@ │ │ │ │ (routines.)40 b(The)30 b(\014le)h(structure)f(of)g(a)h │ │ │ │ Fi(Perm)e Fj(ob)5 b(ject)31 b(is)g(simple:)0 5181 y Fi(isPresent)d │ │ │ │ (size)0 5294 y(oldToNew[size])e Fj(\(if)31 b(presen)m(t\))0 │ │ │ │ 5407 y Fi(newToOld[size])26 b Fj(\(if)31 b(presen)m(t\))p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fj(4)p 136 100 1135 4 v │ │ │ │ -1316 w Fi(PERM)30 b Fb(:)g Fg(DRAFT)g Fb(Octob)s(er)h(18,)g(2025)p │ │ │ │ +1316 w Fi(PERM)30 b Fb(:)g Fg(DRAFT)g Fb(Octob)s(er)h(28,)g(2025)p │ │ │ │ 2766 100 V 111 399 a Fj(1.)46 b Fi(int)h(Perm_readFromFile)c(\()48 │ │ │ │ b(Perm)e(*perm,)g(char)h(*fn)g(\))g(;)227 552 y Fj(This)29 │ │ │ │ b(metho)s(d)f(reads)h(a)g Fi(Perm)f Fj(ob)5 b(ject)30 │ │ │ │ b(from)f(a)g(\014le.)41 b(It)29 b(tries)g(to)h(op)s(en)e(the)i(\014le)f │ │ │ │ (and)f(if)h(it)h(is)f(successful,)g(it)227 665 y(then)35 │ │ │ │ b(calls)i Fi(Perm)p 845 665 29 4 v 33 w(readFromFormattedFile\(\))29 │ │ │ │ b Fj(or)36 b Fi(Perm)p 2320 665 V 33 w(readFromBinaryFile\(\))p │ │ │ │ @@ -3845,15 +3839,15 @@ │ │ │ │ (header)f(and)g(statistics.)43 b(The)29 b(v)-5 b(alue)31 │ │ │ │ b Fi(1)e Fj(is)h(returned.)227 5407 y Fg(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fj(If)30 b Fi(perm)g Fj(or)g Fi(fp)g │ │ │ │ Fj(are)g Fi(NULL)p Fj(,)g(an)g(error)g(message)i(is)e(prin)m(ted)g(and) │ │ │ │ g(zero)h(is)f(returned.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1135 4 v 1316 100 a Fi(PERM)29 │ │ │ │ -b Fb(:)i Fg(DRAFT)121 b Fb(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fb(:)i Fg(DRAFT)121 b Fb(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2719 100 V 1135 w Fj(5)111 399 y(8.)46 b Fi(int)h(Perm_writeStats)d(\() │ │ │ │ j(Perm)g(*perm,)f(FILE)h(*fp)g(\))g(;)227 549 y Fj(This)30 │ │ │ │ b(metho)s(d)g(writes)g(out)h(a)f(header)h(and)e(statistics)k(to)e(a)g │ │ │ │ (\014le.)40 b(The)30 b(v)-5 b(alue)31 b Fi(1)f Fj(is)h(returned.)227 │ │ │ │ 699 y Fg(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fj(If)30 │ │ │ │ b Fi(perm)g Fj(or)g Fi(fp)g Fj(are)g Fi(NULL)p Fj(,)g(an)g(error)g │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(zero)h(is)f(returned.)p │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -14,15 +14,15 @@ │ │ │ │ │ • int size : dimension of the vectors │ │ │ │ │ • int *newToOld : pointer to the new-to-old vector │ │ │ │ │ • int *oldToNew : pointer to the old-to-new vector │ │ │ │ │ 1.2 Prototypes and descriptions of Perm methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the Perm │ │ │ │ │ object. │ │ │ │ │ 1 │ │ │ │ │ - 2 PERM : DRAFT October 18, 2025 │ │ │ │ │ + 2 PERM : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Perm * Perm_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the Perm structure and then sets the default fields │ │ │ │ │ by a call to Perm setDefaultFields(). │ │ │ │ │ 2. void Perm_setDefaultFields ( Perm *perm ) ; │ │ │ │ │ @@ -46,15 +46,15 @@ │ │ │ │ │ isPresent == 3 then newToOld and newToOld are set with calls to IVinit(). │ │ │ │ │ Error checking: If perm is NULL, or if isPresent is invalid, or if size <= 0, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 1.2.3 Utility methods │ │ │ │ │ 1. int Perm_sizeOf ( Perm *perm ) ; │ │ │ │ │ This method returns the number of bytes taken by this object. │ │ │ │ │ Error checking: If perm is NULL, an error message is printed and the program exits. │ │ │ │ │ - PERM : DRAFT October 18, 2025 3 │ │ │ │ │ + PERM : DRAFT October 28, 2025 3 │ │ │ │ │ 2. int Perm_checkPerm ( Perm *perm ) ; │ │ │ │ │ This method checks the validity of the Perm object. If oldToNew is present, it is checked │ │ │ │ │ to see that it is a true permutation vector, i.e., a one-one and onto map from [0,size) to │ │ │ │ │ [0,size), and similarly for newToOld if it is present. If the permutation vector(s) are valid, │ │ │ │ │ 1 is returned, otherwise 0 is returned. │ │ │ │ │ Error checking: If perm is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void Perm_fillOldToNew ( Perm *perm ) ; │ │ │ │ │ @@ -80,15 +80,15 @@ │ │ │ │ │ compressed graph. │ │ │ │ │ Error checking: If perm or eqmapIV are NULL, an error message is printed and zero is returned. │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ There are the usual eight IO routines. The file structure of a Perm object is simple: │ │ │ │ │ isPresent size │ │ │ │ │ oldToNew[size] (if present) │ │ │ │ │ newToOld[size] (if present) │ │ │ │ │ - 4 PERM : DRAFT October 18, 2025 │ │ │ │ │ + 4 PERM : DRAFT October 28, 2025 │ │ │ │ │ 1. int Perm_readFromFile ( Perm *perm, char *fn ) ; │ │ │ │ │ This method reads a Perm object from a file. It tries to open the file and if it is successful, it │ │ │ │ │ then calls Perm readFromFormattedFile() or Perm readFromBinaryFile(), closes the file │ │ │ │ │ and returns the value returned from the called routine. │ │ │ │ │ Error checking: If perm or fn are NULL, or if fn is not of the form *.permf (for a formatted │ │ │ │ │ file) or *.permb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 2. int Perm_readFromFormattedFile ( Perm *perm, FILE *fp ) ; │ │ │ │ │ @@ -117,15 +117,15 @@ │ │ │ │ │ This method writes out a Perm object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If perm or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 7. int Perm_writeForHumanEye ( Perm *perm, FILE *fp ) ; │ │ │ │ │ This method writes out a Perm object to a file in a human readable format. The method │ │ │ │ │ Perm writeStats() is called to write out the header and statistics. The value 1 is returned. │ │ │ │ │ Error checking: If perm or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - PERM : DRAFT October 18, 2025 5 │ │ │ │ │ + PERM : DRAFT October 28, 2025 5 │ │ │ │ │ 8. int Perm_writeStats ( Perm *perm, FILE *fp ) ; │ │ │ │ │ This method writes out a header and statistics to a file. The value 1 is returned. │ │ │ │ │ Error checking: If perm or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ Index │ │ │ │ │ Perm checkPerm(), 4 │ │ │ │ │ Perm clearData(), 3 │ │ │ │ │ Perm compress(), 4 │ │ ├── ./usr/share/doc/spooles-doc/ReferenceManual.ps.gz │ │ │ ├── ReferenceManual.ps │ │ │ │ @@ -12,15 +12,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o ReferenceManual.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -4806,15 +4806,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -5008,81 +5007,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -10603,15 +10597,14 @@ │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 46 /period put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 65 /A put │ │ │ │ dup 67 /C put │ │ │ │ dup 68 /D put │ │ │ │ dup 74 /J put │ │ │ │ @@ -10819,175 +10812,171 @@ │ │ │ │ AC10F060630C9BFBAD84B1FF01C814878F0C177F552BDC9BB181B14581C6E968 │ │ │ │ DAAAB2896FCFB745795C4D2C87CC14FE0D165EF1C2A06A9B89855A1E543F3691 │ │ │ │ B90E4EE9F324FFCE2D59A8810987DCF0CC270D5E734D22592A1B77DB98075341 │ │ │ │ C48676342C1C74660E7D79B7329A7F6AB723AEED60BF2E1158F0591CC962E5A6 │ │ │ │ ACDD131797F623F38B06F9E9EBCBCB1FE26371AC95C993BF2A625BDF1D49FAB3 │ │ │ │ AFF04E871B6F2BF4F0127C5A92A54E9D2307AFBAEF86AA35B1AAD6E5330470DA │ │ │ │ 6A84A8C260EF31ECBCD67CAB9BA3B37D12C31E41D1E495C18DD72C72032FFAB1 │ │ │ │ -0E6CBFDC1B0748E2AD3FB518D59BBB422674ABD2EA15473C0FCE24C3F559CB6F │ │ │ │ -4CDC952EECB94E85C971DFA753D5623A032218BFEF7F1FEEB7B5F9D8EDC6BC41 │ │ │ │ -E90EE95A9FA2BE4ADCC951D23F067BD336C887236518DB0919C09A062B0871DB │ │ │ │ -050C5AAC61B490830F0E850226DB45393AB4C2277225EB6B36856AA4EC06CA02 │ │ │ │ -553B7764E14671316E2CEA6E5FCDB613597D38A3D0FF1DE1E457BF114E6CD9DC │ │ │ │ -64DE1112D94E63D5DC9BE645FF7FF073D4F08432AC7DF2702C859767E2FF555C │ │ │ │ -32F915EFF6D20269A6F4F99A21237EF394B3AA3E9A461D887E252CADE52A2C3B │ │ │ │ -8BCDCD72D457C09BF610FE1ADE603615BB682B556F54555373DD9034DBAF91FD │ │ │ │ -A699D9E6553BBA161FFFE6E928EEAB1B377BD35AD54788B18B6E82ADCE44E8F1 │ │ │ │ -8336D8B456D90806750425C5931630449C081148E560790CC5710BC1A6798BAC │ │ │ │ -78E98FE4DD69B4540F15B4F6264233D05BB85F7828D6AF8F85276C3B04D4DE2E │ │ │ │ -51D84D8DBB7F4C41AED1CFB4DD19EE284A575E039D9D8FAD2D4A5E552C668481 │ │ │ │ -758CE5267462B2406B29098DC348591AB885F92DC896D9A81C78A86EE0596979 │ │ │ │ -8C4F1FC0CDAD7DB3C96CEDBCF57144E528804EF98162F034F9BE681D0B5FE2DA │ │ │ │ -E84F4873EB4A48EA20127A52F560FA71E9CB3BC4587A45B005A6D59B5B553B82 │ │ │ │ -21672673EF241E4E2686EBA38D36959C47B021832592C86D38D730A6F55AA56C │ │ │ │ -2B2FE2C22E1007A768FDDD89816EF59205E3920FF740E1CB847E48AD770D5C59 │ │ │ │ -0260B2A4069867BFBD7C8F464E59EAE6A5570EBA2229EEC904EE1BBE87457ADD │ │ │ │ -8F48723A79ACB3102BE57852DA7A7338938ABFF7D3EECEFF24BC72C60E78790A │ │ │ │ -CC3BB46AF3E9F3165F321ED6F6817A158EE3B5DC982FB47566181A908315447C │ │ │ │ -388547D3A8E869BEAA1058B20B82BA4A9D33FE838CC94BC3BAB930D4AFBE0648 │ │ │ │ -9908D78EC83C6CC0611E759D84E9A2ED7FE20EA33552B693A0863121FC54DB35 │ │ │ │ -BCC1464601CB56ACCC8AEA269F129C1E6EE70B41AB76315C609D95958BE69952 │ │ │ │ -56CB3FCC5618234E82689336AB2EDA9A4615F7593D90DDB980E93B9CDF490974 │ │ │ │ -14932C129A9CE8872E921B52D6F3801632BC7CE8A52CE7B6496398E70870A23A │ │ │ │ -3D3D816C158EB9F9C811E5B7F5BDE1528C629A15A12FA73F25A27E07399B9754 │ │ │ │ -3773787147048074215FD96A8ADB4E1EE97E401365E6C81E0C1CAB3C9C29069D │ │ │ │ -9CB7E81DD4CF568EBC0B8C780D31F3A97122047B141065AE3595391B43B16FD5 │ │ │ │ -9AF9471CB7626FC3366ED4F149BA745DE3CA0AD6298BE6253D04F017B119CDE1 │ │ │ │ -B629F45E363503A54695EF5DBAD1204CB2C5509F81D3340A6BE0A22AE90E5819 │ │ │ │ -4F5D4B296D7AAC0F91761B1DCAB0D4F099C4E4163B68AA4180C3E7072993515A │ │ │ │ -0653B3E2E214FA92AE260BB5B85F5A73836267658B054E51F564C464428ED276 │ │ │ │ -B5ADDDE278064D690C4D09368264EE2EDDD9E0DE3E9B7E98DF3E1FCBC80078B9 │ │ │ │ -36FE9DCDAD6D3B246CAB643C05775F7759518AE6BEB2A79ECFD39748721ECA6D │ │ │ │ -2DD5757E8C58B101442E8BCFBA935942FA543C0A6EF233F427DEA1906EAD2733 │ │ │ │ -48F5F94CB5C96DF55B6CF82FB2881221DB2283CF4D5405E485F781CEDA45B15B │ │ │ │ -9DCC61FD2B6C28E980B6D101066FE63DB0CB54AA90D38A57E2D3F61769FA8C32 │ │ │ │ -D80C43441236825EF43B5B4E361E4ACA2CCEA8282A83E80383C5C937DF642C0F │ │ │ │ -EB4F46CDC45E54BE3E8CE762417164CD1A7F20855A6BEFC921B4439B179B6E8D │ │ │ │ -AE13E05180A7BF9CF2AD2031C5A2DE871CFC42ADC6DED31EEDD5E28776193DE4 │ │ │ │ -E30CD0478F6E05CA850F60188D00803E8308EED9DDE03F92869946C4E6AB20DC │ │ │ │ -E2A6A396CD194E17DE384A0EE2DD1326E9B95CC22B3ED235AD41553C91F840F9 │ │ │ │ -60D346C07DC2FB8887AA435D6491D55D98CF9B74306DA49500FF43E23051F36B │ │ │ │ -650E175D288DA1003B767744F9D63022336671200EE0C3BF2DD0CC689B23FD5F │ │ │ │ -F12A04DBE58BF58843FA4E3CF39F1C2C84C7BD622014472AB93A2522EDB88021 │ │ │ │ -7C354EDDE1DA399FDFC3E7632532362F723BA03912E015D96FA35A8B873BD5A7 │ │ │ │ -29EBC24056AEC1DDAF012F38BB06D0F944C7FA3A9890925C943A8484F7912FF9 │ │ │ │ -9848F09CDAB2BA401B7C66DE6594836920F8B2ADB6EB677C60DAF9384CAC43DA │ │ │ │ -0FBA46FA4BD1EE643AEC505AC9ADA97C02EA1ADA831628C59EAE4A45C6DF1B8D │ │ │ │ -F02DD74BE0E94567F4A4A73E4AF30E4DBBD67B92BFBB5BD0DFF012626AB11BC9 │ │ │ │ -96A8F653528BCC8FAB7A170E7ACB4EB54EAC74B53426F45340C9FB190BF7094F │ │ │ │ -CE9EC7D1E26BD6492795205608C1445C9E73916438A8CAF6AEAD49685116C02B │ │ │ │ -A07760B654084610A5CF7192B5C48189FCE9BFB1B845420551469A82C70297A8 │ │ │ │ -3A3C65013CD67D7D94DE90273D9E2B7A7ADB875E5DC3AB09B10057B75C82404F │ │ │ │ -51B1973EB72D3B0E3FDE271DE3266F944866075FDAB58C9A4D3B72C7384E6E85 │ │ │ │ -C1F6EE1989DB6292DC9BE4E19F98F1EFA7F5B6A6A49AC06CA84ACCE6A6A28044 │ │ │ │ -321CE8F99E2FF5EA0FF6B2D47454522B077691B6457FC84ABA00BAEAF0A3068B │ │ │ │ -27FE74D3CC2C8F00BF413AFDE81256952CFFF9075EA0A8D934DB1AA0379963AF │ │ │ │ -EC6B76E6DE8C6A866CE114F21354909B9EE9E5773957C559AB105657087E3B82 │ │ │ │ -80C4AE1B87C882D1979FE9A1BE316549DD4A0D0AD5F4B576CEA96CAB3FC597BA │ │ │ │ -A2B5782914C336241D50828C982EE78D4D850F664C52A11E55BD80D782AF11E3 │ │ │ │ -1676BAFCFB9D929C9BE07DD6B442BA9206EDA3941C098ECD37C0DB9BEFC0D4DE │ │ │ │ -E89FDF4CEADDFABFE7F28684F2C4E0FCC72FF2C26483A4DE859D3C3C1D73C60F │ │ │ │ -D7B3D9CC237A7CD9B88DA3A4173AF5EF9D72D36840D2EF23919319DF23F07D9A │ │ │ │ -2B730A766C9FD24EBC27E0B2CDE5A0F8E95E4F64F546EC3D22FD0D29B686703F │ │ │ │ -2ABA3D945D8A35F0D65151DF6CB1D986264C6838048A3CE5F6636C0526826491 │ │ │ │ -CE5B2369E2846BFB37F353F21EA0F1B4807CEE9D2076851E1B97A9CB37E2659C │ │ │ │ -32E986BE514AFCBC8A91E06715A638F69710D7AFDDE07D47242117793BE47D7F │ │ │ │ -B8F76D0CEB2DCD839372BB6E216A590B2B4D4250B23EB8FDB5C5514A1DE39577 │ │ │ │ -30D404710E2A1FE0704924D54FB50936DDB2242C4B368D1B4CB24E31E779A5B7 │ │ │ │ -9F1D5339774D00D57625E58E41ABFBE13D52BB72629C395091E53A1D1F06204F │ │ │ │ -C12A234294AE65071F7BDEBA8AE71BC1AEE9CA1A24BF72C70464447E25597392 │ │ │ │ -89241A98D093D96615FFA80A7A6A15D661FC0391FDC54E2D20E28592C9B86CD9 │ │ │ │ -E79F2F4EAAE29794200C2AF7172E1BC845E07B36131B95E69A56FB8FF39C1D6A │ │ │ │ -C42FB72BC119077B7726C3B3B810B3BD475DEB6C9E91C5ED67B5F52781792605 │ │ │ │ -A091376C917CBBCC37256AB6DE934B10A1B6A7A11C8D3E7D7FAF3B29767F683D │ │ │ │ -83DDB31DBFAA9A8783095284F86135337A68417087E63E5D8711B4F4DE4997AD │ │ │ │ -BFBBFABC5C5536E59A588ED47D5D00EBDE0E1919B6B3BE71773A353AE17B7AF3 │ │ │ │ -6D1C3B36A224FF87CCF87350B8AD71E5966D4FEDDD3099DBC9977C5F4AB0285A │ │ │ │ -38B7C6B50BA1CDA18D2D20145F3F55AB22BB3434F00F3A35A153BAE8CD9BC976 │ │ │ │ -A1F55B6B8EAD0032C9CE50C26566BD4D8AE349F068B31F657A8F797589595013 │ │ │ │ -9A1953706A6497C28BB41D60B8A3B1F6078AB985FF686096E318EDB4A6CD2480 │ │ │ │ -D185AAD61D2E3E486445F7AFAF02A0E58E6181FE077749A0DD3CADEB178E8A2D │ │ │ │ -8C6F081E9C034CDF3D615C993BD0E88DED260B1A950B724BADEC450AFA2F07A5 │ │ │ │ -1C1F3731A9542A12F4EF56A08917E12FD81CB6431C15EEE6FDE0AD705CC7EAC3 │ │ │ │ -C40EE93DB5FB560395F5A21DBE11C830222AC90787A94C02BC9CF22F5CA0A52F │ │ │ │ -A3A941EB9ABFC3047B138773360993ABE0F32D1E645A7A4B86E265B4F5ECADDA │ │ │ │ -C87114BA465C05195C55DDDFDDDA2FA4CBDC799E1E2D0E7E1E14FC602CFCAA8B │ │ │ │ -60D9525E02470BB0BA290D0F161883C5CD54D857B913067C0C87B694F99AC2C8 │ │ │ │ -0AFA47FE4D0E2CF82F07E89C52A14D3C15C112B1EC81DA1B969E738067B61716 │ │ │ │ -B044E5EB768C3ECCA4339A33602159831B092AB39624E1CDC1C178B03E7E06FF │ │ │ │ -F8D1A4CA722AA4D1B1C39FC70DBA44B58BC04374A6232A03A9BD61D0D11F6FD0 │ │ │ │ -669E02F45CDB8F664E873202A74C8334CA2187A719EA07A7ADE92920A122D648 │ │ │ │ -6FAB4FC667EA4D070E4CA5CB9150004F590B9175F1A672F8011DF83C84FFFA50 │ │ │ │ -5C304DF4EBD87B632AFC74BBAEFD1D378C5992BF43224C23133289879C185EBB │ │ │ │ -90A51A4A5174557DBB7415D1E3C86092F6CF5F3DAE518F7CA95FB76318DEAF23 │ │ │ │ -93C8DACA217101AEB251353D2F914D9BAAC07450E7A060B0FB48985CD478A32B │ │ │ │ -309F509AC531D74DB52627A77CF1E785E2B1E68825EF6933FBB28F343A086E63 │ │ │ │ -72163BB8DFD2032EA5BD9C4654A9EDCB88353689DDB1102F19D4C26C51B7D106 │ │ │ │ -421CB629B98C5021F1CEA32DC00009B1B250A46F0E491B18974682FDE988CC79 │ │ │ │ -CD55EC067F1C17FB991B395E982EB3CA23D7312F8A79C1B76138E74409CF6617 │ │ │ │ -F0EC23A8E9DB6E5CA0D5DF8C4321F1736034B569CAC7327A8537733EE21C96BE │ │ │ │ -524241B72D0BE05A89673FE179563372505DECA1656B85982FFAD6E229417672 │ │ │ │ -1867B110933248A40633F110C8163AAA51E4C903240411B931DFD986B4B34FE2 │ │ │ │ -F6925EFB001C88954F0948B2ECF3F4B4428C44E48F5537481D6A45B2D11AEBBE │ │ │ │ -3398938EE50A31B683B1B6CF834CBEBBD3EA84E0E7B38730C7DA0071BC4BECC6 │ │ │ │ -C443346E21846BFBEE7D459C87F04B1C1BBA3230D9EBE01E11804180AA7FEC72 │ │ │ │ -29E6F7F576783C9CC3FD3EBF10098F8F02AEC4C0804AA5AE06875DFEEABBF183 │ │ │ │ -265327078D27EED469AF1BD7BD9770D7999AFA8F16EC24ECCFC39749AF97D44F │ │ │ │ -D71C8BDF5E985F41E8A9EBE5356305D1D94D6A0E387C99FB2BB9F7BF8BC9A801 │ │ │ │ -06B32E996783D314458286592A6A386DB9CC04F5B69A6A92D139F15342BFE628 │ │ │ │ -4672C2B2285B3C6F7F58FE3E23FD05BF6DA08BCF9209B3F8D7F2599585A83532 │ │ │ │ -2CC984AE7BDA9307FE7BA0EF972CDC1796A45CABCF3C147D5CBD3F195B975625 │ │ │ │ -379AB9931890DFA1C0B2E2B9B6098B16858044619707FE597242E097E493C6AB │ │ │ │ -4E834AB3A229A4B3BFE495855AEB6B03966CDF1EA18F3F1E68695410551EA8F0 │ │ │ │ -912EBA4FAC5EB4B629F86AF66F2E571B5FA84DABC27351515C36C44FECC8D56F │ │ │ │ -7AEE2966C2EE5D7CFB78DD900A2939E90FE7AEC516721FF0C7FF8C6B3E56264D │ │ │ │ -03A7757A46D751D6A6F8AEB28B843ACC217148FC37CEFA015056CE25420D71D7 │ │ │ │ -5BF6E4659A20E3DE369777D31C507CC0C51BBDA957FA34CA37279CBF4D594EC8 │ │ │ │ -26217A6D2AB18FCFD76548FDC44D31A165FA5F92043D402E09D2062FA81AD49E │ │ │ │ -4471C2BD7AB9021C36CF22BAC9FD78DD175CC7771DDC98FC7770420EDC810317 │ │ │ │ -18F7EA5AD060FB2AEA3B0A656D17755F583867F5922E123DEA5D0AEA67335504 │ │ │ │ -D2623044D65FDC190B14B4D8BC6138B1A1AB2ACCAA6366E6F24AC01928BB2993 │ │ │ │ -65A7F11AB54E69ED19C2AB0EF596C3C247DA02B95A79C7669832A056EBC9EE66 │ │ │ │ -EDEB0823C7929CFD201BB6B48AA443B7BEFD31E716F3E727ECADE6D656BC1DCF │ │ │ │ -4177CF724B72790E9FB9C6D0E23664ED33B680D284F389E42879288795DB1F21 │ │ │ │ -575902D21D3E71F2331CD8338A60A5BAA4BDCF606CC9A9283BBAD17EF538BF01 │ │ │ │ -417BC68A26E64162A7ACCC4317002E47BB9F5BF949D085FDEA7E8072A0CD326B │ │ │ │ -1E046BE261B1E7634994FD618F01A7A4F7978B4533DA97BB3D9772BF4A1B5930 │ │ │ │ -BDE58B26FF464831A50891E2C870B30F3A599F8FA260B80AB373569180A017D0 │ │ │ │ -9339705DBDC9DE34B0ED3F517B6606044E5764E0D883461A4F3C1D5AC88A93F3 │ │ │ │ -4216E523C083C48399EAC308AA6689EB9E6B2B1CEEC6F23880F0D66A0EAAF448 │ │ │ │ -5E86C3C926B87797847841306E336FA4FB88FE403BCB46ED09FC7633632B35C5 │ │ │ │ -2C82D24E7B468D62BDC736EB70969D7319AA5E3423F9BC2ACD8BB3A226E8B46D │ │ │ │ -6A794B43D8C5BA618344FB04751841E4AD2DA4E83F9F7DA0140626DEC222976F │ │ │ │ -005E1350B89E076C4DCB16EEBDC19E645F67321880C54484174C259732A2A1F7 │ │ │ │ -7731AD6FD0CFE3D43774F6F1B35DBB2164FC130E062CC3FB3054B0AC7E8AFE30 │ │ │ │ -4A464E9451CF775CF2F7D31F64AC3898DA0E4533D6CFE9DB83DD7D919C060914 │ │ │ │ -BF48CA8489726303323CAC694FDFF77485753ED14AB7E9F1BFF7ECB355E97494 │ │ │ │ -58BA371C3DC7868A01E8C1C60E954558D205D9336886BF6A391AA7838165EF14 │ │ │ │ -7768CF432BF8838376062FE1491FE7C7ED416E75AF82FDEA85A31259E3C7DBE6 │ │ │ │ -CBC0EDE365AE1C2F917CA88B77BFE548FA1CA07D35337D796A855A16467477EF │ │ │ │ -C1B97DAA29309742054E1B03AF9FF620A09B33AA55F540C8E2EFE126FBA25595 │ │ │ │ -44037D95E119B936792B8F039A1325E818640A45AF49B5B72E23AF4B28CEFB7D │ │ │ │ -63E696056D325521ED05733DB1B0D9BE61F16254A45702D474CCD140593AF816 │ │ │ │ -81E03FA1F4F4880881179BDEEFC091DEA7044D727E6A6094C64C97CE29ACD943 │ │ │ │ -BB6DC547EEE78C683FCFB464E5D4D01F033532586A086A17D2F39814BF7BC161 │ │ │ │ -45A31AA5FFCE6594CCE37336EAB865B871345CB22D56BD4B5D0DE927D8DD01F3 │ │ │ │ -39AF0D7268ED8311D4355BF65D4FB6A414F62768A5B039513D99A05F12B7D25A │ │ │ │ -528B37DA8E3332E93A6228E0CA1E05B33F854787AA89E468BA472ACAFE291B8E │ │ │ │ -761230297159F4F89C7C839F30D2066E0DE6A8485719454071DB00D2285D451C │ │ │ │ -EA99A76277EABADADDBC749CA3DFC56C42B2E39F3D941758A87963441EAEEBF0 │ │ │ │ -7CF3EAFC1572D2E56FB9AE844DDB2EE7B2DE8842AC3A4B753632ABB92B374761 │ │ │ │ -BFE0A978EC7D01AA9A858C6FDA6C3D7D29DD89E5B4AEE0B949481CB593A954E1 │ │ │ │ -3AF3C060A3AE92D5F227F8D0DC65D50DA049F540B2421D40DF7B294AFBACBB2A │ │ │ │ -949B81A2F1D205F813C9A26AADEF84DE84CB305C77779304730A467BFFF13FEA │ │ │ │ -1DBDE95D82EA0E0823C80A57F6D7378E375AE4D9E55DC08C4D6731DD12470745 │ │ │ │ -67351186A247657DFFE40A811BF61BEE22E40A5A93DD9562B9441DA3F058522D │ │ │ │ -9CEB62FB411E3BB23E253F84D0437579A35462B0B2102C6232A84B573BAB9AA9 │ │ │ │ -CEDA873E705CF864A821B9D3BAFC0611EEB5DB995D63C257D79A1872FC787990 │ │ │ │ -AF5744DFB5DC48255B965310CC4254BF7CBF233DEBF996C480F7D88C14D558 │ │ │ │ +0E6CBFDF861E84FC9E3470531636A15775971B7F6B2502378F8C0C196673A918 │ │ │ │ +D72051DB6CFB24E62314E1CC1912EF539D74D2425C01B601D87E6D6EEEB3E0B0 │ │ │ │ +E9C31BEEA68D7F15DA48F9206A86D84EF2C3FD3E797033539E4F325BB59B1F6E │ │ │ │ +D86689C3E69067AD47A4DCAE8DD8BE288DB06099728A43A3A13540289D0E6807 │ │ │ │ +0E9C9172F088DB69F5B2FAD04C5E5C6CA9BC75D885FC09873863D54570B0A8C7 │ │ │ │ +6AA6C998C944CFB2AE291042CA1311BC3C35195D2D3FB795E6353158D200F406 │ │ │ │ +DF9D9F106D85DEA26E852CAD2A0EEA71EE363FABD9218081560D6E3A215031FE │ │ │ │ +9576310E9C7EE373C91EDF2B00FDF0A21FF10CFEFC0EB77FDF6027010ECA5F6A │ │ │ │ +1A288312A44E906E586FDDF06878F3CACADF8166988E9426CE919DA3663FFC0C │ │ │ │ +C5829DBF5A93493602F34D294AB366D9D378C00F834C724787F850C265735A64 │ │ │ │ +A11CD6B5DD4539FFB5270DF55AC0929213694834CBE883A35B2E09244E4EE2BC │ │ │ │ +89ADF247F051FBC82FB48992BA917D5B26E81AB22437FA704A0715CEE9A96883 │ │ │ │ +30A6763B012B72A3CBF2BFE7EC2785C12A20875CCCDE61D0F1363847401C335A │ │ │ │ +04317A81BC066BF0C0B57D99DF872697D8B6E31E411182BBA60D75E133057D83 │ │ │ │ +2657E32103916F1C3FAFE3594E2A76D1B8B3D9B3736988F65BC9E500C0CBB925 │ │ │ │ +85ADBBEAAC6CDB450BDC3BFADE19938E31D925D75337F642333A124EA0D0873C │ │ │ │ +B6BC1341477AD2F0183BE7CFC81841C12AF7B1D10EF580EA12BA3E64560A7E43 │ │ │ │ +1DC0722E8199C61B4C69919D072287ACBC2BF2E67010B0C50C9C63F9E838C6FE │ │ │ │ +2E9C61ED1FC28A9ED96E87885208D9821CA725E5657C4F814FF97BDFE0002E1C │ │ │ │ +3741E38A7C32F5BBDC2F162F2E880F8C2F04075B048DA0C4471B507F333E9801 │ │ │ │ +CC9F8E394CCF8C64C337DAEFA7D6C0E3AAE4F2716D8488B16A5F6561F8393A38 │ │ │ │ +10AFFDA41EE0775BE68C6D5A4ADBDBF0FAEC463EF4D9C03C116A9E0110CD5CF5 │ │ │ │ +B9334F25B9448E8587A1743C3D0A826A4E7F74239F635F5CE9D4186905D1D1BC │ │ │ │ +1E3C5D5A29F6287A1AC9FBDB31A01825356FA68EEA14E3EAF829B0906030A7DF │ │ │ │ +370E574BABD5D67BB4FB1BFDC4D24489F0E35963C5A13B11353B64296E4ADC9A │ │ │ │ +32D4BB198BD089B713367F23E570C04FFB45EB38DB3D3558A34D00273868EF25 │ │ │ │ +CDDDB147F57E0588A734B204EA1293E791BC6D4CF24D95703C6A81E3AECE7DE4 │ │ │ │ +A010FE0684A733943375B63258F6AB6C6B028D0C9D92CE1AC3301BDF9CFAAF58 │ │ │ │ +4576A572E5C49E7DCFA8152F2932CA3E5212C7CECA4F53534E4E34A773CD2410 │ │ │ │ +7222710F601C5E7789E2A89C750C5CC44A82BEA20900A6312F491744F812044E │ │ │ │ +5E4B12D5D6F16D5B44BDF9C36247455E9CF72AC2F48690A94C5F102F2E6B27F1 │ │ │ │ +D3D1DBE66F84204B56EBA9AE47996A16485FE7FCCA7D317AC7704BEADB074363 │ │ │ │ +63AC7E81333CF2F0DECAD75C65BD26F55B6F1DE2147B4785AE909A5BDDE56C8D │ │ │ │ +CF36952DE1F620FD7FE19A7F8D640EE7A314C53AEE5D6F753506A68A3BB55580 │ │ │ │ +42D514A8CDEC7C44538CC858F484B8BFAD881223220B85AC8B44C9BD7B34035F │ │ │ │ +7194B10B43DCBAD7618475E94725034D74492ED4F2EA4F00D50B9E50BCB9CFDA │ │ │ │ +CCFEED123C0D6F776701702970FAB47677B12C1F1EE951153B476CF1137E50D1 │ │ │ │ +553DB8208391ADBABF510EE84C4CB7BB5A88CEAB6F72927CB784CC30E6991175 │ │ │ │ +204B7123A7CFC3CBC35B45304D4C3591ACDAE3D866C382EB1199360DFB16F3FD │ │ │ │ +FCF57B30BA74C32C422144FFAD2B65BE70855DA0627EE0D4BAC13C7B465C34B1 │ │ │ │ +8499E5BA2E415C1F5CCB7588559C7E81BF42DA824E3A34B438792DDFD523925D │ │ │ │ +828B52A9D58E69CF2F34E758A731E7E8EA12AA0802C34014491CA663D049899D │ │ │ │ +FDF4B8D84A50827EDB713C4FEFB299B5EE7F86087501AED034459F490A04F4B0 │ │ │ │ +4388DB022B99F26C5F42129B8B3F68BBD91257DF11B4B5A47C7A8BDEBFF56CB9 │ │ │ │ +A5AD7389ED7028B40313C4484418E264968A25E30BB045295D09979E1178E7C6 │ │ │ │ +E841BA0813DF6F8A969AF211D08D46DD8A0BC582B7C2084D9FCAEFDB4310E89D │ │ │ │ +0259F9D3030A9DBCDCE5C9F1D605332AFD84D5A018421AF39EE9024AA9C2096D │ │ │ │ +8F870CC5A74D767C8B7526B6F5F4465431E675F1ECE498E5B37E12F0638352EA │ │ │ │ +577454C661DFC0C45C17ED4CB5375383E5718EED97CDCA37DBBD42F0502F5C17 │ │ │ │ +A1AB510C610E43C68A48F79060B0008C4751E3854A61C98AC35B7A4C541302C6 │ │ │ │ +9B6599F6D4FB486D2A0179EB037F29D542B28CEBD48DEDFF8E1191D026ADC053 │ │ │ │ +D4DF76B831C9CF925A8F6C83D935F0EC593F35C723A547CF4DC815F891579F49 │ │ │ │ +4E9D3134218957052FA4DB7E8AC65FBA38516D5819ABD10856B02CF680232943 │ │ │ │ +80A05C36E3525D0F68D7371EABBB099F65AD7B8821BEBF2E36218B74D404504D │ │ │ │ +AF96EFA7E853F617AC32C2513C4EA3F438F07FCE097D7DF174388A099DF8F6DB │ │ │ │ +3EA7701FE1E4BEF6841226ED614136A0A80402C3B4F0636EF19A20A6C0390EE9 │ │ │ │ +B6A709293D2D10DDF73AB1E363E0944616DF441B4D22E87732B597234227F0CE │ │ │ │ +160C66336562D6822CBA9036F61944C34DEFC18598B538D5C442005D410572C0 │ │ │ │ +A622D9AC9037AF794A318355742A473B825D490A30131A52AF2120A437C94BFD │ │ │ │ +F4A68C3F1EFFFEDA329060AF30DA0DB314E7E8D32352BD4CCED699CE796DA405 │ │ │ │ +FC4AB4E2F6AAF34C7E60BB88039DCE6C6B9CCA690FA83F7A9EB28F23CCD643D7 │ │ │ │ +EE14BAC6DAF30660076562DA560C0C3D528D1129A792CDCCE586D19CE14E2619 │ │ │ │ +92026881258A06868F6AE59B324B824B01C34372857C6397B7E4CF95B71EE9DE │ │ │ │ +B44A47A6DF2F4DEDB09091D500D78F224D88032AFFAED5A4D35A18907B2A2CFA │ │ │ │ +BB4B7C2D78FCFF3A2465B2300A2D598864F1D9E172C1B1E48F3FCEFD3B12AF1D │ │ │ │ +B35D325332AC1F393A08DE8A49D2E8B1E0D0DD276ECF6C77D9BD4CC4B5909FE5 │ │ │ │ +49B79823617AD90BA02485AC63A07C00C7B8A456852DA415D204D7F92BB3C401 │ │ │ │ +9D0D96B8FE67D8F3DD8818F348C46350C2D6E46E9F2D890D5BFC51A631C2DC5B │ │ │ │ +0C9CBC9622391EE46FE5A53CF18BB69F58C9B2F346599AEBFBE8675C0C8628B4 │ │ │ │ +3E6945727B792913D7E72A9066D0E4A7BC092630B63E5070B4B63213998A2DCA │ │ │ │ +D9B947074A7D6E412C3ED93B88D9FA95EF139EC72F0EAE46833E971708E1880C │ │ │ │ +259535599C632123CAC9BE406F686E646527200EF9DA277E9BB570C998A83A66 │ │ │ │ +A4910A9B67D881A825FE9E35BAD81AA5331CB8EDA28D83FAB5BE5BAF8B20D7FF │ │ │ │ +AC642496B0ABAFF87674C35E646F103BA35BD316141304B9DA5D23878A24BF94 │ │ │ │ +29498CCE74AA66CD1559E2D1E6E97E50C0831DA0C6F05A2E80BAFC9951541F5E │ │ │ │ +1E9A505D6820FB366038ABE5AF99AE56A842ADFC2E533ECF1EF2168513BCF968 │ │ │ │ +36B8EF4BFA6BB0CBBA56B0F134E5AA4684903EA7042DAA275AD1D0F7508ADCB3 │ │ │ │ +960E146CF9D6172809B083A7C166A7F149F80A31765DD3082A68449C852CE3DE │ │ │ │ +6CB6E73DC15843AE58750C3976FDE5C641A5D3063F76E3B363EA403ADD9D53A3 │ │ │ │ +A7E14B25F525A19C807941E5C253FF2358598199B204BEAE97C227A00C792222 │ │ │ │ +AB2111F8BBF36FC4E98E3F611A8670DD5F30FDA45B64FEAF28082A0A12B55E1F │ │ │ │ +D9AE5BCA2C6701C4D3E399D58365E9AB6220A6F0BECFFB8E556406533D7FAA9D │ │ │ │ +DF25509CC88A1191EEA615D3E75B00A73684911297351D0D7BD705F1A66C42E5 │ │ │ │ +D9B1D67DBB4DD6F9AF0AFD9FAA180CD476EFC07B3C4ABA5510C6286A40741424 │ │ │ │ +76CCE7603918571A3B0FFB256C6EC1D9B3F21EF345B38407D5B25559AB4A6B19 │ │ │ │ +68BDE73166DC23E6EFA95865276450E990E24467C1DF628D56DA93030EC7D636 │ │ │ │ +754AF6FC0AA6D8826C76D77FD62D0C717D899B1EF3B494070AEE1469DF9E0C38 │ │ │ │ +28914687762EAFB979227DB6156408208B6EAAF68857ECD0491E1A98D3C5FBF7 │ │ │ │ +E15BE7C50F11355711A14EF1022DBB373E5246EA7F1C3067D35079584755E6DB │ │ │ │ +2F8DC61697D2D2E90103682733263BB4D2099ACC06C795872EFF39CA0EA66EA3 │ │ │ │ +FB7A8177EA4B55A6770A29007281F9541F25D501F72BF2910DD2F1DCA2163672 │ │ │ │ +374C281C21541CCC56B7CD6F017FA72AFC4CFC5CDBC2F96A1546B6F4E74B334D │ │ │ │ +A9C7C0F53BB648C4CFA93980A6612631F2FC4F30250E37F6C1C757FE957F3305 │ │ │ │ +D603B4C2D528BBF30368B209C4B7194681424B0205AA2F02108FDEDF56EFA5D3 │ │ │ │ +985B45B24DCA15418746B0593302C4BEB57666DF1E02BF6E5037A1C2071BA332 │ │ │ │ +9723D49DFDC90ED71EF0C67D090EA07189440ABF0C9C181D5EE5D43F94A16BC0 │ │ │ │ +3FE5D017F6170008C41BFAE30F82C40197109B344B0842B919FA2D09DCC54368 │ │ │ │ +A2354519FB51083901407DD781E0F2B50928D1121BDB06A41B17337A34F29827 │ │ │ │ +8525FA721BB0DBBAFD077E75701A9A6E8615BCD0E6CFFE07D783F7FFE4EB798A │ │ │ │ +6C33605BA0FC97F15BCF2693A1375AF590CABAE85DE375AA1998AF41C424190F │ │ │ │ +731F587C9797C9337031D4553F2E424835A1CE4EFF731157AA86874BACD39C44 │ │ │ │ +C08EFF945E2625916565411AC8AB2B6BBFF0BC4AE5AB33F67DBEAEAD5146719E │ │ │ │ +F5E0ECD073ADAC4C8B2298917B6C8D3ECA0C155B293D583384FB40E6745633A9 │ │ │ │ +C11A1EC049F6A2AF017B2D81661B875B0E7FC70876D456363FE0E8ED8D7CF8C9 │ │ │ │ +1B831F47B0F3A2961B5417422E0C8156DF00BFD0F977766563FEA1C62634D7AF │ │ │ │ +63C2F23EFC00A41807905DA6D3AE9A5D79FE412BCA985566615D165E66648061 │ │ │ │ +119740D085D9963E888DF6FBCF9ABB13B221BE9E93F8439868BC6521B39887A7 │ │ │ │ +2EC10DED7CD0C32A16C5C1C8C6FE3A7B8C0823BD69A4A10F75AC6099269EEAA4 │ │ │ │ +F757FCF68AAD4894191E69EB30AABB4362D06650E3E339F68430AA1B0C5DA599 │ │ │ │ +33363EE55A2AB40C9171A553063A78D1C527232E90B5CFDC09458FCE06055B0B │ │ │ │ +677B3C610B395CE2ACFA403AF6FFAA97BFECCAB689AB1CE577EE970A2B5EA6B7 │ │ │ │ +952D0B2CBAE049C5B9C632E7E3AFB3BE590A6F3B2275ABF69DC218B5D697EAD4 │ │ │ │ +C0184D39926A16EC50375A3F483AAF065B2CE3E9B848BDF1CBEF37213205DB85 │ │ │ │ +77EB179FC6FED54D9758F5CD503A437000315B3163286FB5AB68A14406D8B4BD │ │ │ │ +5A3AE84065956A9947EBD78017107926533B15822C419B761F9BACEDC25E817F │ │ │ │ +462D2C10D3674F72AEA565CDE648F270997C8709C5E93894FAD75C74D52CE8AB │ │ │ │ +957611D2476F131844132DB88E765BE27ADF79640EA388B2033270A8DD4DFAC0 │ │ │ │ +A3F29B20E09C2E3510F574FB34C2BF6B5B2C507B58F959AA0FA8F11EB718774D │ │ │ │ +70126C8583BCBD4DB6BEAC40A98400B9BB455AA87281ACC79CB39C4AA9E4A766 │ │ │ │ +F759C94EE5C49C12D658525751809A8CA3DE081AD5A4F7653B103219F0F59581 │ │ │ │ +F548DA8D79D4FE4289739DFB734AAB1932EAA1237B161828A2411042D1DF8FB1 │ │ │ │ +AD8E7B8167ADD5C6E63BD8AB439E03EF4CF9C53FD21548ED84D4782885BB1531 │ │ │ │ +56A737297796D16F6BC37382E1693793FEBA2D1364AF05E9D691ABDBDAA2E3D2 │ │ │ │ +4FB47006241C4E53007620E1490D56B248D1B666191E1C6AE5998B6BB60E8AF9 │ │ │ │ +D80C96558728A1011DABC1300A97DA2975C4BDEBEE8FCAC62CC4C09395D572FF │ │ │ │ +48CC100293E4909C07B0E83CB2911A53395082DFA402DF43D4114914A0E4328D │ │ │ │ +485504CAE37F1B9869305CBDEC1AAA14B1D5C4F78EA0D556C1C8D037409CD72D │ │ │ │ +965267AE6199E99B6CC2C0BA69EE4CBC087F9D6482A81CD1E12703D9905E1760 │ │ │ │ +E08EEFEA12CDBC0FB29174373B02DBBFC9A32F699EC7C6B6C4EB15702F22D392 │ │ │ │ +F4A79FC44C7DEFD40FAEC4D838ABBD910E1358306E8407DE15775668E20F37C7 │ │ │ │ +DFC70DAC69534D2A76A3D0358A4B1038FA5B1D3C5AE7E2A9E06A1F0A84743E1D │ │ │ │ +806FA75F49675FC618F918D52828EE7F62D494329A9B0A835E5E46F4733FD9B0 │ │ │ │ +815237FD6C626C9FCC3B4BFB3A5541311C151DC291DDC15B05663B8FC8BF665E │ │ │ │ +11EA45244DE5613887083D84B3AB9D9DC7AB9093249A54A5D8B45D9291F35F19 │ │ │ │ +95741C690F8093526EF94C1A8DCF64BC171580257A31F14BE9B2C5F2CE00D90E │ │ │ │ +60AE95733BD933D6476F75567A17B01F793D78C2D9AA2EA2711B38B90D73789F │ │ │ │ +95D5DC7FC6E1B1F14D2C7E7DFDB00FC02D08B9EF394BBC91712FC79E666CE00E │ │ │ │ +259FE162F82D53883E7592E5596FFD3C1FB814C4D3852254A89A21D38A03F786 │ │ │ │ +843A423782D505D55719FB22FC1E04053510012ACFBE0B9A13BC0CAE3CBD677F │ │ │ │ +E4B382129D988C8775207AB18526F79AD5A48E4E886E5E210F274C7DF86850F4 │ │ │ │ +B5288436387784A72E327FA62410E99FBC0C7AE3B719169E548912982B43BFA2 │ │ │ │ +363CA74F3138EB412BF993CA0D81E97B1C55D86A585930C995601A341F8D0EF0 │ │ │ │ +40519F0C458E2ADAD79AB411B22C3D43C4592CDFBBFBECE1828421B6412A200C │ │ │ │ +D8EED3064DC587EAD3A9B08CBC59DCF53567399F9E24626B04F32DB396185593 │ │ │ │ +DEC2B2F72F6D19FA0CEE7885B21085401B58CA19DAF9B0DC209365E47AB25439 │ │ │ │ +49A88E5AB4C84BD8B4378E58FB7C71A5944670299FD293A2AAEFA13D42A5D6E9 │ │ │ │ +3A50148E93FB8E70C19986D2E8A08CA29A3D67496F6CAE617050742F2DE2F71D │ │ │ │ +0196DA95516A7FFF2833914716CC3C70EE9365A4351A1A4B581A85DC39119311 │ │ │ │ +B9888D0BE9FC467922BBE0D8A8F7CCAB209198FBB01FC86C03A986DE190EBC36 │ │ │ │ +376CB65E0BBC5CFBC558BA4B8E7EDEEBD96160056B7616C69A8277BA6E213873 │ │ │ │ +3F8F18AA9E6DFA284354DEFC17CB29536C12D86055BB4055E22945A4A7DC5BEE │ │ │ │ +A8753F61B0B7AAB748B666CF667E0003ECF3938E70D6F593C5D1B1C1CF5197AF │ │ │ │ +6C881A65B78201C664D40A986EDB91784409F03EF0173036E8F3724D55A4C8B7 │ │ │ │ +ADAB62E030D9F7C58C620501438FE14004231022C9A833D031817435B124FFDD │ │ │ │ +4C788F868E675194949E91E65E79A1775D26D10ED5321B073D014018F9B4B73F │ │ │ │ +B097E2027B8D8F471064299175F3B12658C67CBE03419D81511AB2AD5FE077DE │ │ │ │ +36503D1E88E59DD086330EEC70FE8AA14D66A328DEFEFE60B10768 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -11520,15 +11509,15 @@ │ │ │ │ 7[55 55 31[42 3[0 0 3[55 8[83 7[83 83 5[65 4[65 65 1[65 │ │ │ │ 14[42 65 23 65{}27 83.022 /CMSY10 rf /Fp 143[83 12[83 │ │ │ │ 46 9[120 7[88 17[74 1[74 1[74 1[74 20[48 48 12[44 44 │ │ │ │ 61 61 14[35 35 2[{}17 83.022 /CMEX10 rf /Fq 135[51 2[51 │ │ │ │ 49 38 50 1[46 53 51 62 43 53 1[25 51 1[44 46 52 49 48 │ │ │ │ 51 14[66 10[71 2[69 9[27 2[46 3[46 46 46 46 48[{}28 83.022 │ │ │ │ /CMCSC10 rf /Fr 139[32 1[33 2[42 9[37 1[37 46 18[65 20[23 │ │ │ │ -1[42 2[42 2[42 42 42 3[23 44[{}14 83.022 /CMSL10 rf /Fs │ │ │ │ +1[42 2[42 2[42 1[42 3[23 44[{}13 83.022 /CMSL10 rf /Fs │ │ │ │ 133[39 41 47 59 40 48 30 39 37 37 1[40 50 73 25 43 34 │ │ │ │ 29 48 40 41 39 43 36 36 44 6[57 48 69 78 48 57 49 51 │ │ │ │ 63 66 53 63 2[57 71 46 36 69 65 53 61 69 59 63 62 44 │ │ │ │ 1[65 42 65 23 23 27[49 2[47 14[47 53 11[{}59 83.022 /CMMI10 │ │ │ │ rf /Ft 130[44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 1[44 │ │ │ │ 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 │ │ │ │ @@ -11565,15 +11554,15 @@ │ │ │ │ 26 21 44[{}51 74.7198 /CMR9 rf /FC 203[30 30 30 30 49[{}4 │ │ │ │ 49.8132 /CMR6 rf /FD 133[31 37 37 51 37 39 27 28 28 37 │ │ │ │ 39 35 39 59 20 37 22 20 39 35 22 31 39 31 39 35 12[51 │ │ │ │ 39 52 1[48 2[65 3[25 53 3[54 51 50 53 7[35 2[35 35 35 │ │ │ │ 35 35 35 35 1[20 24 20 31[39 12[{}49 66.4176 /CMR8 rf │ │ │ │ /FE 137[51 54 38 38 38 2[49 54 1[27 2[27 54 1[30 43 54 │ │ │ │ 43 54 49 9[100 6[66 76 3[76 50 5[75 70 1[73 8[49 2[49 │ │ │ │ -2[49 49 49 1[27 1[27 44[{}31 99.6264 /CMR12 rf /FF 172[90 │ │ │ │ +2[49 1[49 1[27 1[27 44[{}30 99.6264 /CMR12 rf /FF 172[90 │ │ │ │ 2[110 121 2[97 6[106 69[{}5 143.462 /CMBX12 rf /FG 134[70 │ │ │ │ 1[96 70 73 51 52 51 70 73 66 73 111 36 1[40 36 73 66 │ │ │ │ 40 58 73 58 73 66 12[96 73 98 2[103 1[122 83 6[90 3[99 │ │ │ │ 6[36 7[66 3[36 1[36 44[{}35 143.462 /CMR17 rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ @@ -11591,15 +11580,15 @@ │ │ │ │ (for)g FF(SPOOLES)p FG(,)g(Release)g(2.2:)518 1886 y(An)h(Ob)7 │ │ │ │ b(ject)44 b(Orien)l(ted)h(Soft)l(w)l(are)e(Library)f(for)g(Solving)920 │ │ │ │ 2069 y(Sparse)h(Linear)g(Systems)f(of)h(Equations)375 │ │ │ │ 2459 y FE(Clev)m(e)35 b(Ashcraft)1004 2423 y FD(1)1297 │ │ │ │ 2459 y FE(Daniel)d(Pierce)1864 2423 y FD(2)2158 2459 │ │ │ │ y FE(Da)m(vid)g(K.)h(W)-8 b(ah)2774 2423 y FD(3)3066 │ │ │ │ 2459 y FE(Jason)33 b(W)-8 b(u)3485 2423 y FD(4)1586 2725 │ │ │ │ -y FE(Octob)s(er)32 b(18,)g(2025)104 4280 y FC(1)138 4312 │ │ │ │ +y FE(Octob)s(er)32 b(28,)g(2025)104 4280 y FC(1)138 4312 │ │ │ │ y FB(Bo)r(eing)70 b(Shared)d(Services)i(Group,)79 b(P)-6 │ │ │ │ b(.)68 b(O.)g(Bo)n(x)g(24346,)81 b(Mail)70 b(Stop)d(7L-22,)80 │ │ │ │ b(Seattle,)f(W)-6 b(ashington)69 b(98124,)0 4403 y FA │ │ │ │ (cleve.ashcraft@boeing.com)p FB(.)64 b(This)34 b(researc)n(h)g(w)n(as)h │ │ │ │ (supp)r(orted)d(in)i(part)f(b)n(y)g(the)g(D)n(ARP)-6 │ │ │ │ b(A)31 b(Con)n(tract)k(D)n(ABT63-95-C-0122)0 4494 y(and)25 │ │ │ │ b(the)h(DoD)f(High)g(P)n(erformance)j(Computing)e(Mo)r(dernization)h │ │ │ │ @@ -11770,15 +11759,15 @@ │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 │ │ │ │ b(36)125 5407 y(3.3)83 b(Driv)n(er)27 b(programs)e(for)i(the)h │ │ │ │ Ft(Coords)e Fy(ob)5 b(ject)42 b(.)g(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h │ │ │ │ (.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.) │ │ │ │ f(.)h(.)f(.)93 b(37)1929 5656 y(2)p eop end │ │ │ │ %%Page: 3 4 │ │ │ │ TeXDict begin 3 3 bop 83 100 1157 4 v 1322 100 a Fz(SPOOLES)32 │ │ │ │ -b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(18,)h(2025)p 2704 │ │ │ │ +b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(28,)h(2025)p 2704 │ │ │ │ 100 V 1157 w Fy(3)0 390 y Fz(4)77 b Ft(DV)p Fz(:)30 b(Double)h(V)-8 │ │ │ │ b(ector)33 b(Ob)5 b(ject)2617 b(39)125 511 y Fy(4.1)83 │ │ │ │ b(Data)28 b(Structure)61 b(.)41 b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f │ │ │ │ (.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.) │ │ │ │ h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 │ │ │ │ b(39)125 632 y(4.2)83 b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g │ │ │ │ Ft(DV)g Fy(metho)r(ds)83 b(.)41 b(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g │ │ │ │ @@ -11894,15 +11883,15 @@ │ │ │ │ b(61)125 5407 y(8.3)83 b(Driv)n(er)27 b(programs)e(for)i(the)h │ │ │ │ Ft(IV)43 b(object)32 b Fy(.)42 b(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)93 b(63)p eop end │ │ │ │ %%Page: 4 5 │ │ │ │ TeXDict begin 4 4 bop 0 100 a Fy(4)p 125 100 1157 4 v │ │ │ │ 1322 w Fz(SPOOLES)32 b(2.2)26 b Fr(:)37 b(Octob)r(er)27 │ │ │ │ -b(18,)g(2025)p 2744 100 V 0 390 a Fz(9)77 b Ft(IVL)p │ │ │ │ +b(28,)g(2025)p 2744 100 V 0 390 a Fz(9)77 b Ft(IVL)p │ │ │ │ Fz(:)30 b(In)m(teger)i(V)-8 b(ector)32 b(List)g(Ob)5 │ │ │ │ b(ject)2382 b(64)125 513 y Fy(9.1)83 b(Data)28 b(Structure)61 │ │ │ │ b(.)41 b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.) │ │ │ │ f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f │ │ │ │ (.