--- /srv/rebuilderd/tmp/rebuilderdHjHxQo/inputs/erlang-doc_27.3.4.3+dfsg-1_all.deb +++ /srv/rebuilderd/tmp/rebuilderdHjHxQo/out/erlang-doc_27.3.4.3+dfsg-1_all.deb ├── file list │ @@ -1,3 +1,3 @@ │ -rw-r--r-- 0 0 0 4 2025-09-15 15:42:37.000000 debian-binary │ --rw-r--r-- 0 0 0 39772 2025-09-15 15:42:37.000000 control.tar.xz │ --rw-r--r-- 0 0 0 16799364 2025-09-15 15:42:37.000000 data.tar.xz │ +-rw-r--r-- 0 0 0 39740 2025-09-15 15:42:37.000000 control.tar.xz │ +-rw-r--r-- 0 0 0 16801392 2025-09-15 15:42:37.000000 data.tar.xz ├── control.tar.xz │ ├── control.tar │ │ ├── ./control │ │ │ @@ -1,13 +1,13 @@ │ │ │ Package: erlang-doc │ │ │ Source: erlang │ │ │ Version: 1:27.3.4.3+dfsg-1 │ │ │ Architecture: all │ │ │ Maintainer: Debian Erlang Packagers │ │ │ -Installed-Size: 96109 │ │ │ +Installed-Size: 96110 │ │ │ Depends: libjs-jquery, libjs-jquery-ui │ │ │ Suggests: erlang:any │ │ │ Conflicts: erlang-base:any (<< 1:13.b.4), erlang-base-hipe:any, erlang-doc-html │ │ │ Replaces: erlang-doc-html │ │ │ Provides: erlang-doc-html │ │ │ Section: doc │ │ │ Priority: optional │ │ ├── ./md5sums │ │ │ ├── ./md5sums │ │ │ │┄ Files differ │ │ │ ├── line order │ │ │ │ @@ -129,15 +129,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/doc/system/dist/search_data-3853893B.js │ │ │ │ +usr/share/doc/erlang-doc/html/doc/system/dist/search_data-DBFDB6FD.js │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/dist/sidebar_items-4A143270.js │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/distributed.html │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/distributed_applications.html │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/documentation.html │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/drivers.html │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/eff_guide_functions.html │ │ │ │ usr/share/doc/erlang-doc/html/doc/system/eff_guide_processes.html │ │ │ │ @@ -370,15 +370,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-47E11C0C.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-7ECECF0A.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/sidebar_items-020EA270.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/event_handler_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/example_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/getting_started_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/install_chapter.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/introduction.html │ │ │ │ @@ -516,15 +516,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/search_data-6D666814.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/search_data-0488DFD4.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/sidebar_items-F976ACE0.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/search.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/typer_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/.build │ │ │ │ usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/404.html │ │ │ │ @@ -608,15 +608,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/search_data-76AA0443.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/search_data-24CC7BE0.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/sidebar_items-4C553487.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/doc_storage.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet_chunks.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet_markdown.html │ │ │ │ @@ -673,15 +673,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-D82831C4.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-1F14090C.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/sidebar_items-8A5CCEF3.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_connect.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_global.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_users_guide.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_call_cmd.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ │ @@ -1542,15 +1542,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/search_data-880670C6.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/search_data-06452E63.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/sidebar_items-BCF27D9A.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/search.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl.epub │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_app.html │ │ │ │ @@ -1719,15 +1719,15 @@ │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ │ -usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-7B342769.js │ │ │ │ +usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-BA5DB564.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/sidebar_items-3CBBBF05.js │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/getting_started.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/index.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/introduction.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/notes.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/search.html │ │ │ │ usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub ├── data.tar.xz │ ├── data.tar │ │ ├── file list │ │ │ @@ -137,15 +137,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 292 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/ssh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 293 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/ssl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 294 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/stdlib.html │ │ │ -rw-r--r-- 0 root (0) root (0) 300 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/syntax_tools.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/ │ │ │ -rw-r--r-- 0 root (0) root (0) 2286 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 5648 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/404.html │ │ │ --rw-r--r-- 0 root (0) root (0) 654614 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 654610 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 53542 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/applications.html │ │ │ -rw-r--r-- 0 root (0) root (0) 97489 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/appup_cookbook.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 7982 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/ballpoint-pen.svg │ │ │ -rw-r--r-- 0 root (0) root (0) 2284 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist1.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5214 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist2.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5007 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/assets/dist3.gif │ │ │ @@ -181,15 +181,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 1016759 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/search_data-3853893B.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 1016759 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/search_data-DBFDB6FD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 32130 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/dist/sidebar_items-4A143270.js │ │ │ -rw-r--r-- 0 root (0) root (0) 30039 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/distributed.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20667 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/distributed_applications.html │ │ │ -rw-r--r-- 0 root (0) root (0) 52930 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/documentation.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15036 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/drivers.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26945 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_functions.html │ │ │ -rw-r--r-- 0 root (0) root (0) 52169 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_processes.html │ │ │ @@ -351,15 +351,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1060 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6010 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6692 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/api-reference.html │ │ │ --rw-r--r-- 0 root (0) root (0) 96856 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 96852 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 140490 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1_getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9328 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1_introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7454 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1_overview.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78800 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1_spec.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35477 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/asn1ct.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1340 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/asn1-5.3.4.2/doc/html/assets/exclusive_Win_But.gif │ │ │ @@ -397,15 +397,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 10672 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 4963 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/config.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 10726 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/html_logs.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 9561 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/assets/tc_execution.gif │ │ │ -rw-r--r-- 0 root (0) root (0) 21795 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/basics_chapter.html │ │ │ --rw-r--r-- 0 root (0) root (0) 399357 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 399361 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 7502 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/common_test_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 59626 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/config_file_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25541 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/cover_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 182818 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12310 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_cover.html │ │ │ -rw-r--r-- 0 root (0) root (0) 30032 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_ftp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 77362 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/ct_hooks.html │ │ │ @@ -438,15 +438,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 585051 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-47E11C0C.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 585051 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/search_data-7ECECF0A.js │ │ │ -rw-r--r-- 0 root (0) root (0) 58564 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/dist/sidebar_items-020EA270.js │ │ │ -rw-r--r-- 0 root (0) root (0) 31486 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/event_handler_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 62593 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/example_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26740 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/getting_started_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 270 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8025 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/install_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8890 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/common_test-1.27.7/doc/html/introduction.html │ │ │ @@ -466,15 +466,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 24226 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/beam_ssa.html │ │ │ -rw-r--r-- 0 root (0) root (0) 450809 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/cerl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28701 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/cerl_clauses.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28995 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/cerl_trees.html │ │ │ -rw-r--r-- 0 root (0) root (0) 84370 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/compile.html │ │ │ --rw-r--r-- 0 root (0) root (0) 181853 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/compiler.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 181851 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/compiler.epub │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ -rw-r--r-- 0 root (0) root (0) 17732 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/inconsolata-latin-400-normal-OXLHDACS.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 17976 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/compiler-8.6.1.2/doc/html/dist/inconsolata-latin-700-normal-S55P5GAG.woff2 │ │ │ @@ -500,15 +500,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 992 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6016 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 35139 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/algorithm_details.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6670 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 127041 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 127051 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 294963 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10018 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/crypto_app.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/crypto-5.5.3/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -546,15 +546,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 21770 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/cond_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 13532 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/function_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 28924 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/interpret.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 14414 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/line_break_dialog.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/logo.png │ │ │ -rw-r--r-- 0 root (0) root (0) 40742 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/monitor.jpg │ │ │ -rw-r--r-- 0 root (0) root (0) 34504 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/assets/view.jpg │ │ │ --rw-r--r-- 0 root (0) root (0) 219452 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/debugger.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 219441 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/debugger.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 13135 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/debugger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 52048 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/debugger_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/debugger-5.5.0.1/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -583,15 +583,15 @@ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 921 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6794 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 66389 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 66386 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 53654 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25902 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dialyzer_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/ │ │ │ -rw-r--r-- 0 root (0) root (0) 20933 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/handlebars.runtime-CFQAK6SD.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/handlebars.templates-K7URE6B4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 70589 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/html-55NP3CS6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 67213 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/html-erlang-WGRVP7UZ.css │ │ │ @@ -604,29 +604,29 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 122270 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/search_data-6D666814.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 122270 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/search_data-0488DFD4.js │ │ │ -rw-r--r-- 0 root (0) root (0) 7336 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/dist/sidebar_items-F976ACE0.js │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 132207 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5944 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10876 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/dialyzer-5.3.1/doc/html/typer_cmd.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1143 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6028 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/404.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8214 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/api-reference.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/assets/ │ │ │ -rw-r--r-- 0 root (0) root (0) 5837 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/assets/logo.png │ │ │ --rw-r--r-- 0 root (0) root (0) 143782 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 143787 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 253948 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57094 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29024 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_codec.html │ │ │ -rw-r--r-- 0 root (0) root (0) 32268 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_dict.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6778 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9526 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21960 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/diameter-2.4.1/doc/html/diameter_make.html │ │ │ @@ -707,15 +707,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 108335 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/search_data-76AA0443.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 108335 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/search_data-24CC7BE0.js │ │ │ -rw-r--r-- 0 root (0) root (0) 12810 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/dist/sidebar_items-4C553487.js │ │ │ -rw-r--r-- 0 root (0) root (0) 12682 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/doc_storage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 58180 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8098 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_cmd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 16455 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8636 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet_chunks.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10093 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/edoc-1.3.2/doc/html/edoc_doclet_markdown.html │ │ │ @@ -752,15 +752,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 24651 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/search_data-7A421979.js │ │ │ -rw-r--r-- 0 root (0) root (0) 6047 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/dist/sidebar_items-5C2028D5.js │ │ │ --rw-r--r-- 0 root (0) root (0) 33176 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 33174 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 94819 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/eldap.html │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25611 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5935 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eldap-1.2.14.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ │ │ │ @@ -782,22 +782,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 193099 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-D82831C4.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 193099 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/search_data-1F14090C.js │ │ │ -rw-r--r-- 0 root (0) root (0) 15936 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/dist/sidebar_items-8A5CCEF3.js │ │ │ -rw-r--r-- 0 root (0) root (0) 73740 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei.html │ │ │ -rw-r--r-- 0 root (0) root (0) 72795 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_connect.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11739 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_global.html │ │ │ -rw-r--r-- 0 root (0) root (0) 26982 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/ei_users_guide.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22688 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_call_cmd.html │ │ │ --rw-r--r-- 0 root (0) root (0) 84946 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 84948 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/erl_interface.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 272 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 110953 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5565 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/erl_interface-5.5.2/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1332 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/et-1.7.1/doc/html/.build │ │ │ @@ -873,15 +873,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 75635 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/search_data-9EC16955.js │ │ │ -rw-r--r-- 0 root (0) root (0) 3043 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/dist/sidebar_items-3A2D003A.js │ │ │ --rw-r--r-- 0 root (0) root (0) 45180 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/eunit.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 45178 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/eunit.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 13587 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/eunit.html │ │ │ -rw-r--r-- 0 root (0) root (0) 6634 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/eunit_surefire.html │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 38822 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/eunit-2.9.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/ │ │ │ @@ -907,15 +907,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 29403 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/search_data-FF6A1601.js │ │ │ -rw-r--r-- 0 root (0) root (0) 5270 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/dist/sidebar_items-B6B07F6E.js │ │ │ --rw-r--r-- 0 root (0) root (0) 33166 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/ftp.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 33165 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/ftp.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 82127 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/ftp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12856 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/ftp_client.html │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7162 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22515 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5914 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ftp-1.2.3/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/ │ │ │ @@ -951,15 +951,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 11421 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/http_uri.html │ │ │ -rw-r--r-- 0 root (0) root (0) 91850 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/httpc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 117910 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/httpd.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12136 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/httpd_custom_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13448 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/httpd_socket.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45124 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/httpd_util.html │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/index.html │ │ │ --rw-r--r-- 0 root (0) root (0) 152856 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/inets.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 152859 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/inets.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 25717 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/inets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8659 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/inets_services.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7466 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21300 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/mod_alias.html │ │ │ -rw-r--r-- 0 root (0) root (0) 83168 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/mod_auth.html │ │ │ -rw-r--r-- 0 root (0) root (0) 19815 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/mod_esi.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37282 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/inets-9.3.2.1/doc/html/mod_security.html │ │ │ @@ -1138,15 +1138,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 57284 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/global.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37262 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/global_group.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24987 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/heart.html │ │ │ -rw-r--r-- 0 root (0) root (0) 267 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 184609 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/inet.html │ │ │ -rw-r--r-- 0 root (0) root (0) 86882 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/inet_res.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7733 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/introduction_chapter.html │ │ │ --rw-r--r-- 0 root (0) root (0) 790906 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/kernel.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 790864 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/kernel.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 42777 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/kernel_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 188467 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger.html │ │ │ -rw-r--r-- 0 root (0) root (0) 108811 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 70518 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger_cookbook.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15657 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger_disk_log_h.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25586 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger_filters.html │ │ │ -rw-r--r-- 0 root (0) root (0) 34203 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/kernel-10.2.7.2/doc/html/logger_formatter.html │ │ │ @@ -1198,15 +1198,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 200183 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/search_data-3F59FB08.js │ │ │ -rw-r--r-- 0 root (0) root (0) 33244 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/dist/sidebar_items-0FDD3384.js │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/index.html │ │ │ --rw-r--r-- 0 root (0) root (0) 181540 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 181544 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 199461 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco.html │ │ │ -rw-r--r-- 0 root (0) root (0) 13680 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_architecture.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9136 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_codec_meas.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23098 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_codec_mstone1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9740 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_codec_mstone2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9712 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_codec_transform.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18676 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/megaco-4.7.2/doc/html/megaco_debug.html │ │ │ @@ -1253,15 +1253,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 375315 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/search_data-48CBC29D.js │ │ │ -rw-r--r-- 0 root (0) root (0) 24530 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/dist/sidebar_items-845AA6F8.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/index.html │ │ │ --rw-r--r-- 0 root (0) root (0) 221923 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 221932 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 320920 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia.html │ │ │ -rw-r--r-- 0 root (0) root (0) 45468 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_a.html │ │ │ -rw-r--r-- 0 root (0) root (0) 87795 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_b.html │ │ │ -rw-r--r-- 0 root (0) root (0) 46060 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_app_c.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9869 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap1.html │ │ │ -rw-r--r-- 0 root (0) root (0) 109095 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap2.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51394 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/mnesia-4.23.5/doc/html/mnesia_chap3.html │ │ │ @@ -1308,15 +1308,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 146200 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/dist/search_data-FFC02264.js │ │ │ -rw-r--r-- 0 root (0) root (0) 12765 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/dist/sidebar_items-6D9D41B7.js │ │ │ -rw-r--r-- 0 root (0) root (0) 17966 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/etop.html │ │ │ -rw-r--r-- 0 root (0) root (0) 15746 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/etop_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7350 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/introduction_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 71142 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 116860 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 116863 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 13905 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7238 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23494 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/observer_ug.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5941 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 111935 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/ttb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 165007 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/observer-2.17/doc/html/ttb_ug.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/ │ │ │ @@ -1350,15 +1350,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 76343 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/dist/search_data-D78563F6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 7406 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/dist/sidebar_items-19ECDBA9.js │ │ │ -rw-r--r-- 0 root (0) root (0) 13859 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/error_handling.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51373 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 261 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8466 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57071 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 67288 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 67283 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 76660 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/odbc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5917 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/odbc-2.15/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 952 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6019 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/404.html │ │ │ @@ -1387,15 +1387,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 69231 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/search_data-D20C2403.js │ │ │ -rw-r--r-- 0 root (0) root (0) 7923 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/dist/sidebar_items-CB1A13C5.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 31358 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/memsup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 57043 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14802 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/nteventlog.html │ │ │ --rw-r--r-- 0 root (0) root (0) 50285 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 50284 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 9983 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_mon_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 22952 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/os_sup.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5935 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/os_mon-2.10.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 890 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/.build │ │ │ @@ -1422,15 +1422,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 55131 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/search_data-5B3B164D.js │ │ │ -rw-r--r-- 0 root (0) root (0) 5679 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/dist/sidebar_items-E70C9F62.js │ │ │ -rw-r--r-- 0 root (0) root (0) 266 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 55824 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/leex.html │ │ │ -rw-r--r-- 0 root (0) root (0) 37754 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 44437 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/parsetools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 44433 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/parsetools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 5950 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 67892 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/parsetools-2.6/doc/html/yecc.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 952 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6049 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/public_key-1.17.1.1/doc/html/404.html │ │ │ @@ -1491,15 +1491,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 90283 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/search_data-C5321E03.js │ │ │ -rw-r--r-- 0 root (0) root (0) 8840 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/dist/sidebar_items-DF937488.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 46277 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 62891 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 62889 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 100617 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool.html │ │ │ -rw-r--r-- 0 root (0) root (0) 199744 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_examples.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23138 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/reltool_usage.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/reltool-1.0.1/doc/html/search.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/ │ │ │ @@ -1533,15 +1533,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 9774 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/dtrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 47868 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/dyntrace.html │ │ │ -rw-r--r-- 0 root (0) root (0) 271 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50868 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/instrument.html │ │ │ -rw-r--r-- 0 root (0) root (0) 64811 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/lttng.html │ │ │ -rw-r--r-- 0 root (0) root (0) 50067 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/msacc.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78751 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/notes.html │ │ │ --rw-r--r-- 0 root (0) root (0) 118758 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 118753 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 7584 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/runtime_tools_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 29115 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/scheduler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5974 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12911 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/system_information.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9992 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/runtime_tools-2.1.1/doc/html/systemtap.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/ │ │ │ @@ -1576,15 +1576,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 34663 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/error_logging.html │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 70067 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 42546 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/rb.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12220 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/rel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 80519 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/release_handler.html │ │ │ -rw-r--r-- 0 root (0) root (0) 9577 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/relup.html │ │ │ --rw-r--r-- 0 root (0) root (0) 92280 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 92276 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 17193 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7699 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/sasl_intro.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17269 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/script.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5920 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 40703 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/sasl-4.2.2/doc/html/systools.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/ │ │ │ @@ -1623,15 +1623,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 549455 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/search_data-18B48D27.js │ │ │ -rw-r--r-- 0 root (0) root (0) 90029 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/dist/sidebar_items-E4326166.js │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 61226 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 443704 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 443718 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 148375 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39983 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_advanced_agent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 62881 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_config_files.html │ │ │ -rw-r--r-- 0 root (0) root (0) 51341 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_funct_descr.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18123 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_agent_netif.html │ │ │ -rw-r--r-- 0 root (0) root (0) 66609 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 8609 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/snmp-5.18.2/doc/html/snmp_app_a.html │ │ │ @@ -1714,15 +1714,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 368072 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/dist/search_data-E0401131.js │ │ │ -rw-r--r-- 0 root (0) root (0) 45936 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/dist/sidebar_items-F32BF3C6.js │ │ │ -rw-r--r-- 0 root (0) root (0) 23928 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/hardening.html │ │ │ -rw-r--r-- 0 root (0) root (0) 264 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14206 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 231444 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5923 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 272665 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 272675 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 250454 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh.html │ │ │ -rw-r--r-- 0 root (0) root (0) 24859 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_agent.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25480 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 44362 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_client_channel.html │ │ │ -rw-r--r-- 0 root (0) root (0) 23335 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_client_key_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 78399 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_connection.html │ │ │ -rw-r--r-- 0 root (0) root (0) 49063 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssh-5.2.11.3/doc/html/ssh_file.html │ │ │ @@ -1754,20 +1754,20 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 484564 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/search_data-880670C6.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 484564 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/search_data-06452E63.js │ │ │ -rw-r--r-- 0 root (0) root (0) 27194 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/dist/sidebar_items-BCF27D9A.js │ │ │ -rw-r--r-- 0 root (0) root (0) 265 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 252651 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 209447 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 209453 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 316851 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl.html │ │ │ -rw-r--r-- 0 root (0) root (0) 17362 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 12890 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_crl_cache.html │ │ │ -rw-r--r-- 0 root (0) root (0) 21815 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_crl_cache_api.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_distribution.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14213 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_protocol.html │ │ │ -rw-r--r-- 0 root (0) root (0) 25887 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/ssl-11.2.12.2/doc/html/ssl_session_cache_api.html │ │ │ @@ -1865,15 +1865,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 5938 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 47248 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/sets.html │ │ │ -rw-r--r-- 0 root (0) root (0) 106196 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/shell.html │ │ │ -rw-r--r-- 0 root (0) root (0) 10144 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/shell_default.html │ │ │ -rw-r--r-- 0 root (0) root (0) 49822 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/shell_docs.html │ │ │ -rw-r--r-- 0 root (0) root (0) 33204 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/slave.html │ │ │ -rw-r--r-- 0 root (0) root (0) 354762 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/sofs.html │ │ │ --rw-r--r-- 0 root (0) root (0) 1410477 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/stdlib.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 1410516 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/stdlib.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 15682 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/stdlib_app.html │ │ │ -rw-r--r-- 0 root (0) root (0) 191516 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/string.html │ │ │ -rw-r--r-- 0 root (0) root (0) 93086 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/supervisor.html │ │ │ -rw-r--r-- 0 root (0) root (0) 20623 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/supervisor_bridge.html │ │ │ -rw-r--r-- 0 root (0) root (0) 107262 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/sys.html │ │ │ -rw-r--r-- 0 root (0) root (0) 81680 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/timer.html │ │ │ -rw-r--r-- 0 root (0) root (0) 75028 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/stdlib-6.2.2.2/doc/html/unicode.html │ │ │ @@ -1946,22 +1946,22 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 23236 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23580 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 23040 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5624 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5472 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 5368 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ -rw-r--r-- 0 root (0) root (0) 1956 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/remixicon-NKANDIL5.woff2 │ │ │ --rw-r--r-- 0 root (0) root (0) 22267 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-7B342769.js │ │ │ +-rw-r--r-- 0 root (0) root (0) 22267 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/search_data-BA5DB564.js │ │ │ -rw-r--r-- 0 root (0) root (0) 3043 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/dist/sidebar_items-3CBBBF05.js │ │ │ -rw-r--r-- 0 root (0) root (0) 9543 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/getting_started.html │ │ │ -rw-r--r-- 0 root (0) root (0) 262 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 7929 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/introduction.html │ │ │ -rw-r--r-- 0 root (0) root (0) 14778 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5920 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/search.html │ │ │ --rw-r--r-- 0 root (0) root (0) 28826 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 28827 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 44679 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp.html │ │ │ -rw-r--r-- 0 root (0) root (0) 11777 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tftp-1.2.2/doc/html/tftp_logger.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1139 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/.build │ │ │ -rw-r--r-- 0 root (0) root (0) 6010 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/404.html │ │ │ @@ -2002,15 +2002,15 @@ │ │ │ -rw-r--r-- 0 root (0) root (0) 263 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/index.html │ │ │ -rw-r--r-- 0 root (0) root (0) 67398 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/lcnt.html │ │ │ -rw-r--r-- 0 root (0) root (0) 53417 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/lcnt_chapter.html │ │ │ -rw-r--r-- 0 root (0) root (0) 18424 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/make.html │ │ │ -rw-r--r-- 0 root (0) root (0) 106923 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/notes.html │ │ │ -rw-r--r-- 0 root (0) root (0) 5926 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/search.html │ │ │ -rw-r--r-- 0 root (0) root (0) 28575 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tags.html │ │ │ --rw-r--r-- 0 root (0) root (0) 239551 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tools.epub │ │ │ +-rw-r--r-- 0 root (0) root (0) 239533 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tools.epub │ │ │ -rw-r--r-- 0 root (0) root (0) 173731 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/tprof.html │ │ │ -rw-r--r-- 0 root (0) root (0) 184557 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/xref.html │ │ │ -rw-r--r-- 0 root (0) root (0) 39616 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/tools-4.1.1/doc/html/xref_chapter.html │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/ │ │ │ drwxr-xr-x 0 root (0) root (0) 0 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/html/ │ │ │ -rw-r--r-- 0 root (0) root (0) 1612 2025-09-15 15:42:37.000000 ./usr/share/doc/erlang-doc/html/lib/wx-2.4.3/doc/html/.build.gz │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/.build │ │ │ @@ -37,15 +37,15 @@ │ │ │ dist/lato-latin-300-normal-YUMVEFOL.woff2 │ │ │ dist/lato-latin-400-normal-W7754I4D.woff2 │ │ │ dist/lato-latin-700-normal-2XVSBPG4.woff2 │ │ │ dist/lato-latin-ext-300-normal-VPGGJKJL.woff2 │ │ │ dist/lato-latin-ext-400-normal-N27NCBWW.woff2 │ │ │ dist/lato-latin-ext-700-normal-Q2L5DVMW.woff2 │ │ │ dist/remixicon-NKANDIL5.woff2 │ │ │ -dist/search_data-3853893B.js │ │ │ +dist/search_data-DBFDB6FD.js │ │ │ dist/sidebar_items-4A143270.js │ │ │ distributed.html │ │ │ distributed_applications.html │ │ │ documentation.html │ │ │ drivers.html │ │ │ eff_guide_functions.html │ │ │ eff_guide_processes.html │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/Erlang System Documentation.epub │ │ │ ├── zipinfo {} │ │ │ │ @@ -1,93 +1,93 @@ │ │ │ │ -Zip file size: 654614 bytes, number of entries: 91 │ │ │ │ -?rw-r--r-- 6.1 unx 20 bx stor 25-Sep-15 16:39 mimetype │ │ │ │ -?rw-r--r-- 6.1 unx 17922 bx defN 25-Sep-15 16:39 OEBPS/versions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 4673 bx defN 25-Sep-15 16:39 OEBPS/upgrade.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 53439 bx defN 25-Sep-15 16:39 OEBPS/typespec.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2166 bx defN 25-Sep-15 16:39 OEBPS/tutorial.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 764 bx defN 25-Sep-15 16:39 OEBPS/title.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 46256 bx defN 25-Sep-15 16:39 OEBPS/tablesdatabases.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 12466 bx defN 25-Sep-15 16:39 OEBPS/system_principles.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7346 bx defN 25-Sep-15 16:39 OEBPS/system_limits.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 63476 bx defN 25-Sep-15 16:39 OEBPS/sup_princ.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 253918 bx defN 25-Sep-15 16:39 OEBPS/statem.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 111264 bx defN 25-Sep-15 16:39 OEBPS/spec_proc.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 249951 bx defN 25-Sep-15 16:39 OEBPS/seq_prog.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 70943 bx defN 25-Sep-15 16:39 OEBPS/robustness.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 20854 bx defN 25-Sep-15 16:39 OEBPS/release_structure.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 59888 bx defN 25-Sep-15 16:39 OEBPS/release_handling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 4596 bx defN 25-Sep-15 16:39 OEBPS/reference_manual.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 19455 bx defN 25-Sep-15 16:39 OEBPS/ref_man_records.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 48276 bx defN 25-Sep-15 16:39 OEBPS/ref_man_processes.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14454 bx defN 25-Sep-15 16:39 OEBPS/ref_man_functions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 49542 bx defN 25-Sep-15 16:39 OEBPS/records_macros.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2190 bx defN 25-Sep-15 16:39 OEBPS/readme.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 785 bx defN 25-Sep-15 16:39 OEBPS/programming_examples.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 40147 bx defN 25-Sep-15 16:39 OEBPS/prog_ex_records.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 15206 bx defN 25-Sep-15 16:39 OEBPS/profiling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8501 bx defN 25-Sep-15 16:39 OEBPS/ports.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 3737 bx defN 25-Sep-15 16:39 OEBPS/patterns.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13417 bx defN 25-Sep-15 16:39 OEBPS/overview.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8959 bx defN 25-Sep-15 16:39 OEBPS/otp-patch-apply.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 9082 bx defN 25-Sep-15 16:39 OEBPS/opaques.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14065 bx defN 25-Sep-15 16:39 OEBPS/nif.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 6367 bx defN 25-Sep-15 16:39 OEBPS/nav.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 25842 bx defN 25-Sep-15 16:39 OEBPS/modules.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7012 bx defN 25-Sep-15 16:39 OEBPS/misc.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5477 bx defN 25-Sep-15 16:39 OEBPS/memory.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 45509 bx defN 25-Sep-15 16:39 OEBPS/maps.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 39594 bx defN 25-Sep-15 16:39 OEBPS/macros.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 31439 bx defN 25-Sep-15 16:39 OEBPS/listhandling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 42996 bx defN 25-Sep-15 16:39 OEBPS/list_comprehensions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2211 bx defN 25-Sep-15 16:39 OEBPS/installation_guide.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 55516 bx defN 25-Sep-15 16:39 OEBPS/install.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 28229 bx defN 25-Sep-15 16:39 OEBPS/install-win32.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 35715 bx defN 25-Sep-15 16:39 OEBPS/install-cross.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 20858 bx defN 25-Sep-15 16:39 OEBPS/included_applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2353 bx defN 25-Sep-15 16:39 OEBPS/getting_started.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 31341 bx defN 25-Sep-15 16:39 OEBPS/gen_server_concepts.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 118675 bx defN 25-Sep-15 16:39 OEBPS/funs.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 8453 bx defN 25-Sep-15 16:39 OEBPS/features.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 255000 bx defN 25-Sep-15 16:39 OEBPS/expressions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2365 bx defN 25-Sep-15 16:39 OEBPS/example.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 26747 bx defN 25-Sep-15 16:39 OEBPS/events.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 16629 bx defN 25-Sep-15 16:39 OEBPS/errors.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13609 bx defN 25-Sep-15 16:39 OEBPS/error_logging.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 42501 bx defN 25-Sep-15 16:39 OEBPS/erl_interface.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 18220 bx defN 25-Sep-15 16:39 OEBPS/embedded.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 2085 bx defN 25-Sep-15 16:39 OEBPS/efficiency_guide.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 46447 bx defN 25-Sep-15 16:39 OEBPS/eff_guide_processes.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 21209 bx defN 25-Sep-15 16:39 OEBPS/eff_guide_functions.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 9338 bx defN 25-Sep-15 16:39 OEBPS/drivers.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 47180 bx defN 25-Sep-15 16:39 OEBPS/documentation.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14892 bx defN 25-Sep-15 16:39 OEBPS/distributed_applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 24284 bx defN 25-Sep-15 16:39 OEBPS/distributed.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 14562 bx defN 25-Sep-15 16:39 OEBPS/dist/epub-erlang-ESPT6BQV.css │ │ │ │ -?rw-r--r-- 6.1 unx 499 bx defN 25-Sep-15 16:39 OEBPS/dist/epub-LSJCIYTM.js │ │ │ │ -?rw-r--r-- 6.1 unx 36780 bx defN 25-Sep-15 16:39 OEBPS/design_principles.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 15003 bx defN 25-Sep-15 16:39 OEBPS/debugging.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 71771 bx defN 25-Sep-15 16:39 OEBPS/data_types.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 115067 bx defN 25-Sep-15 16:39 OEBPS/create_target.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 13187 bx defN 25-Sep-15 16:39 OEBPS/content.opf │ │ │ │ -?rw-r--r-- 6.1 unx 129900 bx defN 25-Sep-15 16:39 OEBPS/conc_prog.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 33231 bx defN 25-Sep-15 16:39 OEBPS/commoncaveats.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 11935 bx defN 25-Sep-15 16:39 OEBPS/code_loading.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 803 bx defN 25-Sep-15 16:39 OEBPS/cnode.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5177 bx defN 25-Sep-15 16:39 OEBPS/character_set.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 40707 bx defN 25-Sep-15 16:39 OEBPS/c_portdriver.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 35510 bx defN 25-Sep-15 16:39 OEBPS/c_port.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 34819 bx defN 25-Sep-15 16:39 OEBPS/bit_syntax.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 53327 bx defN 25-Sep-15 16:39 OEBPS/binaryhandling.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 7606 bx defN 25-Sep-15 16:39 OEBPS/benchmarking.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 5837 bx defN 25-Sep-15 16:39 OEBPS/assets/logo.png │ │ │ │ -?rw-r--r-- 6.1 unx 5837 bx defN 25-Sep-15 16:39 OEBPS/assets/erlang-logo.png │ │ │ │ -?rw-r--r-- 6.1 unx 7044 bx stor 25-Sep-15 16:39 OEBPS/assets/dist5.gif │ │ │ │ -?rw-r--r-- 6.1 unx 2939 bx stor 25-Sep-15 16:39 OEBPS/assets/dist4.gif │ │ │ │ -?rw-r--r-- 6.1 unx 5007 bx stor 25-Sep-15 16:39 OEBPS/assets/dist3.gif │ │ │ │ -?rw-r--r-- 6.1 unx 5214 bx stor 25-Sep-15 16:39 OEBPS/assets/dist2.gif │ │ │ │ -?rw-r--r-- 6.1 unx 2284 bx stor 25-Sep-15 16:39 OEBPS/assets/dist1.gif │ │ │ │ -?rw-r--r-- 6.1 unx 7982 bx stor 25-Sep-15 16:39 OEBPS/assets/ballpoint-pen.svg │ │ │ │ -?rw-r--r-- 6.1 unx 91721 bx defN 25-Sep-15 16:39 OEBPS/appup_cookbook.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 47722 bx defN 25-Sep-15 16:39 OEBPS/applications.xhtml │ │ │ │ -?rw-r--r-- 6.1 unx 252 bx defN 25-Sep-15 16:39 META-INF/container.xml │ │ │ │ -?rw-r--r-- 6.1 unx 162 bx defN 25-Sep-15 16:39 META-INF/com.apple.ibooks.display-options.xml │ │ │ │ -91 files, 3077736 bytes uncompressed, 638682 bytes compressed: 79.3% │ │ │ │ +Zip file size: 654610 bytes, number of entries: 91 │ │ │ │ +?rw-r--r-- 6.1 unx 20 bx stor 25-Oct-30 13:20 mimetype │ │ │ │ +?rw-r--r-- 6.1 unx 17922 bx defN 25-Oct-30 13:20 OEBPS/versions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 4673 bx defN 25-Oct-30 13:20 OEBPS/upgrade.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 53439 bx defN 25-Oct-30 13:20 OEBPS/typespec.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2166 bx defN 25-Oct-30 13:20 OEBPS/tutorial.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 764 bx defN 25-Oct-30 13:20 OEBPS/title.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 46256 bx defN 25-Oct-30 13:20 OEBPS/tablesdatabases.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 12466 bx defN 25-Oct-30 13:20 OEBPS/system_principles.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7346 bx defN 25-Oct-30 13:20 OEBPS/system_limits.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 63476 bx defN 25-Oct-30 13:20 OEBPS/sup_princ.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 253918 bx defN 25-Oct-30 13:20 OEBPS/statem.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 111264 bx defN 25-Oct-30 13:20 OEBPS/spec_proc.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 249951 bx defN 25-Oct-30 13:20 OEBPS/seq_prog.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 70943 bx defN 25-Oct-30 13:20 OEBPS/robustness.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 20854 bx defN 25-Oct-30 13:20 OEBPS/release_structure.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 59888 bx defN 25-Oct-30 13:20 OEBPS/release_handling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 4596 bx defN 25-Oct-30 13:20 OEBPS/reference_manual.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 19455 bx defN 25-Oct-30 13:20 OEBPS/ref_man_records.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 48276 bx defN 25-Oct-30 13:20 OEBPS/ref_man_processes.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14454 bx defN 25-Oct-30 13:20 OEBPS/ref_man_functions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 49542 bx defN 25-Oct-30 13:20 OEBPS/records_macros.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2190 bx defN 25-Oct-30 13:20 OEBPS/readme.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 785 bx defN 25-Oct-30 13:20 OEBPS/programming_examples.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 40147 bx defN 25-Oct-30 13:20 OEBPS/prog_ex_records.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 15206 bx defN 25-Oct-30 13:20 OEBPS/profiling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8501 bx defN 25-Oct-30 13:20 OEBPS/ports.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 3737 bx defN 25-Oct-30 13:20 OEBPS/patterns.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13417 bx defN 25-Oct-30 13:20 OEBPS/overview.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8959 bx defN 25-Oct-30 13:20 OEBPS/otp-patch-apply.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 9082 bx defN 25-Oct-30 13:20 OEBPS/opaques.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14065 bx defN 25-Oct-30 13:20 OEBPS/nif.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 6367 bx defN 25-Oct-30 13:20 OEBPS/nav.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 25842 bx defN 25-Oct-30 13:20 OEBPS/modules.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7012 bx defN 25-Oct-30 13:20 OEBPS/misc.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5477 bx defN 25-Oct-30 13:20 OEBPS/memory.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 45509 bx defN 25-Oct-30 13:20 OEBPS/maps.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 39594 bx defN 25-Oct-30 13:20 OEBPS/macros.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 31439 bx defN 25-Oct-30 13:20 OEBPS/listhandling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 42996 bx defN 25-Oct-30 13:20 OEBPS/list_comprehensions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2211 bx defN 25-Oct-30 13:20 OEBPS/installation_guide.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 55516 bx defN 25-Oct-30 13:20 OEBPS/install.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 28229 bx defN 25-Oct-30 13:20 OEBPS/install-win32.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 35715 bx defN 25-Oct-30 13:20 OEBPS/install-cross.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 20858 bx defN 25-Oct-30 13:20 OEBPS/included_applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2353 bx defN 25-Oct-30 13:20 OEBPS/getting_started.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 31341 bx defN 25-Oct-30 13:20 OEBPS/gen_server_concepts.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 118675 bx defN 25-Oct-30 13:20 OEBPS/funs.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 8453 bx defN 25-Oct-30 13:20 OEBPS/features.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 255000 bx defN 25-Oct-30 13:20 OEBPS/expressions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2365 bx defN 25-Oct-30 13:20 OEBPS/example.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 26747 bx defN 25-Oct-30 13:20 OEBPS/events.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 16629 bx defN 25-Oct-30 13:20 OEBPS/errors.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13609 bx defN 25-Oct-30 13:20 OEBPS/error_logging.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 42501 bx defN 25-Oct-30 13:20 OEBPS/erl_interface.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 18220 bx defN 25-Oct-30 13:20 OEBPS/embedded.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 2085 bx defN 25-Oct-30 13:20 OEBPS/efficiency_guide.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 46447 bx defN 25-Oct-30 13:20 OEBPS/eff_guide_processes.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 21209 bx defN 25-Oct-30 13:20 OEBPS/eff_guide_functions.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 9338 bx defN 25-Oct-30 13:20 OEBPS/drivers.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 47180 bx defN 25-Oct-30 13:20 OEBPS/documentation.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14892 bx defN 25-Oct-30 13:20 OEBPS/distributed_applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 24284 bx defN 25-Oct-30 13:20 OEBPS/distributed.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 14562 bx defN 25-Oct-30 13:20 OEBPS/dist/epub-erlang-ESPT6BQV.css │ │ │ │ +?rw-r--r-- 6.1 unx 499 bx defN 25-Oct-30 13:20 OEBPS/dist/epub-LSJCIYTM.js │ │ │ │ +?rw-r--r-- 6.1 unx 36780 bx defN 25-Oct-30 13:20 OEBPS/design_principles.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 15003 bx defN 25-Oct-30 13:20 OEBPS/debugging.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 71771 bx defN 25-Oct-30 13:20 OEBPS/data_types.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 115067 bx defN 25-Oct-30 13:20 OEBPS/create_target.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 13187 bx defN 25-Oct-30 13:20 OEBPS/content.opf │ │ │ │ +?rw-r--r-- 6.1 unx 129900 bx defN 25-Oct-30 13:20 OEBPS/conc_prog.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 33231 bx defN 25-Oct-30 13:20 OEBPS/commoncaveats.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 11935 bx defN 25-Oct-30 13:20 OEBPS/code_loading.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 803 bx defN 25-Oct-30 13:20 OEBPS/cnode.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5177 bx defN 25-Oct-30 13:20 OEBPS/character_set.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 40707 bx defN 25-Oct-30 13:20 OEBPS/c_portdriver.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 35510 bx defN 25-Oct-30 13:20 OEBPS/c_port.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 34819 bx defN 25-Oct-30 13:20 OEBPS/bit_syntax.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 53327 bx defN 25-Oct-30 13:20 OEBPS/binaryhandling.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 7606 bx defN 25-Oct-30 13:20 OEBPS/benchmarking.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 5837 bx defN 25-Oct-30 13:20 OEBPS/assets/logo.png │ │ │ │ +?rw-r--r-- 6.1 unx 5837 bx defN 25-Oct-30 13:20 OEBPS/assets/erlang-logo.png │ │ │ │ +?rw-r--r-- 6.1 unx 7044 bx stor 25-Oct-30 13:20 OEBPS/assets/dist5.gif │ │ │ │ +?rw-r--r-- 6.1 unx 2939 bx stor 25-Oct-30 13:20 OEBPS/assets/dist4.gif │ │ │ │ +?rw-r--r-- 6.1 unx 5007 bx stor 25-Oct-30 13:20 OEBPS/assets/dist3.gif │ │ │ │ +?rw-r--r-- 6.1 unx 5214 bx stor 25-Oct-30 13:20 OEBPS/assets/dist2.gif │ │ │ │ +?rw-r--r-- 6.1 unx 2284 bx stor 25-Oct-30 13:20 OEBPS/assets/dist1.gif │ │ │ │ +?rw-r--r-- 6.1 unx 7982 bx stor 25-Oct-30 13:20 OEBPS/assets/ballpoint-pen.svg │ │ │ │ +?rw-r--r-- 6.1 unx 91721 bx defN 25-Oct-30 13:20 OEBPS/appup_cookbook.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 47722 bx defN 25-Oct-30 13:20 OEBPS/applications.xhtml │ │ │ │ +?rw-r--r-- 6.1 unx 252 bx defN 25-Oct-30 13:20 META-INF/container.xml │ │ │ │ +?rw-r--r-- 6.1 unx 162 bx defN 25-Oct-30 13:20 META-INF/com.apple.ibooks.display-options.xml │ │ │ │ +91 files, 3077736 bytes uncompressed, 638678 bytes compressed: 79.3% │ │ │ ├── zipdetails --redact --walk --utc {} │ │ │ │ @@ -1,29 +1,29 @@ │ │ │ │ │ │ │ │ 00000 LOCAL HEADER #1 04034B50 (67324752) │ │ │ │ 00004 Extract Zip Spec 0A (10) '1.0' │ │ │ │ 00005 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 00006 General Purpose Flag 0000 (0) │ │ │ │ 00008 Compression Method 0000 (0) 'Stored' │ │ │ │ -0000A Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +0000A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 0000E CRC 2CAB616F (749429103) │ │ │ │ 00012 Compressed Size 00000014 (20) │ │ │ │ 00016 Uncompressed Size 00000014 (20) │ │ │ │ 0001A Filename Length 0008 (8) │ │ │ │ 0001C Extra Length 001C (28) │ │ │ │ 0001E Filename 'XXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x1E: Filename 'XXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 00026 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 00028 Length 0009 (9) │ │ │ │ 0002A Flags 03 (3) 'Modification Access' │ │ │ │ -0002B Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -0002F Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +0002B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +0002F Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 00033 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 00035 Length 000B (11) │ │ │ │ 00037 Version 01 (1) │ │ │ │ 00038 UID Size 04 (4) │ │ │ │ 00039 UID 00000000 (0) │ │ │ │ 0003D GID Size 04 (4) │ │ │ │ 0003E GID 00000000 (0) │ │ │ │ @@ -31,30 +31,30 @@ │ │ │ │ │ │ │ │ 00056 LOCAL HEADER #2 04034B50 (67324752) │ │ │ │ 0005A Extract Zip Spec 14 (20) '2.0' │ │ │ │ 0005B Extract OS 00 (0) 'MS-DOS' │ │ │ │ 0005C General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 0005E Compression Method 0008 (8) 'Deflated' │ │ │ │ -00060 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +00060 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 00064 CRC 6A627F8C (1784840076) │ │ │ │ 00068 Compressed Size 000015AD (5549) │ │ │ │ 0006C Uncompressed Size 00004602 (17922) │ │ │ │ 00070 Filename Length 0014 (20) │ │ │ │ 00072 Extra Length 001C (28) │ │ │ │ 00074 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x74: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 00088 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 0008A Length 0009 (9) │ │ │ │ 0008C Flags 03 (3) 'Modification Access' │ │ │ │ -0008D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -00091 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +0008D Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +00091 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 00095 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 00097 Length 000B (11) │ │ │ │ 00099 Version 01 (1) │ │ │ │ 0009A UID Size 04 (4) │ │ │ │ 0009B UID 00000000 (0) │ │ │ │ 0009F GID Size 04 (4) │ │ │ │ 000A0 GID 00000000 (0) │ │ │ │ @@ -62,30 +62,30 @@ │ │ │ │ │ │ │ │ 01651 LOCAL HEADER #3 04034B50 (67324752) │ │ │ │ 01655 Extract Zip Spec 14 (20) '2.0' │ │ │ │ 01656 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 01657 General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 01659 Compression Method 0008 (8) 'Deflated' │ │ │ │ -0165B Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +0165B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 0165F CRC 55093711 (1426667281) │ │ │ │ 01663 Compressed Size 000006D5 (1749) │ │ │ │ 01667 Uncompressed Size 00001241 (4673) │ │ │ │ 0166B Filename Length 0013 (19) │ │ │ │ 0166D Extra Length 001C (28) │ │ │ │ 0166F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x166F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 01682 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 01684 Length 0009 (9) │ │ │ │ 01686 Flags 03 (3) 'Modification Access' │ │ │ │ -01687 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -0168B Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +01687 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +0168B Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 0168F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 01691 Length 000B (11) │ │ │ │ 01693 Version 01 (1) │ │ │ │ 01694 UID Size 04 (4) │ │ │ │ 01695 UID 00000000 (0) │ │ │ │ 01699 GID Size 04 (4) │ │ │ │ 0169A GID 00000000 (0) │ │ │ │ @@ -93,6187 +93,6187 @@ │ │ │ │ │ │ │ │ 01D73 LOCAL HEADER #4 04034B50 (67324752) │ │ │ │ 01D77 Extract Zip Spec 14 (20) '2.0' │ │ │ │ 01D78 Extract OS 00 (0) 'MS-DOS' │ │ │ │ 01D79 General Purpose Flag 0000 (0) │ │ │ │ [Bits 1-2] 0 'Normal Compression' │ │ │ │ 01D7B Compression Method 0008 (8) 'Deflated' │ │ │ │ -01D7D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -01D81 CRC 562FE917 (1445980439) │ │ │ │ -01D85 Compressed Size 00002DA0 (11680) │ │ │ │ +01D7D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +01D81 CRC 482CBB8A (1210891146) │ │ │ │ +01D85 Compressed Size 00002DA3 (11683) │ │ │ │ 01D89 Uncompressed Size 0000D0BF (53439) │ │ │ │ 01D8D Filename Length 0014 (20) │ │ │ │ 01D8F Extra Length 001C (28) │ │ │ │ 01D91 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # │ │ │ │ # WARNING: Offset 0x1D91: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ # Zero length filename │ │ │ │ # │ │ │ │ 01DA5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ 01DA7 Length 0009 (9) │ │ │ │ 01DA9 Flags 03 (3) 'Modification Access' │ │ │ │ -01DAA Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -01DAE Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ +01DAA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +01DAE Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ 01DB2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ 01DB4 Length 000B (11) │ │ │ │ 01DB6 Version 01 (1) │ │ │ │ 01DB7 UID Size 04 (4) │ │ │ │ 01DB8 UID 00000000 (0) │ │ │ │ 01DBC GID Size 04 (4) │ │ │ │ 01DBD GID 00000000 (0) │ │ │ │ 01DC1 PAYLOAD │ │ │ │ │ │ │ │ -04B61 LOCAL HEADER #5 04034B50 (67324752) │ │ │ │ -04B65 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -04B66 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -04B67 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -04B69 Compression Method 0008 (8) 'Deflated' │ │ │ │ -04B6B Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04B6F CRC A25ED8D1 (2724124881) │ │ │ │ -04B73 Compressed Size 000003F0 (1008) │ │ │ │ -04B77 Uncompressed Size 00000876 (2166) │ │ │ │ -04B7B Filename Length 0014 (20) │ │ │ │ -04B7D Extra Length 001C (28) │ │ │ │ -04B7F Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4B7F: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -04B93 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -04B95 Length 0009 (9) │ │ │ │ -04B97 Flags 03 (3) 'Modification Access' │ │ │ │ -04B98 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04B9C Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04BA0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -04BA2 Length 000B (11) │ │ │ │ -04BA4 Version 01 (1) │ │ │ │ -04BA5 UID Size 04 (4) │ │ │ │ -04BA6 UID 00000000 (0) │ │ │ │ -04BAA GID Size 04 (4) │ │ │ │ -04BAB GID 00000000 (0) │ │ │ │ -04BAF PAYLOAD │ │ │ │ - │ │ │ │ -04F9F LOCAL HEADER #6 04034B50 (67324752) │ │ │ │ -04FA3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -04FA4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -04FA5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -04FA7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -04FA9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04FAD CRC 9809A48F (2550768783) │ │ │ │ -04FB1 Compressed Size 000001AE (430) │ │ │ │ -04FB5 Uncompressed Size 000002FC (764) │ │ │ │ -04FB9 Filename Length 0011 (17) │ │ │ │ -04FBB Extra Length 001C (28) │ │ │ │ -04FBD Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4FBD: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -04FCE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -04FD0 Length 0009 (9) │ │ │ │ -04FD2 Flags 03 (3) 'Modification Access' │ │ │ │ -04FD3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04FD7 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -04FDB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -04FDD Length 000B (11) │ │ │ │ -04FDF Version 01 (1) │ │ │ │ -04FE0 UID Size 04 (4) │ │ │ │ -04FE1 UID 00000000 (0) │ │ │ │ -04FE5 GID Size 04 (4) │ │ │ │ -04FE6 GID 00000000 (0) │ │ │ │ -04FEA PAYLOAD │ │ │ │ - │ │ │ │ -05198 LOCAL HEADER #7 04034B50 (67324752) │ │ │ │ -0519C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -0519D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -0519E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -051A0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -051A2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -051A6 CRC 70B50103 (1890910467) │ │ │ │ -051AA Compressed Size 000020C1 (8385) │ │ │ │ -051AE Uncompressed Size 0000B4B0 (46256) │ │ │ │ -051B2 Filename Length 001B (27) │ │ │ │ -051B4 Extra Length 001C (28) │ │ │ │ -051B6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x51B6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -051D1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -051D3 Length 0009 (9) │ │ │ │ -051D5 Flags 03 (3) 'Modification Access' │ │ │ │ -051D6 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -051DA Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -051DE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -051E0 Length 000B (11) │ │ │ │ -051E2 Version 01 (1) │ │ │ │ -051E3 UID Size 04 (4) │ │ │ │ -051E4 UID 00000000 (0) │ │ │ │ -051E8 GID Size 04 (4) │ │ │ │ -051E9 GID 00000000 (0) │ │ │ │ -051ED PAYLOAD │ │ │ │ - │ │ │ │ -072AE LOCAL HEADER #8 04034B50 (67324752) │ │ │ │ -072B2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -072B3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -072B4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -072B6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -072B8 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -072BC CRC 219043B3 (563102643) │ │ │ │ -072C0 Compressed Size 00000E6F (3695) │ │ │ │ -072C4 Uncompressed Size 000030B2 (12466) │ │ │ │ -072C8 Filename Length 001D (29) │ │ │ │ -072CA Extra Length 001C (28) │ │ │ │ -072CC Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x72CC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -072E9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -072EB Length 0009 (9) │ │ │ │ -072ED Flags 03 (3) 'Modification Access' │ │ │ │ -072EE Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -072F2 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -072F6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -072F8 Length 000B (11) │ │ │ │ -072FA Version 01 (1) │ │ │ │ -072FB UID Size 04 (4) │ │ │ │ -072FC UID 00000000 (0) │ │ │ │ -07300 GID Size 04 (4) │ │ │ │ -07301 GID 00000000 (0) │ │ │ │ -07305 PAYLOAD │ │ │ │ - │ │ │ │ -08174 LOCAL HEADER #9 04034B50 (67324752) │ │ │ │ -08178 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -08179 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -0817A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -0817C Compression Method 0008 (8) 'Deflated' │ │ │ │ -0817E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -08182 CRC FEA15075 (4271984757) │ │ │ │ -08186 Compressed Size 00000972 (2418) │ │ │ │ -0818A Uncompressed Size 00001CB2 (7346) │ │ │ │ -0818E Filename Length 0019 (25) │ │ │ │ -08190 Extra Length 001C (28) │ │ │ │ -08192 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8192: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -081AB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -081AD Length 0009 (9) │ │ │ │ -081AF Flags 03 (3) 'Modification Access' │ │ │ │ -081B0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -081B4 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -081B8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -081BA Length 000B (11) │ │ │ │ -081BC Version 01 (1) │ │ │ │ -081BD UID Size 04 (4) │ │ │ │ -081BE UID 00000000 (0) │ │ │ │ -081C2 GID Size 04 (4) │ │ │ │ -081C3 GID 00000000 (0) │ │ │ │ -081C7 PAYLOAD │ │ │ │ - │ │ │ │ -08B39 LOCAL HEADER #10 04034B50 (67324752) │ │ │ │ -08B3D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -08B3E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -08B3F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -08B41 Compression Method 0008 (8) 'Deflated' │ │ │ │ -08B43 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -08B47 CRC BCC92BFC (3167300604) │ │ │ │ -08B4B Compressed Size 00003881 (14465) │ │ │ │ -08B4F Uncompressed Size 0000F7F4 (63476) │ │ │ │ -08B53 Filename Length 0015 (21) │ │ │ │ -08B55 Extra Length 001C (28) │ │ │ │ -08B57 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8B57: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -08B6C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -08B6E Length 0009 (9) │ │ │ │ -08B70 Flags 03 (3) 'Modification Access' │ │ │ │ -08B71 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -08B75 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -08B79 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -08B7B Length 000B (11) │ │ │ │ -08B7D Version 01 (1) │ │ │ │ -08B7E UID Size 04 (4) │ │ │ │ -08B7F UID 00000000 (0) │ │ │ │ -08B83 GID Size 04 (4) │ │ │ │ -08B84 GID 00000000 (0) │ │ │ │ -08B88 PAYLOAD │ │ │ │ - │ │ │ │ -0C409 LOCAL HEADER #11 04034B50 (67324752) │ │ │ │ -0C40D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -0C40E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -0C40F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -0C411 Compression Method 0008 (8) 'Deflated' │ │ │ │ -0C413 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -0C417 CRC BCC7BD76 (3167206774) │ │ │ │ -0C41B Compressed Size 0000AAE2 (43746) │ │ │ │ -0C41F Uncompressed Size 0003DFDE (253918) │ │ │ │ -0C423 Filename Length 0012 (18) │ │ │ │ -0C425 Extra Length 001C (28) │ │ │ │ -0C427 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0xC427: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -0C439 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -0C43B Length 0009 (9) │ │ │ │ -0C43D Flags 03 (3) 'Modification Access' │ │ │ │ -0C43E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -0C442 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -0C446 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -0C448 Length 000B (11) │ │ │ │ -0C44A Version 01 (1) │ │ │ │ -0C44B UID Size 04 (4) │ │ │ │ -0C44C UID 00000000 (0) │ │ │ │ -0C450 GID Size 04 (4) │ │ │ │ -0C451 GID 00000000 (0) │ │ │ │ -0C455 PAYLOAD │ │ │ │ - │ │ │ │ -16F37 LOCAL HEADER #12 04034B50 (67324752) │ │ │ │ -16F3B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -16F3C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -16F3D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -16F3F Compression Method 0008 (8) 'Deflated' │ │ │ │ -16F41 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -16F45 CRC 04CE9FF5 (80650229) │ │ │ │ -16F49 Compressed Size 00003B19 (15129) │ │ │ │ -16F4D Uncompressed Size 0001B2A0 (111264) │ │ │ │ -16F51 Filename Length 0015 (21) │ │ │ │ -16F53 Extra Length 001C (28) │ │ │ │ -16F55 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x16F55: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -16F6A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -16F6C Length 0009 (9) │ │ │ │ -16F6E Flags 03 (3) 'Modification Access' │ │ │ │ -16F6F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -16F73 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -16F77 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -16F79 Length 000B (11) │ │ │ │ -16F7B Version 01 (1) │ │ │ │ -16F7C UID Size 04 (4) │ │ │ │ -16F7D UID 00000000 (0) │ │ │ │ -16F81 GID Size 04 (4) │ │ │ │ -16F82 GID 00000000 (0) │ │ │ │ -16F86 PAYLOAD │ │ │ │ - │ │ │ │ -1AA9F LOCAL HEADER #13 04034B50 (67324752) │ │ │ │ -1AAA3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -1AAA4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -1AAA5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -1AAA7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -1AAA9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -1AAAD CRC 0952F615 (156431893) │ │ │ │ -1AAB1 Compressed Size 0000908F (37007) │ │ │ │ -1AAB5 Uncompressed Size 0003D05F (249951) │ │ │ │ -1AAB9 Filename Length 0014 (20) │ │ │ │ -1AABB Extra Length 001C (28) │ │ │ │ -1AABD Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x1AABD: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -1AAD1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -1AAD3 Length 0009 (9) │ │ │ │ -1AAD5 Flags 03 (3) 'Modification Access' │ │ │ │ -1AAD6 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -1AADA Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -1AADE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -1AAE0 Length 000B (11) │ │ │ │ -1AAE2 Version 01 (1) │ │ │ │ -1AAE3 UID Size 04 (4) │ │ │ │ -1AAE4 UID 00000000 (0) │ │ │ │ -1AAE8 GID Size 04 (4) │ │ │ │ -1AAE9 GID 00000000 (0) │ │ │ │ -1AAED PAYLOAD │ │ │ │ - │ │ │ │ -23B7C LOCAL HEADER #14 04034B50 (67324752) │ │ │ │ -23B80 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -23B81 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -23B82 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -23B84 Compression Method 0008 (8) 'Deflated' │ │ │ │ -23B86 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -23B8A CRC 8221D9E1 (2183256545) │ │ │ │ -23B8E Compressed Size 00002A63 (10851) │ │ │ │ -23B92 Uncompressed Size 0001151F (70943) │ │ │ │ -23B96 Filename Length 0016 (22) │ │ │ │ -23B98 Extra Length 001C (28) │ │ │ │ -23B9A Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x23B9A: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -23BB0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -23BB2 Length 0009 (9) │ │ │ │ -23BB4 Flags 03 (3) 'Modification Access' │ │ │ │ -23BB5 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -23BB9 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -23BBD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -23BBF Length 000B (11) │ │ │ │ -23BC1 Version 01 (1) │ │ │ │ -23BC2 UID Size 04 (4) │ │ │ │ -23BC3 UID 00000000 (0) │ │ │ │ -23BC7 GID Size 04 (4) │ │ │ │ -23BC8 GID 00000000 (0) │ │ │ │ -23BCC PAYLOAD │ │ │ │ - │ │ │ │ -2662F LOCAL HEADER #15 04034B50 (67324752) │ │ │ │ -26633 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -26634 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -26635 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -26637 Compression Method 0008 (8) 'Deflated' │ │ │ │ -26639 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2663D CRC AD2220D4 (2904694996) │ │ │ │ -26641 Compressed Size 000014DA (5338) │ │ │ │ -26645 Uncompressed Size 00005176 (20854) │ │ │ │ -26649 Filename Length 001D (29) │ │ │ │ -2664B Extra Length 001C (28) │ │ │ │ -2664D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2664D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2666A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2666C Length 0009 (9) │ │ │ │ -2666E Flags 03 (3) 'Modification Access' │ │ │ │ -2666F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -26673 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -26677 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -26679 Length 000B (11) │ │ │ │ -2667B Version 01 (1) │ │ │ │ -2667C UID Size 04 (4) │ │ │ │ -2667D UID 00000000 (0) │ │ │ │ -26681 GID Size 04 (4) │ │ │ │ -26682 GID 00000000 (0) │ │ │ │ -26686 PAYLOAD │ │ │ │ - │ │ │ │ -27B60 LOCAL HEADER #16 04034B50 (67324752) │ │ │ │ -27B64 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -27B65 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -27B66 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -27B68 Compression Method 0008 (8) 'Deflated' │ │ │ │ -27B6A Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -27B6E CRC DF988056 (3751313494) │ │ │ │ -27B72 Compressed Size 000037FC (14332) │ │ │ │ -27B76 Uncompressed Size 0000E9F0 (59888) │ │ │ │ -27B7A Filename Length 001C (28) │ │ │ │ -27B7C Extra Length 001C (28) │ │ │ │ -27B7E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x27B7E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -27B9A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -27B9C Length 0009 (9) │ │ │ │ -27B9E Flags 03 (3) 'Modification Access' │ │ │ │ -27B9F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -27BA3 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -27BA7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -27BA9 Length 000B (11) │ │ │ │ -27BAB Version 01 (1) │ │ │ │ -27BAC UID Size 04 (4) │ │ │ │ -27BAD UID 00000000 (0) │ │ │ │ -27BB1 GID Size 04 (4) │ │ │ │ -27BB2 GID 00000000 (0) │ │ │ │ -27BB6 PAYLOAD │ │ │ │ - │ │ │ │ -2B3B2 LOCAL HEADER #17 04034B50 (67324752) │ │ │ │ -2B3B6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2B3B7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2B3B8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2B3BA Compression Method 0008 (8) 'Deflated' │ │ │ │ -2B3BC Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2B3C0 CRC 76141A43 (1981028931) │ │ │ │ -2B3C4 Compressed Size 000006A0 (1696) │ │ │ │ -2B3C8 Uncompressed Size 000011F4 (4596) │ │ │ │ -2B3CC Filename Length 001C (28) │ │ │ │ -2B3CE Extra Length 001C (28) │ │ │ │ -2B3D0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2B3D0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2B3EC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2B3EE Length 0009 (9) │ │ │ │ -2B3F0 Flags 03 (3) 'Modification Access' │ │ │ │ -2B3F1 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2B3F5 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2B3F9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2B3FB Length 000B (11) │ │ │ │ -2B3FD Version 01 (1) │ │ │ │ -2B3FE UID Size 04 (4) │ │ │ │ -2B3FF UID 00000000 (0) │ │ │ │ -2B403 GID Size 04 (4) │ │ │ │ -2B404 GID 00000000 (0) │ │ │ │ -2B408 PAYLOAD │ │ │ │ - │ │ │ │ -2BAA8 LOCAL HEADER #18 04034B50 (67324752) │ │ │ │ -2BAAC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2BAAD Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2BAAE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2BAB0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -2BAB2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2BAB6 CRC EB30CBDF (3945843679) │ │ │ │ -2BABA Compressed Size 0000107B (4219) │ │ │ │ -2BABE Uncompressed Size 00004BFF (19455) │ │ │ │ -2BAC2 Filename Length 001B (27) │ │ │ │ -2BAC4 Extra Length 001C (28) │ │ │ │ -2BAC6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2BAC6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2BAE1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2BAE3 Length 0009 (9) │ │ │ │ -2BAE5 Flags 03 (3) 'Modification Access' │ │ │ │ -2BAE6 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2BAEA Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2BAEE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2BAF0 Length 000B (11) │ │ │ │ -2BAF2 Version 01 (1) │ │ │ │ -2BAF3 UID Size 04 (4) │ │ │ │ -2BAF4 UID 00000000 (0) │ │ │ │ -2BAF8 GID Size 04 (4) │ │ │ │ -2BAF9 GID 00000000 (0) │ │ │ │ -2BAFD PAYLOAD │ │ │ │ - │ │ │ │ -2CB78 LOCAL HEADER #19 04034B50 (67324752) │ │ │ │ -2CB7C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2CB7D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2CB7E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2CB80 Compression Method 0008 (8) 'Deflated' │ │ │ │ -2CB82 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2CB86 CRC 0931FA1A (154270234) │ │ │ │ -2CB8A Compressed Size 000033AB (13227) │ │ │ │ -2CB8E Uncompressed Size 0000BC94 (48276) │ │ │ │ -2CB92 Filename Length 001D (29) │ │ │ │ -2CB94 Extra Length 001C (28) │ │ │ │ -2CB96 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2CB96: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2CBB3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2CBB5 Length 0009 (9) │ │ │ │ -2CBB7 Flags 03 (3) 'Modification Access' │ │ │ │ -2CBB8 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2CBBC Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2CBC0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2CBC2 Length 000B (11) │ │ │ │ -2CBC4 Version 01 (1) │ │ │ │ -2CBC5 UID Size 04 (4) │ │ │ │ -2CBC6 UID 00000000 (0) │ │ │ │ -2CBCA GID Size 04 (4) │ │ │ │ -2CBCB GID 00000000 (0) │ │ │ │ -2CBCF PAYLOAD │ │ │ │ - │ │ │ │ -2FF7A LOCAL HEADER #20 04034B50 (67324752) │ │ │ │ -2FF7E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -2FF7F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -2FF80 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -2FF82 Compression Method 0008 (8) 'Deflated' │ │ │ │ -2FF84 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2FF88 CRC C8CACC1B (3368733723) │ │ │ │ -2FF8C Compressed Size 00000D69 (3433) │ │ │ │ -2FF90 Uncompressed Size 00003876 (14454) │ │ │ │ -2FF94 Filename Length 001D (29) │ │ │ │ -2FF96 Extra Length 001C (28) │ │ │ │ -2FF98 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x2FF98: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -2FFB5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -2FFB7 Length 0009 (9) │ │ │ │ -2FFB9 Flags 03 (3) 'Modification Access' │ │ │ │ -2FFBA Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2FFBE Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -2FFC2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -2FFC4 Length 000B (11) │ │ │ │ -2FFC6 Version 01 (1) │ │ │ │ -2FFC7 UID Size 04 (4) │ │ │ │ -2FFC8 UID 00000000 (0) │ │ │ │ -2FFCC GID Size 04 (4) │ │ │ │ -2FFCD GID 00000000 (0) │ │ │ │ -2FFD1 PAYLOAD │ │ │ │ - │ │ │ │ -30D3A LOCAL HEADER #21 04034B50 (67324752) │ │ │ │ -30D3E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -30D3F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -30D40 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -30D42 Compression Method 0008 (8) 'Deflated' │ │ │ │ -30D44 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -30D48 CRC 9D87D38D (2642924429) │ │ │ │ -30D4C Compressed Size 00001C6C (7276) │ │ │ │ -30D50 Uncompressed Size 0000C186 (49542) │ │ │ │ -30D54 Filename Length 001A (26) │ │ │ │ -30D56 Extra Length 001C (28) │ │ │ │ -30D58 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x30D58: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -30D72 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -30D74 Length 0009 (9) │ │ │ │ -30D76 Flags 03 (3) 'Modification Access' │ │ │ │ -30D77 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -30D7B Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -30D7F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -30D81 Length 000B (11) │ │ │ │ -30D83 Version 01 (1) │ │ │ │ -30D84 UID Size 04 (4) │ │ │ │ -30D85 UID 00000000 (0) │ │ │ │ -30D89 GID Size 04 (4) │ │ │ │ -30D8A GID 00000000 (0) │ │ │ │ -30D8E PAYLOAD │ │ │ │ - │ │ │ │ -329FA LOCAL HEADER #22 04034B50 (67324752) │ │ │ │ -329FE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -329FF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -32A00 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -32A02 Compression Method 0008 (8) 'Deflated' │ │ │ │ -32A04 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32A08 CRC D63ABE1D (3594173981) │ │ │ │ -32A0C Compressed Size 000003A3 (931) │ │ │ │ -32A10 Uncompressed Size 0000088E (2190) │ │ │ │ -32A14 Filename Length 0012 (18) │ │ │ │ -32A16 Extra Length 001C (28) │ │ │ │ -32A18 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x32A18: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -32A2A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -32A2C Length 0009 (9) │ │ │ │ -32A2E Flags 03 (3) 'Modification Access' │ │ │ │ -32A2F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32A33 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32A37 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -32A39 Length 000B (11) │ │ │ │ -32A3B Version 01 (1) │ │ │ │ -32A3C UID Size 04 (4) │ │ │ │ -32A3D UID 00000000 (0) │ │ │ │ -32A41 GID Size 04 (4) │ │ │ │ -32A42 GID 00000000 (0) │ │ │ │ -32A46 PAYLOAD │ │ │ │ - │ │ │ │ -32DE9 LOCAL HEADER #23 04034B50 (67324752) │ │ │ │ -32DED Extract Zip Spec 14 (20) '2.0' │ │ │ │ -32DEE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -32DEF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -32DF1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -32DF3 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32DF7 CRC 67B17E06 (1739685382) │ │ │ │ -32DFB Compressed Size 000001D4 (468) │ │ │ │ -32DFF Uncompressed Size 00000311 (785) │ │ │ │ -32E03 Filename Length 0020 (32) │ │ │ │ -32E05 Extra Length 001C (28) │ │ │ │ -32E07 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x32E07: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -32E27 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -32E29 Length 0009 (9) │ │ │ │ -32E2B Flags 03 (3) 'Modification Access' │ │ │ │ -32E2C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32E30 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -32E34 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -32E36 Length 000B (11) │ │ │ │ -32E38 Version 01 (1) │ │ │ │ -32E39 UID Size 04 (4) │ │ │ │ -32E3A UID 00000000 (0) │ │ │ │ -32E3E GID Size 04 (4) │ │ │ │ -32E3F GID 00000000 (0) │ │ │ │ -32E43 PAYLOAD │ │ │ │ - │ │ │ │ -33017 LOCAL HEADER #24 04034B50 (67324752) │ │ │ │ -3301B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3301C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3301D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3301F Compression Method 0008 (8) 'Deflated' │ │ │ │ -33021 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -33025 CRC B3D894D1 (3017315537) │ │ │ │ -33029 Compressed Size 000017AE (6062) │ │ │ │ -3302D Uncompressed Size 00009CD3 (40147) │ │ │ │ -33031 Filename Length 001B (27) │ │ │ │ -33033 Extra Length 001C (28) │ │ │ │ -33035 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x33035: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -33050 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -33052 Length 0009 (9) │ │ │ │ -33054 Flags 03 (3) 'Modification Access' │ │ │ │ -33055 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -33059 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3305D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3305F Length 000B (11) │ │ │ │ -33061 Version 01 (1) │ │ │ │ -33062 UID Size 04 (4) │ │ │ │ -33063 UID 00000000 (0) │ │ │ │ -33067 GID Size 04 (4) │ │ │ │ -33068 GID 00000000 (0) │ │ │ │ -3306C PAYLOAD │ │ │ │ - │ │ │ │ -3481A LOCAL HEADER #25 04034B50 (67324752) │ │ │ │ -3481E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3481F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -34820 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -34822 Compression Method 0008 (8) 'Deflated' │ │ │ │ -34824 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -34828 CRC 26417E48 (641826376) │ │ │ │ -3482C Compressed Size 00001371 (4977) │ │ │ │ -34830 Uncompressed Size 00003B66 (15206) │ │ │ │ -34834 Filename Length 0015 (21) │ │ │ │ -34836 Extra Length 001C (28) │ │ │ │ -34838 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x34838: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3484D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3484F Length 0009 (9) │ │ │ │ -34851 Flags 03 (3) 'Modification Access' │ │ │ │ -34852 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -34856 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3485A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3485C Length 000B (11) │ │ │ │ -3485E Version 01 (1) │ │ │ │ -3485F UID Size 04 (4) │ │ │ │ -34860 UID 00000000 (0) │ │ │ │ -34864 GID Size 04 (4) │ │ │ │ -34865 GID 00000000 (0) │ │ │ │ -34869 PAYLOAD │ │ │ │ - │ │ │ │ -35BDA LOCAL HEADER #26 04034B50 (67324752) │ │ │ │ -35BDE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -35BDF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -35BE0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -35BE2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -35BE4 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -35BE8 CRC 8884496A (2290370922) │ │ │ │ -35BEC Compressed Size 00000AD1 (2769) │ │ │ │ -35BF0 Uncompressed Size 00002135 (8501) │ │ │ │ -35BF4 Filename Length 0011 (17) │ │ │ │ -35BF6 Extra Length 001C (28) │ │ │ │ -35BF8 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x35BF8: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -35C09 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -35C0B Length 0009 (9) │ │ │ │ -35C0D Flags 03 (3) 'Modification Access' │ │ │ │ -35C0E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -35C12 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -35C16 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -35C18 Length 000B (11) │ │ │ │ -35C1A Version 01 (1) │ │ │ │ -35C1B UID Size 04 (4) │ │ │ │ -35C1C UID 00000000 (0) │ │ │ │ -35C20 GID Size 04 (4) │ │ │ │ -35C21 GID 00000000 (0) │ │ │ │ -35C25 PAYLOAD │ │ │ │ - │ │ │ │ -366F6 LOCAL HEADER #27 04034B50 (67324752) │ │ │ │ -366FA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -366FB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -366FC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -366FE Compression Method 0008 (8) 'Deflated' │ │ │ │ -36700 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36704 CRC DB40B17A (3678450042) │ │ │ │ -36708 Compressed Size 000003FE (1022) │ │ │ │ -3670C Uncompressed Size 00000E99 (3737) │ │ │ │ -36710 Filename Length 0014 (20) │ │ │ │ -36712 Extra Length 001C (28) │ │ │ │ -36714 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x36714: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -36728 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3672A Length 0009 (9) │ │ │ │ -3672C Flags 03 (3) 'Modification Access' │ │ │ │ -3672D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36731 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36735 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -36737 Length 000B (11) │ │ │ │ -36739 Version 01 (1) │ │ │ │ -3673A UID Size 04 (4) │ │ │ │ -3673B UID 00000000 (0) │ │ │ │ -3673F GID Size 04 (4) │ │ │ │ -36740 GID 00000000 (0) │ │ │ │ -36744 PAYLOAD │ │ │ │ - │ │ │ │ -36B42 LOCAL HEADER #28 04034B50 (67324752) │ │ │ │ -36B46 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -36B47 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -36B48 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -36B4A Compression Method 0008 (8) 'Deflated' │ │ │ │ -36B4C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36B50 CRC 6E954352 (1855275858) │ │ │ │ -36B54 Compressed Size 00001262 (4706) │ │ │ │ -36B58 Uncompressed Size 00003469 (13417) │ │ │ │ -36B5C Filename Length 0014 (20) │ │ │ │ -36B5E Extra Length 001C (28) │ │ │ │ -36B60 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x36B60: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -36B74 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -36B76 Length 0009 (9) │ │ │ │ -36B78 Flags 03 (3) 'Modification Access' │ │ │ │ -36B79 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36B7D Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -36B81 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -36B83 Length 000B (11) │ │ │ │ -36B85 Version 01 (1) │ │ │ │ -36B86 UID Size 04 (4) │ │ │ │ -36B87 UID 00000000 (0) │ │ │ │ -36B8B GID Size 04 (4) │ │ │ │ -36B8C GID 00000000 (0) │ │ │ │ -36B90 PAYLOAD │ │ │ │ - │ │ │ │ -37DF2 LOCAL HEADER #29 04034B50 (67324752) │ │ │ │ -37DF6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -37DF7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -37DF8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -37DFA Compression Method 0008 (8) 'Deflated' │ │ │ │ -37DFC Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -37E00 CRC DB1D4E7B (3676130939) │ │ │ │ -37E04 Compressed Size 00000ACF (2767) │ │ │ │ -37E08 Uncompressed Size 000022FF (8959) │ │ │ │ -37E0C Filename Length 001B (27) │ │ │ │ -37E0E Extra Length 001C (28) │ │ │ │ -37E10 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x37E10: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -37E2B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -37E2D Length 0009 (9) │ │ │ │ -37E2F Flags 03 (3) 'Modification Access' │ │ │ │ -37E30 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -37E34 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -37E38 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -37E3A Length 000B (11) │ │ │ │ -37E3C Version 01 (1) │ │ │ │ -37E3D UID Size 04 (4) │ │ │ │ -37E3E UID 00000000 (0) │ │ │ │ -37E42 GID Size 04 (4) │ │ │ │ -37E43 GID 00000000 (0) │ │ │ │ -37E47 PAYLOAD │ │ │ │ - │ │ │ │ -38916 LOCAL HEADER #30 04034B50 (67324752) │ │ │ │ -3891A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3891B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3891C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3891E Compression Method 0008 (8) 'Deflated' │ │ │ │ -38920 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -38924 CRC B74B6217 (3075170839) │ │ │ │ -38928 Compressed Size 00000A8E (2702) │ │ │ │ -3892C Uncompressed Size 0000237A (9082) │ │ │ │ -38930 Filename Length 0013 (19) │ │ │ │ -38932 Extra Length 001C (28) │ │ │ │ -38934 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x38934: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -38947 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -38949 Length 0009 (9) │ │ │ │ -3894B Flags 03 (3) 'Modification Access' │ │ │ │ -3894C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -38950 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -38954 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -38956 Length 000B (11) │ │ │ │ -38958 Version 01 (1) │ │ │ │ -38959 UID Size 04 (4) │ │ │ │ -3895A UID 00000000 (0) │ │ │ │ -3895E GID Size 04 (4) │ │ │ │ -3895F GID 00000000 (0) │ │ │ │ -38963 PAYLOAD │ │ │ │ - │ │ │ │ -393F1 LOCAL HEADER #31 04034B50 (67324752) │ │ │ │ -393F5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -393F6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -393F7 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -393F9 Compression Method 0008 (8) 'Deflated' │ │ │ │ -393FB Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -393FF CRC 33B87EA3 (867729059) │ │ │ │ -39403 Compressed Size 00000F48 (3912) │ │ │ │ -39407 Uncompressed Size 000036F1 (14065) │ │ │ │ -3940B Filename Length 000F (15) │ │ │ │ -3940D Extra Length 001C (28) │ │ │ │ -3940F Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3940F: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3941E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -39420 Length 0009 (9) │ │ │ │ -39422 Flags 03 (3) 'Modification Access' │ │ │ │ -39423 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -39427 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3942B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3942D Length 000B (11) │ │ │ │ -3942F Version 01 (1) │ │ │ │ -39430 UID Size 04 (4) │ │ │ │ -39431 UID 00000000 (0) │ │ │ │ -39435 GID Size 04 (4) │ │ │ │ -39436 GID 00000000 (0) │ │ │ │ -3943A PAYLOAD │ │ │ │ - │ │ │ │ -3A382 LOCAL HEADER #32 04034B50 (67324752) │ │ │ │ -3A386 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3A387 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3A388 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3A38A Compression Method 0008 (8) 'Deflated' │ │ │ │ -3A38C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3A390 CRC 7FB04E29 (2142260777) │ │ │ │ -3A394 Compressed Size 0000066A (1642) │ │ │ │ -3A398 Uncompressed Size 000018DF (6367) │ │ │ │ -3A39C Filename Length 000F (15) │ │ │ │ -3A39E Extra Length 001C (28) │ │ │ │ -3A3A0 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3A3A0: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3A3AF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3A3B1 Length 0009 (9) │ │ │ │ -3A3B3 Flags 03 (3) 'Modification Access' │ │ │ │ -3A3B4 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3A3B8 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3A3BC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3A3BE Length 000B (11) │ │ │ │ -3A3C0 Version 01 (1) │ │ │ │ -3A3C1 UID Size 04 (4) │ │ │ │ -3A3C2 UID 00000000 (0) │ │ │ │ -3A3C6 GID Size 04 (4) │ │ │ │ -3A3C7 GID 00000000 (0) │ │ │ │ -3A3CB PAYLOAD │ │ │ │ - │ │ │ │ -3AA35 LOCAL HEADER #33 04034B50 (67324752) │ │ │ │ -3AA39 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3AA3A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3AA3B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3AA3D Compression Method 0008 (8) 'Deflated' │ │ │ │ -3AA3F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3AA43 CRC 5FF08021 (1609596961) │ │ │ │ -3AA47 Compressed Size 00001A4A (6730) │ │ │ │ -3AA4B Uncompressed Size 000064F2 (25842) │ │ │ │ -3AA4F Filename Length 0013 (19) │ │ │ │ -3AA51 Extra Length 001C (28) │ │ │ │ -3AA53 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3AA53: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3AA66 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3AA68 Length 0009 (9) │ │ │ │ -3AA6A Flags 03 (3) 'Modification Access' │ │ │ │ -3AA6B Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3AA6F Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3AA73 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3AA75 Length 000B (11) │ │ │ │ -3AA77 Version 01 (1) │ │ │ │ -3AA78 UID Size 04 (4) │ │ │ │ -3AA79 UID 00000000 (0) │ │ │ │ -3AA7D GID Size 04 (4) │ │ │ │ -3AA7E GID 00000000 (0) │ │ │ │ -3AA82 PAYLOAD │ │ │ │ - │ │ │ │ -3C4CC LOCAL HEADER #34 04034B50 (67324752) │ │ │ │ -3C4D0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3C4D1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3C4D2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3C4D4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -3C4D6 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3C4DA CRC B885C195 (3095773589) │ │ │ │ -3C4DE Compressed Size 000009A5 (2469) │ │ │ │ -3C4E2 Uncompressed Size 00001B64 (7012) │ │ │ │ -3C4E6 Filename Length 0010 (16) │ │ │ │ -3C4E8 Extra Length 001C (28) │ │ │ │ -3C4EA Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3C4EA: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3C4FA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3C4FC Length 0009 (9) │ │ │ │ -3C4FE Flags 03 (3) 'Modification Access' │ │ │ │ -3C4FF Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3C503 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3C507 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3C509 Length 000B (11) │ │ │ │ -3C50B Version 01 (1) │ │ │ │ -3C50C UID Size 04 (4) │ │ │ │ -3C50D UID 00000000 (0) │ │ │ │ -3C511 GID Size 04 (4) │ │ │ │ -3C512 GID 00000000 (0) │ │ │ │ -3C516 PAYLOAD │ │ │ │ - │ │ │ │ -3CEBB LOCAL HEADER #35 04034B50 (67324752) │ │ │ │ -3CEBF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3CEC0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3CEC1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3CEC3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -3CEC5 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3CEC9 CRC 297E5B60 (696146784) │ │ │ │ -3CECD Compressed Size 000006B7 (1719) │ │ │ │ -3CED1 Uncompressed Size 00001565 (5477) │ │ │ │ -3CED5 Filename Length 0012 (18) │ │ │ │ -3CED7 Extra Length 001C (28) │ │ │ │ -3CED9 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3CED9: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3CEEB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3CEED Length 0009 (9) │ │ │ │ -3CEEF Flags 03 (3) 'Modification Access' │ │ │ │ -3CEF0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3CEF4 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3CEF8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3CEFA Length 000B (11) │ │ │ │ -3CEFC Version 01 (1) │ │ │ │ -3CEFD UID Size 04 (4) │ │ │ │ -3CEFE UID 00000000 (0) │ │ │ │ -3CF02 GID Size 04 (4) │ │ │ │ -3CF03 GID 00000000 (0) │ │ │ │ -3CF07 PAYLOAD │ │ │ │ - │ │ │ │ -3D5BE LOCAL HEADER #36 04034B50 (67324752) │ │ │ │ -3D5C2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -3D5C3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -3D5C4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -3D5C6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -3D5C8 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3D5CC CRC 963999A8 (2520357288) │ │ │ │ -3D5D0 Compressed Size 00002A16 (10774) │ │ │ │ -3D5D4 Uncompressed Size 0000B1C5 (45509) │ │ │ │ -3D5D8 Filename Length 0010 (16) │ │ │ │ -3D5DA Extra Length 001C (28) │ │ │ │ -3D5DC Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x3D5DC: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -3D5EC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -3D5EE Length 0009 (9) │ │ │ │ -3D5F0 Flags 03 (3) 'Modification Access' │ │ │ │ -3D5F1 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3D5F5 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -3D5F9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -3D5FB Length 000B (11) │ │ │ │ -3D5FD Version 01 (1) │ │ │ │ -3D5FE UID Size 04 (4) │ │ │ │ -3D5FF UID 00000000 (0) │ │ │ │ -3D603 GID Size 04 (4) │ │ │ │ -3D604 GID 00000000 (0) │ │ │ │ -3D608 PAYLOAD │ │ │ │ - │ │ │ │ -4001E LOCAL HEADER #37 04034B50 (67324752) │ │ │ │ -40022 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -40023 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -40024 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -40026 Compression Method 0008 (8) 'Deflated' │ │ │ │ -40028 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4002C CRC 412FC61A (1093649946) │ │ │ │ -40030 Compressed Size 00001E8C (7820) │ │ │ │ -40034 Uncompressed Size 00009AAA (39594) │ │ │ │ -40038 Filename Length 0012 (18) │ │ │ │ -4003A Extra Length 001C (28) │ │ │ │ -4003C Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4003C: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4004E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -40050 Length 0009 (9) │ │ │ │ -40052 Flags 03 (3) 'Modification Access' │ │ │ │ -40053 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -40057 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4005B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4005D Length 000B (11) │ │ │ │ -4005F Version 01 (1) │ │ │ │ -40060 UID Size 04 (4) │ │ │ │ -40061 UID 00000000 (0) │ │ │ │ -40065 GID Size 04 (4) │ │ │ │ -40066 GID 00000000 (0) │ │ │ │ -4006A PAYLOAD │ │ │ │ - │ │ │ │ -41EF6 LOCAL HEADER #38 04034B50 (67324752) │ │ │ │ -41EFA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -41EFB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -41EFC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -41EFE Compression Method 0008 (8) 'Deflated' │ │ │ │ -41F00 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -41F04 CRC 889828DF (2291673311) │ │ │ │ -41F08 Compressed Size 00001479 (5241) │ │ │ │ -41F0C Uncompressed Size 00007ACF (31439) │ │ │ │ -41F10 Filename Length 0018 (24) │ │ │ │ -41F12 Extra Length 001C (28) │ │ │ │ -41F14 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x41F14: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -41F2C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -41F2E Length 0009 (9) │ │ │ │ -41F30 Flags 03 (3) 'Modification Access' │ │ │ │ -41F31 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -41F35 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -41F39 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -41F3B Length 000B (11) │ │ │ │ -41F3D Version 01 (1) │ │ │ │ -41F3E UID Size 04 (4) │ │ │ │ -41F3F UID 00000000 (0) │ │ │ │ -41F43 GID Size 04 (4) │ │ │ │ -41F44 GID 00000000 (0) │ │ │ │ -41F48 PAYLOAD │ │ │ │ - │ │ │ │ -433C1 LOCAL HEADER #39 04034B50 (67324752) │ │ │ │ -433C5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -433C6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -433C7 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -433C9 Compression Method 0008 (8) 'Deflated' │ │ │ │ -433CB Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -433CF CRC 2812718D (672297357) │ │ │ │ -433D3 Compressed Size 000018D3 (6355) │ │ │ │ -433D7 Uncompressed Size 0000A7F4 (42996) │ │ │ │ -433DB Filename Length 001F (31) │ │ │ │ -433DD Extra Length 001C (28) │ │ │ │ -433DF Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x433DF: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -433FE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -43400 Length 0009 (9) │ │ │ │ -43402 Flags 03 (3) 'Modification Access' │ │ │ │ -43403 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -43407 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4340B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4340D Length 000B (11) │ │ │ │ -4340F Version 01 (1) │ │ │ │ -43410 UID Size 04 (4) │ │ │ │ -43411 UID 00000000 (0) │ │ │ │ -43415 GID Size 04 (4) │ │ │ │ -43416 GID 00000000 (0) │ │ │ │ -4341A PAYLOAD │ │ │ │ - │ │ │ │ -44CED LOCAL HEADER #40 04034B50 (67324752) │ │ │ │ -44CF1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -44CF2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -44CF3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -44CF5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -44CF7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -44CFB CRC 705BC16B (1885061483) │ │ │ │ -44CFF Compressed Size 000003F7 (1015) │ │ │ │ -44D03 Uncompressed Size 000008A3 (2211) │ │ │ │ -44D07 Filename Length 001E (30) │ │ │ │ -44D09 Extra Length 001C (28) │ │ │ │ -44D0B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x44D0B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -44D29 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -44D2B Length 0009 (9) │ │ │ │ -44D2D Flags 03 (3) 'Modification Access' │ │ │ │ -44D2E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -44D32 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -44D36 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -44D38 Length 000B (11) │ │ │ │ -44D3A Version 01 (1) │ │ │ │ -44D3B UID Size 04 (4) │ │ │ │ -44D3C UID 00000000 (0) │ │ │ │ -44D40 GID Size 04 (4) │ │ │ │ -44D41 GID 00000000 (0) │ │ │ │ -44D45 PAYLOAD │ │ │ │ - │ │ │ │ -4513C LOCAL HEADER #41 04034B50 (67324752) │ │ │ │ -45140 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -45141 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -45142 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -45144 Compression Method 0008 (8) 'Deflated' │ │ │ │ -45146 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4514A CRC BAFC6D2D (3137105197) │ │ │ │ -4514E Compressed Size 00004293 (17043) │ │ │ │ -45152 Uncompressed Size 0000D8DC (55516) │ │ │ │ -45156 Filename Length 0013 (19) │ │ │ │ -45158 Extra Length 001C (28) │ │ │ │ -4515A Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4515A: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4516D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4516F Length 0009 (9) │ │ │ │ -45171 Flags 03 (3) 'Modification Access' │ │ │ │ -45172 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -45176 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4517A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4517C Length 000B (11) │ │ │ │ -4517E Version 01 (1) │ │ │ │ -4517F UID Size 04 (4) │ │ │ │ -45180 UID 00000000 (0) │ │ │ │ -45184 GID Size 04 (4) │ │ │ │ -45185 GID 00000000 (0) │ │ │ │ -45189 PAYLOAD │ │ │ │ - │ │ │ │ -4941C LOCAL HEADER #42 04034B50 (67324752) │ │ │ │ -49420 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -49421 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -49422 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -49424 Compression Method 0008 (8) 'Deflated' │ │ │ │ -49426 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4942A CRC 49C65647 (1237734983) │ │ │ │ -4942E Compressed Size 000026C3 (9923) │ │ │ │ -49432 Uncompressed Size 00006E45 (28229) │ │ │ │ -49436 Filename Length 0019 (25) │ │ │ │ -49438 Extra Length 001C (28) │ │ │ │ -4943A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4943A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -49453 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -49455 Length 0009 (9) │ │ │ │ -49457 Flags 03 (3) 'Modification Access' │ │ │ │ -49458 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4945C Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -49460 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -49462 Length 000B (11) │ │ │ │ -49464 Version 01 (1) │ │ │ │ -49465 UID Size 04 (4) │ │ │ │ -49466 UID 00000000 (0) │ │ │ │ -4946A GID Size 04 (4) │ │ │ │ -4946B GID 00000000 (0) │ │ │ │ -4946F PAYLOAD │ │ │ │ - │ │ │ │ -4BB32 LOCAL HEADER #43 04034B50 (67324752) │ │ │ │ -4BB36 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4BB37 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4BB38 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4BB3A Compression Method 0008 (8) 'Deflated' │ │ │ │ -4BB3C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4BB40 CRC 063987F6 (104433654) │ │ │ │ -4BB44 Compressed Size 0000273A (10042) │ │ │ │ -4BB48 Uncompressed Size 00008B83 (35715) │ │ │ │ -4BB4C Filename Length 0019 (25) │ │ │ │ -4BB4E Extra Length 001C (28) │ │ │ │ -4BB50 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4BB50: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4BB69 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4BB6B Length 0009 (9) │ │ │ │ -4BB6D Flags 03 (3) 'Modification Access' │ │ │ │ -4BB6E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4BB72 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4BB76 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4BB78 Length 000B (11) │ │ │ │ -4BB7A Version 01 (1) │ │ │ │ -4BB7B UID Size 04 (4) │ │ │ │ -4BB7C UID 00000000 (0) │ │ │ │ -4BB80 GID Size 04 (4) │ │ │ │ -4BB81 GID 00000000 (0) │ │ │ │ -4BB85 PAYLOAD │ │ │ │ - │ │ │ │ -4E2BF LOCAL HEADER #44 04034B50 (67324752) │ │ │ │ -4E2C3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4E2C4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4E2C5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4E2C7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -4E2C9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4E2CD CRC F2DA5952 (4074395986) │ │ │ │ -4E2D1 Compressed Size 00000CEE (3310) │ │ │ │ -4E2D5 Uncompressed Size 0000517A (20858) │ │ │ │ -4E2D9 Filename Length 0021 (33) │ │ │ │ -4E2DB Extra Length 001C (28) │ │ │ │ -4E2DD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4E2DD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4E2FE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4E300 Length 0009 (9) │ │ │ │ -4E302 Flags 03 (3) 'Modification Access' │ │ │ │ -4E303 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4E307 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4E30B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4E30D Length 000B (11) │ │ │ │ -4E30F Version 01 (1) │ │ │ │ -4E310 UID Size 04 (4) │ │ │ │ -4E311 UID 00000000 (0) │ │ │ │ -4E315 GID Size 04 (4) │ │ │ │ -4E316 GID 00000000 (0) │ │ │ │ -4E31A PAYLOAD │ │ │ │ - │ │ │ │ -4F008 LOCAL HEADER #45 04034B50 (67324752) │ │ │ │ -4F00C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4F00D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4F00E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4F010 Compression Method 0008 (8) 'Deflated' │ │ │ │ -4F012 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F016 CRC 8C66FDEA (2355559914) │ │ │ │ -4F01A Compressed Size 00000468 (1128) │ │ │ │ -4F01E Uncompressed Size 00000931 (2353) │ │ │ │ -4F022 Filename Length 001B (27) │ │ │ │ -4F024 Extra Length 001C (28) │ │ │ │ -4F026 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4F026: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4F041 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4F043 Length 0009 (9) │ │ │ │ -4F045 Flags 03 (3) 'Modification Access' │ │ │ │ -4F046 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F04A Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F04E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4F050 Length 000B (11) │ │ │ │ -4F052 Version 01 (1) │ │ │ │ -4F053 UID Size 04 (4) │ │ │ │ -4F054 UID 00000000 (0) │ │ │ │ -4F058 GID Size 04 (4) │ │ │ │ -4F059 GID 00000000 (0) │ │ │ │ -4F05D PAYLOAD │ │ │ │ - │ │ │ │ -4F4C5 LOCAL HEADER #46 04034B50 (67324752) │ │ │ │ -4F4C9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -4F4CA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -4F4CB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -4F4CD Compression Method 0008 (8) 'Deflated' │ │ │ │ -4F4CF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F4D3 CRC FC713245 (4235276869) │ │ │ │ -4F4D7 Compressed Size 000016F4 (5876) │ │ │ │ -4F4DB Uncompressed Size 00007A6D (31341) │ │ │ │ -4F4DF Filename Length 001F (31) │ │ │ │ -4F4E1 Extra Length 001C (28) │ │ │ │ -4F4E3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x4F4E3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -4F502 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -4F504 Length 0009 (9) │ │ │ │ -4F506 Flags 03 (3) 'Modification Access' │ │ │ │ -4F507 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F50B Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -4F50F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -4F511 Length 000B (11) │ │ │ │ -4F513 Version 01 (1) │ │ │ │ -4F514 UID Size 04 (4) │ │ │ │ -4F515 UID 00000000 (0) │ │ │ │ -4F519 GID Size 04 (4) │ │ │ │ -4F51A GID 00000000 (0) │ │ │ │ -4F51E PAYLOAD │ │ │ │ - │ │ │ │ -50C12 LOCAL HEADER #47 04034B50 (67324752) │ │ │ │ -50C16 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -50C17 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -50C18 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -50C1A Compression Method 0008 (8) 'Deflated' │ │ │ │ -50C1C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -50C20 CRC 6703890F (1728284943) │ │ │ │ -50C24 Compressed Size 00004177 (16759) │ │ │ │ -50C28 Uncompressed Size 0001CF93 (118675) │ │ │ │ -50C2C Filename Length 0010 (16) │ │ │ │ -50C2E Extra Length 001C (28) │ │ │ │ -50C30 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x50C30: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -50C40 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -50C42 Length 0009 (9) │ │ │ │ -50C44 Flags 03 (3) 'Modification Access' │ │ │ │ -50C45 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -50C49 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -50C4D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -50C4F Length 000B (11) │ │ │ │ -50C51 Version 01 (1) │ │ │ │ -50C52 UID Size 04 (4) │ │ │ │ -50C53 UID 00000000 (0) │ │ │ │ -50C57 GID Size 04 (4) │ │ │ │ -50C58 GID 00000000 (0) │ │ │ │ -50C5C PAYLOAD │ │ │ │ - │ │ │ │ -54DD3 LOCAL HEADER #48 04034B50 (67324752) │ │ │ │ -54DD7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -54DD8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -54DD9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -54DDB Compression Method 0008 (8) 'Deflated' │ │ │ │ -54DDD Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -54DE1 CRC 7903D415 (2030294037) │ │ │ │ -54DE5 Compressed Size 00000A94 (2708) │ │ │ │ -54DE9 Uncompressed Size 00002105 (8453) │ │ │ │ -54DED Filename Length 0014 (20) │ │ │ │ -54DEF Extra Length 001C (28) │ │ │ │ -54DF1 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x54DF1: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -54E05 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -54E07 Length 0009 (9) │ │ │ │ -54E09 Flags 03 (3) 'Modification Access' │ │ │ │ -54E0A Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -54E0E Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -54E12 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -54E14 Length 000B (11) │ │ │ │ -54E16 Version 01 (1) │ │ │ │ -54E17 UID Size 04 (4) │ │ │ │ -54E18 UID 00000000 (0) │ │ │ │ -54E1C GID Size 04 (4) │ │ │ │ -54E1D GID 00000000 (0) │ │ │ │ -54E21 PAYLOAD │ │ │ │ - │ │ │ │ -558B5 LOCAL HEADER #49 04034B50 (67324752) │ │ │ │ -558B9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -558BA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -558BB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -558BD Compression Method 0008 (8) 'Deflated' │ │ │ │ -558BF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -558C3 CRC 1D304539 (489702713) │ │ │ │ -558C7 Compressed Size 0000AC97 (44183) │ │ │ │ -558CB Uncompressed Size 0003E418 (255000) │ │ │ │ -558CF Filename Length 0017 (23) │ │ │ │ -558D1 Extra Length 001C (28) │ │ │ │ -558D3 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x558D3: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -558EA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -558EC Length 0009 (9) │ │ │ │ -558EE Flags 03 (3) 'Modification Access' │ │ │ │ -558EF Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -558F3 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -558F7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -558F9 Length 000B (11) │ │ │ │ -558FB Version 01 (1) │ │ │ │ -558FC UID Size 04 (4) │ │ │ │ -558FD UID 00000000 (0) │ │ │ │ -55901 GID Size 04 (4) │ │ │ │ -55902 GID 00000000 (0) │ │ │ │ -55906 PAYLOAD │ │ │ │ - │ │ │ │ -6059D LOCAL HEADER #50 04034B50 (67324752) │ │ │ │ -605A1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -605A2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -605A3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -605A5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -605A7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -605AB CRC 73C7E563 (1942480227) │ │ │ │ -605AF Compressed Size 00000400 (1024) │ │ │ │ -605B3 Uncompressed Size 0000093D (2365) │ │ │ │ -605B7 Filename Length 0013 (19) │ │ │ │ -605B9 Extra Length 001C (28) │ │ │ │ -605BB Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x605BB: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -605CE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -605D0 Length 0009 (9) │ │ │ │ -605D2 Flags 03 (3) 'Modification Access' │ │ │ │ -605D3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -605D7 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -605DB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -605DD Length 000B (11) │ │ │ │ -605DF Version 01 (1) │ │ │ │ -605E0 UID Size 04 (4) │ │ │ │ -605E1 UID 00000000 (0) │ │ │ │ -605E5 GID Size 04 (4) │ │ │ │ -605E6 GID 00000000 (0) │ │ │ │ -605EA PAYLOAD │ │ │ │ - │ │ │ │ -609EA LOCAL HEADER #51 04034B50 (67324752) │ │ │ │ -609EE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -609EF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -609F0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -609F2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -609F4 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -609F8 CRC 7EF400B8 (2129920184) │ │ │ │ -609FC Compressed Size 000014E5 (5349) │ │ │ │ -60A00 Uncompressed Size 0000687B (26747) │ │ │ │ -60A04 Filename Length 0012 (18) │ │ │ │ -60A06 Extra Length 001C (28) │ │ │ │ -60A08 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x60A08: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -60A1A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -60A1C Length 0009 (9) │ │ │ │ -60A1E Flags 03 (3) 'Modification Access' │ │ │ │ -60A1F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -60A23 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -60A27 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -60A29 Length 000B (11) │ │ │ │ -60A2B Version 01 (1) │ │ │ │ -60A2C UID Size 04 (4) │ │ │ │ -60A2D UID 00000000 (0) │ │ │ │ -60A31 GID Size 04 (4) │ │ │ │ -60A32 GID 00000000 (0) │ │ │ │ -60A36 PAYLOAD │ │ │ │ - │ │ │ │ -61F1B LOCAL HEADER #52 04034B50 (67324752) │ │ │ │ -61F1F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -61F20 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -61F21 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -61F23 Compression Method 0008 (8) 'Deflated' │ │ │ │ -61F25 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -61F29 CRC 693EF524 (1765733668) │ │ │ │ -61F2D Compressed Size 000011EB (4587) │ │ │ │ -61F31 Uncompressed Size 000040F5 (16629) │ │ │ │ -61F35 Filename Length 0012 (18) │ │ │ │ -61F37 Extra Length 001C (28) │ │ │ │ -61F39 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x61F39: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -61F4B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -61F4D Length 0009 (9) │ │ │ │ -61F4F Flags 03 (3) 'Modification Access' │ │ │ │ -61F50 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -61F54 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -61F58 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -61F5A Length 000B (11) │ │ │ │ -61F5C Version 01 (1) │ │ │ │ -61F5D UID Size 04 (4) │ │ │ │ -61F5E UID 00000000 (0) │ │ │ │ -61F62 GID Size 04 (4) │ │ │ │ -61F63 GID 00000000 (0) │ │ │ │ -61F67 PAYLOAD │ │ │ │ - │ │ │ │ -63152 LOCAL HEADER #53 04034B50 (67324752) │ │ │ │ -63156 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -63157 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -63158 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6315A Compression Method 0008 (8) 'Deflated' │ │ │ │ -6315C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63160 CRC 23CF3462 (600781922) │ │ │ │ -63164 Compressed Size 000009DA (2522) │ │ │ │ -63168 Uncompressed Size 00003529 (13609) │ │ │ │ -6316C Filename Length 0019 (25) │ │ │ │ -6316E Extra Length 001C (28) │ │ │ │ -63170 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x63170: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -63189 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6318B Length 0009 (9) │ │ │ │ -6318D Flags 03 (3) 'Modification Access' │ │ │ │ -6318E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63192 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63196 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -63198 Length 000B (11) │ │ │ │ -6319A Version 01 (1) │ │ │ │ -6319B UID Size 04 (4) │ │ │ │ -6319C UID 00000000 (0) │ │ │ │ -631A0 GID Size 04 (4) │ │ │ │ -631A1 GID 00000000 (0) │ │ │ │ -631A5 PAYLOAD │ │ │ │ - │ │ │ │ -63B7F LOCAL HEADER #54 04034B50 (67324752) │ │ │ │ -63B83 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -63B84 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -63B85 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -63B87 Compression Method 0008 (8) 'Deflated' │ │ │ │ -63B89 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63B8D CRC 3E165161 (1041650017) │ │ │ │ -63B91 Compressed Size 000018B0 (6320) │ │ │ │ -63B95 Uncompressed Size 0000A605 (42501) │ │ │ │ -63B99 Filename Length 0019 (25) │ │ │ │ -63B9B Extra Length 001C (28) │ │ │ │ -63B9D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x63B9D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -63BB6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -63BB8 Length 0009 (9) │ │ │ │ -63BBA Flags 03 (3) 'Modification Access' │ │ │ │ -63BBB Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63BBF Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -63BC3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -63BC5 Length 000B (11) │ │ │ │ -63BC7 Version 01 (1) │ │ │ │ -63BC8 UID Size 04 (4) │ │ │ │ -63BC9 UID 00000000 (0) │ │ │ │ -63BCD GID Size 04 (4) │ │ │ │ -63BCE GID 00000000 (0) │ │ │ │ -63BD2 PAYLOAD │ │ │ │ - │ │ │ │ -65482 LOCAL HEADER #55 04034B50 (67324752) │ │ │ │ -65486 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -65487 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -65488 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6548A Compression Method 0008 (8) 'Deflated' │ │ │ │ -6548C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -65490 CRC 80854D35 (2156219701) │ │ │ │ -65494 Compressed Size 0000177D (6013) │ │ │ │ -65498 Uncompressed Size 0000472C (18220) │ │ │ │ -6549C Filename Length 0014 (20) │ │ │ │ -6549E Extra Length 001C (28) │ │ │ │ -654A0 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x654A0: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -654B4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -654B6 Length 0009 (9) │ │ │ │ -654B8 Flags 03 (3) 'Modification Access' │ │ │ │ -654B9 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -654BD Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -654C1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -654C3 Length 000B (11) │ │ │ │ -654C5 Version 01 (1) │ │ │ │ -654C6 UID Size 04 (4) │ │ │ │ -654C7 UID 00000000 (0) │ │ │ │ -654CB GID Size 04 (4) │ │ │ │ -654CC GID 00000000 (0) │ │ │ │ -654D0 PAYLOAD │ │ │ │ - │ │ │ │ -66C4D LOCAL HEADER #56 04034B50 (67324752) │ │ │ │ -66C51 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -66C52 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -66C53 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -66C55 Compression Method 0008 (8) 'Deflated' │ │ │ │ -66C57 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -66C5B CRC 8CE827B6 (2364024758) │ │ │ │ -66C5F Compressed Size 0000040A (1034) │ │ │ │ -66C63 Uncompressed Size 00000825 (2085) │ │ │ │ -66C67 Filename Length 001C (28) │ │ │ │ -66C69 Extra Length 001C (28) │ │ │ │ -66C6B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x66C6B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -66C87 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -66C89 Length 0009 (9) │ │ │ │ -66C8B Flags 03 (3) 'Modification Access' │ │ │ │ -66C8C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -66C90 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -66C94 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -66C96 Length 000B (11) │ │ │ │ -66C98 Version 01 (1) │ │ │ │ -66C99 UID Size 04 (4) │ │ │ │ -66C9A UID 00000000 (0) │ │ │ │ -66C9E GID Size 04 (4) │ │ │ │ -66C9F GID 00000000 (0) │ │ │ │ -66CA3 PAYLOAD │ │ │ │ - │ │ │ │ -670AD LOCAL HEADER #57 04034B50 (67324752) │ │ │ │ -670B1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -670B2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -670B3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -670B5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -670B7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -670BB CRC 060C597A (101472634) │ │ │ │ -670BF Compressed Size 00002480 (9344) │ │ │ │ -670C3 Uncompressed Size 0000B56F (46447) │ │ │ │ -670C7 Filename Length 001F (31) │ │ │ │ -670C9 Extra Length 001C (28) │ │ │ │ -670CB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x670CB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -670EA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -670EC Length 0009 (9) │ │ │ │ -670EE Flags 03 (3) 'Modification Access' │ │ │ │ -670EF Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -670F3 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -670F7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -670F9 Length 000B (11) │ │ │ │ -670FB Version 01 (1) │ │ │ │ -670FC UID Size 04 (4) │ │ │ │ -670FD UID 00000000 (0) │ │ │ │ -67101 GID Size 04 (4) │ │ │ │ -67102 GID 00000000 (0) │ │ │ │ -67106 PAYLOAD │ │ │ │ - │ │ │ │ -69586 LOCAL HEADER #58 04034B50 (67324752) │ │ │ │ -6958A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6958B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6958C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6958E Compression Method 0008 (8) 'Deflated' │ │ │ │ -69590 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -69594 CRC F8304094 (4163911828) │ │ │ │ -69598 Compressed Size 00000E78 (3704) │ │ │ │ -6959C Uncompressed Size 000052D9 (21209) │ │ │ │ -695A0 Filename Length 001F (31) │ │ │ │ -695A2 Extra Length 001C (28) │ │ │ │ -695A4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x695A4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -695C3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -695C5 Length 0009 (9) │ │ │ │ -695C7 Flags 03 (3) 'Modification Access' │ │ │ │ -695C8 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -695CC Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -695D0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -695D2 Length 000B (11) │ │ │ │ -695D4 Version 01 (1) │ │ │ │ -695D5 UID Size 04 (4) │ │ │ │ -695D6 UID 00000000 (0) │ │ │ │ -695DA GID Size 04 (4) │ │ │ │ -695DB GID 00000000 (0) │ │ │ │ -695DF PAYLOAD │ │ │ │ - │ │ │ │ -6A457 LOCAL HEADER #59 04034B50 (67324752) │ │ │ │ -6A45B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6A45C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6A45D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6A45F Compression Method 0008 (8) 'Deflated' │ │ │ │ -6A461 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6A465 CRC B30F51A1 (3004125601) │ │ │ │ -6A469 Compressed Size 00000A44 (2628) │ │ │ │ -6A46D Uncompressed Size 0000247A (9338) │ │ │ │ -6A471 Filename Length 0013 (19) │ │ │ │ -6A473 Extra Length 001C (28) │ │ │ │ -6A475 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6A475: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6A488 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6A48A Length 0009 (9) │ │ │ │ -6A48C Flags 03 (3) 'Modification Access' │ │ │ │ -6A48D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6A491 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6A495 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6A497 Length 000B (11) │ │ │ │ -6A499 Version 01 (1) │ │ │ │ -6A49A UID Size 04 (4) │ │ │ │ -6A49B UID 00000000 (0) │ │ │ │ -6A49F GID Size 04 (4) │ │ │ │ -6A4A0 GID 00000000 (0) │ │ │ │ -6A4A4 PAYLOAD │ │ │ │ - │ │ │ │ -6AEE8 LOCAL HEADER #60 04034B50 (67324752) │ │ │ │ -6AEEC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6AEED Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6AEEE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6AEF0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6AEF2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6AEF6 CRC 1E73B85F (510900319) │ │ │ │ -6AEFA Compressed Size 00002487 (9351) │ │ │ │ -6AEFE Uncompressed Size 0000B84C (47180) │ │ │ │ -6AF02 Filename Length 0019 (25) │ │ │ │ -6AF04 Extra Length 001C (28) │ │ │ │ -6AF06 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6AF06: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6AF1F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6AF21 Length 0009 (9) │ │ │ │ -6AF23 Flags 03 (3) 'Modification Access' │ │ │ │ -6AF24 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6AF28 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6AF2C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6AF2E Length 000B (11) │ │ │ │ -6AF30 Version 01 (1) │ │ │ │ -6AF31 UID Size 04 (4) │ │ │ │ -6AF32 UID 00000000 (0) │ │ │ │ -6AF36 GID Size 04 (4) │ │ │ │ -6AF37 GID 00000000 (0) │ │ │ │ -6AF3B PAYLOAD │ │ │ │ - │ │ │ │ -6D3C2 LOCAL HEADER #61 04034B50 (67324752) │ │ │ │ -6D3C6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6D3C7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6D3C8 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6D3CA Compression Method 0008 (8) 'Deflated' │ │ │ │ -6D3CC Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6D3D0 CRC 685E5016 (1751011350) │ │ │ │ -6D3D4 Compressed Size 00000EF9 (3833) │ │ │ │ -6D3D8 Uncompressed Size 00003A2C (14892) │ │ │ │ -6D3DC Filename Length 0024 (36) │ │ │ │ -6D3DE Extra Length 001C (28) │ │ │ │ -6D3E0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6D3E0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6D404 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6D406 Length 0009 (9) │ │ │ │ -6D408 Flags 03 (3) 'Modification Access' │ │ │ │ -6D409 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6D40D Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6D411 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6D413 Length 000B (11) │ │ │ │ -6D415 Version 01 (1) │ │ │ │ -6D416 UID Size 04 (4) │ │ │ │ -6D417 UID 00000000 (0) │ │ │ │ -6D41B GID Size 04 (4) │ │ │ │ -6D41C GID 00000000 (0) │ │ │ │ -6D420 PAYLOAD │ │ │ │ - │ │ │ │ -6E319 LOCAL HEADER #62 04034B50 (67324752) │ │ │ │ -6E31D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6E31E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6E31F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6E321 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6E323 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6E327 CRC 25BAB0D7 (632991959) │ │ │ │ -6E32B Compressed Size 00001AC2 (6850) │ │ │ │ -6E32F Uncompressed Size 00005EDC (24284) │ │ │ │ -6E333 Filename Length 0017 (23) │ │ │ │ -6E335 Extra Length 001C (28) │ │ │ │ -6E337 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6E337: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6E34E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6E350 Length 0009 (9) │ │ │ │ -6E352 Flags 03 (3) 'Modification Access' │ │ │ │ -6E353 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6E357 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6E35B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6E35D Length 000B (11) │ │ │ │ -6E35F Version 01 (1) │ │ │ │ -6E360 UID Size 04 (4) │ │ │ │ -6E361 UID 00000000 (0) │ │ │ │ -6E365 GID Size 04 (4) │ │ │ │ -6E366 GID 00000000 (0) │ │ │ │ -6E36A PAYLOAD │ │ │ │ - │ │ │ │ -6FE2C LOCAL HEADER #63 04034B50 (67324752) │ │ │ │ -6FE30 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -6FE31 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -6FE32 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -6FE34 Compression Method 0008 (8) 'Deflated' │ │ │ │ -6FE36 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6FE3A CRC 11E32AF1 (300100337) │ │ │ │ -6FE3E Compressed Size 00000ED3 (3795) │ │ │ │ -6FE42 Uncompressed Size 000038E2 (14562) │ │ │ │ -6FE46 Filename Length 0023 (35) │ │ │ │ -6FE48 Extra Length 001C (28) │ │ │ │ -6FE4A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x6FE4A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -6FE6D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -6FE6F Length 0009 (9) │ │ │ │ -6FE71 Flags 03 (3) 'Modification Access' │ │ │ │ -6FE72 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6FE76 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -6FE7A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -6FE7C Length 000B (11) │ │ │ │ -6FE7E Version 01 (1) │ │ │ │ -6FE7F UID Size 04 (4) │ │ │ │ -6FE80 UID 00000000 (0) │ │ │ │ -6FE84 GID Size 04 (4) │ │ │ │ -6FE85 GID 00000000 (0) │ │ │ │ -6FE89 PAYLOAD │ │ │ │ - │ │ │ │ -70D5C LOCAL HEADER #64 04034B50 (67324752) │ │ │ │ -70D60 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -70D61 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -70D62 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -70D64 Compression Method 0008 (8) 'Deflated' │ │ │ │ -70D66 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70D6A CRC 2DB7929F (767005343) │ │ │ │ -70D6E Compressed Size 00000113 (275) │ │ │ │ -70D72 Uncompressed Size 000001F3 (499) │ │ │ │ -70D76 Filename Length 001B (27) │ │ │ │ -70D78 Extra Length 001C (28) │ │ │ │ -70D7A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x70D7A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -70D95 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -70D97 Length 0009 (9) │ │ │ │ -70D99 Flags 03 (3) 'Modification Access' │ │ │ │ -70D9A Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70D9E Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70DA2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -70DA4 Length 000B (11) │ │ │ │ -70DA6 Version 01 (1) │ │ │ │ -70DA7 UID Size 04 (4) │ │ │ │ -70DA8 UID 00000000 (0) │ │ │ │ -70DAC GID Size 04 (4) │ │ │ │ -70DAD GID 00000000 (0) │ │ │ │ -70DB1 PAYLOAD │ │ │ │ - │ │ │ │ -70EC4 LOCAL HEADER #65 04034B50 (67324752) │ │ │ │ -70EC8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -70EC9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -70ECA General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -70ECC Compression Method 0008 (8) 'Deflated' │ │ │ │ -70ECE Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70ED2 CRC AA7430BF (2859741375) │ │ │ │ -70ED6 Compressed Size 00001890 (6288) │ │ │ │ -70EDA Uncompressed Size 00008FAC (36780) │ │ │ │ -70EDE Filename Length 001D (29) │ │ │ │ -70EE0 Extra Length 001C (28) │ │ │ │ -70EE2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x70EE2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -70EFF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -70F01 Length 0009 (9) │ │ │ │ -70F03 Flags 03 (3) 'Modification Access' │ │ │ │ -70F04 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70F08 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -70F0C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -70F0E Length 000B (11) │ │ │ │ -70F10 Version 01 (1) │ │ │ │ -70F11 UID Size 04 (4) │ │ │ │ -70F12 UID 00000000 (0) │ │ │ │ -70F16 GID Size 04 (4) │ │ │ │ -70F17 GID 00000000 (0) │ │ │ │ -70F1B PAYLOAD │ │ │ │ - │ │ │ │ -727AB LOCAL HEADER #66 04034B50 (67324752) │ │ │ │ -727AF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -727B0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -727B1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -727B3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -727B5 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -727B9 CRC 5F656D2A (1600482602) │ │ │ │ -727BD Compressed Size 0000164C (5708) │ │ │ │ -727C1 Uncompressed Size 00003A9B (15003) │ │ │ │ -727C5 Filename Length 0015 (21) │ │ │ │ -727C7 Extra Length 001C (28) │ │ │ │ -727C9 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x727C9: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -727DE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -727E0 Length 0009 (9) │ │ │ │ -727E2 Flags 03 (3) 'Modification Access' │ │ │ │ -727E3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -727E7 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -727EB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -727ED Length 000B (11) │ │ │ │ -727EF Version 01 (1) │ │ │ │ -727F0 UID Size 04 (4) │ │ │ │ -727F1 UID 00000000 (0) │ │ │ │ -727F5 GID Size 04 (4) │ │ │ │ -727F6 GID 00000000 (0) │ │ │ │ -727FA PAYLOAD │ │ │ │ - │ │ │ │ -73E46 LOCAL HEADER #67 04034B50 (67324752) │ │ │ │ -73E4A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -73E4B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -73E4C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -73E4E Compression Method 0008 (8) 'Deflated' │ │ │ │ -73E50 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -73E54 CRC DBD9148D (3688436877) │ │ │ │ -73E58 Compressed Size 00003B4F (15183) │ │ │ │ -73E5C Uncompressed Size 0001185B (71771) │ │ │ │ -73E60 Filename Length 0016 (22) │ │ │ │ -73E62 Extra Length 001C (28) │ │ │ │ -73E64 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x73E64: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -73E7A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -73E7C Length 0009 (9) │ │ │ │ -73E7E Flags 03 (3) 'Modification Access' │ │ │ │ -73E7F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -73E83 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -73E87 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -73E89 Length 000B (11) │ │ │ │ -73E8B Version 01 (1) │ │ │ │ -73E8C UID Size 04 (4) │ │ │ │ -73E8D UID 00000000 (0) │ │ │ │ -73E91 GID Size 04 (4) │ │ │ │ -73E92 GID 00000000 (0) │ │ │ │ -73E96 PAYLOAD │ │ │ │ - │ │ │ │ -779E5 LOCAL HEADER #68 04034B50 (67324752) │ │ │ │ -779E9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -779EA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -779EB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -779ED Compression Method 0008 (8) 'Deflated' │ │ │ │ -779EF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -779F3 CRC C7B6EF21 (3350654753) │ │ │ │ -779F7 Compressed Size 00003E88 (16008) │ │ │ │ -779FB Uncompressed Size 0001C17B (115067) │ │ │ │ -779FF Filename Length 0019 (25) │ │ │ │ -77A01 Extra Length 001C (28) │ │ │ │ -77A03 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x77A03: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -77A1C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -77A1E Length 0009 (9) │ │ │ │ -77A20 Flags 03 (3) 'Modification Access' │ │ │ │ -77A21 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -77A25 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -77A29 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -77A2B Length 000B (11) │ │ │ │ -77A2D Version 01 (1) │ │ │ │ -77A2E UID Size 04 (4) │ │ │ │ -77A2F UID 00000000 (0) │ │ │ │ -77A33 GID Size 04 (4) │ │ │ │ -77A34 GID 00000000 (0) │ │ │ │ -77A38 PAYLOAD │ │ │ │ - │ │ │ │ -7B8C0 LOCAL HEADER #69 04034B50 (67324752) │ │ │ │ -7B8C4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -7B8C5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -7B8C6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -7B8C8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -7B8CA Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7B8CE CRC 59E53244 (1508192836) │ │ │ │ -7B8D2 Compressed Size 00000835 (2101) │ │ │ │ -7B8D6 Uncompressed Size 00003383 (13187) │ │ │ │ -7B8DA Filename Length 0011 (17) │ │ │ │ -7B8DC Extra Length 001C (28) │ │ │ │ -7B8DE Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x7B8DE: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -7B8EF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -7B8F1 Length 0009 (9) │ │ │ │ -7B8F3 Flags 03 (3) 'Modification Access' │ │ │ │ -7B8F4 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7B8F8 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7B8FC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -7B8FE Length 000B (11) │ │ │ │ -7B900 Version 01 (1) │ │ │ │ -7B901 UID Size 04 (4) │ │ │ │ -7B902 UID 00000000 (0) │ │ │ │ -7B906 GID Size 04 (4) │ │ │ │ -7B907 GID 00000000 (0) │ │ │ │ -7B90B PAYLOAD │ │ │ │ - │ │ │ │ -7C140 LOCAL HEADER #70 04034B50 (67324752) │ │ │ │ -7C144 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -7C145 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -7C146 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -7C148 Compression Method 0008 (8) 'Deflated' │ │ │ │ -7C14A Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7C14E CRC D1DF86DD (3521087197) │ │ │ │ -7C152 Compressed Size 00005184 (20868) │ │ │ │ -7C156 Uncompressed Size 0001FB6C (129900) │ │ │ │ -7C15A Filename Length 0015 (21) │ │ │ │ -7C15C Extra Length 001C (28) │ │ │ │ -7C15E Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x7C15E: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -7C173 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -7C175 Length 0009 (9) │ │ │ │ -7C177 Flags 03 (3) 'Modification Access' │ │ │ │ -7C178 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7C17C Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -7C180 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -7C182 Length 000B (11) │ │ │ │ -7C184 Version 01 (1) │ │ │ │ -7C185 UID Size 04 (4) │ │ │ │ -7C186 UID 00000000 (0) │ │ │ │ -7C18A GID Size 04 (4) │ │ │ │ -7C18B GID 00000000 (0) │ │ │ │ -7C18F PAYLOAD │ │ │ │ - │ │ │ │ -81313 LOCAL HEADER #71 04034B50 (67324752) │ │ │ │ -81317 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -81318 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -81319 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8131B Compression Method 0008 (8) 'Deflated' │ │ │ │ -8131D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -81321 CRC 419D467F (1100826239) │ │ │ │ -81325 Compressed Size 00001B0A (6922) │ │ │ │ -81329 Uncompressed Size 000081CF (33231) │ │ │ │ -8132D Filename Length 0019 (25) │ │ │ │ -8132F Extra Length 001C (28) │ │ │ │ -81331 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x81331: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8134A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8134C Length 0009 (9) │ │ │ │ -8134E Flags 03 (3) 'Modification Access' │ │ │ │ -8134F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -81353 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -81357 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -81359 Length 000B (11) │ │ │ │ -8135B Version 01 (1) │ │ │ │ -8135C UID Size 04 (4) │ │ │ │ -8135D UID 00000000 (0) │ │ │ │ -81361 GID Size 04 (4) │ │ │ │ -81362 GID 00000000 (0) │ │ │ │ -81366 PAYLOAD │ │ │ │ - │ │ │ │ -82E70 LOCAL HEADER #72 04034B50 (67324752) │ │ │ │ -82E74 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -82E75 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -82E76 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -82E78 Compression Method 0008 (8) 'Deflated' │ │ │ │ -82E7A Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -82E7E CRC 49C11139 (1237389625) │ │ │ │ -82E82 Compressed Size 00000D97 (3479) │ │ │ │ -82E86 Uncompressed Size 00002E9F (11935) │ │ │ │ -82E8A Filename Length 0018 (24) │ │ │ │ -82E8C Extra Length 001C (28) │ │ │ │ -82E8E Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x82E8E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -82EA6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -82EA8 Length 0009 (9) │ │ │ │ -82EAA Flags 03 (3) 'Modification Access' │ │ │ │ -82EAB Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -82EAF Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -82EB3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -82EB5 Length 000B (11) │ │ │ │ -82EB7 Version 01 (1) │ │ │ │ -82EB8 UID Size 04 (4) │ │ │ │ -82EB9 UID 00000000 (0) │ │ │ │ -82EBD GID Size 04 (4) │ │ │ │ -82EBE GID 00000000 (0) │ │ │ │ -82EC2 PAYLOAD │ │ │ │ - │ │ │ │ -83C59 LOCAL HEADER #73 04034B50 (67324752) │ │ │ │ -83C5D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -83C5E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -83C5F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -83C61 Compression Method 0008 (8) 'Deflated' │ │ │ │ -83C63 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83C67 CRC 0350D61E (55629342) │ │ │ │ -83C6B Compressed Size 000001E0 (480) │ │ │ │ -83C6F Uncompressed Size 00000323 (803) │ │ │ │ -83C73 Filename Length 0011 (17) │ │ │ │ -83C75 Extra Length 001C (28) │ │ │ │ -83C77 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x83C77: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -83C88 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -83C8A Length 0009 (9) │ │ │ │ -83C8C Flags 03 (3) 'Modification Access' │ │ │ │ -83C8D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83C91 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83C95 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -83C97 Length 000B (11) │ │ │ │ -83C99 Version 01 (1) │ │ │ │ -83C9A UID Size 04 (4) │ │ │ │ -83C9B UID 00000000 (0) │ │ │ │ -83C9F GID Size 04 (4) │ │ │ │ -83CA0 GID 00000000 (0) │ │ │ │ -83CA4 PAYLOAD │ │ │ │ - │ │ │ │ -83E84 LOCAL HEADER #74 04034B50 (67324752) │ │ │ │ -83E88 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -83E89 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -83E8A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -83E8C Compression Method 0008 (8) 'Deflated' │ │ │ │ -83E8E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83E92 CRC 3FD13568 (1070675304) │ │ │ │ -83E96 Compressed Size 000006C2 (1730) │ │ │ │ -83E9A Uncompressed Size 00001439 (5177) │ │ │ │ -83E9E Filename Length 0019 (25) │ │ │ │ -83EA0 Extra Length 001C (28) │ │ │ │ -83EA2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x83EA2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -83EBB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -83EBD Length 0009 (9) │ │ │ │ -83EBF Flags 03 (3) 'Modification Access' │ │ │ │ -83EC0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83EC4 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -83EC8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -83ECA Length 000B (11) │ │ │ │ -83ECC Version 01 (1) │ │ │ │ -83ECD UID Size 04 (4) │ │ │ │ -83ECE UID 00000000 (0) │ │ │ │ -83ED2 GID Size 04 (4) │ │ │ │ -83ED3 GID 00000000 (0) │ │ │ │ -83ED7 PAYLOAD │ │ │ │ - │ │ │ │ -84599 LOCAL HEADER #75 04034B50 (67324752) │ │ │ │ -8459D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8459E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8459F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -845A1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -845A3 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -845A7 CRC 89473D13 (2303147283) │ │ │ │ -845AB Compressed Size 00001B8B (7051) │ │ │ │ -845AF Uncompressed Size 00009F03 (40707) │ │ │ │ -845B3 Filename Length 0018 (24) │ │ │ │ -845B5 Extra Length 001C (28) │ │ │ │ -845B7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x845B7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -845CF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -845D1 Length 0009 (9) │ │ │ │ -845D3 Flags 03 (3) 'Modification Access' │ │ │ │ -845D4 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -845D8 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -845DC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -845DE Length 000B (11) │ │ │ │ -845E0 Version 01 (1) │ │ │ │ -845E1 UID Size 04 (4) │ │ │ │ -845E2 UID 00000000 (0) │ │ │ │ -845E6 GID Size 04 (4) │ │ │ │ -845E7 GID 00000000 (0) │ │ │ │ -845EB PAYLOAD │ │ │ │ - │ │ │ │ -86176 LOCAL HEADER #76 04034B50 (67324752) │ │ │ │ -8617A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8617B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8617C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8617E Compression Method 0008 (8) 'Deflated' │ │ │ │ -86180 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -86184 CRC D941FB49 (3644980041) │ │ │ │ -86188 Compressed Size 000016FB (5883) │ │ │ │ -8618C Uncompressed Size 00008AB6 (35510) │ │ │ │ -86190 Filename Length 0012 (18) │ │ │ │ -86192 Extra Length 001C (28) │ │ │ │ -86194 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x86194: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -861A6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -861A8 Length 0009 (9) │ │ │ │ -861AA Flags 03 (3) 'Modification Access' │ │ │ │ -861AB Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -861AF Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -861B3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -861B5 Length 000B (11) │ │ │ │ -861B7 Version 01 (1) │ │ │ │ -861B8 UID Size 04 (4) │ │ │ │ -861B9 UID 00000000 (0) │ │ │ │ -861BD GID Size 04 (4) │ │ │ │ -861BE GID 00000000 (0) │ │ │ │ -861C2 PAYLOAD │ │ │ │ - │ │ │ │ -878BD LOCAL HEADER #77 04034B50 (67324752) │ │ │ │ -878C1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -878C2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -878C3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -878C5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -878C7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -878CB CRC F5B21857 (4122089559) │ │ │ │ -878CF Compressed Size 00001E15 (7701) │ │ │ │ -878D3 Uncompressed Size 00008803 (34819) │ │ │ │ -878D7 Filename Length 0016 (22) │ │ │ │ -878D9 Extra Length 001C (28) │ │ │ │ -878DB Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x878DB: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -878F1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -878F3 Length 0009 (9) │ │ │ │ -878F5 Flags 03 (3) 'Modification Access' │ │ │ │ -878F6 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -878FA Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -878FE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -87900 Length 000B (11) │ │ │ │ -87902 Version 01 (1) │ │ │ │ -87903 UID Size 04 (4) │ │ │ │ -87904 UID 00000000 (0) │ │ │ │ -87908 GID Size 04 (4) │ │ │ │ -87909 GID 00000000 (0) │ │ │ │ -8790D PAYLOAD │ │ │ │ - │ │ │ │ -89722 LOCAL HEADER #78 04034B50 (67324752) │ │ │ │ -89726 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -89727 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -89728 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8972A Compression Method 0008 (8) 'Deflated' │ │ │ │ -8972C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -89730 CRC B502BD51 (3036855633) │ │ │ │ -89734 Compressed Size 000029A6 (10662) │ │ │ │ -89738 Uncompressed Size 0000D04F (53327) │ │ │ │ -8973C Filename Length 001A (26) │ │ │ │ -8973E Extra Length 001C (28) │ │ │ │ -89740 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x89740: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8975A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8975C Length 0009 (9) │ │ │ │ -8975E Flags 03 (3) 'Modification Access' │ │ │ │ -8975F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -89763 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -89767 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -89769 Length 000B (11) │ │ │ │ -8976B Version 01 (1) │ │ │ │ -8976C UID Size 04 (4) │ │ │ │ -8976D UID 00000000 (0) │ │ │ │ -89771 GID Size 04 (4) │ │ │ │ -89772 GID 00000000 (0) │ │ │ │ -89776 PAYLOAD │ │ │ │ - │ │ │ │ -8C11C LOCAL HEADER #79 04034B50 (67324752) │ │ │ │ -8C120 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8C121 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8C122 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8C124 Compression Method 0008 (8) 'Deflated' │ │ │ │ -8C126 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8C12A CRC 82C57F0D (2193981197) │ │ │ │ -8C12E Compressed Size 000009AC (2476) │ │ │ │ -8C132 Uncompressed Size 00001DB6 (7606) │ │ │ │ -8C136 Filename Length 0018 (24) │ │ │ │ -8C138 Extra Length 001C (28) │ │ │ │ -8C13A Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8C13A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8C152 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8C154 Length 0009 (9) │ │ │ │ -8C156 Flags 03 (3) 'Modification Access' │ │ │ │ -8C157 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8C15B Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8C15F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8C161 Length 000B (11) │ │ │ │ -8C163 Version 01 (1) │ │ │ │ -8C164 UID Size 04 (4) │ │ │ │ -8C165 UID 00000000 (0) │ │ │ │ -8C169 GID Size 04 (4) │ │ │ │ -8C16A GID 00000000 (0) │ │ │ │ -8C16E PAYLOAD │ │ │ │ - │ │ │ │ -8CB1A LOCAL HEADER #80 04034B50 (67324752) │ │ │ │ -8CB1E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8CB1F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8CB20 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8CB22 Compression Method 0008 (8) 'Deflated' │ │ │ │ -8CB24 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8CB28 CRC F5E2129F (4125233823) │ │ │ │ -8CB2C Compressed Size 000016BC (5820) │ │ │ │ -8CB30 Uncompressed Size 000016CD (5837) │ │ │ │ -8CB34 Filename Length 0015 (21) │ │ │ │ -8CB36 Extra Length 001C (28) │ │ │ │ -8CB38 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8CB38: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8CB4D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8CB4F Length 0009 (9) │ │ │ │ -8CB51 Flags 03 (3) 'Modification Access' │ │ │ │ -8CB52 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8CB56 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8CB5A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8CB5C Length 000B (11) │ │ │ │ -8CB5E Version 01 (1) │ │ │ │ -8CB5F UID Size 04 (4) │ │ │ │ -8CB60 UID 00000000 (0) │ │ │ │ -8CB64 GID Size 04 (4) │ │ │ │ -8CB65 GID 00000000 (0) │ │ │ │ -8CB69 PAYLOAD │ │ │ │ - │ │ │ │ -8E225 LOCAL HEADER #81 04034B50 (67324752) │ │ │ │ -8E229 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -8E22A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8E22B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -8E22D Compression Method 0008 (8) 'Deflated' │ │ │ │ -8E22F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8E233 CRC F5E2129F (4125233823) │ │ │ │ -8E237 Compressed Size 000016BC (5820) │ │ │ │ -8E23B Uncompressed Size 000016CD (5837) │ │ │ │ -8E23F Filename Length 001C (28) │ │ │ │ -8E241 Extra Length 001C (28) │ │ │ │ -8E243 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8E243: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8E25F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8E261 Length 0009 (9) │ │ │ │ -8E263 Flags 03 (3) 'Modification Access' │ │ │ │ -8E264 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8E268 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8E26C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8E26E Length 000B (11) │ │ │ │ -8E270 Version 01 (1) │ │ │ │ -8E271 UID Size 04 (4) │ │ │ │ -8E272 UID 00000000 (0) │ │ │ │ -8E276 GID Size 04 (4) │ │ │ │ -8E277 GID 00000000 (0) │ │ │ │ -8E27B PAYLOAD │ │ │ │ - │ │ │ │ -8F937 LOCAL HEADER #82 04034B50 (67324752) │ │ │ │ -8F93B Extract Zip Spec 0A (10) '1.0' │ │ │ │ -8F93C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -8F93D General Purpose Flag 0000 (0) │ │ │ │ -8F93F Compression Method 0000 (0) 'Stored' │ │ │ │ -8F941 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8F945 CRC FC95F24B (4237685323) │ │ │ │ -8F949 Compressed Size 00001B84 (7044) │ │ │ │ -8F94D Uncompressed Size 00001B84 (7044) │ │ │ │ -8F951 Filename Length 0016 (22) │ │ │ │ -8F953 Extra Length 001C (28) │ │ │ │ -8F955 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x8F955: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -8F96B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -8F96D Length 0009 (9) │ │ │ │ -8F96F Flags 03 (3) 'Modification Access' │ │ │ │ -8F970 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8F974 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -8F978 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -8F97A Length 000B (11) │ │ │ │ -8F97C Version 01 (1) │ │ │ │ -8F97D UID Size 04 (4) │ │ │ │ -8F97E UID 00000000 (0) │ │ │ │ -8F982 GID Size 04 (4) │ │ │ │ -8F983 GID 00000000 (0) │ │ │ │ -8F987 PAYLOAD │ │ │ │ - │ │ │ │ -9150B LOCAL HEADER #83 04034B50 (67324752) │ │ │ │ -9150F Extract Zip Spec 0A (10) '1.0' │ │ │ │ -91510 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -91511 General Purpose Flag 0000 (0) │ │ │ │ -91513 Compression Method 0000 (0) 'Stored' │ │ │ │ -91515 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -91519 CRC D0D71F86 (3503759238) │ │ │ │ -9151D Compressed Size 00000B7B (2939) │ │ │ │ -91521 Uncompressed Size 00000B7B (2939) │ │ │ │ -91525 Filename Length 0016 (22) │ │ │ │ -91527 Extra Length 001C (28) │ │ │ │ -91529 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x91529: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9153F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -91541 Length 0009 (9) │ │ │ │ -91543 Flags 03 (3) 'Modification Access' │ │ │ │ -91544 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -91548 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9154C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9154E Length 000B (11) │ │ │ │ -91550 Version 01 (1) │ │ │ │ -91551 UID Size 04 (4) │ │ │ │ -91552 UID 00000000 (0) │ │ │ │ -91556 GID Size 04 (4) │ │ │ │ -91557 GID 00000000 (0) │ │ │ │ -9155B PAYLOAD │ │ │ │ - │ │ │ │ -920D6 LOCAL HEADER #84 04034B50 (67324752) │ │ │ │ -920DA Extract Zip Spec 0A (10) '1.0' │ │ │ │ -920DB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -920DC General Purpose Flag 0000 (0) │ │ │ │ -920DE Compression Method 0000 (0) 'Stored' │ │ │ │ -920E0 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -920E4 CRC FFF9C4D2 (4294558930) │ │ │ │ -920E8 Compressed Size 0000138F (5007) │ │ │ │ -920EC Uncompressed Size 0000138F (5007) │ │ │ │ -920F0 Filename Length 0016 (22) │ │ │ │ -920F2 Extra Length 001C (28) │ │ │ │ -920F4 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x920F4: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9210A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9210C Length 0009 (9) │ │ │ │ -9210E Flags 03 (3) 'Modification Access' │ │ │ │ -9210F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -92113 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -92117 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -92119 Length 000B (11) │ │ │ │ -9211B Version 01 (1) │ │ │ │ -9211C UID Size 04 (4) │ │ │ │ -9211D UID 00000000 (0) │ │ │ │ -92121 GID Size 04 (4) │ │ │ │ -92122 GID 00000000 (0) │ │ │ │ -92126 PAYLOAD │ │ │ │ - │ │ │ │ -934B5 LOCAL HEADER #85 04034B50 (67324752) │ │ │ │ -934B9 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -934BA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -934BB General Purpose Flag 0000 (0) │ │ │ │ -934BD Compression Method 0000 (0) 'Stored' │ │ │ │ -934BF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -934C3 CRC A1037E8E (2701360782) │ │ │ │ -934C7 Compressed Size 0000145E (5214) │ │ │ │ -934CB Uncompressed Size 0000145E (5214) │ │ │ │ -934CF Filename Length 0016 (22) │ │ │ │ -934D1 Extra Length 001C (28) │ │ │ │ -934D3 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x934D3: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -934E9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -934EB Length 0009 (9) │ │ │ │ -934ED Flags 03 (3) 'Modification Access' │ │ │ │ -934EE Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -934F2 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -934F6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -934F8 Length 000B (11) │ │ │ │ -934FA Version 01 (1) │ │ │ │ -934FB UID Size 04 (4) │ │ │ │ -934FC UID 00000000 (0) │ │ │ │ -93500 GID Size 04 (4) │ │ │ │ -93501 GID 00000000 (0) │ │ │ │ -93505 PAYLOAD │ │ │ │ - │ │ │ │ -94963 LOCAL HEADER #86 04034B50 (67324752) │ │ │ │ -94967 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -94968 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -94969 General Purpose Flag 0000 (0) │ │ │ │ -9496B Compression Method 0000 (0) 'Stored' │ │ │ │ -9496D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -94971 CRC 5E9E64F1 (1587438833) │ │ │ │ -94975 Compressed Size 000008EC (2284) │ │ │ │ -94979 Uncompressed Size 000008EC (2284) │ │ │ │ -9497D Filename Length 0016 (22) │ │ │ │ -9497F Extra Length 001C (28) │ │ │ │ -94981 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x94981: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -94997 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -94999 Length 0009 (9) │ │ │ │ -9499B Flags 03 (3) 'Modification Access' │ │ │ │ -9499C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -949A0 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -949A4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -949A6 Length 000B (11) │ │ │ │ -949A8 Version 01 (1) │ │ │ │ -949A9 UID Size 04 (4) │ │ │ │ -949AA UID 00000000 (0) │ │ │ │ -949AE GID Size 04 (4) │ │ │ │ -949AF GID 00000000 (0) │ │ │ │ -949B3 PAYLOAD │ │ │ │ - │ │ │ │ -9529F LOCAL HEADER #87 04034B50 (67324752) │ │ │ │ -952A3 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -952A4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -952A5 General Purpose Flag 0000 (0) │ │ │ │ -952A7 Compression Method 0000 (0) 'Stored' │ │ │ │ -952A9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -952AD CRC 42E340AB (1122189483) │ │ │ │ -952B1 Compressed Size 00001F2E (7982) │ │ │ │ -952B5 Uncompressed Size 00001F2E (7982) │ │ │ │ -952B9 Filename Length 001E (30) │ │ │ │ -952BB Extra Length 001C (28) │ │ │ │ -952BD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x952BD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -952DB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -952DD Length 0009 (9) │ │ │ │ -952DF Flags 03 (3) 'Modification Access' │ │ │ │ -952E0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -952E4 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -952E8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -952EA Length 000B (11) │ │ │ │ -952EC Version 01 (1) │ │ │ │ -952ED UID Size 04 (4) │ │ │ │ -952EE UID 00000000 (0) │ │ │ │ -952F2 GID Size 04 (4) │ │ │ │ -952F3 GID 00000000 (0) │ │ │ │ -952F7 PAYLOAD │ │ │ │ - │ │ │ │ -97225 LOCAL HEADER #88 04034B50 (67324752) │ │ │ │ -97229 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9722A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9722B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9722D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9722F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -97233 CRC AB590681 (2874738305) │ │ │ │ -97237 Compressed Size 00003D6A (15722) │ │ │ │ -9723B Uncompressed Size 00016649 (91721) │ │ │ │ -9723F Filename Length 001A (26) │ │ │ │ -97241 Extra Length 001C (28) │ │ │ │ -97243 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x97243: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9725D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9725F Length 0009 (9) │ │ │ │ -97261 Flags 03 (3) 'Modification Access' │ │ │ │ -97262 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -97266 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9726A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9726C Length 000B (11) │ │ │ │ -9726E Version 01 (1) │ │ │ │ -9726F UID Size 04 (4) │ │ │ │ -97270 UID 00000000 (0) │ │ │ │ -97274 GID Size 04 (4) │ │ │ │ -97275 GID 00000000 (0) │ │ │ │ -97279 PAYLOAD │ │ │ │ - │ │ │ │ -9AFE3 LOCAL HEADER #89 04034B50 (67324752) │ │ │ │ -9AFE7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9AFE8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9AFE9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9AFEB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9AFED Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9AFF1 CRC 4A57375D (1247229789) │ │ │ │ -9AFF5 Compressed Size 000029BA (10682) │ │ │ │ -9AFF9 Uncompressed Size 0000BA6A (47722) │ │ │ │ -9AFFD Filename Length 0018 (24) │ │ │ │ -9AFFF Extra Length 001C (28) │ │ │ │ -9B001 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9B001: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9B019 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9B01B Length 0009 (9) │ │ │ │ -9B01D Flags 03 (3) 'Modification Access' │ │ │ │ -9B01E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9B022 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9B026 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9B028 Length 000B (11) │ │ │ │ -9B02A Version 01 (1) │ │ │ │ -9B02B UID Size 04 (4) │ │ │ │ -9B02C UID 00000000 (0) │ │ │ │ -9B030 GID Size 04 (4) │ │ │ │ -9B031 GID 00000000 (0) │ │ │ │ -9B035 PAYLOAD │ │ │ │ - │ │ │ │ -9D9EF LOCAL HEADER #90 04034B50 (67324752) │ │ │ │ -9D9F3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9D9F4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9D9F5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9D9F7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9D9F9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9D9FD CRC DCB3B516 (3702764822) │ │ │ │ -9DA01 Compressed Size 000000AE (174) │ │ │ │ -9DA05 Uncompressed Size 000000FC (252) │ │ │ │ -9DA09 Filename Length 0016 (22) │ │ │ │ -9DA0B Extra Length 001C (28) │ │ │ │ -9DA0D Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DA0D: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DA23 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DA25 Length 0009 (9) │ │ │ │ -9DA27 Flags 03 (3) 'Modification Access' │ │ │ │ -9DA28 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DA2C Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DA30 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DA32 Length 000B (11) │ │ │ │ -9DA34 Version 01 (1) │ │ │ │ -9DA35 UID Size 04 (4) │ │ │ │ -9DA36 UID 00000000 (0) │ │ │ │ -9DA3A GID Size 04 (4) │ │ │ │ -9DA3B GID 00000000 (0) │ │ │ │ -9DA3F PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ +04B64 LOCAL HEADER #5 04034B50 (67324752) │ │ │ │ +04B68 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +04B69 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +04B6A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +04B6C Compression Method 0008 (8) 'Deflated' │ │ │ │ +04B6E Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04B72 CRC A25ED8D1 (2724124881) │ │ │ │ +04B76 Compressed Size 000003F0 (1008) │ │ │ │ +04B7A Uncompressed Size 00000876 (2166) │ │ │ │ +04B7E Filename Length 0014 (20) │ │ │ │ +04B80 Extra Length 001C (28) │ │ │ │ +04B82 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4B82: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +04B96 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +04B98 Length 0009 (9) │ │ │ │ +04B9A Flags 03 (3) 'Modification Access' │ │ │ │ +04B9B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04B9F Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04BA3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +04BA5 Length 000B (11) │ │ │ │ +04BA7 Version 01 (1) │ │ │ │ +04BA8 UID Size 04 (4) │ │ │ │ +04BA9 UID 00000000 (0) │ │ │ │ +04BAD GID Size 04 (4) │ │ │ │ +04BAE GID 00000000 (0) │ │ │ │ +04BB2 PAYLOAD │ │ │ │ + │ │ │ │ +04FA2 LOCAL HEADER #6 04034B50 (67324752) │ │ │ │ +04FA6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +04FA7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +04FA8 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +04FAA Compression Method 0008 (8) 'Deflated' │ │ │ │ +04FAC Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04FB0 CRC 9809A48F (2550768783) │ │ │ │ +04FB4 Compressed Size 000001AE (430) │ │ │ │ +04FB8 Uncompressed Size 000002FC (764) │ │ │ │ +04FBC Filename Length 0011 (17) │ │ │ │ +04FBE Extra Length 001C (28) │ │ │ │ +04FC0 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4FC0: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +04FD1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +04FD3 Length 0009 (9) │ │ │ │ +04FD5 Flags 03 (3) 'Modification Access' │ │ │ │ +04FD6 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04FDA Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +04FDE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +04FE0 Length 000B (11) │ │ │ │ +04FE2 Version 01 (1) │ │ │ │ +04FE3 UID Size 04 (4) │ │ │ │ +04FE4 UID 00000000 (0) │ │ │ │ +04FE8 GID Size 04 (4) │ │ │ │ +04FE9 GID 00000000 (0) │ │ │ │ +04FED PAYLOAD │ │ │ │ + │ │ │ │ +0519B LOCAL HEADER #7 04034B50 (67324752) │ │ │ │ +0519F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +051A0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +051A1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +051A3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +051A5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +051A9 CRC AE0478B0 (2919528624) │ │ │ │ +051AD Compressed Size 000020C5 (8389) │ │ │ │ +051B1 Uncompressed Size 0000B4B0 (46256) │ │ │ │ +051B5 Filename Length 001B (27) │ │ │ │ +051B7 Extra Length 001C (28) │ │ │ │ +051B9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x51B9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +051D4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +051D6 Length 0009 (9) │ │ │ │ +051D8 Flags 03 (3) 'Modification Access' │ │ │ │ +051D9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +051DD Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +051E1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +051E3 Length 000B (11) │ │ │ │ +051E5 Version 01 (1) │ │ │ │ +051E6 UID Size 04 (4) │ │ │ │ +051E7 UID 00000000 (0) │ │ │ │ +051EB GID Size 04 (4) │ │ │ │ +051EC GID 00000000 (0) │ │ │ │ +051F0 PAYLOAD │ │ │ │ + │ │ │ │ +072B5 LOCAL HEADER #8 04034B50 (67324752) │ │ │ │ +072B9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +072BA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +072BB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +072BD Compression Method 0008 (8) 'Deflated' │ │ │ │ +072BF Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +072C3 CRC 219043B3 (563102643) │ │ │ │ +072C7 Compressed Size 00000E6F (3695) │ │ │ │ +072CB Uncompressed Size 000030B2 (12466) │ │ │ │ +072CF Filename Length 001D (29) │ │ │ │ +072D1 Extra Length 001C (28) │ │ │ │ +072D3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x72D3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +072F0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +072F2 Length 0009 (9) │ │ │ │ +072F4 Flags 03 (3) 'Modification Access' │ │ │ │ +072F5 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +072F9 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +072FD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +072FF Length 000B (11) │ │ │ │ +07301 Version 01 (1) │ │ │ │ +07302 UID Size 04 (4) │ │ │ │ +07303 UID 00000000 (0) │ │ │ │ +07307 GID Size 04 (4) │ │ │ │ +07308 GID 00000000 (0) │ │ │ │ +0730C PAYLOAD │ │ │ │ + │ │ │ │ +0817B LOCAL HEADER #9 04034B50 (67324752) │ │ │ │ +0817F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +08180 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +08181 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +08183 Compression Method 0008 (8) 'Deflated' │ │ │ │ +08185 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +08189 CRC FEA15075 (4271984757) │ │ │ │ +0818D Compressed Size 00000972 (2418) │ │ │ │ +08191 Uncompressed Size 00001CB2 (7346) │ │ │ │ +08195 Filename Length 0019 (25) │ │ │ │ +08197 Extra Length 001C (28) │ │ │ │ +08199 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8199: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +081B2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +081B4 Length 0009 (9) │ │ │ │ +081B6 Flags 03 (3) 'Modification Access' │ │ │ │ +081B7 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +081BB Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +081BF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +081C1 Length 000B (11) │ │ │ │ +081C3 Version 01 (1) │ │ │ │ +081C4 UID Size 04 (4) │ │ │ │ +081C5 UID 00000000 (0) │ │ │ │ +081C9 GID Size 04 (4) │ │ │ │ +081CA GID 00000000 (0) │ │ │ │ +081CE PAYLOAD │ │ │ │ + │ │ │ │ +08B40 LOCAL HEADER #10 04034B50 (67324752) │ │ │ │ +08B44 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +08B45 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +08B46 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +08B48 Compression Method 0008 (8) 'Deflated' │ │ │ │ +08B4A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +08B4E CRC 9868D3FF (2557006847) │ │ │ │ +08B52 Compressed Size 0000387B (14459) │ │ │ │ +08B56 Uncompressed Size 0000F7F4 (63476) │ │ │ │ +08B5A Filename Length 0015 (21) │ │ │ │ +08B5C Extra Length 001C (28) │ │ │ │ +08B5E Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8B5E: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +08B73 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +08B75 Length 0009 (9) │ │ │ │ +08B77 Flags 03 (3) 'Modification Access' │ │ │ │ +08B78 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +08B7C Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +08B80 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +08B82 Length 000B (11) │ │ │ │ +08B84 Version 01 (1) │ │ │ │ +08B85 UID Size 04 (4) │ │ │ │ +08B86 UID 00000000 (0) │ │ │ │ +08B8A GID Size 04 (4) │ │ │ │ +08B8B GID 00000000 (0) │ │ │ │ +08B8F PAYLOAD │ │ │ │ + │ │ │ │ +0C40A LOCAL HEADER #11 04034B50 (67324752) │ │ │ │ +0C40E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +0C40F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +0C410 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +0C412 Compression Method 0008 (8) 'Deflated' │ │ │ │ +0C414 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +0C418 CRC 0B7B7962 (192641378) │ │ │ │ +0C41C Compressed Size 0000AAE5 (43749) │ │ │ │ +0C420 Uncompressed Size 0003DFDE (253918) │ │ │ │ +0C424 Filename Length 0012 (18) │ │ │ │ +0C426 Extra Length 001C (28) │ │ │ │ +0C428 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0xC428: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +0C43A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +0C43C Length 0009 (9) │ │ │ │ +0C43E Flags 03 (3) 'Modification Access' │ │ │ │ +0C43F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +0C443 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +0C447 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +0C449 Length 000B (11) │ │ │ │ +0C44B Version 01 (1) │ │ │ │ +0C44C UID Size 04 (4) │ │ │ │ +0C44D UID 00000000 (0) │ │ │ │ +0C451 GID Size 04 (4) │ │ │ │ +0C452 GID 00000000 (0) │ │ │ │ +0C456 PAYLOAD │ │ │ │ + │ │ │ │ +16F3B LOCAL HEADER #12 04034B50 (67324752) │ │ │ │ +16F3F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +16F40 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +16F41 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +16F43 Compression Method 0008 (8) 'Deflated' │ │ │ │ +16F45 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +16F49 CRC 541AE3AB (1411048363) │ │ │ │ +16F4D Compressed Size 00003B1D (15133) │ │ │ │ +16F51 Uncompressed Size 0001B2A0 (111264) │ │ │ │ +16F55 Filename Length 0015 (21) │ │ │ │ +16F57 Extra Length 001C (28) │ │ │ │ +16F59 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x16F59: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +16F6E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +16F70 Length 0009 (9) │ │ │ │ +16F72 Flags 03 (3) 'Modification Access' │ │ │ │ +16F73 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +16F77 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +16F7B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +16F7D Length 000B (11) │ │ │ │ +16F7F Version 01 (1) │ │ │ │ +16F80 UID Size 04 (4) │ │ │ │ +16F81 UID 00000000 (0) │ │ │ │ +16F85 GID Size 04 (4) │ │ │ │ +16F86 GID 00000000 (0) │ │ │ │ +16F8A PAYLOAD │ │ │ │ + │ │ │ │ +1AAA7 LOCAL HEADER #13 04034B50 (67324752) │ │ │ │ +1AAAB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +1AAAC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +1AAAD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +1AAAF Compression Method 0008 (8) 'Deflated' │ │ │ │ +1AAB1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +1AAB5 CRC 4CC7CEC7 (1288163015) │ │ │ │ +1AAB9 Compressed Size 00009081 (36993) │ │ │ │ +1AABD Uncompressed Size 0003D05F (249951) │ │ │ │ +1AAC1 Filename Length 0014 (20) │ │ │ │ +1AAC3 Extra Length 001C (28) │ │ │ │ +1AAC5 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x1AAC5: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +1AAD9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +1AADB Length 0009 (9) │ │ │ │ +1AADD Flags 03 (3) 'Modification Access' │ │ │ │ +1AADE Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +1AAE2 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +1AAE6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +1AAE8 Length 000B (11) │ │ │ │ +1AAEA Version 01 (1) │ │ │ │ +1AAEB UID Size 04 (4) │ │ │ │ +1AAEC UID 00000000 (0) │ │ │ │ +1AAF0 GID Size 04 (4) │ │ │ │ +1AAF1 GID 00000000 (0) │ │ │ │ +1AAF5 PAYLOAD │ │ │ │ + │ │ │ │ +23B76 LOCAL HEADER #14 04034B50 (67324752) │ │ │ │ +23B7A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +23B7B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +23B7C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +23B7E Compression Method 0008 (8) 'Deflated' │ │ │ │ +23B80 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +23B84 CRC DA512EB8 (3662753464) │ │ │ │ +23B88 Compressed Size 00002A67 (10855) │ │ │ │ +23B8C Uncompressed Size 0001151F (70943) │ │ │ │ +23B90 Filename Length 0016 (22) │ │ │ │ +23B92 Extra Length 001C (28) │ │ │ │ +23B94 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x23B94: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +23BAA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +23BAC Length 0009 (9) │ │ │ │ +23BAE Flags 03 (3) 'Modification Access' │ │ │ │ +23BAF Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +23BB3 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +23BB7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +23BB9 Length 000B (11) │ │ │ │ +23BBB Version 01 (1) │ │ │ │ +23BBC UID Size 04 (4) │ │ │ │ +23BBD UID 00000000 (0) │ │ │ │ +23BC1 GID Size 04 (4) │ │ │ │ +23BC2 GID 00000000 (0) │ │ │ │ +23BC6 PAYLOAD │ │ │ │ + │ │ │ │ +2662D LOCAL HEADER #15 04034B50 (67324752) │ │ │ │ +26631 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +26632 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +26633 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +26635 Compression Method 0008 (8) 'Deflated' │ │ │ │ +26637 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2663B CRC C32AE6AF (3274368687) │ │ │ │ +2663F Compressed Size 000014D5 (5333) │ │ │ │ +26643 Uncompressed Size 00005176 (20854) │ │ │ │ +26647 Filename Length 001D (29) │ │ │ │ +26649 Extra Length 001C (28) │ │ │ │ +2664B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2664B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +26668 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2666A Length 0009 (9) │ │ │ │ +2666C Flags 03 (3) 'Modification Access' │ │ │ │ +2666D Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +26671 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +26675 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +26677 Length 000B (11) │ │ │ │ +26679 Version 01 (1) │ │ │ │ +2667A UID Size 04 (4) │ │ │ │ +2667B UID 00000000 (0) │ │ │ │ +2667F GID Size 04 (4) │ │ │ │ +26680 GID 00000000 (0) │ │ │ │ +26684 PAYLOAD │ │ │ │ + │ │ │ │ +27B59 LOCAL HEADER #16 04034B50 (67324752) │ │ │ │ +27B5D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +27B5E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +27B5F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +27B61 Compression Method 0008 (8) 'Deflated' │ │ │ │ +27B63 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +27B67 CRC 2944BA14 (692369940) │ │ │ │ +27B6B Compressed Size 000037FB (14331) │ │ │ │ +27B6F Uncompressed Size 0000E9F0 (59888) │ │ │ │ +27B73 Filename Length 001C (28) │ │ │ │ +27B75 Extra Length 001C (28) │ │ │ │ +27B77 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x27B77: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +27B93 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +27B95 Length 0009 (9) │ │ │ │ +27B97 Flags 03 (3) 'Modification Access' │ │ │ │ +27B98 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +27B9C Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +27BA0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +27BA2 Length 000B (11) │ │ │ │ +27BA4 Version 01 (1) │ │ │ │ +27BA5 UID Size 04 (4) │ │ │ │ +27BA6 UID 00000000 (0) │ │ │ │ +27BAA GID Size 04 (4) │ │ │ │ +27BAB GID 00000000 (0) │ │ │ │ +27BAF PAYLOAD │ │ │ │ + │ │ │ │ +2B3AA LOCAL HEADER #17 04034B50 (67324752) │ │ │ │ +2B3AE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2B3AF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2B3B0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2B3B2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +2B3B4 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2B3B8 CRC 76141A43 (1981028931) │ │ │ │ +2B3BC Compressed Size 000006A0 (1696) │ │ │ │ +2B3C0 Uncompressed Size 000011F4 (4596) │ │ │ │ +2B3C4 Filename Length 001C (28) │ │ │ │ +2B3C6 Extra Length 001C (28) │ │ │ │ +2B3C8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2B3C8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2B3E4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2B3E6 Length 0009 (9) │ │ │ │ +2B3E8 Flags 03 (3) 'Modification Access' │ │ │ │ +2B3E9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2B3ED Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2B3F1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2B3F3 Length 000B (11) │ │ │ │ +2B3F5 Version 01 (1) │ │ │ │ +2B3F6 UID Size 04 (4) │ │ │ │ +2B3F7 UID 00000000 (0) │ │ │ │ +2B3FB GID Size 04 (4) │ │ │ │ +2B3FC GID 00000000 (0) │ │ │ │ +2B400 PAYLOAD │ │ │ │ + │ │ │ │ +2BAA0 LOCAL HEADER #18 04034B50 (67324752) │ │ │ │ +2BAA4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2BAA5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2BAA6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2BAA8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +2BAAA Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2BAAE CRC D3950860 (3549759584) │ │ │ │ +2BAB2 Compressed Size 0000107D (4221) │ │ │ │ +2BAB6 Uncompressed Size 00004BFF (19455) │ │ │ │ +2BABA Filename Length 001B (27) │ │ │ │ +2BABC Extra Length 001C (28) │ │ │ │ +2BABE Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2BABE: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2BAD9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2BADB Length 0009 (9) │ │ │ │ +2BADD Flags 03 (3) 'Modification Access' │ │ │ │ +2BADE Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2BAE2 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2BAE6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2BAE8 Length 000B (11) │ │ │ │ +2BAEA Version 01 (1) │ │ │ │ +2BAEB UID Size 04 (4) │ │ │ │ +2BAEC UID 00000000 (0) │ │ │ │ +2BAF0 GID Size 04 (4) │ │ │ │ +2BAF1 GID 00000000 (0) │ │ │ │ +2BAF5 PAYLOAD │ │ │ │ + │ │ │ │ +2CB72 LOCAL HEADER #19 04034B50 (67324752) │ │ │ │ +2CB76 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2CB77 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2CB78 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2CB7A Compression Method 0008 (8) 'Deflated' │ │ │ │ +2CB7C Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2CB80 CRC 200AAF0C (537571084) │ │ │ │ +2CB84 Compressed Size 000033AA (13226) │ │ │ │ +2CB88 Uncompressed Size 0000BC94 (48276) │ │ │ │ +2CB8C Filename Length 001D (29) │ │ │ │ +2CB8E Extra Length 001C (28) │ │ │ │ +2CB90 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2CB90: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2CBAD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2CBAF Length 0009 (9) │ │ │ │ +2CBB1 Flags 03 (3) 'Modification Access' │ │ │ │ +2CBB2 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2CBB6 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2CBBA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2CBBC Length 000B (11) │ │ │ │ +2CBBE Version 01 (1) │ │ │ │ +2CBBF UID Size 04 (4) │ │ │ │ +2CBC0 UID 00000000 (0) │ │ │ │ +2CBC4 GID Size 04 (4) │ │ │ │ +2CBC5 GID 00000000 (0) │ │ │ │ +2CBC9 PAYLOAD │ │ │ │ + │ │ │ │ +2FF73 LOCAL HEADER #20 04034B50 (67324752) │ │ │ │ +2FF77 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +2FF78 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +2FF79 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +2FF7B Compression Method 0008 (8) 'Deflated' │ │ │ │ +2FF7D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2FF81 CRC B5B3D332 (3048461106) │ │ │ │ +2FF85 Compressed Size 00000D68 (3432) │ │ │ │ +2FF89 Uncompressed Size 00003876 (14454) │ │ │ │ +2FF8D Filename Length 001D (29) │ │ │ │ +2FF8F Extra Length 001C (28) │ │ │ │ +2FF91 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x2FF91: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +2FFAE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +2FFB0 Length 0009 (9) │ │ │ │ +2FFB2 Flags 03 (3) 'Modification Access' │ │ │ │ +2FFB3 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2FFB7 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +2FFBB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +2FFBD Length 000B (11) │ │ │ │ +2FFBF Version 01 (1) │ │ │ │ +2FFC0 UID Size 04 (4) │ │ │ │ +2FFC1 UID 00000000 (0) │ │ │ │ +2FFC5 GID Size 04 (4) │ │ │ │ +2FFC6 GID 00000000 (0) │ │ │ │ +2FFCA PAYLOAD │ │ │ │ + │ │ │ │ +30D32 LOCAL HEADER #21 04034B50 (67324752) │ │ │ │ +30D36 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +30D37 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +30D38 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +30D3A Compression Method 0008 (8) 'Deflated' │ │ │ │ +30D3C Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +30D40 CRC 4FB2D047 (1337118791) │ │ │ │ +30D44 Compressed Size 00001C65 (7269) │ │ │ │ +30D48 Uncompressed Size 0000C186 (49542) │ │ │ │ +30D4C Filename Length 001A (26) │ │ │ │ +30D4E Extra Length 001C (28) │ │ │ │ +30D50 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x30D50: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +30D6A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +30D6C Length 0009 (9) │ │ │ │ +30D6E Flags 03 (3) 'Modification Access' │ │ │ │ +30D6F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +30D73 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +30D77 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +30D79 Length 000B (11) │ │ │ │ +30D7B Version 01 (1) │ │ │ │ +30D7C UID Size 04 (4) │ │ │ │ +30D7D UID 00000000 (0) │ │ │ │ +30D81 GID Size 04 (4) │ │ │ │ +30D82 GID 00000000 (0) │ │ │ │ +30D86 PAYLOAD │ │ │ │ + │ │ │ │ +329EB LOCAL HEADER #22 04034B50 (67324752) │ │ │ │ +329EF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +329F0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +329F1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +329F3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +329F5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +329F9 CRC D63ABE1D (3594173981) │ │ │ │ +329FD Compressed Size 000003A3 (931) │ │ │ │ +32A01 Uncompressed Size 0000088E (2190) │ │ │ │ +32A05 Filename Length 0012 (18) │ │ │ │ +32A07 Extra Length 001C (28) │ │ │ │ +32A09 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x32A09: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +32A1B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +32A1D Length 0009 (9) │ │ │ │ +32A1F Flags 03 (3) 'Modification Access' │ │ │ │ +32A20 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +32A24 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +32A28 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +32A2A Length 000B (11) │ │ │ │ +32A2C Version 01 (1) │ │ │ │ +32A2D UID Size 04 (4) │ │ │ │ +32A2E UID 00000000 (0) │ │ │ │ +32A32 GID Size 04 (4) │ │ │ │ +32A33 GID 00000000 (0) │ │ │ │ +32A37 PAYLOAD │ │ │ │ + │ │ │ │ +32DDA LOCAL HEADER #23 04034B50 (67324752) │ │ │ │ +32DDE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +32DDF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +32DE0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +32DE2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +32DE4 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +32DE8 CRC 67B17E06 (1739685382) │ │ │ │ +32DEC Compressed Size 000001D4 (468) │ │ │ │ +32DF0 Uncompressed Size 00000311 (785) │ │ │ │ +32DF4 Filename Length 0020 (32) │ │ │ │ +32DF6 Extra Length 001C (28) │ │ │ │ +32DF8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x32DF8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +32E18 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +32E1A Length 0009 (9) │ │ │ │ +32E1C Flags 03 (3) 'Modification Access' │ │ │ │ +32E1D Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +32E21 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +32E25 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +32E27 Length 000B (11) │ │ │ │ +32E29 Version 01 (1) │ │ │ │ +32E2A UID Size 04 (4) │ │ │ │ +32E2B UID 00000000 (0) │ │ │ │ +32E2F GID Size 04 (4) │ │ │ │ +32E30 GID 00000000 (0) │ │ │ │ +32E34 PAYLOAD │ │ │ │ + │ │ │ │ +33008 LOCAL HEADER #24 04034B50 (67324752) │ │ │ │ +3300C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3300D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3300E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +33010 Compression Method 0008 (8) 'Deflated' │ │ │ │ +33012 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +33016 CRC E2EEC175 (3807297909) │ │ │ │ +3301A Compressed Size 000017AB (6059) │ │ │ │ +3301E Uncompressed Size 00009CD3 (40147) │ │ │ │ +33022 Filename Length 001B (27) │ │ │ │ +33024 Extra Length 001C (28) │ │ │ │ +33026 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x33026: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +33041 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +33043 Length 0009 (9) │ │ │ │ +33045 Flags 03 (3) 'Modification Access' │ │ │ │ +33046 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3304A Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3304E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +33050 Length 000B (11) │ │ │ │ +33052 Version 01 (1) │ │ │ │ +33053 UID Size 04 (4) │ │ │ │ +33054 UID 00000000 (0) │ │ │ │ +33058 GID Size 04 (4) │ │ │ │ +33059 GID 00000000 (0) │ │ │ │ +3305D PAYLOAD │ │ │ │ + │ │ │ │ +34808 LOCAL HEADER #25 04034B50 (67324752) │ │ │ │ +3480C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3480D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3480E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +34810 Compression Method 0008 (8) 'Deflated' │ │ │ │ +34812 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +34816 CRC 26417E48 (641826376) │ │ │ │ +3481A Compressed Size 00001371 (4977) │ │ │ │ +3481E Uncompressed Size 00003B66 (15206) │ │ │ │ +34822 Filename Length 0015 (21) │ │ │ │ +34824 Extra Length 001C (28) │ │ │ │ +34826 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x34826: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3483B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3483D Length 0009 (9) │ │ │ │ +3483F Flags 03 (3) 'Modification Access' │ │ │ │ +34840 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +34844 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +34848 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3484A Length 000B (11) │ │ │ │ +3484C Version 01 (1) │ │ │ │ +3484D UID Size 04 (4) │ │ │ │ +3484E UID 00000000 (0) │ │ │ │ +34852 GID Size 04 (4) │ │ │ │ +34853 GID 00000000 (0) │ │ │ │ +34857 PAYLOAD │ │ │ │ + │ │ │ │ +35BC8 LOCAL HEADER #26 04034B50 (67324752) │ │ │ │ +35BCC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +35BCD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +35BCE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +35BD0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +35BD2 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +35BD6 CRC 8884496A (2290370922) │ │ │ │ +35BDA Compressed Size 00000AD1 (2769) │ │ │ │ +35BDE Uncompressed Size 00002135 (8501) │ │ │ │ +35BE2 Filename Length 0011 (17) │ │ │ │ +35BE4 Extra Length 001C (28) │ │ │ │ +35BE6 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x35BE6: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +35BF7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +35BF9 Length 0009 (9) │ │ │ │ +35BFB Flags 03 (3) 'Modification Access' │ │ │ │ +35BFC Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +35C00 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +35C04 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +35C06 Length 000B (11) │ │ │ │ +35C08 Version 01 (1) │ │ │ │ +35C09 UID Size 04 (4) │ │ │ │ +35C0A UID 00000000 (0) │ │ │ │ +35C0E GID Size 04 (4) │ │ │ │ +35C0F GID 00000000 (0) │ │ │ │ +35C13 PAYLOAD │ │ │ │ + │ │ │ │ +366E4 LOCAL HEADER #27 04034B50 (67324752) │ │ │ │ +366E8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +366E9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +366EA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +366EC Compression Method 0008 (8) 'Deflated' │ │ │ │ +366EE Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +366F2 CRC 06AD0EA3 (112004771) │ │ │ │ +366F6 Compressed Size 000003FE (1022) │ │ │ │ +366FA Uncompressed Size 00000E99 (3737) │ │ │ │ +366FE Filename Length 0014 (20) │ │ │ │ +36700 Extra Length 001C (28) │ │ │ │ +36702 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x36702: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +36716 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +36718 Length 0009 (9) │ │ │ │ +3671A Flags 03 (3) 'Modification Access' │ │ │ │ +3671B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3671F Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +36723 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +36725 Length 000B (11) │ │ │ │ +36727 Version 01 (1) │ │ │ │ +36728 UID Size 04 (4) │ │ │ │ +36729 UID 00000000 (0) │ │ │ │ +3672D GID Size 04 (4) │ │ │ │ +3672E GID 00000000 (0) │ │ │ │ +36732 PAYLOAD │ │ │ │ + │ │ │ │ +36B30 LOCAL HEADER #28 04034B50 (67324752) │ │ │ │ +36B34 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +36B35 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +36B36 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +36B38 Compression Method 0008 (8) 'Deflated' │ │ │ │ +36B3A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +36B3E CRC 6E954352 (1855275858) │ │ │ │ +36B42 Compressed Size 00001262 (4706) │ │ │ │ +36B46 Uncompressed Size 00003469 (13417) │ │ │ │ +36B4A Filename Length 0014 (20) │ │ │ │ +36B4C Extra Length 001C (28) │ │ │ │ +36B4E Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x36B4E: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +36B62 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +36B64 Length 0009 (9) │ │ │ │ +36B66 Flags 03 (3) 'Modification Access' │ │ │ │ +36B67 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +36B6B Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +36B6F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +36B71 Length 000B (11) │ │ │ │ +36B73 Version 01 (1) │ │ │ │ +36B74 UID Size 04 (4) │ │ │ │ +36B75 UID 00000000 (0) │ │ │ │ +36B79 GID Size 04 (4) │ │ │ │ +36B7A GID 00000000 (0) │ │ │ │ +36B7E PAYLOAD │ │ │ │ + │ │ │ │ +37DE0 LOCAL HEADER #29 04034B50 (67324752) │ │ │ │ +37DE4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +37DE5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +37DE6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +37DE8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +37DEA Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +37DEE CRC 9B3C4A0E (2604419598) │ │ │ │ +37DF2 Compressed Size 00000ACF (2767) │ │ │ │ +37DF6 Uncompressed Size 000022FF (8959) │ │ │ │ +37DFA Filename Length 001B (27) │ │ │ │ +37DFC Extra Length 001C (28) │ │ │ │ +37DFE Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x37DFE: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +37E19 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +37E1B Length 0009 (9) │ │ │ │ +37E1D Flags 03 (3) 'Modification Access' │ │ │ │ +37E1E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +37E22 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +37E26 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +37E28 Length 000B (11) │ │ │ │ +37E2A Version 01 (1) │ │ │ │ +37E2B UID Size 04 (4) │ │ │ │ +37E2C UID 00000000 (0) │ │ │ │ +37E30 GID Size 04 (4) │ │ │ │ +37E31 GID 00000000 (0) │ │ │ │ +37E35 PAYLOAD │ │ │ │ + │ │ │ │ +38904 LOCAL HEADER #30 04034B50 (67324752) │ │ │ │ +38908 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +38909 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3890A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3890C Compression Method 0008 (8) 'Deflated' │ │ │ │ +3890E Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +38912 CRC 1B7D23E5 (461186021) │ │ │ │ +38916 Compressed Size 00000A8C (2700) │ │ │ │ +3891A Uncompressed Size 0000237A (9082) │ │ │ │ +3891E Filename Length 0013 (19) │ │ │ │ +38920 Extra Length 001C (28) │ │ │ │ +38922 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x38922: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +38935 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +38937 Length 0009 (9) │ │ │ │ +38939 Flags 03 (3) 'Modification Access' │ │ │ │ +3893A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3893E Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +38942 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +38944 Length 000B (11) │ │ │ │ +38946 Version 01 (1) │ │ │ │ +38947 UID Size 04 (4) │ │ │ │ +38948 UID 00000000 (0) │ │ │ │ +3894C GID Size 04 (4) │ │ │ │ +3894D GID 00000000 (0) │ │ │ │ +38951 PAYLOAD │ │ │ │ + │ │ │ │ +393DD LOCAL HEADER #31 04034B50 (67324752) │ │ │ │ +393E1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +393E2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +393E3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +393E5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +393E7 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +393EB CRC F24190B8 (4064383160) │ │ │ │ +393EF Compressed Size 00000F47 (3911) │ │ │ │ +393F3 Uncompressed Size 000036F1 (14065) │ │ │ │ +393F7 Filename Length 000F (15) │ │ │ │ +393F9 Extra Length 001C (28) │ │ │ │ +393FB Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x393FB: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3940A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3940C Length 0009 (9) │ │ │ │ +3940E Flags 03 (3) 'Modification Access' │ │ │ │ +3940F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +39413 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +39417 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +39419 Length 000B (11) │ │ │ │ +3941B Version 01 (1) │ │ │ │ +3941C UID Size 04 (4) │ │ │ │ +3941D UID 00000000 (0) │ │ │ │ +39421 GID Size 04 (4) │ │ │ │ +39422 GID 00000000 (0) │ │ │ │ +39426 PAYLOAD │ │ │ │ + │ │ │ │ +3A36D LOCAL HEADER #32 04034B50 (67324752) │ │ │ │ +3A371 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3A372 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3A373 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3A375 Compression Method 0008 (8) 'Deflated' │ │ │ │ +3A377 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3A37B CRC 7FB04E29 (2142260777) │ │ │ │ +3A37F Compressed Size 0000066A (1642) │ │ │ │ +3A383 Uncompressed Size 000018DF (6367) │ │ │ │ +3A387 Filename Length 000F (15) │ │ │ │ +3A389 Extra Length 001C (28) │ │ │ │ +3A38B Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3A38B: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3A39A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3A39C Length 0009 (9) │ │ │ │ +3A39E Flags 03 (3) 'Modification Access' │ │ │ │ +3A39F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3A3A3 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3A3A7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3A3A9 Length 000B (11) │ │ │ │ +3A3AB Version 01 (1) │ │ │ │ +3A3AC UID Size 04 (4) │ │ │ │ +3A3AD UID 00000000 (0) │ │ │ │ +3A3B1 GID Size 04 (4) │ │ │ │ +3A3B2 GID 00000000 (0) │ │ │ │ +3A3B6 PAYLOAD │ │ │ │ + │ │ │ │ +3AA20 LOCAL HEADER #33 04034B50 (67324752) │ │ │ │ +3AA24 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3AA25 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3AA26 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3AA28 Compression Method 0008 (8) 'Deflated' │ │ │ │ +3AA2A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3AA2E CRC C373B989 (3279141257) │ │ │ │ +3AA32 Compressed Size 00001A49 (6729) │ │ │ │ +3AA36 Uncompressed Size 000064F2 (25842) │ │ │ │ +3AA3A Filename Length 0013 (19) │ │ │ │ +3AA3C Extra Length 001C (28) │ │ │ │ +3AA3E Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3AA3E: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3AA51 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3AA53 Length 0009 (9) │ │ │ │ +3AA55 Flags 03 (3) 'Modification Access' │ │ │ │ +3AA56 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3AA5A Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3AA5E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3AA60 Length 000B (11) │ │ │ │ +3AA62 Version 01 (1) │ │ │ │ +3AA63 UID Size 04 (4) │ │ │ │ +3AA64 UID 00000000 (0) │ │ │ │ +3AA68 GID Size 04 (4) │ │ │ │ +3AA69 GID 00000000 (0) │ │ │ │ +3AA6D PAYLOAD │ │ │ │ + │ │ │ │ +3C4B6 LOCAL HEADER #34 04034B50 (67324752) │ │ │ │ +3C4BA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3C4BB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3C4BC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3C4BE Compression Method 0008 (8) 'Deflated' │ │ │ │ +3C4C0 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3C4C4 CRC B885C195 (3095773589) │ │ │ │ +3C4C8 Compressed Size 000009A5 (2469) │ │ │ │ +3C4CC Uncompressed Size 00001B64 (7012) │ │ │ │ +3C4D0 Filename Length 0010 (16) │ │ │ │ +3C4D2 Extra Length 001C (28) │ │ │ │ +3C4D4 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3C4D4: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3C4E4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3C4E6 Length 0009 (9) │ │ │ │ +3C4E8 Flags 03 (3) 'Modification Access' │ │ │ │ +3C4E9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3C4ED Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3C4F1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3C4F3 Length 000B (11) │ │ │ │ +3C4F5 Version 01 (1) │ │ │ │ +3C4F6 UID Size 04 (4) │ │ │ │ +3C4F7 UID 00000000 (0) │ │ │ │ +3C4FB GID Size 04 (4) │ │ │ │ +3C4FC GID 00000000 (0) │ │ │ │ +3C500 PAYLOAD │ │ │ │ + │ │ │ │ +3CEA5 LOCAL HEADER #35 04034B50 (67324752) │ │ │ │ +3CEA9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3CEAA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3CEAB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3CEAD Compression Method 0008 (8) 'Deflated' │ │ │ │ +3CEAF Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3CEB3 CRC 297E5B60 (696146784) │ │ │ │ +3CEB7 Compressed Size 000006B7 (1719) │ │ │ │ +3CEBB Uncompressed Size 00001565 (5477) │ │ │ │ +3CEBF Filename Length 0012 (18) │ │ │ │ +3CEC1 Extra Length 001C (28) │ │ │ │ +3CEC3 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3CEC3: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3CED5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3CED7 Length 0009 (9) │ │ │ │ +3CED9 Flags 03 (3) 'Modification Access' │ │ │ │ +3CEDA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3CEDE Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3CEE2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3CEE4 Length 000B (11) │ │ │ │ +3CEE6 Version 01 (1) │ │ │ │ +3CEE7 UID Size 04 (4) │ │ │ │ +3CEE8 UID 00000000 (0) │ │ │ │ +3CEEC GID Size 04 (4) │ │ │ │ +3CEED GID 00000000 (0) │ │ │ │ +3CEF1 PAYLOAD │ │ │ │ + │ │ │ │ +3D5A8 LOCAL HEADER #36 04034B50 (67324752) │ │ │ │ +3D5AC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +3D5AD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +3D5AE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +3D5B0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +3D5B2 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3D5B6 CRC F28CB5CA (4069307850) │ │ │ │ +3D5BA Compressed Size 00002A13 (10771) │ │ │ │ +3D5BE Uncompressed Size 0000B1C5 (45509) │ │ │ │ +3D5C2 Filename Length 0010 (16) │ │ │ │ +3D5C4 Extra Length 001C (28) │ │ │ │ +3D5C6 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x3D5C6: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +3D5D6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +3D5D8 Length 0009 (9) │ │ │ │ +3D5DA Flags 03 (3) 'Modification Access' │ │ │ │ +3D5DB Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3D5DF Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +3D5E3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +3D5E5 Length 000B (11) │ │ │ │ +3D5E7 Version 01 (1) │ │ │ │ +3D5E8 UID Size 04 (4) │ │ │ │ +3D5E9 UID 00000000 (0) │ │ │ │ +3D5ED GID Size 04 (4) │ │ │ │ +3D5EE GID 00000000 (0) │ │ │ │ +3D5F2 PAYLOAD │ │ │ │ + │ │ │ │ +40005 LOCAL HEADER #37 04034B50 (67324752) │ │ │ │ +40009 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4000A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4000B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4000D Compression Method 0008 (8) 'Deflated' │ │ │ │ +4000F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +40013 CRC E478B643 (3833116227) │ │ │ │ +40017 Compressed Size 00001E86 (7814) │ │ │ │ +4001B Uncompressed Size 00009AAA (39594) │ │ │ │ +4001F Filename Length 0012 (18) │ │ │ │ +40021 Extra Length 001C (28) │ │ │ │ +40023 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x40023: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +40035 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +40037 Length 0009 (9) │ │ │ │ +40039 Flags 03 (3) 'Modification Access' │ │ │ │ +4003A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4003E Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +40042 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +40044 Length 000B (11) │ │ │ │ +40046 Version 01 (1) │ │ │ │ +40047 UID Size 04 (4) │ │ │ │ +40048 UID 00000000 (0) │ │ │ │ +4004C GID Size 04 (4) │ │ │ │ +4004D GID 00000000 (0) │ │ │ │ +40051 PAYLOAD │ │ │ │ + │ │ │ │ +41ED7 LOCAL HEADER #38 04034B50 (67324752) │ │ │ │ +41EDB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +41EDC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +41EDD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +41EDF Compression Method 0008 (8) 'Deflated' │ │ │ │ +41EE1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +41EE5 CRC 56E0742F (1457550383) │ │ │ │ +41EE9 Compressed Size 00001477 (5239) │ │ │ │ +41EED Uncompressed Size 00007ACF (31439) │ │ │ │ +41EF1 Filename Length 0018 (24) │ │ │ │ +41EF3 Extra Length 001C (28) │ │ │ │ +41EF5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x41EF5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +41F0D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +41F0F Length 0009 (9) │ │ │ │ +41F11 Flags 03 (3) 'Modification Access' │ │ │ │ +41F12 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +41F16 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +41F1A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +41F1C Length 000B (11) │ │ │ │ +41F1E Version 01 (1) │ │ │ │ +41F1F UID Size 04 (4) │ │ │ │ +41F20 UID 00000000 (0) │ │ │ │ +41F24 GID Size 04 (4) │ │ │ │ +41F25 GID 00000000 (0) │ │ │ │ +41F29 PAYLOAD │ │ │ │ + │ │ │ │ +433A0 LOCAL HEADER #39 04034B50 (67324752) │ │ │ │ +433A4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +433A5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +433A6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +433A8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +433AA Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +433AE CRC 72AAD21B (1923797531) │ │ │ │ +433B2 Compressed Size 000018CF (6351) │ │ │ │ +433B6 Uncompressed Size 0000A7F4 (42996) │ │ │ │ +433BA Filename Length 001F (31) │ │ │ │ +433BC Extra Length 001C (28) │ │ │ │ +433BE Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x433BE: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +433DD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +433DF Length 0009 (9) │ │ │ │ +433E1 Flags 03 (3) 'Modification Access' │ │ │ │ +433E2 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +433E6 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +433EA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +433EC Length 000B (11) │ │ │ │ +433EE Version 01 (1) │ │ │ │ +433EF UID Size 04 (4) │ │ │ │ +433F0 UID 00000000 (0) │ │ │ │ +433F4 GID Size 04 (4) │ │ │ │ +433F5 GID 00000000 (0) │ │ │ │ +433F9 PAYLOAD │ │ │ │ + │ │ │ │ +44CC8 LOCAL HEADER #40 04034B50 (67324752) │ │ │ │ +44CCC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +44CCD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +44CCE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +44CD0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +44CD2 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +44CD6 CRC 705BC16B (1885061483) │ │ │ │ +44CDA Compressed Size 000003F7 (1015) │ │ │ │ +44CDE Uncompressed Size 000008A3 (2211) │ │ │ │ +44CE2 Filename Length 001E (30) │ │ │ │ +44CE4 Extra Length 001C (28) │ │ │ │ +44CE6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x44CE6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +44D04 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +44D06 Length 0009 (9) │ │ │ │ +44D08 Flags 03 (3) 'Modification Access' │ │ │ │ +44D09 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +44D0D Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +44D11 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +44D13 Length 000B (11) │ │ │ │ +44D15 Version 01 (1) │ │ │ │ +44D16 UID Size 04 (4) │ │ │ │ +44D17 UID 00000000 (0) │ │ │ │ +44D1B GID Size 04 (4) │ │ │ │ +44D1C GID 00000000 (0) │ │ │ │ +44D20 PAYLOAD │ │ │ │ + │ │ │ │ +45117 LOCAL HEADER #41 04034B50 (67324752) │ │ │ │ +4511B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4511C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4511D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4511F Compression Method 0008 (8) 'Deflated' │ │ │ │ +45121 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +45125 CRC BAFC6D2D (3137105197) │ │ │ │ +45129 Compressed Size 00004293 (17043) │ │ │ │ +4512D Uncompressed Size 0000D8DC (55516) │ │ │ │ +45131 Filename Length 0013 (19) │ │ │ │ +45133 Extra Length 001C (28) │ │ │ │ +45135 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x45135: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +45148 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4514A Length 0009 (9) │ │ │ │ +4514C Flags 03 (3) 'Modification Access' │ │ │ │ +4514D Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +45151 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +45155 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +45157 Length 000B (11) │ │ │ │ +45159 Version 01 (1) │ │ │ │ +4515A UID Size 04 (4) │ │ │ │ +4515B UID 00000000 (0) │ │ │ │ +4515F GID Size 04 (4) │ │ │ │ +45160 GID 00000000 (0) │ │ │ │ +45164 PAYLOAD │ │ │ │ + │ │ │ │ +493F7 LOCAL HEADER #42 04034B50 (67324752) │ │ │ │ +493FB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +493FC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +493FD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +493FF Compression Method 0008 (8) 'Deflated' │ │ │ │ +49401 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +49405 CRC 7070A8AD (1886431405) │ │ │ │ +49409 Compressed Size 000026C4 (9924) │ │ │ │ +4940D Uncompressed Size 00006E45 (28229) │ │ │ │ +49411 Filename Length 0019 (25) │ │ │ │ +49413 Extra Length 001C (28) │ │ │ │ +49415 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x49415: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4942E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +49430 Length 0009 (9) │ │ │ │ +49432 Flags 03 (3) 'Modification Access' │ │ │ │ +49433 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +49437 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4943B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4943D Length 000B (11) │ │ │ │ +4943F Version 01 (1) │ │ │ │ +49440 UID Size 04 (4) │ │ │ │ +49441 UID 00000000 (0) │ │ │ │ +49445 GID Size 04 (4) │ │ │ │ +49446 GID 00000000 (0) │ │ │ │ +4944A PAYLOAD │ │ │ │ + │ │ │ │ +4BB0E LOCAL HEADER #43 04034B50 (67324752) │ │ │ │ +4BB12 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4BB13 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4BB14 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4BB16 Compression Method 0008 (8) 'Deflated' │ │ │ │ +4BB18 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4BB1C CRC 063987F6 (104433654) │ │ │ │ +4BB20 Compressed Size 0000273A (10042) │ │ │ │ +4BB24 Uncompressed Size 00008B83 (35715) │ │ │ │ +4BB28 Filename Length 0019 (25) │ │ │ │ +4BB2A Extra Length 001C (28) │ │ │ │ +4BB2C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4BB2C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4BB45 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4BB47 Length 0009 (9) │ │ │ │ +4BB49 Flags 03 (3) 'Modification Access' │ │ │ │ +4BB4A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4BB4E Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4BB52 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4BB54 Length 000B (11) │ │ │ │ +4BB56 Version 01 (1) │ │ │ │ +4BB57 UID Size 04 (4) │ │ │ │ +4BB58 UID 00000000 (0) │ │ │ │ +4BB5C GID Size 04 (4) │ │ │ │ +4BB5D GID 00000000 (0) │ │ │ │ +4BB61 PAYLOAD │ │ │ │ + │ │ │ │ +4E29B LOCAL HEADER #44 04034B50 (67324752) │ │ │ │ +4E29F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4E2A0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4E2A1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4E2A3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +4E2A5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4E2A9 CRC C1772FC5 (3245813701) │ │ │ │ +4E2AD Compressed Size 00000CF1 (3313) │ │ │ │ +4E2B1 Uncompressed Size 0000517A (20858) │ │ │ │ +4E2B5 Filename Length 0021 (33) │ │ │ │ +4E2B7 Extra Length 001C (28) │ │ │ │ +4E2B9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4E2B9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4E2DA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4E2DC Length 0009 (9) │ │ │ │ +4E2DE Flags 03 (3) 'Modification Access' │ │ │ │ +4E2DF Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4E2E3 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4E2E7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4E2E9 Length 000B (11) │ │ │ │ +4E2EB Version 01 (1) │ │ │ │ +4E2EC UID Size 04 (4) │ │ │ │ +4E2ED UID 00000000 (0) │ │ │ │ +4E2F1 GID Size 04 (4) │ │ │ │ +4E2F2 GID 00000000 (0) │ │ │ │ +4E2F6 PAYLOAD │ │ │ │ + │ │ │ │ +4EFE7 LOCAL HEADER #45 04034B50 (67324752) │ │ │ │ +4EFEB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4EFEC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4EFED General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4EFEF Compression Method 0008 (8) 'Deflated' │ │ │ │ +4EFF1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4EFF5 CRC 8C66FDEA (2355559914) │ │ │ │ +4EFF9 Compressed Size 00000468 (1128) │ │ │ │ +4EFFD Uncompressed Size 00000931 (2353) │ │ │ │ +4F001 Filename Length 001B (27) │ │ │ │ +4F003 Extra Length 001C (28) │ │ │ │ +4F005 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4F005: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4F020 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4F022 Length 0009 (9) │ │ │ │ +4F024 Flags 03 (3) 'Modification Access' │ │ │ │ +4F025 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4F029 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4F02D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4F02F Length 000B (11) │ │ │ │ +4F031 Version 01 (1) │ │ │ │ +4F032 UID Size 04 (4) │ │ │ │ +4F033 UID 00000000 (0) │ │ │ │ +4F037 GID Size 04 (4) │ │ │ │ +4F038 GID 00000000 (0) │ │ │ │ +4F03C PAYLOAD │ │ │ │ + │ │ │ │ +4F4A4 LOCAL HEADER #46 04034B50 (67324752) │ │ │ │ +4F4A8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +4F4A9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +4F4AA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +4F4AC Compression Method 0008 (8) 'Deflated' │ │ │ │ +4F4AE Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4F4B2 CRC BF83D74B (3213088587) │ │ │ │ +4F4B6 Compressed Size 000016F1 (5873) │ │ │ │ +4F4BA Uncompressed Size 00007A6D (31341) │ │ │ │ +4F4BE Filename Length 001F (31) │ │ │ │ +4F4C0 Extra Length 001C (28) │ │ │ │ +4F4C2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x4F4C2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +4F4E1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +4F4E3 Length 0009 (9) │ │ │ │ +4F4E5 Flags 03 (3) 'Modification Access' │ │ │ │ +4F4E6 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4F4EA Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +4F4EE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +4F4F0 Length 000B (11) │ │ │ │ +4F4F2 Version 01 (1) │ │ │ │ +4F4F3 UID Size 04 (4) │ │ │ │ +4F4F4 UID 00000000 (0) │ │ │ │ +4F4F8 GID Size 04 (4) │ │ │ │ +4F4F9 GID 00000000 (0) │ │ │ │ +4F4FD PAYLOAD │ │ │ │ + │ │ │ │ +50BEE LOCAL HEADER #47 04034B50 (67324752) │ │ │ │ +50BF2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +50BF3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +50BF4 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +50BF6 Compression Method 0008 (8) 'Deflated' │ │ │ │ +50BF8 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +50BFC CRC BCE431AC (3169071532) │ │ │ │ +50C00 Compressed Size 00004173 (16755) │ │ │ │ +50C04 Uncompressed Size 0001CF93 (118675) │ │ │ │ +50C08 Filename Length 0010 (16) │ │ │ │ +50C0A Extra Length 001C (28) │ │ │ │ +50C0C Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x50C0C: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +50C1C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +50C1E Length 0009 (9) │ │ │ │ +50C20 Flags 03 (3) 'Modification Access' │ │ │ │ +50C21 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +50C25 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +50C29 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +50C2B Length 000B (11) │ │ │ │ +50C2D Version 01 (1) │ │ │ │ +50C2E UID Size 04 (4) │ │ │ │ +50C2F UID 00000000 (0) │ │ │ │ +50C33 GID Size 04 (4) │ │ │ │ +50C34 GID 00000000 (0) │ │ │ │ +50C38 PAYLOAD │ │ │ │ + │ │ │ │ +54DAB LOCAL HEADER #48 04034B50 (67324752) │ │ │ │ +54DAF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +54DB0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +54DB1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +54DB3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +54DB5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +54DB9 CRC 7903D415 (2030294037) │ │ │ │ +54DBD Compressed Size 00000A94 (2708) │ │ │ │ +54DC1 Uncompressed Size 00002105 (8453) │ │ │ │ +54DC5 Filename Length 0014 (20) │ │ │ │ +54DC7 Extra Length 001C (28) │ │ │ │ +54DC9 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x54DC9: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +54DDD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +54DDF Length 0009 (9) │ │ │ │ +54DE1 Flags 03 (3) 'Modification Access' │ │ │ │ +54DE2 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +54DE6 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +54DEA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +54DEC Length 000B (11) │ │ │ │ +54DEE Version 01 (1) │ │ │ │ +54DEF UID Size 04 (4) │ │ │ │ +54DF0 UID 00000000 (0) │ │ │ │ +54DF4 GID Size 04 (4) │ │ │ │ +54DF5 GID 00000000 (0) │ │ │ │ +54DF9 PAYLOAD │ │ │ │ + │ │ │ │ +5588D LOCAL HEADER #49 04034B50 (67324752) │ │ │ │ +55891 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +55892 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +55893 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +55895 Compression Method 0008 (8) 'Deflated' │ │ │ │ +55897 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +5589B CRC 215721B1 (559358385) │ │ │ │ +5589F Compressed Size 0000AC9F (44191) │ │ │ │ +558A3 Uncompressed Size 0003E418 (255000) │ │ │ │ +558A7 Filename Length 0017 (23) │ │ │ │ +558A9 Extra Length 001C (28) │ │ │ │ +558AB Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x558AB: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +558C2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +558C4 Length 0009 (9) │ │ │ │ +558C6 Flags 03 (3) 'Modification Access' │ │ │ │ +558C7 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +558CB Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +558CF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +558D1 Length 000B (11) │ │ │ │ +558D3 Version 01 (1) │ │ │ │ +558D4 UID Size 04 (4) │ │ │ │ +558D5 UID 00000000 (0) │ │ │ │ +558D9 GID Size 04 (4) │ │ │ │ +558DA GID 00000000 (0) │ │ │ │ +558DE PAYLOAD │ │ │ │ + │ │ │ │ +6057D LOCAL HEADER #50 04034B50 (67324752) │ │ │ │ +60581 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +60582 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +60583 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +60585 Compression Method 0008 (8) 'Deflated' │ │ │ │ +60587 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6058B CRC 70C58B8F (1891994511) │ │ │ │ +6058F Compressed Size 00000400 (1024) │ │ │ │ +60593 Uncompressed Size 0000093D (2365) │ │ │ │ +60597 Filename Length 0013 (19) │ │ │ │ +60599 Extra Length 001C (28) │ │ │ │ +6059B Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6059B: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +605AE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +605B0 Length 0009 (9) │ │ │ │ +605B2 Flags 03 (3) 'Modification Access' │ │ │ │ +605B3 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +605B7 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +605BB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +605BD Length 000B (11) │ │ │ │ +605BF Version 01 (1) │ │ │ │ +605C0 UID Size 04 (4) │ │ │ │ +605C1 UID 00000000 (0) │ │ │ │ +605C5 GID Size 04 (4) │ │ │ │ +605C6 GID 00000000 (0) │ │ │ │ +605CA PAYLOAD │ │ │ │ + │ │ │ │ +609CA LOCAL HEADER #51 04034B50 (67324752) │ │ │ │ +609CE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +609CF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +609D0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +609D2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +609D4 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +609D8 CRC E37CFCDA (3816619226) │ │ │ │ +609DC Compressed Size 000014E0 (5344) │ │ │ │ +609E0 Uncompressed Size 0000687B (26747) │ │ │ │ +609E4 Filename Length 0012 (18) │ │ │ │ +609E6 Extra Length 001C (28) │ │ │ │ +609E8 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x609E8: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +609FA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +609FC Length 0009 (9) │ │ │ │ +609FE Flags 03 (3) 'Modification Access' │ │ │ │ +609FF Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +60A03 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +60A07 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +60A09 Length 000B (11) │ │ │ │ +60A0B Version 01 (1) │ │ │ │ +60A0C UID Size 04 (4) │ │ │ │ +60A0D UID 00000000 (0) │ │ │ │ +60A11 GID Size 04 (4) │ │ │ │ +60A12 GID 00000000 (0) │ │ │ │ +60A16 PAYLOAD │ │ │ │ + │ │ │ │ +61EF6 LOCAL HEADER #52 04034B50 (67324752) │ │ │ │ +61EFA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +61EFB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +61EFC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +61EFE Compression Method 0008 (8) 'Deflated' │ │ │ │ +61F00 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +61F04 CRC F42D160E (4096595470) │ │ │ │ +61F08 Compressed Size 000011EB (4587) │ │ │ │ +61F0C Uncompressed Size 000040F5 (16629) │ │ │ │ +61F10 Filename Length 0012 (18) │ │ │ │ +61F12 Extra Length 001C (28) │ │ │ │ +61F14 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x61F14: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +61F26 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +61F28 Length 0009 (9) │ │ │ │ +61F2A Flags 03 (3) 'Modification Access' │ │ │ │ +61F2B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +61F2F Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +61F33 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +61F35 Length 000B (11) │ │ │ │ +61F37 Version 01 (1) │ │ │ │ +61F38 UID Size 04 (4) │ │ │ │ +61F39 UID 00000000 (0) │ │ │ │ +61F3D GID Size 04 (4) │ │ │ │ +61F3E GID 00000000 (0) │ │ │ │ +61F42 PAYLOAD │ │ │ │ + │ │ │ │ +6312D LOCAL HEADER #53 04034B50 (67324752) │ │ │ │ +63131 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +63132 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +63133 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +63135 Compression Method 0008 (8) 'Deflated' │ │ │ │ +63137 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6313B CRC 5405F361 (1409676129) │ │ │ │ +6313F Compressed Size 000009D9 (2521) │ │ │ │ +63143 Uncompressed Size 00003529 (13609) │ │ │ │ +63147 Filename Length 0019 (25) │ │ │ │ +63149 Extra Length 001C (28) │ │ │ │ +6314B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6314B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +63164 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +63166 Length 0009 (9) │ │ │ │ +63168 Flags 03 (3) 'Modification Access' │ │ │ │ +63169 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6316D Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +63171 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +63173 Length 000B (11) │ │ │ │ +63175 Version 01 (1) │ │ │ │ +63176 UID Size 04 (4) │ │ │ │ +63177 UID 00000000 (0) │ │ │ │ +6317B GID Size 04 (4) │ │ │ │ +6317C GID 00000000 (0) │ │ │ │ +63180 PAYLOAD │ │ │ │ + │ │ │ │ +63B59 LOCAL HEADER #54 04034B50 (67324752) │ │ │ │ +63B5D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +63B5E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +63B5F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +63B61 Compression Method 0008 (8) 'Deflated' │ │ │ │ +63B63 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +63B67 CRC 63F1384B (1676752971) │ │ │ │ +63B6B Compressed Size 000018AF (6319) │ │ │ │ +63B6F Uncompressed Size 0000A605 (42501) │ │ │ │ +63B73 Filename Length 0019 (25) │ │ │ │ +63B75 Extra Length 001C (28) │ │ │ │ +63B77 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x63B77: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +63B90 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +63B92 Length 0009 (9) │ │ │ │ +63B94 Flags 03 (3) 'Modification Access' │ │ │ │ +63B95 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +63B99 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +63B9D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +63B9F Length 000B (11) │ │ │ │ +63BA1 Version 01 (1) │ │ │ │ +63BA2 UID Size 04 (4) │ │ │ │ +63BA3 UID 00000000 (0) │ │ │ │ +63BA7 GID Size 04 (4) │ │ │ │ +63BA8 GID 00000000 (0) │ │ │ │ +63BAC PAYLOAD │ │ │ │ + │ │ │ │ +6545B LOCAL HEADER #55 04034B50 (67324752) │ │ │ │ +6545F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +65460 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +65461 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +65463 Compression Method 0008 (8) 'Deflated' │ │ │ │ +65465 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +65469 CRC 80854D35 (2156219701) │ │ │ │ +6546D Compressed Size 0000177D (6013) │ │ │ │ +65471 Uncompressed Size 0000472C (18220) │ │ │ │ +65475 Filename Length 0014 (20) │ │ │ │ +65477 Extra Length 001C (28) │ │ │ │ +65479 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x65479: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6548D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6548F Length 0009 (9) │ │ │ │ +65491 Flags 03 (3) 'Modification Access' │ │ │ │ +65492 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +65496 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6549A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6549C Length 000B (11) │ │ │ │ +6549E Version 01 (1) │ │ │ │ +6549F UID Size 04 (4) │ │ │ │ +654A0 UID 00000000 (0) │ │ │ │ +654A4 GID Size 04 (4) │ │ │ │ +654A5 GID 00000000 (0) │ │ │ │ +654A9 PAYLOAD │ │ │ │ + │ │ │ │ +66C26 LOCAL HEADER #56 04034B50 (67324752) │ │ │ │ +66C2A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +66C2B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +66C2C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +66C2E Compression Method 0008 (8) 'Deflated' │ │ │ │ +66C30 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +66C34 CRC 8CE827B6 (2364024758) │ │ │ │ +66C38 Compressed Size 0000040A (1034) │ │ │ │ +66C3C Uncompressed Size 00000825 (2085) │ │ │ │ +66C40 Filename Length 001C (28) │ │ │ │ +66C42 Extra Length 001C (28) │ │ │ │ +66C44 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x66C44: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +66C60 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +66C62 Length 0009 (9) │ │ │ │ +66C64 Flags 03 (3) 'Modification Access' │ │ │ │ +66C65 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +66C69 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +66C6D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +66C6F Length 000B (11) │ │ │ │ +66C71 Version 01 (1) │ │ │ │ +66C72 UID Size 04 (4) │ │ │ │ +66C73 UID 00000000 (0) │ │ │ │ +66C77 GID Size 04 (4) │ │ │ │ +66C78 GID 00000000 (0) │ │ │ │ +66C7C PAYLOAD │ │ │ │ + │ │ │ │ +67086 LOCAL HEADER #57 04034B50 (67324752) │ │ │ │ +6708A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6708B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6708C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6708E Compression Method 0008 (8) 'Deflated' │ │ │ │ +67090 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +67094 CRC D6EFCCB6 (3606039734) │ │ │ │ +67098 Compressed Size 00002484 (9348) │ │ │ │ +6709C Uncompressed Size 0000B56F (46447) │ │ │ │ +670A0 Filename Length 001F (31) │ │ │ │ +670A2 Extra Length 001C (28) │ │ │ │ +670A4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x670A4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +670C3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +670C5 Length 0009 (9) │ │ │ │ +670C7 Flags 03 (3) 'Modification Access' │ │ │ │ +670C8 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +670CC Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +670D0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +670D2 Length 000B (11) │ │ │ │ +670D4 Version 01 (1) │ │ │ │ +670D5 UID Size 04 (4) │ │ │ │ +670D6 UID 00000000 (0) │ │ │ │ +670DA GID Size 04 (4) │ │ │ │ +670DB GID 00000000 (0) │ │ │ │ +670DF PAYLOAD │ │ │ │ + │ │ │ │ +69563 LOCAL HEADER #58 04034B50 (67324752) │ │ │ │ +69567 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +69568 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +69569 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6956B Compression Method 0008 (8) 'Deflated' │ │ │ │ +6956D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +69571 CRC 1339DFE7 (322559975) │ │ │ │ +69575 Compressed Size 00000E7C (3708) │ │ │ │ +69579 Uncompressed Size 000052D9 (21209) │ │ │ │ +6957D Filename Length 001F (31) │ │ │ │ +6957F Extra Length 001C (28) │ │ │ │ +69581 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x69581: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +695A0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +695A2 Length 0009 (9) │ │ │ │ +695A4 Flags 03 (3) 'Modification Access' │ │ │ │ +695A5 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +695A9 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +695AD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +695AF Length 000B (11) │ │ │ │ +695B1 Version 01 (1) │ │ │ │ +695B2 UID Size 04 (4) │ │ │ │ +695B3 UID 00000000 (0) │ │ │ │ +695B7 GID Size 04 (4) │ │ │ │ +695B8 GID 00000000 (0) │ │ │ │ +695BC PAYLOAD │ │ │ │ + │ │ │ │ +6A438 LOCAL HEADER #59 04034B50 (67324752) │ │ │ │ +6A43C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6A43D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6A43E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6A440 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6A442 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6A446 CRC 08EC1ED3 (149692115) │ │ │ │ +6A44A Compressed Size 00000A44 (2628) │ │ │ │ +6A44E Uncompressed Size 0000247A (9338) │ │ │ │ +6A452 Filename Length 0013 (19) │ │ │ │ +6A454 Extra Length 001C (28) │ │ │ │ +6A456 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6A456: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6A469 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6A46B Length 0009 (9) │ │ │ │ +6A46D Flags 03 (3) 'Modification Access' │ │ │ │ +6A46E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6A472 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6A476 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6A478 Length 000B (11) │ │ │ │ +6A47A Version 01 (1) │ │ │ │ +6A47B UID Size 04 (4) │ │ │ │ +6A47C UID 00000000 (0) │ │ │ │ +6A480 GID Size 04 (4) │ │ │ │ +6A481 GID 00000000 (0) │ │ │ │ +6A485 PAYLOAD │ │ │ │ + │ │ │ │ +6AEC9 LOCAL HEADER #60 04034B50 (67324752) │ │ │ │ +6AECD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6AECE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6AECF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6AED1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6AED3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6AED7 CRC E0FA7AC0 (3774511808) │ │ │ │ +6AEDB Compressed Size 00002487 (9351) │ │ │ │ +6AEDF Uncompressed Size 0000B84C (47180) │ │ │ │ +6AEE3 Filename Length 0019 (25) │ │ │ │ +6AEE5 Extra Length 001C (28) │ │ │ │ +6AEE7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6AEE7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6AF00 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6AF02 Length 0009 (9) │ │ │ │ +6AF04 Flags 03 (3) 'Modification Access' │ │ │ │ +6AF05 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6AF09 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6AF0D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6AF0F Length 000B (11) │ │ │ │ +6AF11 Version 01 (1) │ │ │ │ +6AF12 UID Size 04 (4) │ │ │ │ +6AF13 UID 00000000 (0) │ │ │ │ +6AF17 GID Size 04 (4) │ │ │ │ +6AF18 GID 00000000 (0) │ │ │ │ +6AF1C PAYLOAD │ │ │ │ + │ │ │ │ +6D3A3 LOCAL HEADER #61 04034B50 (67324752) │ │ │ │ +6D3A7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6D3A8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6D3A9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6D3AB Compression Method 0008 (8) 'Deflated' │ │ │ │ +6D3AD Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6D3B1 CRC 09D7483A (165103674) │ │ │ │ +6D3B5 Compressed Size 00000EFC (3836) │ │ │ │ +6D3B9 Uncompressed Size 00003A2C (14892) │ │ │ │ +6D3BD Filename Length 0024 (36) │ │ │ │ +6D3BF Extra Length 001C (28) │ │ │ │ +6D3C1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6D3C1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6D3E5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6D3E7 Length 0009 (9) │ │ │ │ +6D3E9 Flags 03 (3) 'Modification Access' │ │ │ │ +6D3EA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6D3EE Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6D3F2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6D3F4 Length 000B (11) │ │ │ │ +6D3F6 Version 01 (1) │ │ │ │ +6D3F7 UID Size 04 (4) │ │ │ │ +6D3F8 UID 00000000 (0) │ │ │ │ +6D3FC GID Size 04 (4) │ │ │ │ +6D3FD GID 00000000 (0) │ │ │ │ +6D401 PAYLOAD │ │ │ │ + │ │ │ │ +6E2FD LOCAL HEADER #62 04034B50 (67324752) │ │ │ │ +6E301 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6E302 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6E303 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6E305 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6E307 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6E30B CRC 6625DC1A (1713757210) │ │ │ │ +6E30F Compressed Size 00001AC0 (6848) │ │ │ │ +6E313 Uncompressed Size 00005EDC (24284) │ │ │ │ +6E317 Filename Length 0017 (23) │ │ │ │ +6E319 Extra Length 001C (28) │ │ │ │ +6E31B Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6E31B: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6E332 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6E334 Length 0009 (9) │ │ │ │ +6E336 Flags 03 (3) 'Modification Access' │ │ │ │ +6E337 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6E33B Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6E33F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6E341 Length 000B (11) │ │ │ │ +6E343 Version 01 (1) │ │ │ │ +6E344 UID Size 04 (4) │ │ │ │ +6E345 UID 00000000 (0) │ │ │ │ +6E349 GID Size 04 (4) │ │ │ │ +6E34A GID 00000000 (0) │ │ │ │ +6E34E PAYLOAD │ │ │ │ + │ │ │ │ +6FE0E LOCAL HEADER #63 04034B50 (67324752) │ │ │ │ +6FE12 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +6FE13 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +6FE14 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +6FE16 Compression Method 0008 (8) 'Deflated' │ │ │ │ +6FE18 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6FE1C CRC 11E32AF1 (300100337) │ │ │ │ +6FE20 Compressed Size 00000ED3 (3795) │ │ │ │ +6FE24 Uncompressed Size 000038E2 (14562) │ │ │ │ +6FE28 Filename Length 0023 (35) │ │ │ │ +6FE2A Extra Length 001C (28) │ │ │ │ +6FE2C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x6FE2C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +6FE4F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +6FE51 Length 0009 (9) │ │ │ │ +6FE53 Flags 03 (3) 'Modification Access' │ │ │ │ +6FE54 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6FE58 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +6FE5C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +6FE5E Length 000B (11) │ │ │ │ +6FE60 Version 01 (1) │ │ │ │ +6FE61 UID Size 04 (4) │ │ │ │ +6FE62 UID 00000000 (0) │ │ │ │ +6FE66 GID Size 04 (4) │ │ │ │ +6FE67 GID 00000000 (0) │ │ │ │ +6FE6B PAYLOAD │ │ │ │ + │ │ │ │ +70D3E LOCAL HEADER #64 04034B50 (67324752) │ │ │ │ +70D42 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +70D43 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +70D44 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +70D46 Compression Method 0008 (8) 'Deflated' │ │ │ │ +70D48 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70D4C CRC 2DB7929F (767005343) │ │ │ │ +70D50 Compressed Size 00000113 (275) │ │ │ │ +70D54 Uncompressed Size 000001F3 (499) │ │ │ │ +70D58 Filename Length 001B (27) │ │ │ │ +70D5A Extra Length 001C (28) │ │ │ │ +70D5C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x70D5C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +70D77 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +70D79 Length 0009 (9) │ │ │ │ +70D7B Flags 03 (3) 'Modification Access' │ │ │ │ +70D7C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70D80 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70D84 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +70D86 Length 000B (11) │ │ │ │ +70D88 Version 01 (1) │ │ │ │ +70D89 UID Size 04 (4) │ │ │ │ +70D8A UID 00000000 (0) │ │ │ │ +70D8E GID Size 04 (4) │ │ │ │ +70D8F GID 00000000 (0) │ │ │ │ +70D93 PAYLOAD │ │ │ │ + │ │ │ │ +70EA6 LOCAL HEADER #65 04034B50 (67324752) │ │ │ │ +70EAA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +70EAB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +70EAC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +70EAE Compression Method 0008 (8) 'Deflated' │ │ │ │ +70EB0 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70EB4 CRC B7B544F0 (3082110192) │ │ │ │ +70EB8 Compressed Size 00001890 (6288) │ │ │ │ +70EBC Uncompressed Size 00008FAC (36780) │ │ │ │ +70EC0 Filename Length 001D (29) │ │ │ │ +70EC2 Extra Length 001C (28) │ │ │ │ +70EC4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x70EC4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +70EE1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +70EE3 Length 0009 (9) │ │ │ │ +70EE5 Flags 03 (3) 'Modification Access' │ │ │ │ +70EE6 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70EEA Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +70EEE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +70EF0 Length 000B (11) │ │ │ │ +70EF2 Version 01 (1) │ │ │ │ +70EF3 UID Size 04 (4) │ │ │ │ +70EF4 UID 00000000 (0) │ │ │ │ +70EF8 GID Size 04 (4) │ │ │ │ +70EF9 GID 00000000 (0) │ │ │ │ +70EFD PAYLOAD │ │ │ │ + │ │ │ │ +7278D LOCAL HEADER #66 04034B50 (67324752) │ │ │ │ +72791 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +72792 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +72793 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +72795 Compression Method 0008 (8) 'Deflated' │ │ │ │ +72797 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7279B CRC 5F656D2A (1600482602) │ │ │ │ +7279F Compressed Size 0000164C (5708) │ │ │ │ +727A3 Uncompressed Size 00003A9B (15003) │ │ │ │ +727A7 Filename Length 0015 (21) │ │ │ │ +727A9 Extra Length 001C (28) │ │ │ │ +727AB Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x727AB: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +727C0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +727C2 Length 0009 (9) │ │ │ │ +727C4 Flags 03 (3) 'Modification Access' │ │ │ │ +727C5 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +727C9 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +727CD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +727CF Length 000B (11) │ │ │ │ +727D1 Version 01 (1) │ │ │ │ +727D2 UID Size 04 (4) │ │ │ │ +727D3 UID 00000000 (0) │ │ │ │ +727D7 GID Size 04 (4) │ │ │ │ +727D8 GID 00000000 (0) │ │ │ │ +727DC PAYLOAD │ │ │ │ + │ │ │ │ +73E28 LOCAL HEADER #67 04034B50 (67324752) │ │ │ │ +73E2C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +73E2D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +73E2E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +73E30 Compression Method 0008 (8) 'Deflated' │ │ │ │ +73E32 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +73E36 CRC BBEC2220 (3152814624) │ │ │ │ +73E3A Compressed Size 00003B4F (15183) │ │ │ │ +73E3E Uncompressed Size 0001185B (71771) │ │ │ │ +73E42 Filename Length 0016 (22) │ │ │ │ +73E44 Extra Length 001C (28) │ │ │ │ +73E46 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x73E46: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +73E5C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +73E5E Length 0009 (9) │ │ │ │ +73E60 Flags 03 (3) 'Modification Access' │ │ │ │ +73E61 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +73E65 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +73E69 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +73E6B Length 000B (11) │ │ │ │ +73E6D Version 01 (1) │ │ │ │ +73E6E UID Size 04 (4) │ │ │ │ +73E6F UID 00000000 (0) │ │ │ │ +73E73 GID Size 04 (4) │ │ │ │ +73E74 GID 00000000 (0) │ │ │ │ +73E78 PAYLOAD │ │ │ │ + │ │ │ │ +779C7 LOCAL HEADER #68 04034B50 (67324752) │ │ │ │ +779CB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +779CC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +779CD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +779CF Compression Method 0008 (8) 'Deflated' │ │ │ │ +779D1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +779D5 CRC FEA7A5C4 (4272399812) │ │ │ │ +779D9 Compressed Size 00003E89 (16009) │ │ │ │ +779DD Uncompressed Size 0001C17B (115067) │ │ │ │ +779E1 Filename Length 0019 (25) │ │ │ │ +779E3 Extra Length 001C (28) │ │ │ │ +779E5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x779E5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +779FE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +77A00 Length 0009 (9) │ │ │ │ +77A02 Flags 03 (3) 'Modification Access' │ │ │ │ +77A03 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +77A07 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +77A0B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +77A0D Length 000B (11) │ │ │ │ +77A0F Version 01 (1) │ │ │ │ +77A10 UID Size 04 (4) │ │ │ │ +77A11 UID 00000000 (0) │ │ │ │ +77A15 GID Size 04 (4) │ │ │ │ +77A16 GID 00000000 (0) │ │ │ │ +77A1A PAYLOAD │ │ │ │ + │ │ │ │ +7B8A3 LOCAL HEADER #69 04034B50 (67324752) │ │ │ │ +7B8A7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +7B8A8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +7B8A9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +7B8AB Compression Method 0008 (8) 'Deflated' │ │ │ │ +7B8AD Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7B8B1 CRC C0F15AD1 (3237042897) │ │ │ │ +7B8B5 Compressed Size 00000839 (2105) │ │ │ │ +7B8B9 Uncompressed Size 00003383 (13187) │ │ │ │ +7B8BD Filename Length 0011 (17) │ │ │ │ +7B8BF Extra Length 001C (28) │ │ │ │ +7B8C1 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x7B8C1: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +7B8D2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +7B8D4 Length 0009 (9) │ │ │ │ +7B8D6 Flags 03 (3) 'Modification Access' │ │ │ │ +7B8D7 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7B8DB Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7B8DF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +7B8E1 Length 000B (11) │ │ │ │ +7B8E3 Version 01 (1) │ │ │ │ +7B8E4 UID Size 04 (4) │ │ │ │ +7B8E5 UID 00000000 (0) │ │ │ │ +7B8E9 GID Size 04 (4) │ │ │ │ +7B8EA GID 00000000 (0) │ │ │ │ +7B8EE PAYLOAD │ │ │ │ + │ │ │ │ +7C127 LOCAL HEADER #70 04034B50 (67324752) │ │ │ │ +7C12B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +7C12C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +7C12D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +7C12F Compression Method 0008 (8) 'Deflated' │ │ │ │ +7C131 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7C135 CRC 4841A80E (1212262414) │ │ │ │ +7C139 Compressed Size 0000518C (20876) │ │ │ │ +7C13D Uncompressed Size 0001FB6C (129900) │ │ │ │ +7C141 Filename Length 0015 (21) │ │ │ │ +7C143 Extra Length 001C (28) │ │ │ │ +7C145 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x7C145: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +7C15A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +7C15C Length 0009 (9) │ │ │ │ +7C15E Flags 03 (3) 'Modification Access' │ │ │ │ +7C15F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7C163 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +7C167 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +7C169 Length 000B (11) │ │ │ │ +7C16B Version 01 (1) │ │ │ │ +7C16C UID Size 04 (4) │ │ │ │ +7C16D UID 00000000 (0) │ │ │ │ +7C171 GID Size 04 (4) │ │ │ │ +7C172 GID 00000000 (0) │ │ │ │ +7C176 PAYLOAD │ │ │ │ + │ │ │ │ +81302 LOCAL HEADER #71 04034B50 (67324752) │ │ │ │ +81306 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +81307 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +81308 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8130A Compression Method 0008 (8) 'Deflated' │ │ │ │ +8130C Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +81310 CRC E990DD87 (3918585223) │ │ │ │ +81314 Compressed Size 00001B07 (6919) │ │ │ │ +81318 Uncompressed Size 000081CF (33231) │ │ │ │ +8131C Filename Length 0019 (25) │ │ │ │ +8131E Extra Length 001C (28) │ │ │ │ +81320 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x81320: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +81339 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8133B Length 0009 (9) │ │ │ │ +8133D Flags 03 (3) 'Modification Access' │ │ │ │ +8133E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +81342 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +81346 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +81348 Length 000B (11) │ │ │ │ +8134A Version 01 (1) │ │ │ │ +8134B UID Size 04 (4) │ │ │ │ +8134C UID 00000000 (0) │ │ │ │ +81350 GID Size 04 (4) │ │ │ │ +81351 GID 00000000 (0) │ │ │ │ +81355 PAYLOAD │ │ │ │ + │ │ │ │ +82E5C LOCAL HEADER #72 04034B50 (67324752) │ │ │ │ +82E60 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +82E61 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +82E62 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +82E64 Compression Method 0008 (8) 'Deflated' │ │ │ │ +82E66 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +82E6A CRC 19EA59E6 (434788838) │ │ │ │ +82E6E Compressed Size 00000D97 (3479) │ │ │ │ +82E72 Uncompressed Size 00002E9F (11935) │ │ │ │ +82E76 Filename Length 0018 (24) │ │ │ │ +82E78 Extra Length 001C (28) │ │ │ │ +82E7A Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x82E7A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +82E92 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +82E94 Length 0009 (9) │ │ │ │ +82E96 Flags 03 (3) 'Modification Access' │ │ │ │ +82E97 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +82E9B Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +82E9F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +82EA1 Length 000B (11) │ │ │ │ +82EA3 Version 01 (1) │ │ │ │ +82EA4 UID Size 04 (4) │ │ │ │ +82EA5 UID 00000000 (0) │ │ │ │ +82EA9 GID Size 04 (4) │ │ │ │ +82EAA GID 00000000 (0) │ │ │ │ +82EAE PAYLOAD │ │ │ │ + │ │ │ │ +83C45 LOCAL HEADER #73 04034B50 (67324752) │ │ │ │ +83C49 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +83C4A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +83C4B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +83C4D Compression Method 0008 (8) 'Deflated' │ │ │ │ +83C4F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83C53 CRC 0350D61E (55629342) │ │ │ │ +83C57 Compressed Size 000001E0 (480) │ │ │ │ +83C5B Uncompressed Size 00000323 (803) │ │ │ │ +83C5F Filename Length 0011 (17) │ │ │ │ +83C61 Extra Length 001C (28) │ │ │ │ +83C63 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x83C63: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +83C74 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +83C76 Length 0009 (9) │ │ │ │ +83C78 Flags 03 (3) 'Modification Access' │ │ │ │ +83C79 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83C7D Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83C81 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +83C83 Length 000B (11) │ │ │ │ +83C85 Version 01 (1) │ │ │ │ +83C86 UID Size 04 (4) │ │ │ │ +83C87 UID 00000000 (0) │ │ │ │ +83C8B GID Size 04 (4) │ │ │ │ +83C8C GID 00000000 (0) │ │ │ │ +83C90 PAYLOAD │ │ │ │ + │ │ │ │ +83E70 LOCAL HEADER #74 04034B50 (67324752) │ │ │ │ +83E74 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +83E75 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +83E76 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +83E78 Compression Method 0008 (8) 'Deflated' │ │ │ │ +83E7A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83E7E CRC 3FD13568 (1070675304) │ │ │ │ +83E82 Compressed Size 000006C2 (1730) │ │ │ │ +83E86 Uncompressed Size 00001439 (5177) │ │ │ │ +83E8A Filename Length 0019 (25) │ │ │ │ +83E8C Extra Length 001C (28) │ │ │ │ +83E8E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x83E8E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +83EA7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +83EA9 Length 0009 (9) │ │ │ │ +83EAB Flags 03 (3) 'Modification Access' │ │ │ │ +83EAC Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83EB0 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +83EB4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +83EB6 Length 000B (11) │ │ │ │ +83EB8 Version 01 (1) │ │ │ │ +83EB9 UID Size 04 (4) │ │ │ │ +83EBA UID 00000000 (0) │ │ │ │ +83EBE GID Size 04 (4) │ │ │ │ +83EBF GID 00000000 (0) │ │ │ │ +83EC3 PAYLOAD │ │ │ │ + │ │ │ │ +84585 LOCAL HEADER #75 04034B50 (67324752) │ │ │ │ +84589 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8458A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8458B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8458D Compression Method 0008 (8) 'Deflated' │ │ │ │ +8458F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +84593 CRC 05677F09 (90668809) │ │ │ │ +84597 Compressed Size 00001B8A (7050) │ │ │ │ +8459B Uncompressed Size 00009F03 (40707) │ │ │ │ +8459F Filename Length 0018 (24) │ │ │ │ +845A1 Extra Length 001C (28) │ │ │ │ +845A3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x845A3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +845BB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +845BD Length 0009 (9) │ │ │ │ +845BF Flags 03 (3) 'Modification Access' │ │ │ │ +845C0 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +845C4 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +845C8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +845CA Length 000B (11) │ │ │ │ +845CC Version 01 (1) │ │ │ │ +845CD UID Size 04 (4) │ │ │ │ +845CE UID 00000000 (0) │ │ │ │ +845D2 GID Size 04 (4) │ │ │ │ +845D3 GID 00000000 (0) │ │ │ │ +845D7 PAYLOAD │ │ │ │ + │ │ │ │ +86161 LOCAL HEADER #76 04034B50 (67324752) │ │ │ │ +86165 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +86166 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +86167 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +86169 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8616B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8616F CRC B8D73842 (3101112386) │ │ │ │ +86173 Compressed Size 000016F8 (5880) │ │ │ │ +86177 Uncompressed Size 00008AB6 (35510) │ │ │ │ +8617B Filename Length 0012 (18) │ │ │ │ +8617D Extra Length 001C (28) │ │ │ │ +8617F Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8617F: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +86191 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +86193 Length 0009 (9) │ │ │ │ +86195 Flags 03 (3) 'Modification Access' │ │ │ │ +86196 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8619A Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8619E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +861A0 Length 000B (11) │ │ │ │ +861A2 Version 01 (1) │ │ │ │ +861A3 UID Size 04 (4) │ │ │ │ +861A4 UID 00000000 (0) │ │ │ │ +861A8 GID Size 04 (4) │ │ │ │ +861A9 GID 00000000 (0) │ │ │ │ +861AD PAYLOAD │ │ │ │ + │ │ │ │ +878A5 LOCAL HEADER #77 04034B50 (67324752) │ │ │ │ +878A9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +878AA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +878AB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +878AD Compression Method 0008 (8) 'Deflated' │ │ │ │ +878AF Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +878B3 CRC CF7D5083 (3481096323) │ │ │ │ +878B7 Compressed Size 00001E13 (7699) │ │ │ │ +878BB Uncompressed Size 00008803 (34819) │ │ │ │ +878BF Filename Length 0016 (22) │ │ │ │ +878C1 Extra Length 001C (28) │ │ │ │ +878C3 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x878C3: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +878D9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +878DB Length 0009 (9) │ │ │ │ +878DD Flags 03 (3) 'Modification Access' │ │ │ │ +878DE Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +878E2 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +878E6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +878E8 Length 000B (11) │ │ │ │ +878EA Version 01 (1) │ │ │ │ +878EB UID Size 04 (4) │ │ │ │ +878EC UID 00000000 (0) │ │ │ │ +878F0 GID Size 04 (4) │ │ │ │ +878F1 GID 00000000 (0) │ │ │ │ +878F5 PAYLOAD │ │ │ │ + │ │ │ │ +89708 LOCAL HEADER #78 04034B50 (67324752) │ │ │ │ +8970C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8970D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8970E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +89710 Compression Method 0008 (8) 'Deflated' │ │ │ │ +89712 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +89716 CRC 34D63497 (886453399) │ │ │ │ +8971A Compressed Size 000029AC (10668) │ │ │ │ +8971E Uncompressed Size 0000D04F (53327) │ │ │ │ +89722 Filename Length 001A (26) │ │ │ │ +89724 Extra Length 001C (28) │ │ │ │ +89726 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x89726: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +89740 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +89742 Length 0009 (9) │ │ │ │ +89744 Flags 03 (3) 'Modification Access' │ │ │ │ +89745 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +89749 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8974D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8974F Length 000B (11) │ │ │ │ +89751 Version 01 (1) │ │ │ │ +89752 UID Size 04 (4) │ │ │ │ +89753 UID 00000000 (0) │ │ │ │ +89757 GID Size 04 (4) │ │ │ │ +89758 GID 00000000 (0) │ │ │ │ +8975C PAYLOAD │ │ │ │ + │ │ │ │ +8C108 LOCAL HEADER #79 04034B50 (67324752) │ │ │ │ +8C10C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8C10D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8C10E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8C110 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8C112 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8C116 CRC 2A6ECA3B (711903803) │ │ │ │ +8C11A Compressed Size 000009AC (2476) │ │ │ │ +8C11E Uncompressed Size 00001DB6 (7606) │ │ │ │ +8C122 Filename Length 0018 (24) │ │ │ │ +8C124 Extra Length 001C (28) │ │ │ │ +8C126 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8C126: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8C13E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8C140 Length 0009 (9) │ │ │ │ +8C142 Flags 03 (3) 'Modification Access' │ │ │ │ +8C143 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8C147 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8C14B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8C14D Length 000B (11) │ │ │ │ +8C14F Version 01 (1) │ │ │ │ +8C150 UID Size 04 (4) │ │ │ │ +8C151 UID 00000000 (0) │ │ │ │ +8C155 GID Size 04 (4) │ │ │ │ +8C156 GID 00000000 (0) │ │ │ │ +8C15A PAYLOAD │ │ │ │ + │ │ │ │ +8CB06 LOCAL HEADER #80 04034B50 (67324752) │ │ │ │ +8CB0A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8CB0B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8CB0C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8CB0E Compression Method 0008 (8) 'Deflated' │ │ │ │ +8CB10 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8CB14 CRC F5E2129F (4125233823) │ │ │ │ +8CB18 Compressed Size 000016BC (5820) │ │ │ │ +8CB1C Uncompressed Size 000016CD (5837) │ │ │ │ +8CB20 Filename Length 0015 (21) │ │ │ │ +8CB22 Extra Length 001C (28) │ │ │ │ +8CB24 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8CB24: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8CB39 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8CB3B Length 0009 (9) │ │ │ │ +8CB3D Flags 03 (3) 'Modification Access' │ │ │ │ +8CB3E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8CB42 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8CB46 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8CB48 Length 000B (11) │ │ │ │ +8CB4A Version 01 (1) │ │ │ │ +8CB4B UID Size 04 (4) │ │ │ │ +8CB4C UID 00000000 (0) │ │ │ │ +8CB50 GID Size 04 (4) │ │ │ │ +8CB51 GID 00000000 (0) │ │ │ │ +8CB55 PAYLOAD │ │ │ │ + │ │ │ │ +8E211 LOCAL HEADER #81 04034B50 (67324752) │ │ │ │ +8E215 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +8E216 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8E217 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +8E219 Compression Method 0008 (8) 'Deflated' │ │ │ │ +8E21B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8E21F CRC F5E2129F (4125233823) │ │ │ │ +8E223 Compressed Size 000016BC (5820) │ │ │ │ +8E227 Uncompressed Size 000016CD (5837) │ │ │ │ +8E22B Filename Length 001C (28) │ │ │ │ +8E22D Extra Length 001C (28) │ │ │ │ +8E22F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8E22F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8E24B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8E24D Length 0009 (9) │ │ │ │ +8E24F Flags 03 (3) 'Modification Access' │ │ │ │ +8E250 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8E254 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8E258 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8E25A Length 000B (11) │ │ │ │ +8E25C Version 01 (1) │ │ │ │ +8E25D UID Size 04 (4) │ │ │ │ +8E25E UID 00000000 (0) │ │ │ │ +8E262 GID Size 04 (4) │ │ │ │ +8E263 GID 00000000 (0) │ │ │ │ +8E267 PAYLOAD │ │ │ │ + │ │ │ │ +8F923 LOCAL HEADER #82 04034B50 (67324752) │ │ │ │ +8F927 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +8F928 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +8F929 General Purpose Flag 0000 (0) │ │ │ │ +8F92B Compression Method 0000 (0) 'Stored' │ │ │ │ +8F92D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8F931 CRC FC95F24B (4237685323) │ │ │ │ +8F935 Compressed Size 00001B84 (7044) │ │ │ │ +8F939 Uncompressed Size 00001B84 (7044) │ │ │ │ +8F93D Filename Length 0016 (22) │ │ │ │ +8F93F Extra Length 001C (28) │ │ │ │ +8F941 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x8F941: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +8F957 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +8F959 Length 0009 (9) │ │ │ │ +8F95B Flags 03 (3) 'Modification Access' │ │ │ │ +8F95C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8F960 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +8F964 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +8F966 Length 000B (11) │ │ │ │ +8F968 Version 01 (1) │ │ │ │ +8F969 UID Size 04 (4) │ │ │ │ +8F96A UID 00000000 (0) │ │ │ │ +8F96E GID Size 04 (4) │ │ │ │ +8F96F GID 00000000 (0) │ │ │ │ +8F973 PAYLOAD │ │ │ │ + │ │ │ │ +914F7 LOCAL HEADER #83 04034B50 (67324752) │ │ │ │ +914FB Extract Zip Spec 0A (10) '1.0' │ │ │ │ +914FC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +914FD General Purpose Flag 0000 (0) │ │ │ │ +914FF Compression Method 0000 (0) 'Stored' │ │ │ │ +91501 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +91505 CRC D0D71F86 (3503759238) │ │ │ │ +91509 Compressed Size 00000B7B (2939) │ │ │ │ +9150D Uncompressed Size 00000B7B (2939) │ │ │ │ +91511 Filename Length 0016 (22) │ │ │ │ +91513 Extra Length 001C (28) │ │ │ │ +91515 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x91515: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9152B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9152D Length 0009 (9) │ │ │ │ +9152F Flags 03 (3) 'Modification Access' │ │ │ │ +91530 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +91534 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +91538 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9153A Length 000B (11) │ │ │ │ +9153C Version 01 (1) │ │ │ │ +9153D UID Size 04 (4) │ │ │ │ +9153E UID 00000000 (0) │ │ │ │ +91542 GID Size 04 (4) │ │ │ │ +91543 GID 00000000 (0) │ │ │ │ +91547 PAYLOAD │ │ │ │ + │ │ │ │ +920C2 LOCAL HEADER #84 04034B50 (67324752) │ │ │ │ +920C6 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +920C7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +920C8 General Purpose Flag 0000 (0) │ │ │ │ +920CA Compression Method 0000 (0) 'Stored' │ │ │ │ +920CC Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +920D0 CRC FFF9C4D2 (4294558930) │ │ │ │ +920D4 Compressed Size 0000138F (5007) │ │ │ │ +920D8 Uncompressed Size 0000138F (5007) │ │ │ │ +920DC Filename Length 0016 (22) │ │ │ │ +920DE Extra Length 001C (28) │ │ │ │ +920E0 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x920E0: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +920F6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +920F8 Length 0009 (9) │ │ │ │ +920FA Flags 03 (3) 'Modification Access' │ │ │ │ +920FB Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +920FF Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +92103 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +92105 Length 000B (11) │ │ │ │ +92107 Version 01 (1) │ │ │ │ +92108 UID Size 04 (4) │ │ │ │ +92109 UID 00000000 (0) │ │ │ │ +9210D GID Size 04 (4) │ │ │ │ +9210E GID 00000000 (0) │ │ │ │ +92112 PAYLOAD │ │ │ │ + │ │ │ │ +934A1 LOCAL HEADER #85 04034B50 (67324752) │ │ │ │ +934A5 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +934A6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +934A7 General Purpose Flag 0000 (0) │ │ │ │ +934A9 Compression Method 0000 (0) 'Stored' │ │ │ │ +934AB Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +934AF CRC A1037E8E (2701360782) │ │ │ │ +934B3 Compressed Size 0000145E (5214) │ │ │ │ +934B7 Uncompressed Size 0000145E (5214) │ │ │ │ +934BB Filename Length 0016 (22) │ │ │ │ +934BD Extra Length 001C (28) │ │ │ │ +934BF Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x934BF: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +934D5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +934D7 Length 0009 (9) │ │ │ │ +934D9 Flags 03 (3) 'Modification Access' │ │ │ │ +934DA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +934DE Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +934E2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +934E4 Length 000B (11) │ │ │ │ +934E6 Version 01 (1) │ │ │ │ +934E7 UID Size 04 (4) │ │ │ │ +934E8 UID 00000000 (0) │ │ │ │ +934EC GID Size 04 (4) │ │ │ │ +934ED GID 00000000 (0) │ │ │ │ +934F1 PAYLOAD │ │ │ │ + │ │ │ │ +9494F LOCAL HEADER #86 04034B50 (67324752) │ │ │ │ +94953 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +94954 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +94955 General Purpose Flag 0000 (0) │ │ │ │ +94957 Compression Method 0000 (0) 'Stored' │ │ │ │ +94959 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9495D CRC 5E9E64F1 (1587438833) │ │ │ │ +94961 Compressed Size 000008EC (2284) │ │ │ │ +94965 Uncompressed Size 000008EC (2284) │ │ │ │ +94969 Filename Length 0016 (22) │ │ │ │ +9496B Extra Length 001C (28) │ │ │ │ +9496D Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9496D: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +94983 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +94985 Length 0009 (9) │ │ │ │ +94987 Flags 03 (3) 'Modification Access' │ │ │ │ +94988 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9498C Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +94990 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +94992 Length 000B (11) │ │ │ │ +94994 Version 01 (1) │ │ │ │ +94995 UID Size 04 (4) │ │ │ │ +94996 UID 00000000 (0) │ │ │ │ +9499A GID Size 04 (4) │ │ │ │ +9499B GID 00000000 (0) │ │ │ │ +9499F PAYLOAD │ │ │ │ + │ │ │ │ +9528B LOCAL HEADER #87 04034B50 (67324752) │ │ │ │ +9528F Extract Zip Spec 0A (10) '1.0' │ │ │ │ +95290 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +95291 General Purpose Flag 0000 (0) │ │ │ │ +95293 Compression Method 0000 (0) 'Stored' │ │ │ │ +95295 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +95299 CRC 42E340AB (1122189483) │ │ │ │ +9529D Compressed Size 00001F2E (7982) │ │ │ │ +952A1 Uncompressed Size 00001F2E (7982) │ │ │ │ +952A5 Filename Length 001E (30) │ │ │ │ +952A7 Extra Length 001C (28) │ │ │ │ +952A9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x952A9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +952C7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +952C9 Length 0009 (9) │ │ │ │ +952CB Flags 03 (3) 'Modification Access' │ │ │ │ +952CC Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +952D0 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +952D4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +952D6 Length 000B (11) │ │ │ │ +952D8 Version 01 (1) │ │ │ │ +952D9 UID Size 04 (4) │ │ │ │ +952DA UID 00000000 (0) │ │ │ │ +952DE GID Size 04 (4) │ │ │ │ +952DF GID 00000000 (0) │ │ │ │ +952E3 PAYLOAD │ │ │ │ + │ │ │ │ +97211 LOCAL HEADER #88 04034B50 (67324752) │ │ │ │ +97215 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +97216 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +97217 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +97219 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9721B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9721F CRC 7DF402CB (2113143499) │ │ │ │ +97223 Compressed Size 00003D71 (15729) │ │ │ │ +97227 Uncompressed Size 00016649 (91721) │ │ │ │ +9722B Filename Length 001A (26) │ │ │ │ +9722D Extra Length 001C (28) │ │ │ │ +9722F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9722F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +97249 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9724B Length 0009 (9) │ │ │ │ +9724D Flags 03 (3) 'Modification Access' │ │ │ │ +9724E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +97252 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +97256 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +97258 Length 000B (11) │ │ │ │ +9725A Version 01 (1) │ │ │ │ +9725B UID Size 04 (4) │ │ │ │ +9725C UID 00000000 (0) │ │ │ │ +97260 GID Size 04 (4) │ │ │ │ +97261 GID 00000000 (0) │ │ │ │ +97265 PAYLOAD │ │ │ │ + │ │ │ │ +9AFD6 LOCAL HEADER #89 04034B50 (67324752) │ │ │ │ +9AFDA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9AFDB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9AFDC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9AFDE Compression Method 0008 (8) 'Deflated' │ │ │ │ +9AFE0 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9AFE4 CRC B7721381 (3077706625) │ │ │ │ +9AFE8 Compressed Size 000029C3 (10691) │ │ │ │ +9AFEC Uncompressed Size 0000BA6A (47722) │ │ │ │ +9AFF0 Filename Length 0018 (24) │ │ │ │ +9AFF2 Extra Length 001C (28) │ │ │ │ +9AFF4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9AFF4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9B00C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9B00E Length 0009 (9) │ │ │ │ +9B010 Flags 03 (3) 'Modification Access' │ │ │ │ +9B011 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9B015 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9B019 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9B01B Length 000B (11) │ │ │ │ +9B01D Version 01 (1) │ │ │ │ +9B01E UID Size 04 (4) │ │ │ │ +9B01F UID 00000000 (0) │ │ │ │ +9B023 GID Size 04 (4) │ │ │ │ +9B024 GID 00000000 (0) │ │ │ │ +9B028 PAYLOAD │ │ │ │ + │ │ │ │ +9D9EB LOCAL HEADER #90 04034B50 (67324752) │ │ │ │ +9D9EF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9D9F0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9D9F1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9D9F3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9D9F5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9D9F9 CRC DCB3B516 (3702764822) │ │ │ │ +9D9FD Compressed Size 000000AE (174) │ │ │ │ +9DA01 Uncompressed Size 000000FC (252) │ │ │ │ +9DA05 Filename Length 0016 (22) │ │ │ │ +9DA07 Extra Length 001C (28) │ │ │ │ +9DA09 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DA09: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DA1F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DA21 Length 0009 (9) │ │ │ │ +9DA23 Flags 03 (3) 'Modification Access' │ │ │ │ +9DA24 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DA28 Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DA2C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DA2E Length 000B (11) │ │ │ │ +9DA30 Version 01 (1) │ │ │ │ +9DA31 UID Size 04 (4) │ │ │ │ +9DA32 UID 00000000 (0) │ │ │ │ +9DA36 GID Size 04 (4) │ │ │ │ +9DA37 GID 00000000 (0) │ │ │ │ +9DA3B PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ │ │ │ │ -9DAED LOCAL HEADER #91 04034B50 (67324752) │ │ │ │ -9DAF1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DAF2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DAF3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DAF5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DAF7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DAFB CRC 58439733 (1480824627) │ │ │ │ -9DAFF Compressed Size 00000077 (119) │ │ │ │ -9DB03 Uncompressed Size 000000A2 (162) │ │ │ │ -9DB07 Filename Length 002D (45) │ │ │ │ -9DB09 Extra Length 001C (28) │ │ │ │ -9DB0B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DB0B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DB38 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DB3A Length 0009 (9) │ │ │ │ -9DB3C Flags 03 (3) 'Modification Access' │ │ │ │ -9DB3D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DB41 Access Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DB45 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DB47 Length 000B (11) │ │ │ │ -9DB49 Version 01 (1) │ │ │ │ -9DB4A UID Size 04 (4) │ │ │ │ -9DB4B UID 00000000 (0) │ │ │ │ -9DB4F GID Size 04 (4) │ │ │ │ -9DB50 GID 00000000 (0) │ │ │ │ -9DB54 PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ - │ │ │ │ -9DBCB CENTRAL HEADER #1 02014B50 (33639248) │ │ │ │ -9DBCF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DBD0 Created OS 03 (3) 'Unix' │ │ │ │ -9DBD1 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9DBD2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DBD3 General Purpose Flag 0000 (0) │ │ │ │ -9DBD5 Compression Method 0000 (0) 'Stored' │ │ │ │ -9DBD7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DBDB CRC 2CAB616F (749429103) │ │ │ │ -9DBDF Compressed Size 00000014 (20) │ │ │ │ -9DBE3 Uncompressed Size 00000014 (20) │ │ │ │ -9DBE7 Filename Length 0008 (8) │ │ │ │ -9DBE9 Extra Length 0018 (24) │ │ │ │ -9DBEB Comment Length 0000 (0) │ │ │ │ -9DBED Disk Start 0000 (0) │ │ │ │ -9DBEF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DBF1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DBF5 Local Header Offset 00000000 (0) │ │ │ │ -9DBF9 Filename 'XXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DBF9: Filename 'XXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DC01 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DC03 Length 0005 (5) │ │ │ │ -9DC05 Flags 01 (1) 'Modification' │ │ │ │ -9DC06 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DC0A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DC0C Length 000B (11) │ │ │ │ -9DC0E Version 01 (1) │ │ │ │ -9DC0F UID Size 04 (4) │ │ │ │ -9DC10 UID 00000000 (0) │ │ │ │ -9DC14 GID Size 04 (4) │ │ │ │ -9DC15 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DC19 CENTRAL HEADER #2 02014B50 (33639248) │ │ │ │ -9DC1D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DC1E Created OS 03 (3) 'Unix' │ │ │ │ -9DC1F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DC20 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DC21 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DC23 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DC25 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DC29 CRC 6A627F8C (1784840076) │ │ │ │ -9DC2D Compressed Size 000015AD (5549) │ │ │ │ -9DC31 Uncompressed Size 00004602 (17922) │ │ │ │ -9DC35 Filename Length 0014 (20) │ │ │ │ -9DC37 Extra Length 0018 (24) │ │ │ │ -9DC39 Comment Length 0000 (0) │ │ │ │ -9DC3B Disk Start 0000 (0) │ │ │ │ -9DC3D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DC3F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DC43 Local Header Offset 00000056 (86) │ │ │ │ -9DC47 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DC47: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DC5B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DC5D Length 0005 (5) │ │ │ │ -9DC5F Flags 01 (1) 'Modification' │ │ │ │ -9DC60 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DC64 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DC66 Length 000B (11) │ │ │ │ -9DC68 Version 01 (1) │ │ │ │ -9DC69 UID Size 04 (4) │ │ │ │ -9DC6A UID 00000000 (0) │ │ │ │ -9DC6E GID Size 04 (4) │ │ │ │ -9DC6F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DC73 CENTRAL HEADER #3 02014B50 (33639248) │ │ │ │ -9DC77 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DC78 Created OS 03 (3) 'Unix' │ │ │ │ -9DC79 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DC7A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DC7B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DC7D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DC7F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DC83 CRC 55093711 (1426667281) │ │ │ │ -9DC87 Compressed Size 000006D5 (1749) │ │ │ │ -9DC8B Uncompressed Size 00001241 (4673) │ │ │ │ -9DC8F Filename Length 0013 (19) │ │ │ │ -9DC91 Extra Length 0018 (24) │ │ │ │ -9DC93 Comment Length 0000 (0) │ │ │ │ -9DC95 Disk Start 0000 (0) │ │ │ │ -9DC97 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DC99 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DC9D Local Header Offset 00001651 (5713) │ │ │ │ -9DCA1 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DCA1: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DCB4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DCB6 Length 0005 (5) │ │ │ │ -9DCB8 Flags 01 (1) 'Modification' │ │ │ │ -9DCB9 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DCBD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DCBF Length 000B (11) │ │ │ │ -9DCC1 Version 01 (1) │ │ │ │ -9DCC2 UID Size 04 (4) │ │ │ │ -9DCC3 UID 00000000 (0) │ │ │ │ -9DCC7 GID Size 04 (4) │ │ │ │ -9DCC8 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DCCC CENTRAL HEADER #4 02014B50 (33639248) │ │ │ │ -9DCD0 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DCD1 Created OS 03 (3) 'Unix' │ │ │ │ -9DCD2 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DCD3 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DCD4 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DCD6 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DCD8 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DCDC CRC 562FE917 (1445980439) │ │ │ │ -9DCE0 Compressed Size 00002DA0 (11680) │ │ │ │ -9DCE4 Uncompressed Size 0000D0BF (53439) │ │ │ │ -9DCE8 Filename Length 0014 (20) │ │ │ │ -9DCEA Extra Length 0018 (24) │ │ │ │ -9DCEC Comment Length 0000 (0) │ │ │ │ -9DCEE Disk Start 0000 (0) │ │ │ │ -9DCF0 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DCF2 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DCF6 Local Header Offset 00001D73 (7539) │ │ │ │ -9DCFA Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DCFA: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DD0E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DD10 Length 0005 (5) │ │ │ │ -9DD12 Flags 01 (1) 'Modification' │ │ │ │ -9DD13 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DD17 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DD19 Length 000B (11) │ │ │ │ -9DD1B Version 01 (1) │ │ │ │ -9DD1C UID Size 04 (4) │ │ │ │ -9DD1D UID 00000000 (0) │ │ │ │ -9DD21 GID Size 04 (4) │ │ │ │ -9DD22 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DD26 CENTRAL HEADER #5 02014B50 (33639248) │ │ │ │ -9DD2A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DD2B Created OS 03 (3) 'Unix' │ │ │ │ -9DD2C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DD2D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DD2E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DD30 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DD32 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DD36 CRC A25ED8D1 (2724124881) │ │ │ │ -9DD3A Compressed Size 000003F0 (1008) │ │ │ │ -9DD3E Uncompressed Size 00000876 (2166) │ │ │ │ -9DD42 Filename Length 0014 (20) │ │ │ │ -9DD44 Extra Length 0018 (24) │ │ │ │ -9DD46 Comment Length 0000 (0) │ │ │ │ -9DD48 Disk Start 0000 (0) │ │ │ │ -9DD4A Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DD4C Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DD50 Local Header Offset 00004B61 (19297) │ │ │ │ -9DD54 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DD54: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DD68 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DD6A Length 0005 (5) │ │ │ │ -9DD6C Flags 01 (1) 'Modification' │ │ │ │ -9DD6D Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DD71 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DD73 Length 000B (11) │ │ │ │ -9DD75 Version 01 (1) │ │ │ │ -9DD76 UID Size 04 (4) │ │ │ │ -9DD77 UID 00000000 (0) │ │ │ │ -9DD7B GID Size 04 (4) │ │ │ │ -9DD7C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DD80 CENTRAL HEADER #6 02014B50 (33639248) │ │ │ │ -9DD84 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DD85 Created OS 03 (3) 'Unix' │ │ │ │ -9DD86 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DD87 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DD88 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DD8A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DD8C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DD90 CRC 9809A48F (2550768783) │ │ │ │ -9DD94 Compressed Size 000001AE (430) │ │ │ │ -9DD98 Uncompressed Size 000002FC (764) │ │ │ │ -9DD9C Filename Length 0011 (17) │ │ │ │ -9DD9E Extra Length 0018 (24) │ │ │ │ -9DDA0 Comment Length 0000 (0) │ │ │ │ -9DDA2 Disk Start 0000 (0) │ │ │ │ -9DDA4 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DDA6 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DDAA Local Header Offset 00004F9F (20383) │ │ │ │ -9DDAE Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DDAE: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DDBF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DDC1 Length 0005 (5) │ │ │ │ -9DDC3 Flags 01 (1) 'Modification' │ │ │ │ -9DDC4 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DDC8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DDCA Length 000B (11) │ │ │ │ -9DDCC Version 01 (1) │ │ │ │ -9DDCD UID Size 04 (4) │ │ │ │ -9DDCE UID 00000000 (0) │ │ │ │ -9DDD2 GID Size 04 (4) │ │ │ │ -9DDD3 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DDD7 CENTRAL HEADER #7 02014B50 (33639248) │ │ │ │ -9DDDB Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DDDC Created OS 03 (3) 'Unix' │ │ │ │ -9DDDD Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DDDE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DDDF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DDE1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DDE3 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DDE7 CRC 70B50103 (1890910467) │ │ │ │ -9DDEB Compressed Size 000020C1 (8385) │ │ │ │ -9DDEF Uncompressed Size 0000B4B0 (46256) │ │ │ │ -9DDF3 Filename Length 001B (27) │ │ │ │ -9DDF5 Extra Length 0018 (24) │ │ │ │ -9DDF7 Comment Length 0000 (0) │ │ │ │ -9DDF9 Disk Start 0000 (0) │ │ │ │ -9DDFB Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DDFD Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DE01 Local Header Offset 00005198 (20888) │ │ │ │ -9DE05 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DE05: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DE20 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DE22 Length 0005 (5) │ │ │ │ -9DE24 Flags 01 (1) 'Modification' │ │ │ │ -9DE25 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DE29 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DE2B Length 000B (11) │ │ │ │ -9DE2D Version 01 (1) │ │ │ │ -9DE2E UID Size 04 (4) │ │ │ │ -9DE2F UID 00000000 (0) │ │ │ │ -9DE33 GID Size 04 (4) │ │ │ │ -9DE34 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DE38 CENTRAL HEADER #8 02014B50 (33639248) │ │ │ │ -9DE3C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DE3D Created OS 03 (3) 'Unix' │ │ │ │ -9DE3E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DE3F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DE40 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DE42 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DE44 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DE48 CRC 219043B3 (563102643) │ │ │ │ -9DE4C Compressed Size 00000E6F (3695) │ │ │ │ -9DE50 Uncompressed Size 000030B2 (12466) │ │ │ │ -9DE54 Filename Length 001D (29) │ │ │ │ -9DE56 Extra Length 0018 (24) │ │ │ │ -9DE58 Comment Length 0000 (0) │ │ │ │ -9DE5A Disk Start 0000 (0) │ │ │ │ -9DE5C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DE5E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DE62 Local Header Offset 000072AE (29358) │ │ │ │ -9DE66 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DE66: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DE83 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DE85 Length 0005 (5) │ │ │ │ -9DE87 Flags 01 (1) 'Modification' │ │ │ │ -9DE88 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DE8C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DE8E Length 000B (11) │ │ │ │ -9DE90 Version 01 (1) │ │ │ │ -9DE91 UID Size 04 (4) │ │ │ │ -9DE92 UID 00000000 (0) │ │ │ │ -9DE96 GID Size 04 (4) │ │ │ │ -9DE97 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DE9B CENTRAL HEADER #9 02014B50 (33639248) │ │ │ │ -9DE9F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DEA0 Created OS 03 (3) 'Unix' │ │ │ │ -9DEA1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DEA2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DEA3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DEA5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DEA7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DEAB CRC FEA15075 (4271984757) │ │ │ │ -9DEAF Compressed Size 00000972 (2418) │ │ │ │ -9DEB3 Uncompressed Size 00001CB2 (7346) │ │ │ │ -9DEB7 Filename Length 0019 (25) │ │ │ │ -9DEB9 Extra Length 0018 (24) │ │ │ │ -9DEBB Comment Length 0000 (0) │ │ │ │ -9DEBD Disk Start 0000 (0) │ │ │ │ -9DEBF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DEC1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DEC5 Local Header Offset 00008174 (33140) │ │ │ │ -9DEC9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DEC9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DEE2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DEE4 Length 0005 (5) │ │ │ │ -9DEE6 Flags 01 (1) 'Modification' │ │ │ │ -9DEE7 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DEEB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DEED Length 000B (11) │ │ │ │ -9DEEF Version 01 (1) │ │ │ │ -9DEF0 UID Size 04 (4) │ │ │ │ -9DEF1 UID 00000000 (0) │ │ │ │ -9DEF5 GID Size 04 (4) │ │ │ │ -9DEF6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DEFA CENTRAL HEADER #10 02014B50 (33639248) │ │ │ │ -9DEFE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DEFF Created OS 03 (3) 'Unix' │ │ │ │ -9DF00 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DF01 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DF02 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DF04 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DF06 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DF0A CRC BCC92BFC (3167300604) │ │ │ │ -9DF0E Compressed Size 00003881 (14465) │ │ │ │ -9DF12 Uncompressed Size 0000F7F4 (63476) │ │ │ │ -9DF16 Filename Length 0015 (21) │ │ │ │ -9DF18 Extra Length 0018 (24) │ │ │ │ -9DF1A Comment Length 0000 (0) │ │ │ │ -9DF1C Disk Start 0000 (0) │ │ │ │ -9DF1E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DF20 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DF24 Local Header Offset 00008B39 (35641) │ │ │ │ -9DF28 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DF28: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DF3D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DF3F Length 0005 (5) │ │ │ │ -9DF41 Flags 01 (1) 'Modification' │ │ │ │ -9DF42 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DF46 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DF48 Length 000B (11) │ │ │ │ -9DF4A Version 01 (1) │ │ │ │ -9DF4B UID Size 04 (4) │ │ │ │ -9DF4C UID 00000000 (0) │ │ │ │ -9DF50 GID Size 04 (4) │ │ │ │ -9DF51 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DF55 CENTRAL HEADER #11 02014B50 (33639248) │ │ │ │ -9DF59 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DF5A Created OS 03 (3) 'Unix' │ │ │ │ -9DF5B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DF5C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DF5D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DF5F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DF61 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DF65 CRC BCC7BD76 (3167206774) │ │ │ │ -9DF69 Compressed Size 0000AAE2 (43746) │ │ │ │ -9DF6D Uncompressed Size 0003DFDE (253918) │ │ │ │ -9DF71 Filename Length 0012 (18) │ │ │ │ -9DF73 Extra Length 0018 (24) │ │ │ │ -9DF75 Comment Length 0000 (0) │ │ │ │ -9DF77 Disk Start 0000 (0) │ │ │ │ -9DF79 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DF7B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DF7F Local Header Offset 0000C409 (50185) │ │ │ │ -9DF83 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DF83: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DF95 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DF97 Length 0005 (5) │ │ │ │ -9DF99 Flags 01 (1) 'Modification' │ │ │ │ -9DF9A Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DF9E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DFA0 Length 000B (11) │ │ │ │ -9DFA2 Version 01 (1) │ │ │ │ -9DFA3 UID Size 04 (4) │ │ │ │ -9DFA4 UID 00000000 (0) │ │ │ │ -9DFA8 GID Size 04 (4) │ │ │ │ -9DFA9 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9DFAD CENTRAL HEADER #12 02014B50 (33639248) │ │ │ │ -9DFB1 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9DFB2 Created OS 03 (3) 'Unix' │ │ │ │ -9DFB3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9DFB4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9DFB5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9DFB7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9DFB9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DFBD CRC 04CE9FF5 (80650229) │ │ │ │ -9DFC1 Compressed Size 00003B19 (15129) │ │ │ │ -9DFC5 Uncompressed Size 0001B2A0 (111264) │ │ │ │ -9DFC9 Filename Length 0015 (21) │ │ │ │ -9DFCB Extra Length 0018 (24) │ │ │ │ -9DFCD Comment Length 0000 (0) │ │ │ │ -9DFCF Disk Start 0000 (0) │ │ │ │ -9DFD1 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9DFD3 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9DFD7 Local Header Offset 00016F37 (94007) │ │ │ │ -9DFDB Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9DFDB: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9DFF0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9DFF2 Length 0005 (5) │ │ │ │ -9DFF4 Flags 01 (1) 'Modification' │ │ │ │ -9DFF5 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9DFF9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9DFFB Length 000B (11) │ │ │ │ -9DFFD Version 01 (1) │ │ │ │ -9DFFE UID Size 04 (4) │ │ │ │ -9DFFF UID 00000000 (0) │ │ │ │ -9E003 GID Size 04 (4) │ │ │ │ -9E004 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E008 CENTRAL HEADER #13 02014B50 (33639248) │ │ │ │ -9E00C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E00D Created OS 03 (3) 'Unix' │ │ │ │ -9E00E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E00F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E010 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E012 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E014 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E018 CRC 0952F615 (156431893) │ │ │ │ -9E01C Compressed Size 0000908F (37007) │ │ │ │ -9E020 Uncompressed Size 0003D05F (249951) │ │ │ │ -9E024 Filename Length 0014 (20) │ │ │ │ -9E026 Extra Length 0018 (24) │ │ │ │ -9E028 Comment Length 0000 (0) │ │ │ │ -9E02A Disk Start 0000 (0) │ │ │ │ -9E02C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E02E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E032 Local Header Offset 0001AA9F (109215) │ │ │ │ -9E036 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E036: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E04A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E04C Length 0005 (5) │ │ │ │ -9E04E Flags 01 (1) 'Modification' │ │ │ │ -9E04F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E053 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E055 Length 000B (11) │ │ │ │ -9E057 Version 01 (1) │ │ │ │ -9E058 UID Size 04 (4) │ │ │ │ -9E059 UID 00000000 (0) │ │ │ │ -9E05D GID Size 04 (4) │ │ │ │ -9E05E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E062 CENTRAL HEADER #14 02014B50 (33639248) │ │ │ │ -9E066 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E067 Created OS 03 (3) 'Unix' │ │ │ │ -9E068 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E069 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E06A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E06C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E06E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E072 CRC 8221D9E1 (2183256545) │ │ │ │ -9E076 Compressed Size 00002A63 (10851) │ │ │ │ -9E07A Uncompressed Size 0001151F (70943) │ │ │ │ -9E07E Filename Length 0016 (22) │ │ │ │ -9E080 Extra Length 0018 (24) │ │ │ │ -9E082 Comment Length 0000 (0) │ │ │ │ -9E084 Disk Start 0000 (0) │ │ │ │ -9E086 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E088 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E08C Local Header Offset 00023B7C (146300) │ │ │ │ -9E090 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E090: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E0A6 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E0A8 Length 0005 (5) │ │ │ │ -9E0AA Flags 01 (1) 'Modification' │ │ │ │ -9E0AB Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E0AF Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E0B1 Length 000B (11) │ │ │ │ -9E0B3 Version 01 (1) │ │ │ │ -9E0B4 UID Size 04 (4) │ │ │ │ -9E0B5 UID 00000000 (0) │ │ │ │ -9E0B9 GID Size 04 (4) │ │ │ │ -9E0BA GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E0BE CENTRAL HEADER #15 02014B50 (33639248) │ │ │ │ -9E0C2 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E0C3 Created OS 03 (3) 'Unix' │ │ │ │ -9E0C4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E0C5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E0C6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E0C8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E0CA Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E0CE CRC AD2220D4 (2904694996) │ │ │ │ -9E0D2 Compressed Size 000014DA (5338) │ │ │ │ -9E0D6 Uncompressed Size 00005176 (20854) │ │ │ │ -9E0DA Filename Length 001D (29) │ │ │ │ -9E0DC Extra Length 0018 (24) │ │ │ │ -9E0DE Comment Length 0000 (0) │ │ │ │ -9E0E0 Disk Start 0000 (0) │ │ │ │ -9E0E2 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E0E4 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E0E8 Local Header Offset 0002662F (157231) │ │ │ │ -9E0EC Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E0EC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E109 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E10B Length 0005 (5) │ │ │ │ -9E10D Flags 01 (1) 'Modification' │ │ │ │ -9E10E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E112 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E114 Length 000B (11) │ │ │ │ -9E116 Version 01 (1) │ │ │ │ -9E117 UID Size 04 (4) │ │ │ │ -9E118 UID 00000000 (0) │ │ │ │ -9E11C GID Size 04 (4) │ │ │ │ -9E11D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E121 CENTRAL HEADER #16 02014B50 (33639248) │ │ │ │ -9E125 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E126 Created OS 03 (3) 'Unix' │ │ │ │ -9E127 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E128 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E129 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E12B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E12D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E131 CRC DF988056 (3751313494) │ │ │ │ -9E135 Compressed Size 000037FC (14332) │ │ │ │ -9E139 Uncompressed Size 0000E9F0 (59888) │ │ │ │ -9E13D Filename Length 001C (28) │ │ │ │ -9E13F Extra Length 0018 (24) │ │ │ │ -9E141 Comment Length 0000 (0) │ │ │ │ -9E143 Disk Start 0000 (0) │ │ │ │ -9E145 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E147 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E14B Local Header Offset 00027B60 (162656) │ │ │ │ -9E14F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E14F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E16B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E16D Length 0005 (5) │ │ │ │ -9E16F Flags 01 (1) 'Modification' │ │ │ │ -9E170 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E174 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E176 Length 000B (11) │ │ │ │ -9E178 Version 01 (1) │ │ │ │ -9E179 UID Size 04 (4) │ │ │ │ -9E17A UID 00000000 (0) │ │ │ │ -9E17E GID Size 04 (4) │ │ │ │ -9E17F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E183 CENTRAL HEADER #17 02014B50 (33639248) │ │ │ │ -9E187 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E188 Created OS 03 (3) 'Unix' │ │ │ │ -9E189 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E18A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E18B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E18D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E18F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E193 CRC 76141A43 (1981028931) │ │ │ │ -9E197 Compressed Size 000006A0 (1696) │ │ │ │ -9E19B Uncompressed Size 000011F4 (4596) │ │ │ │ -9E19F Filename Length 001C (28) │ │ │ │ -9E1A1 Extra Length 0018 (24) │ │ │ │ -9E1A3 Comment Length 0000 (0) │ │ │ │ -9E1A5 Disk Start 0000 (0) │ │ │ │ -9E1A7 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E1A9 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E1AD Local Header Offset 0002B3B2 (177074) │ │ │ │ -9E1B1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E1B1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E1CD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E1CF Length 0005 (5) │ │ │ │ -9E1D1 Flags 01 (1) 'Modification' │ │ │ │ -9E1D2 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E1D6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E1D8 Length 000B (11) │ │ │ │ -9E1DA Version 01 (1) │ │ │ │ -9E1DB UID Size 04 (4) │ │ │ │ -9E1DC UID 00000000 (0) │ │ │ │ -9E1E0 GID Size 04 (4) │ │ │ │ -9E1E1 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E1E5 CENTRAL HEADER #18 02014B50 (33639248) │ │ │ │ -9E1E9 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E1EA Created OS 03 (3) 'Unix' │ │ │ │ -9E1EB Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E1EC Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E1ED General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E1EF Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E1F1 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E1F5 CRC EB30CBDF (3945843679) │ │ │ │ -9E1F9 Compressed Size 0000107B (4219) │ │ │ │ -9E1FD Uncompressed Size 00004BFF (19455) │ │ │ │ -9E201 Filename Length 001B (27) │ │ │ │ -9E203 Extra Length 0018 (24) │ │ │ │ -9E205 Comment Length 0000 (0) │ │ │ │ -9E207 Disk Start 0000 (0) │ │ │ │ -9E209 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E20B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E20F Local Header Offset 0002BAA8 (178856) │ │ │ │ -9E213 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E213: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E22E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E230 Length 0005 (5) │ │ │ │ -9E232 Flags 01 (1) 'Modification' │ │ │ │ -9E233 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E237 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E239 Length 000B (11) │ │ │ │ -9E23B Version 01 (1) │ │ │ │ -9E23C UID Size 04 (4) │ │ │ │ -9E23D UID 00000000 (0) │ │ │ │ -9E241 GID Size 04 (4) │ │ │ │ -9E242 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E246 CENTRAL HEADER #19 02014B50 (33639248) │ │ │ │ -9E24A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E24B Created OS 03 (3) 'Unix' │ │ │ │ -9E24C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E24D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E24E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E250 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E252 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E256 CRC 0931FA1A (154270234) │ │ │ │ -9E25A Compressed Size 000033AB (13227) │ │ │ │ -9E25E Uncompressed Size 0000BC94 (48276) │ │ │ │ -9E262 Filename Length 001D (29) │ │ │ │ -9E264 Extra Length 0018 (24) │ │ │ │ -9E266 Comment Length 0000 (0) │ │ │ │ -9E268 Disk Start 0000 (0) │ │ │ │ -9E26A Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E26C Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E270 Local Header Offset 0002CB78 (183160) │ │ │ │ -9E274 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E274: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E291 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E293 Length 0005 (5) │ │ │ │ -9E295 Flags 01 (1) 'Modification' │ │ │ │ -9E296 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E29A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E29C Length 000B (11) │ │ │ │ -9E29E Version 01 (1) │ │ │ │ -9E29F UID Size 04 (4) │ │ │ │ -9E2A0 UID 00000000 (0) │ │ │ │ -9E2A4 GID Size 04 (4) │ │ │ │ -9E2A5 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E2A9 CENTRAL HEADER #20 02014B50 (33639248) │ │ │ │ -9E2AD Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E2AE Created OS 03 (3) 'Unix' │ │ │ │ -9E2AF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E2B0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E2B1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E2B3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E2B5 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E2B9 CRC C8CACC1B (3368733723) │ │ │ │ -9E2BD Compressed Size 00000D69 (3433) │ │ │ │ -9E2C1 Uncompressed Size 00003876 (14454) │ │ │ │ -9E2C5 Filename Length 001D (29) │ │ │ │ -9E2C7 Extra Length 0018 (24) │ │ │ │ -9E2C9 Comment Length 0000 (0) │ │ │ │ -9E2CB Disk Start 0000 (0) │ │ │ │ -9E2CD Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E2CF Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E2D3 Local Header Offset 0002FF7A (196474) │ │ │ │ -9E2D7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E2D7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E2F4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E2F6 Length 0005 (5) │ │ │ │ -9E2F8 Flags 01 (1) 'Modification' │ │ │ │ -9E2F9 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E2FD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E2FF Length 000B (11) │ │ │ │ -9E301 Version 01 (1) │ │ │ │ -9E302 UID Size 04 (4) │ │ │ │ -9E303 UID 00000000 (0) │ │ │ │ -9E307 GID Size 04 (4) │ │ │ │ -9E308 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E30C CENTRAL HEADER #21 02014B50 (33639248) │ │ │ │ -9E310 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E311 Created OS 03 (3) 'Unix' │ │ │ │ -9E312 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E313 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E314 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E316 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E318 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E31C CRC 9D87D38D (2642924429) │ │ │ │ -9E320 Compressed Size 00001C6C (7276) │ │ │ │ -9E324 Uncompressed Size 0000C186 (49542) │ │ │ │ -9E328 Filename Length 001A (26) │ │ │ │ -9E32A Extra Length 0018 (24) │ │ │ │ -9E32C Comment Length 0000 (0) │ │ │ │ -9E32E Disk Start 0000 (0) │ │ │ │ -9E330 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E332 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E336 Local Header Offset 00030D3A (199994) │ │ │ │ -9E33A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E33A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E354 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E356 Length 0005 (5) │ │ │ │ -9E358 Flags 01 (1) 'Modification' │ │ │ │ -9E359 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E35D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E35F Length 000B (11) │ │ │ │ -9E361 Version 01 (1) │ │ │ │ -9E362 UID Size 04 (4) │ │ │ │ -9E363 UID 00000000 (0) │ │ │ │ -9E367 GID Size 04 (4) │ │ │ │ -9E368 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E36C CENTRAL HEADER #22 02014B50 (33639248) │ │ │ │ -9E370 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E371 Created OS 03 (3) 'Unix' │ │ │ │ -9E372 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E373 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E374 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E376 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E378 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E37C CRC D63ABE1D (3594173981) │ │ │ │ -9E380 Compressed Size 000003A3 (931) │ │ │ │ -9E384 Uncompressed Size 0000088E (2190) │ │ │ │ -9E388 Filename Length 0012 (18) │ │ │ │ -9E38A Extra Length 0018 (24) │ │ │ │ -9E38C Comment Length 0000 (0) │ │ │ │ -9E38E Disk Start 0000 (0) │ │ │ │ -9E390 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E392 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E396 Local Header Offset 000329FA (207354) │ │ │ │ -9E39A Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E39A: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E3AC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E3AE Length 0005 (5) │ │ │ │ -9E3B0 Flags 01 (1) 'Modification' │ │ │ │ -9E3B1 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E3B5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E3B7 Length 000B (11) │ │ │ │ -9E3B9 Version 01 (1) │ │ │ │ -9E3BA UID Size 04 (4) │ │ │ │ -9E3BB UID 00000000 (0) │ │ │ │ -9E3BF GID Size 04 (4) │ │ │ │ -9E3C0 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E3C4 CENTRAL HEADER #23 02014B50 (33639248) │ │ │ │ -9E3C8 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E3C9 Created OS 03 (3) 'Unix' │ │ │ │ -9E3CA Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E3CB Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E3CC General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E3CE Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E3D0 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E3D4 CRC 67B17E06 (1739685382) │ │ │ │ -9E3D8 Compressed Size 000001D4 (468) │ │ │ │ -9E3DC Uncompressed Size 00000311 (785) │ │ │ │ -9E3E0 Filename Length 0020 (32) │ │ │ │ -9E3E2 Extra Length 0018 (24) │ │ │ │ -9E3E4 Comment Length 0000 (0) │ │ │ │ -9E3E6 Disk Start 0000 (0) │ │ │ │ -9E3E8 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E3EA Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E3EE Local Header Offset 00032DE9 (208361) │ │ │ │ -9E3F2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E3F2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E412 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E414 Length 0005 (5) │ │ │ │ -9E416 Flags 01 (1) 'Modification' │ │ │ │ -9E417 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E41B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E41D Length 000B (11) │ │ │ │ -9E41F Version 01 (1) │ │ │ │ -9E420 UID Size 04 (4) │ │ │ │ -9E421 UID 00000000 (0) │ │ │ │ -9E425 GID Size 04 (4) │ │ │ │ -9E426 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E42A CENTRAL HEADER #24 02014B50 (33639248) │ │ │ │ -9E42E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E42F Created OS 03 (3) 'Unix' │ │ │ │ -9E430 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E431 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E432 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E434 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E436 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E43A CRC B3D894D1 (3017315537) │ │ │ │ -9E43E Compressed Size 000017AE (6062) │ │ │ │ -9E442 Uncompressed Size 00009CD3 (40147) │ │ │ │ -9E446 Filename Length 001B (27) │ │ │ │ -9E448 Extra Length 0018 (24) │ │ │ │ -9E44A Comment Length 0000 (0) │ │ │ │ -9E44C Disk Start 0000 (0) │ │ │ │ -9E44E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E450 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E454 Local Header Offset 00033017 (208919) │ │ │ │ -9E458 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E458: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E473 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E475 Length 0005 (5) │ │ │ │ -9E477 Flags 01 (1) 'Modification' │ │ │ │ -9E478 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E47C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E47E Length 000B (11) │ │ │ │ -9E480 Version 01 (1) │ │ │ │ -9E481 UID Size 04 (4) │ │ │ │ -9E482 UID 00000000 (0) │ │ │ │ -9E486 GID Size 04 (4) │ │ │ │ -9E487 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E48B CENTRAL HEADER #25 02014B50 (33639248) │ │ │ │ -9E48F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E490 Created OS 03 (3) 'Unix' │ │ │ │ -9E491 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E492 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E493 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E495 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E497 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E49B CRC 26417E48 (641826376) │ │ │ │ -9E49F Compressed Size 00001371 (4977) │ │ │ │ -9E4A3 Uncompressed Size 00003B66 (15206) │ │ │ │ -9E4A7 Filename Length 0015 (21) │ │ │ │ -9E4A9 Extra Length 0018 (24) │ │ │ │ -9E4AB Comment Length 0000 (0) │ │ │ │ -9E4AD Disk Start 0000 (0) │ │ │ │ -9E4AF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E4B1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E4B5 Local Header Offset 0003481A (215066) │ │ │ │ -9E4B9 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E4B9: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E4CE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E4D0 Length 0005 (5) │ │ │ │ -9E4D2 Flags 01 (1) 'Modification' │ │ │ │ -9E4D3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E4D7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E4D9 Length 000B (11) │ │ │ │ -9E4DB Version 01 (1) │ │ │ │ -9E4DC UID Size 04 (4) │ │ │ │ -9E4DD UID 00000000 (0) │ │ │ │ -9E4E1 GID Size 04 (4) │ │ │ │ -9E4E2 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E4E6 CENTRAL HEADER #26 02014B50 (33639248) │ │ │ │ -9E4EA Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E4EB Created OS 03 (3) 'Unix' │ │ │ │ -9E4EC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E4ED Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E4EE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E4F0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E4F2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E4F6 CRC 8884496A (2290370922) │ │ │ │ -9E4FA Compressed Size 00000AD1 (2769) │ │ │ │ -9E4FE Uncompressed Size 00002135 (8501) │ │ │ │ -9E502 Filename Length 0011 (17) │ │ │ │ -9E504 Extra Length 0018 (24) │ │ │ │ -9E506 Comment Length 0000 (0) │ │ │ │ -9E508 Disk Start 0000 (0) │ │ │ │ -9E50A Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E50C Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E510 Local Header Offset 00035BDA (220122) │ │ │ │ -9E514 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E514: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E525 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E527 Length 0005 (5) │ │ │ │ -9E529 Flags 01 (1) 'Modification' │ │ │ │ -9E52A Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E52E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E530 Length 000B (11) │ │ │ │ -9E532 Version 01 (1) │ │ │ │ -9E533 UID Size 04 (4) │ │ │ │ -9E534 UID 00000000 (0) │ │ │ │ -9E538 GID Size 04 (4) │ │ │ │ -9E539 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E53D CENTRAL HEADER #27 02014B50 (33639248) │ │ │ │ -9E541 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E542 Created OS 03 (3) 'Unix' │ │ │ │ -9E543 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E544 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E545 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E547 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E549 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E54D CRC DB40B17A (3678450042) │ │ │ │ -9E551 Compressed Size 000003FE (1022) │ │ │ │ -9E555 Uncompressed Size 00000E99 (3737) │ │ │ │ -9E559 Filename Length 0014 (20) │ │ │ │ -9E55B Extra Length 0018 (24) │ │ │ │ -9E55D Comment Length 0000 (0) │ │ │ │ -9E55F Disk Start 0000 (0) │ │ │ │ -9E561 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E563 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E567 Local Header Offset 000366F6 (222966) │ │ │ │ -9E56B Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E56B: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E57F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E581 Length 0005 (5) │ │ │ │ -9E583 Flags 01 (1) 'Modification' │ │ │ │ -9E584 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E588 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E58A Length 000B (11) │ │ │ │ -9E58C Version 01 (1) │ │ │ │ -9E58D UID Size 04 (4) │ │ │ │ -9E58E UID 00000000 (0) │ │ │ │ -9E592 GID Size 04 (4) │ │ │ │ -9E593 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E597 CENTRAL HEADER #28 02014B50 (33639248) │ │ │ │ -9E59B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E59C Created OS 03 (3) 'Unix' │ │ │ │ -9E59D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E59E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E59F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E5A1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E5A3 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E5A7 CRC 6E954352 (1855275858) │ │ │ │ -9E5AB Compressed Size 00001262 (4706) │ │ │ │ -9E5AF Uncompressed Size 00003469 (13417) │ │ │ │ -9E5B3 Filename Length 0014 (20) │ │ │ │ -9E5B5 Extra Length 0018 (24) │ │ │ │ -9E5B7 Comment Length 0000 (0) │ │ │ │ -9E5B9 Disk Start 0000 (0) │ │ │ │ -9E5BB Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E5BD Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E5C1 Local Header Offset 00036B42 (224066) │ │ │ │ -9E5C5 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E5C5: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E5D9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E5DB Length 0005 (5) │ │ │ │ -9E5DD Flags 01 (1) 'Modification' │ │ │ │ -9E5DE Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E5E2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E5E4 Length 000B (11) │ │ │ │ -9E5E6 Version 01 (1) │ │ │ │ -9E5E7 UID Size 04 (4) │ │ │ │ -9E5E8 UID 00000000 (0) │ │ │ │ -9E5EC GID Size 04 (4) │ │ │ │ -9E5ED GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E5F1 CENTRAL HEADER #29 02014B50 (33639248) │ │ │ │ -9E5F5 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E5F6 Created OS 03 (3) 'Unix' │ │ │ │ -9E5F7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E5F8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E5F9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E5FB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E5FD Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E601 CRC DB1D4E7B (3676130939) │ │ │ │ -9E605 Compressed Size 00000ACF (2767) │ │ │ │ -9E609 Uncompressed Size 000022FF (8959) │ │ │ │ -9E60D Filename Length 001B (27) │ │ │ │ -9E60F Extra Length 0018 (24) │ │ │ │ -9E611 Comment Length 0000 (0) │ │ │ │ -9E613 Disk Start 0000 (0) │ │ │ │ -9E615 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E617 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E61B Local Header Offset 00037DF2 (228850) │ │ │ │ -9E61F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E61F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E63A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E63C Length 0005 (5) │ │ │ │ -9E63E Flags 01 (1) 'Modification' │ │ │ │ -9E63F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E643 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E645 Length 000B (11) │ │ │ │ -9E647 Version 01 (1) │ │ │ │ -9E648 UID Size 04 (4) │ │ │ │ -9E649 UID 00000000 (0) │ │ │ │ -9E64D GID Size 04 (4) │ │ │ │ -9E64E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E652 CENTRAL HEADER #30 02014B50 (33639248) │ │ │ │ -9E656 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E657 Created OS 03 (3) 'Unix' │ │ │ │ -9E658 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E659 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E65A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E65C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E65E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E662 CRC B74B6217 (3075170839) │ │ │ │ -9E666 Compressed Size 00000A8E (2702) │ │ │ │ -9E66A Uncompressed Size 0000237A (9082) │ │ │ │ -9E66E Filename Length 0013 (19) │ │ │ │ -9E670 Extra Length 0018 (24) │ │ │ │ -9E672 Comment Length 0000 (0) │ │ │ │ -9E674 Disk Start 0000 (0) │ │ │ │ -9E676 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E678 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E67C Local Header Offset 00038916 (231702) │ │ │ │ -9E680 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E680: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E693 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E695 Length 0005 (5) │ │ │ │ -9E697 Flags 01 (1) 'Modification' │ │ │ │ -9E698 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E69C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E69E Length 000B (11) │ │ │ │ -9E6A0 Version 01 (1) │ │ │ │ -9E6A1 UID Size 04 (4) │ │ │ │ -9E6A2 UID 00000000 (0) │ │ │ │ -9E6A6 GID Size 04 (4) │ │ │ │ -9E6A7 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E6AB CENTRAL HEADER #31 02014B50 (33639248) │ │ │ │ -9E6AF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E6B0 Created OS 03 (3) 'Unix' │ │ │ │ -9E6B1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E6B2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E6B3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E6B5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E6B7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E6BB CRC 33B87EA3 (867729059) │ │ │ │ -9E6BF Compressed Size 00000F48 (3912) │ │ │ │ -9E6C3 Uncompressed Size 000036F1 (14065) │ │ │ │ -9E6C7 Filename Length 000F (15) │ │ │ │ -9E6C9 Extra Length 0018 (24) │ │ │ │ -9E6CB Comment Length 0000 (0) │ │ │ │ -9E6CD Disk Start 0000 (0) │ │ │ │ -9E6CF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E6D1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E6D5 Local Header Offset 000393F1 (234481) │ │ │ │ -9E6D9 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E6D9: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E6E8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E6EA Length 0005 (5) │ │ │ │ -9E6EC Flags 01 (1) 'Modification' │ │ │ │ -9E6ED Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E6F1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E6F3 Length 000B (11) │ │ │ │ -9E6F5 Version 01 (1) │ │ │ │ -9E6F6 UID Size 04 (4) │ │ │ │ -9E6F7 UID 00000000 (0) │ │ │ │ -9E6FB GID Size 04 (4) │ │ │ │ -9E6FC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E700 CENTRAL HEADER #32 02014B50 (33639248) │ │ │ │ -9E704 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E705 Created OS 03 (3) 'Unix' │ │ │ │ -9E706 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E707 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E708 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E70A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E70C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E710 CRC 7FB04E29 (2142260777) │ │ │ │ -9E714 Compressed Size 0000066A (1642) │ │ │ │ -9E718 Uncompressed Size 000018DF (6367) │ │ │ │ -9E71C Filename Length 000F (15) │ │ │ │ -9E71E Extra Length 0018 (24) │ │ │ │ -9E720 Comment Length 0000 (0) │ │ │ │ -9E722 Disk Start 0000 (0) │ │ │ │ -9E724 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E726 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E72A Local Header Offset 0003A382 (238466) │ │ │ │ -9E72E Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E72E: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E73D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E73F Length 0005 (5) │ │ │ │ -9E741 Flags 01 (1) 'Modification' │ │ │ │ -9E742 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E746 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E748 Length 000B (11) │ │ │ │ -9E74A Version 01 (1) │ │ │ │ -9E74B UID Size 04 (4) │ │ │ │ -9E74C UID 00000000 (0) │ │ │ │ -9E750 GID Size 04 (4) │ │ │ │ -9E751 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E755 CENTRAL HEADER #33 02014B50 (33639248) │ │ │ │ -9E759 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E75A Created OS 03 (3) 'Unix' │ │ │ │ -9E75B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E75C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E75D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E75F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E761 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E765 CRC 5FF08021 (1609596961) │ │ │ │ -9E769 Compressed Size 00001A4A (6730) │ │ │ │ -9E76D Uncompressed Size 000064F2 (25842) │ │ │ │ -9E771 Filename Length 0013 (19) │ │ │ │ -9E773 Extra Length 0018 (24) │ │ │ │ -9E775 Comment Length 0000 (0) │ │ │ │ -9E777 Disk Start 0000 (0) │ │ │ │ -9E779 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E77B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E77F Local Header Offset 0003AA35 (240181) │ │ │ │ -9E783 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E783: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E796 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E798 Length 0005 (5) │ │ │ │ -9E79A Flags 01 (1) 'Modification' │ │ │ │ -9E79B Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E79F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E7A1 Length 000B (11) │ │ │ │ -9E7A3 Version 01 (1) │ │ │ │ -9E7A4 UID Size 04 (4) │ │ │ │ -9E7A5 UID 00000000 (0) │ │ │ │ -9E7A9 GID Size 04 (4) │ │ │ │ -9E7AA GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E7AE CENTRAL HEADER #34 02014B50 (33639248) │ │ │ │ -9E7B2 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E7B3 Created OS 03 (3) 'Unix' │ │ │ │ -9E7B4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E7B5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E7B6 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E7B8 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E7BA Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E7BE CRC B885C195 (3095773589) │ │ │ │ -9E7C2 Compressed Size 000009A5 (2469) │ │ │ │ -9E7C6 Uncompressed Size 00001B64 (7012) │ │ │ │ -9E7CA Filename Length 0010 (16) │ │ │ │ -9E7CC Extra Length 0018 (24) │ │ │ │ -9E7CE Comment Length 0000 (0) │ │ │ │ -9E7D0 Disk Start 0000 (0) │ │ │ │ -9E7D2 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E7D4 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E7D8 Local Header Offset 0003C4CC (246988) │ │ │ │ -9E7DC Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E7DC: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E7EC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E7EE Length 0005 (5) │ │ │ │ -9E7F0 Flags 01 (1) 'Modification' │ │ │ │ -9E7F1 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E7F5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E7F7 Length 000B (11) │ │ │ │ -9E7F9 Version 01 (1) │ │ │ │ -9E7FA UID Size 04 (4) │ │ │ │ -9E7FB UID 00000000 (0) │ │ │ │ -9E7FF GID Size 04 (4) │ │ │ │ -9E800 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E804 CENTRAL HEADER #35 02014B50 (33639248) │ │ │ │ -9E808 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E809 Created OS 03 (3) 'Unix' │ │ │ │ -9E80A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E80B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E80C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E80E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E810 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E814 CRC 297E5B60 (696146784) │ │ │ │ -9E818 Compressed Size 000006B7 (1719) │ │ │ │ -9E81C Uncompressed Size 00001565 (5477) │ │ │ │ -9E820 Filename Length 0012 (18) │ │ │ │ -9E822 Extra Length 0018 (24) │ │ │ │ -9E824 Comment Length 0000 (0) │ │ │ │ -9E826 Disk Start 0000 (0) │ │ │ │ -9E828 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E82A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E82E Local Header Offset 0003CEBB (249531) │ │ │ │ -9E832 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E832: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E844 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E846 Length 0005 (5) │ │ │ │ -9E848 Flags 01 (1) 'Modification' │ │ │ │ -9E849 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E84D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E84F Length 000B (11) │ │ │ │ -9E851 Version 01 (1) │ │ │ │ -9E852 UID Size 04 (4) │ │ │ │ -9E853 UID 00000000 (0) │ │ │ │ -9E857 GID Size 04 (4) │ │ │ │ -9E858 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E85C CENTRAL HEADER #36 02014B50 (33639248) │ │ │ │ -9E860 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E861 Created OS 03 (3) 'Unix' │ │ │ │ -9E862 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E863 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E864 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E866 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E868 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E86C CRC 963999A8 (2520357288) │ │ │ │ -9E870 Compressed Size 00002A16 (10774) │ │ │ │ -9E874 Uncompressed Size 0000B1C5 (45509) │ │ │ │ -9E878 Filename Length 0010 (16) │ │ │ │ -9E87A Extra Length 0018 (24) │ │ │ │ -9E87C Comment Length 0000 (0) │ │ │ │ -9E87E Disk Start 0000 (0) │ │ │ │ -9E880 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E882 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E886 Local Header Offset 0003D5BE (251326) │ │ │ │ -9E88A Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E88A: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E89A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E89C Length 0005 (5) │ │ │ │ -9E89E Flags 01 (1) 'Modification' │ │ │ │ -9E89F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E8A3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E8A5 Length 000B (11) │ │ │ │ -9E8A7 Version 01 (1) │ │ │ │ -9E8A8 UID Size 04 (4) │ │ │ │ -9E8A9 UID 00000000 (0) │ │ │ │ -9E8AD GID Size 04 (4) │ │ │ │ -9E8AE GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E8B2 CENTRAL HEADER #37 02014B50 (33639248) │ │ │ │ -9E8B6 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E8B7 Created OS 03 (3) 'Unix' │ │ │ │ -9E8B8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E8B9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E8BA General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E8BC Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E8BE Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E8C2 CRC 412FC61A (1093649946) │ │ │ │ -9E8C6 Compressed Size 00001E8C (7820) │ │ │ │ -9E8CA Uncompressed Size 00009AAA (39594) │ │ │ │ -9E8CE Filename Length 0012 (18) │ │ │ │ -9E8D0 Extra Length 0018 (24) │ │ │ │ -9E8D2 Comment Length 0000 (0) │ │ │ │ -9E8D4 Disk Start 0000 (0) │ │ │ │ -9E8D6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E8D8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E8DC Local Header Offset 0004001E (262174) │ │ │ │ -9E8E0 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E8E0: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E8F2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E8F4 Length 0005 (5) │ │ │ │ -9E8F6 Flags 01 (1) 'Modification' │ │ │ │ -9E8F7 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E8FB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E8FD Length 000B (11) │ │ │ │ -9E8FF Version 01 (1) │ │ │ │ -9E900 UID Size 04 (4) │ │ │ │ -9E901 UID 00000000 (0) │ │ │ │ -9E905 GID Size 04 (4) │ │ │ │ -9E906 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E90A CENTRAL HEADER #38 02014B50 (33639248) │ │ │ │ -9E90E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E90F Created OS 03 (3) 'Unix' │ │ │ │ -9E910 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E911 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E912 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E914 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E916 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E91A CRC 889828DF (2291673311) │ │ │ │ -9E91E Compressed Size 00001479 (5241) │ │ │ │ -9E922 Uncompressed Size 00007ACF (31439) │ │ │ │ -9E926 Filename Length 0018 (24) │ │ │ │ -9E928 Extra Length 0018 (24) │ │ │ │ -9E92A Comment Length 0000 (0) │ │ │ │ -9E92C Disk Start 0000 (0) │ │ │ │ -9E92E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E930 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E934 Local Header Offset 00041EF6 (270070) │ │ │ │ -9E938 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E938: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E950 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E952 Length 0005 (5) │ │ │ │ -9E954 Flags 01 (1) 'Modification' │ │ │ │ -9E955 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E959 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E95B Length 000B (11) │ │ │ │ -9E95D Version 01 (1) │ │ │ │ -9E95E UID Size 04 (4) │ │ │ │ -9E95F UID 00000000 (0) │ │ │ │ -9E963 GID Size 04 (4) │ │ │ │ -9E964 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E968 CENTRAL HEADER #39 02014B50 (33639248) │ │ │ │ -9E96C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E96D Created OS 03 (3) 'Unix' │ │ │ │ -9E96E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E96F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E970 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E972 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E974 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E978 CRC 2812718D (672297357) │ │ │ │ -9E97C Compressed Size 000018D3 (6355) │ │ │ │ -9E980 Uncompressed Size 0000A7F4 (42996) │ │ │ │ -9E984 Filename Length 001F (31) │ │ │ │ -9E986 Extra Length 0018 (24) │ │ │ │ -9E988 Comment Length 0000 (0) │ │ │ │ -9E98A Disk Start 0000 (0) │ │ │ │ -9E98C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E98E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E992 Local Header Offset 000433C1 (275393) │ │ │ │ -9E996 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E996: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9E9B5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9E9B7 Length 0005 (5) │ │ │ │ -9E9B9 Flags 01 (1) 'Modification' │ │ │ │ -9E9BA Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E9BE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9E9C0 Length 000B (11) │ │ │ │ -9E9C2 Version 01 (1) │ │ │ │ -9E9C3 UID Size 04 (4) │ │ │ │ -9E9C4 UID 00000000 (0) │ │ │ │ -9E9C8 GID Size 04 (4) │ │ │ │ -9E9C9 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9E9CD CENTRAL HEADER #40 02014B50 (33639248) │ │ │ │ -9E9D1 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9E9D2 Created OS 03 (3) 'Unix' │ │ │ │ -9E9D3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9E9D4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9E9D5 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9E9D7 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9E9D9 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9E9DD CRC 705BC16B (1885061483) │ │ │ │ -9E9E1 Compressed Size 000003F7 (1015) │ │ │ │ -9E9E5 Uncompressed Size 000008A3 (2211) │ │ │ │ -9E9E9 Filename Length 001E (30) │ │ │ │ -9E9EB Extra Length 0018 (24) │ │ │ │ -9E9ED Comment Length 0000 (0) │ │ │ │ -9E9EF Disk Start 0000 (0) │ │ │ │ -9E9F1 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9E9F3 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9E9F7 Local Header Offset 00044CED (281837) │ │ │ │ -9E9FB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9E9FB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EA19 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EA1B Length 0005 (5) │ │ │ │ -9EA1D Flags 01 (1) 'Modification' │ │ │ │ -9EA1E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EA22 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EA24 Length 000B (11) │ │ │ │ -9EA26 Version 01 (1) │ │ │ │ -9EA27 UID Size 04 (4) │ │ │ │ -9EA28 UID 00000000 (0) │ │ │ │ -9EA2C GID Size 04 (4) │ │ │ │ -9EA2D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EA31 CENTRAL HEADER #41 02014B50 (33639248) │ │ │ │ -9EA35 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EA36 Created OS 03 (3) 'Unix' │ │ │ │ -9EA37 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EA38 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EA39 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EA3B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EA3D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EA41 CRC BAFC6D2D (3137105197) │ │ │ │ -9EA45 Compressed Size 00004293 (17043) │ │ │ │ -9EA49 Uncompressed Size 0000D8DC (55516) │ │ │ │ -9EA4D Filename Length 0013 (19) │ │ │ │ -9EA4F Extra Length 0018 (24) │ │ │ │ -9EA51 Comment Length 0000 (0) │ │ │ │ -9EA53 Disk Start 0000 (0) │ │ │ │ -9EA55 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EA57 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EA5B Local Header Offset 0004513C (282940) │ │ │ │ -9EA5F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EA5F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EA72 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EA74 Length 0005 (5) │ │ │ │ -9EA76 Flags 01 (1) 'Modification' │ │ │ │ -9EA77 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EA7B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EA7D Length 000B (11) │ │ │ │ -9EA7F Version 01 (1) │ │ │ │ -9EA80 UID Size 04 (4) │ │ │ │ -9EA81 UID 00000000 (0) │ │ │ │ -9EA85 GID Size 04 (4) │ │ │ │ -9EA86 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EA8A CENTRAL HEADER #42 02014B50 (33639248) │ │ │ │ -9EA8E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EA8F Created OS 03 (3) 'Unix' │ │ │ │ -9EA90 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EA91 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EA92 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EA94 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EA96 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EA9A CRC 49C65647 (1237734983) │ │ │ │ -9EA9E Compressed Size 000026C3 (9923) │ │ │ │ -9EAA2 Uncompressed Size 00006E45 (28229) │ │ │ │ -9EAA6 Filename Length 0019 (25) │ │ │ │ -9EAA8 Extra Length 0018 (24) │ │ │ │ -9EAAA Comment Length 0000 (0) │ │ │ │ -9EAAC Disk Start 0000 (0) │ │ │ │ -9EAAE Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EAB0 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EAB4 Local Header Offset 0004941C (300060) │ │ │ │ -9EAB8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EAB8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EAD1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EAD3 Length 0005 (5) │ │ │ │ -9EAD5 Flags 01 (1) 'Modification' │ │ │ │ -9EAD6 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EADA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EADC Length 000B (11) │ │ │ │ -9EADE Version 01 (1) │ │ │ │ -9EADF UID Size 04 (4) │ │ │ │ -9EAE0 UID 00000000 (0) │ │ │ │ -9EAE4 GID Size 04 (4) │ │ │ │ -9EAE5 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EAE9 CENTRAL HEADER #43 02014B50 (33639248) │ │ │ │ -9EAED Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EAEE Created OS 03 (3) 'Unix' │ │ │ │ -9EAEF Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EAF0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EAF1 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EAF3 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EAF5 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EAF9 CRC 063987F6 (104433654) │ │ │ │ -9EAFD Compressed Size 0000273A (10042) │ │ │ │ -9EB01 Uncompressed Size 00008B83 (35715) │ │ │ │ -9EB05 Filename Length 0019 (25) │ │ │ │ -9EB07 Extra Length 0018 (24) │ │ │ │ -9EB09 Comment Length 0000 (0) │ │ │ │ -9EB0B Disk Start 0000 (0) │ │ │ │ -9EB0D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EB0F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EB13 Local Header Offset 0004BB32 (310066) │ │ │ │ -9EB17 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EB17: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EB30 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EB32 Length 0005 (5) │ │ │ │ -9EB34 Flags 01 (1) 'Modification' │ │ │ │ -9EB35 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EB39 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EB3B Length 000B (11) │ │ │ │ -9EB3D Version 01 (1) │ │ │ │ -9EB3E UID Size 04 (4) │ │ │ │ -9EB3F UID 00000000 (0) │ │ │ │ -9EB43 GID Size 04 (4) │ │ │ │ -9EB44 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EB48 CENTRAL HEADER #44 02014B50 (33639248) │ │ │ │ -9EB4C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EB4D Created OS 03 (3) 'Unix' │ │ │ │ -9EB4E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EB4F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EB50 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EB52 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EB54 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EB58 CRC F2DA5952 (4074395986) │ │ │ │ -9EB5C Compressed Size 00000CEE (3310) │ │ │ │ -9EB60 Uncompressed Size 0000517A (20858) │ │ │ │ -9EB64 Filename Length 0021 (33) │ │ │ │ -9EB66 Extra Length 0018 (24) │ │ │ │ -9EB68 Comment Length 0000 (0) │ │ │ │ -9EB6A Disk Start 0000 (0) │ │ │ │ -9EB6C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EB6E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EB72 Local Header Offset 0004E2BF (320191) │ │ │ │ -9EB76 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EB76: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EB97 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EB99 Length 0005 (5) │ │ │ │ -9EB9B Flags 01 (1) 'Modification' │ │ │ │ -9EB9C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EBA0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EBA2 Length 000B (11) │ │ │ │ -9EBA4 Version 01 (1) │ │ │ │ -9EBA5 UID Size 04 (4) │ │ │ │ -9EBA6 UID 00000000 (0) │ │ │ │ -9EBAA GID Size 04 (4) │ │ │ │ -9EBAB GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EBAF CENTRAL HEADER #45 02014B50 (33639248) │ │ │ │ -9EBB3 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EBB4 Created OS 03 (3) 'Unix' │ │ │ │ -9EBB5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EBB6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EBB7 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EBB9 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EBBB Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EBBF CRC 8C66FDEA (2355559914) │ │ │ │ -9EBC3 Compressed Size 00000468 (1128) │ │ │ │ -9EBC7 Uncompressed Size 00000931 (2353) │ │ │ │ -9EBCB Filename Length 001B (27) │ │ │ │ -9EBCD Extra Length 0018 (24) │ │ │ │ -9EBCF Comment Length 0000 (0) │ │ │ │ -9EBD1 Disk Start 0000 (0) │ │ │ │ -9EBD3 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EBD5 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EBD9 Local Header Offset 0004F008 (323592) │ │ │ │ -9EBDD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EBDD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EBF8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EBFA Length 0005 (5) │ │ │ │ -9EBFC Flags 01 (1) 'Modification' │ │ │ │ -9EBFD Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EC01 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EC03 Length 000B (11) │ │ │ │ -9EC05 Version 01 (1) │ │ │ │ -9EC06 UID Size 04 (4) │ │ │ │ -9EC07 UID 00000000 (0) │ │ │ │ -9EC0B GID Size 04 (4) │ │ │ │ -9EC0C GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EC10 CENTRAL HEADER #46 02014B50 (33639248) │ │ │ │ -9EC14 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EC15 Created OS 03 (3) 'Unix' │ │ │ │ -9EC16 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EC17 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EC18 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EC1A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EC1C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EC20 CRC FC713245 (4235276869) │ │ │ │ -9EC24 Compressed Size 000016F4 (5876) │ │ │ │ -9EC28 Uncompressed Size 00007A6D (31341) │ │ │ │ -9EC2C Filename Length 001F (31) │ │ │ │ -9EC2E Extra Length 0018 (24) │ │ │ │ -9EC30 Comment Length 0000 (0) │ │ │ │ -9EC32 Disk Start 0000 (0) │ │ │ │ -9EC34 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EC36 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EC3A Local Header Offset 0004F4C5 (324805) │ │ │ │ -9EC3E Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EC3E: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EC5D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EC5F Length 0005 (5) │ │ │ │ -9EC61 Flags 01 (1) 'Modification' │ │ │ │ -9EC62 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EC66 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EC68 Length 000B (11) │ │ │ │ -9EC6A Version 01 (1) │ │ │ │ -9EC6B UID Size 04 (4) │ │ │ │ -9EC6C UID 00000000 (0) │ │ │ │ -9EC70 GID Size 04 (4) │ │ │ │ -9EC71 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EC75 CENTRAL HEADER #47 02014B50 (33639248) │ │ │ │ -9EC79 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EC7A Created OS 03 (3) 'Unix' │ │ │ │ -9EC7B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EC7C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EC7D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EC7F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EC81 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EC85 CRC 6703890F (1728284943) │ │ │ │ -9EC89 Compressed Size 00004177 (16759) │ │ │ │ -9EC8D Uncompressed Size 0001CF93 (118675) │ │ │ │ -9EC91 Filename Length 0010 (16) │ │ │ │ -9EC93 Extra Length 0018 (24) │ │ │ │ -9EC95 Comment Length 0000 (0) │ │ │ │ -9EC97 Disk Start 0000 (0) │ │ │ │ -9EC99 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EC9B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EC9F Local Header Offset 00050C12 (330770) │ │ │ │ -9ECA3 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ECA3: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ECB3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ECB5 Length 0005 (5) │ │ │ │ -9ECB7 Flags 01 (1) 'Modification' │ │ │ │ -9ECB8 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ECBC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ECBE Length 000B (11) │ │ │ │ -9ECC0 Version 01 (1) │ │ │ │ -9ECC1 UID Size 04 (4) │ │ │ │ -9ECC2 UID 00000000 (0) │ │ │ │ -9ECC6 GID Size 04 (4) │ │ │ │ -9ECC7 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ECCB CENTRAL HEADER #48 02014B50 (33639248) │ │ │ │ -9ECCF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ECD0 Created OS 03 (3) 'Unix' │ │ │ │ -9ECD1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ECD2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ECD3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ECD5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ECD7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ECDB CRC 7903D415 (2030294037) │ │ │ │ -9ECDF Compressed Size 00000A94 (2708) │ │ │ │ -9ECE3 Uncompressed Size 00002105 (8453) │ │ │ │ -9ECE7 Filename Length 0014 (20) │ │ │ │ -9ECE9 Extra Length 0018 (24) │ │ │ │ -9ECEB Comment Length 0000 (0) │ │ │ │ -9ECED Disk Start 0000 (0) │ │ │ │ -9ECEF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9ECF1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9ECF5 Local Header Offset 00054DD3 (347603) │ │ │ │ -9ECF9 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ECF9: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ED0D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ED0F Length 0005 (5) │ │ │ │ -9ED11 Flags 01 (1) 'Modification' │ │ │ │ -9ED12 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ED16 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ED18 Length 000B (11) │ │ │ │ -9ED1A Version 01 (1) │ │ │ │ -9ED1B UID Size 04 (4) │ │ │ │ -9ED1C UID 00000000 (0) │ │ │ │ -9ED20 GID Size 04 (4) │ │ │ │ -9ED21 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ED25 CENTRAL HEADER #49 02014B50 (33639248) │ │ │ │ -9ED29 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ED2A Created OS 03 (3) 'Unix' │ │ │ │ -9ED2B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ED2C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ED2D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ED2F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ED31 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ED35 CRC 1D304539 (489702713) │ │ │ │ -9ED39 Compressed Size 0000AC97 (44183) │ │ │ │ -9ED3D Uncompressed Size 0003E418 (255000) │ │ │ │ -9ED41 Filename Length 0017 (23) │ │ │ │ -9ED43 Extra Length 0018 (24) │ │ │ │ -9ED45 Comment Length 0000 (0) │ │ │ │ -9ED47 Disk Start 0000 (0) │ │ │ │ -9ED49 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9ED4B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9ED4F Local Header Offset 000558B5 (350389) │ │ │ │ -9ED53 Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9ED53: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9ED6A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9ED6C Length 0005 (5) │ │ │ │ -9ED6E Flags 01 (1) 'Modification' │ │ │ │ -9ED6F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ED73 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9ED75 