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 b(64)125 637 │ │ │ │ y(9.2)83 b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g │ │ │ │ Ft(IVL)g Fy(metho)r(ds)39 b(.)i(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f │ │ │ │ @@ -12019,15 +12008,15 @@ │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.) │ │ │ │ 93 b(94)315 5407 y(13.2.5)52 b Ft(FV)27 b Fy(:)h Ft(float)d │ │ │ │ Fy(v)n(ector)i(metho)r(ds)21 b(.)42 b(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.) │ │ │ │ h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 b(96)p eop end │ │ │ │ %%Page: 5 6 │ │ │ │ TeXDict begin 5 5 bop 83 100 1157 4 v 1322 100 a Fz(SPOOLES)32 │ │ │ │ -b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(18,)h(2025)p 2704 │ │ │ │ +b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(28,)h(2025)p 2704 │ │ │ │ 100 V 1157 w Fy(5)315 390 y(13.2.6)52 b Ft(PCV)27 b Fy(:)g │ │ │ │ Ft(char)42 b(*)28 b Fy(v)n(ector)e(metho)r(ds)64 b(.)41 │ │ │ │ b(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h │ │ │ │ (.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)93 │ │ │ │ b(99)315 521 y(13.2.7)52 b Ft(PDV)27 b Fy(:)g Ft(double)41 │ │ │ │ b(*)28 b Fy(v)n(ector)e(metho)r(ds)41 b(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h │ │ │ │ (.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.) │ │ │ │ @@ -12135,15 +12124,15 @@ │ │ │ │ 5407 y(16.3)41 b(Driv)n(er)27 b(programs)e(for)i(the)h │ │ │ │ Ft(BPG)f Fy(ob)5 b(ject)44 b(.)e(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)51 b(124)p eop end │ │ │ │ %%Page: 6 7 │ │ │ │ TeXDict begin 6 6 bop 0 100 a Fy(6)p 125 100 1157 4 v │ │ │ │ 1322 w Fz(SPOOLES)32 b(2.2)26 b Fr(:)37 b(Octob)r(er)27 │ │ │ │ -b(18,)g(2025)p 2744 100 V 0 390 a Fz(17)i Ft(DSTree)p │ │ │ │ +b(28,)g(2025)p 2744 100 V 0 390 a Fz(17)i Ft(DSTree)p │ │ │ │ Fz(:)125 490 y(A)j(Domain/Separator)g(T)-8 b(ree)32 b(Ob)5 │ │ │ │ b(ject)2217 b(126)125 616 y Fy(17.1)41 b(Data)28 b(Structure)61 │ │ │ │ b(.)41 b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.) │ │ │ │ f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f │ │ │ │ (.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(126)125 742 │ │ │ │ y(17.2)41 b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g │ │ │ │ Ft(DSTree)e Fy(metho)r(ds)38 b(.)k(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h │ │ │ │ @@ -12256,15 +12245,15 @@ │ │ │ │ g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f │ │ │ │ (.)51 b(163)125 5407 y(20.2)41 b(Protot)n(yp)r(es)26 │ │ │ │ b(and)i(descriptions)f(of)g Ft(GPart)f Fy(metho)r(ds)81 │ │ │ │ b(.)42 b(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.) │ │ │ │ h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(164)p eop end │ │ │ │ %%Page: 7 8 │ │ │ │ TeXDict begin 7 7 bop 83 100 1157 4 v 1322 100 a Fz(SPOOLES)32 │ │ │ │ -b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(18,)h(2025)p 2704 │ │ │ │ +b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(28,)h(2025)p 2704 │ │ │ │ 100 V 1157 w Fy(7)315 390 y(20.2.1)52 b(Basic)27 b(metho)r(ds)74 │ │ │ │ b(.)42 b(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.) │ │ │ │ h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f │ │ │ │ (.)h(.)g(.)f(.)h(.)f(.)51 b(164)315 526 y(20.2.2)h(Initializer)27 │ │ │ │ b(metho)r(ds)48 b(.)42 b(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.) │ │ │ │ g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f │ │ │ │ (.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(165)315 661 y(20.2.3)h(Utilit)n(y) │ │ │ │ @@ -12373,15 +12362,15 @@ │ │ │ │ 51 b(192)125 5407 y(22.5)41 b(Driv)n(er)27 b(programs)e(for)i(the)h │ │ │ │ Ft(MSMD)e Fy(ob)5 b(ject)66 b(.)41 b(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)51 b(192)p eop end │ │ │ │ %%Page: 8 9 │ │ │ │ TeXDict begin 8 8 bop 0 100 a Fy(8)p 125 100 1157 4 v │ │ │ │ 1322 w Fz(SPOOLES)32 b(2.2)26 b Fr(:)37 b(Octob)r(er)27 │ │ │ │ -b(18,)g(2025)p 2744 100 V 0 390 a Fz(23)i Ft(Network)p │ │ │ │ +b(28,)g(2025)p 2744 100 V 0 390 a Fz(23)i Ft(Network)p │ │ │ │ Fz(:)39 b(Simple)30 b(Max-\015o)m(w)i(solv)m(er)2283 │ │ │ │ b(195)125 514 y Fy(23.1)41 b(Data)28 b(Structure)61 b(.)41 │ │ │ │ b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(196)125 638 y(23.2)41 │ │ │ │ b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g Ft(Network)e │ │ │ │ Fy(metho)r(ds)59 b(.)41 b(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f │ │ │ │ @@ -12492,15 +12481,15 @@ │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(220)315 5407 y(26.2.3)h │ │ │ │ (Initialization)27 b(metho)r(ds)62 b(.)42 b(.)f(.)h(.)g(.)f(.)h(.)f(.)h │ │ │ │ (.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.) │ │ │ │ f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(222)p eop │ │ │ │ end │ │ │ │ %%Page: 9 10 │ │ │ │ TeXDict begin 9 9 bop 83 100 1157 4 v 1322 100 a Fz(SPOOLES)32 │ │ │ │ -b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(18,)h(2025)p 2704 │ │ │ │ +b(2.2)27 b Fr(:)120 b(Octob)r(er)26 b(28,)h(2025)p 2704 │ │ │ │ 100 V 1157 w Fy(9)315 390 y(26.2.4)52 b(Searc)n(h)27 │ │ │ │ b(metho)r(ds)i(.)42 b(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f │ │ │ │ (.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.) │ │ │ │ h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(223)315 513 │ │ │ │ y(26.2.5)h(Piv)n(ot)27 b(metho)r(ds)72 b(.)42 b(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 │ │ │ │ @@ -12618,15 +12607,15 @@ │ │ │ │ 5407 y(30.2.4)h(Utilit)n(y)28 b(F)-7 b(actorization)26 │ │ │ │ b(metho)r(ds)43 b(.)e(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)51 b(258)p eop end │ │ │ │ %%Page: 10 11 │ │ │ │ TeXDict begin 10 10 bop 0 100 a Fy(10)p 166 100 1136 │ │ │ │ 4 v 1301 w Fz(SPOOLES)31 b(2.2)c Fr(:)37 b(Octob)r(er)27 │ │ │ │ -b(18,)f(2025)p 2765 100 V 315 390 a Fy(30.2.5)52 b(Serial)27 │ │ │ │ +b(28,)f(2025)p 2765 100 V 315 390 a Fy(30.2.5)52 b(Serial)27 │ │ │ │ b(F)-7 b(actorization)26 b(metho)r(d)45 b(.)d(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(260)315 512 y(30.2.6)h(QR)28 │ │ │ │ b(factorization)e(utilit)n(y)i(metho)r(ds)56 b(.)41 b(.)h(.)f(.)h(.)g │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.) │ │ │ │ h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(261)315 635 y(30.2.7)h(Serial)27 │ │ │ │ b Fs(QR)h Fy(F)-7 b(actorization)26 b(metho)r(d)82 b(.)41 │ │ │ │ @@ -12748,15 +12737,15 @@ │ │ │ │ f(.)h(.)f(.)51 b(299)125 5407 y(33.3)41 b(Driv)n(er)27 │ │ │ │ b(programs)76 b(.)42 b(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h │ │ │ │ (.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.) │ │ │ │ h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(302)p │ │ │ │ eop end │ │ │ │ %%Page: 11 12 │ │ │ │ TeXDict begin 11 11 bop 83 100 1136 4 v 1302 100 a Fz(SPOOLES)31 │ │ │ │ -b(2.2)c Fr(:)120 b(Octob)r(er)27 b(18,)f(2025)p 2683 │ │ │ │ +b(2.2)c Fr(:)120 b(Octob)r(er)27 b(28,)f(2025)p 2683 │ │ │ │ 100 V 1136 w Fy(11)0 390 y Fz(34)j Ft(PatchAndGoInfo)p │ │ │ │ Fz(:)36 b(Piv)m(ot)c(Mo)s(di\014cation)f(Ob)5 b(ject)1856 │ │ │ │ b(307)125 513 y Fy(34.1)41 b(Data)28 b(Structure)61 b(.)41 │ │ │ │ b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(308)125 637 y(34.2)41 │ │ │ │ b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g Ft(PatchAndGoInfo)22 │ │ │ │ @@ -12872,15 +12861,15 @@ │ │ │ │ y(38.2.4)h(IO)27 b(metho)r(ds)44 b(.)d(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 │ │ │ │ b(335)p eop end │ │ │ │ %%Page: 12 13 │ │ │ │ TeXDict begin 12 12 bop 0 100 a Fy(12)p 166 100 1136 │ │ │ │ 4 v 1301 w Fz(SPOOLES)31 b(2.2)c Fr(:)37 b(Octob)r(er)27 │ │ │ │ -b(18,)f(2025)p 2765 100 V 0 390 a Fz(39)j Ft(SubMtxManager)p │ │ │ │ +b(28,)f(2025)p 2765 100 V 0 390 a Fz(39)j Ft(SubMtxManager)p │ │ │ │ Fz(:)36 b Ft(SubMtx)29 b Fz(ob)5 b(ject)33 b(manager)2057 │ │ │ │ b(336)125 515 y Fy(39.1)41 b(Data)28 b(Structure)61 b(.)41 │ │ │ │ b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h │ │ │ │ (.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.) │ │ │ │ f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(337)125 640 y(39.2)41 │ │ │ │ b(Protot)n(yp)r(es)26 b(and)i(descriptions)f(of)g Ft(SubMtxManager)22 │ │ │ │ b Fy(metho)r(ds)56 b(.)41 b(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h │ │ │ │ @@ -12967,15 +12956,15 @@ │ │ │ │ (.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(368)315 5407 │ │ │ │ y(43.1.1)h Ft(MatMulInfo)24 b Fy(:)37 b(Matrix-matrix)26 │ │ │ │ b(m)n(ultiply)i(information)f(ob)5 b(ject)75 b(.)41 b(.)h(.)f(.)h(.)g │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(368)p │ │ │ │ eop end │ │ │ │ %%Page: 13 14 │ │ │ │ TeXDict begin 13 13 bop 83 100 1136 4 v 1302 100 a Fz(SPOOLES)31 │ │ │ │ -b(2.2)c Fr(:)120 b(Octob)r(er)27 b(18,)f(2025)p 2683 │ │ │ │ +b(2.2)c Fr(:)120 b(Octob)r(er)27 b(28,)f(2025)p 2683 │ │ │ │ 100 V 1136 w Fy(13)125 390 y(43.2)41 b(Protot)n(yp)r(es)26 │ │ │ │ b(and)i(descriptions)f(of)g Ft(MPI)g Fy(metho)r(ds)39 │ │ │ │ b(.)i(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g │ │ │ │ (.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 b(369)315 │ │ │ │ 515 y(43.2.1)h(Split)28 b(and)g(redistribution)f(metho)r(ds)59 │ │ │ │ b(.)41 b(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)h(.) │ │ │ │ f(.)h(.)g(.)f(.)h(.)f(.)h(.)f(.)h(.)g(.)f(.)h(.)f(.)51 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -1,13 +1,13 @@ │ │ │ │ │ The Reference Manual for SPOOLES, Release 2.2: │ │ │ │ │ An Object Oriented Software Library for Solving │ │ │ │ │ Sparse Linear Systems of Equations │ │ │ │ │ 1 2 3 4 │ │ │ │ │ Cleve Ashcraft Daniel Pierce David K. Wah Jason Wu │ │ │ │ │ - October 18, 2025 │ │ │ │ │ + October 28, 2025 │ │ │ │ │ 1Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, │ │ │ │ │ cleve.ashcraft@boeing.com. This research was supported in part by the DARPA Contract DABT63-95-C-0122 │ │ │ │ │ and the DoD High Performance Computing Modernization Program Common HPC Software Support Initiative. │ │ │ │ │ 2Boeing Shared Services Group, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124, │ │ │ │ │ dpierce@redwood.rt.cs.boeing.com. This research was supported in part by the DARPA Contract DABT63- │ │ │ │ │ 95-C-0122 and the DoD High Performance Computing Modernization Program Common HPC Software Support │ │ │ │ │ Initiative. │ │ │ │ │ @@ -68,15 +68,15 @@ │ │ │ │ │ 3.2 Prototypes and descriptions of Coords methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34 │ │ │ │ │ 3.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 │ │ │ │ │ 3.2.2 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 │ │ │ │ │ 3.2.3 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 │ │ │ │ │ 3.2.4 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 │ │ │ │ │ 3.3 Driver programs for the Coords object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 │ │ │ │ │ 2 │ │ │ │ │ - SPOOLES 2.2 : October 18, 2025 3 │ │ │ │ │ + SPOOLES 2.2 : October 28, 2025 3 │ │ │ │ │ 4 DV: Double Vector Object 39 │ │ │ │ │ 4.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 │ │ │ │ │ 4.2 Prototypes and descriptions of DV methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 │ │ │ │ │ 4.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 │ │ │ │ │ 4.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 │ │ │ │ │ 4.2.3 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 │ │ │ │ │ 4.2.4 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 │ │ │ │ │ @@ -109,15 +109,15 @@ │ │ │ │ │ 8.2 Prototypes and descriptions of IV methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 │ │ │ │ │ 8.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 │ │ │ │ │ 8.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 │ │ │ │ │ 8.2.3 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 │ │ │ │ │ 8.2.4 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 │ │ │ │ │ 8.2.5 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 │ │ │ │ │ 8.3 Driver programs for the IV object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 │ │ │ │ │ - 4 SPOOLES 2.2: October 18, 2025 │ │ │ │ │ + 4 SPOOLES 2.2: October 28, 2025 │ │ │ │ │ 9 IVL: Integer Vector List Object 64 │ │ │ │ │ 9.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 │ │ │ │ │ 9.2 Prototypes and descriptions of IVL methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 │ │ │ │ │ 9.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 │ │ │ │ │ 9.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 │ │ │ │ │ 9.2.3 Initialization and resizing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 │ │ │ │ │ 9.2.4 List manipulation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 │ │ │ │ │ @@ -149,15 +149,15 @@ │ │ │ │ │ 13.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 │ │ │ │ │ 13.2 Prototypes and descriptions of Utilities methods . . . . . . . . . . . . . . . . . . . . . . . . 81 │ │ │ │ │ 13.2.1 CV : char vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 │ │ │ │ │ 13.2.2 DV : double vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 │ │ │ │ │ 13.2.3 ZV : double complex vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 │ │ │ │ │ 13.2.4 IV : int vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 │ │ │ │ │ 13.2.5 FV : float vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 │ │ │ │ │ - SPOOLES 2.2 : October 18, 2025 5 │ │ │ │ │ + SPOOLES 2.2 : October 28, 2025 5 │ │ │ │ │ 13.2.6 PCV : char * vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 │ │ │ │ │ 13.2.7 PDV : double * vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 │ │ │ │ │ 13.2.8 PFV : float * vector methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 │ │ │ │ │ 13.2.9 Sorting routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 │ │ │ │ │ 13.2.10Sort and compress routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 │ │ │ │ │ 13.2.11IP : (int, pointer) singly linked-list methods . . . . . . . . . . . . . . . . . . . . . . 103 │ │ │ │ │ 13.2.12I2OP : (int, int, void*, pointer) singly linked-list methods . . . . . . . . . . . . 104 │ │ │ │ │ @@ -186,15 +186,15 @@ │ │ │ │ │ 16.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 │ │ │ │ │ 16.2.2 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 │ │ │ │ │ 16.2.3 Generate induced graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 │ │ │ │ │ 16.2.4 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 │ │ │ │ │ 16.2.5 Dulmage-Mendelsohn decomposition method . . . . . . . . . . . . . . . . . . . . . . . 123 │ │ │ │ │ 16.2.6 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 │ │ │ │ │ 16.3 Driver programs for the BPG object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 │ │ │ │ │ - 6 SPOOLES 2.2: October 18, 2025 │ │ │ │ │ + 6 SPOOLES 2.2: October 28, 2025 │ │ │ │ │ 17 DSTree: │ │ │ │ │ ADomain/Separator Tree Object 126 │ │ │ │ │ 17.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 │ │ │ │ │ 17.2 Prototypes and descriptions of DSTree methods . . . . . . . . . . . . . . . . . . . . . . . . . . 126 │ │ │ │ │ 17.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 │ │ │ │ │ 17.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 │ │ │ │ │ 17.2.3 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 │ │ │ │ │ @@ -226,15 +226,15 @@ │ │ │ │ │ 19.2.11Parallel factorization map methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 │ │ │ │ │ 19.2.12Storage profile methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 │ │ │ │ │ 19.2.13IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 │ │ │ │ │ 19.3 Driver programs for the ETree object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 │ │ │ │ │ 20 GPart: Graph Partitioning Object 162 │ │ │ │ │ 20.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 │ │ │ │ │ 20.2 Prototypes and descriptions of GPart methods . . . . . . . . . . . . . . . . . . . . . . . . . . 164 │ │ │ │ │ - SPOOLES 2.2 : October 18, 2025 7 │ │ │ │ │ + SPOOLES 2.2 : October 28, 2025 7 │ │ │ │ │ 20.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 │ │ │ │ │ 20.2.2 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 │ │ │ │ │ 20.2.3 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 │ │ │ │ │ 20.2.4 Domain decomposition methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 │ │ │ │ │ 20.2.5 Methods to generate a 2-set partition . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 │ │ │ │ │ 20.2.6 Methods to improve a 2-set partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 │ │ │ │ │ 20.2.7 Recursive Bisection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 │ │ │ │ │ @@ -264,15 +264,15 @@ │ │ │ │ │ 22.3.1 Basic methods — public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 │ │ │ │ │ 22.3.2 Initialization methods — public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 │ │ │ │ │ 22.3.3 Ordering methods — public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 │ │ │ │ │ 22.3.4 Extraction methods — public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 │ │ │ │ │ 22.3.5 Internal methods — private . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 │ │ │ │ │ 22.4 Prototypes and descriptions of MSMDvtx methods . . . . . . . . . . . . . . . . . . . . . . . . . 192 │ │ │ │ │ 22.5 Driver programs for the MSMD object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 │ │ │ │ │ - 8 SPOOLES 2.2: October 18, 2025 │ │ │ │ │ + 8 SPOOLES 2.2: October 28, 2025 │ │ │ │ │ 23 Network: Simple Max-flow solver 195 │ │ │ │ │ 23.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 │ │ │ │ │ 23.2 Prototypes and descriptions of Network methods . . . . . . . . . . . . . . . . . . . . . . . . . 197 │ │ │ │ │ 23.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 │ │ │ │ │ 23.2.2 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 │ │ │ │ │ 23.2.3 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 │ │ │ │ │ 23.2.4 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 │ │ │ │ │ @@ -303,15 +303,15 @@ │ │ │ │ │ IV Numeric Objects and Methods 216 │ │ │ │ │ 26 Chv: Block chevron 217 │ │ │ │ │ 26.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 │ │ │ │ │ 26.2 Prototypes and descriptions of Chv methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 │ │ │ │ │ 26.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 │ │ │ │ │ 26.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 │ │ │ │ │ 26.2.3 Initialization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 │ │ │ │ │ - SPOOLES 2.2 : October 18, 2025 9 │ │ │ │ │ + SPOOLES 2.2 : October 28, 2025 9 │ │ │ │ │ 26.2.4 Search methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 │ │ │ │ │ 26.2.5 Pivot methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 │ │ │ │ │ 26.2.6 Update methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 │ │ │ │ │ 26.2.7 Assembly methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 │ │ │ │ │ 26.2.8 Factorization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 │ │ │ │ │ 26.2.9 Copy methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 │ │ │ │ │ 26.2.10Swap methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 │ │ │ │ │ @@ -343,15 +343,15 @@ │ │ │ │ │ 30 FrontMtx: Front matrix 250 │ │ │ │ │ 30.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 │ │ │ │ │ 30.2 Prototypes and descriptions of FrontMtx methods . . . . . . . . . . . . . . . . . . . . . . . . 255 │ │ │ │ │ 30.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 │ │ │ │ │ 30.2.2 Instance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 │ │ │ │ │ 30.2.3 Initialization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 │ │ │ │ │ 30.2.4 Utility Factorization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 │ │ │ │ │ - 10 SPOOLES2.2: October 18, 2025 │ │ │ │ │ + 10 SPOOLES2.2: October 28, 2025 │ │ │ │ │ 30.2.5 Serial Factorization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 │ │ │ │ │ 30.2.6 QR factorization utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 │ │ │ │ │ 30.2.7 Serial QR Factorization method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 │ │ │ │ │ 30.2.8 Postprocessing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 │ │ │ │ │ 30.2.9 Utility Solve methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 │ │ │ │ │ 30.2.10Serial Solve method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 │ │ │ │ │ 30.2.11Serial QR Solve method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 │ │ │ │ │ @@ -384,15 +384,15 @@ │ │ │ │ │ 32.3 Driver programs for the InpMtx object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 │ │ │ │ │ 33 Iter: Iterative Methods 297 │ │ │ │ │ 33.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 │ │ │ │ │ 33.2 Prototypes and descriptions of Iter methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 │ │ │ │ │ 33.2.1 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 │ │ │ │ │ 33.2.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 │ │ │ │ │ 33.3 Driver programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 │ │ │ │ │ - SPOOLES2.2: October 18, 2025 11 │ │ │ │ │ + SPOOLES2.2: October 28, 2025 11 │ │ │ │ │ 34 PatchAndGoInfo: Pivot Modification Object 307 │ │ │ │ │ 34.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 │ │ │ │ │ 34.2 Prototypes and descriptions of PatchAndGoInfo methods . . . . . . . . . . . . . . . . . . . . 308 │ │ │ │ │ 34.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 │ │ │ │ │ 34.2.2 Initializer methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 │ │ │ │ │ 35 Pencil: Matrix pencil 310 │ │ │ │ │ 35.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 │ │ │ │ │ @@ -424,15 +424,15 @@ │ │ │ │ │ 38 SubMtxList: SubMtx list object 333 │ │ │ │ │ 38.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 │ │ │ │ │ 38.2 Prototypes and descriptions of SubMtxList methods . . . . . . . . . . . . . . . . . . . . . . . 334 │ │ │ │ │ 38.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 │ │ │ │ │ 38.2.2 Initialization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 │ │ │ │ │ 38.2.3 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 │ │ │ │ │ 38.2.4 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 │ │ │ │ │ - 12 SPOOLES2.2: October 18, 2025 │ │ │ │ │ + 12 SPOOLES2.2: October 28, 2025 │ │ │ │ │ 39 SubMtxManager: SubMtx object manager 336 │ │ │ │ │ 39.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 │ │ │ │ │ 39.2 Prototypes and descriptions of SubMtxManager methods . . . . . . . . . . . . . . . . . . . . . 337 │ │ │ │ │ 39.2.1 Basic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 │ │ │ │ │ 39.2.2 Initialization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 │ │ │ │ │ 39.2.3 Utility methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 │ │ │ │ │ 39.2.4 IO methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 │ │ │ │ │ @@ -459,15 +459,15 @@ │ │ │ │ │ 42.2.4 Multithreaded Solve method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 │ │ │ │ │ 42.2.5 Multithreaded QR Solve method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 │ │ │ │ │ 42.3 Driver programs for the multithreaded functions . . . . . . . . . . . . . . . . . . . . . . . . . 361 │ │ │ │ │ VII MPI Methods 367 │ │ │ │ │ 43 MPI directory 368 │ │ │ │ │ 43.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 │ │ │ │ │ 43.1.1 MatMulInfo : Matrix-matrix multiply information object . . . . . . . . . . . . . . . . 368 │ │ │ │ │ - SPOOLES2.2: October 18, 2025 13 │ │ │ │ │ + SPOOLES2.2: October 28, 2025 13 │ │ │ │ │ 43.2 Prototypes and descriptions of MPI methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 │ │ │ │ │ 43.2.1 Split and redistribution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 │ │ │ │ │ 43.2.2 Gather and scatter methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 │ │ │ │ │ 43.2.3 Symbolic Factorization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 │ │ │ │ │ 43.2.4 Numeric Factorization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 │ │ │ │ │ 43.2.5 Post-processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 │ │ │ │ │ 43.2.6 Numeric Solve methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 │ │ ├── ./usr/share/doc/spooles-doc/SemiImplMtx.ps.gz │ │ │ ├── SemiImplMtx.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SemiImplMtx.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1199,15 +1199,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1401,81 +1400,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4846,16 +4840,16 @@ │ │ │ │ @start /Fa 133[50 59 2[59 1[44 44 3[56 62 93 31 2[31 │ │ │ │ 62 2[51 62 50 1[54 11[86 1[62 3[84 1[106 3[42 6[80 12[56 │ │ │ │ 56 56 56 56 2[31 46[{}27 99.6264 /CMBX12 rf /Fb 135[62 │ │ │ │ 3[62 3[62 2[62 62 2[62 3[62 17[62 5[62 3[62 73[{}10 119.552 │ │ │ │ /CMTT12 rf /Fc 134[71 2[71 75 52 53 55 1[75 67 75 112 │ │ │ │ 2[41 37 75 67 41 61 75 60 75 65 13[75 2[92 11[103 16[67 │ │ │ │ 67 67 2[37 46[{}27 119.552 /CMBX12 rf /Fd 139[32 1[33 │ │ │ │ -2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 42 42 3[23 │ │ │ │ -44[{}14 83.022 /CMSL10 rf /Fe 137[38 45 28 34 35 1[42 │ │ │ │ +2[42 9[37 1[37 46 18[65 20[23 1[42 2[42 2[42 1[42 3[23 │ │ │ │ +44[{}13 83.022 /CMSL10 rf /Fe 137[38 45 28 34 35 1[42 │ │ │ │ 42 47 68 21 2[25 3[38 42 38 1[42 12[59 1[61 11[54 1[63 │ │ │ │ 2[62 6[25 12[30 45[{}22 83.022 /CMTI10 rf /Ff 149[23 │ │ │ │ 104[23 65{}3 83.022 /CMSY10 rf │ │ │ │ %DVIPSBitmapFont: Fg tcrm1000 10 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -5041,15 +5035,15 @@ │ │ │ │ 5407 y Ff(j)g(\000)g(j)p Fl(A)1021 5419 y Fj(2)p Fi(;)p │ │ │ │ Fj(1)1112 5407 y Ff(j)g(\000)g(j)p Fl(A)1321 5419 y Fj(1)p │ │ │ │ Fi(;)p Fj(2)1412 5407 y Ff(j)p Fn(,)27 b(where)h Ff(j)18 │ │ │ │ b(\001)h(j)27 b Fn(denotes)h(the)g(n)n(um)n(b)r(er)f(of)g(nonzero)r(es) │ │ │ │ g(in)h(a)f(matrix.)1929 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 125 100 1048 4 v │ │ │ │ -1213 w Fm(SemiImplMtx)23 b Fd(:)37 b Fe(DRAFT)28 b Fd(Octob)r(er)e(18,) │ │ │ │ +1213 w Fm(SemiImplMtx)23 b Fd(:)37 b Fe(DRAFT)28 b Fd(Octob)r(er)e(28,) │ │ │ │ h(2025)p 2852 100 V 0 390 a Fc(1.1)135 b(Data)46 b(Structure)0 │ │ │ │ 595 y Fn(The)28 b Fm(SemiImplMtx)23 b Fn(structure)k(has)g(the)h(follo) │ │ │ │ n(wing)e(\014elds.)125 776 y Fg(\210)42 b Fm(int)g(neqns)26 │ │ │ │ b Fn(:)36 b(n)n(um)n(b)r(er)28 b(of)f(equations.)125 │ │ │ │ 939 y Fg(\210)42 b Fm(int)g(type)26 b Fn(:)37 b(t)n(yp)r(e)28 │ │ │ │ b(of)f(en)n(tries,)g Fm(SPOOLES)p 1527 939 27 4 v 29 │ │ │ │ w(REAL)f Fn(or)g Fm(SPOOLES)p 2167 939 V 29 w(COMPLEX)p │ │ │ │ @@ -5125,15 +5119,15 @@ │ │ │ │ b(\()43 b(SemiImplMtx)c(*mtx)j(\))h(;)208 5276 y Fn(This)27 │ │ │ │ b(metho)r(d)h(releases)e(all)h(storage)f(held)i(b)n(y)f(the)h(ob)5 │ │ │ │ b(ject.)208 5407 y Fe(R)l(eturn)28 b(c)l(o)l(des:)38 │ │ │ │ b Fm(1)27 b Fn(means)g(a)g(normal)g(return,)g Fm(-1)g │ │ │ │ Fn(means)g Fm(mtx)f Fn(is)i Fm(NULL)p Fn(.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 83 100 1048 4 v 1214 100 a Fm(SemiImplMtx)23 │ │ │ │ -b Fd(:)37 b Fe(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)37 b Fe(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2813 100 V 1048 w Fn(3)101 390 y(4.)42 b Fm(int)g(SemiImplMtx_free)37 │ │ │ │ b(\()43 b(SemiImplMtx)c(*mtx)j(\))h(;)208 518 y Fn(This)22 │ │ │ │ b(metho)r(d)g(releases)f(all)g(storage)g(held)h(b)n(y)g(the)g(ob)5 │ │ │ │ b(ject)22 b(via)g(a)f(call)h(to)g Fm(SemiImplMtx)p 2968 │ │ │ │ 518 27 4 v 27 w(clearData\(\))p Fn(,)d(then)j(free'd)208 │ │ │ │ 617 y(the)28 b(storage)d(for)i(the)h(ob)5 b(ject.)208 │ │ │ │ 745 y Fe(R)l(eturn)28 b(c)l(o)l(des:)38 b Fm(1)27 b Fn(means)g(a)g │ │ │ │ @@ -5229,15 +5223,15 @@ │ │ │ │ b(can)g(ha)n(v)n(e)f Fm(X)g Fn(and)h Fm(B)g Fn(p)r(oin)n(t)h(to)f(the)g │ │ │ │ (same)g(ob)5 b(ject,)29 b(for)g(en)n(tries)208 5407 y(are)d(read)h │ │ │ │ (from)g Fm(B)g Fn(and)h(written)g(to)f Fm(X)p Fn(.)g(On)h(return,)f │ │ │ │ (the)h Fm(cpus[])d Fn(v)n(ector)h(con)n(tains)h(the)h(follo)n(wing)f │ │ │ │ (information.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 125 100 1048 4 v │ │ │ │ -1213 w Fm(SemiImplMtx)23 b Fd(:)37 b Fe(DRAFT)28 b Fd(Octob)r(er)e(18,) │ │ │ │ +1213 w Fm(SemiImplMtx)23 b Fd(:)37 b Fe(DRAFT)28 b Fd(Octob)r(er)e(28,) │ │ │ │ h(2025)p 2852 100 V 369 377 a Fm(cpus[0])97 b Fn(initialize)27 │ │ │ │ b(w)n(orking)f(matrices)369 477 y Fm(cpus[1])97 b Fn(load)27 │ │ │ │ b(righ)n(t)f(hand)i(side)369 576 y Fm(cpus[2])97 b Fn(\014rst)27 │ │ │ │ b(solv)n(e)f(with)j(domains)369 676 y Fm(cpus[3])97 b │ │ │ │ Fn(compute)27 b(Sc)n(h)n(ur)g(righ)n(t)g(hand)h(side)369 │ │ │ │ 775 y Fm(cpus[4])97 b Fn(Sc)n(h)n(ur)27 b(solv)n(e)2099 │ │ │ │ 377 y Fm(cpus[5])97 b Fn(compute)27 b(domains')g(righ)n(t)g(hand)h │ │ │ │ @@ -5302,15 +5296,15 @@ │ │ │ │ 5240 y(system)27 b Fl(AX)j Fn(=)22 b Fl(B)32 b Fn(is)27 │ │ │ │ b(solv)n(ed)g(as)g(follo)n(ws.)307 5407 y Fg(\210)42 │ │ │ │ b Fn(First)28 b Fl(A)g Fn(is)f(factored,)g(and)g(a)h │ │ │ │ Fm(FrontMtx)c Fn(ob)5 b(ject)27 b(is)h(created)f(to)g(hold)h(the)g │ │ │ │ (factorization.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 83 100 1048 4 v 1214 100 a Fm(SemiImplMtx)23 │ │ │ │ -b Fd(:)37 b Fe(DRAFT)110 b Fd(Octob)r(er)27 b(18,)g(2025)p │ │ │ │ +b Fd(:)37 b Fe(DRAFT)110 b Fd(Octob)r(er)27 b(28,)g(2025)p │ │ │ │ 2813 100 V 1048 w Fn(5)307 390 y Fg(\210)42 b Fn(The)28 │ │ │ │ b(system)f(is)h(solv)n(ed)e(using)h(the)h Fm(FrontMtx)d │ │ │ │ Fn(ob)5 b(ject.)307 523 y Fg(\210)42 b Fn(A)28 b Fm(SemiImplMtx)23 │ │ │ │ b Fn(matrix)k(ob)5 b(ject)28 b(is)f(constructed)g(from)h(the)g │ │ │ │ Fm(FrontMtx)c Fn(ob)5 b(ject)27 b(and)h Fl(A)p Fn(.)307 │ │ │ │ 656 y Fg(\210)42 b Fn(The)28 b(system)f(is)h(solv)n(ed)e(using)h(the)h │ │ │ │ Fm(SemiImplMtx)c Fn(ob)5 b(ject.)208 822 y(V)-7 b(arious)30 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -51,15 +51,15 @@ │ │ │ │ │ in a semi-implicit form) can pay off — storage can be saved when the number of entries in L and U │ │ │ │ │ 2,1 1,2 │ │ │ │ │ are larger than the number of entries in A and A . The number of solve operations is reduced by │ │ │ │ │ 2,1 1,2 │ │ │ │ │ |L | + |U | − 2|D | − |A | − |A |, where | · | denotes the number of nonzeroes in a matrix. │ │ │ │ │ 2,1 1,2 1,1 2,1 1,2 │ │ │ │ │ 1 │ │ │ │ │ - 2 SemiImplMtx : DRAFT October 18, 2025 │ │ │ │ │ + 2 SemiImplMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The SemiImplMtx structure has the following fields. │ │ │ │ │ • int neqns : number of equations. │ │ │ │ │ • int type : type of entries, SPOOLES REAL or SPOOLES COMPLEX. │ │ │ │ │ • int symmetryflag: typeofmatrixsymmetry,SPOOLES SYMMETRIC,SPOOLES HERMITIANorSPOOLES NONSYMMETRIC. │ │ │ │ │ • int ndomeqns : number of equations in the domains, or (1,1) block. │ │ │ │ │ • int nschureqns : number of equations in the Schur complement, or (2,2) block. │ │ │ │ │ @@ -95,15 +95,15 @@ │ │ │ │ │ Thismethodsetsthestructure’sfieldstodefaultvalues: neqns=0,type=SPOOLES REAL,symmetryflag │ │ │ │ │ =SPOOLES SYMMETRIC,ndomeqns=nschureqns=0,anddomainMtx,schurMtx,A21,A12,domRowsIV, │ │ │ │ │ schurRowsIV, domColumnsIV and schurColumnsIV are all set to NULL. │ │ │ │ │ Return codes: 1 means a normal return, -1 means mtx is NULL. │ │ │ │ │ 3. int SemiImplMtx_clearData ( SemiImplMtx *mtx ) ; │ │ │ │ │ This method releases all storage held by the object. │ │ │ │ │ Return codes: 1 means a normal return, -1 means mtx is NULL. │ │ │ │ │ - SemiImplMtx : DRAFT October 18, 2025 3 │ │ │ │ │ + SemiImplMtx : DRAFT October 28, 2025 3 │ │ │ │ │ 4. int SemiImplMtx_free ( SemiImplMtx *mtx ) ; │ │ │ │ │ This method releases all storage held by the object via a call to SemiImplMtx clearData(), then free’d │ │ │ │ │ the storage for the object. │ │ │ │ │ Return codes: 1 means a normal return, -1 means mtx is NULL. │ │ │ │ │ 1.2.2 Initialization Methods │ │ │ │ │ 1. int SemiImplMtx_initFromFrontMtx ( SemiImplMtx *semimtx, FrontMtx *frontmtx, │ │ │ │ │ InpMtx *inpmtx, IV *frontmapIV, int msglvl, FILE *msgFile) ; │ │ │ │ │ @@ -140,15 +140,15 @@ │ │ │ │ │ 1.2.3 Solve Methods │ │ │ │ │ 1. int SemiImplMtx_solve ( SemiImplMtx *mtx, DenseMtx *X, DenseMtx *B, │ │ │ │ │ SubMtxManager *mtxmanager, double cpus[], int msglvl, FILE *msgFile ) ; │ │ │ │ │ This methods solves a linear system (L + I)D(I + U)X = B, (UT + I)D(I + U)X = B or (UH + │ │ │ │ │ I)D(I + U)X = B, where X and B are DenseMtx objects. mtxmanager is an object to handle the │ │ │ │ │ working SubMtx objects during the solve. One can have X and B point to the same object, for entries │ │ │ │ │ are read from B and written to X. On return, the cpus[] vector contains the following information. │ │ │ │ │ - 4 SemiImplMtx : DRAFT October 18, 2025 │ │ │ │ │ + 4 SemiImplMtx : DRAFT October 28, 2025 │ │ │ │ │ cpus[0] initialize working matrices cpus[5] compute domains’ right hand side │ │ │ │ │ cpus[1] load right hand side cpus[6] second solve with domains │ │ │ │ │ cpus[2] first solve with domains cpus[7] store solution │ │ │ │ │ cpus[3] compute Schur right hand side cpus[8] miscellaneous time │ │ │ │ │ cpus[4] Schur solve cpus[9] total time │ │ │ │ │ Return codes: │ │ │ │ │ 1 normal return -3 B is NULL │ │ │ │ │ @@ -181,15 +181,15 @@ │ │ │ │ │ This section contains brief descriptions of the driver programs. │ │ │ │ │ 1. testGrid msglvl msgFile n1 n2 n3 maxzeros maxsize seed type symmetryflag │ │ │ │ │ sparsityflag pivotingflag tau droptol nrhs depth │ │ │ │ │ This driver program tests the SemiImplMtx creation and solve methods for a matrix from a regular │ │ │ │ │ 2-D or 3-D grid. The matrix can be real or complex and is loaded with random entries. The linear │ │ │ │ │ system AX =B is solved as follows. │ │ │ │ │ • First A is factored, and a FrontMtx object is created to hold the factorization. │ │ │ │ │ - SemiImplMtx : DRAFT October 18, 2025 5 │ │ │ │ │ + SemiImplMtx : DRAFT October 28, 2025 5 │ │ │ │ │ • The system is solved using the FrontMtx object. │ │ │ │ │ • A SemiImplMtx matrix object is constructed from the FrontMtx object and A. │ │ │ │ │ • The system is solved using the SemiImplMtx object. │ │ │ │ │ Various statistics and CPU timings are written to the message file to compare the two solution pro- │ │ │ │ │ cesses. Use the do grid shell script for testing. │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the message │ │ ├── ./usr/share/doc/spooles-doc/SolveMap.ps.gz │ │ │ ├── SolveMap.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SolveMap.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1438,15 +1438,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1640,81 +1639,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4345,15 +4339,15 @@ │ │ │ │ TeXDict begin 39158280 55380996 1000 600 600 (main.dvi) │ │ │ │ @start /Fa 234[71 21[{}1 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 2[59 62 44 44 46 1[62 56 62 93 31 2[31 62 2[51 62 │ │ │ │ 50 1[54 11[86 1[62 3[84 1[106 3[42 6[80 10[56 56 56 56 │ │ │ │ 56 56 56 2[31 46[{}32 99.6264 /CMBX12 rf /Fc 137[62 5[62 │ │ │ │ 62 2[62 6[62 3[62 13[62 5[62 77[{}8 119.552 /CMTT12 rf │ │ │ │ /Fd 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fe 132[52 │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fe 132[52 │ │ │ │ 123[{}1 90.9091 /CMBX10 rf │ │ │ │ %DVIPSBitmapFont: Ff tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -4469,15 +4463,15 @@ │ │ │ │ (for)g(the)h(upp)s(er)d(triangle)137 5213 y Ff(\210)45 │ │ │ │ b Fl(int)i(*colidsUpper)27 b Fm({)k(v)m(ector)h(of)e(column)h(ids)f │ │ │ │ (for)g(the)g(upp)s(er)f(triangle)137 5407 y Ff(\210)45 │ │ │ │ b Fl(int)i(*mapUpper)28 b Fm({)j(map)f(from)g(submatrices)g(to)h │ │ │ │ (threads)f(or)g(pro)s(cesses)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fm(2)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 137 399 a Ff(\210)45 b Fl(int)i(nblockLower)27 │ │ │ │ b Fm({)k(n)m(um)m(b)s(er)e(of)i(submatrices)f(in)g(the)h(lo)m(w)m(er)g │ │ │ │ (triangle)137 588 y Ff(\210)45 b Fl(int)i(*rowidsLower)27 │ │ │ │ b Fm({)k(v)m(ector)h(of)e(ro)m(w)h(ids)f(for)g(the)h(lo)m(w)m(er)g │ │ │ │ (triangle)137 778 y Ff(\210)45 b Fl(int)i(*colidsLower)27 │ │ │ │ b Fm({)k(v)m(ector)h(of)e(column)h(ids)f(for)g(the)g(lo)m(w)m(er)i │ │ │ │ (triangle)137 967 y Ff(\210)45 b Fl(int)i(*mapLower)28 │ │ │ │ @@ -4531,15 +4525,15 @@ │ │ │ │ b(metho)s(d)g(returns)f Fl(symmetryflag)p Fm(,)e(the)k(symmetry)f │ │ │ │ (\015ag.)227 5407 y Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fm(If)30 b Fl(solvemap)e Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f │ │ │ │ (message)h(is)g(prin)m(ted)e(and)h(the)h(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1034 4 v 1215 100 a Fl(SolveMap)29 │ │ │ │ -b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(3)111 399 y(2.)46 b Fl(int)h(SolveMap_nfront)d(\() │ │ │ │ j(SolveMap)f(*solvemap)f(\))j(;)227 552 y Fm(This)30 │ │ │ │ b(metho)s(d)g(returns)f Fl(nfront)p Fm(,)g(the)h(n)m(um)m(b)s(er)f(of)i │ │ │ │ (fron)m(ts.)227 706 y Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fm(If)30 b Fl(solvemap)e Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f │ │ │ │ (message)h(is)g(prin)m(ted)e(and)h(the)h(program)f(exits.)111 │ │ │ │ 901 y(3.)46 b Fl(int)h(SolveMap_nproc)d(\()k(SolveMap)d(*solvemap)g(\)) │ │ │ │ @@ -4597,15 +4591,15 @@ │ │ │ │ (ro)m(w)g(ids)f(of)h(the)h(submatrices)e(in)227 5253 │ │ │ │ y(the)e(lo)m(w)m(er)g(triangle.)227 5407 y Fk(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)40 b Fm(If)30 b Fl(solvemap)e │ │ │ │ Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f(message)h(is)g(prin)m(ted)e(and)h │ │ │ │ (the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fm(4)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 66 399 a Fm(11.)46 b Fl(int)h(*)h │ │ │ │ (SolveMap_colidsLower)42 b(\()47 b(SolveMap)f(*solvemap)f(\))j(;)227 │ │ │ │ 567 y Fm(This)31 b(metho)s(d)g(returns)f Fl(colidsLower)p │ │ │ │ Fm(,)f(a)j(p)s(oin)m(ter)f(to)h(the)g(v)m(ector)h(of)f(column)f(ids)g │ │ │ │ (of)g(the)h(submatrices)227 680 y(in)e(the)h(upp)s(er)d(triangle.)227 │ │ │ │ 848 y Fk(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fm(If)30 │ │ │ │ b Fl(solvemap)e Fm(is)j Fl(NULL)p Fm(,)e(an)i(error)f(message)h(is)g │ │ │ │ @@ -4665,15 +4659,15 @@ │ │ │ │ b Fm(If)39 b Fl(solvemap)p Fm(,)i Fl(upperBlockIVL)36 │ │ │ │ b Fm(or)k Fl(ownersIV)d Fm(is)j Fl(NULL)p Fm(,)f(or)h(if)f │ │ │ │ Fl(symmetryflag)e Fm(is)227 5407 y(in)m(v)-5 b(alid,)31 │ │ │ │ b(an)g(error)f(message)h(is)g(prin)m(ted)f(and)f(the)i(program)f │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1034 4 v 1215 100 a Fl(SolveMap)29 │ │ │ │ -b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(5)0 399 y Fb(1.2.5)112 b(Solv)m(e)38 │ │ │ │ b(setup)g(metho)s(ds)111 591 y Fm(1.)46 b Fl(IP)h(**)h │ │ │ │ (SolveMap_forwardSetup)42 b(\()47 b(SolveMap)f(*solvemap,)f(int)i │ │ │ │ (myid,)1659 704 y(int)g(msglvl,)f(FILE)g(*msgFile)g(\))h(;)227 │ │ │ │ 817 y(IP)g(**)h(SolveMap_backwardSetup)41 b(\()48 b(SolveMap)d │ │ │ │ (*solvemap,)g(int)i(myid,)1659 930 y(int)g(msglvl,)f(FILE)g(*msgFile)g │ │ │ │ (\))h(;)227 1076 y Fm(These)21 b(t)m(w)m(o)g(metho)s(ds)f(return)g(a)h │ │ │ │ @@ -4743,15 +4737,15 @@ │ │ │ │ (forw)m(ard)f(solv)m(e.)52 b(If)227 5407 y Fl(myid)32 │ │ │ │ b Fm(o)m(wns)g(fron)m(t)h Fl(J)p Fm(,)g(then)f(en)m(try)h │ │ │ │ Fl(J)f Fm(of)h(the)g(returned)f Fl(IV)g Fm(ob)5 b(ject)33 │ │ │ │ b(con)m(tains)h(the)f(n)m(um)m(b)s(er)e(of)i(pro)s(cesses)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fm(6)p 136 100 1034 4 v │ │ │ │ -1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(18,)i │ │ │ │ +1216 w Fl(SolveMap)28 b Fd(:)41 b Fk(DRAFT)30 b Fd(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2866 100 V 227 399 a Fm(\(other)c(than)e Fl(myid)p │ │ │ │ Fm(\))g(that)i(o)m(wn)f(an)f Fj(L)1522 413 y Fi(J)p Fh(;)p │ │ │ │ Fi(I)1643 399 y Fm(submatrix,)h(\(or)h Fj(U)2304 413 │ │ │ │ y Fi(I)p Fh(;)p Fi(J)2425 399 y Fm(submatrix)e(if)h(symmetric)g(or)g │ │ │ │ (hermitian\))227 511 y(and)j(so)h(is)f(the)h(n)m(um)m(b)s(er)e(of)h │ │ │ │ (incoming)h(aggregate)i(submatrices)e(pro)s(cess)f Fl(myid)f │ │ │ │ Fm(exp)s(ects)i(for)f(fron)m(t)g Fl(J)p Fm(.)227 665 │ │ │ │ @@ -4832,15 +4826,15 @@ │ │ │ │ (from)f Fl(fprintf)p Fm(,)h(zero)g(is)g(returned.)227 │ │ │ │ 5407 y Fk(Err)-5 b(or)33 b(che)-5 b(cking:)40 b Fm(If)28 │ │ │ │ b Fl(solvemap)f Fm(or)i Fl(fp)g Fm(are)g Fl(NULL)f Fm(an)h(error)g │ │ │ │ (message)h(is)f(prin)m(ted)f(and)h(zero)h(is)f(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1034 4 v 1215 100 a Fl(SolveMap)29 │ │ │ │ -b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fd(:)40 b Fk(DRAFT)121 b Fd(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2819 100 V 1034 w Fm(7)111 399 y(6.)46 b Fl(int)h │ │ │ │ (SolveMap_writeToBinaryFil)o(e)42 b(\()47 b(SolveMap)f(*solvemap,)f │ │ │ │ (FILE)h(*fp)h(\))h(;)227 549 y Fm(This)29 b(metho)s(d)h(writes)g(an)f │ │ │ │ Fl(SolveMap)f Fm(ob)5 b(ject)31 b(to)f(a)h(binary)e(\014le.)40 │ │ │ │ b(If)30 b(there)g(are)g(no)g(errors)f(in)h(writing)g(the)227 │ │ │ │ 662 y(data,)i(the)e(v)-5 b(alue)31 b Fl(1)f Fm(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -19,15 +19,15 @@ │ │ │ │ │ • int nproc – number of threads or processes │ │ │ │ │ • int *owners – vector mapping fronts to owning threads or processes │ │ │ │ │ • int nblockUpper – number of submatrices in the upper triangle │ │ │ │ │ • int *rowidsUpper – vector of row ids for the upper triangle │ │ │ │ │ • int *colidsUpper – vector of column ids for the upper triangle │ │ │ │ │ • int *mapUpper – map from submatrices to threads or processes │ │ │ │ │ 1 │ │ │ │ │ - 2 SolveMap : DRAFT October 18, 2025 │ │ │ │ │ + 2 SolveMap : DRAFT October 28, 2025 │ │ │ │ │ • int nblockLower – number of submatrices in the lower triangle │ │ │ │ │ • int *rowidsLower – vector of row ids for the lower triangle │ │ │ │ │ • int *colidsLower – vector of column ids for the lower triangle │ │ │ │ │ • int *mapLower – map from submatrices to threads or processes processes │ │ │ │ │ 1.2 Prototypes and descriptions of SolveMap methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ SolveMap object. │ │ │ │ │ @@ -50,15 +50,15 @@ │ │ │ │ │ This method releases any storage by a call to SolveMap clearData() then free’s the storage │ │ │ │ │ for the structure with a call to free(). │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. int SolveMap_symmetryflag ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns symmetryflag, the symmetry flag. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ - SolveMap : DRAFT October 18, 2025 3 │ │ │ │ │ + SolveMap : DRAFT October 28, 2025 3 │ │ │ │ │ 2. int SolveMap_nfront ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns nfront, the number of fronts. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. int SolveMap_nproc ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns nproc, the number of threads or processes. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. int SolveMap_nblockUpper ( SolveMap *solvemap ) ; │ │ │ │ │ @@ -84,15 +84,15 @@ │ │ │ │ │ This method returns mapUpper, a pointer to the vector that maps the submatrices in the │ │ │ │ │ upper triangle to threads or processes. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ 10. int * SolveMap_rowidsLower ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns rowidsLower, a pointer to the vector of row ids of the submatrices in │ │ │ │ │ the lower triangle. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ - 4 SolveMap : DRAFT October 18, 2025 │ │ │ │ │ + 4 SolveMap : DRAFT October 28, 2025 │ │ │ │ │ 11. int * SolveMap_colidsLower ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns colidsLower, a pointer to the vector of column ids of the submatrices │ │ │ │ │ in the upper triangle. │ │ │ │ │ Error checking: If solvemap is NULL, an error message is printed and the program exits. │ │ │ │ │ 12. int * SolveMap_mapLower ( SolveMap *solvemap ) ; │ │ │ │ │ This method returns mapLower, a pointer to the vector that maps the submatrices in the │ │ │ │ │ upper triangle to threads or processes. │ │ │ │ │ @@ -118,15 +118,15 @@ │ │ │ │ │ fashion. A domain is a subtree of fronts that are owned by the same thread or process. │ │ │ │ │ Furthermore, a domain is maximal, i.e., the parent of the root domain (if it exists) is owned │ │ │ │ │ by a different process. If J belongs to a domain, then for all K, LK,J and UJ,K are owned by │ │ │ │ │ the thread or process that owns the domain. All other submatrices are mapped to threads or │ │ │ │ │ processes in a random fashion. │ │ │ │ │ Error checking: If solvemap, upperBlockIVL or ownersIV is NULL, or if symmetryflag is │ │ │ │ │ invalid, an error message is printed and the program exits. │ │ │ │ │ - SolveMap : DRAFT October 18, 2025 5 │ │ │ │ │ + SolveMap : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.5 Solve setup methods │ │ │ │ │ 1. IP ** SolveMap_forwardSetup ( SolveMap *solvemap, int myid, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ IP ** SolveMap_backwardSetup ( SolveMap *solvemap, int myid, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ ThesetwomethodsreturnavectorofpointerstoIPobjectsthatcontainthelistofsubmatrices │ │ │ │ │ that thread or process myid will use during the forward or backward solves. │ │ │ │ │ @@ -157,15 +157,15 @@ │ │ │ │ │ submatrices process myid expects for front J. │ │ │ │ │ Error checking: If solvemap is NULL or nlist < 0 then an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 5. IV * SolveMap_lowerAggregateIV ( SolveMap *solvemap, int myid │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method returns an IV object that contains the aggregate count for a forward solve. If │ │ │ │ │ myid owns front J, then entry J of the returned IV object contains the number of processes │ │ │ │ │ - 6 SolveMap : DRAFT October 18, 2025 │ │ │ │ │ + 6 SolveMap : DRAFT October 28, 2025 │ │ │ │ │ (other than myid) that own an L submatrix, (or U submatrix if symmetric or hermitian) │ │ │ │ │ J,I I,J │ │ │ │ │ and so is the number of incoming aggregate submatrices process myid expects for front J. │ │ │ │ │ Error checking: If solvemap is NULL or nlist < 0 then an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 1.2.7 IO methods │ │ │ │ │ TherearetheusualeightIOroutines. ThefilestructureofaSolveMapobjectissimple: symmetryflag, │ │ │ │ │ @@ -194,15 +194,15 @@ │ │ │ │ │ Error checking: If solvemap or fn are NULL, or if fn is not of the form *.solvemapf (for a │ │ │ │ │ formatted file) or *.solvemapb (for a binary file), an error message is printed and the method │ │ │ │ │ returns zero. │ │ │ │ │ 5. int SolveMap_writeToFormattedFile ( SolveMap *solvemap, FILE *fp ) ; │ │ │ │ │ This method writes an SolveMap object to a formatted file. If there are no errors in writing │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If solvemap or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ - SolveMap : DRAFT October 18, 2025 7 │ │ │ │ │ + SolveMap : DRAFT October 28, 2025 7 │ │ │ │ │ 6. int SolveMap_writeToBinaryFile ( SolveMap *solvemap, FILE *fp ) ; │ │ │ │ │ This method writes an SolveMap object to a binary file. If there are no errors in writing the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If solvemap or fp are NULL an error message is printed and zero is returned. │ │ │ │ │ 7. int SolveMap_writeForHumanEye ( SolveMap *solvemap, FILE *fp ) ; │ │ │ │ │ This method writes an SolveMap object to a file in an easily readable format. The method │ │ │ │ │ SolveMap writeStats() is called to write out the header and statistics. The value 1 is │ │ ├── ./usr/share/doc/spooles-doc/SubMtx.ps.gz │ │ │ ├── SubMtx.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SubMtx.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2118,15 +2118,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2320,81 +2319,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5240,15 +5234,15 @@ │ │ │ │ 99.6264 /CMBX12 rf /Fd 135[62 2[62 62 4[62 4[62 4[62 │ │ │ │ 1[62 62 14[62 5[62 77[{}10 119.552 /CMTT12 rf /Fe 134[71 │ │ │ │ 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 41 61 75 60 │ │ │ │ 1[65 13[75 2[92 11[103 16[67 67 67 2[37 46[{}25 119.552 │ │ │ │ /CMBX12 rf /Ff 138[49 30 37 38 1[46 46 51 1[23 42 1[28 │ │ │ │ 46 42 1[42 46 42 1[46 12[65 1[66 11[59 62 69 2[68 6[28 │ │ │ │ 58[{}23 90.9091 /CMTI10 rf /Fg 139[35 1[36 2[45 9[40 │ │ │ │ -1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Fh 132[52 123[{}1 90.9091 /CMBX10 │ │ │ │ rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ @@ -5375,15 +5369,15 @@ │ │ │ │ 5111 y Fh({)45 b Fo(sparse)30 b(using)g(sparse)g(ro)m(ws)330 │ │ │ │ 5259 y Fh({)45 b Fo(sparse)30 b(using)g(sparse)g(columns)330 │ │ │ │ 5407 y Fh({)45 b Fo(sparse)30 b(using)g(\()p Fm(i;)15 │ │ │ │ b(j;)g(a)1170 5421 y Fl(i;j)1252 5407 y Fo(\))31 b(triples)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fo(2)p 136 100 1082 4 v │ │ │ │ -1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 330 399 a Fh({)45 b Fo(a)31 b(diagonal)h(matrix)330 │ │ │ │ 541 y Fh({)45 b Fo(a)c(blo)s(c)m(k)g(diagonal)g(symmetric)g(matrix)f │ │ │ │ (where)g(the)g(blo)s(c)m(ks)h(are)g(1)27 b Fj(\002)f │ │ │ │ Fo(1)41 b(or)f(2)28 b Fj(\002)e Fo(2,)43 b(used)d(in)g(the)427 │ │ │ │ 654 y(symmetric)31 b(inde\014nite)f(factorization.)330 │ │ │ │ 796 y Fh({)45 b Fo(a)d(blo)s(c)m(k)f(diagonal)h(Hermitian)g(matrix)f │ │ │ │ (where)f(the)h(blo)s(c)m(ks)h(are)f(1)27 b Fj(\002)g │ │ │ │ @@ -5456,15 +5450,15 @@ │ │ │ │ Fo(structure)g(has)i(the)f(follo)m(wing)i(\014elds.)137 │ │ │ │ 5224 y Fi(\210)45 b Fn(int)i(type)29 b Fo(:)41 b(t)m(yp)s(e)31 │ │ │ │ b(of)f(en)m(tries.)330 5407 y Fh({)45 b Fn(SPOOLES)p │ │ │ │ 769 5407 29 4 v 33 w(REAL)29 b Fo(:)h(double)g(precision)h(real)g(en)m │ │ │ │ (tries.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1082 4 v 1263 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fo(3)330 399 y Fh({)45 b Fn(SPOOLES)p │ │ │ │ 769 399 29 4 v 33 w(COMPLEX)28 b Fo(:)j(double)f(precision)g(complex)h │ │ │ │ (en)m(tries.)137 590 y Fi(\210)45 b Fn(int)i(mode)29 │ │ │ │ b Fo(:)41 b(storage)32 b(mo)s(de.)330 781 y Fh({)45 b │ │ │ │ Fn(SUBMTX)p 721 781 V 33 w(DENSE)p 994 781 V 33 w(ROWS)29 │ │ │ │ b Fo(:)i(dense,)f(storage)i(b)m(y)e(ro)m(ws.)330 929 │ │ │ │ y Fh({)45 b Fn(SUBMTX)p 721 929 V 33 w(DENSE)p 994 929 │ │ │ │ @@ -5528,15 +5522,15 @@ │ │ │ │ y(wise.)137 5294 y Fi(\210)45 b Fn(SUBMTX)p 521 5294 │ │ │ │ V 33 w(IS)p 650 5294 V 34 w(SPARSE)p 972 5294 V 33 w(COLUMNS\(mtx\))25 │ │ │ │ b Fo(is)30 b Fn(1)e Fo(if)h Fn(mtx)g Fo(has)g(sparse)f(columns)h(as)h │ │ │ │ (its)f(storage)i(format,)f(and)e Fn(0)227 5407 y Fo(otherwise.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fo(4)p 136 100 1082 4 v │ │ │ │ -1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 137 399 a Fi(\210)45 b Fn(SUBMTX)p │ │ │ │ 521 399 29 4 v 33 w(IS)p 650 399 V 34 w(SPARSE)p 972 │ │ │ │ 399 V 33 w(TRIPLES\(mtx\))24 b Fo(is)k Fn(1)g Fo(if)g │ │ │ │ Fn(mtx)f Fo(has)g(sparse)h(triples)g(as)g(its)g(storage)i(format,)f │ │ │ │ Fn(0)e Fo(other-)227 511 y(wise.)137 691 y Fi(\210)45 │ │ │ │ b Fn(SUBMTX)p 521 691 V 33 w(IS)p 650 691 V 34 w(DENSE)p │ │ │ │ 924 691 V 33 w(SUBROWS\(mtx\))25 b Fo(is)j Fn(1)g Fo(if)g │ │ │ │ @@ -5602,15 +5596,15 @@ │ │ │ │ Fo(and)h(then)h(frees)h(the)f(space)227 5261 y(for)g │ │ │ │ Fn(mtx)p Fo(.)227 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fo(If)30 b Fn(mtx)g Fo(is)g Fn(NULL)p Fo(,)g(an)g(error)g(message)h │ │ │ │ (is)g(prin)m(ted)f(and)g(the)g(program)g(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1082 4 v 1263 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fo(5)0 399 y Fc(1.2.2)112 b(Instance)38 │ │ │ │ b(metho)s(ds)111 597 y Fo(1.)46 b Fn(void)h(SubMtx_ids)e(\()i(SubMtx)f │ │ │ │ (*mtx,)h(int)g(*prowid,)e(int)i(*pcolid)f(\))h(;)227 │ │ │ │ 748 y Fo(This)30 b(metho)s(d)g(\014lls)g Fn(*prowid)e │ │ │ │ Fo(with)i(the)h(ro)m(w)f(id)g(and)g Fn(*pcolid)f Fo(with)h(the)g │ │ │ │ (column)g(id)g(of)h(the)g(ob)5 b(ject.)227 900 y Ff(Err)-5 │ │ │ │ b(or)27 b(che)-5 b(cking:)36 b Fo(If)22 b Fn(mtx)p Fo(,)h │ │ │ │ @@ -5680,15 +5674,15 @@ │ │ │ │ g(con)m(tains)g(the)f(n)m(um)m(b)s(er)e(of)i(en)m(tries)h(in)e(eac)m(h) │ │ │ │ i(ro)m(w,)g Fn(*indices)c Fo(with)j(the)g(base)227 5407 │ │ │ │ y(address)41 b(of)g(the)h Fn(indices[nent])c Fo(v)m(ector)43 │ │ │ │ b(that)f(con)m(tains)g(the)g(column)f(index)g(for)g(eac)m(h)h(en)m(try) │ │ │ │ -8 b(,)46 b(and)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fo(6)p 136 100 1082 4 v │ │ │ │ -1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 227 399 a Fn(*pentries)f Fo(with)i(the)g(base)g │ │ │ │ (address)f(of)i Fn(entries[nent])29 b Fo(v)m(ector.)51 │ │ │ │ b(The)32 b(indices)h(and)g(en)m(tries)h(for)f(the)227 │ │ │ │ 511 y(ro)m(ws)e(are)f(stored)h(con)m(tiguously)-8 b(.)227 │ │ │ │ 662 y Ff(Err)j(or)28 b(che)-5 b(cking:)37 b Fo(If)24 │ │ │ │ b Fn(mtx)p Fo(,)h Fn(pnrow)p Fo(,)f Fn(pnent)p Fo(,)g │ │ │ │ Fn(psizes)p Fo(,)g Fn(pindices)d Fo(or)j Fn(pentries)e │ │ │ │ @@ -5777,15 +5771,15 @@ │ │ │ │ Fo(v)m(ector,)54 b Fn(*plastlocs)45 b Fo(with)i(the)h(base)g(address)f │ │ │ │ (of)h(the)227 5407 y Fn(lastlocs[ncol])22 b Fo(v)m(ector,)29 │ │ │ │ b(and)c Fn(*pentries)e Fo(with)j(the)g(base)f(address)g(of)h │ │ │ │ Fn(entries[nent])c Fo(v)m(ector.)41 b(F)-8 b(or)p eop │ │ │ │ end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1082 4 v 1263 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fo(7)227 399 y(column)38 b Fn(jcol)p │ │ │ │ Fo(,)h(the)g(nonzero)f(en)m(tries)h(are)f(found)f(in)h(ro)m(ws)g │ │ │ │ Fn([firstlocs[jcol],lastlo)o(cs[j)o(col])o(])227 511 │ │ │ │ y Fo(when)32 b Fn(firstlocs[jcol])24 b Fj(\025)k Fo(0)33 │ │ │ │ b(and)f Fn(firstlocs[jcol])24 b Fj(\024)29 b Fn(lastlocs[jcol])l │ │ │ │ Fo(.)47 b(The)31 b(en)m(tries)j(for)e(the)227 624 y(columns)e(are)h │ │ │ │ (stored)g(con)m(tiguously)-8 b(.)227 787 y Ff(Err)j(or)32 │ │ │ │ @@ -5862,15 +5856,15 @@ │ │ │ │ Fn(irow)e Fo(or)i Fn(jcol)f Fo(is)h(out)g(of)g(range,)h(an)e(error)227 │ │ │ │ 5082 y(message)g(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)66 │ │ │ │ 5294 y(16.)46 b Fn(void)95 b(SubMtx_locationOfRealEn)o(try)41 │ │ │ │ b(\()48 b(SubMtx)e(*mtx,)g(int)h(irow,)f(int)h(jcol,)1898 │ │ │ │ 5407 y(double)f(**ppValue)f(\))j(;)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fo(8)p 136 100 1082 4 v │ │ │ │ -1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +1264 w Fn(SubMtx)28 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2819 100 V 227 399 a Fo(If)h(the)g Fn(\(irow,jcol\))d │ │ │ │ Fo(en)m(try)j(is)g(presen)m(t,)h(this)f(metho)s(d)g(\014lls)g │ │ │ │ Fn(*ppValue)d Fo(with)j(a)h(p)s(oin)m(ter)f(to)g(the)h(en)m(try)227 │ │ │ │ 511 y(in)d(ro)m(w)f Fn(irow)g Fo(and)g(column)p Fn(jcol)p │ │ │ │ Fo(.)41 b(Otherwise,)30 b Fn(*ppValue)f Fo(is)h(set)i(to)f │ │ │ │ Fn(NULL)p Fo(.)f(Note,)i Fn(irow)e Fo(and)g Fn(jcol)g │ │ │ │ Fo(are)227 624 y Ff(lo)-5 b(c)g(al)32 b Fo(indices,)f(i.e.,)h(0)26 │ │ │ │ @@ -5945,15 +5939,15 @@ │ │ │ │ Fo(is)h Fn(NULL)p Fo(,)g(or)g(if)g Fn(nrow)p Fo(,)g Fn(ncol)p │ │ │ │ Fo(,)g Fn(inc1)g Fo(or)g Fn(inc2)f Fo(is)h(less)h(than)f(or)g(equal)h │ │ │ │ (to)g(zero,)227 5407 y(or)d(if)f(neither)g Fn(inc1)g │ │ │ │ Fo(nor)f Fn(inc2)h Fo(are)g Fn(1)p Fo(,)h(an)f(error)g(message)h(is)g │ │ │ │ (prin)m(ted)f(and)f(the)i(program)f(exits.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1082 4 v 1263 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2771 100 V 1082 w Fo(9)111 399 y(4.)46 b Fn(void)h │ │ │ │ (SubMtx_initRandomLowerTr)o(iang)o(le)41 b(\()48 b(SubMtx)e(*mtx,)g │ │ │ │ (int)h(type,)g(int)g(mode,)370 511 y(int)g(rowid,)f(int)h(colid,)f(int) │ │ │ │ h(nrow,)g(int)g(ncol,)f(int)h(nent,)f(int)h(seed,)g(int)f(strict)h(\))g │ │ │ │ (;)227 624 y(void)g(SubMtx_initRandomUpperTr)o(iang)o(le)41 │ │ │ │ b(\()48 b(SubMtx)e(*mtx,)g(int)h(type,)g(int)g(mode,)370 │ │ │ │ 737 y(int)g(rowid,)f(int)h(colid,)f(int)h(nrow,)g(int)g(ncol,)f(int)h │ │ │ │ @@ -6037,15 +6031,15 @@ │ │ │ │ (sub)s(columns)d(or)j(sparse)227 5260 y(columns.)227 │ │ │ │ 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fo(If)30 │ │ │ │ b Fn(mtxA)g Fo(or)g Fn(mtxB)f Fo(is)i Fn(NULL)p Fo(,)e(an)h(error)g │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fo(10)p 182 100 1059 4 │ │ │ │ -v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2841 100 V 111 399 a Fo(2.)46 b Fn(void)h(SubMtx_solveH)d(\()k │ │ │ │ (SubMtx)e(*mtxA,)g(SubMtx)g(*mtxB)g(\))i(;)227 547 y │ │ │ │ Fo(This)24 b(metho)s(d)f(is)h(used)g(to)h(solv)m(e)g(\()p │ │ │ │ Fm(I)15 b Fo(+)8 b Fm(A)1598 514 y Fl(H)1665 547 y Fo(\))p │ │ │ │ Fm(X)33 b Fo(=)25 b Fm(B)5 b Fo(,)26 b(where)d Fm(A)i │ │ │ │ Fo(is)f(strict)h(lo)m(w)m(er)g(or)f(upp)s(er)e(triangular.)39 │ │ │ │ b(The)227 660 y(solution)32 b Fm(X)38 b Fo(o)m(v)m(erwrites)32 │ │ │ │ @@ -6120,15 +6114,15 @@ │ │ │ │ b Fn(int)h(SubMtx_nbytesInUse)c(\()k(SubMtx)g(*mtx)f(\))i(;)227 │ │ │ │ 5294 y Fo(This)36 b(metho)s(d)f(returns)g(the)i(actual)g(n)m(um)m(b)s │ │ │ │ (er)e(of)i(b)m(ytes)g(that)f(are)h(used)f(in)f(the)i(w)m(orkspace)g(o)m │ │ │ │ (wned)f(b)m(y)227 5407 y(this)31 b(ob)5 b(ject.)p eop │ │ │ │ end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1059 4 v 1240 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2749 100 V 1059 w Fo(11)227 399 y Ff(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fo(If)30 b Fn(mtx)g Fo(is)g Fn(NULL)p Fo(,)g(an)g(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)g(the)g(program)g(exits.)111 │ │ │ │ 606 y(3.)46 b Fn(int)h(SubMtx_nbytesInWorkspace)41 b(\()48 │ │ │ │ b(SubMtx)e(*mtx)h(\))g(;)227 766 y Fo(This)30 b(metho)s(d)g(returns)f │ │ │ │ (the)h(n)m(um)m(b)s(er)f(of)i(b)m(ytes)g(in)f(the)g(w)m(orkspace)i(o)m │ │ │ │ (wned)e(b)m(y)g(this)g(ob)5 b(ject.)227 926 y Ff(Err)-5 │ │ │ │ @@ -6188,15 +6182,15 @@ │ │ │ │ Fn(colDV)f Fo(v)m(ector)j(ob)5 b(ject.)227 5294 y Ff(Err)-5 │ │ │ │ b(or)30 b(che)-5 b(cking:)38 b Fo(If)26 b Fn(mtx)f Fo(or)h │ │ │ │ Fn(colDV)e Fo(is)i Fn(NULL)p Fo(,)f(or)h(if)g Fn(jcol)f │ │ │ │ Fo(is)h(out)g(of)g(range,)i(an)e(error)f(message)i(is)f(prin)m(ted)227 │ │ │ │ 5407 y(and)k(the)h(program)f(exits.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fo(12)p 182 100 1059 │ │ │ │ -4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2841 100 V 66 399 a Fo(11.)46 b Fn(void)h(SubMtx_fillRowZV)c │ │ │ │ (\()48 b(SubMtx)e(*mtx,)g(int)h(irow,)f(ZV)i(*rowZV)e(\))h(;)227 │ │ │ │ 551 y Fo(This)35 b(metho)s(d)f(is)h(used)f(for)h(complex)h │ │ │ │ (submatrices.)55 b(It)35 b(copies)h(the)f(en)m(tries)h(in)e(ro)m(w)h │ │ │ │ Fn(irow)f Fo(of)i(the)f Fn(mtx)227 664 y Fo(ob)5 b(ject)32 │ │ │ │ b(in)m(to)f(the)f Fn(rowZV)f Fo(v)m(ector)j(ob)5 b(ject.)227 │ │ │ │ 816 y Ff(Err)-5 b(or)30 b(che)-5 b(cking:)38 b Fo(If)26 │ │ │ │ @@ -6262,15 +6256,15 @@ │ │ │ │ b(If)36 b(there)g(are)g(no)g(errors)f(in)h(reading)227 │ │ │ │ 5407 y(the)30 b(data,)h(the)f(v)-5 b(alue)30 b Fn(1)f │ │ │ │ Fo(is)h(returned.)39 b(If)29 b(an)h(IO)f(error)g(is)h(encoun)m(tered)g │ │ │ │ (from)f Fn(fread)p Fo(,)g(zero)h(is)g(returned.)p eop │ │ │ │ end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1059 4 v 1240 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2749 100 V 1059 w Fo(13)227 399 y(Note,)40 b(if)c(the)g(m)m(txutation)i │ │ │ │ (v)m(ectors)f(are)g(one-based)f(\(as)h(for)f(F)-8 b(ortran\),)39 │ │ │ │ b(they)e(are)f(con)m(v)m(erted)i(to)f(zero-)227 511 y(based)30 │ │ │ │ b(v)m(ectors.)227 660 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fo(If)30 b Fn(mtx)g Fo(or)g Fn(fp)g Fo(are)h Fn(NULL)p │ │ │ │ Fo(,)e(an)h(error)g(message)i(is)e(prin)m(ted)g(and)g(zero)h(is)g │ │ │ │ (returned.)111 843 y(4.)46 b Fn(int)h(SubMtx_writeToFile)c(\()k(SubMtx) │ │ │ │ @@ -6341,15 +6335,15 @@ │ │ │ │ 5146 y(con)m(v)m(en)m(tion.)227 5294 y Ff(Err)j(or)45 │ │ │ │ b(che)-5 b(cking:)63 b Fo(If)42 b Fn(mtx)p Fo(,)i Fn(mtxname)c │ │ │ │ Fo(or)i Fn(fp)f Fo(are)h Fn(NULL)p Fo(,)f(an)h(error)f(message)i(is)f │ │ │ │ (prin)m(ted)g(and)f(zero)i(is)227 5407 y(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fo(14)p 182 100 1059 │ │ │ │ -4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2841 100 V 0 399 a Fe(1.3)135 b(Driv)l(er)46 │ │ │ │ b(programs)g(for)f(the)g Fd(SubMtx)58 b(object)111 629 │ │ │ │ y Fo(1.)46 b Fn(testIO)g(msglvl)g(msgFile)g(inFile)g(outFile)227 │ │ │ │ 782 y Fo(This)c(driv)m(er)f(program)h(reads)g(in)g(a)g │ │ │ │ Fn(SubMtx)e Fo(ob)5 b(ject)43 b(from)f Fn(inFile)e Fo(and)i(writes)g │ │ │ │ (out)g(the)g(ob)5 b(ject)43 b(to)227 895 y Fn(outFile)337 │ │ │ │ 1114 y Fi(\210)i Fo(The)28 b Fn(msglvl)f Fo(parameter)i(determines)g │ │ │ │ @@ -6418,15 +6412,15 @@ │ │ │ │ 5075 y(matlab,)32 b(the)e(last)h(lines)g(to)g(the)g(screen)f(con)m │ │ │ │ (tain)i(the)e(errors.)337 5294 y Fi(\210)45 b Fo(The)f │ │ │ │ Fn(msglvl)e Fo(parameter)j(determines)f(the)g(amoun)m(t)h(of)f(output.) │ │ │ │ 82 b(Use)44 b Fn(msglvl)i(=)i(1)c Fo(for)g(just)427 5407 │ │ │ │ y(timing)31 b(output.)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 1059 4 v 1240 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2749 100 V 1059 w Fo(15)337 399 y Fi(\210)45 b Fo(The)33 │ │ │ │ b Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Ff(stdout)p Fo(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Ff(app)-5 b(end)28 │ │ │ │ b Fo(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 772 y Fi(\210)45 b Fo(The)30 b Fn(type)f │ │ │ │ @@ -6508,15 +6502,15 @@ │ │ │ │ (matlab,)h(the)e(last)i(lines)e(to)h(the)g(screen)f(con)m(tain)i(the)f │ │ │ │ (errors.)337 5294 y Fi(\210)45 b Fo(The)f Fn(msglvl)e │ │ │ │ Fo(parameter)j(determines)f(the)g(amoun)m(t)h(of)f(output.)82 │ │ │ │ b(Use)44 b Fn(msglvl)i(=)i(1)c Fo(for)g(just)427 5407 │ │ │ │ y(timing)31 b(output.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fo(16)p 182 100 1059 │ │ │ │ -4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2841 100 V 337 399 a Fi(\210)45 b Fo(The)33 b │ │ │ │ Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Ff(stdout)p Fo(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Ff(app)-5 b(end)28 │ │ │ │ b Fo(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 767 y Fi(\210)45 b Fo(The)30 b Fn(type)f │ │ │ │ @@ -6600,15 +6594,15 @@ │ │ │ │ g(sparse)f(ro)m(ws)h(or)f(columns.)63 b(Use)38 b(the)g(script)g(\014le) │ │ │ │ 227 5294 y Fn(do)p 329 5294 V 34 w(solveupdH)32 b Fo(for)j(testing.)54 │ │ │ │ b(When)35 b(the)f(output)h(\014le)f(is)h(loaded)g(in)m(to)h(matlab,)g │ │ │ │ (the)f(last)h(lines)e(to)i(the)227 5407 y(screen)31 b(con)m(tain)g(the) │ │ │ │ g(errors.)p eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 91 100 1059 4 v 1240 100 a Fn(SubMtx)29 │ │ │ │ -b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2749 100 V 1059 w Fo(17)337 399 y Fi(\210)45 b Fo(The)f │ │ │ │ Fn(msglvl)e Fo(parameter)j(determines)f(the)g(amoun)m(t)h(of)f(output.) │ │ │ │ 82 b(Use)44 b Fn(msglvl)i(=)i(1)c Fo(for)g(just)427 511 │ │ │ │ y(timing)31 b(output.)337 655 y Fi(\210)45 b Fo(The)33 │ │ │ │ b Fn(msgFile)e Fo(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fn(msgFile)e Fo(is)i Fn(stdout)p Fo(,)g(then)g(the)427 │ │ │ │ 767 y(message)27 b(\014le)f(is)g Ff(stdout)p Fo(,)i(otherwise)e(a)h │ │ │ │ @@ -6689,15 +6683,15 @@ │ │ │ │ 5121 y(priate.)337 5264 y Fi(\210)45 b Fo(The)30 b Fn(nrowX)f │ │ │ │ Fo(parameter)i(is)f(the)h(n)m(um)m(b)s(er)e(of)i(ro)m(ws)f(in)g │ │ │ │ Fm(X)7 b Fo(,)31 b Fn(nrowA)24 b Fj(\024)h Fn(nrowY)n │ │ │ │ Fo(.)337 5407 y Fi(\210)45 b Fo(The)30 b Fn(seed)f Fo(parameter)i(is)g │ │ │ │ (a)f(random)g(n)m(um)m(b)s(er)f(seed.)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fo(18)p 182 100 1059 │ │ │ │ -4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1241 w Fn(SubMtx)29 b Fg(:)41 b Ff(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2841 100 V 111 399 a Fo(9.)46 b Fn(test_sort)g(msglvl)g │ │ │ │ (msgFile)f(type)i(mode)g(nrowA)f(ncolA)g(nentA)h(seed)227 │ │ │ │ 549 y Fo(This)22 b(driv)m(er)h(program)f(tests)i(the)f │ │ │ │ Fn(SubMtx)p 1688 549 29 4 v 32 w(sortRowsUp\(\))d Fo(and)i │ │ │ │ Fn(SubMtx)p 2773 549 V 33 w(sortColumnsUp\(\))c Fo(metho)s(ds.)227 │ │ │ │ 662 y(Use)34 b(the)g(script)f(\014le)h Fn(do)p 1073 662 │ │ │ │ V 33 w(sort)f Fo(for)g(testing.)51 b(When)33 b(the)h(output)f(\014le)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -23,15 +23,15 @@ │ │ │ │ │ – dense by columns, i.e., dense and column major │ │ │ │ │ – sparse using dense subrows │ │ │ │ │ – sparse using dense subcolumns │ │ │ │ │ – sparse using sparse rows │ │ │ │ │ – sparse using sparse columns │ │ │ │ │ – sparse using (i,j,ai,j) triples │ │ │ │ │ 1 │ │ │ │ │ - 2 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 2 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ – a diagonal matrix │ │ │ │ │ – a block diagonal symmetric matrix where the blocks are 1 × 1 or 2 × 2, used in the │ │ │ │ │ symmetric indefinite factorization. │ │ │ │ │ – a block diagonal Hermitian matrix where the blocks are 1 × 1 or 2 × 2, used in the │ │ │ │ │ hermitian indefinite factorization. │ │ │ │ │ • The SubMtx object can be self-contained, in the sense that its structure contains a DV object │ │ │ │ │ that manages a contiguous vector of workspace that is used to store all information about the │ │ │ │ │ @@ -60,15 +60,15 @@ │ │ │ │ │ information is better than using explicit structure fields. For example, if we want to extend the │ │ │ │ │ object by allowing another storage format, we do not need to increase the size of the structure at │ │ │ │ │ all — it is only necessary to provide one or more instance methods to return the new information. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The SubMtx structure has the following fields. │ │ │ │ │ • int type : type of entries. │ │ │ │ │ – SPOOLES REAL : double precision real entries. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 3 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 3 │ │ │ │ │ – SPOOLES COMPLEX : double precision complex entries. │ │ │ │ │ • int mode : storage mode. │ │ │ │ │ – SUBMTX DENSE ROWS : dense, storage by rows. │ │ │ │ │ – SUBMTX DENSE COLUMNS : dense, storage by columns. │ │ │ │ │ – SUBMTX SPARSE ROWS : sparse, storage by rows. │ │ │ │ │ – SUBMTX SPARSE COLUMNS : sparse, storage by columns. │ │ │ │ │ – SUBMTX SPARSE TRIPLES : sparse, storage by (i,j,ai,j) triples. │ │ │ │ │ @@ -92,15 +92,15 @@ │ │ │ │ │ • SUBMTX IS DENSE ROWS(mtx)is 1 if mtx has dense rows as its storage format, and 0 otherwise. │ │ │ │ │ • SUBMTX IS DENSE COLUMNS(mtx) is 1 if mtx has dense columns as its storage format, and 0 │ │ │ │ │ otherwise. │ │ │ │ │ • SUBMTX IS SPARSE ROWS(mtx) is 1 if mtx has sparse rows as its storage format, and 0 other- │ │ │ │ │ wise. │ │ │ │ │ • SUBMTX IS SPARSE COLUMNS(mtx) is 1 if mtx has sparse columns as its storage format, and 0 │ │ │ │ │ otherwise. │ │ │ │ │ - 4 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 4 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ • SUBMTX IS SPARSE TRIPLES(mtx) is 1 if mtx has sparse triples as its storage format, 0 other- │ │ │ │ │ wise. │ │ │ │ │ • SUBMTX IS DENSE SUBROWS(mtx) is 1 if mtx has dense subrows as its storage format, 0 other- │ │ │ │ │ wise. │ │ │ │ │ • SUBMTX IS DENSE SUBCOLUMNS(mtx) is 1 if mtx has dense subcolumns as its storage format, │ │ │ │ │ 0 otherwise. │ │ │ │ │ • SUBMTX IS DIAGONAL(mtx) is 1 if mtx is diagonal, 0 otherwise. │ │ │ │ │ @@ -126,15 +126,15 @@ │ │ │ │ │ This method clears the object and free’s any owned data by invoking the clearData() │ │ │ │ │ methodsforitsinternal DVobject. Thereis a concluding call to SubMtx setDefaultFields(). │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void SubMtx_free ( SubMtx *mtx ) ; │ │ │ │ │ This method releases any storage by a call to SubMtx clearData() and then frees the space │ │ │ │ │ for mtx. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 5 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ 1. void SubMtx_ids ( SubMtx *mtx, int *prowid, int *pcolid ) ; │ │ │ │ │ This method fills *prowid with the row id and *pcolid with the column id of the object. │ │ │ │ │ Error checking: If mtx, prowid or pcolid is NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 2. void SubMtx_setIds ( SubMtx *mtx, int rowid, int colid ) ; │ │ │ │ │ This method sets the row and column id’s of the matrix. │ │ │ │ │ @@ -163,15 +163,15 @@ │ │ │ │ │ the program exits. │ │ │ │ │ 7. void SubMtx_sparseRowsInfo ( SubMtx *mtx, int *pnrow, int *pnent, │ │ │ │ │ int **psizes, int **pindices, double **pentries ) ; │ │ │ │ │ This method is used when the storage mode is sparse rows. It fills *pnrow with the number │ │ │ │ │ of rows, *pnent with the number of matrix entries, *psizes with the base address of the │ │ │ │ │ sizes[nrow]vector that contains the number of entries in each row, *indices with the base │ │ │ │ │ address of the indices[nent] vector that contains the column index for each entry, and │ │ │ │ │ - 6 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 6 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ *pentries with the base address of entries[nent] vector. The indices and entries for the │ │ │ │ │ rows are stored contiguously. │ │ │ │ │ Error checking: If mtx, pnrow, pnent, psizes, pindices or pentries is NULL, or if the matrix │ │ │ │ │ type is not SUBMTX SPARSE ROWS, an error message is printed and the program exits. │ │ │ │ │ 8. void SubMtx_sparseColumnsInfo ( SubMtx *mtx, int *pncol, int *pnent, │ │ │ │ │ int **psizes, int **pindices, double **pentries ) ; │ │ │ │ │ Thismethodisusedwhenthestoragemodeissparsecolumns. Itfills*pncolwiththenumber │ │ │ │ │ @@ -204,15 +204,15 @@ │ │ │ │ │ exits. │ │ │ │ │ 11. void SubMtx_denseSubcolumnsInfo ( SubMtx *mtx, int *pncol, int *pnent, │ │ │ │ │ int **pfirstlocs, int **plastlocs, double **pentries ) ; │ │ │ │ │ This method is used when the storage mode is dense subcolumns. It fills *pncol with │ │ │ │ │ the number of columns, *pnent with the number of matrix entries, *pfirstlocs with the │ │ │ │ │ base address of the firstlocs[ncol] vector, *plastlocs with the base address of the │ │ │ │ │ lastlocs[ncol]vector, and *pentries with the base address of entries[nent] vector. For │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 7 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 7 │ │ │ │ │ column jcol, the nonzero entries are found in rows [firstlocs[jcol],lastlocs[jcol]] │ │ │ │ │ when firstlocs[jcol] ≥ 0 and firstlocs[jcol] ≤ lastlocs[jcol]. The entries for the │ │ │ │ │ columns are stored contiguously. │ │ │ │ │ Error checking: If mtx, pnrow, pnent, pfirstlocs, plastlocs or pentries is NULL, or if the │ │ │ │ │ matrix type is not SUBMTX DENSE SUBCOLUMNS, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ 12. void SubMtx_diagonalInfo ( SubMtx *mtx, int *pncol, double **pentries ) ; │ │ │ │ │ @@ -242,15 +242,15 @@ │ │ │ │ │ and 0 ≤ jcol ≤ ncol. If the (irow,jcol) entry is present, the return value is the offset │ │ │ │ │ from the start of the entries vector. (The offset is in terms of complex entries, not double │ │ │ │ │ entries.) Otherwise, -1 is returned. │ │ │ │ │ Error checking: If mtx, pReal or pImag is NULL, or if irow or jcol is out of range, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 16. void SubMtx_locationOfRealEntry ( SubMtx *mtx, int irow, int jcol, │ │ │ │ │ double **ppValue ) ; │ │ │ │ │ - 8 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 8 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ If the (irow,jcol) entry is present, this method fills *ppValue with a pointer to the entry │ │ │ │ │ in row irow and columnjcol. Otherwise, *ppValue is set to NULL. Note, irow and jcol are │ │ │ │ │ local indices, i.e., 0 ≤ irow ≤ nrow and 0 ≤ jcol ≤ ncol. │ │ │ │ │ Error checking: If mtx or ppValue is NULL, or if irow or jcol is out of range, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ 17. void SubMtx_locationOfComplexEntry ( SubMtx *mtx, int irow, int jcol, │ │ │ │ │ double **ppReal, double **ppImag ) ; │ │ │ │ │ @@ -278,15 +278,15 @@ │ │ │ │ │ int nrow, int ncol, int nent, int seed ) ; │ │ │ │ │ This is used to initialize an object to have random entries and (possibly) random structure. │ │ │ │ │ The object is first initialized via a call to SubMtx init(). Its matrix entries are then filled │ │ │ │ │ with random numbers. If the matrix is sparse, its sparsity pattern is sparse and random, │ │ │ │ │ using nent when applicable. The row and column indices are ascending starting from zero. │ │ │ │ │ Error checking: If mtx is NULL, or if nrow, ncol, inc1 or inc2 is less than or equal to zero, │ │ │ │ │ or if neither inc1 nor inc2 are 1, an error message is printed and the program exits. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 9 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 9 │ │ │ │ │ 4. void SubMtx_initRandomLowerTriangle ( SubMtx *mtx, int type, int mode, │ │ │ │ │ int rowid, int colid, int nrow, int ncol, int nent, int seed, int strict ) ; │ │ │ │ │ void SubMtx_initRandomUpperTriangle ( SubMtx *mtx, int type, int mode, │ │ │ │ │ int rowid, int colid, int nrow, int ncol, int nent, int seed, int strict ) ; │ │ │ │ │ This is used to initialize an object to have random entries and (possibly) random struc- │ │ │ │ │ ture. The matrix type may not be diagonal, block diagonal, or triples. If strict = 1, the │ │ │ │ │ matrix will be strict lower or upper triangular. The object is first initialized via a call to │ │ │ │ │ @@ -317,15 +317,15 @@ │ │ │ │ │ 1. void SubMtx_solve ( SubMtx *mtxA, SubMtx *mtxB ) ; │ │ │ │ │ This method is used to solve (I + A)X = B (if A is strict lower or upper triangular) or │ │ │ │ │ AX =B (if A is diagonal or block diagonal). The solution X overwrites B, and mtxB must │ │ │ │ │ have dense columns. If A is strict lower triangular, then mtxA must have dense subrows or │ │ │ │ │ sparse rows. If A is strict upper triangular, then mtxA must have dense subcolumns or sparse │ │ │ │ │ columns. │ │ │ │ │ Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits. │ │ │ │ │ - 10 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 10 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ 2. void SubMtx_solveH ( SubMtx *mtxA, SubMtx *mtxB ) ; │ │ │ │ │ This method is used to solve (I+AH)X = B, where A is strict lower or upper triangular. The │ │ │ │ │ solution X overwrites B, and mtxB must have dense columns. If A is strict lower triangular, │ │ │ │ │ then mtxA must have dense subrows or sparse rows. If A is strict upper triangular, then mtxA │ │ │ │ │ must have dense subcolumns or sparse columns. │ │ │ │ │ Error checking: If mtxA or mtxB is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void SubMtx_solveT ( SubMtx *mtxA, SubMtx *mtxB ) ; │ │ │ │ │ @@ -354,15 +354,15 @@ │ │ │ │ │ This method returns the number of bytes required to store the object’s information in its │ │ │ │ │ buffer. │ │ │ │ │ Error checking: If nrow or ncol is less than or equal to zero, or if nent is less than to zero, │ │ │ │ │ or if type is invalid, an error message is printed and the program exits. │ │ │ │ │ 2. int SubMtx_nbytesInUse ( SubMtx *mtx ) ; │ │ │ │ │ This method returns the actual number of bytes that are used in the workspace owned by │ │ │ │ │ this object. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 11 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 11 │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. int SubMtx_nbytesInWorkspace ( SubMtx *mtx ) ; │ │ │ │ │ This method returns the number of bytes in the workspace owned by this object. │ │ │ │ │ Error checking: If mtx is NULL, an error message is printed and the program exits. │ │ │ │ │ 4. void SubMtx_setNbytesInWorkspace ( SubMtx *mtx, int nbytes ) ; │ │ │ │ │ This method sets the number of bytes in the workspace of this object. If nbytes is less than │ │ │ │ │ the present number of bytes, the workspace is not resized. │ │ │ │ │ @@ -387,15 +387,15 @@ │ │ │ │ │ Error checking: If mtx or rowDV is NULL, or if irow is out of range, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 10. void SubMtx_fillColumnDV ( SubMtx *mtx, int jcol, DV *rowDV ) ; │ │ │ │ │ This method is used for real submatrices. It copies the entries in column jcol of the mtx │ │ │ │ │ object into the colDV vector object. │ │ │ │ │ Error checking: If mtx or colDV is NULL, or if jcol is out of range, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ - 12 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 12 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ 11. void SubMtx_fillRowZV ( SubMtx *mtx, int irow, ZV *rowZV ) ; │ │ │ │ │ This method is used for complex submatrices. It copies the entries in row irow of the mtx │ │ │ │ │ object into the rowZV vector object. │ │ │ │ │ Error checking: If mtx or rowZV is NULL, or if irow is out of range, an error message is printed │ │ │ │ │ and the program exits. │ │ │ │ │ 12. void SubMtx_fillColumnZV ( SubMtx *mtx, int jcol, ZV *rowZV ) ; │ │ │ │ │ This method is used for complex submatrices. It copies the entries in column jcol of the mtx │ │ │ │ │ @@ -422,15 +422,15 @@ │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Note, if the mtxutation vectors are one-based (as for Fortran), they are converted to zero- │ │ │ │ │ based vectors. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 3. int SubMtx_readFromBinaryFile ( SubMtx *mtx, FILE *fp ) ; │ │ │ │ │ This method reads in a SubMtx object from a binary file. If there are no errors in reading │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 13 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 13 │ │ │ │ │ Note, if the mtxutation vectors are one-based (as for Fortran), they are converted to zero- │ │ │ │ │ based vectors. │ │ │ │ │ Error checking: If mtx or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 4. int SubMtx_writeToFile ( SubMtx *mtx, char *fn ) ; │ │ │ │ │ This method writes a SubMtx object to a file. It tries to open the file and if it is successful, │ │ │ │ │ it then calls SubMtx writeFromFormattedFile()or SubMtx writeFromBinaryFile(),closes │ │ │ │ │ the file and returns the value returned from the called routine. │ │ │ │ │ @@ -457,15 +457,15 @@ │ │ │ │ │ for complex matrices, or │ │ │ │ │ a(10,5) = -1.550328201511e-01 ; │ │ │ │ │ for real matrices, where mtxname = "a". The matrix indices come from the rowind[] │ │ │ │ │ and colind[] vectors, and are incremented by one to follow the Matlab and FORTRAN │ │ │ │ │ convention. │ │ │ │ │ Error checking: If mtx, mtxname or fp are NULL, an error message is printed and zero is │ │ │ │ │ returned. │ │ │ │ │ - 14 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 14 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ 1.3 Driver programs for the SubMtx object │ │ │ │ │ 1. testIO msglvl msgFile inFile outFile │ │ │ │ │ This driver program reads in a SubMtx object from inFile and writes out the object to │ │ │ │ │ outFile │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the SubMtx object is written to the message file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ @@ -494,15 +494,15 @@ │ │ │ │ │ 3. test_solve msglvl msgFile type mode nrowA nentA ncolB seed │ │ │ │ │ This driver program tests the SubMtx solve() method which tests the solve AX = B when │ │ │ │ │ A is diagonal or block diagonal, and (I + A)X = B otherwise (A is strict upper or lower │ │ │ │ │ triangular). Use the script file do solve for testing. When the output file is loaded into │ │ │ │ │ matlab, the last lines to the screen contain the errors. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 15 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 15 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX). │ │ │ │ │ • Themodeparametermustbeoneof2(SUBMTX SPARSE ROWS),3(SUBMTX SPARSE COLUMNS), │ │ │ │ │ 5 (SUBMTX DENSE SUBROWS), 6 (SUBMTX DENSE SUBCOLUMNS), 7 (SUBMTX DIAGONAL), │ │ │ │ │ 8 (SUBMTX BLOCK DIAGONAL SYM) or 9 (SUBMTX BLOCK DIAGONAL HERM). │ │ │ │ │ @@ -534,15 +534,15 @@ │ │ │ │ │ T │ │ │ │ │ This driver program tests the SubMtx solve() method which tests the solve (I +A )X = B │ │ │ │ │ when A is strict upper or lower triangular and has dense subrows, dense subcolumns, sparse │ │ │ │ │ rows, or sparse columns. Use the script file do solveT for testing. When the output file is │ │ │ │ │ loaded into matlab, the last lines to the screen contain the errors. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ - 16 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 16 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The type parameter must be one of 1 (SPOOLES REAL) or 2 (SPOOLES COMPLEX). │ │ │ │ │ • Themodeparametermustbeoneof2(SUBMTX SPARSE ROWS),3(SUBMTX SPARSE COLUMNS), │ │ │ │ │ 5 (SUBMTX DENSE SUBROWS) or 6 (SUBMTX DENSE SUBCOLUMNS). │ │ │ │ │ • The nrowA parameter is the number of rows in the matrix. │ │ │ │ │ @@ -573,15 +573,15 @@ │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 7. test_solveupdH msglvl msgFile type mode nrowA nentA ncolB seed │ │ │ │ │ This driver program tests the SubMtx solveupd() method which tests the update Y := │ │ │ │ │ Y −AH ∗X, used in the forward solve of a hermitian factorization. X and Y have dense │ │ │ │ │ columns, and A has dense rows or columns or sparse rows or columns. Use the script file │ │ │ │ │ do solveupdH for testing. When the output file is loaded into matlab, the last lines to the │ │ │ │ │ screen contain the errors. │ │ │ │ │ - SubMtx : DRAFT October 18, 2025 17 │ │ │ │ │ + SubMtx : DRAFT October 28, 2025 17 │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The type parameter must be 2 (SPOOLES COMPLEX). │ │ │ │ │ • Themodeparametermustbeoneof0(SUBMTX DENSE ROWS),1(SUBMTX DENSE COLUMNS), │ │ │ │ │ @@ -612,15 +612,15 @@ │ │ │ │ │ • The ncolY parameter is the number of columns in Y. │ │ │ │ │ • The nrowA parameter is the number of rows in A, nrowA ≤ nrowY. │ │ │ │ │ • The ncolA parameter is the number of columns in A, ncolA ≤ nrowX. │ │ │ │ │ • The nentA parameter is the number of nonzero entries in the submatrix, when appro- │ │ │ │ │ priate. │ │ │ │ │ • The nrowX parameter is the number of rows in X, nrowA ≤ nrowY. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ - 18 SubMtx : DRAFT October 18, 2025 │ │ │ │ │ + 18 SubMtx : DRAFT October 28, 2025 │ │ │ │ │ 9. test_sort msglvl msgFile type mode nrowA ncolA nentA seed │ │ │ │ │ Thisdriver program tests the SubMtx sortRowsUp()and SubMtx sortColumnsUp()methods. │ │ │ │ │ Use the script file do sort for testing. When the output file is loaded into matlab, the last │ │ │ │ │ lines to the screen contain the errors. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ ├── ./usr/share/doc/spooles-doc/SubMtxList.ps.gz │ │ │ ├── SubMtxList.ps │ │ │ │ @@ -10,15 +10,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SubMtxList.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1776,15 +1776,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1978,81 +1977,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3319,15 +3313,15 @@ │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}23 99.6264 /CMBX12 │ │ │ │ rf /Fc 135[62 2[62 62 62 9[62 6[62 14[62 5[62 62 76[{}9 │ │ │ │ 119.552 /CMTT12 rf /Fd 134[71 3[75 52 53 55 1[75 67 75 │ │ │ │ 112 3[37 75 1[41 61 75 60 1[65 13[75 2[92 11[103 17[67 │ │ │ │ 67 2[37 46[{}22 119.552 /CMBX12 rf /Fe 141[38 2[46 51 │ │ │ │ 2[42 1[28 46 42 1[42 1[42 14[65 1[66 11[59 62 69 2[68 │ │ │ │ 6[28 58[{}16 90.9091 /CMTI10 rf /Ff 139[35 1[36 2[45 │ │ │ │ -9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fg tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ @@ -3441,15 +3435,15 @@ │ │ │ │ b(is)g(optional,)i(for)d(example,)i(it)f(is)g(not)f(needed)0 │ │ │ │ 5407 y(during)22 b(a)i(serial)g(factorization)i(nor)d(a)h(MPI)f(solv)m │ │ │ │ (e.)40 b(In)23 b(the)g(latter)i(case)f(there)g(is)f(one)h │ │ │ │ Fh(SubMtxList)d Fi(p)s(er)h(pro)s(cess.)1927 5656 y(1)p │ │ │ │ eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fi(2)p 136 100 986 4 v │ │ │ │ -1168 w Fh(SubMtxList)28 b Ff(:)40 b Fe(DRAFT)31 b Ff(Octob)s(er)f(18,)h │ │ │ │ +1168 w Fh(SubMtxList)28 b Ff(:)40 b Fe(DRAFT)31 b Ff(Octob)s(er)f(28,)h │ │ │ │ (2025)p 2914 100 V 0 399 a Fi(F)-8 b(or)26 b(a)f(m)m(ultithreaded)h │ │ │ │ (solv)m(e)g(there)g(is)f(one)g Fh(SubMtxList)e Fi(ob)5 │ │ │ │ b(ject)26 b(that)g(is)f(shared)f(b)m(y)h(all)h(threads.)39 │ │ │ │ b(The)25 b(m)m(utual)0 511 y(exclusion)33 b(lo)s(c)m(k)h(that)f(is)f │ │ │ │ (\(optionally\))j(em)m(b)s(edded)c(in)i(the)f Fh(SubMtxList)e │ │ │ │ Fi(ob)5 b(ject)34 b(is)e(a)h Fh(Lock)f Fi(ob)5 b(ject)33 │ │ │ │ b(from)f(this)0 624 y(library)-8 b(.)39 b(It)27 b(is)f(inside)g(the)g │ │ │ │ @@ -3504,15 +3498,15 @@ │ │ │ │ b Fh(lock)g Fi(and)h Fh(flags)f Fi(are)i(set)g(to)g Fh(NULL)e │ │ │ │ Fi(.)227 5407 y Fe(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fi(If)30 b Fh(list)g Fi(is)g Fh(NULL)p Fi(,)f(an)i(error)f(message)h │ │ │ │ (is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p eop │ │ │ │ end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 986 4 v 1168 100 a Fh(SubMtxList)27 │ │ │ │ -b Ff(:)41 b Fe(DRAFT)121 b Ff(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Ff(:)41 b Fe(DRAFT)121 b Ff(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2867 100 V 986 w Fi(3)111 399 y(3.)46 b Fh(void)h(SubMtxList_clearData) │ │ │ │ 42 b(\()48 b(SubMtxList)d(*list)h(\))h(;)227 555 y Fi(This)31 │ │ │ │ b(metho)s(d)f(clears)j(the)e(ob)5 b(ject)32 b(and)f(free's)h(an)m(y)f │ │ │ │ (o)m(wned)g(data)h(b)m(y)g(calling)g Fh(SubMtx)p 3241 │ │ │ │ 555 29 4 v 33 w(free\(\))e Fi(for)h(eac)m(h)227 668 y(ob)5 │ │ │ │ b(ject)30 b(on)e(the)h(free)g(list.)41 b(If)28 b Fh(heads)f │ │ │ │ Fi(is)i(not)g Fh(NULL)p Fi(,)f(it)h(is)g(free'd.)40 b(If)28 │ │ │ │ @@ -3578,15 +3572,15 @@ │ │ │ │ 5294 y Fe(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fi(If)29 │ │ │ │ b Fh(list)g Fi(is)h Fh(NULL)p Fi(,)f(or)h(if)g Fh(ilist)e │ │ │ │ Fi(is)i(not)h(in)e(the)h(range)h Fh([0,nlist\))p Fi(,)c(an)j(error)g │ │ │ │ (message)227 5407 y(is)h(prin)m(ted)f(and)f(zero)j(is)e(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fi(4)p 136 100 986 4 v │ │ │ │ -1168 w Fh(SubMtxList)28 b Ff(:)40 b Fe(DRAFT)31 b Ff(Octob)s(er)f(18,)h │ │ │ │ +1168 w Fh(SubMtxList)28 b Ff(:)40 b Fe(DRAFT)31 b Ff(Octob)s(er)f(28,)h │ │ │ │ (2025)p 2914 100 V 111 399 a Fi(3.)46 b Fh(SubMtx)g(*)i │ │ │ │ (SubMtxList_getList)43 b(\()k(SubMtxList)e(*list,)h(int)h(ilist)f(\))i │ │ │ │ (;)227 549 y Fi(If)28 b(list)h Fh(ilist)e Fi(is)h(empt)m(y)-8 │ │ │ │ b(,)30 b(the)f(metho)s(d)f(returns)f Fh(NULL)p Fi(.)g(Otherwise,)i(if)f │ │ │ │ (the)h(list)g(needs)f(to)h(b)s(e)e(lo)s(c)m(k)m(ed,)k(the)227 │ │ │ │ 662 y(lo)s(c)m(k)37 b(is)e(lo)s(c)m(k)m(ed.)57 b(The)34 │ │ │ │ b(head)h(of)h(the)f(list)h(is)f(sa)m(v)m(ed)i(to)f(a)f(p)s(oin)m(ter)h │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ The first two operations are queries, and can be done without locking the list. The third operation │ │ │ │ │ needs a lock only when two or more threads will be inserting objects into the list. The fourth │ │ │ │ │ operation requires a lock only when one thread will add an object while another thread removes │ │ │ │ │ the object and the incoming count is not yet zero. │ │ │ │ │ Having a lock associated with a SubMtxList object is optional, for example, it is not needed │ │ │ │ │ during a serial factorization nor a MPI solve. In the latter case there is one SubMtxList per process. │ │ │ │ │ 1 │ │ │ │ │ - 2 SubMtxList : DRAFT October 18, 2025 │ │ │ │ │ + 2 SubMtxList : DRAFT October 28, 2025 │ │ │ │ │ For a multithreaded solve there is one SubMtxList object that is shared by all threads. The mutual │ │ │ │ │ exclusion lock that is (optionally) embedded in the SubMtxList object is a Lock object from this │ │ │ │ │ library. It is inside the Lock object that we have a mutual exclusion lock. Presently we support the │ │ │ │ │ Solaris and POSIX thread packages. Porting the multithreaded codes to another platform should │ │ │ │ │ be simple if the POSIX thread package is present. Another type of thread package will require │ │ │ │ │ some modifications to the Lock object, but none to the SubMtxList objects. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ │ 1. SubMtxList * SubMtxList_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the SubMtxList structure and then sets the default │ │ │ │ │ fields by a call to SubMtxList setDefaultFields(). │ │ │ │ │ 2. void SubMtxList_setDefaultFields ( SubMtxList *list ) ; │ │ │ │ │ The structure’s fields are set to default values: nlist and nlocks set to zero, and heads, │ │ │ │ │ counts, lock and flags are set to NULL . │ │ │ │ │ Error checking: If list is NULL, an error message is printed and the program exits. │ │ │ │ │ - SubMtxList : DRAFT October 18, 2025 3 │ │ │ │ │ + SubMtxList : DRAFT October 28, 2025 3 │ │ │ │ │ 3. void SubMtxList_clearData ( SubMtxList *list ) ; │ │ │ │ │ This method clears the object and free’s any owned data by calling SubMtx free() for each │ │ │ │ │ object on the free list. If heads is not NULL, it is free’d. If counts is not NULL, it is free’d via │ │ │ │ │ a call to IVfree(). If flags is not NULL, it is free’d via a call to CVfree(). If the lock is not │ │ │ │ │ NULL, it is destroyed via a call to mutex destroy() and then free’d. There is a concluding │ │ │ │ │ call to SubMtxList setDefaultFields(). │ │ │ │ │ Error checking: If list is NULL, an error message is printed and the program exits. │ │ │ │ │ @@ -87,15 +87,15 @@ │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ │ │ │ 2. int SubMtxList_isCountZero ( SubMtxList *list, int ilist ) ; │ │ │ │ │ If counts is NULL, or if counts[ilist] equal to zero, the method returns 1. Otherwise, the │ │ │ │ │ method returns 0. │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ │ │ │ - 4 SubMtxList : DRAFT October 18, 2025 │ │ │ │ │ + 4 SubMtxList : DRAFT October 28, 2025 │ │ │ │ │ 3. SubMtx * SubMtxList_getList ( SubMtxList *list, int ilist ) ; │ │ │ │ │ If list ilist is empty, the method returns NULL. Otherwise, if the list needs to be locked, the │ │ │ │ │ lock is locked. The head of the list is saved to a pointer and then the head is set to NULL. │ │ │ │ │ If the list was locked, the number of locks is incremented and the lock unlocked. The saved │ │ │ │ │ pointer is returned. │ │ │ │ │ Error checking: If list is NULL, or if ilist is not in the range [0,nlist), an error message │ │ │ │ │ is printed and zero is returned. │ │ ├── ./usr/share/doc/spooles-doc/SubMtxManager.ps.gz │ │ │ ├── SubMtxManager.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SubMtxManager.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1419,15 +1419,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1621,81 +1620,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3864,20 +3858,20 @@ │ │ │ │ @start /Fa 235[71 20[{}1 90.9091 /CMSY10 rf /Fb 133[50 │ │ │ │ 59 4[44 44 3[56 62 93 31 2[31 62 2[51 62 50 1[54 11[86 │ │ │ │ 5[84 5[42 6[80 13[56 56 56 56 2[31 46[{}23 99.6264 /CMBX12 │ │ │ │ rf /Fc 135[62 2[62 62 1[62 3[62 6[62 1[62 2[62 62 13[62 │ │ │ │ 5[62 77[{}11 119.552 /CMTT12 rf /Fd 134[71 3[75 52 53 │ │ │ │ 55 1[75 67 75 112 3[37 75 1[41 61 75 60 1[65 13[75 2[92 │ │ │ │ 11[103 17[67 67 2[37 46[{}22 119.552 /CMBX12 rf /Fe 139[35 │ │ │ │ -1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 │ │ │ │ -45 3[25 44[{}14 90.9091 /CMSL10 rf /Ff 180[60 39 9[37 │ │ │ │ -4[20 59[{}4 66.4176 /CMMI8 rf /Fg 170[62 8[62 76[{}2 │ │ │ │ -90.9091 /CMMI10 rf /Fh 134[44 4[30 37 38 2[46 51 74 23 │ │ │ │ -42 1[28 46 42 1[42 46 42 1[46 12[65 1[66 11[59 62 69 │ │ │ │ -2[68 6[28 58[{}23 90.9091 /CMTI10 rf │ │ │ │ +1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 │ │ │ │ +3[25 44[{}13 90.9091 /CMSL10 rf /Ff 180[60 39 9[37 4[20 │ │ │ │ +59[{}4 66.4176 /CMMI8 rf /Fg 170[62 8[62 76[{}2 90.9091 │ │ │ │ +/CMMI10 rf /Fh 134[44 4[30 37 38 2[46 51 74 23 42 1[28 │ │ │ │ +46 42 1[42 46 42 1[46 12[65 1[66 11[59 62 69 2[68 6[28 │ │ │ │ +58[{}23 90.9091 /CMTI10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -4010,15 +4004,15 @@ │ │ │ │ d(solv)m(e)h(\(where)f(there)g(is)g(one)g Fj(SubMtxManager)c │ │ │ │ Fk(ob)5 b(ject)34 b(for)0 5407 y(eac)m(h)e(pro)s(cessor\),)e(but)g(it)h │ │ │ │ (is)f(necessary)h(for)f(in)g(a)h(m)m(ultithreaded)f(en)m(vironmen)m(t.) │ │ │ │ 1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 915 4 v │ │ │ │ 1097 w Fj(SubMtxManager)26 b Fe(:)41 b Fh(DRAFT)30 b │ │ │ │ -Fe(Octob)s(er)g(18,)i(2025)p 2986 100 V 141 399 a Fk(Eac)m(h)21 │ │ │ │ +Fe(Octob)s(er)g(28,)i(2025)p 2986 100 V 141 399 a Fk(Eac)m(h)21 │ │ │ │ b(manager)h(ob)5 b(ject)21 b(k)m(eeps)h(trac)m(k)g(of)e(certain)i │ │ │ │ (statistics,)j(b)m(ytes)c(in)g(their)f(w)m(orkspaces,)k(the)d(total)h │ │ │ │ (n)m(um)m(b)s(er)0 511 y(of)34 b(b)m(ytes)h(requested,)h(the)e(n)m(um)m │ │ │ │ (b)s(er)f(of)i(requests)f(for)g(a)h Fj(SubMtx)d Fk(ob)5 │ │ │ │ b(jects,)36 b(the)f(n)m(um)m(b)s(er)e(of)h(releases,)j(and)d(the)0 │ │ │ │ 624 y(n)m(um)m(b)s(er)29 b(of)i(lo)s(c)m(ks)g(and)f(unlo)s(c)m(ks.)0 │ │ │ │ 951 y Fd(1.1)135 b(Data)46 b(Structure)0 1184 y Fk(The)30 │ │ │ │ @@ -4068,15 +4062,15 @@ │ │ │ │ y Fk(This)41 b(metho)s(d)g(simply)g(allo)s(cates)j(storage)f(for)e(the) │ │ │ │ h Fj(SubMtxManager)c Fk(structure)j(and)g(then)g(sets)h(the)227 │ │ │ │ 5407 y(default)31 b(\014elds)f(b)m(y)g(a)h(call)g(to)g │ │ │ │ Fj(SubMtxManager)p 1875 5407 V 31 w(setDefaultFields\(\))p │ │ │ │ Fk(.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 915 4 v 1096 100 a Fj(SubMtxManager)27 │ │ │ │ -b Fe(:)41 b Fh(DRAFT)121 b Fe(Octob)s(er)30 b(18,)h(2025)p │ │ │ │ +b Fe(:)41 b Fh(DRAFT)121 b Fe(Octob)s(er)30 b(28,)h(2025)p │ │ │ │ 2938 100 V 915 w Fk(3)111 399 y(2.)46 b Fj(void)h │ │ │ │ (SubMtxManager_setDefault)o(Fiel)o(ds)41 b(\()48 b(SubMtxManager)c │ │ │ │ (*manager)i(\))h(;)227 558 y Fk(The)20 b(structure's)g(\014elds)g(are)g │ │ │ │ (set)h(to)g(default)g(v)-5 b(alues:)36 b Fj(mode)p Fk(,)21 │ │ │ │ b Fj(nactive)p Fk(,)g Fj(nbytesactive)p Fk(,)e Fj(nbytesrequested)p │ │ │ │ Fk(,)227 671 y Fj(nbytesalloc)p Fk(,)33 b Fj(nrequests)p │ │ │ │ Fk(,)f Fj(nreleases)p Fk(,)h Fj(nlocks)g Fk(and)g Fj(nunlocks)f │ │ │ │ @@ -4142,15 +4136,15 @@ │ │ │ │ 5407 y Fh(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 │ │ │ │ b Fj(manager)f Fk(or)h Fj(mtx)g Fk(is)g Fj(NULL)p Fk(,)f(an)i(error)f │ │ │ │ (message)h(is)g(prin)m(ted)f(and)f(zero)i(is)g(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fk(4)p 136 100 915 4 v │ │ │ │ 1097 w Fj(SubMtxManager)26 b Fe(:)41 b Fh(DRAFT)30 b │ │ │ │ -Fe(Octob)s(er)g(18,)i(2025)p 2986 100 V 111 399 a Fk(3.)46 │ │ │ │ +Fe(Octob)s(er)g(28,)i(2025)p 2986 100 V 111 399 a Fk(3.)46 │ │ │ │ b Fj(void)h(SubMtxManager_releaseLis)o(tOfO)o(bje)o(cts)41 │ │ │ │ b(\()48 b(SubMtxManager)c(*manager,)h(SubMtx)h(*first)g(\))i(;)227 │ │ │ │ 549 y Fk(This)35 b(metho)s(d)g(releases)h(a)g(list)g(of)f │ │ │ │ Fj(SubMtx)f Fk(ob)5 b(jects)36 b(whose)f(head)g(is)g │ │ │ │ Fj(first)p Fk(,)h(either)f(free'ing)h(them)g(\(if)227 │ │ │ │ 662 y Fj(mode)47 b(=)g(0)p Fk(\),)31 b(or)f(returning)g(them)g(to)h │ │ │ │ (the)g(free)f(list)h(\(if)g Fj(mode)47 b(=)g(1)p Fk(\).)227 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -27,15 +27,15 @@ │ │ │ │ │ with sufficient work space, and returns a pointer to the object. When a SubMtx object is no longer │ │ │ │ │ necessary, it is released to the manager object, which then inserts it into the free list. A list of │ │ │ │ │ SubMtx objects can be released in one call. │ │ │ │ │ One can specify whether the object is to be locked via a mutual exclusion lock. This is not │ │ │ │ │ necessary for a serial or MPI factorization or solve (where there is one SubMtxManager object for │ │ │ │ │ each processor), but it is necessary for in a multithreaded environment. │ │ │ │ │ 1 │ │ │ │ │ - 2 SubMtxManager : DRAFT October 18, 2025 │ │ │ │ │ + 2 SubMtxManager : DRAFT October 28, 2025 │ │ │ │ │ Eachmanagerobjectkeepstrackofcertainstatistics, bytesintheirworkspaces, thetotal number │ │ │ │ │ of bytes requested, the number of requests for a SubMtx objects, the number of releases, and the │ │ │ │ │ number of locks and unlocks. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The SubMtxManager structure has the following fields. │ │ │ │ │ • SubMtx *head : head of the free list of SubMtx objects. │ │ │ │ │ • Lock *lock : mutual exclusion lock. │ │ │ │ │ @@ -55,15 +55,15 @@ │ │ │ │ │ SubMtxManager object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. SubMtxManager * SubMtxManager_new ( void ) ; │ │ │ │ │ This method simply allocates storage for the SubMtxManager structure and then sets the │ │ │ │ │ default fields by a call to SubMtxManager setDefaultFields(). │ │ │ │ │ - SubMtxManager : DRAFT October 18, 2025 3 │ │ │ │ │ + SubMtxManager : DRAFT October 28, 2025 3 │ │ │ │ │ 2. void SubMtxManager_setDefaultFields ( SubMtxManager *manager ) ; │ │ │ │ │ Thestructure’sfieldsaresettodefaultvalues: mode,nactive,nbytesactive,nbytesrequested, │ │ │ │ │ nbytesalloc, nrequests, nreleases, nlocks and nunlocks are set to zero, and head and │ │ │ │ │ lock are set to NULL . │ │ │ │ │ Error checking: If manager is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. void SubMtxManager_clearData ( SubMtxManager *manager ) ; │ │ │ │ │ This method clears the object and free’s any owned data by calling SubMtx free() for each │ │ │ │ │ @@ -89,15 +89,15 @@ │ │ │ │ │ its workspace. │ │ │ │ │ Error checking: If manager is NULL, or if nbytesNeeded ≤ 0, an error message is printed and │ │ │ │ │ zero is returned. │ │ │ │ │ 2. void SubMtxManager_releaseObject ( SubMtxManager *manager, SubMtx *mtx ) ; │ │ │ │ │ This method releases the mtx instance, either free’ing it (if mode = 0), or returning it to the │ │ │ │ │ free list (if mode = 1). │ │ │ │ │ Error checking: If manager or mtx is NULL, an error message is printed and zero is returned. │ │ │ │ │ - 4 SubMtxManager : DRAFT October 18, 2025 │ │ │ │ │ + 4 SubMtxManager : DRAFT October 28, 2025 │ │ │ │ │ 3. void SubMtxManager_releaseListOfObjects ( SubMtxManager *manager, SubMtx *first ) ; │ │ │ │ │ This method releases a list of SubMtx objects whose head is first, either free’ing them (if │ │ │ │ │ mode = 0), or returning them to the free list (if mode = 1). │ │ │ │ │ Error checking: If manager or head is NULL, an error message is printed and zero is returned. │ │ │ │ │ 1.2.4 IO methods │ │ │ │ │ 1. void SubMtxManager_writeForHumanEye ( SubMtxManager *manager, FILE *fp ) ; │ │ │ │ │ This method writes a SubMtxManager object to a file in an easily readable format. │ │ ├── ./usr/share/doc/spooles-doc/SymbFac.ps.gz │ │ │ ├── SymbFac.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o SymbFac.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -1006,15 +1006,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -1208,81 +1207,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -3965,15 +3959,15 @@ │ │ │ │ A72D>136 D E │ │ │ │ /Fa load 0 Fa currentfont 91.25 scalefont put/FMat X/FBB │ │ │ │ X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fb 133[50 59 4[44 44 46 2[56 62 93 31 2[31 62 1[34 51 │ │ │ │ 62 50 62 54 13[62 32[56 56 2[31 46[{}21 99.6264 /CMBX12 │ │ │ │ rf /Fc 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 │ │ │ │ -2[45 2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf /Fd 134[62 │ │ │ │ +2[45 2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf /Fd 134[62 │ │ │ │ 11[62 9[62 62 62 13[62 12[62 70[{}7 119.552 /CMTT12 rf │ │ │ │ /Fe 134[71 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 │ │ │ │ 41 61 75 60 1[65 13[75 2[92 11[103 16[67 67 67 2[37 46[{}25 │ │ │ │ 119.552 /CMBX12 rf /Ff 171[73 4[79 82 8[69 10[29 58[{}5 │ │ │ │ 90.9091 /CMBX10 rf /Fg 164[61 36[0 53[71{}3 90.9091 /CMSY10 │ │ │ │ rf /Fh 181[50 7[69 68 48 3[71 32[52 27[{}6 90.9091 /CMMI10 │ │ │ │ rf /Fi 137[42 49 30 37 38 1[46 46 51 2[42 1[28 46 42 │ │ │ │ @@ -4062,15 +4056,15 @@ │ │ │ │ 5073 y Fe(1.2)135 b(Protot)l(yp)t(es)46 b(and)f(descriptions)g(of)g │ │ │ │ Fd(SymbFac)d Fe(metho)t(ds)0 5294 y Fk(This)f(section)j(con)m(tains)f │ │ │ │ (brief)f(descriptions)g(including)f(protot)m(yp)s(es)i(of)f(all)h │ │ │ │ (metho)s(ds)f(that)h(b)s(elong)f(to)h(the)0 5407 y Fj(SymbFac)28 │ │ │ │ b Fk(ob)5 b(ject.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 1058 4 v │ │ │ │ -1240 w Fj(SymbFac)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fj(SymbFac)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 0 399 a Fb(1.2.1)112 b(Sym)m(b)s(olic)39 │ │ │ │ b(factorization)f(metho)s(ds)111 596 y Fk(1.)46 b Fj(IVL)h(*)h │ │ │ │ (SymbFac_initFromGraph)42 b(\()47 b(ETree)f(*etree,)g(Graph)h(*graph)f │ │ │ │ (\))h(;)227 748 y Fk(This)33 b(sym)m(b)s(olic)h(factorization)i(metho)s │ │ │ │ (d)d(tak)m(es)i(a)f Fj(Graph)e Fk(ob)5 b(ject)34 b(as)g(input.)49 │ │ │ │ b(This)33 b(metho)s(d)g(constructs)227 861 y(an)e Fj(IVL)f │ │ │ │ Fk(ob)5 b(ject)32 b(that)f(con)m(tains)h(one)g(list)f(p)s(er)f(fron)m │ │ │ │ @@ -4156,15 +4150,15 @@ │ │ │ │ Fk(.)35 b(The)22 b(old-to-new)i Fj(IV)e Fk(ob)5 b(ject)23 │ │ │ │ b(is)g(optionally)h(written)227 5294 y(to)32 b Fj(outIVfile)p │ │ │ │ Fk(.)40 b(The)31 b Fj(IVL)f Fk(ob)5 b(ject)32 b(that)g(con)m(tains)g │ │ │ │ (the)f(sym)m(b)s(olic)h(factorization)h(is)e(optionally)i(written)227 │ │ │ │ 5407 y(to)e Fj(outIVLfile)p Fk(.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1058 4 v 1239 100 a Fj(SymbFac)29 │ │ │ │ -b Fc(:)40 b Fi(DRAFT)121 b Fc(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fc(:)40 b Fi(DRAFT)121 b Fc(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2795 100 V 1058 w Fk(3)337 399 y Fa(\210)45 b Fk(The)30 │ │ │ │ b Fj(msglvl)f Fk(parameter)i(determines)f(the)h(amoun)m(t)f(of)h │ │ │ │ (output.)337 557 y Fa(\210)45 b Fk(The)33 b Fj(msgFile)e │ │ │ │ Fk(parameter)j(determines)f(the)h(message)g(\014le)f(|)h(if)f │ │ │ │ Fj(msgFile)e Fk(is)i Fj(stdout)p Fk(,)g(then)g(the)427 │ │ │ │ 670 y(message)27 b(\014le)f(is)g Fi(stdout)p Fk(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fi(app)-5 b(end)28 │ │ │ │ @@ -4247,15 +4241,15 @@ │ │ │ │ b(It)24 b(m)m(ust)f(b)s(e)f(of)i(the)f(form)427 5294 │ │ │ │ y Fj(*.graphf)18 b Fk(or)j Fj(*.graphb)p Fk(.)35 b(The)19 │ │ │ │ b Fj(Graph)g Fk(ob)5 b(ject)21 b(is)g(read)f(from)g(the)g(\014le)h(via) │ │ │ │ f(the)h Fj(Graph)p 3368 5294 V 33 w(readFromFile\(\))427 │ │ │ │ 5407 y Fk(metho)s(d.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fk(4)p 136 100 1058 4 v │ │ │ │ -1240 w Fj(SymbFac)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(18,)i │ │ │ │ +1240 w Fj(SymbFac)28 b Fc(:)41 b Fi(DRAFT)30 b Fc(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2842 100 V 337 399 a Fa(\210)45 b Fk(The)24 b │ │ │ │ Fj(outETreeFile)d Fk(parameter)k(is)f(the)h(output)f(\014le)g(for)g │ │ │ │ (the)h Fj(ETree)d Fk(ob)5 b(ject.)40 b(If)24 b Fj(outETreeFile)d │ │ │ │ Fk(is)427 511 y Fj(none)g Fk(then)h(the)g Fj(ETree)f │ │ │ │ Fk(ob)5 b(ject)22 b(is)g(not)h(written)f(to)g(a)h(\014le.)38 │ │ │ │ b(Otherwise,)23 b(the)g Fj(ETree)p 3253 511 29 4 v 33 │ │ │ │ w(writeToFile\(\))427 624 y Fk(metho)s(d)30 b(is)h(called)h(to)f(write) │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ to have chevron coordinate type and storage mode must be by vectors. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ There is no struct or data associated with the SymbFac object. │ │ │ │ │ 1.2 Prototypes and descriptions of SymbFac methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ SymbFac object. │ │ │ │ │ 1 │ │ │ │ │ - 2 SymbFac : DRAFT October 18, 2025 │ │ │ │ │ + 2 SymbFac : DRAFT October 28, 2025 │ │ │ │ │ 1.2.1 Symbolic factorization methods │ │ │ │ │ 1. IVL * SymbFac_initFromGraph ( ETree *etree, Graph *graph ) ; │ │ │ │ │ This symbolic factorization method takes a Graph object as input. This method constructs │ │ │ │ │ an IVL object that contains one list per front. List ilist contains the internal and external │ │ │ │ │ vertices for front ilist. If the input graph is a compressed graph, then the lists of compressed │ │ │ │ │ vertices make little sense; they must be converted to original vertices. To do this, see the │ │ │ │ │ IVL expand() method. The nodwghtsIV and bndwghtsIV objects for the ETree object are │ │ │ │ │ @@ -61,15 +61,15 @@ │ │ │ │ │ 1. testSymbFacInpMtx msglvl msgFile inETreeFile inDInpMtxFile │ │ │ │ │ outETreeFile outIVfile outIVLfile │ │ │ │ │ This driver program reads in an ETree object and a InpMtx object and computes the symbolic │ │ │ │ │ factorization. The ETree object is updated (the front sizes and boundary sizes may change) │ │ │ │ │ andisoptionally written out to outETreeFile. The old-to-new IV object is optionally written │ │ │ │ │ to outIVfile. The IVL object that contains the symbolic factorization is optionally written │ │ │ │ │ to outIVLfile. │ │ │ │ │ - SymbFac : DRAFT October 18, 2025 3 │ │ │ │ │ + SymbFac : DRAFT October 28, 2025 3 │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • TheinETreeFileparameteristheinputfilefortheETreeobject. It mustbeof theform │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ @@ -101,15 +101,15 @@ │ │ │ │ │ data. │ │ │ │ │ • TheinETreeFileparameteristheinputfilefortheETreeobject. It mustbeof theform │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • TheinGraphFileparameteristheinputfilefortheGraphobject. It mustbeof theform │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ - 4 SymbFac : DRAFT October 18, 2025 │ │ │ │ │ + 4 SymbFac : DRAFT October 28, 2025 │ │ │ │ │ • TheoutETreeFileparameter is the output file for the ETree object. If outETreeFileis │ │ │ │ │ nonethentheETreeobjectisnotwrittentoafile. Otherwise,theETree writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if outETreeFile is of the form │ │ │ │ │ *.etreef), or a binary file (if outETreeFile is of the form *.etreeb). │ │ │ │ │ • The outIVfile parameter is the output file for the vertex-to-front map IV object. │ │ │ │ │ If outIVfile is none then the IV object is not written to a file. Otherwise, the │ │ │ │ │ IV writeToFile()methodis called to write the object to a formatted file (if outIVfile │ │ ├── ./usr/share/doc/spooles-doc/Tree.ps.gz │ │ │ ├── Tree.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Tree.