Length 000B (11) │ │ │ │ -9ED77 Version 01 (1) │ │ │ │ -9ED78 UID Size 04 (4) │ │ │ │ -9ED79 UID 00000000 (0) │ │ │ │ -9ED7D GID Size 04 (4) │ │ │ │ -9ED7E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9ED82 CENTRAL HEADER #50 02014B50 (33639248) │ │ │ │ -9ED86 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9ED87 Created OS 03 (3) 'Unix' │ │ │ │ -9ED88 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9ED89 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9ED8A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9ED8C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9ED8E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9ED92 CRC 73C7E563 (1942480227) │ │ │ │ -9ED96 Compressed Size 00000400 (1024) │ │ │ │ -9ED9A Uncompressed Size 0000093D (2365) │ │ │ │ -9ED9E Filename Length 0013 (19) │ │ │ │ -9EDA0 Extra Length 0018 (24) │ │ │ │ -9EDA2 Comment Length 0000 (0) │ │ │ │ -9EDA4 Disk Start 0000 (0) │ │ │ │ -9EDA6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EDA8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EDAC Local Header Offset 0006059D (394653) │ │ │ │ -9EDB0 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EDB0: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EDC3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EDC5 Length 0005 (5) │ │ │ │ -9EDC7 Flags 01 (1) 'Modification' │ │ │ │ -9EDC8 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EDCC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EDCE Length 000B (11) │ │ │ │ -9EDD0 Version 01 (1) │ │ │ │ -9EDD1 UID Size 04 (4) │ │ │ │ -9EDD2 UID 00000000 (0) │ │ │ │ -9EDD6 GID Size 04 (4) │ │ │ │ -9EDD7 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EDDB CENTRAL HEADER #51 02014B50 (33639248) │ │ │ │ -9EDDF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EDE0 Created OS 03 (3) 'Unix' │ │ │ │ -9EDE1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EDE2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EDE3 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EDE5 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EDE7 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EDEB CRC 7EF400B8 (2129920184) │ │ │ │ -9EDEF Compressed Size 000014E5 (5349) │ │ │ │ -9EDF3 Uncompressed Size 0000687B (26747) │ │ │ │ -9EDF7 Filename Length 0012 (18) │ │ │ │ -9EDF9 Extra Length 0018 (24) │ │ │ │ -9EDFB Comment Length 0000 (0) │ │ │ │ -9EDFD Disk Start 0000 (0) │ │ │ │ -9EDFF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EE01 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EE05 Local Header Offset 000609EA (395754) │ │ │ │ -9EE09 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EE09: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EE1B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EE1D Length 0005 (5) │ │ │ │ -9EE1F Flags 01 (1) 'Modification' │ │ │ │ -9EE20 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EE24 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EE26 Length 000B (11) │ │ │ │ -9EE28 Version 01 (1) │ │ │ │ -9EE29 UID Size 04 (4) │ │ │ │ -9EE2A UID 00000000 (0) │ │ │ │ -9EE2E GID Size 04 (4) │ │ │ │ -9EE2F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EE33 CENTRAL HEADER #52 02014B50 (33639248) │ │ │ │ -9EE37 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EE38 Created OS 03 (3) 'Unix' │ │ │ │ -9EE39 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EE3A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EE3B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EE3D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EE3F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EE43 CRC 693EF524 (1765733668) │ │ │ │ -9EE47 Compressed Size 000011EB (4587) │ │ │ │ -9EE4B Uncompressed Size 000040F5 (16629) │ │ │ │ -9EE4F Filename Length 0012 (18) │ │ │ │ -9EE51 Extra Length 0018 (24) │ │ │ │ -9EE53 Comment Length 0000 (0) │ │ │ │ -9EE55 Disk Start 0000 (0) │ │ │ │ -9EE57 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EE59 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EE5D Local Header Offset 00061F1B (401179) │ │ │ │ -9EE61 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EE61: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EE73 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EE75 Length 0005 (5) │ │ │ │ -9EE77 Flags 01 (1) 'Modification' │ │ │ │ -9EE78 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EE7C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EE7E Length 000B (11) │ │ │ │ -9EE80 Version 01 (1) │ │ │ │ -9EE81 UID Size 04 (4) │ │ │ │ -9EE82 UID 00000000 (0) │ │ │ │ -9EE86 GID Size 04 (4) │ │ │ │ -9EE87 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EE8B CENTRAL HEADER #53 02014B50 (33639248) │ │ │ │ -9EE8F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EE90 Created OS 03 (3) 'Unix' │ │ │ │ -9EE91 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EE92 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EE93 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EE95 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EE97 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EE9B CRC 23CF3462 (600781922) │ │ │ │ -9EE9F Compressed Size 000009DA (2522) │ │ │ │ -9EEA3 Uncompressed Size 00003529 (13609) │ │ │ │ -9EEA7 Filename Length 0019 (25) │ │ │ │ -9EEA9 Extra Length 0018 (24) │ │ │ │ -9EEAB Comment Length 0000 (0) │ │ │ │ -9EEAD Disk Start 0000 (0) │ │ │ │ -9EEAF Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EEB1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EEB5 Local Header Offset 00063152 (405842) │ │ │ │ -9EEB9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EEB9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EED2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EED4 Length 0005 (5) │ │ │ │ -9EED6 Flags 01 (1) 'Modification' │ │ │ │ -9EED7 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EEDB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EEDD Length 000B (11) │ │ │ │ -9EEDF Version 01 (1) │ │ │ │ -9EEE0 UID Size 04 (4) │ │ │ │ -9EEE1 UID 00000000 (0) │ │ │ │ -9EEE5 GID Size 04 (4) │ │ │ │ -9EEE6 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EEEA CENTRAL HEADER #54 02014B50 (33639248) │ │ │ │ -9EEEE Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EEEF Created OS 03 (3) 'Unix' │ │ │ │ -9EEF0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EEF1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EEF2 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EEF4 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EEF6 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EEFA CRC 3E165161 (1041650017) │ │ │ │ -9EEFE Compressed Size 000018B0 (6320) │ │ │ │ -9EF02 Uncompressed Size 0000A605 (42501) │ │ │ │ -9EF06 Filename Length 0019 (25) │ │ │ │ -9EF08 Extra Length 0018 (24) │ │ │ │ -9EF0A Comment Length 0000 (0) │ │ │ │ -9EF0C Disk Start 0000 (0) │ │ │ │ -9EF0E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EF10 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EF14 Local Header Offset 00063B7F (408447) │ │ │ │ -9EF18 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EF18: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EF31 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EF33 Length 0005 (5) │ │ │ │ -9EF35 Flags 01 (1) 'Modification' │ │ │ │ -9EF36 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EF3A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EF3C Length 000B (11) │ │ │ │ -9EF3E Version 01 (1) │ │ │ │ -9EF3F UID Size 04 (4) │ │ │ │ -9EF40 UID 00000000 (0) │ │ │ │ -9EF44 GID Size 04 (4) │ │ │ │ -9EF45 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EF49 CENTRAL HEADER #55 02014B50 (33639248) │ │ │ │ -9EF4D Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EF4E Created OS 03 (3) 'Unix' │ │ │ │ -9EF4F Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EF50 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EF51 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EF53 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EF55 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EF59 CRC 80854D35 (2156219701) │ │ │ │ -9EF5D Compressed Size 0000177D (6013) │ │ │ │ -9EF61 Uncompressed Size 0000472C (18220) │ │ │ │ -9EF65 Filename Length 0014 (20) │ │ │ │ -9EF67 Extra Length 0018 (24) │ │ │ │ -9EF69 Comment Length 0000 (0) │ │ │ │ -9EF6B Disk Start 0000 (0) │ │ │ │ -9EF6D Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EF6F Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EF73 Local Header Offset 00065482 (414850) │ │ │ │ -9EF77 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EF77: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EF8B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EF8D Length 0005 (5) │ │ │ │ -9EF8F Flags 01 (1) 'Modification' │ │ │ │ -9EF90 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EF94 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EF96 Length 000B (11) │ │ │ │ -9EF98 Version 01 (1) │ │ │ │ -9EF99 UID Size 04 (4) │ │ │ │ -9EF9A UID 00000000 (0) │ │ │ │ -9EF9E GID Size 04 (4) │ │ │ │ -9EF9F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9EFA3 CENTRAL HEADER #56 02014B50 (33639248) │ │ │ │ -9EFA7 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9EFA8 Created OS 03 (3) 'Unix' │ │ │ │ -9EFA9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9EFAA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9EFAB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9EFAD Compression Method 0008 (8) 'Deflated' │ │ │ │ -9EFAF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EFB3 CRC 8CE827B6 (2364024758) │ │ │ │ -9EFB7 Compressed Size 0000040A (1034) │ │ │ │ -9EFBB Uncompressed Size 00000825 (2085) │ │ │ │ -9EFBF Filename Length 001C (28) │ │ │ │ -9EFC1 Extra Length 0018 (24) │ │ │ │ -9EFC3 Comment Length 0000 (0) │ │ │ │ -9EFC5 Disk Start 0000 (0) │ │ │ │ -9EFC7 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9EFC9 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9EFCD Local Header Offset 00066C4D (420941) │ │ │ │ -9EFD1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9EFD1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9EFED Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9EFEF Length 0005 (5) │ │ │ │ -9EFF1 Flags 01 (1) 'Modification' │ │ │ │ -9EFF2 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9EFF6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9EFF8 Length 000B (11) │ │ │ │ -9EFFA Version 01 (1) │ │ │ │ -9EFFB UID Size 04 (4) │ │ │ │ -9EFFC UID 00000000 (0) │ │ │ │ -9F000 GID Size 04 (4) │ │ │ │ -9F001 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F005 CENTRAL HEADER #57 02014B50 (33639248) │ │ │ │ -9F009 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F00A Created OS 03 (3) 'Unix' │ │ │ │ -9F00B Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F00C Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F00D General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F00F Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F011 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F015 CRC 060C597A (101472634) │ │ │ │ -9F019 Compressed Size 00002480 (9344) │ │ │ │ -9F01D Uncompressed Size 0000B56F (46447) │ │ │ │ -9F021 Filename Length 001F (31) │ │ │ │ -9F023 Extra Length 0018 (24) │ │ │ │ -9F025 Comment Length 0000 (0) │ │ │ │ -9F027 Disk Start 0000 (0) │ │ │ │ -9F029 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F02B Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F02F Local Header Offset 000670AD (422061) │ │ │ │ -9F033 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F033: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F052 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F054 Length 0005 (5) │ │ │ │ -9F056 Flags 01 (1) 'Modification' │ │ │ │ -9F057 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F05B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F05D Length 000B (11) │ │ │ │ -9F05F Version 01 (1) │ │ │ │ -9F060 UID Size 04 (4) │ │ │ │ -9F061 UID 00000000 (0) │ │ │ │ -9F065 GID Size 04 (4) │ │ │ │ -9F066 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F06A CENTRAL HEADER #58 02014B50 (33639248) │ │ │ │ -9F06E Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F06F Created OS 03 (3) 'Unix' │ │ │ │ -9F070 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F071 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F072 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F074 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F076 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F07A CRC F8304094 (4163911828) │ │ │ │ -9F07E Compressed Size 00000E78 (3704) │ │ │ │ -9F082 Uncompressed Size 000052D9 (21209) │ │ │ │ -9F086 Filename Length 001F (31) │ │ │ │ -9F088 Extra Length 0018 (24) │ │ │ │ -9F08A Comment Length 0000 (0) │ │ │ │ -9F08C Disk Start 0000 (0) │ │ │ │ -9F08E Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F090 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F094 Local Header Offset 00069586 (431494) │ │ │ │ -9F098 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F098: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F0B7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F0B9 Length 0005 (5) │ │ │ │ -9F0BB Flags 01 (1) 'Modification' │ │ │ │ -9F0BC Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F0C0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F0C2 Length 000B (11) │ │ │ │ -9F0C4 Version 01 (1) │ │ │ │ -9F0C5 UID Size 04 (4) │ │ │ │ -9F0C6 UID 00000000 (0) │ │ │ │ -9F0CA GID Size 04 (4) │ │ │ │ -9F0CB GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F0CF CENTRAL HEADER #59 02014B50 (33639248) │ │ │ │ -9F0D3 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F0D4 Created OS 03 (3) 'Unix' │ │ │ │ -9F0D5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F0D6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F0D7 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F0D9 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F0DB Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F0DF CRC B30F51A1 (3004125601) │ │ │ │ -9F0E3 Compressed Size 00000A44 (2628) │ │ │ │ -9F0E7 Uncompressed Size 0000247A (9338) │ │ │ │ -9F0EB Filename Length 0013 (19) │ │ │ │ -9F0ED Extra Length 0018 (24) │ │ │ │ -9F0EF Comment Length 0000 (0) │ │ │ │ -9F0F1 Disk Start 0000 (0) │ │ │ │ -9F0F3 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F0F5 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F0F9 Local Header Offset 0006A457 (435287) │ │ │ │ -9F0FD Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F0FD: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F110 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F112 Length 0005 (5) │ │ │ │ -9F114 Flags 01 (1) 'Modification' │ │ │ │ -9F115 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F119 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F11B Length 000B (11) │ │ │ │ -9F11D Version 01 (1) │ │ │ │ -9F11E UID Size 04 (4) │ │ │ │ -9F11F UID 00000000 (0) │ │ │ │ -9F123 GID Size 04 (4) │ │ │ │ -9F124 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F128 CENTRAL HEADER #60 02014B50 (33639248) │ │ │ │ -9F12C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F12D Created OS 03 (3) 'Unix' │ │ │ │ -9F12E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F12F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F130 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F132 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F134 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F138 CRC 1E73B85F (510900319) │ │ │ │ -9F13C Compressed Size 00002487 (9351) │ │ │ │ -9F140 Uncompressed Size 0000B84C (47180) │ │ │ │ -9F144 Filename Length 0019 (25) │ │ │ │ -9F146 Extra Length 0018 (24) │ │ │ │ -9F148 Comment Length 0000 (0) │ │ │ │ -9F14A Disk Start 0000 (0) │ │ │ │ -9F14C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F14E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F152 Local Header Offset 0006AEE8 (437992) │ │ │ │ -9F156 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F156: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F16F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F171 Length 0005 (5) │ │ │ │ -9F173 Flags 01 (1) 'Modification' │ │ │ │ -9F174 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F178 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F17A Length 000B (11) │ │ │ │ -9F17C Version 01 (1) │ │ │ │ -9F17D UID Size 04 (4) │ │ │ │ -9F17E UID 00000000 (0) │ │ │ │ -9F182 GID Size 04 (4) │ │ │ │ -9F183 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F187 CENTRAL HEADER #61 02014B50 (33639248) │ │ │ │ -9F18B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F18C Created OS 03 (3) 'Unix' │ │ │ │ -9F18D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F18E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F18F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F191 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F193 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F197 CRC 685E5016 (1751011350) │ │ │ │ -9F19B Compressed Size 00000EF9 (3833) │ │ │ │ -9F19F Uncompressed Size 00003A2C (14892) │ │ │ │ -9F1A3 Filename Length 0024 (36) │ │ │ │ -9F1A5 Extra Length 0018 (24) │ │ │ │ -9F1A7 Comment Length 0000 (0) │ │ │ │ -9F1A9 Disk Start 0000 (0) │ │ │ │ -9F1AB Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F1AD Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F1B1 Local Header Offset 0006D3C2 (447426) │ │ │ │ -9F1B5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F1B5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F1D9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F1DB Length 0005 (5) │ │ │ │ -9F1DD Flags 01 (1) 'Modification' │ │ │ │ -9F1DE Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F1E2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F1E4 Length 000B (11) │ │ │ │ -9F1E6 Version 01 (1) │ │ │ │ -9F1E7 UID Size 04 (4) │ │ │ │ -9F1E8 UID 00000000 (0) │ │ │ │ -9F1EC GID Size 04 (4) │ │ │ │ -9F1ED GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F1F1 CENTRAL HEADER #62 02014B50 (33639248) │ │ │ │ -9F1F5 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F1F6 Created OS 03 (3) 'Unix' │ │ │ │ -9F1F7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F1F8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F1F9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F1FB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F1FD Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F201 CRC 25BAB0D7 (632991959) │ │ │ │ -9F205 Compressed Size 00001AC2 (6850) │ │ │ │ -9F209 Uncompressed Size 00005EDC (24284) │ │ │ │ -9F20D Filename Length 0017 (23) │ │ │ │ -9F20F Extra Length 0018 (24) │ │ │ │ -9F211 Comment Length 0000 (0) │ │ │ │ -9F213 Disk Start 0000 (0) │ │ │ │ -9F215 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F217 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F21B Local Header Offset 0006E319 (451353) │ │ │ │ -9F21F Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F21F: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F236 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F238 Length 0005 (5) │ │ │ │ -9F23A Flags 01 (1) 'Modification' │ │ │ │ -9F23B Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F23F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F241 Length 000B (11) │ │ │ │ -9F243 Version 01 (1) │ │ │ │ -9F244 UID Size 04 (4) │ │ │ │ -9F245 UID 00000000 (0) │ │ │ │ -9F249 GID Size 04 (4) │ │ │ │ -9F24A GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F24E CENTRAL HEADER #63 02014B50 (33639248) │ │ │ │ -9F252 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F253 Created OS 03 (3) 'Unix' │ │ │ │ -9F254 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F255 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F256 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F258 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F25A Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F25E CRC 11E32AF1 (300100337) │ │ │ │ -9F262 Compressed Size 00000ED3 (3795) │ │ │ │ -9F266 Uncompressed Size 000038E2 (14562) │ │ │ │ -9F26A Filename Length 0023 (35) │ │ │ │ -9F26C Extra Length 0018 (24) │ │ │ │ -9F26E Comment Length 0000 (0) │ │ │ │ -9F270 Disk Start 0000 (0) │ │ │ │ -9F272 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F274 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F278 Local Header Offset 0006FE2C (458284) │ │ │ │ -9F27C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F27C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F29F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F2A1 Length 0005 (5) │ │ │ │ -9F2A3 Flags 01 (1) 'Modification' │ │ │ │ -9F2A4 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F2A8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F2AA Length 000B (11) │ │ │ │ -9F2AC Version 01 (1) │ │ │ │ -9F2AD UID Size 04 (4) │ │ │ │ -9F2AE UID 00000000 (0) │ │ │ │ -9F2B2 GID Size 04 (4) │ │ │ │ -9F2B3 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F2B7 CENTRAL HEADER #64 02014B50 (33639248) │ │ │ │ -9F2BB Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F2BC Created OS 03 (3) 'Unix' │ │ │ │ -9F2BD Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F2BE Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F2BF General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F2C1 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F2C3 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F2C7 CRC 2DB7929F (767005343) │ │ │ │ -9F2CB Compressed Size 00000113 (275) │ │ │ │ -9F2CF Uncompressed Size 000001F3 (499) │ │ │ │ -9F2D3 Filename Length 001B (27) │ │ │ │ -9F2D5 Extra Length 0018 (24) │ │ │ │ -9F2D7 Comment Length 0000 (0) │ │ │ │ -9F2D9 Disk Start 0000 (0) │ │ │ │ -9F2DB Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F2DD Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F2E1 Local Header Offset 00070D5C (462172) │ │ │ │ -9F2E5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F2E5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F300 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F302 Length 0005 (5) │ │ │ │ -9F304 Flags 01 (1) 'Modification' │ │ │ │ -9F305 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F309 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F30B Length 000B (11) │ │ │ │ -9F30D Version 01 (1) │ │ │ │ -9F30E UID Size 04 (4) │ │ │ │ -9F30F UID 00000000 (0) │ │ │ │ -9F313 GID Size 04 (4) │ │ │ │ -9F314 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F318 CENTRAL HEADER #65 02014B50 (33639248) │ │ │ │ -9F31C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F31D Created OS 03 (3) 'Unix' │ │ │ │ -9F31E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F31F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F320 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F322 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F324 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F328 CRC AA7430BF (2859741375) │ │ │ │ -9F32C Compressed Size 00001890 (6288) │ │ │ │ -9F330 Uncompressed Size 00008FAC (36780) │ │ │ │ -9F334 Filename Length 001D (29) │ │ │ │ -9F336 Extra Length 0018 (24) │ │ │ │ -9F338 Comment Length 0000 (0) │ │ │ │ -9F33A Disk Start 0000 (0) │ │ │ │ -9F33C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F33E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F342 Local Header Offset 00070EC4 (462532) │ │ │ │ -9F346 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F346: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F363 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F365 Length 0005 (5) │ │ │ │ -9F367 Flags 01 (1) 'Modification' │ │ │ │ -9F368 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F36C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F36E Length 000B (11) │ │ │ │ -9F370 Version 01 (1) │ │ │ │ -9F371 UID Size 04 (4) │ │ │ │ -9F372 UID 00000000 (0) │ │ │ │ -9F376 GID Size 04 (4) │ │ │ │ -9F377 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F37B CENTRAL HEADER #66 02014B50 (33639248) │ │ │ │ -9F37F Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F380 Created OS 03 (3) 'Unix' │ │ │ │ -9F381 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F382 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F383 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F385 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F387 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F38B CRC 5F656D2A (1600482602) │ │ │ │ -9F38F Compressed Size 0000164C (5708) │ │ │ │ -9F393 Uncompressed Size 00003A9B (15003) │ │ │ │ -9F397 Filename Length 0015 (21) │ │ │ │ -9F399 Extra Length 0018 (24) │ │ │ │ -9F39B Comment Length 0000 (0) │ │ │ │ -9F39D Disk Start 0000 (0) │ │ │ │ -9F39F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F3A1 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F3A5 Local Header Offset 000727AB (468907) │ │ │ │ -9F3A9 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F3A9: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F3BE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F3C0 Length 0005 (5) │ │ │ │ -9F3C2 Flags 01 (1) 'Modification' │ │ │ │ -9F3C3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F3C7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F3C9 Length 000B (11) │ │ │ │ -9F3CB Version 01 (1) │ │ │ │ -9F3CC UID Size 04 (4) │ │ │ │ -9F3CD UID 00000000 (0) │ │ │ │ -9F3D1 GID Size 04 (4) │ │ │ │ -9F3D2 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F3D6 CENTRAL HEADER #67 02014B50 (33639248) │ │ │ │ -9F3DA Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F3DB Created OS 03 (3) 'Unix' │ │ │ │ -9F3DC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F3DD Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F3DE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F3E0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F3E2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F3E6 CRC DBD9148D (3688436877) │ │ │ │ -9F3EA Compressed Size 00003B4F (15183) │ │ │ │ -9F3EE Uncompressed Size 0001185B (71771) │ │ │ │ -9F3F2 Filename Length 0016 (22) │ │ │ │ -9F3F4 Extra Length 0018 (24) │ │ │ │ -9F3F6 Comment Length 0000 (0) │ │ │ │ -9F3F8 Disk Start 0000 (0) │ │ │ │ -9F3FA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F3FC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F400 Local Header Offset 00073E46 (474694) │ │ │ │ -9F404 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F404: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F41A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F41C Length 0005 (5) │ │ │ │ -9F41E Flags 01 (1) 'Modification' │ │ │ │ -9F41F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F423 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F425 Length 000B (11) │ │ │ │ -9F427 Version 01 (1) │ │ │ │ -9F428 UID Size 04 (4) │ │ │ │ -9F429 UID 00000000 (0) │ │ │ │ -9F42D GID Size 04 (4) │ │ │ │ -9F42E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F432 CENTRAL HEADER #68 02014B50 (33639248) │ │ │ │ -9F436 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F437 Created OS 03 (3) 'Unix' │ │ │ │ -9F438 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F439 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F43A General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F43C Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F43E Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F442 CRC C7B6EF21 (3350654753) │ │ │ │ -9F446 Compressed Size 00003E88 (16008) │ │ │ │ -9F44A Uncompressed Size 0001C17B (115067) │ │ │ │ -9F44E Filename Length 0019 (25) │ │ │ │ -9F450 Extra Length 0018 (24) │ │ │ │ -9F452 Comment Length 0000 (0) │ │ │ │ -9F454 Disk Start 0000 (0) │ │ │ │ -9F456 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F458 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F45C Local Header Offset 000779E5 (489957) │ │ │ │ -9F460 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F460: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F479 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F47B Length 0005 (5) │ │ │ │ -9F47D Flags 01 (1) 'Modification' │ │ │ │ -9F47E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F482 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F484 Length 000B (11) │ │ │ │ -9F486 Version 01 (1) │ │ │ │ -9F487 UID Size 04 (4) │ │ │ │ -9F488 UID 00000000 (0) │ │ │ │ -9F48C GID Size 04 (4) │ │ │ │ -9F48D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F491 CENTRAL HEADER #69 02014B50 (33639248) │ │ │ │ -9F495 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F496 Created OS 03 (3) 'Unix' │ │ │ │ -9F497 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F498 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F499 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F49B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F49D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F4A1 CRC 59E53244 (1508192836) │ │ │ │ -9F4A5 Compressed Size 00000835 (2101) │ │ │ │ -9F4A9 Uncompressed Size 00003383 (13187) │ │ │ │ -9F4AD Filename Length 0011 (17) │ │ │ │ -9F4AF Extra Length 0018 (24) │ │ │ │ -9F4B1 Comment Length 0000 (0) │ │ │ │ -9F4B3 Disk Start 0000 (0) │ │ │ │ -9F4B5 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F4B7 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F4BB Local Header Offset 0007B8C0 (506048) │ │ │ │ -9F4BF Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F4BF: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F4D0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F4D2 Length 0005 (5) │ │ │ │ -9F4D4 Flags 01 (1) 'Modification' │ │ │ │ -9F4D5 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F4D9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F4DB Length 000B (11) │ │ │ │ -9F4DD Version 01 (1) │ │ │ │ -9F4DE UID Size 04 (4) │ │ │ │ -9F4DF UID 00000000 (0) │ │ │ │ -9F4E3 GID Size 04 (4) │ │ │ │ -9F4E4 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F4E8 CENTRAL HEADER #70 02014B50 (33639248) │ │ │ │ -9F4EC Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F4ED Created OS 03 (3) 'Unix' │ │ │ │ -9F4EE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F4EF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F4F0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F4F2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F4F4 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F4F8 CRC D1DF86DD (3521087197) │ │ │ │ -9F4FC Compressed Size 00005184 (20868) │ │ │ │ -9F500 Uncompressed Size 0001FB6C (129900) │ │ │ │ -9F504 Filename Length 0015 (21) │ │ │ │ -9F506 Extra Length 0018 (24) │ │ │ │ -9F508 Comment Length 0000 (0) │ │ │ │ -9F50A Disk Start 0000 (0) │ │ │ │ -9F50C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F50E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F512 Local Header Offset 0007C140 (508224) │ │ │ │ -9F516 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F516: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F52B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F52D Length 0005 (5) │ │ │ │ -9F52F Flags 01 (1) 'Modification' │ │ │ │ -9F530 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F534 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F536 Length 000B (11) │ │ │ │ -9F538 Version 01 (1) │ │ │ │ -9F539 UID Size 04 (4) │ │ │ │ -9F53A UID 00000000 (0) │ │ │ │ -9F53E GID Size 04 (4) │ │ │ │ -9F53F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F543 CENTRAL HEADER #71 02014B50 (33639248) │ │ │ │ -9F547 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F548 Created OS 03 (3) 'Unix' │ │ │ │ -9F549 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F54A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F54B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F54D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F54F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F553 CRC 419D467F (1100826239) │ │ │ │ -9F557 Compressed Size 00001B0A (6922) │ │ │ │ -9F55B Uncompressed Size 000081CF (33231) │ │ │ │ -9F55F Filename Length 0019 (25) │ │ │ │ -9F561 Extra Length 0018 (24) │ │ │ │ -9F563 Comment Length 0000 (0) │ │ │ │ -9F565 Disk Start 0000 (0) │ │ │ │ -9F567 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F569 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F56D Local Header Offset 00081313 (529171) │ │ │ │ -9F571 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F571: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F58A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F58C Length 0005 (5) │ │ │ │ -9F58E Flags 01 (1) 'Modification' │ │ │ │ -9F58F Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F593 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F595 Length 000B (11) │ │ │ │ -9F597 Version 01 (1) │ │ │ │ -9F598 UID Size 04 (4) │ │ │ │ -9F599 UID 00000000 (0) │ │ │ │ -9F59D GID Size 04 (4) │ │ │ │ -9F59E GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F5A2 CENTRAL HEADER #72 02014B50 (33639248) │ │ │ │ -9F5A6 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F5A7 Created OS 03 (3) 'Unix' │ │ │ │ -9F5A8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F5A9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F5AA General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F5AC Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F5AE Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F5B2 CRC 49C11139 (1237389625) │ │ │ │ -9F5B6 Compressed Size 00000D97 (3479) │ │ │ │ -9F5BA Uncompressed Size 00002E9F (11935) │ │ │ │ -9F5BE Filename Length 0018 (24) │ │ │ │ -9F5C0 Extra Length 0018 (24) │ │ │ │ -9F5C2 Comment Length 0000 (0) │ │ │ │ -9F5C4 Disk Start 0000 (0) │ │ │ │ -9F5C6 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F5C8 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F5CC Local Header Offset 00082E70 (536176) │ │ │ │ -9F5D0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F5D0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F5E8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F5EA Length 0005 (5) │ │ │ │ -9F5EC Flags 01 (1) 'Modification' │ │ │ │ -9F5ED Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F5F1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F5F3 Length 000B (11) │ │ │ │ -9F5F5 Version 01 (1) │ │ │ │ -9F5F6 UID Size 04 (4) │ │ │ │ -9F5F7 UID 00000000 (0) │ │ │ │ -9F5FB GID Size 04 (4) │ │ │ │ -9F5FC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F600 CENTRAL HEADER #73 02014B50 (33639248) │ │ │ │ -9F604 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F605 Created OS 03 (3) 'Unix' │ │ │ │ -9F606 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F607 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F608 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F60A Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F60C Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F610 CRC 0350D61E (55629342) │ │ │ │ -9F614 Compressed Size 000001E0 (480) │ │ │ │ -9F618 Uncompressed Size 00000323 (803) │ │ │ │ -9F61C Filename Length 0011 (17) │ │ │ │ -9F61E Extra Length 0018 (24) │ │ │ │ -9F620 Comment Length 0000 (0) │ │ │ │ -9F622 Disk Start 0000 (0) │ │ │ │ -9F624 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F626 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F62A Local Header Offset 00083C59 (539737) │ │ │ │ -9F62E Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F62E: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F63F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F641 Length 0005 (5) │ │ │ │ -9F643 Flags 01 (1) 'Modification' │ │ │ │ -9F644 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F648 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F64A Length 000B (11) │ │ │ │ -9F64C Version 01 (1) │ │ │ │ -9F64D UID Size 04 (4) │ │ │ │ -9F64E UID 00000000 (0) │ │ │ │ -9F652 GID Size 04 (4) │ │ │ │ -9F653 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F657 CENTRAL HEADER #74 02014B50 (33639248) │ │ │ │ -9F65B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F65C Created OS 03 (3) 'Unix' │ │ │ │ -9F65D Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F65E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F65F General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F661 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F663 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F667 CRC 3FD13568 (1070675304) │ │ │ │ -9F66B Compressed Size 000006C2 (1730) │ │ │ │ -9F66F Uncompressed Size 00001439 (5177) │ │ │ │ -9F673 Filename Length 0019 (25) │ │ │ │ -9F675 Extra Length 0018 (24) │ │ │ │ -9F677 Comment Length 0000 (0) │ │ │ │ -9F679 Disk Start 0000 (0) │ │ │ │ -9F67B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F67D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F681 Local Header Offset 00083E84 (540292) │ │ │ │ -9F685 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F685: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F69E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F6A0 Length 0005 (5) │ │ │ │ -9F6A2 Flags 01 (1) 'Modification' │ │ │ │ -9F6A3 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F6A7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F6A9 Length 000B (11) │ │ │ │ -9F6AB Version 01 (1) │ │ │ │ -9F6AC UID Size 04 (4) │ │ │ │ -9F6AD UID 00000000 (0) │ │ │ │ -9F6B1 GID Size 04 (4) │ │ │ │ -9F6B2 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F6B6 CENTRAL HEADER #75 02014B50 (33639248) │ │ │ │ -9F6BA Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F6BB Created OS 03 (3) 'Unix' │ │ │ │ -9F6BC Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F6BD Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F6BE General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F6C0 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F6C2 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F6C6 CRC 89473D13 (2303147283) │ │ │ │ -9F6CA Compressed Size 00001B8B (7051) │ │ │ │ -9F6CE Uncompressed Size 00009F03 (40707) │ │ │ │ -9F6D2 Filename Length 0018 (24) │ │ │ │ -9F6D4 Extra Length 0018 (24) │ │ │ │ -9F6D6 Comment Length 0000 (0) │ │ │ │ -9F6D8 Disk Start 0000 (0) │ │ │ │ -9F6DA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F6DC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F6E0 Local Header Offset 00084599 (542105) │ │ │ │ -9F6E4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F6E4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F6FC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F6FE Length 0005 (5) │ │ │ │ -9F700 Flags 01 (1) 'Modification' │ │ │ │ -9F701 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F705 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F707 Length 000B (11) │ │ │ │ -9F709 Version 01 (1) │ │ │ │ -9F70A UID Size 04 (4) │ │ │ │ -9F70B UID 00000000 (0) │ │ │ │ -9F70F GID Size 04 (4) │ │ │ │ -9F710 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F714 CENTRAL HEADER #76 02014B50 (33639248) │ │ │ │ -9F718 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F719 Created OS 03 (3) 'Unix' │ │ │ │ -9F71A Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F71B Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F71C General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F71E Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F720 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F724 CRC D941FB49 (3644980041) │ │ │ │ -9F728 Compressed Size 000016FB (5883) │ │ │ │ -9F72C Uncompressed Size 00008AB6 (35510) │ │ │ │ -9F730 Filename Length 0012 (18) │ │ │ │ -9F732 Extra Length 0018 (24) │ │ │ │ -9F734 Comment Length 0000 (0) │ │ │ │ -9F736 Disk Start 0000 (0) │ │ │ │ -9F738 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F73A Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F73E Local Header Offset 00086176 (549238) │ │ │ │ -9F742 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F742: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F754 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F756 Length 0005 (5) │ │ │ │ -9F758 Flags 01 (1) 'Modification' │ │ │ │ -9F759 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F75D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F75F Length 000B (11) │ │ │ │ -9F761 Version 01 (1) │ │ │ │ -9F762 UID Size 04 (4) │ │ │ │ -9F763 UID 00000000 (0) │ │ │ │ -9F767 GID Size 04 (4) │ │ │ │ -9F768 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F76C CENTRAL HEADER #77 02014B50 (33639248) │ │ │ │ -9F770 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F771 Created OS 03 (3) 'Unix' │ │ │ │ -9F772 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F773 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F774 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F776 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F778 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F77C CRC F5B21857 (4122089559) │ │ │ │ -9F780 Compressed Size 00001E15 (7701) │ │ │ │ -9F784 Uncompressed Size 00008803 (34819) │ │ │ │ -9F788 Filename Length 0016 (22) │ │ │ │ -9F78A Extra Length 0018 (24) │ │ │ │ -9F78C Comment Length 0000 (0) │ │ │ │ -9F78E Disk Start 0000 (0) │ │ │ │ -9F790 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F792 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F796 Local Header Offset 000878BD (555197) │ │ │ │ -9F79A Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F79A: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F7B0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F7B2 Length 0005 (5) │ │ │ │ -9F7B4 Flags 01 (1) 'Modification' │ │ │ │ -9F7B5 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F7B9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F7BB Length 000B (11) │ │ │ │ -9F7BD Version 01 (1) │ │ │ │ -9F7BE UID Size 04 (4) │ │ │ │ -9F7BF UID 00000000 (0) │ │ │ │ -9F7C3 GID Size 04 (4) │ │ │ │ -9F7C4 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F7C8 CENTRAL HEADER #78 02014B50 (33639248) │ │ │ │ -9F7CC Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F7CD Created OS 03 (3) 'Unix' │ │ │ │ -9F7CE Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F7CF Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F7D0 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F7D2 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F7D4 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F7D8 CRC B502BD51 (3036855633) │ │ │ │ -9F7DC Compressed Size 000029A6 (10662) │ │ │ │ -9F7E0 Uncompressed Size 0000D04F (53327) │ │ │ │ -9F7E4 Filename Length 001A (26) │ │ │ │ -9F7E6 Extra Length 0018 (24) │ │ │ │ -9F7E8 Comment Length 0000 (0) │ │ │ │ -9F7EA Disk Start 0000 (0) │ │ │ │ -9F7EC Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F7EE Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F7F2 Local Header Offset 00089722 (562978) │ │ │ │ -9F7F6 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F7F6: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F810 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F812 Length 0005 (5) │ │ │ │ -9F814 Flags 01 (1) 'Modification' │ │ │ │ -9F815 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F819 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F81B Length 000B (11) │ │ │ │ -9F81D Version 01 (1) │ │ │ │ -9F81E UID Size 04 (4) │ │ │ │ -9F81F UID 00000000 (0) │ │ │ │ -9F823 GID Size 04 (4) │ │ │ │ -9F824 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F828 CENTRAL HEADER #79 02014B50 (33639248) │ │ │ │ -9F82C Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F82D Created OS 03 (3) 'Unix' │ │ │ │ -9F82E Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F82F Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F830 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F832 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F834 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F838 CRC 82C57F0D (2193981197) │ │ │ │ -9F83C Compressed Size 000009AC (2476) │ │ │ │ -9F840 Uncompressed Size 00001DB6 (7606) │ │ │ │ -9F844 Filename Length 0018 (24) │ │ │ │ -9F846 Extra Length 0018 (24) │ │ │ │ -9F848 Comment Length 0000 (0) │ │ │ │ -9F84A Disk Start 0000 (0) │ │ │ │ -9F84C Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F84E Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F852 Local Header Offset 0008C11C (573724) │ │ │ │ -9F856 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F856: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F86E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F870 Length 0005 (5) │ │ │ │ -9F872 Flags 01 (1) 'Modification' │ │ │ │ -9F873 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F877 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F879 Length 000B (11) │ │ │ │ -9F87B Version 01 (1) │ │ │ │ -9F87C UID Size 04 (4) │ │ │ │ -9F87D UID 00000000 (0) │ │ │ │ -9F881 GID Size 04 (4) │ │ │ │ -9F882 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F886 CENTRAL HEADER #80 02014B50 (33639248) │ │ │ │ -9F88A Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F88B Created OS 03 (3) 'Unix' │ │ │ │ -9F88C Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F88D Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F88E General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F890 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F892 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F896 CRC F5E2129F (4125233823) │ │ │ │ -9F89A Compressed Size 000016BC (5820) │ │ │ │ -9F89E Uncompressed Size 000016CD (5837) │ │ │ │ -9F8A2 Filename Length 0015 (21) │ │ │ │ -9F8A4 Extra Length 0018 (24) │ │ │ │ -9F8A6 Comment Length 0000 (0) │ │ │ │ -9F8A8 Disk Start 0000 (0) │ │ │ │ -9F8AA Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F8AC Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F8B0 Local Header Offset 0008CB1A (576282) │ │ │ │ -9F8B4 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F8B4: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F8C9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F8CB Length 0005 (5) │ │ │ │ -9F8CD Flags 01 (1) 'Modification' │ │ │ │ -9F8CE Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F8D2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F8D4 Length 000B (11) │ │ │ │ -9F8D6 Version 01 (1) │ │ │ │ -9F8D7 UID Size 04 (4) │ │ │ │ -9F8D8 UID 00000000 (0) │ │ │ │ -9F8DC GID Size 04 (4) │ │ │ │ -9F8DD GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F8E1 CENTRAL HEADER #81 02014B50 (33639248) │ │ │ │ -9F8E5 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F8E6 Created OS 03 (3) 'Unix' │ │ │ │ -9F8E7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9F8E8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F8E9 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9F8EB Compression Method 0008 (8) 'Deflated' │ │ │ │ -9F8ED Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F8F1 CRC F5E2129F (4125233823) │ │ │ │ -9F8F5 Compressed Size 000016BC (5820) │ │ │ │ -9F8F9 Uncompressed Size 000016CD (5837) │ │ │ │ -9F8FD Filename Length 001C (28) │ │ │ │ -9F8FF Extra Length 0018 (24) │ │ │ │ -9F901 Comment Length 0000 (0) │ │ │ │ -9F903 Disk Start 0000 (0) │ │ │ │ -9F905 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F907 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F90B Local Header Offset 0008E225 (582181) │ │ │ │ -9F90F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F90F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F92B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F92D Length 0005 (5) │ │ │ │ -9F92F Flags 01 (1) 'Modification' │ │ │ │ -9F930 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F934 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F936 Length 000B (11) │ │ │ │ -9F938 Version 01 (1) │ │ │ │ -9F939 UID Size 04 (4) │ │ │ │ -9F93A UID 00000000 (0) │ │ │ │ -9F93E GID Size 04 (4) │ │ │ │ -9F93F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F943 CENTRAL HEADER #82 02014B50 (33639248) │ │ │ │ -9F947 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F948 Created OS 03 (3) 'Unix' │ │ │ │ -9F949 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9F94A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F94B General Purpose Flag 0000 (0) │ │ │ │ -9F94D Compression Method 0000 (0) 'Stored' │ │ │ │ -9F94F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F953 CRC FC95F24B (4237685323) │ │ │ │ -9F957 Compressed Size 00001B84 (7044) │ │ │ │ -9F95B Uncompressed Size 00001B84 (7044) │ │ │ │ -9F95F Filename Length 0016 (22) │ │ │ │ -9F961 Extra Length 0018 (24) │ │ │ │ -9F963 Comment Length 0000 (0) │ │ │ │ -9F965 Disk Start 0000 (0) │ │ │ │ -9F967 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F969 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F96D Local Header Offset 0008F937 (588087) │ │ │ │ -9F971 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F971: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F987 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F989 Length 0005 (5) │ │ │ │ -9F98B Flags 01 (1) 'Modification' │ │ │ │ -9F98C Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F990 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F992 Length 000B (11) │ │ │ │ -9F994 Version 01 (1) │ │ │ │ -9F995 UID Size 04 (4) │ │ │ │ -9F996 UID 00000000 (0) │ │ │ │ -9F99A GID Size 04 (4) │ │ │ │ -9F99B GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F99F CENTRAL HEADER #83 02014B50 (33639248) │ │ │ │ -9F9A3 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9F9A4 Created OS 03 (3) 'Unix' │ │ │ │ -9F9A5 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9F9A6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9F9A7 General Purpose Flag 0000 (0) │ │ │ │ -9F9A9 Compression Method 0000 (0) 'Stored' │ │ │ │ -9F9AB Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F9AF CRC D0D71F86 (3503759238) │ │ │ │ -9F9B3 Compressed Size 00000B7B (2939) │ │ │ │ -9F9B7 Uncompressed Size 00000B7B (2939) │ │ │ │ -9F9BB Filename Length 0016 (22) │ │ │ │ -9F9BD Extra Length 0018 (24) │ │ │ │ -9F9BF Comment Length 0000 (0) │ │ │ │ -9F9C1 Disk Start 0000 (0) │ │ │ │ -9F9C3 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9F9C5 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9F9C9 Local Header Offset 0009150B (595211) │ │ │ │ -9F9CD Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9F9CD: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9F9E3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9F9E5 Length 0005 (5) │ │ │ │ -9F9E7 Flags 01 (1) 'Modification' │ │ │ │ -9F9E8 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9F9EC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9F9EE Length 000B (11) │ │ │ │ -9F9F0 Version 01 (1) │ │ │ │ -9F9F1 UID Size 04 (4) │ │ │ │ -9F9F2 UID 00000000 (0) │ │ │ │ -9F9F6 GID Size 04 (4) │ │ │ │ -9F9F7 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9F9FB CENTRAL HEADER #84 02014B50 (33639248) │ │ │ │ -9F9FF Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FA00 Created OS 03 (3) 'Unix' │ │ │ │ -9FA01 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FA02 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FA03 General Purpose Flag 0000 (0) │ │ │ │ -9FA05 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FA07 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FA0B CRC FFF9C4D2 (4294558930) │ │ │ │ -9FA0F Compressed Size 0000138F (5007) │ │ │ │ -9FA13 Uncompressed Size 0000138F (5007) │ │ │ │ -9FA17 Filename Length 0016 (22) │ │ │ │ -9FA19 Extra Length 0018 (24) │ │ │ │ -9FA1B Comment Length 0000 (0) │ │ │ │ -9FA1D Disk Start 0000 (0) │ │ │ │ -9FA1F Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FA21 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FA25 Local Header Offset 000920D6 (598230) │ │ │ │ -9FA29 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FA29: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FA3F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FA41 Length 0005 (5) │ │ │ │ -9FA43 Flags 01 (1) 'Modification' │ │ │ │ -9FA44 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FA48 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FA4A Length 000B (11) │ │ │ │ -9FA4C Version 01 (1) │ │ │ │ -9FA4D UID Size 04 (4) │ │ │ │ -9FA4E UID 00000000 (0) │ │ │ │ -9FA52 GID Size 04 (4) │ │ │ │ -9FA53 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FA57 CENTRAL HEADER #85 02014B50 (33639248) │ │ │ │ -9FA5B Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FA5C Created OS 03 (3) 'Unix' │ │ │ │ -9FA5D Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FA5E Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FA5F General Purpose Flag 0000 (0) │ │ │ │ -9FA61 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FA63 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FA67 CRC A1037E8E (2701360782) │ │ │ │ -9FA6B Compressed Size 0000145E (5214) │ │ │ │ -9FA6F Uncompressed Size 0000145E (5214) │ │ │ │ -9FA73 Filename Length 0016 (22) │ │ │ │ -9FA75 Extra Length 0018 (24) │ │ │ │ -9FA77 Comment Length 0000 (0) │ │ │ │ -9FA79 Disk Start 0000 (0) │ │ │ │ -9FA7B Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FA7D Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FA81 Local Header Offset 000934B5 (603317) │ │ │ │ -9FA85 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FA85: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FA9B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FA9D Length 0005 (5) │ │ │ │ -9FA9F Flags 01 (1) 'Modification' │ │ │ │ -9FAA0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FAA4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FAA6 Length 000B (11) │ │ │ │ -9FAA8 Version 01 (1) │ │ │ │ -9FAA9 UID Size 04 (4) │ │ │ │ -9FAAA UID 00000000 (0) │ │ │ │ -9FAAE GID Size 04 (4) │ │ │ │ -9FAAF GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FAB3 CENTRAL HEADER #86 02014B50 (33639248) │ │ │ │ -9FAB7 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FAB8 Created OS 03 (3) 'Unix' │ │ │ │ -9FAB9 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FABA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FABB General Purpose Flag 0000 (0) │ │ │ │ -9FABD Compression Method 0000 (0) 'Stored' │ │ │ │ -9FABF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FAC3 CRC 5E9E64F1 (1587438833) │ │ │ │ -9FAC7 Compressed Size 000008EC (2284) │ │ │ │ -9FACB Uncompressed Size 000008EC (2284) │ │ │ │ -9FACF Filename Length 0016 (22) │ │ │ │ -9FAD1 Extra Length 0018 (24) │ │ │ │ -9FAD3 Comment Length 0000 (0) │ │ │ │ -9FAD5 Disk Start 0000 (0) │ │ │ │ -9FAD7 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FAD9 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FADD Local Header Offset 00094963 (608611) │ │ │ │ -9FAE1 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FAE1: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FAF7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FAF9 Length 0005 (5) │ │ │ │ -9FAFB Flags 01 (1) 'Modification' │ │ │ │ -9FAFC Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FB00 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FB02 Length 000B (11) │ │ │ │ -9FB04 Version 01 (1) │ │ │ │ -9FB05 UID Size 04 (4) │ │ │ │ -9FB06 UID 00000000 (0) │ │ │ │ -9FB0A GID Size 04 (4) │ │ │ │ -9FB0B GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FB0F CENTRAL HEADER #87 02014B50 (33639248) │ │ │ │ -9FB13 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FB14 Created OS 03 (3) 'Unix' │ │ │ │ -9FB15 Extract Zip Spec 0A (10) '1.0' │ │ │ │ -9FB16 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FB17 General Purpose Flag 0000 (0) │ │ │ │ -9FB19 Compression Method 0000 (0) 'Stored' │ │ │ │ -9FB1B Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FB1F CRC 42E340AB (1122189483) │ │ │ │ -9FB23 Compressed Size 00001F2E (7982) │ │ │ │ -9FB27 Uncompressed Size 00001F2E (7982) │ │ │ │ -9FB2B Filename Length 001E (30) │ │ │ │ -9FB2D Extra Length 0018 (24) │ │ │ │ -9FB2F Comment Length 0000 (0) │ │ │ │ -9FB31 Disk Start 0000 (0) │ │ │ │ -9FB33 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FB35 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FB39 Local Header Offset 0009529F (610975) │ │ │ │ -9FB3D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FB3D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FB5B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FB5D Length 0005 (5) │ │ │ │ -9FB5F Flags 01 (1) 'Modification' │ │ │ │ -9FB60 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FB64 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FB66 Length 000B (11) │ │ │ │ -9FB68 Version 01 (1) │ │ │ │ -9FB69 UID Size 04 (4) │ │ │ │ -9FB6A UID 00000000 (0) │ │ │ │ -9FB6E GID Size 04 (4) │ │ │ │ -9FB6F GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FB73 CENTRAL HEADER #88 02014B50 (33639248) │ │ │ │ -9FB77 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FB78 Created OS 03 (3) 'Unix' │ │ │ │ -9FB79 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FB7A Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FB7B General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FB7D Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FB7F Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FB83 CRC AB590681 (2874738305) │ │ │ │ -9FB87 Compressed Size 00003D6A (15722) │ │ │ │ -9FB8B Uncompressed Size 00016649 (91721) │ │ │ │ -9FB8F Filename Length 001A (26) │ │ │ │ -9FB91 Extra Length 0018 (24) │ │ │ │ -9FB93 Comment Length 0000 (0) │ │ │ │ -9FB95 Disk Start 0000 (0) │ │ │ │ -9FB97 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FB99 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FB9D Local Header Offset 00097225 (619045) │ │ │ │ -9FBA1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FBA1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FBBB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FBBD Length 0005 (5) │ │ │ │ -9FBBF Flags 01 (1) 'Modification' │ │ │ │ -9FBC0 Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FBC4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FBC6 Length 000B (11) │ │ │ │ -9FBC8 Version 01 (1) │ │ │ │ -9FBC9 UID Size 04 (4) │ │ │ │ -9FBCA UID 00000000 (0) │ │ │ │ -9FBCE GID Size 04 (4) │ │ │ │ -9FBCF GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FBD3 CENTRAL HEADER #89 02014B50 (33639248) │ │ │ │ -9FBD7 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FBD8 Created OS 03 (3) 'Unix' │ │ │ │ -9FBD9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FBDA Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FBDB General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FBDD Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FBDF Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FBE3 CRC 4A57375D (1247229789) │ │ │ │ -9FBE7 Compressed Size 000029BA (10682) │ │ │ │ -9FBEB Uncompressed Size 0000BA6A (47722) │ │ │ │ -9FBEF Filename Length 0018 (24) │ │ │ │ -9FBF1 Extra Length 0018 (24) │ │ │ │ -9FBF3 Comment Length 0000 (0) │ │ │ │ -9FBF5 Disk Start 0000 (0) │ │ │ │ -9FBF7 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FBF9 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FBFD Local Header Offset 0009AFE3 (634851) │ │ │ │ -9FC01 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FC01: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FC19 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FC1B Length 0005 (5) │ │ │ │ -9FC1D Flags 01 (1) 'Modification' │ │ │ │ -9FC1E Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FC22 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FC24 Length 000B (11) │ │ │ │ -9FC26 Version 01 (1) │ │ │ │ -9FC27 UID Size 04 (4) │ │ │ │ -9FC28 UID 00000000 (0) │ │ │ │ -9FC2C GID Size 04 (4) │ │ │ │ -9FC2D GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FC31 