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2227,15 +2227,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2429,81 +2428,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4949,15 +4943,15 @@ │ │ │ │ rf /Fb 146[62 3[24 105[{}2 66.4176 /CMMI8 rf /Fc 206[35 │ │ │ │ 5[55 43[{}2 66.4176 /CMR8 rf /Fd 152[45 45 81[71 20[{}3 │ │ │ │ 90.9091 /CMSY10 rf /Fe 133[50 59 1[81 1[62 44 44 46 1[62 │ │ │ │ 56 62 93 31 2[31 62 56 1[51 62 50 1[54 11[86 4[77 84 │ │ │ │ 1[106 2[58 42 4[86 81 80 8[56 56 56 56 56 56 56 56 56 │ │ │ │ 56 1[31 33[62 12[{}40 99.6264 /CMBX12 rf /Ff 141[62 12[62 │ │ │ │ 16[62 84[{}3 119.552 /CMTT12 rf /Fg 139[35 1[36 2[45 │ │ │ │ -9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 │ │ │ │ +9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 │ │ │ │ 90.9091 /CMSL10 rf /Fh 134[45 52 1[44 7[55 80 3[31 42[71 │ │ │ │ 1[71 25 25 58[{}10 90.9091 /CMMI10 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ @@ -5081,15 +5075,15 @@ │ │ │ │ 5294 y(w)m(as)e(in)m(tialized)i(correctly)f(and)e(that)h(the)g │ │ │ │ Fm(par)p Fn(,)g Fm(fch)f Fn(and)g Fm(sib)f Fn(\014elds)i(p)s(oin)m(t)f │ │ │ │ (to)i(storage)g(that)f(w)m(as)g(allo)s(cated)i(b)m(y)0 │ │ │ │ 5407 y(the)h(initializer)h(metho)s(d.)1927 5656 y(1)p │ │ │ │ eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fn(2)p 136 100 1130 4 v │ │ │ │ -1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Fj(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Ff(Tree)e Fj(metho)t(ds)0 │ │ │ │ 628 y Fn(This)25 b(section)h(con)m(tains)h(brief)e(descriptions)h │ │ │ │ (including)f(protot)m(yp)s(es)h(of)f(all)i(metho)s(ds)d(that)j(b)s │ │ │ │ (elong)e(to)h(the)g Fm(Tree)0 741 y Fn(ob)5 b(ject.)0 │ │ │ │ 1013 y Fe(1.2.1)112 b(Basic)38 b(metho)s(ds)0 1210 y │ │ │ │ Fn(As)d(usual,)h(there)f(are)g(four)f(basic)h(metho)s(ds)g(to)g(supp)s │ │ │ │ @@ -5140,15 +5134,15 @@ │ │ │ │ 5256 y Fn(This)30 b(metho)s(d)g(returns)f(a)i(p)s(oin)m(ter)f(to)h(the) │ │ │ │ g(paren)m(t)f(v)m(ector.)227 5407 y Fl(Err)-5 b(or)34 │ │ │ │ b(che)-5 b(cking:)40 b Fn(If)30 b Fm(tree)g Fn(is)g Fm(NULL)p │ │ │ │ Fn(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f(the)i(program)f │ │ │ │ (exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1130 4 v 1311 100 a Fm(Tree)29 │ │ │ │ -b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fn(3)111 399 y(4.)46 b Fm(int)h(*)h(Tree_fch)d(\()j │ │ │ │ (Tree)e(*tree)h(\))g(;)227 548 y Fn(This)30 b(metho)s(d)g(returns)f(a)i │ │ │ │ (p)s(oin)m(ter)f(to)h(the)g(\014rst)e(c)m(hild)i(v)m(ector.)227 │ │ │ │ 698 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fn(If)30 │ │ │ │ b Fm(tree)g Fn(is)g Fm(NULL)p Fn(,)f(an)i(error)f(message)h(is)g(prin)m │ │ │ │ (ted)f(and)f(the)i(program)f(exits.)111 885 y(5.)46 b │ │ │ │ Fm(int)h(*)h(Tree_sib)d(\()j(Tree)e(*tree)h(\))g(;)227 │ │ │ │ @@ -5208,15 +5202,15 @@ │ │ │ │ y Fn(1)100 b(normal)31 b(return)1000 5306 y(-1)100 b │ │ │ │ Fm(subtree)29 b Fn(is)h Fm(NULL)1000 5419 y Fn(-2)100 │ │ │ │ b Fm(nodeidsIV)28 b Fn(is)i Fm(NULL)2138 5250 y Fn(-3)101 │ │ │ │ b Fm(tree)29 b Fn(is)h Fm(NULL)2138 5363 y Fn(-4)101 │ │ │ │ b Fm(nodeidsIV)27 b Fn(is)k(in)m(v)-5 b(alid)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fn(4)p 136 100 1130 4 v │ │ │ │ -1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 111 399 a Fn(5.)46 b Fm(void)h(Tree_setFchSibRoot)c(\()k │ │ │ │ (Tree)g(*tree)f(\))i(;)227 553 y Fn(The)25 b(ro)s(ot)g(and)f(the)h(en)m │ │ │ │ (tries)h(in)e(the)h Fm(fch[])e Fn(and)i Fm(sib[])e Fn(v)m(ectors)j(are) │ │ │ │ g(set)f(using)f(the)h(en)m(tries)h(in)e(the)h Fm(par[])227 │ │ │ │ 666 y Fn(v)m(ector.)227 821 y Fl(Err)-5 b(or)34 b(che)-5 │ │ │ │ b(cking:)40 b Fn(If)30 b Fm(tree)g Fn(is)g Fm(NULL)p │ │ │ │ Fn(,)f(an)i(error)f(message)h(is)g(prin)m(ted)f(and)f(the)i(program)f │ │ │ │ @@ -5273,15 +5267,15 @@ │ │ │ │ b(cking:)47 b Fn(If)33 b Fm(tree)f Fn(is)i Fm(NULL)p │ │ │ │ Fn(,)e(or)i(if)f Fm(tree->n)46 b(<)i(1)p Fn(,)34 b(or)f │ │ │ │ Fm(v)g Fn(is)h(not)g(in)f Fm([0,tree->n-1])p Fn(,)e(an)i(error)227 │ │ │ │ 5407 y(message)f(is)e(prin)m(ted)g(and)g(the)g(program)h(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1130 4 v 1311 100 a Fm(Tree)29 │ │ │ │ -b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fn(5)111 399 y(6.)46 b Fm(int)h(Tree_nleaves)e(\()i │ │ │ │ (Tree)g(*tree)f(\))i(;)227 569 y Fn(This)30 b(metho)s(d)g(returns)f │ │ │ │ (the)h(n)m(um)m(b)s(er)f(of)i(lea)m(v)m(es)i(of)d(the)h(tree.)227 │ │ │ │ 740 y Fl(Err)-5 b(or)45 b(che)-5 b(cking:)64 b Fn(If)41 │ │ │ │ b Fm(tree)g Fn(is)h Fm(NULL)p Fn(,)f(or)h(if)h Fm(tree->n)i(<)j(1)p │ │ │ │ Fn(,)d(an)d(error)f(message)j(is)e(prin)m(ted)f(and)h(the)227 │ │ │ │ 853 y(program)30 b(exits.)111 1082 y(7.)46 b Fm(int)h(Tree_nroots)e(\() │ │ │ │ @@ -5332,15 +5326,15 @@ │ │ │ │ (semi-implicit)h(factorization.)227 5294 y Fl(Err)-5 │ │ │ │ b(or)34 b(che)-5 b(cking:)41 b Fn(If)30 b Fm(tree)p Fn(,)g │ │ │ │ Fm(gainIV)f Fn(or)h Fm(ptotalgain)e Fn(is)j Fm(NULL)p │ │ │ │ Fn(,)f(an)g(error)g(message)i(is)f(prin)m(ted)f(and)g(the)227 │ │ │ │ 5407 y(program)g(exits.)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fn(6)p 136 100 1130 4 v │ │ │ │ -1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 0 399 a Fe(1.2.5)112 b(Metrics)38 b(metho)s(ds)0 │ │ │ │ 595 y Fn(Man)m(y)24 b(op)s(erations)h(need)e(to)i(kno)m(w)e(some)i │ │ │ │ Fl(metric)f Fn(de\014ned)e(on)i(the)g(no)s(des)f(in)g(a)h(tree.)40 │ │ │ │ b(Here)24 b(are)g(three)g(examples:)0 708 y(the)39 b(heigh)m(t)h(of)f │ │ │ │ (a)g(no)s(de)f(\(the)i(minim)m(um)e(distance)h(from)g(a)g(descendan)m │ │ │ │ (t)g(leaf)7 b(\),)43 b(the)c(depth)f(of)h(a)g(no)s(de)f(\(the)0 │ │ │ │ 821 y(distance)j(from)e(its)h(ro)s(ot)g(ancestor\),)k(or)c(the)g(w)m │ │ │ │ @@ -5401,15 +5395,15 @@ │ │ │ │ 5069 y(=)h(vmetric[v])d(+)i(max_{par[u])e(=)i(v})h(hmetric[par[v]])227 │ │ │ │ 5294 y Fl(Err)-5 b(or)47 b(che)-5 b(cking:)68 b Fn(If)44 │ │ │ │ b Fm(tree)f Fn(or)h Fm(vmetric)p Fd(f)p Fm(I,D)p Fd(g)p │ │ │ │ Fm(V)e Fn(is)i Fm(NULL)p Fn(,)g(an)g(error)g(message)h(is)f(prin)m(ted) │ │ │ │ g(and)g(the)227 5407 y(program)30 b(exits.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1130 4 v 1311 100 a Fm(Tree)29 │ │ │ │ -b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fn(7)0 399 y Fe(1.2.6)112 b(Compression)39 │ │ │ │ b(metho)s(ds)0 590 y Fn(F)-8 b(requen)m(tly)31 b(a)f(tree)g(will)g │ │ │ │ (need)g(to)g(b)s(e)f(compressed)g(in)h(some)g(manner.)39 │ │ │ │ b(Elimination)31 b(trees)f(usually)f(ha)m(v)m(e)i(long)0 │ │ │ │ 703 y(c)m(hains)i(of)f(no)s(des)g(at)h(the)f(higher)g(lev)m(els,)j │ │ │ │ (where)c(eac)m(h)j(c)m(hain)f(of)f(no)s(des)g(corresp)s(onds)e(to)j(a)g │ │ │ │ (sup)s(erno)s(de.)44 b(Liu's)0 816 y(generalized)27 b(ro)m(w)e(en)m(v)m │ │ │ │ @@ -5487,15 +5481,15 @@ │ │ │ │ (and)f Fm(u)g Fn(comes)h(b)s(efore)f Fm(v)g Fn(in)g(a)g(p)s(ost-order)g │ │ │ │ (tra)m(v)m(ersal,)j(then)d(the)h(w)m(eigh)m(t)h(of)e(the)g(subtree)227 │ │ │ │ 5407 y(ro)s(oted)c(at)g Fm(u)f Fn(is)g(as)h(large)h(or)e(larger)h(than) │ │ │ │ f(the)h(w)m(eigh)m(t)h(of)e(the)h(subtree)f(ro)s(oted)g(at)h │ │ │ │ Fm(v)p Fn(.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fn(8)p 136 100 1130 4 v │ │ │ │ -1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fm(Tree)30 b Fg(:)40 b Fl(DRAFT)30 b Fg(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 227 399 a Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fn(If)30 b Fm(tree)f Fn(or)h Fm(metricIV)e Fn(is)i │ │ │ │ Fm(NULL)p Fn(,)f(or)h(if)h Fm(n)47 b(<)g(1)p Fn(,)31 │ │ │ │ b(or)f(if)g Fm(n)g Fn(is)g(not)g(the)h(size)g(of)f Fm(metricIV)p │ │ │ │ Fn(,)227 511 y(an)h(error)f(message)h(is)f(prin)m(ted)g(and)g(the)h │ │ │ │ (program)f(exits.)0 778 y Fe(1.2.8)112 b(P)m(erm)m(utation)38 │ │ │ │ b(metho)s(ds)0 973 y Fn(Often)32 b(w)m(e)h(need)f(to)h(extract)g(a)g(p) │ │ │ │ @@ -5558,15 +5552,15 @@ │ │ │ │ 4970 y Fn(-4)100 b Fm(yDV)30 b Fn(is)g Fm(NULL)111 5181 │ │ │ │ y Fn(2.)46 b Fm(int)h(Tree_drawToEPS)d(\()k(Tree)e(*tree,)g(FILE)h │ │ │ │ (*filename,)e(DV)i(*xDV,)f(DV)i(*yDV,)1230 5294 y(double)e(rscale,)f │ │ │ │ (DV)j(*radiusDV,)d(int)i(labelflag,)1230 5407 y(double)f(fontscale,)f │ │ │ │ (IV)i(*labelsIV,)e(double)h(bbox[],)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1130 4 v 1311 100 a Fm(Tree)29 │ │ │ │ -b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fn(9)1230 399 y Fm(double)46 b(frame[],)f(double)h │ │ │ │ (bounds[])g(\))h(;)227 557 y Fn(This)24 b(metho)s(d)f(dra)m(ws)h(a)g │ │ │ │ (tree.)40 b(The)23 b(co)s(ordinates)i(of)f(the)h(no)s(des)e(are)h │ │ │ │ (found)f(in)h(the)g Fm(xDV)f Fn(and)h Fm(yDV)f Fn(v)m(ectors.)227 │ │ │ │ 715 y(The)29 b(no)s(des)f(will)h(ha)m(v)m(e)i(circles)f(of)f(constan)m │ │ │ │ (t)i(radius)d(\(if)h Fm(radiusDV)e Fn(is)i Fm(NULL)p │ │ │ │ Fn(\))f(or)h(eac)m(h)i(circle)f(can)f(ha)m(v)m(e)i(a)227 │ │ │ │ @@ -5641,15 +5635,15 @@ │ │ │ │ h(encoun)m(tered)g(from)f Fm(fscanf)p Fn(,)g(zero)h(is)g(returned.)227 │ │ │ │ 5407 y Fl(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fn(If)30 │ │ │ │ b Fm(tree)g Fn(or)g Fm(fp)g Fn(are)g Fm(NULL)p Fn(,)g(an)g(error)g │ │ │ │ (message)i(is)e(prin)m(ted)g(and)g(zero)h(is)f(returned.)p │ │ │ │ eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fn(10)p 182 100 1107 4 │ │ │ │ -v 1289 w Fm(Tree)29 b Fg(:)41 b Fl(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +v 1289 w Fm(Tree)29 b Fg(:)41 b Fl(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2794 100 V 111 399 a Fn(3.)46 b Fm(int)h │ │ │ │ (Tree_readFromBinaryFile)42 b(\()47 b(Tree)g(*tree,)f(FILE)g(*fp)h(\))h │ │ │ │ (;)227 557 y Fn(This)32 b(metho)s(d)g(reads)g(in)h(a)g │ │ │ │ Fm(Perm)e Fn(ob)5 b(ject)33 b(from)f(a)h(binary)f(\014le.)48 │ │ │ │ b(If)32 b(there)g(are)h(no)g(errors)f(in)g(reading)h(the)227 │ │ │ │ 670 y(data,)f(the)e(v)-5 b(alue)31 b Fm(1)f Fn(is)g(returned.)40 │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ @@ -5719,15 +5713,15 @@ │ │ │ │ i Fm(Tree)e Fn(\014le)h(and)g(optionally)h(a)g(tags)g │ │ │ │ Fm(IV)f Fn(\014le)g(and)g(creates)h(an)f(EPS)g(\014le)227 │ │ │ │ 5175 y(with)h(a)h(simple)f(picture)h(of)f(a)h(tree.)337 │ │ │ │ 5407 y Fi(\210)45 b Fn(The)30 b Fm(msglvl)f Fn(parameter)i(determines)f │ │ │ │ (the)h(amoun)m(t)f(of)h(output.)p eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1107 4 v 1288 100 a Fm(Tree)29 │ │ │ │ -b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)41 b Fl(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2701 100 V 1107 w Fn(11)337 399 y Fi(\210)45 b Fn(The)33 │ │ │ │ b Fm(msgFile)e Fn(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fm(msgFile)e Fn(is)i Fm(stdout)p Fn(,)g(then)g(the)427 │ │ │ │ 511 y(output)c(\014le)h(is)f Fl(stdout)p Fn(,)i(otherwise)f(a)f(\014le) │ │ │ │ h(is)f(op)s(ened)g(with)g Fl(app)-5 b(end)31 b Fn(status)e(to)i(receiv) │ │ │ │ m(e)g(an)m(y)e(output)427 624 y(data.)337 770 y Fi(\210)45 │ │ │ │ b Fn(The)29 b Fm(inTreeFile)e Fn(parameter)j(is)g(the)f(input)g(\014le) │ │ │ │ @@ -5777,15 +5771,15 @@ │ │ │ │ (fon)m(t)h(to)g(b)s(e)f(used)g(to)h(dra)m(w)f(the)g(no)s(de)g(lab)s │ │ │ │ (els.)227 3314 y(Use)g(the)h Fm(doDraw)d Fn(script)h(\014le)h(as)g(an)g │ │ │ │ (example.)41 b(F)-8 b(our)31 b(plots)f(of)g(a)g(tree)h(for)e(the)h │ │ │ │ Fm(R2D100)e Fn(matrix)j(ordered)227 3427 y(b)m(y)g(nested)f(dissection) │ │ │ │ h(are)g(found)e(b)s(elo)m(w.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fn(12)p 182 100 1107 │ │ │ │ -4 v 1289 w Fm(Tree)29 b Fg(:)41 b Fl(DRAFT)30 b Fg(Octob)s(er)g(18,)i │ │ │ │ +4 v 1289 w Fm(Tree)29 b Fg(:)41 b Fl(DRAFT)30 b Fg(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2794 100 V 0 571 a Fn(Figure)38 b(1.1:)56 b Fa(R2D100)p │ │ │ │ Fn(:)f(domain/separator)39 b(tree.)62 b(On)37 b(the)g(left)h │ │ │ │ Fm(heightflag)45 b(=)j('H')36 b Fn(and)h Fm(coordflag)45 │ │ │ │ b(=)0 684 y('C')p Fn(,)30 b(on)g(the)h(righ)m(t)g Fm(heightflag)45 │ │ │ │ b(=)i('D')29 b Fn(and)h Fm(coordflag)45 b(=)j('C')p Fn(.)105 │ │ │ │ 2612 y @beginspecial 0 @llx 0 @lly 600 @urx 600 @ury │ │ │ │ 2159 @rwi 2159 @rhi @setspecial │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -20,15 +20,15 @@ │ │ │ │ │ • int *sib : pointer to sibling vector, size n, entries in the range [-1,n-1] │ │ │ │ │ The user should rarely if ever change these five fields. In particular, throughout the code we │ │ │ │ │ assume that the Tree object was correctly initialized using one of the three initializer methods. │ │ │ │ │ Inside almost every method we check to ensure n > 0. If n > 0 then we assume that the structure │ │ │ │ │ was intialized correctly and that the par, fch and sib fields point to storage that was allocated by │ │ │ │ │ the initializer method. │ │ │ │ │ 1 │ │ │ │ │ - 2 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 2 Tree : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of Tree methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the Tree │ │ │ │ │ object. │ │ │ │ │ 1.2.1 Basic methods │ │ │ │ │ As usual, there are four basic methods to support object creation, setting default fields, clearing │ │ │ │ │ any allocated data, and free’ing the object. │ │ │ │ │ 1. Tree * Tree_new ( void ) ; │ │ │ │ │ @@ -52,15 +52,15 @@ │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ 2. int Tree_root ( Tree *tree ) ; │ │ │ │ │ This method returns the root of the tree. │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ 3. int * Tree_par ( Tree *tree ) ; │ │ │ │ │ This method returns a pointer to the parent vector. │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ - Tree : DRAFT October 18, 2025 3 │ │ │ │ │ + Tree : DRAFT October 28, 2025 3 │ │ │ │ │ 4. int * Tree_fch ( Tree *tree ) ; │ │ │ │ │ This method returns a pointer to the first child vector. │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ 5. int * Tree_sib ( Tree *tree ) ; │ │ │ │ │ This method returns a pointer to the sibling vector. │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ @@ -88,15 +88,15 @@ │ │ │ │ │ The subtree object is initialized from the tree object, the nodes that are included are those │ │ │ │ │ found in nodeidsIV. A parent-child link in the subtree means that the two nodes have a │ │ │ │ │ parent-child link in the tree. │ │ │ │ │ Return codes: │ │ │ │ │ 1 normal return -3 tree is NULL │ │ │ │ │ -1 subtree is NULL -4 nodeidsIV is invalid │ │ │ │ │ -2 nodeidsIV is NULL │ │ │ │ │ - 4 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 4 Tree : DRAFT October 28, 2025 │ │ │ │ │ 5. void Tree_setFchSibRoot ( Tree *tree ) ; │ │ │ │ │ Theroot and the entries in the fch[] and sib[] vectors are set using the entries in the par[] │ │ │ │ │ vector. │ │ │ │ │ Error checking: If tree is NULL, an error message is printed and the program exits. │ │ │ │ │ 6. void Tree_setRoot ( Tree *tree ) ; │ │ │ │ │ The vertices that are roots in the tree are linked by their sib[] field and the root of the tree │ │ │ │ │ is set to the head of the list. │ │ │ │ │ @@ -122,15 +122,15 @@ │ │ │ │ │ This method returns the first node in a pre-order traversal. │ │ │ │ │ Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 5. int Tree_preOTnext ( Tree *tree, int v ) ; │ │ │ │ │ This method returns the node that follows v in a pre-order traversal. │ │ │ │ │ Error checking: If tree is NULL, or if tree->n < 1, or v is not in [0,tree->n-1], an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ - Tree : DRAFT October 18, 2025 5 │ │ │ │ │ + Tree : DRAFT October 28, 2025 5 │ │ │ │ │ 6. int Tree_nleaves ( Tree *tree ) ; │ │ │ │ │ This method returns the number of leaves of the tree. │ │ │ │ │ Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 7. int Tree_nroots ( Tree *tree ) ; │ │ │ │ │ This method returns the number of roots of the tree (really a forest). │ │ │ │ │ Error checking: If tree is NULL, or if tree->n < 1, an error message is printed and the │ │ │ │ │ @@ -155,15 +155,15 @@ │ │ │ │ │ 12. IV * Tree_maximizeGainIV ( Tree *tree, IV *gainIV, int *ptotalgain, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ Given a gain value assigned to each node, find a set of nodes, no two in a child-ancestor │ │ │ │ │ relationship, that maximizes the total gain. This problem arises in finding the optimal do- │ │ │ │ │ main/Schur complement partition for a semi-implicit factorization. │ │ │ │ │ Error checking: If tree, gainIV or ptotalgain is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - 6 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 6 Tree : DRAFT October 28, 2025 │ │ │ │ │ 1.2.5 Metrics methods │ │ │ │ │ Manyoperations need to know some metric defined on the nodes in a tree. Here are three examples: │ │ │ │ │ the height of a node (the minimum distance from a descendant leaf), the depth of a node (the │ │ │ │ │ distance from its root ancestor), or the weight associated with a subtree rooted at a node. Of │ │ │ │ │ course, a weight could be associated with each node, so the height or depth becomes the weight of │ │ │ │ │ the nodes on the path. │ │ │ │ │ Metrics can be int or double. Because of the limitations of C, we need two separate methods │ │ │ │ │ @@ -191,15 +191,15 @@ │ │ │ │ │ These methods create and return IV or DV objects that contain height metrics using as input │ │ │ │ │ an IV or DV object that contains the metric for each of the nodes. If hmetric[] is the vector │ │ │ │ │ in the returned IV or DV object, then │ │ │ │ │ hmetric[v] = vmetric[v] if fch[v] == -1 │ │ │ │ │ = vmetric[v] + max_{par[u] = v} hmetric[par[v]] │ │ │ │ │ Error checking: If tree or vmetric{I,D}V is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - Tree : DRAFT October 18, 2025 7 │ │ │ │ │ + Tree : DRAFT October 28, 2025 7 │ │ │ │ │ 1.2.6 Compression methods │ │ │ │ │ Frequently a tree will need to be compressed in some manner. Elimination trees usually have long │ │ │ │ │ chains of nodes at the higher levels, where each chain of nodes corresponds to a supernode. Liu’s │ │ │ │ │ generalized row envelope methods partition the vertices by longest chains [?]. In both cases, we can │ │ │ │ │ construct a map from each node to a set of nodes to define a smaller, more compact tree. Given │ │ │ │ │ such a map, we construct the smaller tree. │ │ │ │ │ Afundamental chain is a set of nodes v ,...,v such that (1) v is a leaf or has two or more │ │ │ │ │ @@ -232,15 +232,15 @@ │ │ │ │ │ Error checking: If tree or map is NULL, or if n < 1, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ 2. void Tree_leftJustifyI ( Tree *tree, IV *metricIV ) ; │ │ │ │ │ void Tree_leftJustifyD ( Tree *tree, DV *metricIV ) ; │ │ │ │ │ This method justifies the tree, reordering the children of each node as necessary. If u and v │ │ │ │ │ are siblings, and u comes before v in a post-order traversal, then the weight of the subtree │ │ │ │ │ rooted at u is as large or larger than the weight of the subtree rooted at v. │ │ │ │ │ - 8 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 8 Tree : DRAFT October 28, 2025 │ │ │ │ │ Error checking: If tree or metricIV is NULL, or if n < 1, or if n is not the size of metricIV, │ │ │ │ │ an error message is printed and the program exits. │ │ │ │ │ 1.2.8 Permutation methods │ │ │ │ │ Often we need to extract a permutation from a tree, e.g., a post-order traversal of an elimination │ │ │ │ │ tree gives an ordering for a sparse matrix. On other occasions, we need to permute a tree, i.e. │ │ │ │ │ re-label the nodes. │ │ │ │ │ 1. void Tree_fillNewToOldPerm ( Tree *tree, int newToOld[] ) ; │ │ │ │ │ @@ -269,15 +269,15 @@ │ │ │ │ │ Return codes: │ │ │ │ │ 1 normal return -3 coordflag is invalid │ │ │ │ │ -1 tree is NULL -3 xDV is NULL │ │ │ │ │ -2 heightflag is invalid -4 yDV is NULL │ │ │ │ │ 2. int Tree_drawToEPS ( Tree *tree, FILE *filename, DV *xDV, DV *yDV, │ │ │ │ │ double rscale, DV *radiusDV, int labelflag, │ │ │ │ │ double fontscale, IV *labelsIV, double bbox[], │ │ │ │ │ - Tree : DRAFT October 18, 2025 9 │ │ │ │ │ + Tree : DRAFT October 28, 2025 9 │ │ │ │ │ double frame[], double bounds[] ) ; │ │ │ │ │ This method draws a tree. The coordinates of the nodes are found in the xDV and yDV vectors. │ │ │ │ │ The nodes will have circles of constant radius (if radiusDV is NULL) or each circle can have a │ │ │ │ │ different radius found in radiusDV when radiusDV is not NULL. The value rscale is used to │ │ │ │ │ scale all the radii. (If radiusDV is NULL, then all radii are equal to one point — there are 72 │ │ │ │ │ points to the inch.) │ │ │ │ │ If labelflag = 1, the nodes will have a numeric label. If labelsIV is NULL, then the label │ │ │ │ │ @@ -306,15 +306,15 @@ │ │ │ │ │ and returns the value returned from the called routine. │ │ │ │ │ Error checking: If tree or fn are NULL, or if fn is not of the form *.treef (for a formatted │ │ │ │ │ file) or *.treeb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 2. int Tree_readFromFormattedFile ( Tree *tree, FILE *fp ) ; │ │ │ │ │ This method reads in a Perm object from a formatted file. If there are no errors in reading │ │ │ │ │ the data, the value 1 is returned. If an IO error is encountered from fscanf, zero is returned. │ │ │ │ │ Error checking: If tree or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - 10 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 10 Tree : DRAFT October 28, 2025 │ │ │ │ │ 3. int Tree_readFromBinaryFile ( Tree *tree, FILE *fp ) ; │ │ │ │ │ This method reads in a Perm object from a binary file. If there are no errors in reading the │ │ │ │ │ data, the value 1 is returned. If an IO error is encountered from fread, zero is returned. │ │ │ │ │ Error checking: If tree or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 4. int Tree_writeToFile ( Tree *tree, char *fn ) ; │ │ │ │ │ This method writes a Perm object to a file. It tries to open the file and if it is successful, │ │ │ │ │ it then calls Tree writeFromFormattedFile() or Tree writeFromBinaryFile(), closes the │ │ │ │ │ @@ -339,15 +339,15 @@ │ │ │ │ │ Error checking: If tree or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 1.3 Driver programs for the Tree object │ │ │ │ │ 1. drawTree msglvl msgFile inTreeFile inTagsFile outEPSfile │ │ │ │ │ heightflag coordflag radius bbox[4] frame[4] tagflag fontsize │ │ │ │ │ This driver program reads in a Tree file and optionally a tags IV file and creates an EPS file │ │ │ │ │ with a simple picture of a tree. │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ - Tree : DRAFT October 18, 2025 11 │ │ │ │ │ + Tree : DRAFT October 28, 2025 11 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ output file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The inTreeFile parameter is the input file for the Tree object. It must be of the form │ │ │ │ │ *.treefor*.treeb. TheTreeobjectisreadfromthefileviatheTree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The inTagsFile parameter is the input file for the IV vector object than holds the tags │ │ │ │ │ @@ -364,15 +364,15 @@ │ │ │ │ │ • The frame parameter a sequence of four numbers that form the frame of the plot within │ │ │ │ │ the bounding box: lower left x value, lower left y value, width and height. │ │ │ │ │ • When tagflag = 1, tags are drawn on the nodes. If tagsFile is NULL, then node ids │ │ │ │ │ will be drawn on the nodes. Otherwise, node ids will be taken from the tagsIV object. │ │ │ │ │ • The fontsize parameter is the size of the font to be used to draw the node labels. │ │ │ │ │ Use the doDraw script file as an example. Four plots of a tree for the R2D100 matrix ordered │ │ │ │ │ by nested dissection are found below. │ │ │ │ │ - 12 Tree : DRAFT October 18, 2025 │ │ │ │ │ + 12 Tree : DRAFT October 28, 2025 │ │ │ │ │ Figure 1.1: R2D100: domain/separator tree. On the left heightflag = ’H’ and coordflag = │ │ │ │ │ ’C’, on the right heightflag = ’D’ and coordflag = ’C’. │ │ │ │ │ 71 71 │ │ │ │ │ 70 70 32 │ │ │ │ │ 51 51 69 31 13 │ │ │ │ │ 40 32 50 40 61 68 22 30 8 12 │ │ │ │ │ 39 31 49 43 39 56 60 67 64 21 17 29 23 7 11 9 │ │ ├── ./usr/share/doc/spooles-doc/Utilities.ps.gz │ │ │ ├── Utilities.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o Utilities.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1744 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -3357,15 +3357,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -3559,81 +3558,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5500,15 +5494,15 @@ │ │ │ │ 134[59 2[59 62 44 44 46 1[62 56 62 93 31 59 1[31 62 56 │ │ │ │ 1[51 62 50 1[54 13[62 24[31 56 56 56 56 56 56 56 56 56 │ │ │ │ 56 1[31 37 45[{}33 99.6264 /CMBX12 rf /Fj 139[62 62 6[62 │ │ │ │ 2[62 3[62 15[62 85[{}6 119.552 /CMTT12 rf /Fk 138[49 │ │ │ │ 30 37 38 1[46 46 51 2[42 1[28 46 42 1[42 46 42 1[46 12[65 │ │ │ │ 1[66 11[59 62 69 2[68 6[28 58[{}22 90.9091 /CMTI10 rf │ │ │ │ /Fl 139[35 1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 │ │ │ │ -2[45 45 45 3[25 44[{}14 90.9091 /CMSL10 rf │ │ │ │ +2[45 1[45 3[25 44[{}13 90.9091 /CMSL10 rf │ │ │ │ %DVIPSBitmapFont: Fm tcrm1095 10.95 1 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ /afii61664.cap/arrowleft/arrowright/tieaccentlowercase/tieaccentcapital │ │ │ │ /tieaccentlowercase.new/tieaccentcapital.new/.notdef/afii61664.asc/uni2422 3 │ │ │ │ {/.notdef}repeat/dollar/.notdef/.notdef/quotesingle/.notdef/.notdef │ │ │ │ @@ -5608,15 +5602,15 @@ │ │ │ │ f(;)558 4876 y(struct)g(_I2OP)g({)701 4989 y(int)190 │ │ │ │ b(value0)94 b(;)701 5101 y(int)190 b(value1)94 b(;)701 │ │ │ │ 5214 y(void)142 b(*value2)46 b(;)701 5327 y(I2OP)142 │ │ │ │ b(*next)g(;)558 5440 y(})47 b(;)1927 5656 y Fq(1)p eop │ │ │ │ end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fq(2)p 136 100 1010 4 v │ │ │ │ -1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(18,)h │ │ │ │ +1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(28,)h │ │ │ │ (2025)p 2890 100 V 0 399 a Fn(1.2)135 b(Protot)l(yp)t(es)46 │ │ │ │ b(and)f(descriptions)g(of)g Fj(Utilities)c Fn(metho)t(ds)0 │ │ │ │ 632 y Fq(This)g(section)j(con)m(tains)f(brief)f(descriptions)g │ │ │ │ (including)f(protot)m(yp)s(es)i(of)f(all)h(metho)s(ds)f(that)h(b)s │ │ │ │ (elong)f(to)h(the)0 744 y Fp(Utilities)28 b Fq(directory)-8 │ │ │ │ b(.)0 1028 y Fi(1.2.1)112 b Fh(CV)38 b Fi(:)g Fh(char)g │ │ │ │ Fi(v)m(ector)f(metho)s(ds)111 1230 y Fq(1.)46 b Fp(char)h(*)g(CVinit)f │ │ │ │ @@ -5674,15 +5668,15 @@ │ │ │ │ (initializer)j(metho)s(d)d(for)g Fp(double)f Fq(v)m(ectors.)41 │ │ │ │ b(Storage)28 b(for)f(an)f(arra)m(y)i(with)e(size)227 │ │ │ │ 5407 y Fp(n)k Fq(is)h(found)e(and)h(eac)m(h)h(en)m(try)g(is)f(\014lled) │ │ │ │ g(with)g Fp(val)p Fq(.)40 b(A)31 b(p)s(oin)m(ter)f(to)h(the)g(arra)m(y) │ │ │ │ g(is)f(returned.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1010 4 v 1192 100 a Fp(Utilities)27 │ │ │ │ -b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2843 100 V 1010 w Fq(3)111 399 y(2.)46 b Fp(double)g(*)i(DVinit2)e(\()h │ │ │ │ (int)g(n)g(\))h(;)227 545 y Fq(This)30 b(is)g(an)h(allo)s(cator)h │ │ │ │ (metho)s(d)e(for)g Fp(double)f Fq(v)m(ectors.)42 b(Storage)32 │ │ │ │ b(for)e(an)g(arra)m(y)h(with)f(size)i Fp(n)e Fq(is)g(found.)40 │ │ │ │ b(A)227 658 y(p)s(oin)m(ter)31 b(to)g(the)f(arra)m(y)h(is)g(returned.) │ │ │ │ 39 b(Note,)32 b(on)e(return,)g(there)g(will)h(lik)m(ely)h(b)s(e)e │ │ │ │ (garbage)h(in)g(the)f(arra)m(y)-8 b(.)111 838 y(3.)46 │ │ │ │ @@ -5736,15 +5730,15 @@ │ │ │ │ (x0[])g(+)h(alpha[5])d(*)j(x1[])66 5148 y Fq(11.)e Fp(void)h(DVaxpy31)e │ │ │ │ (\()j(int)f(n,)g(double)f(y0[],)g(double)h(y1[],)f(double)g(y2[],)991 │ │ │ │ 5261 y(double)g(alpha,)g(double)g(x0[],)h(double)f(x1[])g(\))i(;)227 │ │ │ │ 5407 y Fq(This)30 b(metho)s(d)g(computes)g(this)g(computation.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fq(4)p 136 100 1010 4 v │ │ │ │ -1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(18,)h │ │ │ │ +1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(28,)h │ │ │ │ (2025)p 2890 100 V 227 399 a Fp(y0[])47 b(=)g(y0[])g(+)g(alpha[0])f(*)h │ │ │ │ (x0[])227 511 y(y1[])g(=)g(y1[])g(+)g(alpha[1])f(*)h(x0[])227 │ │ │ │ 624 y(y2[])g(=)g(y2[])g(+)g(alpha[2])f(*)h(x0[])66 850 │ │ │ │ y Fq(12.)f Fp(void)h(DVaxpy23)e(\()j(int)f(n,)g(double)f(y0[],)g │ │ │ │ (double)h(y1[],)991 963 y(double)f(alpha,)g(double)g(x0[],)h(double)f │ │ │ │ (x1[],)g(double)g(x2[])h(\))g(;)227 1114 y Fq(This)30 │ │ │ │ b(metho)s(d)g(computes)g(this)g(computation.)227 1340 │ │ │ │ @@ -5780,15 +5774,15 @@ │ │ │ │ 5294 y Fq(This)31 b(metho)s(d)f(scatteradds)i(a)g(scaled)g(m)m(ultiple) │ │ │ │ g(of)f Fp(n)g Fq(en)m(tries)h(from)f Fp(x[])f Fq(in)m(to)i │ │ │ │ Fp(y[])p Fq(,)f(i.e.,)i Fp(y[index[i]])227 5407 y(+=)47 │ │ │ │ b(alpha)g(*)g(x[i])29 b Fq(for)i Fp(0)47 b(<=)g(i)h(<)f(n)p │ │ │ │ Fq(.)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1010 4 v 1192 100 a Fp(Utilities)27 │ │ │ │ -b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2843 100 V 1010 w Fq(5)66 399 y(19.)46 b Fp(void)h(DVcompress)e(\()i │ │ │ │ (int)g(n1,)g(double)f(x1[],)h(double)f(y1[],)1086 511 │ │ │ │ y(int)h(n2,)g(double)f(x2[],)h(double)f(y2[])g(\))i(;)227 │ │ │ │ 672 y Fq(Giv)m(en)c(a)f(pair)g(of)f(arra)m(ys)i Fp(x1[n1])d │ │ │ │ Fq(and)h Fp(y1[n1])p Fq(,)i(\014ll)f Fp(x2[n2])e Fq(and)h │ │ │ │ Fp(y2[n2])f Fq(with)i(a)g(subset)f(of)h(the)227 785 y │ │ │ │ Fp(\(x1[j],y1[j])27 b Fq(en)m(tries)k(whose)g(distribution)e(is)i(an)f │ │ │ │ @@ -5880,15 +5874,15 @@ │ │ │ │ Fq([)p Fp(i)p Fq(])277 5346 y Fp(sums)p Fq([)p Fp(2)p │ │ │ │ Fq(])j(=)687 5241 y Fe(n)p Fd(\000)p Fe(1)690 5266 y │ │ │ │ Ff(X)687 5445 y Fe(i)p Fc(=)p Fe(0)828 5346 y Fp(row2)p │ │ │ │ Fq([)p Fp(i)p Fq(])19 b Fg(\003)i Fp(col0)p Fq([)p Fp(i)p │ │ │ │ Fq(])p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fq(6)p 136 100 1010 4 v │ │ │ │ -1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(18,)h │ │ │ │ +1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(28,)h │ │ │ │ (2025)p 2890 100 V 66 399 a Fq(25.)46 b Fp(int)h(DVdot23)f(\()h(int)g │ │ │ │ (n,)h(double)e(row0[],)f(double)i(row1[],)895 511 y(double)g(col0[],)e │ │ │ │ (double)h(col1[],)g(double)g(col2[],)g(double)g(sums[])g(\))i(;)227 │ │ │ │ 667 y Fq(This)30 b(metho)s(d)g(computes)g(six)h(dot)f(pro)s(ducts.)277 │ │ │ │ 891 y Fp(sums)p Fq([)p Fp(0)p Fq(])24 b(=)687 786 y Fe(n)p │ │ │ │ Fd(\000)p Fe(1)690 810 y Ff(X)687 989 y Fe(i)p Fc(=)p │ │ │ │ Fe(0)828 891 y Fp(row0)p Fq([)p Fp(i)p Fq(])19 b Fg(\003)i │ │ │ │ @@ -5970,15 +5964,15 @@ │ │ │ │ y Fq(This)30 b(metho)s(d)g(computes)g(one)h(dot)f(pro)s(duct.)277 │ │ │ │ 5346 y Fp(sums)p Fq([)p Fp(0)p Fq(])24 b(=)687 5241 y │ │ │ │ Fe(n)p Fd(\000)p Fe(1)690 5266 y Ff(X)687 5445 y Fe(i)p │ │ │ │ Fc(=)p Fe(0)828 5346 y Fp(row0)p Fq([)p Fp(i)p Fq(])19 │ │ │ │ b Fg(\003)i Fp(col0)p Fq([)p Fp(i)p Fq(])p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1010 4 v 1192 100 a Fp(Utilities)27 │ │ │ │ -b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2843 100 V 1010 w Fq(7)66 399 y(31.)46 b Fp(int)h(DVdoti)f(\()i(int)f │ │ │ │ (n,)g(double)f(y[],)h(int)f(index[],)g(double)g(x[])h(\))g(;)227 │ │ │ │ 616 y Fq(This)30 b(metho)s(d)g(returns)f(the)h(indexed)g(dot)h(pro)s │ │ │ │ (duct)2075 510 y Fe(n)p Fd(\000)p Fe(1)2078 535 y Ff(X)2075 │ │ │ │ 714 y Fe(i)p Fc(=)p Fe(0)2216 616 y Fp(y)p Fq([)p Fp(index)p │ │ │ │ Fq([)p Fp(i)p Fq(]])19 b Fg(\003)i Fp(x)p Fq([)p Fp(i)p │ │ │ │ Fq(].)66 862 y(32.)46 b Fp(void)h(DVfill)f(\()h(int)g(n,)h(double)e │ │ │ │ @@ -6034,15 +6028,15 @@ │ │ │ │ b(etc.)66 5260 y(43.)46 b Fp(void)h(DVscale)f(\()h(int)g(n,)g(double)f │ │ │ │ (y[],)h(double)f(alpha)g(\))i(;)227 5407 y Fq(This)30 │ │ │ │ b(metho)s(d)g(scales)h(a)g(v)m(ector)h Fp(y[])d Fq(b)m(y)i │ │ │ │ Fp(alpha)p Fq(,)e(i.e.,)j Fp(y[i])46 b(*=)h(alpha)p Fq(.)40 │ │ │ │ b(for)30 b Fp(0)47 b(<=)g(i)h(<)f(n)p Fq(.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fq(8)p 136 100 1010 4 v │ │ │ │ -1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(18,)h │ │ │ │ +1192 w Fp(Utilities)28 b Fl(:)41 b Fk(DRAFT)30 b Fl(Octob)s(er)g(28,)h │ │ │ │ (2025)p 2890 100 V 66 399 a Fq(44.)46 b Fp(void)h(DVscale2)e(\()j(int)f │ │ │ │ (n,)g(double)f(x[],)h(double)f(y[],)991 511 y(double)g(a,)h(double)f │ │ │ │ (b,)h(double)g(c,)g(double)f(d)h(\))h(;)227 668 y Fq(This)30 │ │ │ │ b(metho)s(d)g(scales)h(t)m(w)m(o)h(v)m(ectors)g Fp(y[])d │ │ │ │ Fq(b)m(y)h(a)h(2)21 b Fg(\002)f Fq(2)31 b(matrix,)g(i.e.,)881 │ │ │ │ 800 y Ff(")971 887 y Fp(x)p Fq([)p Fp(0)p Fq(])83 b Fb(:)15 │ │ │ │ b(:)g(:)84 b Fp(x)p Fq([)p Fp(n)20 b Fg(\000)g Fp(1)p │ │ │ │ @@ -6110,15 +6104,15 @@ │ │ │ │ g(\014rst)g Fp(n)g Fq(en)m(tries)h(in)f Fp(y[])p Fq(.)38 │ │ │ │ b(The)23 b(v)-5 b(alue)24 b Fp(seed)e Fq(is)h(the)h(seed)g(to)g(a)g │ │ │ │ (random)e(n)m(um)m(b)s(er)227 5407 y(generator,)32 b(and)e(one)h(can)f │ │ │ │ (get)i(rep)s(eatable)f(b)s(eha)m(vior)f(b)m(y)h(rep)s(eating)f │ │ │ │ Fp(seed)p Fq(.)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1010 4 v 1192 100 a Fp(Utilities)27 │ │ │ │ -b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fl(:)41 b Fk(DRAFT)121 b Fl(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2843 100 V 1010 w Fq(9)0 399 y Fi(1.2.3)112 b Fh(ZV)38 │ │ │ │ b Fi(:)g Fh(double)53 b(complex)90 b Fi(v)m(ector)37 │ │ │ │ b(metho)s(ds)0 605 y Fq(A)22 b(double)g(precision)g(complex)g(v)m │ │ │ │ (ector)i(of)e(length)g Fp(n)g Fq(is)g(simply)f(a)i(double)e(precision)h │ │ │ │ (v)m(ector)i(of)e(length)g Fp(2n)p Fq(.)37 b(There)0 │ │ │ │ 718 y(is)28 b(a)h(separate)g Fp(ZVinit\(\))d Fq(allo)s(cator)31 │ │ │ │ b(and)c(initializer)j(metho)s(d,)f(since)f(it)h(requires)f(a)h(real)g │ │ │ │ @@ -6187,15 +6181,15 @@ │ │ │ │ (t)m(w)m(o)h(v)m(ectors)g Fp(x[])e Fq(and)h Fp(y[])f │ │ │ │ Fq(to)h(another)g(v)m(ector)i Fp(z[])p Fq(,)e(i.e.,)227 │ │ │ │ 5407 y(i.e.,)e Fp(z[i])47 b(+=)g(\(areal,aimag\))d(*)j(x[i])g(+)h │ │ │ │ (\(breal,bimag\))c(*)j(y[i])29 b Fq(for)h Fp(0)48 b(<=)f(i)h(<)f(n)p │ │ │ │ Fq(.)p eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fq(10)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 111 399 a Fq(8.)46 b Fp(void)h(ZVaxpy33)e(\()j(int) │ │ │ │ f(n,)g(double)f(y0[],)g(double)h(y1[],)f(double)g(y2[],)991 │ │ │ │ 511 y(double)g(alpha[],)g(double)g(x0[],)g(double)g(x1[],)g(double)h │ │ │ │ (x2[])f(\))i(;)227 661 y Fq(This)30 b(metho)s(d)g(computes)g(the)h │ │ │ │ (follo)m(wing.)227 881 y Fp(y0[])47 b(=)g(y0[])g(+)g(alpha[0:1])e(*)j │ │ │ │ (x0[])f(+)g(alpha[2:3])e(*)i(x1[])g(+)h(alpha[4:5])d(*)i(x2[])227 │ │ │ │ 994 y(y1[])g(=)g(y1[])g(+)g(alpha[6:7])e(*)j(x0[])f(+)g(alpha[8:9])e(*) │ │ │ │ @@ -6233,15 +6227,15 @@ │ │ │ │ y(double)f(alpha[],)g(double)g(x0[])g(\))i(;)227 5074 │ │ │ │ y Fq(This)30 b(metho)s(d)g(computes)g(the)h(follo)m(wing.)227 │ │ │ │ 5294 y Fp(y0[])47 b(=)g(y0[])g(+)g(alpha[0:1])e(*)j(x0[])227 │ │ │ │ 5407 y(y1[])f(=)g(y1[])g(+)g(alpha[2:3])e(*)j(x0[])p │ │ │ │ eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(11)66 399 y(14.)46 b Fp(void)h(ZVaxpy13)e(\()j(int) │ │ │ │ f(n,)g(double)f(y0[],)991 511 y(double)g(alpha[],)g(double)g(x0[],)g │ │ │ │ (double)g(x1[],)g(double)h(x2[])f(\))i(;)227 667 y Fq(This)30 │ │ │ │ b(metho)s(d)g(computes)g(the)h(follo)m(wing.)227 907 │ │ │ │ y Fp(y0[])47 b(=)g(y0[])g(+)g(alpha[0:1])e(*)j(x0[])f(+)g(alpha[2:3])e │ │ │ │ (*)i(x1[])g(+)h(alpha[4:5])d(*)i(x2[])66 1146 y Fq(15.)f │ │ │ │ Fp(void)h(ZVaxpy12)e(\()j(int)f(n,)g(double)f(y0[],)g(double)h │ │ │ │ @@ -6290,15 +6284,15 @@ │ │ │ │ b Fp(int)h(ZVdotU33)f(\()h(int)g(n,)g(double)f(row0[],)g(double)g │ │ │ │ (row1[],)g(double)g(row2[],)895 5251 y(double)h(col0[],)e(double)h │ │ │ │ (col1[],)g(double)g(col2[],)g(double)g(sums[])g(\))i(;)227 │ │ │ │ 5407 y Fq(This)30 b(metho)s(d)g(computes)g(nine)g(dot)h(pro)s(ducts.)p │ │ │ │ eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fq(12)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 277 462 a Fp(sums)p Fq([)p Fp(0)p │ │ │ │ Fq(;)15 b Fp(1)p Fq(])25 b(=)776 356 y Fe(n)p Fd(\000)p │ │ │ │ Fe(1)778 381 y Ff(X)776 560 y Fe(i)p Fc(=)p Fe(0)916 │ │ │ │ 462 y Fp(row0)p Fq([)p Fp(i)p Fq(])20 b Fg(\003)g Fp(col0)p │ │ │ │ Fq([)p Fp(i)p Fq(])230 b Fp(sums)p Fq([)p Fp(2)24 b Fq(:)h │ │ │ │ Fp(3)p Fq(])h(=)2345 356 y Fe(n)p Fd(\000)p Fe(1)2347 │ │ │ │ 381 y Ff(X)2345 560 y Fe(i)p Fc(=)p Fe(0)2485 462 y Fp(row0)p │ │ │ │ @@ -6401,15 +6395,15 @@ │ │ │ │ Fp(sums)p Fq([)p Fp(10)24 b Fq(:)i Fp(11)p Fq(])f(=)2345 │ │ │ │ 5241 y Fe(n)p Fd(\000)p Fe(1)2347 5266 y Ff(X)2345 5445 │ │ │ │ y Fe(i)p Fc(=)p Fe(0)2485 5346 y Fp(row1)p Fq([)p Fp(i)p │ │ │ │ Fq(])20 b Fg(\003)g Fp(col2)p Fq([)p Fp(i)p Fq(])p eop │ │ │ │ end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(13)66 399 y(26.)46 b Fp(int)h(ZVdotU22)f(\()h(int)g │ │ │ │ (n,)g(double)f(row0[],)g(double)g(row1[],)895 511 y(double)h(col0[],)e │ │ │ │ (double)h(col1[],)g(double)g(sums[])g(\))i(;)227 681 │ │ │ │ y Fq(This)30 b(metho)s(d)g(computes)g(four)g(dot)g(pro)s(ducts.)277 │ │ │ │ 918 y Fp(sums)p Fq([)p Fp(0)24 b Fq(:)i Fp(1)p Fq(])f(=)811 │ │ │ │ 813 y Fe(n)p Fd(\000)p Fe(1)814 838 y Ff(X)811 1017 y │ │ │ │ Fe(i)p Fc(=)p Fe(0)952 918 y Fp(row0)p Fq([)p Fp(i)p │ │ │ │ @@ -6474,15 +6468,15 @@ │ │ │ │ y(31.)46 b Fp(int)h(ZVdotC33)f(\()h(int)g(n,)g(double)f(row0[],)g │ │ │ │ (double)g(row1[],)g(double)g(row2[],)895 5238 y(double)h(col0[],)e │ │ │ │ (double)h(col1[],)g(double)g(col2[],)g(double)g(sums[])g(\))i(;)227 │ │ │ │ 5407 y Fq(This)30 b(metho)s(d)g(computes)g(nine)g(dot)h(pro)s(ducts.)p │ │ │ │ eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fq(14)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 277 462 a Fp(sums)p Fq([)p Fp(0)p │ │ │ │ Fq(;)15 b Fp(1)p Fq(])25 b(=)776 356 y Fe(n)p Fd(\000)p │ │ │ │ Fe(1)778 381 y Ff(X)776 560 y Fe(i)p Fc(=)p Fe(0)p 916 │ │ │ │ 384 290 4 v 916 462 a Fp(row0)p Fq([)p Fp(i)p Fq(])20 │ │ │ │ b Fg(\003)g Fp(col0)p Fq([)p Fp(i)p Fq(])230 b Fp(sums)p │ │ │ │ Fq([)p Fp(2)24 b Fq(:)h Fp(3)p Fq(])h(=)2345 356 y Fe(n)p │ │ │ │ Fd(\000)p Fe(1)2347 381 y Ff(X)2345 560 y Fe(i)p Fc(=)p │ │ │ │ @@ -6590,15 +6584,15 @@ │ │ │ │ Fq([)p Fp(10)24 b Fq(:)i Fp(11)p Fq(])f(=)2345 5241 y │ │ │ │ Fe(n)p Fd(\000)p Fe(1)2347 5266 y Ff(X)2345 5445 y Fe(i)p │ │ │ │ Fc(=)p Fe(0)p 2485 5268 V 2485 5346 a Fp(row1)p Fq([)p │ │ │ │ Fp(i)p Fq(])20 b Fg(\003)g Fp(col2)p Fq([)p Fp(i)p Fq(])p │ │ │ │ eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(15)66 399 y(35.)46 b Fp(int)h(ZVdotC22)f(\()h(int)g │ │ │ │ (n,)g(double)f(row0[],)g(double)g(row1[],)895 511 y(double)h(col0[],)e │ │ │ │ (double)h(col1[],)g(double)g(sums[])g(\))i(;)227 669 │ │ │ │ y Fq(This)30 b(metho)s(d)g(computes)g(four)g(dot)g(pro)s(ducts.)277 │ │ │ │ 895 y Fp(sums)p Fq([)p Fp(0)24 b Fq(:)i Fp(1)p Fq(])f(=)811 │ │ │ │ 789 y Fe(n)p Fd(\000)p Fe(1)814 814 y Ff(X)811 993 y │ │ │ │ Fe(i)p Fc(=)p Fe(0)p 952 817 290 4 v 952 895 a Fp(row0)p │ │ │ │ @@ -6668,15 +6662,15 @@ │ │ │ │ y(y[i])f(=)g(x[index[i]])28 b Fq(for)i Fp(0)47 b(<=)g(i)h(<)f(n)p │ │ │ │ Fq(.)66 5249 y(41.)f Fp(double)g(ZVmaxabs)g(\()h(int)g(n,)g(double)g │ │ │ │ (y[])f(\))i(;)227 5407 y Fq(This)30 b(metho)s(d)g(returns)f(the)h │ │ │ │ (maxim)m(um)h(magnitude)f(of)h(en)m(tries)g(in)f Fp(y[0:n-1])p │ │ │ │ Fq(.)p eop end │ │ │ │ %%Page: 16 16 │ │ │ │ TeXDict begin 16 15 bop 0 100 a Fq(16)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 66 399 a Fq(42.)46 b Fp(double)g(ZVminabs)g(\()h │ │ │ │ (int)g(n,)g(double)g(y[])f(\))i(;)227 560 y Fq(This)30 │ │ │ │ b(metho)s(d)g(returns)f(the)h(minim)m(um)g(magnitude)g(of)h(en)m(tries) │ │ │ │ g(in)f Fp(y[0:n-1])p Fq(.)66 771 y(43.)46 b Fp(void)h(ZVscale)f(\()h │ │ │ │ (int)g(n,)g(double)f(y[],)h(double)f(areal,)g(double)g(aimag)h(\))g(;) │ │ │ │ 227 933 y Fq(This)29 b(metho)s(d)f(scales)i(a)g(v)m(ector)g │ │ │ │ Fp(y[])e Fq(b)m(y)h Fp(\(areal,aimag\))p Fq(,)d(i.e.,)31 │ │ │ │ @@ -6735,15 +6729,15 @@ │ │ │ │ (y[])g(\))g(;)227 5294 y Fq(This)27 b(metho)s(d)g(prin)m(ts)g │ │ │ │ Fp(n)g Fq(en)m(tries)i(in)e Fp(y[])g Fq(to)h(\014le)g │ │ │ │ Fp(fp)p Fq(.)39 b(The)27 b(format)h(is)f(new)h(line)f(follo)m(w)m(ed)j │ │ │ │ (b)m(y)d(lines)h(of)g(\014v)m(e)227 5407 y Fp(int)p Fq('s)i(in)g │ │ │ │ Fp(")47 b(\0454d")30 b Fq(format.)p eop end │ │ │ │ %%Page: 17 17 │ │ │ │ TeXDict begin 17 16 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(17)111 399 y(5.)46 b Fp(int)h(IVfp80)f(\()i(FILE)e │ │ │ │ (*fp,)h(int)g(n,)g(int)g(y[],)g(int)g(column,)e(int)i(*pierr)f(\))i(;) │ │ │ │ 227 549 y Fq(This)21 b(metho)s(d)g(prin)m(ts)g Fp(n)g │ │ │ │ Fq(en)m(tries)h(in)g Fp(y[])e Fq(to)i(\014le)g Fp(fp)p │ │ │ │ Fq(.)37 b(The)21 b(metho)s(d)g(splices)h(v)m(ectors)h(together)g(or)f │ │ │ │ (naturally)227 662 y(breaks)33 b(the)h(large)g(v)m(ectors)h(in)m(to)f │ │ │ │ (lines.)49 b(The)33 b Fp(column)f Fq(v)-5 b(alue)33 b(is)h(the)f │ │ │ │ @@ -6809,15 +6803,15 @@ │ │ │ │ (int)g(y[],)g(int)g(*ploc)f(\))i(;)227 5294 y Fq(This)c(metho)s(d)g │ │ │ │ (returns)f(the)i(maxim)m(um)f(magnitude)h(of)g(en)m(tries)g(in)f │ │ │ │ Fp(y[0:n-1])e Fq(and)i(puts)g(the)h(\014rst)227 5407 │ │ │ │ y(lo)s(cation)32 b(where)e(it)h(w)m(as)g(found)e(in)m(to)i(the)g │ │ │ │ (address)e Fp(ploc)p Fq(.)p eop end │ │ │ │ %%Page: 18 18 │ │ │ │ TeXDict begin 18 17 bop 0 100 a Fq(18)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 66 399 a Fq(16.)46 b Fp(int)h(IVmin)g(\()g(int)g │ │ │ │ (n,)g(int)g(y[],)g(int)g(*ploc)f(\))h(;)227 554 y Fq(This)25 │ │ │ │ b(metho)s(d)h(returns)f(the)h(minim)m(um)f(en)m(try)h(in)g │ │ │ │ Fp(y[0:n-1])d Fq(and)j(puts)f(the)h(\014rst)f(lo)s(cation)j(where)d(it) │ │ │ │ i(w)m(as)227 667 y(found)i(in)m(to)j(the)e(address)g │ │ │ │ Fp(ploc)p Fq(.)66 866 y(17.)46 b Fp(int)h(IVminabs)f(\()h(int)g(n,)g │ │ │ │ (int)g(y[],)g(int)g(*ploc)f(\))i(;)227 1022 y Fq(This)29 │ │ │ │ @@ -6875,15 +6869,15 @@ │ │ │ │ (metho)s(d)d(for)h Fp(float)f Fq(v)m(ectors.)42 b(Storage)31 │ │ │ │ b(for)f(an)g(arra)m(y)g(with)g(size)227 5407 y Fp(n)g │ │ │ │ Fq(is)h(found)e(and)h(eac)m(h)h(en)m(try)g(is)f(\014lled)g(with)g │ │ │ │ Fp(val)p Fq(.)40 b(A)31 b(p)s(oin)m(ter)f(to)h(the)g(arra)m(y)g(is)f │ │ │ │ (returned.)p eop end │ │ │ │ %%Page: 19 19 │ │ │ │ TeXDict begin 19 18 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(19)111 399 y(2.)46 b Fp(float)h(*)g(FVinit2)f(\()h │ │ │ │ (int)g(n)h(\))f(;)227 549 y Fq(This)32 b(is)h(an)f(allo)s(cator)j │ │ │ │ (metho)s(d)d(for)h Fp(float)e Fq(v)m(ectors.)49 b(Storage)34 │ │ │ │ b(for)f(an)f(arra)m(y)h(with)g(size)g Fp(n)g Fq(is)f(found.)47 │ │ │ │ b(A)227 662 y(p)s(oin)m(ter)31 b(to)g(the)f(arra)m(y)h(is)g(returned.) │ │ │ │ 39 b(Note,)32 b(on)e(return,)g(there)g(will)h(lik)m(ely)h(b)s(e)e │ │ │ │ (garbage)h(in)g(the)f(arra)m(y)-8 b(.)111 850 y(3.)46 │ │ │ │ @@ -6945,15 +6939,15 @@ │ │ │ │ b Fq(for)i Fp(0)47 b(<=)g(i)h(<)f(n)p Fq(.)66 5257 y(14.)f │ │ │ │ Fp(void)h(FVgatherAddZero)d(\()j(int)g(n,)g(float)f(y[],)h(float)f │ │ │ │ (x[],)h(int)g(index[])f(\))h(;)227 5407 y(y[i])g(+=)g(x[index[i]])27 │ │ │ │ b Fq(and)j Fp(x[index[i]])45 b(=)i(0)30 b Fq(for)g Fp(0)48 │ │ │ │ b(<=)f(i)h(<)f(n)p Fq(.)p eop end │ │ │ │ %%Page: 20 20 │ │ │ │ TeXDict begin 20 19 bop 0 100 a Fq(20)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 66 399 a Fq(15.)46 b Fp(void)h(FVgatherZero)d(\()k │ │ │ │ (int)f(n,)g(float)f(y[],)h(float)f(x[],)h(int)g(index[])f(\))h(;)227 │ │ │ │ 549 y(y[i])g(=)g(x[index[i]])28 b Fq(and)h Fp(x[index[i]])45 │ │ │ │ b(=)j(0)66 738 y Fq(16.)e Fp(void)h(FVinvPerm)e(\()j(int)f(n,)g(float)f │ │ │ │ (y[],)h(int)g(index[])e(\))j(;)227 888 y Fq(This)26 b(metho)s(d)g(p)s │ │ │ │ (erm)m(utes)g(the)g(v)m(ector)j(y)d(as)h(follo)m(ws.)40 │ │ │ │ b(i.e.,)29 b Fp(y[index[i]])45 b(:=)i(y[i])p Fq(.)38 │ │ │ │ @@ -7010,15 +7004,15 @@ │ │ │ │ b(metho)s(d)g(scatters)i Fp(n)f Fq(en)m(tries)g(of)g │ │ │ │ Fp(x[])f Fq(in)m(to)i Fp(y[])e Fq(as)h(follo)m(ws,)i │ │ │ │ Fp(y[index[i]])44 b(=)k(x[i])26 b Fq(and)i Fp(x[i])e │ │ │ │ Fq(for)227 5407 y Fp(0)48 b(<=)f(i)g(<)h(n)p Fq(.)p eop │ │ │ │ end │ │ │ │ %%Page: 21 21 │ │ │ │ TeXDict begin 21 20 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(21)66 399 y(27.)46 b Fp(void)h(FVsub)f(\()i(int)f │ │ │ │ (n,)g(float)f(y[],)h(float)f(x[])h(\))h(;)227 546 y Fq(This)30 │ │ │ │ b(metho)s(d)g(subtracts)g Fp(n)g Fq(en)m(tries)h(from)f │ │ │ │ Fp(x[])f Fq(to)j Fp(y[])p Fq(,)d(i.e.,)j Fp(y[i])47 b(-=)g(x[i])29 │ │ │ │ b Fq(for)h Fp(0)48 b(<=)f(i)g(<)h(n)p Fq(.)66 729 y(28.)e │ │ │ │ Fp(float)h(FVsum)f(\()h(int)g(n,)h(float)e(y[])h(\))g(;)227 │ │ │ │ 877 y Fq(This)30 b(metho)s(d)g(returns)f(the)h(sum)g(of)g(the)h │ │ │ │ @@ -7083,15 +7077,15 @@ │ │ │ │ Fp(NULL)p Fq(.)f(A)i(p)s(oin)m(ter)f(to)h(the)g(arra)m(y)g(is)f │ │ │ │ (returned.)111 5259 y(2.)46 b Fp(void)h(PDVfree)f(\()h(double)f │ │ │ │ (**p_vec)g(\))i(;)227 5407 y Fq(This)30 b(metho)s(d)g(releases)h(the)g │ │ │ │ (storage)h(tak)m(en)f(b)m(y)f Fp(p)p 1993 5407 V 34 w(vec[])p │ │ │ │ Fq(.)p eop end │ │ │ │ %%Page: 22 22 │ │ │ │ TeXDict begin 22 21 bop 0 100 a Fq(22)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 111 399 a Fq(3.)46 b Fp(void)h(PDVcopy)f(\()h(int)g │ │ │ │ (n,)g(double)f(*p_y[],)g(double)g(*p_x[])g(\))i(;)227 │ │ │ │ 571 y Fq(This)30 b(metho)s(d)g(copies)h Fp(n)f Fq(en)m(tries)h(from)f │ │ │ │ Fp(p)p 1672 571 29 4 v 34 w(x[])g Fq(to)h Fp(p)p 2039 │ │ │ │ 571 V 34 w(y[])p Fq(,)e(i.e.,)j Fp(p)p 2491 571 V 34 │ │ │ │ w(y[i])47 b(=)g(p)p 2907 571 V 34 w(x[i])30 b Fq(for)g │ │ │ │ Fp(0)47 b(<=)g(i)h(<)f(n)p Fq(.)111 803 y(4.)f Fp(void)h(PDVsetup)e(\() │ │ │ │ @@ -7151,15 +7145,15 @@ │ │ │ │ Fp(vec[])d Fq(giv)m(en)i(b)m(y)g(the)g Fp(sizes[])d Fq(v)m(ector,)227 │ │ │ │ 5407 y(i.e.,)32 b Fp(p)p 453 5407 V 34 w(vec[0])46 b(=)i(vec)p │ │ │ │ Fq(,)29 b(and)h Fp(p)p 1340 5407 V 34 w(vec[i])46 b(=)i(p)p │ │ │ │ 1852 5407 V 34 w(vec[i-1])d(+)j(sizes[i-1])27 b Fq(for)k │ │ │ │ Fp(0)47 b(<)g(i)h(<)f(n)p Fq(.)p eop end │ │ │ │ %%Page: 23 23 │ │ │ │ TeXDict begin 23 22 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(23)0 399 y Fi(1.2.9)112 b(Sorting)38 │ │ │ │ b(routines)0 591 y Fo(V)-9 b(alidation)35 b(routines)111 │ │ │ │ 784 y Fq(1.)46 b Fp(int)h(IVisascending)d(\()k(int)f(n,)g(int)g(ivec[]) │ │ │ │ f(\))h(;)227 897 y(int)g(IVisdescending)d(\()k(int)e(n,)i(int)f(ivec[]) │ │ │ │ f(\))h(;)227 1044 y Fq(These)29 b(metho)s(ds)f(returns)f │ │ │ │ Fp(1)h Fq(if)h(the)g(arra)m(y)g Fp(ivec[])e Fq(is)i(in)f(ascending)h │ │ │ │ (or)g(descending)f(order)g(and)g(returns)227 1156 y Fp(0)i │ │ │ │ @@ -7211,15 +7205,15 @@ │ │ │ │ (ascending)e(or)g(descending)g(order)g(using)g(an)g(insertion)227 │ │ │ │ 5294 y(sort)43 b(and)e(p)s(erm)m(utes)h(the)g(companion)h(arra)m(ys)f │ │ │ │ Fp(ivec2[])e Fq(and)i Fp(dvec[])f Fq(in)g(the)i(same)f(fashion.)76 │ │ │ │ b(The)227 5407 y Fp(dvec[])29 b Fq(arra)m(y)i(is)f(double)g(precision)h │ │ │ │ (complex.)p eop end │ │ │ │ %%Page: 24 24 │ │ │ │ TeXDict begin 24 23 bop 0 100 a Fq(24)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 111 399 a Fq(7.)46 b Fp(void)h(DVisortUp)e(\()j │ │ │ │ (int)f(n,)g(double)f(dvec[])g(\))h(;)227 511 y(void)g(DVisortDown)e(\() │ │ │ │ i(int)g(n,)g(double)f(dvec[])g(\))i(;)227 656 y Fq(These)39 │ │ │ │ b(metho)s(ds)g(sort)g(a)g Fp(double)f Fq(arra)m(y)h(in)m(to)h │ │ │ │ (ascending)g(or)f(descending)g(order)f(using)h(an)g(insertion)227 │ │ │ │ 769 y(sort.)111 945 y(8.)46 b Fp(void)h(DV2isortUp)e(\()i(int)g(n,)g │ │ │ │ (double)g(dvec1[],)e(double)h(dvec2[])g(\))h(;)227 1058 │ │ │ │ @@ -7277,15 +7271,15 @@ │ │ │ │ Fp(ivec1[])d Fq(in)m(to)k(ascending)e(or)h(descending)f(order)g(using)g │ │ │ │ (a)h(quic)m(k)g(sort)227 5294 y(and)j(p)s(erm)m(utes)g(the)g(companion) │ │ │ │ g(arra)m(ys)h Fp(ivec2[])d Fq(and)i Fp(dvec[])f Fq(in)h(the)g(same)h │ │ │ │ (fashion.)49 b(The)33 b Fp(dvec[])227 5407 y Fq(arra)m(y)e(is)g(double) │ │ │ │ e(precision)i(complex.)p eop end │ │ │ │ %%Page: 25 25 │ │ │ │ TeXDict begin 25 24 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(25)111 399 y(7.)46 b Fp(void)h(DVqsortUp)e(\()j │ │ │ │ (int)f(n,)g(double)f(dvec[])g(\))h(;)227 511 y(void)g(DVqsortDown)e(\() │ │ │ │ i(int)g(n,)g(double)f(dvec[])g(\))i(;)227 658 y Fq(Thes)30 │ │ │ │ b(metho)s(ds)g(sort)g(a)h Fp(double)e Fq(arra)m(y)i(in)m(to)g │ │ │ │ (ascending)g(or)f(descending)g(order)g(using)g(a)h(quic)m(k)f(sort.)111 │ │ │ │ 839 y(8.)46 b Fp(void)h(DV2qsortUp)e(\()i(int)g(n,)g(double)g(dvec1[],) │ │ │ │ e(double)h(dvec2[])g(\))h(;)227 952 y(void)g(DV2qsortDown)d(\()k(int)f │ │ │ │ @@ -7353,15 +7347,15 @@ │ │ │ │ Fp(ivec1[])d Fq(and)i Fp(ivec2[])p Fq(.)227 5294 y Fk(Err)-5 │ │ │ │ b(or)37 b(che)-5 b(cking:)45 b Fq(If)33 b Fp(n)47 b(<)h(0)p │ │ │ │ Fq(,)33 b(or)g(if)g Fp(ivec1)f Fq(or)h Fp(ivec2)e Fq(is)i │ │ │ │ Fp(NULL)p Fq(,)f(an)h(error)g(message)h(is)f(prin)m(ted)f(and)h(the)227 │ │ │ │ 5407 y(program)d(exits.)p eop end │ │ │ │ %%Page: 26 26 │ │ │ │ TeXDict begin 26 25 bop 0 100 a Fq(26)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 111 399 a Fq(5.)46 b Fp(int)h │ │ │ │ (IV2DVsortUpAndCompress)42 b(\()47 b(int)g(n,)g(int)g(ivec1[],)f(int)h │ │ │ │ (ivec2[],)e(double)h(dvec[])h(\))g(;)227 549 y Fq(This)39 │ │ │ │ b(metho)s(d)g(sorts)g Fp(ivec1[])f Fq(in)m(to)i(ascending)g(order)f │ │ │ │ (with)g Fp(ivec2[])e Fq(and)i Fp(dvec[])f Fq(as)i(companion)227 │ │ │ │ 662 y(v)m(ectors.)56 b(It)35 b(then)f(compresses)h(the)g(pairs,)h │ │ │ │ (summing)e(the)h Fp(dvec[])e Fq(en)m(tries)i(for)g(iden)m(tical)h │ │ │ │ @@ -7424,15 +7418,15 @@ │ │ │ │ (y[],)f(int)h(column,)f(int)h(*pierr)f(\))i(;)227 5294 │ │ │ │ y Fq(This)29 b(metho)s(d)h(prin)m(ts)f(the)h(singly)h(link)m(ed)f(list) │ │ │ │ g(that)h(starts)f(with)g Fp(ip)p Fq(.)40 b(See)30 b Fp(IVfp80\(\))e │ │ │ │ Fq(for)i(a)g(description)227 5407 y(of)h(ho)m(w)f(the)h(en)m(tries)g │ │ │ │ (are)g(placed)g(on)f(a)h(line.)p eop end │ │ │ │ %%Page: 27 27 │ │ │ │ TeXDict begin 27 26 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(27)111 399 y(5.)46 b Fp(IP)h(*)h(IP_mergeUp)d(\()i │ │ │ │ (IP)h(*ip1,)e(IP)h(*ip2)g(\))g(;)227 547 y Fq(This)32 │ │ │ │ b(metho)s(d)h(merges)g(t)m(w)m(o)h(singly)f(link)m(ed)g(lists)g(in)m │ │ │ │ (to)h(one.)49 b(If)32 b(the)h(t)m(w)m(o)h(lists)f(are)h(in)e(ascending) │ │ │ │ h(order,)227 660 y(the)e(new)f(list)h(is)f(also)h(in)g(ascending)f │ │ │ │ (order.)40 b(The)30 b(head)g(of)h(the)g(new)e(list)i(is)g(returned.)111 │ │ │ │ 845 y(6.)46 b Fp(IP)h(*)h(IP_mergeSortUp)c(\()j(IP)g(*ip)g(\))h(;)227 │ │ │ │ @@ -7492,15 +7486,15 @@ │ │ │ │ b(=)g(I2OP)p 1040 5294 V 33 w(BACKWARD)p Fq(,)19 b(the)h(elemen)m(ts)i │ │ │ │ (are)e(link)m(ed)h(in)f(a)h(bac)m(kw)m(ard)f(manner,)i(i.e.,)i │ │ │ │ Fp(ips[i].next)427 5407 y(=)48 b(&ips[i-1])28 b Fq(for)i │ │ │ │ Fp(0)47 b(<)h(i)f(<)h(n)30 b Fq(and)f Fp(ips[0].next)45 │ │ │ │ b(=)i(NULL)p Fq(.)p eop end │ │ │ │ %%Page: 28 28 │ │ │ │ TeXDict begin 28 27 bop 0 100 a Fq(28)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 111 399 a Fq(3.)46 b Fp(void)h(I2OP_free)e(\()j │ │ │ │ (I2OP)e(*i2op)h(\))g(;)227 546 y Fq(This)30 b(metho)s(d)g(releases)h │ │ │ │ (the)g(storage)h(based)e(at)h Fp(*i2op)p Fq(.)111 729 │ │ │ │ y(4.)46 b Fp(void)h(I2OP_fprintf)d(\()k(FILE)e(*fp,)h(I2OP)g(*i2op)f │ │ │ │ (\))i(;)227 876 y Fq(This)30 b(metho)s(d)g(prin)m(ts)g(the)g(singly)h │ │ │ │ (link)m(ed)f(list)h(that)g(starts)g(with)f Fp(i2op)p │ │ │ │ Fq(.)0 1183 y Fn(1.3)135 b(Driv)l(er)46 b(programs)111 │ │ │ │ @@ -7552,15 +7546,15 @@ │ │ │ │ 5089 y(\014le)31 b Fp(do)p 476 5089 V 34 w(test)p 702 │ │ │ │ 5089 V 33 w(sortUpAndCompress)25 b Fq(for)31 b(testing.)337 │ │ │ │ 5294 y Fm(\210)45 b Fq(The)f Fp(msglvl)e Fq(parameter)j(determines)f │ │ │ │ (the)g(amoun)m(t)h(of)f(output.)82 b(Use)44 b Fp(msglvl)i(=)i(1)c │ │ │ │ Fq(for)g(just)427 5407 y(timing)31 b(output.)p eop end │ │ │ │ %%Page: 29 29 │ │ │ │ TeXDict begin 29 28 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(29)337 399 y Fm(\210)45 b Fq(The)33 │ │ │ │ b Fp(msgFile)e Fq(parameter)j(determines)f(the)h(message)g(\014le)f(|)h │ │ │ │ (if)f Fp(msgFile)e Fq(is)i Fp(stdout)p Fq(,)g(then)g(the)427 │ │ │ │ 511 y(message)27 b(\014le)f(is)g Fk(stdout)p Fq(,)i(otherwise)e(a)h │ │ │ │ (\014le)f(is)f(op)s(ened)g(with)h Fk(app)-5 b(end)28 │ │ │ │ b Fq(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 624 │ │ │ │ y(data.)337 770 y Fm(\210)45 b Fq(The)30 b Fp(target)f │ │ │ │ @@ -7627,15 +7621,15 @@ │ │ │ │ Fq(,)g(16)1992 4835 y Fp(FVaxpy\(\))p Fq(,)g(16)1992 │ │ │ │ 4949 y Fp(FVaxpyi\(\))p Fq(,)g(16)1992 5064 y Fp(FVcompress\(\))p │ │ │ │ Fq(,)f(16)1992 5178 y Fp(FVcopy\(\))p Fq(,)h(17)1992 │ │ │ │ 5293 y Fp(FVdot\(\))p Fq(,)g(17)1992 5407 y Fp(FVfill\(\))p │ │ │ │ Fq(,)g(17)1905 5656 y(30)p eop end │ │ │ │ %%Page: 31 31 │ │ │ │ TeXDict begin 31 30 bop 91 100 988 4 v 1169 100 a Fp(Utilities)28 │ │ │ │ -b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(18,)g(2025)p │ │ │ │ +b Fl(:)40 b Fk(DRAFT)121 b Fl(Octob)s(er)31 b(28,)g(2025)p │ │ │ │ 2820 100 V 988 w Fq(31)0 399 y Fp(FVfprintf\(\))p Fq(,)d(16)0 │ │ │ │ 513 y Fp(FVfree\(\))p Fq(,)g(16)0 627 y Fp(FVfscanf\(\))p │ │ │ │ Fq(,)g(16)0 741 y Fp(FVgather\(\))p Fq(,)g(17)0 855 y │ │ │ │ Fp(FVgatherAddZero\(\))p Fq(,)e(17)0 969 y Fp(FVgatherZero\(\))p │ │ │ │ Fq(,)h(17)0 1083 y Fp(FVinit\(\))p Fq(,)h(16)0 1197 y │ │ │ │ Fp(FVinit2\(\))p Fq(,)g(16)0 1311 y Fp(FVinvPerm\(\))p │ │ │ │ Fq(,)g(17)0 1425 y Fp(FVmax\(\))p Fq(,)h(17)0 1539 y │ │ │ │ @@ -7696,15 +7690,15 @@ │ │ │ │ 4838 y Fp(IVshuffle\(\))p Fq(,)g(16)1992 4952 y Fp │ │ │ │ (IVsortUpAndCompress\(\))p Fq(,)d(22)1992 5066 y Fp(IVsum\(\))p │ │ │ │ Fq(,)k(15)1992 5180 y Fp(IVsumabs\(\))p Fq(,)f(15)1992 │ │ │ │ 5293 y Fp(IVswap\(\))p Fq(,)h(15)1992 5407 y Fp(IVzero\(\))p │ │ │ │ Fq(,)g(16)p eop end │ │ │ │ %%Page: 32 32 │ │ │ │ TeXDict begin 32 31 bop 0 100 a Fq(32)p 182 100 988 4 │ │ │ │ -v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(18,) │ │ │ │ +v 1170 w Fp(Utilities)28 b Fl(:)40 b Fk(DRAFT)30 b Fl(Octob)s(er)h(28,) │ │ │ │ g(2025)p 2913 100 V 0 399 a Fp(IVZVisortDown\(\))p Fq(,)26 │ │ │ │ b(21)0 511 y Fp(IVZVisortUp\(\))p Fq(,)h(21)0 624 y Fp │ │ │ │ (IVZVqsortDown\(\))p Fq(,)f(22)0 737 y Fp(IVZVqsortUp\(\))p │ │ │ │ Fq(,)h(22)0 850 y Fp(IVZVsortUpAndCompress\(\))p Fq(,)d(23)0 │ │ │ │ 1040 y Fp(PCVcopy\(\))p Fq(,)k(19)0 1153 y Fp(PCVfree\(\))p │ │ │ │ Fq(,)g(18)0 1266 y Fp(PCVinit\(\))p Fq(,)g(18)0 1379 │ │ │ │ y Fp(PCVsetup\(\))p Fq(,)g(19)0 1491 y Fp(PDVcopy\(\))p │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ struct _I2OP { │ │ │ │ │ int value0 ; │ │ │ │ │ int value1 ; │ │ │ │ │ void *value2 ; │ │ │ │ │ I2OP *next ; │ │ │ │ │ } ; │ │ │ │ │ 1 │ │ │ │ │ - 2 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 2 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 1.2 Prototypes and descriptions of Utilities methods │ │ │ │ │ This section contains brief descriptions including prototypes of all methods that belong to the │ │ │ │ │ Utilities directory. │ │ │ │ │ 1.2.1 CV : char vector methods │ │ │ │ │ 1. char * CVinit ( int n, char c ) ; │ │ │ │ │ This is the allocator and initializer method for char vectors. Storage for an array with size │ │ │ │ │ n is found and each entry is filled with character c. A pointer to the array is returned. │ │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ 8. int CVfscanf ( FILE *fp, int n, char y[] ) ; │ │ │ │ │ This method scans in characters from file fp and places them in the array y[]. It tries to │ │ │ │ │ read in n characters, and returns the number that were actually read. │ │ │ │ │ 1.2.2 DV : double vector methods │ │ │ │ │ 1. double * DVinit ( int n, double val ) ; │ │ │ │ │ This is the allocator and initializer method for double vectors. Storage for an array with size │ │ │ │ │ n is found and each entry is filled with val. A pointer to the array is returned. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 3 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 3 │ │ │ │ │ 2. double * DVinit2 ( int n ) ; │ │ │ │ │ This is an allocator method for double vectors. Storage for an array with size n is found. A │ │ │ │ │ pointer to the array is returned. Note, on return, there will likely be garbage in the array. │ │ │ │ │ 3. void DVfree ( int vec[] ) ; │ │ │ │ │ This method releases the storage taken by vec[]. │ │ │ │ │ 4. void DVfprintf ( FILE *fp, int n, double y[] ) ; │ │ │ │ │ This method prints n entries in y[] to file fp. The format is new line followed by lines of six │ │ │ │ │ @@ -90,15 +90,15 @@ │ │ │ │ │ This method computes this computation. │ │ │ │ │ y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] │ │ │ │ │ y1[] = y1[] + alpha[2] * x0[] + alpha[3] * x1[] │ │ │ │ │ y2[] = y2[] + alpha[4] * x0[] + alpha[5] * x1[] │ │ │ │ │ 11. void DVaxpy31 ( int n, double y0[], double y1[], double y2[], │ │ │ │ │ double alpha, double x0[], double x1[] ) ; │ │ │ │ │ This method computes this computation. │ │ │ │ │ - 4 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 4 Utilities : DRAFT October 28, 2025 │ │ │ │ │ y0[] = y0[] + alpha[0] * x0[] │ │ │ │ │ y1[] = y1[] + alpha[1] * x0[] │ │ │ │ │ y2[] = y2[] + alpha[2] * x0[] │ │ │ │ │ 12. void DVaxpy23 ( int n, double y0[], double y1[], │ │ │ │ │ double alpha, double x0[], double x1[], double x2[] ) ; │ │ │ │ │ This method computes this computation. │ │ │ │ │ y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] + alpha[2] * x2[] │ │ │ │ │ @@ -121,15 +121,15 @@ │ │ │ │ │ y0[] = y0[] + alpha[0] * x0[] + alpha[1] * x1[] │ │ │ │ │ 17. void DVaxpy11 ( int n, double y0[], double alpha, double x0[] ) ; │ │ │ │ │ This method computes this computation. │ │ │ │ │ y0[] = y0[] + alpha[0] * x0[] │ │ │ │ │ 18. void DVaxpyi ( int n, double y[], int index[], double alpha, double x[] ) ; │ │ │ │ │ This method scatteradds a scaled multiple of n entries from x[] into y[], i.e., y[index[i]] │ │ │ │ │ += alpha * x[i] for 0 <= i < n. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 5 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 5 │ │ │ │ │ 19. void DVcompress ( int n1, double x1[], double y1[], │ │ │ │ │ int n2, double x2[], double y2[] ) ; │ │ │ │ │ Given a pair of arrays x1[n1] and y1[n1], fill x2[n2] and y2[n2] with a subset of the │ │ │ │ │ (x1[j],y1[j] entries whose distribution is an approximation. │ │ │ │ │ 20. void DVcopy ( int n, double y[], double x[] ) ; │ │ │ │ │ This method copies n entries from x[] to y[], i.e., y[i] = x[i] for 0 <= i < n. │ │ │ │ │ 21. int DVdot ( int n, double y[], double x[] ) ; │ │ │ │ │ @@ -167,15 +167,15 @@ │ │ │ │ │ i=0 │ │ │ │ │ n−1 │ │ │ │ │ sums[1] = Xrow1[i]∗col0[i] │ │ │ │ │ i=0 │ │ │ │ │ n−1 │ │ │ │ │ sums[2] = Xrow2[i]∗col0[i] │ │ │ │ │ i=0 │ │ │ │ │ - 6 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 6 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 25. int DVdot23 ( int n, double row0[], double row1[], │ │ │ │ │ double col0[], double col1[], double col2[], double sums[] ) ; │ │ │ │ │ This method computes six dot products. │ │ │ │ │ n−1 n−1 n−1 │ │ │ │ │ sums[0] = Xrow0[i]∗col0[i] sums[1] = Xrow0[i]∗col1[i] sums[2] = Xrow0[i]∗col2[i] │ │ │ │ │ i=0 i=0 i=0 │ │ │ │ │ n−1 n−1 n−1 │ │ │ │ │ @@ -212,15 +212,15 @@ │ │ │ │ │ sums[0] = Xrow0[i]∗col0[i] sums[1] = Xrow0[i]∗col1[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ 30. int DVdot11 ( int n, double row0[], double col0[], double sums[] ) ; │ │ │ │ │ This method computes one dot product. │ │ │ │ │ n−1 │ │ │ │ │ sums[0] = Xrow0[i]∗col0[i] │ │ │ │ │ i=0 │ │ │ │ │ - Utilities : DRAFT October 18, 2025 7 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 7 │ │ │ │ │ 31. int DVdoti ( int n, double y[], int index[], double x[] ) ; │ │ │ │ │ n−1 │ │ │ │ │ This method returns the indexed dot product Xy[index[i]]∗x[i]. │ │ │ │ │ i=0 │ │ │ │ │ 32. void DVfill ( int n, double y[], double val ) ; │ │ │ │ │ This method fills n entries in y[] with val, i.e., y[i] = val for 0 <= i < n. │ │ │ │ │ 33. void DVgather ( int n, double y[], double x[], int index[] ) ; │ │ │ │ │ @@ -248,15 +248,15 @@ │ │ │ │ │ This method permutes the vector y as follows. i.e., y[i] := y[index[i]]. See DVinvPerm() │ │ │ │ │ for a similar function. │ │ │ │ │ 42. void DVramp ( int n, double y[], double start, double inc ) ; │ │ │ │ │ This method fills n entries in y[] with values start, start + inc, start + 2*inc, start │ │ │ │ │ + 3*inc, etc. │ │ │ │ │ 43. void DVscale ( int n, double y[], double alpha ) ; │ │ │ │ │ This method scales a vector y[] by alpha, i.e., y[i] *= alpha. for 0 <= i < n. │ │ │ │ │ - 8 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 8 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 44. void DVscale2 ( int n, double x[], double y[], │ │ │ │ │ double a, double b, double c, double d ) ; │ │ │ │ │ This method scales two vectors y[] by a 2 ×2 matrix, i.e., │ │ │ │ │ " x[0] . . . x[n−1] # := " a b #" x[0] ... x[n−1] #. │ │ │ │ │ y[0] . . . y[n−1] c d y[0] . . . y[n−1] │ │ │ │ │ 45. void DVscatter ( int n, double y[], int index[], double x[] ) ; │ │ │ │ │ This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] for 0 <= i │ │ │ │ │ @@ -284,15 +284,15 @@ │ │ │ │ │ This method swaps the x[] and y[] vectors as follows. i.e., y[i] := x[i] and x[i] := │ │ │ │ │ y[i] for 0 <= i < n. │ │ │ │ │ 53. void DVzero ( int n, double y[] ) ; │ │ │ │ │ This method zeroes n entries in y[], i.e., y[i] = 0 for 0 <= i < n. │ │ │ │ │ 54. void DVshuffle ( int n, double y[], int seed ) ; │ │ │ │ │ This method shuffles the first n entries in y[]. The value seed is the seed to a random number │ │ │ │ │ generator, and one can get repeatable behavior by repeating seed. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 9 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 9 │ │ │ │ │ 1.2.3 ZV : double complex vector methods │ │ │ │ │ Adoubleprecisioncomplexvector oflengthnissimplya doubleprecisionvector oflength2n. There │ │ │ │ │ is a separate ZVinit() allocator and initializer method, since it requires a real and imaginary part │ │ │ │ │ to fill the vector. However, there is no ZVinit2() method (which allocates without initializing the │ │ │ │ │ entries) nor a ZVfree() method to free the entries; the DVinit2() and DVfree() methods can be │ │ │ │ │ used. Similarly, there is no ZVfscanf() method, instead the DVfscanf() method can be used. │ │ │ │ │ 1. double * ZVinit ( int n, double real, double imag ) ; │ │ │ │ │ @@ -320,15 +320,15 @@ │ │ │ │ │ 6. void ZVaxpy ( int n, double y[], double areal, double aimag, double x[] ) ; │ │ │ │ │ Thismethodaddsascaledmultipleofnentriesfromx[]intoy[],i.e., y[i] += (areal,aimag) │ │ │ │ │ * x[i] for 0 <= i < n. │ │ │ │ │ 7. void ZVaxpy2 ( int n, double z[], double areal, double aimag, │ │ │ │ │ double x[], double breal, double bimag, double y[] ) ; │ │ │ │ │ This method adds a scaled multiple of two vectors x[] and y[] to another vector z[], i.e., │ │ │ │ │ i.e., z[i] += (areal,aimag) * x[i] + (breal,bimag) * y[i] for 0 <= i < n. │ │ │ │ │ - 10 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 10 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 8. void ZVaxpy33 ( int n, double y0[], double y1[], double y2[], │ │ │ │ │ double alpha[], double x0[], double x1[], double x2[] ) ; │ │ │ │ │ This method computes the following. │ │ │ │ │ y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] + alpha[4:5] * x2[] │ │ │ │ │ y1[] = y1[] + alpha[6:7] * x0[] + alpha[8:9] * x1[] + alpha[10:11] * x2[] │ │ │ │ │ y2[] = y2[] + alpha[12:13] * x0[] + alpha[14:15] * x1[] + alpha[16:17] * x2[] │ │ │ │ │ 9. void ZVaxpy32 ( int n, double y0[], double y1[], double y2[], │ │ │ │ │ @@ -354,15 +354,15 @@ │ │ │ │ │ y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] │ │ │ │ │ y1[] = y1[] + alpha[4:5] * x0[] + alpha[6:7] * x1[] │ │ │ │ │ 13. void ZVaxpy21 ( int n, double y0[], double y1[], │ │ │ │ │ double alpha[], double x0[] ) ; │ │ │ │ │ This method computes the following. │ │ │ │ │ y0[] = y0[] + alpha[0:1] * x0[] │ │ │ │ │ y1[] = y1[] + alpha[2:3] * x0[] │ │ │ │ │ - Utilities : DRAFT October 18, 2025 11 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 11 │ │ │ │ │ 14. void ZVaxpy13 ( int n, double y0[], │ │ │ │ │ double alpha[], double x0[], double x1[], double x2[] ) ; │ │ │ │ │ This method computes the following. │ │ │ │ │ y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] + alpha[4:5] * x2[] │ │ │ │ │ 15. void ZVaxpy12 ( int n, double y0[], double alpha[], double x0[], double x1[] ) ; │ │ │ │ │ This method computes the following. │ │ │ │ │ y0[] = y0[] + alpha[0:1] * x0[] + alpha[2:3] * x1[] │ │ │ │ │ @@ -389,15 +389,15 @@ │ │ │ │ │ This method fills *prdot and *pidot with the real and imaginary parts of the indexed dot │ │ │ │ │ n−1 │ │ │ │ │ product Xy[index[i]]∗x[i]. │ │ │ │ │ i=0 │ │ │ │ │ 22. int ZVdotU33 ( int n, double row0[], double row1[], double row2[], │ │ │ │ │ double col0[], double col1[], double col2[], double sums[] ) ; │ │ │ │ │ This method computes nine dot products. │ │ │ │ │ - 12 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 12 Utilities : DRAFT October 28, 2025 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[0;1] = Xrow0[i]∗col0[i] sums[2 : 3] = Xrow0[i]∗col1[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[4 : 5] = Xrow0[i]∗col2[i] sums[6 : 7] = Xrow1[i]∗col0[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ @@ -441,15 +441,15 @@ │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[4 : 5] = Xrow0[i]∗col2[i] sums[6 : 7] = Xrow1[i]∗col0[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[8 : 9] = Xrow1[i]∗col1[i] sums[10 : 11] = Xrow1[i]∗col2[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ - Utilities : DRAFT October 18, 2025 13 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 13 │ │ │ │ │ 26. int ZVdotU22 ( int n, double row0[], double row1[], │ │ │ │ │ double col0[], double col1[], double sums[] ) ; │ │ │ │ │ This method computes four dot products. │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[0 : 1] = Xrow0[i]∗col0[i] sums[2 : 3] = Xrow0[i]∗col1[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ @@ -483,15 +483,15 @@ │ │ │ │ │ This method computes one dot product. │ │ │ │ │ n−1 │ │ │ │ │ sums[0 : 1] = Xrow0[i]∗col0[i] │ │ │ │ │ i=0 │ │ │ │ │ 31. int ZVdotC33 ( int n, double row0[], double row1[], double row2[], │ │ │ │ │ double col0[], double col1[], double col2[], double sums[] ) ; │ │ │ │ │ This method computes nine dot products. │ │ │ │ │ - 14 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 14 Utilities : DRAFT October 28, 2025 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[0;1] = Xrow0[i]∗col0[i] sums[2 : 3] = Xrow0[i]∗col1[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[4 : 5] = Xrow0[i]∗col2[i] sums[6 : 7] = Xrow1[i]∗col0[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ @@ -535,15 +535,15 @@ │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[4 : 5] = Xrow0[i]∗col2[i] sums[6 : 7] = Xrow1[i]∗col0[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[8 : 9] = Xrow1[i]∗col1[i] sums[10 : 11] = Xrow1[i]∗col2[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ - Utilities : DRAFT October 18, 2025 15 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 15 │ │ │ │ │ 35. int ZVdotC22 ( int n, double row0[], double row1[], │ │ │ │ │ double col0[], double col1[], double sums[] ) ; │ │ │ │ │ This method computes four dot products. │ │ │ │ │ n−1 n−1 │ │ │ │ │ sums[0 : 1] = Xrow0[i]∗col0[i] sums[2 : 3] = Xrow0[i]∗col1[i] │ │ │ │ │ i=0 i=0 │ │ │ │ │ n−1 n−1 │ │ │ │ │ @@ -578,15 +578,15 @@ │ │ │ │ │ n−1 │ │ │ │ │ sums[0 : 1] = Xrow0[i]∗col0[i] │ │ │ │ │ i=0 │ │ │ │ │ 40. void ZVgather ( int n, double y[], double x[], int index[] ) ; │ │ │ │ │ y[i] = x[index[i]] for 0 <= i < n. │ │ │ │ │ 41. double ZVmaxabs ( int n, double y[] ) ; │ │ │ │ │ This method returns the maximum magnitude of entries in y[0:n-1]. │ │ │ │ │ - 16 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 16 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 42. double ZVminabs ( int n, double y[] ) ; │ │ │ │ │ This method returns the minimum magnitude of entries in y[0:n-1]. │ │ │ │ │ 43. void ZVscale ( int n, double y[], double areal, double aimag ) ; │ │ │ │ │ This method scales a vector y[] by (areal,aimag), i.e., y[i] *= (areal,aimag). for 0 <= │ │ │ │ │ i < n. │ │ │ │ │ 44. void ZVscale2 ( int n, double x[], double y[], │ │ │ │ │ double areal, double aimag, double breal, double bimag, │ │ │ │ │ @@ -609,15 +609,15 @@ │ │ │ │ │ This is an allocator method for int vectors. Storage for an array with size n is found. A │ │ │ │ │ pointer to the array is returned. Note, on return, there will likely be garbage in the array. │ │ │ │ │ 3. void IVfree ( int vec[] ) ; │ │ │ │ │ This method releases the storage taken by vec[]. │ │ │ │ │ 4. void IVfprintf ( FILE *fp, int n, int y[] ) ; │ │ │ │ │ This method prints n entries in y[] to file fp. The format is new line followed by lines of five │ │ │ │ │ int’s in " %4d" format. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 17 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 17 │ │ │ │ │ 5. int IVfp80 ( FILE *fp, int n, int y[], int column, int *pierr ) ; │ │ │ │ │ Thismethodprintsnentriesiny[]tofilefp. Themethodsplicesvectorstogetherornaturally │ │ │ │ │ breaks the large vectors into lines. The column value is the present location. If the printed │ │ │ │ │ value of an array entry will not fit within the eighty columns of the present line, a newline │ │ │ │ │ character is written and the value starts a new line. The number of the present column in │ │ │ │ │ the line is returned. If *pierr < 0, an IO error has occured. │ │ │ │ │ 6. int IVfscanf ( FILE *fp, int n, int y[] ) ; │ │ │ │ │ @@ -645,15 +645,15 @@ │ │ │ │ │ returns a location where target is found. If target is not in y[], -1 is returned. │ │ │ │ │ 14. int IVmax ( int n, int y[], int *ploc ) ; │ │ │ │ │ This method returns the maximum entry in y[0:n-1] and puts the first location where it │ │ │ │ │ was found into the address ploc. │ │ │ │ │ 15. int IVmaxabs ( int n, int y[], int *ploc ) ; │ │ │ │ │ This method returns the maximum magnitude of entries in y[0:n-1] and puts the first │ │ │ │ │ location where it was found into the address ploc. │ │ │ │ │ - 18 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 18 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 16. int IVmin ( int n, int y[], int *ploc ) ; │ │ │ │ │ This method returns the minimum entry in y[0:n-1] and puts the first location where it was │ │ │ │ │ found into the address ploc. │ │ │ │ │ 17. int IVminabs ( int n, int y[], int *ploc ) ; │ │ │ │ │ This method returns the minimum magnitude of entries in y[0:n-1] and puts the first loca- │ │ │ │ │ tion where it was found into the address ploc. │ │ │ │ │ 18. void IVperm ( int n, int y[], int index[] ) ; │ │ │ │ │ @@ -681,15 +681,15 @@ │ │ │ │ │ 25. void IVshuffle ( int n, int y[], int seed ) ; │ │ │ │ │ This method shuffles the first n entries in y[]. The value seed is the seed to a random number │ │ │ │ │ generator, and one can get repeatable behavior by repeating seed. │ │ │ │ │ 1.2.5 FV : float vector methods │ │ │ │ │ 1. float * FVinit ( int n, float val ) ; │ │ │ │ │ This is the allocator and initializer method for float vectors. Storage for an array with size │ │ │ │ │ n is found and each entry is filled with val. A pointer to the array is returned. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 19 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 19 │ │ │ │ │ 2. float * FVinit2 ( int n ) ; │ │ │ │ │ This is an allocator method for float vectors. Storage for an array with size n is found. A │ │ │ │ │ pointer to the array is returned. Note, on return, there will likely be garbage in the array. │ │ │ │ │ 3. void FVfree ( int vec[] ) ; │ │ │ │ │ This method releases the storage taken by vec[]. │ │ │ │ │ 4. void FVfprintf ( FILE *fp, int n, float y[] ) ; │ │ │ │ │ This method prints n entries in y[] to file fp. The format is new line followed by lines of six │ │ │ │ │ @@ -716,15 +716,15 @@ │ │ │ │ │ i=0 │ │ │ │ │ 12. void FVfill ( int n, float y[], float val ) ; │ │ │ │ │ This method fills n entries in y[] with val, i.e., y[i] = val for 0 <= i < n. │ │ │ │ │ 13. void FVgather ( int n, float y[], float x[], int index[] ) ; │ │ │ │ │ y[i] = x[index[i]] for 0 <= i < n. │ │ │ │ │ 14. void FVgatherAddZero ( int n, float y[], float x[], int index[] ) ; │ │ │ │ │ y[i] += x[index[i]] and x[index[i]] = 0 for 0 <= i < n. │ │ │ │ │ - 20 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 20 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 15. void FVgatherZero ( int n, float y[], float x[], int index[] ) ; │ │ │ │ │ y[i] = x[index[i]] and x[index[i]] = 0 │ │ │ │ │ 16. void FVinvPerm ( int n, float y[], int index[] ) ; │ │ │ │ │ This method permutes the vector y as follows. i.e., y[index[i]] := y[i]. See FVperm() for │ │ │ │ │ a similar function. │ │ │ │ │ 17. float FVmax ( int n, float y[], int *ploc ) ; │ │ │ │ │ This method returns the maximum entry in y[0:n-1] and puts the first location where it │ │ │ │ │ @@ -751,15 +751,15 @@ │ │ │ │ │ < n. │ │ │ │ │ 25. void FVscatterAddZero ( int n, float y[], int index[], float x[] ) ; │ │ │ │ │ This method scatters/adds n entries of x[] into y[] as follows, y[index[i]] += x[i] and │ │ │ │ │ x[i] for 0 <= i < n. │ │ │ │ │ 26. void FVscatterZero ( int n, float y[], int index[], float x[] ) ; │ │ │ │ │ This method scatters n entries of x[] into y[] as follows, y[index[i]] = x[i] and x[i] for │ │ │ │ │ 0 <= i < n. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 21 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 21 │ │ │ │ │ 27. void FVsub ( int n, float y[], float x[] ) ; │ │ │ │ │ This method subtracts n entries from x[] to y[], i.e., y[i] -= x[i] for 0 <= i < n. │ │ │ │ │ 28. float FVsum ( int n, float y[] ) ; │ │ │ │ │ P │ │ │ │ │ This method returns the sum of the first n entries in the vector x[], i.e., return n−1x[i]. │ │ │ │ │ i=0 │ │ │ │ │ 29. float FVsumabs ( int n, float y[] ) ; │ │ │ │ │ @@ -787,15 +787,15 @@ │ │ │ │ │ i.e., p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n. │ │ │ │ │ 1.2.7 PDV : double * vector methods │ │ │ │ │ 1. double ** PDVinit ( int n ) ; │ │ │ │ │ This is the allocator and initializer method for double* vectors. Storage for an array with │ │ │ │ │ size n is found and each entry is filled with NULL. A pointer to the array is returned. │ │ │ │ │ 2. void PDVfree ( double **p_vec ) ; │ │ │ │ │ This method releases the storage taken by p vec[]. │ │ │ │ │ - 22 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 22 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 3. void PDVcopy ( int n, double *p_y[], double *p_x[] ) ; │ │ │ │ │ This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n. │ │ │ │ │ 4. void PDVsetup ( int n, int sizes[], double vec[], double *p_vec[] ) ; │ │ │ │ │ This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, │ │ │ │ │ i.e., p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n. │ │ │ │ │ PIV : int * vector methods │ │ │ │ │ 1. int ** PIVinit ( int n ) ; │ │ │ │ │ @@ -815,15 +815,15 @@ │ │ │ │ │ 2. void PFVfree ( float **p_vec ) ; │ │ │ │ │ This method releases the storage taken by p vec[]. │ │ │ │ │ 3. void PFVcopy ( int n, float *p_y[], float *p_x[] ) ; │ │ │ │ │ This method copies n entries from p x[] to p y[], i.e., p y[i] = p x[i] for 0 <= i < n. │ │ │ │ │ 4. void PFVsetup ( int n, int sizes[], float vec[], float *p_vec[] ) ; │ │ │ │ │ This method sets the entries of p vec[] as pointers into vec[] given by the sizes[] vector, │ │ │ │ │ i.e., p vec[0] = vec, and p vec[i] = p vec[i-1] + sizes[i-1] for 0 < i < n. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 23 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 23 │ │ │ │ │ 1.2.9 Sorting routines │ │ │ │ │ Validation routines │ │ │ │ │ 1. int IVisascending ( int n, int ivec[] ) ; │ │ │ │ │ int IVisdescending ( int n, int ivec[] ) ; │ │ │ │ │ These methods returns 1 if the array ivec[] is in ascending or descending order and returns │ │ │ │ │ 0 otherwise. │ │ │ │ │ 2. int DVisascending ( int n, double dvec[] ) ; │ │ │ │ │ @@ -852,15 +852,15 @@ │ │ │ │ │ This sorts the array ivec[] into ascending or descending order using an insertion sort and │ │ │ │ │ permutes the double precision complex companion array dvec[] in the same fashion. │ │ │ │ │ 6. void IV2ZVisortUp ( int n, int ivec1[], int ivec2[], double dvec[] ) ; │ │ │ │ │ void IV2ZVisortDown ( int n, int ivec1[], int ivec2[], double dvec[] ) ; │ │ │ │ │ These methods sort the array ivec1[] into ascending or descending order using an insertion │ │ │ │ │ sort and permutes the companion arrays ivec2[] and dvec[] in the same fashion. The │ │ │ │ │ dvec[] array is double precision complex. │ │ │ │ │ - 24 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 24 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 7. void DVisortUp ( int n, double dvec[] ) ; │ │ │ │ │ void DVisortDown ( int n, double dvec[] ) ; │ │ │ │ │ These methods sort a double array into ascending or descending order using an insertion │ │ │ │ │ sort. │ │ │ │ │ 8. void DV2isortUp ( int n, double dvec1[], double dvec2[] ) ; │ │ │ │ │ void DV2isortDown ( int n, double dvec1[], double dvec2[] ) ; │ │ │ │ │ These methods sort the array dvec1[] into ascending or descending order using an insertion │ │ │ │ │ @@ -890,15 +890,15 @@ │ │ │ │ │ These methods sort the array ivec[] into ascending or descending order using a quick sort │ │ │ │ │ and permutes the double precision complex companion array dvec[] in the same fashion. │ │ │ │ │ 6. void IV2ZVqsortUp ( int n, int ivec1[], int ivec2[], double dvec[] ) ; │ │ │ │ │ void IV2ZVqsortDown ( int n, int ivec1[], int ivec2[], double dvec[] ) ; │ │ │ │ │ These methods sort the array ivec1[] into ascending or descending order using a quick sort │ │ │ │ │ and permutes the companion arrays ivec2[] and dvec[] in the same fashion. The dvec[] │ │ │ │ │ array is double precision complex. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 25 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 25 │ │ │ │ │ 7. void DVqsortUp ( int n, double dvec[] ) ; │ │ │ │ │ void DVqsortDown ( int n, double dvec[] ) ; │ │ │ │ │ Thes methods sort a double array into ascending or descending order using a quick sort. │ │ │ │ │ 8. void DV2qsortUp ( int n, double dvec1[], double dvec2[] ) ; │ │ │ │ │ void DV2qsortDown ( int n, double dvec1[], double dvec2[] ) ; │ │ │ │ │ These methods sort the array dvec1[] into ascending or descending order using a quick sort │ │ │ │ │ and permutes the companion array dvec2[] in the same fashion. │ │ │ │ │ @@ -928,15 +928,15 @@ │ │ │ │ │ program exits. │ │ │ │ │ 4. int IV2sortUpAndCompress ( int n, int ivec1[], int ivec2[] ) ; │ │ │ │ │ This method sorts ivec1[] into ascending order with ivec2[] as a companion vector. It │ │ │ │ │ then compresses the pairs, dropping all but one of identical pairs. The return value is the │ │ │ │ │ number of unique entries stored in the leading locations of the vectors ivec1[] and ivec2[]. │ │ │ │ │ Error checking: If n < 0, or if ivec1 or ivec2 is NULL, an error message is printed and the │ │ │ │ │ program exits. │ │ │ │ │ - 26 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 26 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 5. int IV2DVsortUpAndCompress ( int n, int ivec1[], int ivec2[], double dvec[] ) ; │ │ │ │ │ This method sorts ivec1[] into ascending order with ivec2[] and dvec[] as companion │ │ │ │ │ vectors. It then compresses the pairs, summing the dvec[] entries for identical (ivec1[], │ │ │ │ │ ivec2[]) pairs. The return value is the number of unique entries stored in the leading │ │ │ │ │ locations of the vectors ivec1[], ivec2[] and dvec[]. │ │ │ │ │ Error checking: If n < 0, or if ivec1, ivec2 or dvec is NULL, an error message is printed and │ │ │ │ │ the program exits. │ │ │ │ │ @@ -965,15 +965,15 @@ │ │ │ │ │ 2. void IP_free ( IP *ip ) ; │ │ │ │ │ This method releases the storage based at *ip. │ │ │ │ │ 3. void IP_fprintf ( FILE *fp, IP *ip ) ; │ │ │ │ │ This method prints the singly linked list that starts with ip. │ │ │ │ │ 4. int IP_fp80 ( FILE *fp, int n, int y[], int column, int *pierr ) ; │ │ │ │ │ This method prints the singly linked list that starts with ip. See IVfp80() for a description │ │ │ │ │ of how the entries are placed on a line. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 27 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 27 │ │ │ │ │ 5. IP * IP_mergeUp ( IP *ip1, IP *ip2 ) ; │ │ │ │ │ This method merges two singly linked lists into one. If the two lists are in ascending order, │ │ │ │ │ the new list is also in ascending order. The head of the new list is returned. │ │ │ │ │ 6. IP * IP_mergeSortUp ( IP *ip ) ; │ │ │ │ │ This method sorts a list into ascending order using a merge sort. │ │ │ │ │ 7. IP * IP_radixSortUp ( IP *ip ) ; │ │ │ │ │ This method sorts a list into ascending order using a radix sort. │ │ │ │ │ @@ -1002,15 +1002,15 @@ │ │ │ │ │ base[i].value1 = -1. The flag parameter determines how the next field is filled. │ │ │ │ │ • If flag = I2OP NULL, the elements are not linked, i.e., ips[i].next = NULL for 0 <= │ │ │ │ │ i < n. │ │ │ │ │ • If flag = I2OP FORWARD,the elements are linked in a forward manner, i.e., ips[i].next │ │ │ │ │ = &ips[i+1] for 0 <= i < n-1 and ips[n-1].next = NULL. │ │ │ │ │ • If flag = I2OP BACKWARD,theelementsarelinkedinabackwardmanner,i.e., ips[i].next │ │ │ │ │ = &ips[i-1] for 0 < i < n and ips[0].next = NULL. │ │ │ │ │ - 28 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 28 Utilities : DRAFT October 28, 2025 │ │ │ │ │ 3. void I2OP_free ( I2OP *i2op ) ; │ │ │ │ │ This method releases the storage based at *i2op. │ │ │ │ │ 4. void I2OP_fprintf ( FILE *fp, I2OP *i2op ) ; │ │ │ │ │ This method prints the singly linked list that starts with i2op. │ │ │ │ │ 1.3 Driver programs │ │ │ │ │ 1. test_sort msglvl msgFile target sortType n range mod seed │ │ │ │ │ This driver program tests the sort methods. Use the script file do test sort for testing. │ │ │ │ │ @@ -1038,15 +1038,15 @@ │ │ │ │ │ • Integer entries are of the form k mod mod, where k in [0,range]. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ 2. test_sortUpAndCompress msglvl msgFile target n range mod seed │ │ │ │ │ This driver program tests the “sort in ascending order and compress” methods. Use the script │ │ │ │ │ file do test sortUpAndCompress for testing. │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ - Utilities : DRAFT October 18, 2025 29 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 29 │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The target parameter denotes the type of vector(s) to be sorted. │ │ │ │ │ – IV — int vector sort │ │ │ │ │ – IV2 — (int, int) vector sort │ │ │ │ │ – IVDV — (int, double) vector sort │ │ │ │ │ @@ -1091,15 +1091,15 @@ │ │ │ │ │ DVfree(), 3 FVaxpy(), 16 │ │ │ │ │ DVfscanf(), 3 FVaxpyi(), 16 │ │ │ │ │ DVgather(), 5 FVcompress(), 16 │ │ │ │ │ DVgatherAddZero(), 5 FVcopy(), 17 │ │ │ │ │ DVgatherZero(), 6 FVdot(), 17 │ │ │ │ │ DVinit(), 2 FVfill(), 17 │ │ │ │ │ 30 │ │ │ │ │ - Utilities : DRAFT October 18, 2025 31 │ │ │ │ │ + Utilities : DRAFT October 28, 2025 31 │ │ │ │ │ FVfprintf(), 16 IV2qsortDown(), 21 │ │ │ │ │ FVfree(), 16 IV2qsortUp(), 21 │ │ │ │ │ FVfscanf(), 16 IV2sortUpAndCompress(), 23 │ │ │ │ │ FVgather(), 17 IV2ZVisortDown(), 21 │ │ │ │ │ FVgatherAddZero(), 17 IV2ZVisortUp(), 21 │ │ │ │ │ FVgatherZero(), 17 IV2ZVqsortDown(), 22 │ │ │ │ │ FVinit(), 16 IV2ZVqsortUp(), 22 │ │ │ │ │ @@ -1137,15 +1137,15 @@ │ │ │ │ │ IV2DVisortDown(), 21 IVscatter(), 15 │ │ │ │ │ IV2DVisortUp(), 21 IVshuffle(), 16 │ │ │ │ │ IV2DVqsortDown(), 22 IVsortUpAndCompress(), 22 │ │ │ │ │ IV2DVqsortUp(), 22 IVsum(), 15 │ │ │ │ │ IV2DVsortUpAndCompress(), 23 IVsumabs(), 15 │ │ │ │ │ IV2isortDown(), 20 IVswap(), 15 │ │ │ │ │ IV2isortUp(), 20 IVzero(), 16 │ │ │ │ │ - 32 Utilities : DRAFT October 18, 2025 │ │ │ │ │ + 32 Utilities : DRAFT October 28, 2025 │ │ │ │ │ IVZVisortDown(), 21 ZVdotU23(), 10 │ │ │ │ │ IVZVisortUp(), 21 ZVdotU31(), 9 │ │ │ │ │ IVZVqsortDown(), 22 ZVdotU32(), 9 │ │ │ │ │ IVZVqsortUp(), 22 ZVdotU33(), 9 │ │ │ │ │ IVZVsortUpAndCompress(), 23 ZVfprintf(), 8 │ │ │ │ │ ZVgather(), 13 │ │ │ │ │ PCVcopy(), 19 ZVinit(), 7 │ │ ├── ./usr/share/doc/spooles-doc/ZV.ps.gz │ │ │ ├── ZV.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o ZV.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2350,15 +2350,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2552,81 +2551,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -4010,15 +4004,15 @@ │ │ │ │ 66.4176 /CMR8 rf /Fd 133[50 59 4[44 44 46 2[56 62 93 │ │ │ │ 31 2[31 62 2[51 62 50 1[54 11[86 5[84 5[42 6[80 12[56 │ │ │ │ 56 56 56 56 2[31 46[{}25 99.6264 /CMBX12 rf /Fe 139[62 │ │ │ │ 4[62 4[62 4[62 1[62 62 7[62 3[62 86[{}8 119.552 /CMTT12 │ │ │ │ rf /Ff 138[49 30 37 38 1[46 46 51 74 23 42 1[28 46 42 │ │ │ │ 1[42 46 42 42 46 12[65 1[66 11[59 62 69 2[68 6[28 58[{}25 │ │ │ │ 90.9091 /CMTI10 rf /Fg 139[35 1[36 2[45 9[40 1[40 51 │ │ │ │ -18[71 20[25 1[45 2[45 2[45 45 45 3[25 44[{}14 90.9091 │ │ │ │ +18[71 20[25 1[45 2[45 2[45 1[45 3[25 44[{}13 90.9091 │ │ │ │ /CMSL10 rf /Fh 134[71 2[71 75 52 53 55 1[75 67 75 112 │ │ │ │ 3[37 75 67 41 61 75 60 1[65 13[75 2[92 11[103 16[67 67 │ │ │ │ 67 2[37 46[{}25 119.552 /CMBX12 rf │ │ │ │ %DVIPSBitmapFont: Fi tcrm1095 10.95 2 │ │ │ │ [/Grave/Acute/Circumflex/Tilde/Dieresis/Hungarumlaut/Ring/Caron/Breve/Macron │ │ │ │ /Dotaccent/cedilla/ogonek/quotesinglbase.ts1 4{/.notdef}repeat │ │ │ │ /quotedblbase.ts1/.notdef/.notdef/twelveudash/threequartersemdash │ │ │ │ @@ -4138,15 +4132,15 @@ │ │ │ │ Fj(ZV)g Fk(ob)5 b(ject.)41 b(On)29 b(the)g(other)h(hand,)e(the)i(con)m │ │ │ │ (v)m(enience)0 4867 y(mak)m(es)h(it)g(a)g(widely)f(used)g(ob)5 │ │ │ │ b(ject.)0 5179 y Fh(1.1)135 b(Data)46 b(Structure)0 5407 │ │ │ │ y Fk(The)30 b Fj(ZV)g Fk(structure)g(has)g(three)g(\014elds.)1927 │ │ │ │ 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fk(2)p 136 100 1182 4 v │ │ │ │ -1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 137 399 a Fi(\210)45 b Fj(int)i(size)29 b │ │ │ │ Fk(:)41 b(presen)m(t)30 b(size)i(of)e(the)h(v)m(ector.)137 │ │ │ │ 595 y Fi(\210)45 b Fj(int)i(maxsize)29 b Fk(:)40 b(maxim)m(um)30 │ │ │ │ b(size)i(of)e(the)h(v)m(ector.)137 791 y Fi(\210)45 b │ │ │ │ Fj(int)i(owned)27 b Fk(:)40 b(o)m(wner)28 b(\015ag)h(for)f(the)h(data.) │ │ │ │ 41 b(When)28 b Fj(owned)46 b(=)i(1)p Fk(,)28 b(storage)i(for)f │ │ │ │ Fj(owned)e(double)p Fk('s)f(has)j(b)s(een)227 904 y(allo)s(cated)k(b)m │ │ │ │ @@ -4203,15 +4197,15 @@ │ │ │ │ V 34 w(clearData\(\))d Fk(then)i(free's)h(the)g(storage)h(for)f(the)227 │ │ │ │ 5253 y(structure)h(with)g(a)h(call)h(to)f Fj(free\(\))p │ │ │ │ Fk(.)227 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ b Fk(If)30 b Fj(zv)g Fk(is)h Fj(NULL)e Fk(an)h(error)g(message)h(is)g │ │ │ │ (prin)m(ted)f(and)g(the)g(program)g(exits.)p eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1182 4 v 1364 100 a Fj(ZV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fk(3)0 399 y Fd(1.2.2)112 b(Instance)38 │ │ │ │ b(metho)s(ds)0 591 y Fk(These)33 b(metho)s(d)f(allo)m(w)j(access)g(to)e │ │ │ │ (information)h(in)f(the)g(data)h(\014elds)e(without)i(explicitly)g │ │ │ │ (follo)m(wing)h(p)s(oin)m(ters.)0 704 y(There)g(is)h(o)m(v)m(erhead)h │ │ │ │ (in)m(v)m(olv)m(ed)h(with)d(these)h(metho)s(d)g(due)f(to)h(the)g │ │ │ │ (function)g(call)h(and)e(error)h(c)m(hec)m(king)h(inside)0 │ │ │ │ 817 y(the)31 b(metho)s(ds.)111 1029 y(1.)46 b Fj(int)h(ZV_owned)f(\()h │ │ │ │ @@ -4277,15 +4271,15 @@ │ │ │ │ Fk(with)j(the)g(base)g(address)227 5148 y(of)e(the)f(v)m(ector.)227 │ │ │ │ 5294 y Ff(Err)-5 b(or)27 b(che)-5 b(cking:)36 b Fk(If)22 │ │ │ │ b Fj(zv)p Fk(,)i Fj(psize)d Fk(or)h Fj(pentries)e Fk(is)i │ │ │ │ Fj(NULL)p Fk(,)g(an)g(error)g(message)i(is)e(prin)m(ted)g(and)g(the)g │ │ │ │ (program)227 5407 y(exits.)p eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fk(4)p 136 100 1182 4 v │ │ │ │ -1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 111 399 a Fk(8.)46 b Fj(void)h(ZV_setEntry)e(\()i(ZV)g(*zv,) │ │ │ │ g(int)g(loc,)f(double)h(real,)f(double)g(imag)h(\))g(;)227 │ │ │ │ 551 y Fk(This)30 b(metho)s(d)g(sets)g(the)h Fj(loc)p │ │ │ │ Fk('th)f(en)m(try)g(of)h(the)f(v)m(ector)i(to)f Fj(\(real,imag\))p │ │ │ │ Fk(.)227 704 y Ff(Err)-5 b(or)33 b(che)-5 b(cking:)40 │ │ │ │ b Fk(If)28 b Fj(zv)h Fk(is)g Fj(NULL)e Fk(or)j Fj(loc)46 │ │ │ │ b(<)i(0)p Fk(,)29 b(an)g(error)g(message)h(is)f(prin)m(ted)f(and)h(the) │ │ │ │ @@ -4363,15 +4357,15 @@ │ │ │ │ b Fj(zv)g Fk(is)g Fj(NULL)p Fk(,)f(or)i Fj(newsize)46 │ │ │ │ b(<)h(0)p Fk(,)34 b(or)f(if)h Fj(0)47 b(<)h(maxsize)d(<)j(newsize)31 │ │ │ │ b Fk(and)i Fj(owned)46 b(=)227 5407 y(0)p Fk(,)31 b(an)f(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1182 4 v 1364 100 a Fj(ZV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fk(5)0 399 y Fd(1.2.4)112 b(Utilit)m(y)38 │ │ │ │ b(metho)s(ds)111 607 y Fk(1.)46 b Fj(void)h(ZV_shiftBase)d(\()k(ZV)f │ │ │ │ (*zv,)g(int)g(offset)f(\))h(;)227 770 y Fk(This)32 b(metho)s(d)h │ │ │ │ (shifts)f(the)i(base)f(en)m(tries)g(of)h(the)f(v)m(ector)h(and)f │ │ │ │ (decremen)m(ts)g(the)g(presen)m(t)g(size)h(and)f(max-)227 │ │ │ │ 883 y(im)m(um)g(size)g(of)g(the)f(v)m(ector)j(b)m(y)d │ │ │ │ Fj(offset)p Fk(.)46 b(This)31 b(is)i(a)g(dangerous)f(metho)s(d)g(to)h │ │ │ │ @@ -4433,15 +4427,15 @@ │ │ │ │ (is)g(the)f(smaller)227 5244 y(of)31 b(the)f(t)m(w)m(o)i(sizes.)227 │ │ │ │ 5407 y Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 │ │ │ │ b Fj(zv1)g Fk(or)g Fj(zv2)g Fk(is)g Fj(NULL)p Fk(,)g(an)g(error)g │ │ │ │ (message)h(is)g(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fk(6)p 136 100 1182 4 v │ │ │ │ -1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 111 399 a Fk(8.)46 b Fj(void)h(ZV_log10profile)d(\()j(ZV)g │ │ │ │ (*zv,)g(int)g(npts,)f(DV)h(*xDV,)g(DV)g(*yDV,)f(double)g(tausmall,)1325 │ │ │ │ 511 y(double)g(taubig,)g(int)h(*pnzero,)e(int)i(*pnsmall,)f(int)g │ │ │ │ (*pnbig)h(\))g(;)227 660 y Fk(This)34 b(metho)s(d)f(scans)i(the)f(en)m │ │ │ │ (tries)h(in)f(the)g Fj(ZV)g Fk(ob)5 b(ject)35 b(and)f(\014lls)g │ │ │ │ Fj(xDV)f Fk(and)h Fj(yDV)f Fk(with)h(data)h(that)g(allo)m(ws)227 │ │ │ │ 773 y(a)c(simple)f(log)703 795 y Fc(10)808 773 y Fk(distribution)f │ │ │ │ @@ -4525,15 +4519,15 @@ │ │ │ │ b(If)30 b(an)g(IO)g(error)g(is)g(encoun)m(tered)h(from)f │ │ │ │ Fj(fprintf)p Fk(,)e(zero)k(is)e(returned.)227 5407 y │ │ │ │ Ff(Err)-5 b(or)34 b(che)-5 b(cking:)40 b Fk(If)30 b Fj(zv)g │ │ │ │ Fk(or)g Fj(fp)g Fk(are)h Fj(NULL)p Fk(,)e(an)i(error)f(message)h(is)g │ │ │ │ (prin)m(ted)f(and)f(zero)i(is)g(returned.)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1182 4 v 1364 100 a Fj(ZV)29 │ │ │ │ -b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fg(:)i Ff(DRAFT)121 b Fg(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2671 100 V 1182 w Fk(7)111 399 y(6.)46 b Fj(int)h(ZV_writeToBinaryFile) │ │ │ │ 42 b(\()48 b(ZV)f(*zv,)g(FILE)f(*fp)h(\))h(;)227 557 │ │ │ │ y Fk(This)27 b(metho)s(d)f(writes)h(a)h Fj(ZV)e Fk(ob)5 │ │ │ │ b(ject)28 b(to)g(a)f(binary)g(\014le.)39 b(If)27 b(there)g(are)h(no)e │ │ │ │ (errors)h(in)g(writing)g(the)g(data,)i(the)227 670 y(v)-5 │ │ │ │ b(alue)31 b Fj(1)f Fk(is)h(returned.)39 b(If)30 b(an)g(IO)g(error)g(is) │ │ │ │ h(encoun)m(tered)f(from)g Fj(fwrite)p Fk(,)f(zero)i(is)g(returned.)227 │ │ │ │ @@ -4591,15 +4585,15 @@ │ │ │ │ Fk(parameter)j(is)e(the)h(name)g(of)g(the)g(\014le)f(from)h(whic)m(h)f │ │ │ │ (to)h(read)g(in)f(the)h(ob)5 b(ject.)42 b Fj(inFile)427 │ │ │ │ 5407 y Fk(m)m(ust)31 b(b)s(e)e(of)i(the)f(form)g Fj(*.zvf)f │ │ │ │ Fk(for)h(a)h(formatted)g(\014le)g(or)f Fj(*.zvb)f Fk(for)h(a)h(binary)e │ │ │ │ (\014le.)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fk(8)p 136 100 1182 4 v │ │ │ │ -1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(18,)h(2025)p │ │ │ │ +1364 w Fj(ZV)30 b Fg(:)g Ff(DRAFT)h Fg(Octob)s(er)f(28,)h(2025)p │ │ │ │ 2718 100 V 337 399 a Fi(\210)45 b Fk(The)40 b Fj(outFile)f │ │ │ │ Fk(parameter)i(is)g(the)g(name)g(of)f(the)h(\014le)g(to)g(whic)m(h)g │ │ │ │ (to)g(write)g(out)g(the)g(ob)5 b(ject.)72 b(If)427 511 │ │ │ │ y Fj(outfile)28 b Fk(is)j(of)f(the)g(form)g Fj(*.zvf)p │ │ │ │ Fk(,)f(the)h(ob)5 b(ject)31 b(is)f(written)g(to)h(a)f(formatted)h │ │ │ │ (\014le.)41 b(If)30 b Fj(outfile)e Fk(is)i(of)427 624 │ │ │ │ y(the)e(form)g Fj(*.zvb)p Fk(,)f(the)h(ob)5 b(ject)29 │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -22,15 +22,15 @@ │ │ │ │ │ Onemustchoose where to use this object. There is a substantial performance penalty for doing the │ │ │ │ │ simplest operations, and so when we need to manipulate an double vector inside a loop, we extract │ │ │ │ │ out the size and pointer to the base array from the ZV object. On the other hand, the convenience │ │ │ │ │ makes it a widely used object. │ │ │ │ │ 1.1 Data Structure │ │ │ │ │ The ZV structure has three fields. │ │ │ │ │ 1 │ │ │ │ │ - 2 ZV : DRAFT October 18, 2025 │ │ │ │ │ + 2 ZV : DRAFT October 28, 2025 │ │ │ │ │ • int size : present size of the vector. │ │ │ │ │ • int maxsize : maximum size of the vector. │ │ │ │ │ • int owned : owner flag for the data. When owned = 1, storage for owned double’s has been │ │ │ │ │ allocated by this object and can be free’d by the object. When owned == 0 but size > 0 , │ │ │ │ │ this object points to entries that have been allocated elsewhere, and these entries will not be │ │ │ │ │ free’d by this object. │ │ │ │ │ • double *vec : pointer to the base address of the double vector │ │ │ │ │ @@ -54,15 +54,15 @@ │ │ │ │ │ the storage for vec is free’d by a call to ZVfree(). The structure’s default fields are then set │ │ │ │ │ with a call to ZV setDefaultFields(). │ │ │ │ │ Error checking: If zv is NULL an error message is printed and the program exits. │ │ │ │ │ 4. void ZV_free ( ZV *zv ) ; │ │ │ │ │ This method releases any storage by a call to ZV clearData() then free’s the storage for the │ │ │ │ │ structure with a call to free(). │ │ │ │ │ Error checking: If zv is NULL an error message is printed and the program exits. │ │ │ │ │ - ZV : DRAFT October 18, 2025 3 │ │ │ │ │ + ZV : DRAFT October 28, 2025 3 │ │ │ │ │ 1.2.2 Instance methods │ │ │ │ │ These method allow access to information in the data fields without explicitly following pointers. │ │ │ │ │ There is overhead involved with these method due to the function call and error checking inside │ │ │ │ │ the methods. │ │ │ │ │ 1. int ZV_owned ( ZV *zv ) ; │ │ │ │ │ This method returns the value of owned. If owned > 0, then the object owns the data pointed │ │ │ │ │ to by vec and will free this data with a call to ZVfree() when its data is cleared by a call to │ │ │ │ │ @@ -91,15 +91,15 @@ │ │ │ │ │ This method returns vec, a pointer to the base address of the vector. │ │ │ │ │ Error checking: If zv is NULL, an error message is printed and the program exits. │ │ │ │ │ 7. void ZV_sizeAndEntries ( ZV *zv, int *psize, double **pentries ) ; │ │ │ │ │ This method fills *psize with the size of the vector and **pentries with the base address │ │ │ │ │ of the vector. │ │ │ │ │ Error checking: If zv, psize or pentriesis NULL, an error message is printed and the program │ │ │ │ │ exits. │ │ │ │ │ - 4 ZV : DRAFT October 18, 2025 │ │ │ │ │ + 4 ZV : DRAFT October 28, 2025 │ │ │ │ │ 8. void ZV_setEntry ( ZV *zv, int loc, double real, double imag ) ; │ │ │ │ │ This method sets the loc’th entry of the vector to (real,imag). │ │ │ │ │ Error checking: If zv is NULL or loc < 0, an error message is printed and the program exits. │ │ │ │ │ 1.2.3 Initializer methods │ │ │ │ │ There are three initializer methods. │ │ │ │ │ 1. void ZV_init ( ZV *zv, int size, double *entries ) ; │ │ │ │ │ This method initializes the object given a size for the vector and a possible pointer to the │ │ │ │ │ @@ -128,15 +128,15 @@ │ │ │ │ │ Error checking: If zv is NULL or newmaxsize < 0, or if 0 < maxsize and owned == 0, an │ │ │ │ │ error message is printed and the program exits. │ │ │ │ │ 5. void ZV_setSize ( ZV *zv, int newsize ) ; │ │ │ │ │ This method sets the size of the vector. If newsize > maxsize, the length of the vector is │ │ │ │ │ increased with a call to ZV setMaxsize(). The size field is set to newsize. │ │ │ │ │ Error checking: If zv is NULL, or newsize < 0, or if 0 < maxsize < newsize and owned = │ │ │ │ │ 0, an error message is printed and the program exits. │ │ │ │ │ - ZV : DRAFT October 18, 2025 5 │ │ │ │ │ + ZV : DRAFT October 28, 2025 5 │ │ │ │ │ 1.2.4 Utility methods │ │ │ │ │ 1. void ZV_shiftBase ( ZV *zv, int offset ) ; │ │ │ │ │ This method shifts the base entries of the vector and decrements the present size and max- │ │ │ │ │ imum size of the vector by offset. This is a dangerous method to use because the state of │ │ │ │ │ the vector is lost, namely vec, the base of the entries, is corrupted. If the object owns its │ │ │ │ │ entries and ZV free(), ZV setSize() or ZV setMaxsize() is called before the base has been │ │ │ │ │ shifted back to its original position, a segmentation violation will likely result. This is a very │ │ │ │ │ @@ -162,15 +162,15 @@ │ │ │ │ │ This method fills the vector with zeros. │ │ │ │ │ Error checking: If zv is NULL, an error message is printed and the program exits. │ │ │ │ │ 7. void ZV_copy ( ZV *zv1, ZV *zv2 ) ; │ │ │ │ │ This method fills the zv1 object with entries in the iv2 object. Note, this is a mapped copy, │ │ │ │ │ zv1 and zv2 need not have the same size. The number of entries that are copied is the smaller │ │ │ │ │ of the two sizes. │ │ │ │ │ Error checking: If zv1 or zv2 is NULL, an error message is printed and the program exits. │ │ │ │ │ - 6 ZV : DRAFT October 18, 2025 │ │ │ │ │ + 6 ZV : DRAFT October 28, 2025 │ │ │ │ │ 8. void ZV_log10profile ( ZV *zv, int npts, DV *xDV, DV *yDV, double tausmall, │ │ │ │ │ double taubig, int *pnzero, int *pnsmall, int *pnbig ) ; │ │ │ │ │ This method scans the entries in the ZV object and fills xDV and yDV with data that allows │ │ │ │ │ a simple log10 distribution plot. Only entries whose magnitudes lie in the range [tausmall, │ │ │ │ │ taubig] contribute to the distribution. The number of entries whose magnitudes are zero, │ │ │ │ │ smaller than tausmall, or larger than taubig are placed into pnzero, *pnsmall and *pnbig, │ │ │ │ │ respectively. On return, the size of the xDV and yDV objects is npts. │ │ │ │ │ @@ -199,15 +199,15 @@ │ │ │ │ │ and returns the value returned from the called routine. │ │ │ │ │ Error checking: If zv or fn are NULL, or if fn is not of the form *.zvf (for a formatted file) │ │ │ │ │ or *.zvb (for a binary file), an error message is printed and the method returns zero. │ │ │ │ │ 5. int ZV_writeToFormattedFile ( ZV *zv, FILE *fp ) ; │ │ │ │ │ This method writes a ZV object to a formatted file. If there are no errors in writing the data, │ │ │ │ │ the value 1 is returned. If an IO error is encountered from fprintf, zero is returned. │ │ │ │ │ Error checking: If zv or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ - ZV : DRAFT October 18, 2025 7 │ │ │ │ │ + ZV : DRAFT October 28, 2025 7 │ │ │ │ │ 6. int ZV_writeToBinaryFile ( ZV *zv, FILE *fp ) ; │ │ │ │ │ This method writes a ZV object to a binary file. If there are no errors in writing the data, the │ │ │ │ │ value 1 is returned. If an IO error is encountered from fwrite, zero is returned. │ │ │ │ │ Error checking: If zv or fp are NULL, an error message is printed and zero is returned. │ │ │ │ │ 7. int ZV_writeForHumanEye ( ZV *zv, FILE *fp ) ; │ │ │ │ │ This method writes a ZV object to a file in a human readable format. is called to write out │ │ │ │ │ the header and statistics. The entries of the vector then follow in eighty column format using │ │ │ │ │ @@ -232,15 +232,15 @@ │ │ │ │ │ • The msglvl parameter determines the amount of output. Use msglvl = 1 for just │ │ │ │ │ timing output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The inFile parameter is the name of the file from which to read in the object. inFile │ │ │ │ │ must be of the form *.zvf for a formatted file or *.zvb for a binary file. │ │ │ │ │ - 8 ZV : DRAFT October 18, 2025 │ │ │ │ │ + 8 ZV : DRAFT October 28, 2025 │ │ │ │ │ • The outFile parameter is the name of the file to which to write out the object. If │ │ │ │ │ outfile is of the form *.zvf, the object is written to a formatted file. If outfile is of │ │ │ │ │ the form *.zvb, the object is written to a binary file. When outFile is not "none", the │ │ │ │ │ object is written to the file in a human readable format. When outFile is "none", the │ │ │ │ │ object is not written out. │ │ │ │ │ Index │ │ │ │ │ ZV clearData(), 2 │ │ ├── ./usr/share/doc/spooles-doc/misc.ps.gz │ │ │ ├── misc.ps │ │ │ │ @@ -11,15 +11,15 @@ │ │ │ │ %%EndComments │ │ │ │ %%BeginDefaults │ │ │ │ %%ViewingOrientation: 1 0 0 1 │ │ │ │ %%EndDefaults │ │ │ │ %DVIPSWebPage: (www.radicaleye.com) │ │ │ │ %DVIPSCommandLine: dvips main -o misc.ps │ │ │ │ %DVIPSParameters: dpi=600 │ │ │ │ -%DVIPSSource: TeX output 2025.10.18:1745 │ │ │ │ +%DVIPSSource: TeX output 2025.10.28:2219 │ │ │ │ %%BeginProcSet: tex.pro 0 0 │ │ │ │ %! │ │ │ │ /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S │ │ │ │ N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 │ │ │ │ mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 │ │ │ │ 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ │ │ │ │ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize │ │ │ │ @@ -2250,15 +2250,14 @@ │ │ │ │ /UnderlinePosition -100 def │ │ │ │ /UnderlineThickness 50 def │ │ │ │ end readonly def │ │ │ │ /Encoding 256 array │ │ │ │ 0 1 255 {1 index exch /.notdef put} for │ │ │ │ dup 44 /comma put │ │ │ │ dup 48 /zero put │ │ │ │ -dup 49 /one put │ │ │ │ dup 50 /two put │ │ │ │ dup 53 /five put │ │ │ │ dup 56 /eight put │ │ │ │ dup 58 /colon put │ │ │ │ dup 79 /O put │ │ │ │ dup 98 /b put │ │ │ │ dup 99 /c put │ │ │ │ @@ -2452,81 +2451,76 @@ │ │ │ │ 8F7DA89ED6D2616BEC5F71C3D5C65C821419AF3C96D8B886441B1B129C103CE9 │ │ │ │ 71961454C9E8EEAB50A684882F5AFA6776BEB4765C6ED70B686F135C483E6923 │ │ │ │ 656E924A1A3AE8B1C8F2534E57EF4B62EB5F60AD32CE002FE7F15CBA8F8D641E │ │ │ │ 848C586A3C6CCF19C49E038F56DB0698B5AD852CBD82C7852D6DB691F71A1B3D │ │ │ │ 33AE7ACAA789088D8AA0AC9639BAFD8478636D028610FB45A3F87A84A0258806 │ │ │ │ 35EFCC18C665943291DF8304FAB48700A001189C575427FA5DF1FA6A29CE6187 │ │ │ │ 352649F116473EFF3FDD88DAD052FA85E99298349AF85AAE480898C93005277B │ │ │ │ -C09EFCFD59878B847373935C919D1329183E411E8C577D19BB1E9EEEF014F3EF │ │ │ │ -FD282311E8097DE39E7FD0BC4BC6851A794FC40EEB936A07D533D00EB43868A9 │ │ │ │ -A1055FCFBE6691D503EB5D661803661E50D5454D6AB3550C8D1AFA3CA18BA777 │ │ │ │ -08720799DBFD9F167C12F39761F18C683FF3B148B1D9AE99DE95DF1B42D8FC55 │ │ │ │ -A16BD47C6B7CF8A2B70E256B6E69F3212735B04A2885E1BF5FA7DB06218CC199 │ │ │ │ -8214F7CB99E00AA3268C1935E7B49E8DF7DDC5323C60C16F9B070185E7C74AC3 │ │ │ │ -6F8022E9AA10C5D1F9112DFAFBE335AEC6CBC53CE849A04251B5A0C445F6B08F │ │ │ │ -A823A00EE51195496917EC244C3DEAFE342EB4D1D0544867DC21231E6D6CE429 │ │ │ │ -FE6B78D128EF4B62727BB3C7CB3A81679BC6C3220A1C8E3D85091D37093AD042 │ │ │ │ -F0A9F8DD7CBEBEE07ECBDCC2D8A5C5A33CA0586F35821A99952ED5D5830494C1 │ │ │ │ -567F974D02B9A3036651389F04C9A608C1159C71877302004AB4F97BB8357F36 │ │ │ │ -EE2B85AF25211DDBDB65BCFE1F38A8B65EED5BE08A42B001478DED1CAACC172E │ │ │ │ -99C1204FF330AF768475F00840F5C0FCFD2251089C241CE9C240C01284DC20B6 │ │ │ │ -8241DBF1AC9EAE7CBB5934D86F0DDE211E493A4449D32D5A1E266862A48634FE │ │ │ │ -D5EE6DEFE6056EA416D6B5CEC6C37F9B0108583CD8249985841F776ED25C2BE4 │ │ │ │ -F8ACD5173A96320C170F4304C648F8828AB5217467698A1D800108CDC4B6F03C │ │ │ │ -69AEBE1223F63B1EABEF7A3917B413BFB640D2811D249C821E13F015BD9412D9 │ │ │ │ -950620D6BDE44DE9B6155C3E81675134AB3963FF57466CEB215CC2D23728622A │ │ │ │ -C97AED411F66A122988491D0557E3889B2199962DBBED96A157B0D8252669D11 │ │ │ │ -22955B2D60295D216F39AC292E6620B9C5D17066FB2A82E8139791A354382BC8 │ │ │ │ -2421F543209EF4C09F519A8E078A77ADBEFB98AC0A9D4D3070D021B696481AE2 │ │ │ │ -B10D8761B0BA52EAF04FCDBBE673746A48A1D26CEE1A1E4836830D73DDA126A6 │ │ │ │ -DE070F0B35F18C5118FFF96C66CFA5585F91AC6BDF3510D31B2804F3CDA6DB98 │ │ │ │ -61D4CCB07DAADBB1F2EBA4145AD1636DD12464F665C80DB5CF3572C0DF8A4CC2 │ │ │ │ -1F2B06D872B2F227AD7F199640985F468635A76FA43157E4540F01A8F52F5FB8 │ │ │ │ -17598548373E37341302060F001106925F118C1824ADCB4097911A72C2F1A545 │ │ │ │ -55FFFE67916869DFEB83FBE3C2A143D24E9CDC66F0DB943B1038A75D4EA1AB24 │ │ │ │ -DE2A7F111861C28C0B1FD7BA45FA6FBF2A548F267B03766FBB586AE7C642FA5A │ │ │ │ -08DBB8BFE620B9027E4DD43A52DDA566730893012E4A0E678A5B1BEA32820F63 │ │ │ │ -426037AB3EBBA560CD786CE44C43E774BFFDCB94638525FE60A2DD57900F1E1D │ │ │ │ -EAE38FD055E4B9ACE6BE67180E2CD2E710DA351B1C806B88704CD05554118A03 │ │ │ │ -2666DAF684E9E16B4FD64B64DE244E3A916FDCD23B8ACC73107D0C14035E9467 │ │ │ │ -B4BED87802DDA5C870DE2F7AF2C0BCD368F25B88DD03C28249E41DC16DA43F84 │ │ │ │ -F2ABE3A39D80C894E5E80A7BBE497C5B5E06F82E6D24C9FE8BA07AFAF7F344F0 │ │ │ │ -00D2D63FF5EFA16FF4DD514C3B652DF4A10217889FC6E021998E4AE056F05852 │ │ │ │ -C91258DEEA638AAEF2859FA81C55A50A517FF83297DD6640CAA6F371F7D85935 │ │ │ │ -B45E33327AB8C5C7A67F5930CB54864EA5BA932195800981D773D5B25E19DAE1 │ │ │ │ -C9B271C192B2BE4C5E1C602BAE1BB8045B53D603122D22CC6B3DE005CC6A1596 │ │ │ │ -3F1686D8A28664AAFAAA9C0B5FB35554EAF900950708414482E53F9F69AAB3F5 │ │ │ │ -D0F77DA8DAA18A6904665F264C117AD37C439691436AFE8852465BAB5EF739C8 │ │ │ │ -EDECB3C03081ACC1F14953BD9A897193D60512857E06577866B6F3DC39D44B6A │ │ │ │ -4FBFAF7245D83574C9536696FA8DCA576E1BF02BC0252995D969F64ED4562FA4 │ │ │ │ -1B68A41C9836A19D781C2C3F3DD6A08E50FABA99FD68F0668680572839FDF18B │ │ │ │ -69121C5A0EC4D07D344AACE372BC939ADA609A187695BD7EBA41C334F69E7361 │ │ │ │ -FA436BAF5C3ACE6FD7809DB402FE3DFE8E76F5EB789A099B137C406850407537 │ │ │ │ -F2B0E7F1B5B2EA1E4F79D975146857E3DACE0E4FC9875061C00EDFEB2A3741A4 │ │ │ │ -AC1788B5AA6F9B32F78B73AD70A58726C163572847304341197A4FF6F7E1BF42 │ │ │ │ -B82E347BD905FA85BE3A947535A0CB82B5DE61D6D463DC6538BA7539BF2043EE │ │ │ │ -3EEAC91EC8630EDA1D0308FA8C51A1AAB33F5897FFA700B3FEB7783CA307915F │ │ │ │ -4175E8345CAA11F1A11A867DD62CE8078EE279574CA2D0D6850BFC6E49AACDDA │ │ │ │ -07F85977634587FF2F0CE075F0198A647575F5C426B4109B32E98BAC08A9B543 │ │ │ │ -57FC5F141F76651C53422221D430B3717F7E1587A043223E01A93C7E411CB559 │ │ │ │ -1943ABCF6F060A88009BB88DE84328FD34E7E712FC9DABA9F4504A2B1F7A76C9 │ │ │ │ -C367D615E73F1D23D181E9D08D7E6119989A586C5B71636727DE062D7E40CADF │ │ │ │ -29F3707EE0E75F5B5D146FEF9A79E29D2CE6B3087E08DE84AAC0984010CC13D3 │ │ │ │ -DBC162555B23665E64CC14C125530ACD737B4670EAED77ADBE9BA5AFBC68C010 │ │ │ │ -D89A6B6E45F87F019FA4F0CAE3C9936D7D3A3A65E629A1BD239391B19AB3FF49 │ │ │ │ -73C06DE29A6B37399A5062B4D21925E4E64FBBCD8763DC25472598255F6EB618 │ │ │ │ -64962870991DDCB056C52B1FDB413324F4394C1D8418C02F8619EE0BA81FD06F │ │ │ │ -7DEF0CA9063AC0BB6AFCBCCDF9C45C403EF93DB59D9F710DBE5D2BBA3090072C │ │ │ │ -7BC3C1AFFB15E018F50707C4C9CC5D12B9CFB9813E5C2827815B237BB7F1597F │ │ │ │ -BD90A866B8D2B0A81F8E3382A0FA2B14698F8332AF77BC46BA5082CF833AF00C │ │ │ │ -747CC99F6AEA61C17D997AB21FA962A7A8BC67FDE140B827A52DC92759C99611 │ │ │ │ -52EAFC21569B3F9466725263CC1D1ADDCDEE54B0F4AB80AA3034DBA3BAB7DE81 │ │ │ │ -5C5C90A6B6D9C2E9CFEE675605075EB3FA5B1F5D5445F0A4368571F1D0F199C8 │ │ │ │ -7C77EF6E0A38A86DAC5C260FCAB107CDEC338755B761701ADD79177E7EDE98E9 │ │ │ │ -119188 │ │ │ │ +C09EFD8CDE285A2827F4659E339460ABEF319FE44D7A91E93CA309E9266E03DA │ │ │ │ +735F5DEF3920C01189BB63C2BD7ED0B92EABB481F123641477CDCCAB9751FB7B │ │ │ │ +F67DA7CE6EB134BC10D0228562BA5A6BFE6940907EF030ABF9EC4A8A0DFEF73D │ │ │ │ +3289E8CB4DC37694F5A656A935D92C72B3D82B012F578A27711B161DE9652ADC │ │ │ │ +71C51E743E4E9A7C6CF6FF16C5D65C1F60954C0858B48FAAC4FBB21988E2A934 │ │ │ │ +AC50C097DDF42C416359647D79F830E1430FB9BB803451A6732D1B5CAB817C1B │ │ │ │ +673B3077D9A180F184267E9990C087BCDEBC8EB8B889934DD0EB63C2EBCED4A3 │ │ │ │ +83A0D6A365412CFF610EF7BD5F82B02AA293F1D2F868768CDE9B801C929B4A38 │ │ │ │ +64E20C70BC4041F837AD15423517F7336A067D140A2C7906DC5D45885FFB3B69 │ │ │ │ +724E5B9B138BD15A9359EB25D14BC4193E529D1A49FEB0DC1015BF94CEBBD5E0 │ │ │ │ +EA148B185C53E12BD9FA6DBC097D789A73E832F02F55080D8ED6087F5952EA78 │ │ │ │ +250A4C65CE4C4013554A031446D2092D813C4CB1A605D97A40CF867F656ECD1C │ │ │ │ +C23F80230AD1E449AA8B4007134F71156719206441D92B1A6DD25101ABF69F70 │ │ │ │ +538CCCE216376E1BD6E423986BD4E83B1975B15092D4E19F885672FF1F6E90D0 │ │ │ │ +56A0570345D926A1CDB3DF670F8686CC1B3856499FCF630137C5EB61E02D2F16 │ │ │ │ +C0A38D727B4F3E610D6096B1835E7D654E860DC85853E59617A3B6AE69FF1644 │ │ │ │ +C92B4E7A7AF36F80CCD65DD63FDF2DB504EEFE852E8C2A4B0116B0B5492CBD43 │ │ │ │ +8BAB0441F2F57131B9ACB51B8E3FC7F580D7A26C9ECF0ABC708B0E2A209E8600 │ │ │ │ +A8748D8D3A257954CD69B55FD7BAC03B871E211905C2652EF01ED55AE005A51D │ │ │ │ +1D63640C2121700593D4E933D7820E777217109179B0E59B6EC0BA85572231D8 │ │ │ │ +5B8FD7812014D73B3A14A9F4A90D4BDA3177E01773090577C9F3FA396177D83B │ │ │ │ +6AE2479CAACB3B231DF9D957B2175F795C314C83DE95D5BF7A2A4F753BE4C1F1 │ │ │ │ +239208A8916C64447986F310686C3D1F590DDEA43CF4771325A8A721165CFD88 │ │ │ │ +BECBE9D878D10241F09AAB0995CCD2D83A9FC3C7AF4E347D205B5A86BAD36684 │ │ │ │ +4FABB5CEE968654D1F9F8E6DBC52C967B12CC66C0A99E273CB64556060D7BAF9 │ │ │ │ +A88AB7E2BE6F8997D5DBC39A825B14D20C1CF58EEE1EC3E6712119B014BFDC68 │ │ │ │ +52C5139AC31A66ACEFB1A68DE6E3D2647E6912795D878E33B90B90884CCA46BD │ │ │ │ +4E1B7C0C0357C35C3A4794DED3324BD3D5FB165C8B13AAE2635949970E574B41 │ │ │ │ +F8A32EFC68E0BDD63CC2DA61681ACB378959ED2C48B2D8C8D0535EC280FFCDBD │ │ │ │ +9568D99828AF2CEB9A2A95BAE6FF4E2D9723DAD0B023C06175BCF19787F4FE3E │ │ │ │ +2D7C66BC732F10F8E0734F43BA200585BBBABF0414FC98F0F03538A4512C91F8 │ │ │ │ +1A76006D98439DF01E2A02ACA6571F35851229E05A0FD46E87D0620F104E32BA │ │ │ │ +1DD160E56ADA62AC4976D44B6869E336C92DA03797903F343DFFAB27D5EF7C6C │ │ │ │ +2D0AF05D09129D11FA8E2B458BED62F2E1A1EC5F8F02D21659018663F49BC16E │ │ │ │ +8E4345EC8350186DF50A2C156911D78892D2ED5FA36F6B8F0567DA32D464BD72 │ │ │ │ +B5A21554F79B2316DA18433BB1A7AE063E2FA3BC650469F918E25FE6E3BFE3DF │ │ │ │ +69B3BDFEDA8FDD302A638996AB9DE553D76F336F22592A368FD92AEFB8EFBB1D │ │ │ │ +B0770F89ABA5832497737A022C16E9E0B372A4BFBFAE64ED03EDA5DB88A7627C │ │ │ │ +4FD95DE84B677D03673480E293095C741A2E1511324AB34439E3378C026639E1 │ │ │ │ +86F6A4B9C4CBE5F02CC522FA80C79BB8BEE83A0B23C590E84BE7473FDADA0E9A │ │ │ │ +CDB172BAB4BC148A568A049284700B17F28925B5F0D47015258702702D15948C │ │ │ │ +10434C6DE65558FE701DF03F88FA0DBC0133B00B1787DD80C564F287277B39CF │ │ │ │ +99352A9789FE6CCCA079093E391DB074E58EC4D3F1D624432404586B074BD64D │ │ │ │ +F0BA771952D2245C2D6680CB47FF2845A47530DA63901DFE6E67071F13E209AD │ │ │ │ +3E8325C99E1D307D5E7C9CFD07A2BFB37E5CF1C6CDFE4C69155895C434767E95 │ │ │ │ +A7C5F2ECBF17B1AE2FD51F1E1C444117BA4D5120885CA11E9F0BFFBFE4F6A88A │ │ │ │ +D811302298F9402B615E0B2D42B1C323114C1ABB159BEE706E2A0FB39DC983B2 │ │ │ │ +DD796FF08C6D8F2719C440A5D901B956B588D4C15D7911AB04DF0CF30D4A115B │ │ │ │ +514DF9B8DCCF581053960D6C120A6621BD68354D4BDFB988CF6B1FA360124754 │ │ │ │ +0D927AA37F66CE45EFCFB849E43F10848A44250C2B98BF8F422AF05985D4CDF6 │ │ │ │ +1F873DB01E03F2D7E82EB97AD04694CF5FF198009501B06F887CBEB323CDE698 │ │ │ │ +622AE759249E3333748DCE5CA9D5CB025DA4C8563D0F57F1B3F2D5BA003B89A6 │ │ │ │ +362D8B878DD6B27CD749D05B0A92A8AC37A491EFBBCC66B196D214BB2DD450B8 │ │ │ │ +C0074FC6A20C71FE935C20E27BBC44A132B3937752690ECF50548DCF595DDB9B │ │ │ │ +AC09FCD313E0F7BC7BF1E3916A37FFEE33709822B2EC2888F228C1D6F2C5725E │ │ │ │ +951EFCA653E9D06D34E12AA87CADCF4B044C53D8915844B78050AA59EDAB94B1 │ │ │ │ +DE7A037552A5F7379CE1441C6AA2970222AACD74E5EF6CC4B1CB8622C97E074B │ │ │ │ +EA507E756B94251F1128092B354E7B4C31197423E6D8D0C601C47C79B21B4C99 │ │ │ │ +143EDD2E134E4672C83FA2DF406D22013524C858E89E1FEE90576907ADCE2906 │ │ │ │ +6695EB168ED45EA08645E88A838DACAE2694D21723DD452FCC59F5BCAC327A37 │ │ │ │ +8BACF6FBE89962E7FADB187D89CC59EA0E8106908620A5641C92812456690169 │ │ │ │ +EE66 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ 0000000000000000000000000000000000000000000000000000000000000000 │ │ │ │ @@ -5634,41 +5628,40 @@ │ │ │ │ FFFE000FFFFFFC0007FFFFF80003FFFFF00000FFFFC000003FFF0000000FFC000022227B │ │ │ │ A72D>136 D E │ │ │ │ /Ff load 0 Ff currentfont 91.25 scalefont put/FMat X/FBB │ │ │ │ X/IEn X │ │ │ │ %EndDVIPSBitmapFont │ │ │ │ /Fg 134[45 52 29[62 53 75 2[62 2[69 72 4[62 7[75 1[69 │ │ │ │ 68 2[71 2[25 25 58[{}15 90.9091 /CMMI10 rf /Fh 139[35 │ │ │ │ -1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 45 │ │ │ │ -45 3[25 44[{}14 90.9091 /CMSL10 rf /Fi 234[71 71 17[71 │ │ │ │ -1[71{}4 90.9091 /CMSY10 rf /Fj 136[60 42 49 30 37 38 │ │ │ │ -1[46 46 51 74 23 42 1[28 46 42 1[42 46 42 42 46 12[65 │ │ │ │ -1[66 3[68 7[59 62 69 2[68 6[28 12[33 45[{}29 90.9091 │ │ │ │ -/CMTI10 rf /Fk 134[59 1[81 1[62 44 44 46 1[62 56 62 93 │ │ │ │ -31 2[31 62 56 1[51 62 50 1[54 12[78 5[88 106 67 4[88 │ │ │ │ -18[56 56 56 56 2[31 1[31 44[{}29 99.6264 /CMBX12 rf /Fl │ │ │ │ -130[48 1[48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 │ │ │ │ -48 48 48 48 48 48 48 48 48 48 48 48 1[48 1[48 48 48 1[48 │ │ │ │ -48 1[48 48 48 48 48 48 48 48 48 48 48 2[48 48 48 48 48 │ │ │ │ -48 48 48 48 2[48 48 1[48 48 1[48 48 48 1[48 48 48 48 │ │ │ │ -48 1[48 48 48 48 48 48 48 48 5[48 33[{}75 90.9091 /CMTT10 │ │ │ │ -rf /Fm 140[62 9[62 5[62 21[62 77[{}4 119.552 /CMTT12 │ │ │ │ -rf /Fn 134[71 2[71 75 52 53 55 1[75 67 75 112 3[37 75 │ │ │ │ -67 41 61 75 60 1[65 16[92 11[103 17[67 67 2[37 46[{}23 │ │ │ │ -119.552 /CMBX12 rf /Fo 132[52 59[49 63[{}2 90.9091 /CMBX10 │ │ │ │ -rf /Fp 131[91 45 40 48 48 66 48 51 35 36 36 48 51 45 │ │ │ │ -51 76 25 48 28 25 51 45 28 40 51 40 51 45 3[25 45 25 │ │ │ │ -3[93 1[68 66 51 2[62 71 68 83 3[33 68 1[59 62 69 66 1[68 │ │ │ │ -3[71 1[25 25 45 45 45 45 45 45 45 45 45 45 1[25 30 25 │ │ │ │ -2[35 35 25 4[45 19[76 51 51 53 11[{}70 90.9091 /CMR10 │ │ │ │ -rf /Fq 134[123 123 3[90 1[95 2[116 129 4[65 3[106 129 │ │ │ │ -103 25[87 73[{}11 206.559 /CMBX12 rf /Fr 140[106 9[106 │ │ │ │ -5[106 21[106 77[{}4 206.559 /CMTT12 rf /Fs 139[75 1[79 │ │ │ │ -1[108 7[108 2[88 3[94 29[140 17[97 49[{}8 172.188 /CMBX12 │ │ │ │ -rf end │ │ │ │ +1[36 2[45 9[40 1[40 51 18[71 20[25 1[45 2[45 2[45 1[45 │ │ │ │ +3[25 44[{}13 90.9091 /CMSL10 rf /Fi 234[71 71 17[71 1[71{}4 │ │ │ │ +90.9091 /CMSY10 rf /Fj 136[60 42 49 30 37 38 1[46 46 │ │ │ │ +51 74 23 42 1[28 46 42 1[42 46 42 42 46 12[65 1[66 3[68 │ │ │ │ +7[59 62 69 2[68 6[28 12[33 45[{}29 90.9091 /CMTI10 rf │ │ │ │ +/Fk 134[59 1[81 1[62 44 44 46 1[62 56 62 93 31 2[31 62 │ │ │ │ +56 1[51 62 50 1[54 12[78 5[88 106 67 4[88 18[56 56 56 │ │ │ │ +56 2[31 1[31 44[{}29 99.6264 /CMBX12 rf /Fl 130[48 1[48 │ │ │ │ +48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 │ │ │ │ +48 48 48 48 48 48 48 48 1[48 1[48 48 48 1[48 48 1[48 │ │ │ │ +48 48 48 48 48 48 48 48 48 48 2[48 48 48 48 48 48 48 │ │ │ │ +48 48 2[48 48 1[48 48 1[48 48 48 1[48 48 48 48 48 1[48 │ │ │ │ +48 48 48 48 48 48 48 5[48 33[{}75 90.9091 /CMTT10 rf │ │ │ │ +/Fm 140[62 9[62 5[62 21[62 77[{}4 119.552 /CMTT12 rf │ │ │ │ +/Fn 134[71 2[71 75 52 53 55 1[75 67 75 112 3[37 75 67 │ │ │ │ +41 61 75 60 1[65 16[92 11[103 17[67 67 2[37 46[{}23 119.552 │ │ │ │ +/CMBX12 rf /Fo 132[52 59[49 63[{}2 90.9091 /CMBX10 rf │ │ │ │ +/Fp 131[91 45 40 48 48 66 48 51 35 36 36 48 51 45 51 │ │ │ │ +76 25 48 28 25 51 45 28 40 51 40 51 45 3[25 45 25 3[93 │ │ │ │ +1[68 66 51 2[62 71 68 83 3[33 68 1[59 62 69 66 1[68 3[71 │ │ │ │ +1[25 25 45 45 45 45 45 45 45 45 45 45 1[25 30 25 2[35 │ │ │ │ +35 25 4[45 19[76 51 51 53 11[{}70 90.9091 /CMR10 rf /Fq │ │ │ │ +134[123 123 3[90 1[95 2[116 129 4[65 3[106 129 103 25[87 │ │ │ │ +73[{}11 206.559 /CMBX12 rf /Fr 140[106 9[106 5[106 21[106 │ │ │ │ +77[{}4 206.559 /CMTT12 rf /Fs 139[75 1[79 1[108 7[108 │ │ │ │ +2[88 3[94 29[140 17[97 49[{}8 172.188 /CMBX12 rf end │ │ │ │ %%EndProlog │ │ │ │ %%BeginSetup │ │ │ │ %%Feature: *Resolution 600dpi │ │ │ │ TeXDict begin │ │ │ │ %%BeginPaperSize: Letter │ │ │ │ /setpagedevice where │ │ │ │ { pop << /PageSize [612 792] >> setpagedevice } │ │ │ │ @@ -5720,15 +5713,15 @@ │ │ │ │ (equal)g(to)h(zero,)g(of)f(if)g Fl(east)25 b Fi(\025)h │ │ │ │ Fl(n1)o Fp(,)32 b(of)f(if)g Fl(north)24 b Fi(\025)i Fl(n2)p │ │ │ │ Fp(,)31 b(of)g(if)227 5407 y Fl(top)25 b Fi(\025)g Fl(n3)o │ │ │ │ Fp(,)31 b(an)f(error)g(message)h(is)g(prin)m(ted)f(and)g(the)g(program) │ │ │ │ g(exits.)1927 5656 y(1)p eop end │ │ │ │ %%Page: 2 2 │ │ │ │ TeXDict begin 2 1 bop 0 100 a Fp(2)p 136 100 1130 4 v │ │ │ │ -1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 111 399 a Fp(2.)46 b Fl(void)h(mkNDperm2)e(\()j(int)f(n1,) │ │ │ │ f(int)h(n2,)g(int)g(n3,)g(int)g(newToOld[],)e(int)i(west,)1039 │ │ │ │ 511 y(int)g(east,)f(int)h(south,)f(int)h(north,)f(int)h(bottom,)f(int)h │ │ │ │ (top)f(\))i(;)227 655 y Fp(This)c(metho)s(d)f(this)i(v)m(ector)g │ │ │ │ (\014lls)f(a)h(p)s(erm)m(utation)f(v)m(ector)i(with)e(the)h(nested)f │ │ │ │ (dissection)h(new-to-old)227 768 y(ordering)30 b(of)h(the)f(v)m │ │ │ │ (ertices)j(for)d(the)g(subgrid)f(de\014ned)g(b)m(y)i(no)s(des)e(whose)h │ │ │ │ @@ -5817,15 +5810,15 @@ │ │ │ │ 5294 y(sum)28 b(to)h Fl(n2)47 b(-)h(p2)f(+)g(1)p Fp(,)29 │ │ │ │ b(and)f(en)m(tries)i(in)e Fl(dsizes3[])e Fp(m)m(ust)i(sum)g(to)h │ │ │ │ Fl(n3)47 b(-)h(p3)f(+)g(1)p Fp(,)29 b(an)g(error)f(message)227 │ │ │ │ 5407 y(is)j(prin)m(ted)f(and)f(the)i(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 3 3 │ │ │ │ TeXDict begin 3 2 bop 91 100 1130 4 v 1311 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fp(3)111 399 y(5.)46 b Fl(void)h(fp2DGrid)e(\()j(int) │ │ │ │ f(n1,)g(int)g(n2,)g(int)f(ivec[],)g(FILE)h(*fp)g(\))g(;)227 │ │ │ │ 562 y Fp(This)40 b(metho)s(d)f(writes)i(the)f Fl(ivec[])f │ │ │ │ Fp(v)m(ector)j(on)m(to)f(an)f Fl(n1)48 b(x)f(n2)40 b │ │ │ │ Fp(grid)g(to)h(\014le)f Fl(fp)p Fp(.)70 b(This)39 b(is)i(useful)e(to) │ │ │ │ 227 675 y(visualize)32 b(an)e(ordering)g(or)h(a)f(metric)h(on)g(a)g │ │ │ │ (grid.)227 838 y Fj(Err)-5 b(or)34 b(che)-5 b(cking:)40 │ │ │ │ @@ -5899,15 +5892,15 @@ │ │ │ │ b(or)33 b(che)-5 b(cking:)40 b Fp(If)29 b Fl(graph)f │ │ │ │ Fp(is)h Fl(NULL)p Fp(,)g(or)g(if)h Fl(msglvl)46 b(>)h(0)29 │ │ │ │ b Fp(and)g Fl(msgFile)e Fp(is)j Fl(NULL)p Fp(,)e(an)h(error)g(message)i │ │ │ │ (is)227 5407 y(prin)m(ted)f(and)g(the)h(program)f(exits.)p │ │ │ │ eop end │ │ │ │ %%Page: 4 4 │ │ │ │ TeXDict begin 4 3 bop 0 100 a Fp(4)p 136 100 1130 4 v │ │ │ │ -1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 111 399 a Fp(2.)46 b Fl(ETree)h(*)g(orderViaND)e(\()j │ │ │ │ (Graph)e(*graph,)g(int)h(maxdomainsize,)d(int)i(seed,)1230 │ │ │ │ 511 y(int)g(msglvl,)g(FILE)h(*msgFile)e(\))j(;)227 664 │ │ │ │ y Fp(This)32 b(metho)s(d)g(returns)g(a)h(fron)m(t)g(tree)g │ │ │ │ Fl(ETree)f Fp(ob)5 b(ject)33 b(for)g(a)g(nested)g(dissection)g │ │ │ │ (ordering)g(of)g(the)f(graph)227 777 y Fl(graph)p Fp(.)45 │ │ │ │ b(If)32 b(a)g(subgraph)e(has)i(more)h(v)m(ertices)g(than)f(the)h │ │ │ │ @@ -5987,15 +5980,15 @@ │ │ │ │ (connectivit)m(y)i(of)f(the)f(v)m(ertices.)72 b(The)39 │ │ │ │ b Fl(coords)g Fp(ob)5 b(ject)41 b(de\014nes)e(the)227 │ │ │ │ 5407 y(lo)s(cations)k(of)f(the)f(v)m(ertices.)76 b(The)41 │ │ │ │ b Fl(tagsIV)e Fp(ob)5 b(ject)43 b(is)e(used)g(to)h(de\014ne)f(whether)f │ │ │ │ (or)i(not)f(an)h(edge)g(is)p eop end │ │ │ │ %%Page: 5 5 │ │ │ │ TeXDict begin 5 4 bop 91 100 1130 4 v 1311 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fp(5)227 399 y(dra)m(wn)g(b)s(et)m(w)m(een)h(t)m(w)m │ │ │ │ (o)h(v)m(ertices)h(adjacen)m(t)f(in)e(the)h(graph.)47 │ │ │ │ b(When)32 b Fl(tagsIV)f Fp(is)i(not)g Fl(NULL)p Fp(,)f(if)g(there)h(is) │ │ │ │ g(an)227 511 y(edge)g Fl(\(u,v\))f Fp(in)g(the)h(graph)f(and)f │ │ │ │ Fl(tags[u])46 b(=)i(tags[v])p Fp(,)31 b(then)h(the)h(edge)g(with)f │ │ │ │ (width)g Fl(linewidth1)e Fp(is)227 624 y(dra)m(wn.)54 │ │ │ │ b(F)-8 b(or)36 b(edges)f Fl(\(u,v\))f Fp(in)g(the)h(graph)g(and)f │ │ │ │ @@ -6080,15 +6073,15 @@ │ │ │ │ Fp(with)f Fg(X)7 b Fp(.)44 b Fg(A)31 b Fp(can)g(b)s(e)g(real)g(\()p │ │ │ │ Fl(type)47 b(=)227 5407 y(1)p Fp(\))28 b(or)f(complex)i(\()p │ │ │ │ Fl(type)47 b(=)g(2)p Fp(\).)40 b(The)27 b(n)m(um)m(b)s(er)f(of)i │ │ │ │ (columns)g(of)f Fg(X)35 b Fp(is)28 b(giv)m(en)h(b)m(y)e │ │ │ │ Fl(nrhs)p Fp(.)39 b(The)27 b(linear)h(system)p eop end │ │ │ │ %%Page: 6 6 │ │ │ │ TeXDict begin 6 5 bop 0 100 a Fp(6)p 136 100 1130 4 v │ │ │ │ -1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 227 399 a Fp(is)41 b(ordered)f(using)h(theoretical)i │ │ │ │ (nested)e(dissection,)j(and)d(the)g(fron)m(t)g(tree)g(is)g(transformed) │ │ │ │ f(using)h(the)227 511 y Fl(maxzeros)31 b Fp(and)i Fl(maxsize)e │ │ │ │ Fp(parameters.)49 b(The)33 b(addresses)f(of)h(the)h(fron)m(t)f(tree,)i │ │ │ │ (sym)m(b)s(olic)e(factorization,)227 624 y(and)d(three)h(matrix)f(ob)5 │ │ │ │ b(jects)31 b(are)g(returned)e(in)h(the)h(last)g(\014v)m(e)g(argumen)m │ │ │ │ (ts)g(of)f(the)h(calling)h(sequence.)227 769 y Fj(Err)-5 │ │ │ │ @@ -6157,15 +6150,15 @@ │ │ │ │ 5294 y Fp(metho)s(d)g(is)h(called)h(to)f(write)g(the)g(ob)5 │ │ │ │ b(ject)40 b(to)g(a)g(formatted)h(\014le)e(\(if)h Fl(ETreeFile)d │ │ │ │ Fp(is)j(of)g(the)f(form)427 5407 y Fl(*.etreef)p Fp(\),)29 │ │ │ │ b(or)h(a)h(binary)f(\014le)g(\(if)h Fl(ETreeFile)d Fp(is)i(of)h(the)f │ │ │ │ (form)g Fl(*.etreeb)p Fp(\).)p eop end │ │ │ │ %%Page: 7 7 │ │ │ │ TeXDict begin 7 6 bop 91 100 1130 4 v 1311 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fp(7)111 399 y(3.)46 b Fl(testOrderViaND)e(msglvl)i │ │ │ │ (msgFile)g(GraphFile)f(maxdomainsize)g(seed)h(ETreeFile)227 │ │ │ │ 550 y Fp(This)23 b(program)h(reads)g(in)g(a)g Fl(Graph)f │ │ │ │ Fp(ob)5 b(ject)25 b(from)e(a)i(\014le)f(and)f(computes)h(a)h │ │ │ │ (generalized)g(nested)f(dissection)227 663 y(ordering)30 │ │ │ │ b(of)h(the)f(graph.)337 878 y Ff(\210)45 b Fp(The)28 │ │ │ │ b Fl(msglvl)f Fp(parameter)i(determines)g(the)g(amoun)m(t)g(of)f │ │ │ │ @@ -6237,15 +6230,15 @@ │ │ │ │ b(or)h(a)h(binary)f(\014le)g(\(if)h Fl(ETreeFile)d Fp(is)i(of)h(the)f │ │ │ │ (form)g Fl(*.etreeb)p Fp(\).)111 5294 y(5.)46 b Fl(drawGraph)g(msglvl)g │ │ │ │ (msgFile)f(inGraphFile)g(inCoordsFile)g(inTagsIVfile)705 │ │ │ │ 5407 y(outEPSfile)g(linewidth1)g(linewidth2)g(bbox[4])g(rect[4])h │ │ │ │ (radius)p eop end │ │ │ │ %%Page: 8 8 │ │ │ │ TeXDict begin 8 7 bop 0 100 a Fp(8)p 136 100 1130 4 v │ │ │ │ -1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(18,)g(2025) │ │ │ │ +1311 w Fl(Misc)30 b Fh(:)40 b Fj(DRAFT)30 b Fh(Octob)s(er)h(28,)g(2025) │ │ │ │ p 2771 100 V 227 399 a Fp(This)41 b(driv)m(er)g(program)h(generates)h │ │ │ │ (a)f(Encapsulated)f(P)m(ostscript)i(\014le)e Fl(outEPSfile)e │ │ │ │ Fp(of)j(a)g(2-D)g(graph)227 511 y(using)29 b(a)i Fl(Graph)d │ │ │ │ Fp(ob)5 b(ject,)31 b(a)f Fl(Coords)e Fp(ob)5 b(ject)31 │ │ │ │ b(and)e(a)h(tags)h Fl(IV)e Fp(ob)5 b(ject)30 b(that)h(con)m(tains)f │ │ │ │ (the)g(comp)s(onen)m(t)g(ids)227 624 y(of)h(the)f(v)m(ertices.)227 │ │ │ │ 780 y(See)h(the)f Fl(doDraw)f Fp(script)h(\014le)h(in)f(this)g │ │ │ │ @@ -6323,15 +6316,15 @@ │ │ │ │ y Fg(X)2204 5308 y Fd(0)2129 5407 y Fg(X)2204 5421 y │ │ │ │ Fd(1)2285 5207 y Fe(#)2359 5351 y Fp(=)2455 5207 y Fe(")2545 │ │ │ │ 5294 y Fg(B)2614 5308 y Fd(0)2545 5407 y Fg(B)2614 5421 │ │ │ │ y Fd(1)2695 5207 y Fe(#)2768 5351 y Fp(=)25 b Fg(B)5 │ │ │ │ b(:)p eop end │ │ │ │ %%Page: 9 9 │ │ │ │ TeXDict begin 9 8 bop 91 100 1130 4 v 1311 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2724 100 V 1130 w Fp(9)1541 1617 y(Figure)f(1.1:)42 b │ │ │ │ Fb(R2D100)750 4143 y @beginspecial 0 @llx 0 @lly 600 │ │ │ │ @urx 600 @ury 2880 @rwi 2880 @rhi @setspecial │ │ │ │ %%BeginDocument: ../../misc/doc/R2D100notags.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%BoundingBox: 0.0 0.0 600.0 600.0 │ │ │ │ /radius 10.000 def │ │ │ │ @@ -6738,15 +6731,15 @@ │ │ │ │ grestore │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 10 10 │ │ │ │ TeXDict begin 10 9 bop 0 100 a Fp(10)p 182 100 1107 4 │ │ │ │ -v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(18,)i │ │ │ │ +v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2794 100 V 813 1617 a Fp(Figure)e(1.2:)42 b Fb(R2D100:)k │ │ │ │ (fishnet)33 b(domain)h(decomposition)750 4143 y @beginspecial │ │ │ │ 0 @llx 0 @lly 600 @urx 600 @ury 2880 @rwi 2880 @rhi @setspecial │ │ │ │ %%BeginDocument: ../../misc/doc/R2D100fishnet.eps │ │ │ │ %!PS-Adobe-2.0 EPSF-1.2 │ │ │ │ %%BoundingBox: 0.0 0.0 600.0 600.0 │ │ │ │ /radius 10.000 def │ │ │ │ @@ -7157,15 +7150,15 @@ │ │ │ │ grestore │ │ │ │ showpage │ │ │ │ │ │ │ │ %%EndDocument │ │ │ │ @endspecial eop end │ │ │ │ %%Page: 11 11 │ │ │ │ TeXDict begin 11 10 bop 91 100 1107 4 v 1288 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2701 100 V 1107 w Fp(11)227 399 y Fg(A)f Fp(is)f(factored)h(as)1106 │ │ │ │ 410 y Fe(")1196 497 y Fg(A)1264 511 y Fd(0)p Fc(;)p Fd(0)1441 │ │ │ │ 497 y Fg(A)1509 511 y Fd(0)p Fc(;)p Fd(1)1196 610 y Fg(A)1264 │ │ │ │ 624 y Fd(1)p Fc(;)p Fd(0)1441 610 y Fg(A)1509 624 y Fd(1)p │ │ │ │ Fc(;)p Fd(1)1645 410 y Fe(#)1719 554 y Fp(=)1815 410 │ │ │ │ y Fe(")1905 497 y Fg(L)1967 511 y Fd(0)p Fc(;)p Fd(0)2199 │ │ │ │ 497 y Fp(0)1905 610 y Fg(L)1967 624 y Fd(1)p Fc(;)p Fd(0)2144 │ │ │ │ @@ -7276,15 +7269,15 @@ │ │ │ │ Fl(Graph)e Fp(ob)5 b(ject.)41 b(It)30 b(m)m(ust)f(b)s(e)g(of)h(the)f │ │ │ │ (form)427 5294 y Fl(*.graphf)18 b Fp(or)j Fl(*.graphb)p │ │ │ │ Fp(.)35 b(The)19 b Fl(Graph)g Fp(ob)5 b(ject)21 b(is)g(read)f(from)g │ │ │ │ (the)g(\014le)h(via)f(the)h Fl(Graph)p 3368 5294 V 33 │ │ │ │ w(readFromFile\(\))427 5407 y Fp(metho)s(d.)p eop end │ │ │ │ %%Page: 12 12 │ │ │ │ TeXDict begin 12 11 bop 0 100 a Fp(12)p 182 100 1107 │ │ │ │ -4 v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(18,)i │ │ │ │ +4 v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2794 100 V 337 399 a Ff(\210)45 b Fp(The)29 b │ │ │ │ Fl(ETreeFile)e Fp(parameter)j(is)g(the)g(input)e(\014le)i(for)f(the)h │ │ │ │ Fl(ETree)e Fp(ob)5 b(ject.)41 b(It)30 b(m)m(ust)f(b)s(e)g(of)h(the)f │ │ │ │ (form)427 511 y Fl(*.etreef)18 b Fp(or)j Fl(*.etreeb)p │ │ │ │ Fp(.)35 b(The)19 b Fl(ETree)g Fp(ob)5 b(ject)21 b(is)g(read)f(from)g │ │ │ │ (the)g(\014le)h(via)f(the)h Fl(ETree)p 3368 511 29 4 │ │ │ │ v 33 w(readFromFile\(\))427 624 y Fp(metho)s(d.)337 769 │ │ │ │ @@ -7354,15 +7347,15 @@ │ │ │ │ Fp(since)h(w)m(e)h(are)g(factoring)g(a)g(square)f(matrix.\))50 │ │ │ │ b(Eac)m(h)34 b(of)427 5294 y(the)h Fl(nent)e Fp(follo)m(wing)i(lines)g │ │ │ │ (con)m(tain)g(one)f(nonzero)h(en)m(try)-8 b(.)53 b(F)-8 │ │ │ │ b(or)35 b(a)f(complex)h(matrix,)h(the)e(\014le)g(has)427 │ │ │ │ 5407 y(this)d(structure.)p eop end │ │ │ │ %%Page: 13 13 │ │ │ │ TeXDict begin 13 12 bop 91 100 1107 4 v 1288 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2701 100 V 1107 w Fp(13)427 399 y Fl(nrow)47 b(ncol)g(nent)427 │ │ │ │ 511 y(...)427 624 y(irow)g(jcol)g(real_value)e(imag_value)427 │ │ │ │ 737 y(...)427 904 y Fp(F)-8 b(or)30 b(b)s(oth)e(real)i(and)e(complex)h │ │ │ │ (en)m(tries,)i(the)e(en)m(tries)g(need)g(not)g(b)s(e)f(disjoin)m(t,)i │ │ │ │ (i.e.,)h(en)m(tries)e(with)g(the)427 1017 y(same)i Fl(irow)e │ │ │ │ Fp(and)h Fl(jcol)f Fp(v)-5 b(alues)31 b(are)g Fj(summe)-5 │ │ │ │ b(d)p Fp(.)337 1163 y Ff(\210)45 b Fp(The)26 b Fl(rhsFileName)d │ │ │ │ @@ -7420,15 +7413,15 @@ │ │ │ │ Fg(A)g Fp(real)h(or)g(complex)g(symmetric,)500 5278 y │ │ │ │ Fo({)45 b Fl(type)i(=)g(1)h(\(SPOOLES)p 1417 5278 V 32 │ │ │ │ w(HERMITIAN\))28 b Fp(for)i Fg(A)g Fp(complex)h(Hermitian,)500 │ │ │ │ 5407 y Fo({)45 b Fl(type)i(=)g(2)h(\(SPOOLES)p 1417 5407 │ │ │ │ V 32 w(NONSYMMETRIC\))p eop end │ │ │ │ %%Page: 14 14 │ │ │ │ TeXDict begin 14 13 bop 0 100 a Fp(14)p 182 100 1107 │ │ │ │ -4 v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(18,)i │ │ │ │ +4 v 1289 w Fl(Misc)29 b Fh(:)41 b Fj(DRAFT)30 b Fh(Octob)s(er)g(28,)i │ │ │ │ (2025)p 2794 100 V 427 399 a Fp(for)e Fg(A)h Fp(real)g(or)f(complex)h │ │ │ │ (nonsymmetric.)337 539 y Ff(\210)45 b Fp(The)30 b Fl(patchAndGoFlag)d │ │ │ │ Fp(sp)s(eci\014es)j(the)g(\\patc)m(h-and-go")j(strategy)-8 │ │ │ │ b(.)500 680 y Fo({)45 b Fl(patchAndGoFlag)f(=)k(0)21 │ │ │ │ b Fp(|)g(if)g(a)h(zero)g(piv)m(ot)g(is)f(detected,)k(stop)c(computing)h │ │ │ │ (the)f(factorization,)597 793 y(set)31 b(the)g(error)f(\015ag)g(and)g │ │ │ │ (return.)500 920 y Fo({)45 b Fl(patchAndGoFlag)f(=)k(1)30 │ │ │ │ @@ -7491,15 +7484,15 @@ │ │ │ │ f(the)h(message)g(\014le)f(|)h(if)f Fl(msgFile)e Fp(is)i │ │ │ │ Fl(stdout)p Fp(,)g(then)g(the)427 5294 y(message)27 b(\014le)f(is)g │ │ │ │ Fj(stdout)p Fp(,)i(otherwise)e(a)h(\014le)f(is)f(op)s(ened)g(with)h │ │ │ │ Fj(app)-5 b(end)28 b Fp(status)e(to)g(receiv)m(e)i(an)m(y)e(output)427 │ │ │ │ 5407 y(data.)p eop end │ │ │ │ %%Page: 15 15 │ │ │ │ TeXDict begin 15 14 bop 91 100 1107 4 v 1288 100 a Fl(Misc)29 │ │ │ │ -b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(18,)i(2025)p │ │ │ │ +b Fh(:)41 b Fj(DRAFT)121 b Fh(Octob)s(er)30 b(28,)i(2025)p │ │ │ │ 2701 100 V 1107 w Fp(15)337 399 y Ff(\210)45 b Fl(type)29 │ │ │ │ b Fp(is)i(the)f(t)m(yp)s(e)h(of)g(en)m(tries)500 545 │ │ │ │ y Fo({)45 b Fl(1)30 b Fp(|)h(\()p Fl(SPOOLES)p 1174 545 │ │ │ │ 29 4 v 32 w(REAL)p Fp(\))f(for)g(real)h(en)m(tries)500 │ │ │ │ 674 y Fo({)45 b Fl(2)30 b Fp(|)h(\()p Fl(SPOOLES)p 1174 │ │ │ │ 674 V 32 w(COMPLEX)p Fp(\))e(for)h(complex)h(en)m(tries)337 │ │ │ │ 820 y Ff(\210)45 b Fp(The)27 b Fl(matrixFileName)d Fp(parameter)k(is)g │ │ │ │ ├── ps2ascii {} │ │ │ │ │ @@ -17,15 +17,15 @@ │ │ │ │ │ The method calls itself recursively. To find the permutation for an n1 x n2 x n3 grid, call │ │ │ │ │ mkNDperm(n1, n2, n3, newToOld, 0, n1-1, 0, n2-1, 0, n3-1) ; │ │ │ │ │ from a driver program. │ │ │ │ │ Error checking: If n1, n2 or n3 are less than or equal to zero, or if newToOld is NULL, or if │ │ │ │ │ west, south or bottom are less than or equal to zero, of if east ≥ n1, of if north ≥ n2, of if │ │ │ │ │ top ≥ n3, an error message is printed and the program exits. │ │ │ │ │ 1 │ │ │ │ │ - 2 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 2 Misc : DRAFT October 28, 2025 │ │ │ │ │ 2. void mkNDperm2 ( int n1, int n2, int n3, int newToOld[], int west, │ │ │ │ │ int east, int south, int north, int bottom, int top ) ; │ │ │ │ │ This method this vector fills a permutation vector with the nested dissection new-to-old │ │ │ │ │ ordering of the vertices for the subgrid defined by nodes whose coordinates lie in │ │ │ │ │ [west, east] x [south, north] x [bottom, top]. │ │ │ │ │ There is one important difference between this method and mkNDperm() above; this method │ │ │ │ │ finds double-wide separators, necessary for an operator with more than nearest neighbor grid │ │ │ │ │ @@ -58,15 +58,15 @@ │ │ │ │ │ tains a dsizes1[q1] x dsizes2[q2] x disizes3[q3] subgrid of points. │ │ │ │ │ Error checking: If n1, n2 or n3 are less than or equal to zero, or if p1, p2 or p3 are less than or │ │ │ │ │ equal to zero, or if 2p1−1 > n1, or if 2p2−1 > n2, or if 2p3−1 > n3, or if oldToNew is NULL, │ │ │ │ │ or if dsizes1[], disizes2[] and dsizes3[] are not NULL but have invalid entries (all entries │ │ │ │ │ must be positive, entries in dsizes1[] must sum to n1 - p1 + 1, entries in dsizes2[] must │ │ │ │ │ sum to n2 - p2 + 1, and entries in dsizes3[] must sum to n3 - p3 + 1, an error message │ │ │ │ │ is printed and the program exits. │ │ │ │ │ - Misc : DRAFT October 18, 2025 3 │ │ │ │ │ + Misc : DRAFT October 28, 2025 3 │ │ │ │ │ 5. void fp2DGrid ( int n1, int n2, int ivec[], FILE *fp ) ; │ │ │ │ │ This method writes the ivec[] vector onto an n1 x n2 grid to file fp. This is useful to │ │ │ │ │ visualize an ordering or a metric on a grid. │ │ │ │ │ Error checking: If n1 or n2 are less than or equal to zero, or if ivec or fp are NULL, an error │ │ │ │ │ message is printed and the program exits. │ │ │ │ │ 6. void fp3DGrid ( int n1, int n2, int n3, int ivec[], FILE *fp ) ; │ │ │ │ │ This method writes the ivec[] vector onto an n1 x n2 x n3 grid to file fp. This is useful │ │ │ │ │ @@ -96,15 +96,15 @@ │ │ │ │ │ This method returns a front tree ETree object for a multiple minimum degree ordering of │ │ │ │ │ the graph graph. The seed parameter is a random number seed. The msglvl and msgFile │ │ │ │ │ parameters govern the diagnostics output. Use msglvl = 0 for no output, msglvl = 1 for │ │ │ │ │ timings and scalar statistics, and use msglvl > 1 with care, for it can generate huge amounts │ │ │ │ │ of output. │ │ │ │ │ Error checking: If graph is NULL, or if msglvl > 0 and msgFile is NULL, an error message is │ │ │ │ │ printed and the program exits. │ │ │ │ │ - 4 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 4 Misc : DRAFT October 28, 2025 │ │ │ │ │ 2. ETree * orderViaND ( Graph *graph, int maxdomainsize, int seed, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method returns a front tree ETree object for a nested dissection ordering of the graph │ │ │ │ │ graph. If a subgraph has more vertices than the maxdomainsize parameter, it is split. The │ │ │ │ │ seed parameter is a random number seed. The msglvl and msgFile parameters govern │ │ │ │ │ the diagnostics output. Use msglvl = 0 for no output, msglvl = 1 for timings and scalar │ │ │ │ │ statistics, and use msglvl > 1 with care, for it can generate huge amounts of output. │ │ │ │ │ @@ -136,15 +136,15 @@ │ │ │ │ │ double linewidth2, double radius, char *epsFileName, │ │ │ │ │ int msglvl, FILE *msgFile ) ; │ │ │ │ │ This method is used to create an EPS (Encapsulated Postscript) file that contains a picture │ │ │ │ │ of a graph in two dimensions. We use this to visualize separators and domain decompositions, │ │ │ │ │ mostly of regular grids and triangulations of a planar region. │ │ │ │ │ The graph object defines the connectivity of the vertices. The coords object defines the │ │ │ │ │ locations of the vertices. The tagsIV object is used to define whether or not an edge is │ │ │ │ │ - Misc : DRAFT October 18, 2025 5 │ │ │ │ │ + Misc : DRAFT October 28, 2025 5 │ │ │ │ │ drawn between two vertices adjacent in the graph. When tagsIV is not NULL, if there is an │ │ │ │ │ edge (u,v) in the graph and tags[u] = tags[v], then the edge with width linewidth1 is │ │ │ │ │ drawn. For edges (u,v) in the graph and tags[u] != tags[v], then the edge with width │ │ │ │ │ linewidth2is drawn, assuming linewidth2> 0. If tagsIV is NULL, than all edges are drawn │ │ │ │ │ with width linewidth1. Each vertex is draw with a filled circle with radius radius. │ │ │ │ │ The graph and its Coords object occupy a certain area in 2-D space. We try to plot the │ │ │ │ │ graph inside the area defined by the rect[] array in such a manner that the relative scales │ │ │ │ │ @@ -177,15 +177,15 @@ │ │ │ │ │ InpMtx **pmtxA, DenseMtx **pmtxX, DenseMtx **pmtxB ) ; │ │ │ │ │ This method creates a linear system AX = B for a natural factor formulation of a n1×n2×n3 │ │ │ │ │ grid. If n1, n2 and n3 are all greater than 1, the grid is formed of linear hexahedral elements │ │ │ │ │ andthematrixAhas8*n1*n2*n3rows. Ifoneofn1,n2andn3isequalto1,thegridisformed │ │ │ │ │ of linear quadrilateral elements and the matrix A has 4*n1*n2*n3 rows. The entries in A and │ │ │ │ │ X are random numbers, B is computed as the product of A with X. A can be real (type = │ │ │ │ │ 1) or complex (type = 2). The number of columns of X is given by nrhs. The linear system │ │ │ │ │ - 6 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 6 Misc : DRAFT October 28, 2025 │ │ │ │ │ is ordered using theoretical nested dissection, and the front tree is transformed using the │ │ │ │ │ maxzeros and maxsize parameters. The addresses of the front tree, symbolic factorization, │ │ │ │ │ and three matrix objects are returned in the last five arguments of the calling sequence. │ │ │ │ │ Error checking: None presently. │ │ │ │ │ 1.2 Driver programs found in the Misc directory │ │ │ │ │ This section contains brief descriptions of the driver programs. │ │ │ │ │ 1. testNDperm msglvl msgFile n1 n2 n3 outPermFile │ │ │ │ │ @@ -215,15 +215,15 @@ │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The ETreeFile parameter is the output file for the ETree object. If ETreeFile is none │ │ │ │ │ then the ETree object is not written to a file. Otherwise, the ETree writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if ETreeFile is of the form │ │ │ │ │ *.etreef), or a binary file (if ETreeFile is of the form *.etreeb). │ │ │ │ │ - Misc : DRAFT October 18, 2025 7 │ │ │ │ │ + Misc : DRAFT October 28, 2025 7 │ │ │ │ │ 3. testOrderViaND msglvl msgFile GraphFile maxdomainsize seed ETreeFile │ │ │ │ │ This program reads in a Graph object from a file and computes a generalized nested dissection │ │ │ │ │ ordering of the graph. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the Perm object is written to the output file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ @@ -254,15 +254,15 @@ │ │ │ │ │ • The seed parameter is a random number seed. │ │ │ │ │ • The ETreeFile parameter is the output file for the ETree object. If ETreeFile is none │ │ │ │ │ then the ETree object is not written to a file. Otherwise, the ETree writeToFile() │ │ │ │ │ method is called to write the object to a formatted file (if ETreeFile is of the form │ │ │ │ │ *.etreef), or a binary file (if ETreeFile is of the form *.etreeb). │ │ │ │ │ 5. drawGraph msglvl msgFile inGraphFile inCoordsFile inTagsIVfile │ │ │ │ │ outEPSfile linewidth1 linewidth2 bbox[4] rect[4] radius │ │ │ │ │ - 8 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 8 Misc : DRAFT October 28, 2025 │ │ │ │ │ This driver program generates a Encapsulated Postscript file outEPSfile of a 2-D graph │ │ │ │ │ using a Graph object, a Coords object and a tags IV object that contains the component ids │ │ │ │ │ of the vertices. │ │ │ │ │ See the doDraw script file in this directory for an example calling sequence. │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ that all objects are written to the output file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ @@ -293,17 +293,17 @@ │ │ │ │ │ See Figure 1.1 for a plot of the graph of R2D100, a randomly triangulated grid with 100 │ │ │ │ │ vertices with linewidth1 = 3. Figure 1.2 illustrates a domain decomposition obtained from │ │ │ │ │ the fishnet algorithm of Chapter ?? with linewidth1 = 3 and linewidth2 = 0.1. │ │ │ │ │ 6. testSemi msglvl msgFile GraphFile ETreeFile mapFile │ │ │ │ │ This program is used to compute the effect of using a semi-implicit factorization to solve │ │ │ │ │ AX=" A0,0 A0,1 #" X0 #=" B0 #=B. │ │ │ │ │ A1,0 A1,1 X1 B1 │ │ │ │ │ - Misc : DRAFT October 18, 2025 9 │ │ │ │ │ + Misc : DRAFT October 28, 2025 9 │ │ │ │ │ Figure 1.1: R2D100 │ │ │ │ │ - 10 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 10 Misc : DRAFT October 28, 2025 │ │ │ │ │ Figure 1.2: R2D100: fishnet domain decomposition │ │ │ │ │ 3 3 3 3 3 3 3 0 0 5 │ │ │ │ │ 3 │ │ │ │ │ 3 3 3 0 0 │ │ │ │ │ 3 3 │ │ │ │ │ 3 1 │ │ │ │ │ 0 0 1 1 │ │ │ │ │ @@ -326,15 +326,15 @@ │ │ │ │ │ 2 2 0 4 │ │ │ │ │ 4 0 0 │ │ │ │ │ 0 4 │ │ │ │ │ 2 2 4 │ │ │ │ │ 2 2 4 4 │ │ │ │ │ 0 4 4 │ │ │ │ │ 2 2 0 4 4 4 4 4 4 4 │ │ │ │ │ - Misc : DRAFT October 18, 2025 11 │ │ │ │ │ + Misc : DRAFT October 28, 2025 11 │ │ │ │ │ Ais factored as " # " #" # │ │ │ │ │ A A L 0 U U │ │ │ │ │ 0,0 0,1 = 0,0 0,0 0,1 , │ │ │ │ │ A A L L 0 U │ │ │ │ │ 1,0 1,1 1,0 1,1 1,1 │ │ │ │ │ and to solve AX = B, we do the following steps. │ │ │ │ │ • solve L Y =B │ │ │ │ │ @@ -378,15 +378,15 @@ │ │ │ │ │ • The msglvl parameter determines the amount of output. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ • The GraphFile parameter is the input file for the Graph object. It must be of the form │ │ │ │ │ *.graphfor*.graphb. TheGraphobjectisreadfromthefileviatheGraph readFromFile() │ │ │ │ │ method. │ │ │ │ │ - 12 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 12 Misc : DRAFT October 28, 2025 │ │ │ │ │ • The ETreeFile parameter is the input file for the ETree object. It must be of the form │ │ │ │ │ *.etreefor*.etreeb. TheETreeobjectisreadfromthefileviatheETree readFromFile() │ │ │ │ │ method. │ │ │ │ │ • The mapFile parameter is the input file for the map IV object. It must be of the form │ │ │ │ │ *.ivfor *.ivb. The IV object is read from the file via the IV readFromFile() method. │ │ │ │ │ 7. allInOne msglvl msgFile type symmetryflag pivotingflag │ │ │ │ │ matrixFileName rhsFileName seed │ │ │ │ │ @@ -418,15 +418,15 @@ │ │ │ │ │ ... │ │ │ │ │ irow jcol value │ │ │ │ │ ... │ │ │ │ │ where the first line has the number of rows, columns and entries. (Note, for this driver │ │ │ │ │ program nrow must be equal to ncol since we are factoring a square matrix.) Each of │ │ │ │ │ the nent following lines contain one nonzero entry. For a complex matrix, the file has │ │ │ │ │ this structure. │ │ │ │ │ - Misc : DRAFT October 18, 2025 13 │ │ │ │ │ + Misc : DRAFT October 28, 2025 13 │ │ │ │ │ nrow ncol nent │ │ │ │ │ ... │ │ │ │ │ irow jcol real_value imag_value │ │ │ │ │ ... │ │ │ │ │ For both real and complex entries, the entries need not be disjoint, i.e., entries with the │ │ │ │ │ same irow and jcol values are summed. │ │ │ │ │ • The rhsFileNameparameter is the name of the input file for the right hand side matrix. │ │ │ │ │ @@ -457,15 +457,15 @@ │ │ │ │ │ • The type parameter specifies a real or complex linear system. │ │ │ │ │ – type = 1 (SPOOLES REAL) for real, │ │ │ │ │ – type = 2 (SPOOLES COMPLEX) for complex. │ │ │ │ │ • The symmetryflag parameter specifies the symmetry of the matrix. │ │ │ │ │ – type = 0 (SPOOLES SYMMETRIC) for A real or complex symmetric, │ │ │ │ │ – type = 1 (SPOOLES HERMITIAN) for A complex Hermitian, │ │ │ │ │ – type = 2 (SPOOLES NONSYMMETRIC) │ │ │ │ │ - 14 Misc : DRAFT October 18, 2025 │ │ │ │ │ + 14 Misc : DRAFT October 28, 2025 │ │ │ │ │ for A real or complex nonsymmetric. │ │ │ │ │ • The patchAndGoFlag specifies the “patch-and-go” strategy. │ │ │ │ │ – patchAndGoFlag = 0—ifazeropivotisdetected, stopcomputingthefactorization, │ │ │ │ │ set the error flag and return. │ │ │ │ │ – patchAndGoFlag = 1 — if a small or zero pivot is detected, set the diagonal entry │ │ │ │ │ to 1 and the offdiagonal entries to zero. │ │ │ │ │ – patchAndGoFlag = 2 — if a small or zero pivot is detected, perturb the diagonal │ │ │ │ │ @@ -497,15 +497,15 @@ │ │ │ │ │ right hand side entries are read in from a file, and the system is solved. One input parameter │ │ │ │ │ specifies the type of system (real or complex). │ │ │ │ │ • The msglvl parameter determines the amount of output — taking msglvl >= 3 means │ │ │ │ │ the Perm object is written to the output file. │ │ │ │ │ • The msgFile parameter determines the message file — if msgFile is stdout, then the │ │ │ │ │ message file is stdout, otherwise a file is opened with append status to receive any output │ │ │ │ │ data. │ │ │ │ │ - Misc : DRAFT October 18, 2025 15 │ │ │ │ │ + Misc : DRAFT October 28, 2025 15 │ │ │ │ │ • type is the type of entries │ │ │ │ │ – 1 — (SPOOLES REAL) for real entries │ │ │ │ │ – 2 — (SPOOLES COMPLEX) for complex entries │ │ │ │ │ • The matrixFileName parameter is the name of the input file for the matrix entries. For │ │ │ │ │ a real matrix, this file must have the following form. │ │ │ │ │ nrow ncol nent │ │ │ │ │ ...