CENTRAL HEADER #90 02014B50 (33639248) │ │ │ │ -9FC35 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FC36 Created OS 03 (3) 'Unix' │ │ │ │ -9FC37 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FC38 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FC39 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FC3B Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FC3D Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FC41 CRC DCB3B516 (3702764822) │ │ │ │ -9FC45 Compressed Size 000000AE (174) │ │ │ │ -9FC49 Uncompressed Size 000000FC (252) │ │ │ │ -9FC4D Filename Length 0016 (22) │ │ │ │ -9FC4F Extra Length 0018 (24) │ │ │ │ -9FC51 Comment Length 0000 (0) │ │ │ │ -9FC53 Disk Start 0000 (0) │ │ │ │ -9FC55 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FC57 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FC5B Local Header Offset 0009D9EF (645615) │ │ │ │ -9FC5F Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FC5F: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FC75 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FC77 Length 0005 (5) │ │ │ │ -9FC79 Flags 01 (1) 'Modification' │ │ │ │ -9FC7A Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FC7E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FC80 Length 000B (11) │ │ │ │ -9FC82 Version 01 (1) │ │ │ │ -9FC83 UID Size 04 (4) │ │ │ │ -9FC84 UID 00000000 (0) │ │ │ │ -9FC88 GID Size 04 (4) │ │ │ │ -9FC89 GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FC8D CENTRAL HEADER #91 02014B50 (33639248) │ │ │ │ -9FC91 Created Zip Spec 3D (61) '6.1' │ │ │ │ -9FC92 Created OS 03 (3) 'Unix' │ │ │ │ -9FC93 Extract Zip Spec 14 (20) '2.0' │ │ │ │ -9FC94 Extract OS 00 (0) 'MS-DOS' │ │ │ │ -9FC95 General Purpose Flag 0000 (0) │ │ │ │ - [Bits 1-2] 0 'Normal Compression' │ │ │ │ -9FC97 Compression Method 0008 (8) 'Deflated' │ │ │ │ -9FC99 Modification Time 5B2F84F8 (1529840888) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FC9D CRC 58439733 (1480824627) │ │ │ │ -9FCA1 Compressed Size 00000077 (119) │ │ │ │ -9FCA5 Uncompressed Size 000000A2 (162) │ │ │ │ -9FCA9 Filename Length 002D (45) │ │ │ │ -9FCAB Extra Length 0018 (24) │ │ │ │ -9FCAD Comment Length 0000 (0) │ │ │ │ -9FCAF Disk Start 0000 (0) │ │ │ │ -9FCB1 Int File Attributes 0000 (0) │ │ │ │ - [Bit 0] 0 'Binary Data' │ │ │ │ -9FCB3 Ext File Attributes 01A40000 (27525120) │ │ │ │ - [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ -9FCB7 Local Header Offset 0009DAED (645869) │ │ │ │ -9FCBB Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# │ │ │ │ -# WARNING: Offset 0x9FCBB: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ -# Zero length filename │ │ │ │ -# │ │ │ │ -9FCE8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ -9FCEA Length 0005 (5) │ │ │ │ -9FCEC Flags 01 (1) 'Modification' │ │ │ │ -9FCED Modification Time 68C84154 (1757954388) 'Mon Sep 15 16:39:48 2025' │ │ │ │ -9FCF1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ -9FCF3 Length 000B (11) │ │ │ │ -9FCF5 Version 01 (1) │ │ │ │ -9FCF6 UID Size 04 (4) │ │ │ │ -9FCF7 UID 00000000 (0) │ │ │ │ -9FCFB GID Size 04 (4) │ │ │ │ -9FCFC GID 00000000 (0) │ │ │ │ - │ │ │ │ -9FD00 END CENTRAL HEADER 06054B50 (101010256) │ │ │ │ -9FD04 Number of this disk 0000 (0) │ │ │ │ -9FD06 Central Dir Disk no 0000 (0) │ │ │ │ -9FD08 Entries in this disk 005B (91) │ │ │ │ -9FD0A Total Entries 005B (91) │ │ │ │ -9FD0C Size of Central Dir 00002135 (8501) │ │ │ │ -9FD10 Offset to Central Dir 0009DBCB (646091) │ │ │ │ -9FD14 Comment Length 0000 (0) │ │ │ │ +9DAE9 LOCAL HEADER #91 04034B50 (67324752) │ │ │ │ +9DAED Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DAEE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DAEF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DAF1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DAF3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DAF7 CRC 58439733 (1480824627) │ │ │ │ +9DAFB Compressed Size 00000077 (119) │ │ │ │ +9DAFF Uncompressed Size 000000A2 (162) │ │ │ │ +9DB03 Filename Length 002D (45) │ │ │ │ +9DB05 Extra Length 001C (28) │ │ │ │ +9DB07 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DB07: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DB34 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DB36 Length 0009 (9) │ │ │ │ +9DB38 Flags 03 (3) 'Modification Access' │ │ │ │ +9DB39 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DB3D Access Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DB41 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DB43 Length 000B (11) │ │ │ │ +9DB45 Version 01 (1) │ │ │ │ +9DB46 UID Size 04 (4) │ │ │ │ +9DB47 UID 00000000 (0) │ │ │ │ +9DB4B GID Size 04 (4) │ │ │ │ +9DB4C GID 00000000 (0) │ │ │ │ +9DB50 PAYLOAD XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX │ │ │ │ + │ │ │ │ +9DBC7 CENTRAL HEADER #1 02014B50 (33639248) │ │ │ │ +9DBCB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DBCC Created OS 03 (3) 'Unix' │ │ │ │ +9DBCD Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9DBCE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DBCF General Purpose Flag 0000 (0) │ │ │ │ +9DBD1 Compression Method 0000 (0) 'Stored' │ │ │ │ +9DBD3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DBD7 CRC 2CAB616F (749429103) │ │ │ │ +9DBDB Compressed Size 00000014 (20) │ │ │ │ +9DBDF Uncompressed Size 00000014 (20) │ │ │ │ +9DBE3 Filename Length 0008 (8) │ │ │ │ +9DBE5 Extra Length 0018 (24) │ │ │ │ +9DBE7 Comment Length 0000 (0) │ │ │ │ +9DBE9 Disk Start 0000 (0) │ │ │ │ +9DBEB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DBED Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DBF1 Local Header Offset 00000000 (0) │ │ │ │ +9DBF5 Filename 'XXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DBF5: Filename 'XXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DBFD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DBFF Length 0005 (5) │ │ │ │ +9DC01 Flags 01 (1) 'Modification' │ │ │ │ +9DC02 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DC06 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DC08 Length 000B (11) │ │ │ │ +9DC0A Version 01 (1) │ │ │ │ +9DC0B UID Size 04 (4) │ │ │ │ +9DC0C UID 00000000 (0) │ │ │ │ +9DC10 GID Size 04 (4) │ │ │ │ +9DC11 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DC15 CENTRAL HEADER #2 02014B50 (33639248) │ │ │ │ +9DC19 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DC1A Created OS 03 (3) 'Unix' │ │ │ │ +9DC1B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DC1C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DC1D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DC1F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DC21 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DC25 CRC 6A627F8C (1784840076) │ │ │ │ +9DC29 Compressed Size 000015AD (5549) │ │ │ │ +9DC2D Uncompressed Size 00004602 (17922) │ │ │ │ +9DC31 Filename Length 0014 (20) │ │ │ │ +9DC33 Extra Length 0018 (24) │ │ │ │ +9DC35 Comment Length 0000 (0) │ │ │ │ +9DC37 Disk Start 0000 (0) │ │ │ │ +9DC39 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DC3B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DC3F Local Header Offset 00000056 (86) │ │ │ │ +9DC43 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DC43: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DC57 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DC59 Length 0005 (5) │ │ │ │ +9DC5B Flags 01 (1) 'Modification' │ │ │ │ +9DC5C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DC60 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DC62 Length 000B (11) │ │ │ │ +9DC64 Version 01 (1) │ │ │ │ +9DC65 UID Size 04 (4) │ │ │ │ +9DC66 UID 00000000 (0) │ │ │ │ +9DC6A GID Size 04 (4) │ │ │ │ +9DC6B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DC6F CENTRAL HEADER #3 02014B50 (33639248) │ │ │ │ +9DC73 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DC74 Created OS 03 (3) 'Unix' │ │ │ │ +9DC75 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DC76 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DC77 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DC79 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DC7B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DC7F CRC 55093711 (1426667281) │ │ │ │ +9DC83 Compressed Size 000006D5 (1749) │ │ │ │ +9DC87 Uncompressed Size 00001241 (4673) │ │ │ │ +9DC8B Filename Length 0013 (19) │ │ │ │ +9DC8D Extra Length 0018 (24) │ │ │ │ +9DC8F Comment Length 0000 (0) │ │ │ │ +9DC91 Disk Start 0000 (0) │ │ │ │ +9DC93 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DC95 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DC99 Local Header Offset 00001651 (5713) │ │ │ │ +9DC9D Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DC9D: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DCB0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DCB2 Length 0005 (5) │ │ │ │ +9DCB4 Flags 01 (1) 'Modification' │ │ │ │ +9DCB5 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DCB9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DCBB Length 000B (11) │ │ │ │ +9DCBD Version 01 (1) │ │ │ │ +9DCBE UID Size 04 (4) │ │ │ │ +9DCBF UID 00000000 (0) │ │ │ │ +9DCC3 GID Size 04 (4) │ │ │ │ +9DCC4 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DCC8 CENTRAL HEADER #4 02014B50 (33639248) │ │ │ │ +9DCCC Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DCCD Created OS 03 (3) 'Unix' │ │ │ │ +9DCCE Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DCCF Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DCD0 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DCD2 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DCD4 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DCD8 CRC 482CBB8A (1210891146) │ │ │ │ +9DCDC Compressed Size 00002DA3 (11683) │ │ │ │ +9DCE0 Uncompressed Size 0000D0BF (53439) │ │ │ │ +9DCE4 Filename Length 0014 (20) │ │ │ │ +9DCE6 Extra Length 0018 (24) │ │ │ │ +9DCE8 Comment Length 0000 (0) │ │ │ │ +9DCEA Disk Start 0000 (0) │ │ │ │ +9DCEC Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DCEE Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DCF2 Local Header Offset 00001D73 (7539) │ │ │ │ +9DCF6 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DCF6: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DD0A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DD0C Length 0005 (5) │ │ │ │ +9DD0E Flags 01 (1) 'Modification' │ │ │ │ +9DD0F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DD13 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DD15 Length 000B (11) │ │ │ │ +9DD17 Version 01 (1) │ │ │ │ +9DD18 UID Size 04 (4) │ │ │ │ +9DD19 UID 00000000 (0) │ │ │ │ +9DD1D GID Size 04 (4) │ │ │ │ +9DD1E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DD22 CENTRAL HEADER #5 02014B50 (33639248) │ │ │ │ +9DD26 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DD27 Created OS 03 (3) 'Unix' │ │ │ │ +9DD28 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DD29 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DD2A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DD2C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DD2E Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DD32 CRC A25ED8D1 (2724124881) │ │ │ │ +9DD36 Compressed Size 000003F0 (1008) │ │ │ │ +9DD3A Uncompressed Size 00000876 (2166) │ │ │ │ +9DD3E Filename Length 0014 (20) │ │ │ │ +9DD40 Extra Length 0018 (24) │ │ │ │ +9DD42 Comment Length 0000 (0) │ │ │ │ +9DD44 Disk Start 0000 (0) │ │ │ │ +9DD46 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DD48 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DD4C Local Header Offset 00004B64 (19300) │ │ │ │ +9DD50 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DD50: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DD64 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DD66 Length 0005 (5) │ │ │ │ +9DD68 Flags 01 (1) 'Modification' │ │ │ │ +9DD69 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DD6D Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DD6F Length 000B (11) │ │ │ │ +9DD71 Version 01 (1) │ │ │ │ +9DD72 UID Size 04 (4) │ │ │ │ +9DD73 UID 00000000 (0) │ │ │ │ +9DD77 GID Size 04 (4) │ │ │ │ +9DD78 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DD7C CENTRAL HEADER #6 02014B50 (33639248) │ │ │ │ +9DD80 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DD81 Created OS 03 (3) 'Unix' │ │ │ │ +9DD82 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DD83 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DD84 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DD86 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DD88 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DD8C CRC 9809A48F (2550768783) │ │ │ │ +9DD90 Compressed Size 000001AE (430) │ │ │ │ +9DD94 Uncompressed Size 000002FC (764) │ │ │ │ +9DD98 Filename Length 0011 (17) │ │ │ │ +9DD9A Extra Length 0018 (24) │ │ │ │ +9DD9C Comment Length 0000 (0) │ │ │ │ +9DD9E Disk Start 0000 (0) │ │ │ │ +9DDA0 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DDA2 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DDA6 Local Header Offset 00004FA2 (20386) │ │ │ │ +9DDAA Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DDAA: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DDBB Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DDBD Length 0005 (5) │ │ │ │ +9DDBF Flags 01 (1) 'Modification' │ │ │ │ +9DDC0 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DDC4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DDC6 Length 000B (11) │ │ │ │ +9DDC8 Version 01 (1) │ │ │ │ +9DDC9 UID Size 04 (4) │ │ │ │ +9DDCA UID 00000000 (0) │ │ │ │ +9DDCE GID Size 04 (4) │ │ │ │ +9DDCF GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DDD3 CENTRAL HEADER #7 02014B50 (33639248) │ │ │ │ +9DDD7 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DDD8 Created OS 03 (3) 'Unix' │ │ │ │ +9DDD9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DDDA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DDDB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DDDD Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DDDF Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DDE3 CRC AE0478B0 (2919528624) │ │ │ │ +9DDE7 Compressed Size 000020C5 (8389) │ │ │ │ +9DDEB Uncompressed Size 0000B4B0 (46256) │ │ │ │ +9DDEF Filename Length 001B (27) │ │ │ │ +9DDF1 Extra Length 0018 (24) │ │ │ │ +9DDF3 Comment Length 0000 (0) │ │ │ │ +9DDF5 Disk Start 0000 (0) │ │ │ │ +9DDF7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DDF9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DDFD Local Header Offset 0000519B (20891) │ │ │ │ +9DE01 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DE01: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DE1C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DE1E Length 0005 (5) │ │ │ │ +9DE20 Flags 01 (1) 'Modification' │ │ │ │ +9DE21 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DE25 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DE27 Length 000B (11) │ │ │ │ +9DE29 Version 01 (1) │ │ │ │ +9DE2A UID Size 04 (4) │ │ │ │ +9DE2B UID 00000000 (0) │ │ │ │ +9DE2F GID Size 04 (4) │ │ │ │ +9DE30 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DE34 CENTRAL HEADER #8 02014B50 (33639248) │ │ │ │ +9DE38 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DE39 Created OS 03 (3) 'Unix' │ │ │ │ +9DE3A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DE3B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DE3C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DE3E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DE40 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DE44 CRC 219043B3 (563102643) │ │ │ │ +9DE48 Compressed Size 00000E6F (3695) │ │ │ │ +9DE4C Uncompressed Size 000030B2 (12466) │ │ │ │ +9DE50 Filename Length 001D (29) │ │ │ │ +9DE52 Extra Length 0018 (24) │ │ │ │ +9DE54 Comment Length 0000 (0) │ │ │ │ +9DE56 Disk Start 0000 (0) │ │ │ │ +9DE58 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DE5A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DE5E Local Header Offset 000072B5 (29365) │ │ │ │ +9DE62 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DE62: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DE7F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DE81 Length 0005 (5) │ │ │ │ +9DE83 Flags 01 (1) 'Modification' │ │ │ │ +9DE84 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DE88 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DE8A Length 000B (11) │ │ │ │ +9DE8C Version 01 (1) │ │ │ │ +9DE8D UID Size 04 (4) │ │ │ │ +9DE8E UID 00000000 (0) │ │ │ │ +9DE92 GID Size 04 (4) │ │ │ │ +9DE93 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DE97 CENTRAL HEADER #9 02014B50 (33639248) │ │ │ │ +9DE9B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DE9C Created OS 03 (3) 'Unix' │ │ │ │ +9DE9D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DE9E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DE9F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DEA1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DEA3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DEA7 CRC FEA15075 (4271984757) │ │ │ │ +9DEAB Compressed Size 00000972 (2418) │ │ │ │ +9DEAF Uncompressed Size 00001CB2 (7346) │ │ │ │ +9DEB3 Filename Length 0019 (25) │ │ │ │ +9DEB5 Extra Length 0018 (24) │ │ │ │ +9DEB7 Comment Length 0000 (0) │ │ │ │ +9DEB9 Disk Start 0000 (0) │ │ │ │ +9DEBB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DEBD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DEC1 Local Header Offset 0000817B (33147) │ │ │ │ +9DEC5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DEC5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DEDE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DEE0 Length 0005 (5) │ │ │ │ +9DEE2 Flags 01 (1) 'Modification' │ │ │ │ +9DEE3 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DEE7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DEE9 Length 000B (11) │ │ │ │ +9DEEB Version 01 (1) │ │ │ │ +9DEEC UID Size 04 (4) │ │ │ │ +9DEED UID 00000000 (0) │ │ │ │ +9DEF1 GID Size 04 (4) │ │ │ │ +9DEF2 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DEF6 CENTRAL HEADER #10 02014B50 (33639248) │ │ │ │ +9DEFA Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DEFB Created OS 03 (3) 'Unix' │ │ │ │ +9DEFC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DEFD Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DEFE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DF00 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DF02 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DF06 CRC 9868D3FF (2557006847) │ │ │ │ +9DF0A Compressed Size 0000387B (14459) │ │ │ │ +9DF0E Uncompressed Size 0000F7F4 (63476) │ │ │ │ +9DF12 Filename Length 0015 (21) │ │ │ │ +9DF14 Extra Length 0018 (24) │ │ │ │ +9DF16 Comment Length 0000 (0) │ │ │ │ +9DF18 Disk Start 0000 (0) │ │ │ │ +9DF1A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DF1C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DF20 Local Header Offset 00008B40 (35648) │ │ │ │ +9DF24 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DF24: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DF39 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DF3B Length 0005 (5) │ │ │ │ +9DF3D Flags 01 (1) 'Modification' │ │ │ │ +9DF3E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DF42 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DF44 Length 000B (11) │ │ │ │ +9DF46 Version 01 (1) │ │ │ │ +9DF47 UID Size 04 (4) │ │ │ │ +9DF48 UID 00000000 (0) │ │ │ │ +9DF4C GID Size 04 (4) │ │ │ │ +9DF4D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DF51 CENTRAL HEADER #11 02014B50 (33639248) │ │ │ │ +9DF55 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DF56 Created OS 03 (3) 'Unix' │ │ │ │ +9DF57 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DF58 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DF59 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DF5B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DF5D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DF61 CRC 0B7B7962 (192641378) │ │ │ │ +9DF65 Compressed Size 0000AAE5 (43749) │ │ │ │ +9DF69 Uncompressed Size 0003DFDE (253918) │ │ │ │ +9DF6D Filename Length 0012 (18) │ │ │ │ +9DF6F Extra Length 0018 (24) │ │ │ │ +9DF71 Comment Length 0000 (0) │ │ │ │ +9DF73 Disk Start 0000 (0) │ │ │ │ +9DF75 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DF77 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DF7B Local Header Offset 0000C40A (50186) │ │ │ │ +9DF7F Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DF7F: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DF91 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DF93 Length 0005 (5) │ │ │ │ +9DF95 Flags 01 (1) 'Modification' │ │ │ │ +9DF96 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DF9A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DF9C Length 000B (11) │ │ │ │ +9DF9E Version 01 (1) │ │ │ │ +9DF9F UID Size 04 (4) │ │ │ │ +9DFA0 UID 00000000 (0) │ │ │ │ +9DFA4 GID Size 04 (4) │ │ │ │ +9DFA5 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9DFA9 CENTRAL HEADER #12 02014B50 (33639248) │ │ │ │ +9DFAD Created Zip Spec 3D (61) '6.1' │ │ │ │ +9DFAE Created OS 03 (3) 'Unix' │ │ │ │ +9DFAF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9DFB0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9DFB1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9DFB3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9DFB5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DFB9 CRC 541AE3AB (1411048363) │ │ │ │ +9DFBD Compressed Size 00003B1D (15133) │ │ │ │ +9DFC1 Uncompressed Size 0001B2A0 (111264) │ │ │ │ +9DFC5 Filename Length 0015 (21) │ │ │ │ +9DFC7 Extra Length 0018 (24) │ │ │ │ +9DFC9 Comment Length 0000 (0) │ │ │ │ +9DFCB Disk Start 0000 (0) │ │ │ │ +9DFCD Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9DFCF Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9DFD3 Local Header Offset 00016F3B (94011) │ │ │ │ +9DFD7 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9DFD7: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9DFEC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9DFEE Length 0005 (5) │ │ │ │ +9DFF0 Flags 01 (1) 'Modification' │ │ │ │ +9DFF1 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9DFF5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9DFF7 Length 000B (11) │ │ │ │ +9DFF9 Version 01 (1) │ │ │ │ +9DFFA UID Size 04 (4) │ │ │ │ +9DFFB UID 00000000 (0) │ │ │ │ +9DFFF GID Size 04 (4) │ │ │ │ +9E000 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E004 CENTRAL HEADER #13 02014B50 (33639248) │ │ │ │ +9E008 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E009 Created OS 03 (3) 'Unix' │ │ │ │ +9E00A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E00B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E00C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E00E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E010 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E014 CRC 4CC7CEC7 (1288163015) │ │ │ │ +9E018 Compressed Size 00009081 (36993) │ │ │ │ +9E01C Uncompressed Size 0003D05F (249951) │ │ │ │ +9E020 Filename Length 0014 (20) │ │ │ │ +9E022 Extra Length 0018 (24) │ │ │ │ +9E024 Comment Length 0000 (0) │ │ │ │ +9E026 Disk Start 0000 (0) │ │ │ │ +9E028 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E02A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E02E Local Header Offset 0001AAA7 (109223) │ │ │ │ +9E032 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E032: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E046 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E048 Length 0005 (5) │ │ │ │ +9E04A Flags 01 (1) 'Modification' │ │ │ │ +9E04B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E04F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E051 Length 000B (11) │ │ │ │ +9E053 Version 01 (1) │ │ │ │ +9E054 UID Size 04 (4) │ │ │ │ +9E055 UID 00000000 (0) │ │ │ │ +9E059 GID Size 04 (4) │ │ │ │ +9E05A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E05E CENTRAL HEADER #14 02014B50 (33639248) │ │ │ │ +9E062 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E063 Created OS 03 (3) 'Unix' │ │ │ │ +9E064 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E065 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E066 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E068 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E06A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E06E CRC DA512EB8 (3662753464) │ │ │ │ +9E072 Compressed Size 00002A67 (10855) │ │ │ │ +9E076 Uncompressed Size 0001151F (70943) │ │ │ │ +9E07A Filename Length 0016 (22) │ │ │ │ +9E07C Extra Length 0018 (24) │ │ │ │ +9E07E Comment Length 0000 (0) │ │ │ │ +9E080 Disk Start 0000 (0) │ │ │ │ +9E082 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E084 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E088 Local Header Offset 00023B76 (146294) │ │ │ │ +9E08C Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E08C: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E0A2 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E0A4 Length 0005 (5) │ │ │ │ +9E0A6 Flags 01 (1) 'Modification' │ │ │ │ +9E0A7 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E0AB Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E0AD Length 000B (11) │ │ │ │ +9E0AF Version 01 (1) │ │ │ │ +9E0B0 UID Size 04 (4) │ │ │ │ +9E0B1 UID 00000000 (0) │ │ │ │ +9E0B5 GID Size 04 (4) │ │ │ │ +9E0B6 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E0BA CENTRAL HEADER #15 02014B50 (33639248) │ │ │ │ +9E0BE Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E0BF Created OS 03 (3) 'Unix' │ │ │ │ +9E0C0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E0C1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E0C2 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E0C4 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E0C6 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E0CA CRC C32AE6AF (3274368687) │ │ │ │ +9E0CE Compressed Size 000014D5 (5333) │ │ │ │ +9E0D2 Uncompressed Size 00005176 (20854) │ │ │ │ +9E0D6 Filename Length 001D (29) │ │ │ │ +9E0D8 Extra Length 0018 (24) │ │ │ │ +9E0DA Comment Length 0000 (0) │ │ │ │ +9E0DC Disk Start 0000 (0) │ │ │ │ +9E0DE Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E0E0 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E0E4 Local Header Offset 0002662D (157229) │ │ │ │ +9E0E8 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E0E8: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E105 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E107 Length 0005 (5) │ │ │ │ +9E109 Flags 01 (1) 'Modification' │ │ │ │ +9E10A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E10E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E110 Length 000B (11) │ │ │ │ +9E112 Version 01 (1) │ │ │ │ +9E113 UID Size 04 (4) │ │ │ │ +9E114 UID 00000000 (0) │ │ │ │ +9E118 GID Size 04 (4) │ │ │ │ +9E119 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E11D CENTRAL HEADER #16 02014B50 (33639248) │ │ │ │ +9E121 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E122 Created OS 03 (3) 'Unix' │ │ │ │ +9E123 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E124 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E125 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E127 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E129 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E12D CRC 2944BA14 (692369940) │ │ │ │ +9E131 Compressed Size 000037FB (14331) │ │ │ │ +9E135 Uncompressed Size 0000E9F0 (59888) │ │ │ │ +9E139 Filename Length 001C (28) │ │ │ │ +9E13B Extra Length 0018 (24) │ │ │ │ +9E13D Comment Length 0000 (0) │ │ │ │ +9E13F Disk Start 0000 (0) │ │ │ │ +9E141 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E143 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E147 Local Header Offset 00027B59 (162649) │ │ │ │ +9E14B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E14B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E167 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E169 Length 0005 (5) │ │ │ │ +9E16B Flags 01 (1) 'Modification' │ │ │ │ +9E16C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E170 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E172 Length 000B (11) │ │ │ │ +9E174 Version 01 (1) │ │ │ │ +9E175 UID Size 04 (4) │ │ │ │ +9E176 UID 00000000 (0) │ │ │ │ +9E17A GID Size 04 (4) │ │ │ │ +9E17B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E17F CENTRAL HEADER #17 02014B50 (33639248) │ │ │ │ +9E183 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E184 Created OS 03 (3) 'Unix' │ │ │ │ +9E185 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E186 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E187 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E189 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E18B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E18F CRC 76141A43 (1981028931) │ │ │ │ +9E193 Compressed Size 000006A0 (1696) │ │ │ │ +9E197 Uncompressed Size 000011F4 (4596) │ │ │ │ +9E19B Filename Length 001C (28) │ │ │ │ +9E19D Extra Length 0018 (24) │ │ │ │ +9E19F Comment Length 0000 (0) │ │ │ │ +9E1A1 Disk Start 0000 (0) │ │ │ │ +9E1A3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E1A5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E1A9 Local Header Offset 0002B3AA (177066) │ │ │ │ +9E1AD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E1AD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E1C9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E1CB Length 0005 (5) │ │ │ │ +9E1CD Flags 01 (1) 'Modification' │ │ │ │ +9E1CE Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E1D2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E1D4 Length 000B (11) │ │ │ │ +9E1D6 Version 01 (1) │ │ │ │ +9E1D7 UID Size 04 (4) │ │ │ │ +9E1D8 UID 00000000 (0) │ │ │ │ +9E1DC GID Size 04 (4) │ │ │ │ +9E1DD GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E1E1 CENTRAL HEADER #18 02014B50 (33639248) │ │ │ │ +9E1E5 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E1E6 Created OS 03 (3) 'Unix' │ │ │ │ +9E1E7 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E1E8 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E1E9 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E1EB Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E1ED Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E1F1 CRC D3950860 (3549759584) │ │ │ │ +9E1F5 Compressed Size 0000107D (4221) │ │ │ │ +9E1F9 Uncompressed Size 00004BFF (19455) │ │ │ │ +9E1FD Filename Length 001B (27) │ │ │ │ +9E1FF Extra Length 0018 (24) │ │ │ │ +9E201 Comment Length 0000 (0) │ │ │ │ +9E203 Disk Start 0000 (0) │ │ │ │ +9E205 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E207 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E20B Local Header Offset 0002BAA0 (178848) │ │ │ │ +9E20F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E20F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E22A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E22C Length 0005 (5) │ │ │ │ +9E22E Flags 01 (1) 'Modification' │ │ │ │ +9E22F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E233 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E235 Length 000B (11) │ │ │ │ +9E237 Version 01 (1) │ │ │ │ +9E238 UID Size 04 (4) │ │ │ │ +9E239 UID 00000000 (0) │ │ │ │ +9E23D GID Size 04 (4) │ │ │ │ +9E23E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E242 CENTRAL HEADER #19 02014B50 (33639248) │ │ │ │ +9E246 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E247 Created OS 03 (3) 'Unix' │ │ │ │ +9E248 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E249 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E24A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E24C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E24E Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E252 CRC 200AAF0C (537571084) │ │ │ │ +9E256 Compressed Size 000033AA (13226) │ │ │ │ +9E25A Uncompressed Size 0000BC94 (48276) │ │ │ │ +9E25E Filename Length 001D (29) │ │ │ │ +9E260 Extra Length 0018 (24) │ │ │ │ +9E262 Comment Length 0000 (0) │ │ │ │ +9E264 Disk Start 0000 (0) │ │ │ │ +9E266 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E268 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E26C Local Header Offset 0002CB72 (183154) │ │ │ │ +9E270 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E270: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E28D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E28F Length 0005 (5) │ │ │ │ +9E291 Flags 01 (1) 'Modification' │ │ │ │ +9E292 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E296 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E298 Length 000B (11) │ │ │ │ +9E29A Version 01 (1) │ │ │ │ +9E29B UID Size 04 (4) │ │ │ │ +9E29C UID 00000000 (0) │ │ │ │ +9E2A0 GID Size 04 (4) │ │ │ │ +9E2A1 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E2A5 CENTRAL HEADER #20 02014B50 (33639248) │ │ │ │ +9E2A9 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E2AA Created OS 03 (3) 'Unix' │ │ │ │ +9E2AB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E2AC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E2AD General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E2AF Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E2B1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E2B5 CRC B5B3D332 (3048461106) │ │ │ │ +9E2B9 Compressed Size 00000D68 (3432) │ │ │ │ +9E2BD Uncompressed Size 00003876 (14454) │ │ │ │ +9E2C1 Filename Length 001D (29) │ │ │ │ +9E2C3 Extra Length 0018 (24) │ │ │ │ +9E2C5 Comment Length 0000 (0) │ │ │ │ +9E2C7 Disk Start 0000 (0) │ │ │ │ +9E2C9 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E2CB Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E2CF Local Header Offset 0002FF73 (196467) │ │ │ │ +9E2D3 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E2D3: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E2F0 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E2F2 Length 0005 (5) │ │ │ │ +9E2F4 Flags 01 (1) 'Modification' │ │ │ │ +9E2F5 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E2F9 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E2FB Length 000B (11) │ │ │ │ +9E2FD Version 01 (1) │ │ │ │ +9E2FE UID Size 04 (4) │ │ │ │ +9E2FF UID 00000000 (0) │ │ │ │ +9E303 GID Size 04 (4) │ │ │ │ +9E304 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E308 CENTRAL HEADER #21 02014B50 (33639248) │ │ │ │ +9E30C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E30D Created OS 03 (3) 'Unix' │ │ │ │ +9E30E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E30F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E310 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E312 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E314 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E318 CRC 4FB2D047 (1337118791) │ │ │ │ +9E31C Compressed Size 00001C65 (7269) │ │ │ │ +9E320 Uncompressed Size 0000C186 (49542) │ │ │ │ +9E324 Filename Length 001A (26) │ │ │ │ +9E326 Extra Length 0018 (24) │ │ │ │ +9E328 Comment Length 0000 (0) │ │ │ │ +9E32A Disk Start 0000 (0) │ │ │ │ +9E32C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E32E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E332 Local Header Offset 00030D32 (199986) │ │ │ │ +9E336 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E336: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E350 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E352 Length 0005 (5) │ │ │ │ +9E354 Flags 01 (1) 'Modification' │ │ │ │ +9E355 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E359 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E35B Length 000B (11) │ │ │ │ +9E35D Version 01 (1) │ │ │ │ +9E35E UID Size 04 (4) │ │ │ │ +9E35F UID 00000000 (0) │ │ │ │ +9E363 GID Size 04 (4) │ │ │ │ +9E364 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E368 CENTRAL HEADER #22 02014B50 (33639248) │ │ │ │ +9E36C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E36D Created OS 03 (3) 'Unix' │ │ │ │ +9E36E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E36F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E370 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E372 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E374 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E378 CRC D63ABE1D (3594173981) │ │ │ │ +9E37C Compressed Size 000003A3 (931) │ │ │ │ +9E380 Uncompressed Size 0000088E (2190) │ │ │ │ +9E384 Filename Length 0012 (18) │ │ │ │ +9E386 Extra Length 0018 (24) │ │ │ │ +9E388 Comment Length 0000 (0) │ │ │ │ +9E38A Disk Start 0000 (0) │ │ │ │ +9E38C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E38E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E392 Local Header Offset 000329EB (207339) │ │ │ │ +9E396 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E396: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E3A8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E3AA Length 0005 (5) │ │ │ │ +9E3AC Flags 01 (1) 'Modification' │ │ │ │ +9E3AD Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E3B1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E3B3 Length 000B (11) │ │ │ │ +9E3B5 Version 01 (1) │ │ │ │ +9E3B6 UID Size 04 (4) │ │ │ │ +9E3B7 UID 00000000 (0) │ │ │ │ +9E3BB GID Size 04 (4) │ │ │ │ +9E3BC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E3C0 CENTRAL HEADER #23 02014B50 (33639248) │ │ │ │ +9E3C4 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E3C5 Created OS 03 (3) 'Unix' │ │ │ │ +9E3C6 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E3C7 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E3C8 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E3CA Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E3CC Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E3D0 CRC 67B17E06 (1739685382) │ │ │ │ +9E3D4 Compressed Size 000001D4 (468) │ │ │ │ +9E3D8 Uncompressed Size 00000311 (785) │ │ │ │ +9E3DC Filename Length 0020 (32) │ │ │ │ +9E3DE Extra Length 0018 (24) │ │ │ │ +9E3E0 Comment Length 0000 (0) │ │ │ │ +9E3E2 Disk Start 0000 (0) │ │ │ │ +9E3E4 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E3E6 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E3EA Local Header Offset 00032DDA (208346) │ │ │ │ +9E3EE Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E3EE: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E40E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E410 Length 0005 (5) │ │ │ │ +9E412 Flags 01 (1) 'Modification' │ │ │ │ +9E413 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E417 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E419 Length 000B (11) │ │ │ │ +9E41B Version 01 (1) │ │ │ │ +9E41C UID Size 04 (4) │ │ │ │ +9E41D UID 00000000 (0) │ │ │ │ +9E421 GID Size 04 (4) │ │ │ │ +9E422 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E426 CENTRAL HEADER #24 02014B50 (33639248) │ │ │ │ +9E42A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E42B Created OS 03 (3) 'Unix' │ │ │ │ +9E42C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E42D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E42E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E430 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E432 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E436 CRC E2EEC175 (3807297909) │ │ │ │ +9E43A Compressed Size 000017AB (6059) │ │ │ │ +9E43E Uncompressed Size 00009CD3 (40147) │ │ │ │ +9E442 Filename Length 001B (27) │ │ │ │ +9E444 Extra Length 0018 (24) │ │ │ │ +9E446 Comment Length 0000 (0) │ │ │ │ +9E448 Disk Start 0000 (0) │ │ │ │ +9E44A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E44C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E450 Local Header Offset 00033008 (208904) │ │ │ │ +9E454 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E454: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E46F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E471 Length 0005 (5) │ │ │ │ +9E473 Flags 01 (1) 'Modification' │ │ │ │ +9E474 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E478 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E47A Length 000B (11) │ │ │ │ +9E47C Version 01 (1) │ │ │ │ +9E47D UID Size 04 (4) │ │ │ │ +9E47E UID 00000000 (0) │ │ │ │ +9E482 GID Size 04 (4) │ │ │ │ +9E483 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E487 CENTRAL HEADER #25 02014B50 (33639248) │ │ │ │ +9E48B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E48C Created OS 03 (3) 'Unix' │ │ │ │ +9E48D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E48E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E48F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E491 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E493 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E497 CRC 26417E48 (641826376) │ │ │ │ +9E49B Compressed Size 00001371 (4977) │ │ │ │ +9E49F Uncompressed Size 00003B66 (15206) │ │ │ │ +9E4A3 Filename Length 0015 (21) │ │ │ │ +9E4A5 Extra Length 0018 (24) │ │ │ │ +9E4A7 Comment Length 0000 (0) │ │ │ │ +9E4A9 Disk Start 0000 (0) │ │ │ │ +9E4AB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E4AD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E4B1 Local Header Offset 00034808 (215048) │ │ │ │ +9E4B5 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E4B5: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E4CA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E4CC Length 0005 (5) │ │ │ │ +9E4CE Flags 01 (1) 'Modification' │ │ │ │ +9E4CF Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E4D3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E4D5 Length 000B (11) │ │ │ │ +9E4D7 Version 01 (1) │ │ │ │ +9E4D8 UID Size 04 (4) │ │ │ │ +9E4D9 UID 00000000 (0) │ │ │ │ +9E4DD GID Size 04 (4) │ │ │ │ +9E4DE GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E4E2 CENTRAL HEADER #26 02014B50 (33639248) │ │ │ │ +9E4E6 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E4E7 Created OS 03 (3) 'Unix' │ │ │ │ +9E4E8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E4E9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E4EA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E4EC Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E4EE Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E4F2 CRC 8884496A (2290370922) │ │ │ │ +9E4F6 Compressed Size 00000AD1 (2769) │ │ │ │ +9E4FA Uncompressed Size 00002135 (8501) │ │ │ │ +9E4FE Filename Length 0011 (17) │ │ │ │ +9E500 Extra Length 0018 (24) │ │ │ │ +9E502 Comment Length 0000 (0) │ │ │ │ +9E504 Disk Start 0000 (0) │ │ │ │ +9E506 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E508 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E50C Local Header Offset 00035BC8 (220104) │ │ │ │ +9E510 Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E510: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E521 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E523 Length 0005 (5) │ │ │ │ +9E525 Flags 01 (1) 'Modification' │ │ │ │ +9E526 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E52A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E52C Length 000B (11) │ │ │ │ +9E52E Version 01 (1) │ │ │ │ +9E52F UID Size 04 (4) │ │ │ │ +9E530 UID 00000000 (0) │ │ │ │ +9E534 GID Size 04 (4) │ │ │ │ +9E535 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E539 CENTRAL HEADER #27 02014B50 (33639248) │ │ │ │ +9E53D Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E53E Created OS 03 (3) 'Unix' │ │ │ │ +9E53F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E540 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E541 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E543 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E545 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E549 CRC 06AD0EA3 (112004771) │ │ │ │ +9E54D Compressed Size 000003FE (1022) │ │ │ │ +9E551 Uncompressed Size 00000E99 (3737) │ │ │ │ +9E555 Filename Length 0014 (20) │ │ │ │ +9E557 Extra Length 0018 (24) │ │ │ │ +9E559 Comment Length 0000 (0) │ │ │ │ +9E55B Disk Start 0000 (0) │ │ │ │ +9E55D Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E55F Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E563 Local Header Offset 000366E4 (222948) │ │ │ │ +9E567 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E567: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E57B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E57D Length 0005 (5) │ │ │ │ +9E57F Flags 01 (1) 'Modification' │ │ │ │ +9E580 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E584 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E586 Length 000B (11) │ │ │ │ +9E588 Version 01 (1) │ │ │ │ +9E589 UID Size 04 (4) │ │ │ │ +9E58A UID 00000000 (0) │ │ │ │ +9E58E GID Size 04 (4) │ │ │ │ +9E58F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E593 CENTRAL HEADER #28 02014B50 (33639248) │ │ │ │ +9E597 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E598 Created OS 03 (3) 'Unix' │ │ │ │ +9E599 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E59A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E59B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E59D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E59F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E5A3 CRC 6E954352 (1855275858) │ │ │ │ +9E5A7 Compressed Size 00001262 (4706) │ │ │ │ +9E5AB Uncompressed Size 00003469 (13417) │ │ │ │ +9E5AF Filename Length 0014 (20) │ │ │ │ +9E5B1 Extra Length 0018 (24) │ │ │ │ +9E5B3 Comment Length 0000 (0) │ │ │ │ +9E5B5 Disk Start 0000 (0) │ │ │ │ +9E5B7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E5B9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E5BD Local Header Offset 00036B30 (224048) │ │ │ │ +9E5C1 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E5C1: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E5D5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E5D7 Length 0005 (5) │ │ │ │ +9E5D9 Flags 01 (1) 'Modification' │ │ │ │ +9E5DA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E5DE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E5E0 Length 000B (11) │ │ │ │ +9E5E2 Version 01 (1) │ │ │ │ +9E5E3 UID Size 04 (4) │ │ │ │ +9E5E4 UID 00000000 (0) │ │ │ │ +9E5E8 GID Size 04 (4) │ │ │ │ +9E5E9 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E5ED CENTRAL HEADER #29 02014B50 (33639248) │ │ │ │ +9E5F1 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E5F2 Created OS 03 (3) 'Unix' │ │ │ │ +9E5F3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E5F4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E5F5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E5F7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E5F9 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E5FD CRC 9B3C4A0E (2604419598) │ │ │ │ +9E601 Compressed Size 00000ACF (2767) │ │ │ │ +9E605 Uncompressed Size 000022FF (8959) │ │ │ │ +9E609 Filename Length 001B (27) │ │ │ │ +9E60B Extra Length 0018 (24) │ │ │ │ +9E60D Comment Length 0000 (0) │ │ │ │ +9E60F Disk Start 0000 (0) │ │ │ │ +9E611 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E613 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E617 Local Header Offset 00037DE0 (228832) │ │ │ │ +9E61B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E61B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E636 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E638 Length 0005 (5) │ │ │ │ +9E63A Flags 01 (1) 'Modification' │ │ │ │ +9E63B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E63F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E641 Length 000B (11) │ │ │ │ +9E643 Version 01 (1) │ │ │ │ +9E644 UID Size 04 (4) │ │ │ │ +9E645 UID 00000000 (0) │ │ │ │ +9E649 GID Size 04 (4) │ │ │ │ +9E64A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E64E CENTRAL HEADER #30 02014B50 (33639248) │ │ │ │ +9E652 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E653 Created OS 03 (3) 'Unix' │ │ │ │ +9E654 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E655 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E656 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E658 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E65A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E65E CRC 1B7D23E5 (461186021) │ │ │ │ +9E662 Compressed Size 00000A8C (2700) │ │ │ │ +9E666 Uncompressed Size 0000237A (9082) │ │ │ │ +9E66A Filename Length 0013 (19) │ │ │ │ +9E66C Extra Length 0018 (24) │ │ │ │ +9E66E Comment Length 0000 (0) │ │ │ │ +9E670 Disk Start 0000 (0) │ │ │ │ +9E672 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E674 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E678 Local Header Offset 00038904 (231684) │ │ │ │ +9E67C Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E67C: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E68F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E691 Length 0005 (5) │ │ │ │ +9E693 Flags 01 (1) 'Modification' │ │ │ │ +9E694 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E698 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E69A Length 000B (11) │ │ │ │ +9E69C Version 01 (1) │ │ │ │ +9E69D UID Size 04 (4) │ │ │ │ +9E69E UID 00000000 (0) │ │ │ │ +9E6A2 GID Size 04 (4) │ │ │ │ +9E6A3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E6A7 CENTRAL HEADER #31 02014B50 (33639248) │ │ │ │ +9E6AB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E6AC Created OS 03 (3) 'Unix' │ │ │ │ +9E6AD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E6AE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E6AF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E6B1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E6B3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E6B7 CRC F24190B8 (4064383160) │ │ │ │ +9E6BB Compressed Size 00000F47 (3911) │ │ │ │ +9E6BF Uncompressed Size 000036F1 (14065) │ │ │ │ +9E6C3 Filename Length 000F (15) │ │ │ │ +9E6C5 Extra Length 0018 (24) │ │ │ │ +9E6C7 Comment Length 0000 (0) │ │ │ │ +9E6C9 Disk Start 0000 (0) │ │ │ │ +9E6CB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E6CD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E6D1 Local Header Offset 000393DD (234461) │ │ │ │ +9E6D5 Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E6D5: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E6E4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E6E6 Length 0005 (5) │ │ │ │ +9E6E8 Flags 01 (1) 'Modification' │ │ │ │ +9E6E9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E6ED Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E6EF Length 000B (11) │ │ │ │ +9E6F1 Version 01 (1) │ │ │ │ +9E6F2 UID Size 04 (4) │ │ │ │ +9E6F3 UID 00000000 (0) │ │ │ │ +9E6F7 GID Size 04 (4) │ │ │ │ +9E6F8 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E6FC CENTRAL HEADER #32 02014B50 (33639248) │ │ │ │ +9E700 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E701 Created OS 03 (3) 'Unix' │ │ │ │ +9E702 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E703 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E704 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E706 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E708 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E70C CRC 7FB04E29 (2142260777) │ │ │ │ +9E710 Compressed Size 0000066A (1642) │ │ │ │ +9E714 Uncompressed Size 000018DF (6367) │ │ │ │ +9E718 Filename Length 000F (15) │ │ │ │ +9E71A Extra Length 0018 (24) │ │ │ │ +9E71C Comment Length 0000 (0) │ │ │ │ +9E71E Disk Start 0000 (0) │ │ │ │ +9E720 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E722 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E726 Local Header Offset 0003A36D (238445) │ │ │ │ +9E72A Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E72A: Filename 'XXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E739 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E73B Length 0005 (5) │ │ │ │ +9E73D Flags 01 (1) 'Modification' │ │ │ │ +9E73E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E742 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E744 Length 000B (11) │ │ │ │ +9E746 Version 01 (1) │ │ │ │ +9E747 UID Size 04 (4) │ │ │ │ +9E748 UID 00000000 (0) │ │ │ │ +9E74C GID Size 04 (4) │ │ │ │ +9E74D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E751 CENTRAL HEADER #33 02014B50 (33639248) │ │ │ │ +9E755 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E756 Created OS 03 (3) 'Unix' │ │ │ │ +9E757 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E758 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E759 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E75B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E75D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E761 CRC C373B989 (3279141257) │ │ │ │ +9E765 Compressed Size 00001A49 (6729) │ │ │ │ +9E769 Uncompressed Size 000064F2 (25842) │ │ │ │ +9E76D Filename Length 0013 (19) │ │ │ │ +9E76F Extra Length 0018 (24) │ │ │ │ +9E771 Comment Length 0000 (0) │ │ │ │ +9E773 Disk Start 0000 (0) │ │ │ │ +9E775 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E777 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E77B Local Header Offset 0003AA20 (240160) │ │ │ │ +9E77F Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E77F: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E792 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E794 Length 0005 (5) │ │ │ │ +9E796 Flags 01 (1) 'Modification' │ │ │ │ +9E797 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E79B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E79D Length 000B (11) │ │ │ │ +9E79F Version 01 (1) │ │ │ │ +9E7A0 UID Size 04 (4) │ │ │ │ +9E7A1 UID 00000000 (0) │ │ │ │ +9E7A5 GID Size 04 (4) │ │ │ │ +9E7A6 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E7AA CENTRAL HEADER #34 02014B50 (33639248) │ │ │ │ +9E7AE Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E7AF Created OS 03 (3) 'Unix' │ │ │ │ +9E7B0 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E7B1 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E7B2 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E7B4 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E7B6 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E7BA CRC B885C195 (3095773589) │ │ │ │ +9E7BE Compressed Size 000009A5 (2469) │ │ │ │ +9E7C2 Uncompressed Size 00001B64 (7012) │ │ │ │ +9E7C6 Filename Length 0010 (16) │ │ │ │ +9E7C8 Extra Length 0018 (24) │ │ │ │ +9E7CA Comment Length 0000 (0) │ │ │ │ +9E7CC Disk Start 0000 (0) │ │ │ │ +9E7CE Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E7D0 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E7D4 Local Header Offset 0003C4B6 (246966) │ │ │ │ +9E7D8 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E7D8: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E7E8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E7EA Length 0005 (5) │ │ │ │ +9E7EC Flags 01 (1) 'Modification' │ │ │ │ +9E7ED Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E7F1 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E7F3 Length 000B (11) │ │ │ │ +9E7F5 Version 01 (1) │ │ │ │ +9E7F6 UID Size 04 (4) │ │ │ │ +9E7F7 UID 00000000 (0) │ │ │ │ +9E7FB GID Size 04 (4) │ │ │ │ +9E7FC GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E800 CENTRAL HEADER #35 02014B50 (33639248) │ │ │ │ +9E804 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E805 Created OS 03 (3) 'Unix' │ │ │ │ +9E806 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E807 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E808 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E80A Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E80C Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E810 CRC 297E5B60 (696146784) │ │ │ │ +9E814 Compressed Size 000006B7 (1719) │ │ │ │ +9E818 Uncompressed Size 00001565 (5477) │ │ │ │ +9E81C Filename Length 0012 (18) │ │ │ │ +9E81E Extra Length 0018 (24) │ │ │ │ +9E820 Comment Length 0000 (0) │ │ │ │ +9E822 Disk Start 0000 (0) │ │ │ │ +9E824 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E826 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E82A Local Header Offset 0003CEA5 (249509) │ │ │ │ +9E82E Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E82E: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E840 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E842 Length 0005 (5) │ │ │ │ +9E844 Flags 01 (1) 'Modification' │ │ │ │ +9E845 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E849 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E84B Length 000B (11) │ │ │ │ +9E84D Version 01 (1) │ │ │ │ +9E84E UID Size 04 (4) │ │ │ │ +9E84F UID 00000000 (0) │ │ │ │ +9E853 GID Size 04 (4) │ │ │ │ +9E854 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E858 CENTRAL HEADER #36 02014B50 (33639248) │ │ │ │ +9E85C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E85D Created OS 03 (3) 'Unix' │ │ │ │ +9E85E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E85F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E860 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E862 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E864 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E868 CRC F28CB5CA (4069307850) │ │ │ │ +9E86C Compressed Size 00002A13 (10771) │ │ │ │ +9E870 Uncompressed Size 0000B1C5 (45509) │ │ │ │ +9E874 Filename Length 0010 (16) │ │ │ │ +9E876 Extra Length 0018 (24) │ │ │ │ +9E878 Comment Length 0000 (0) │ │ │ │ +9E87A Disk Start 0000 (0) │ │ │ │ +9E87C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E87E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E882 Local Header Offset 0003D5A8 (251304) │ │ │ │ +9E886 Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E886: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E896 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E898 Length 0005 (5) │ │ │ │ +9E89A Flags 01 (1) 'Modification' │ │ │ │ +9E89B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E89F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E8A1 Length 000B (11) │ │ │ │ +9E8A3 Version 01 (1) │ │ │ │ +9E8A4 UID Size 04 (4) │ │ │ │ +9E8A5 UID 00000000 (0) │ │ │ │ +9E8A9 GID Size 04 (4) │ │ │ │ +9E8AA GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E8AE CENTRAL HEADER #37 02014B50 (33639248) │ │ │ │ +9E8B2 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E8B3 Created OS 03 (3) 'Unix' │ │ │ │ +9E8B4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E8B5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E8B6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E8B8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E8BA Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E8BE CRC E478B643 (3833116227) │ │ │ │ +9E8C2 Compressed Size 00001E86 (7814) │ │ │ │ +9E8C6 Uncompressed Size 00009AAA (39594) │ │ │ │ +9E8CA Filename Length 0012 (18) │ │ │ │ +9E8CC Extra Length 0018 (24) │ │ │ │ +9E8CE Comment Length 0000 (0) │ │ │ │ +9E8D0 Disk Start 0000 (0) │ │ │ │ +9E8D2 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E8D4 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E8D8 Local Header Offset 00040005 (262149) │ │ │ │ +9E8DC Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E8DC: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E8EE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E8F0 Length 0005 (5) │ │ │ │ +9E8F2 Flags 01 (1) 'Modification' │ │ │ │ +9E8F3 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E8F7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E8F9 Length 000B (11) │ │ │ │ +9E8FB Version 01 (1) │ │ │ │ +9E8FC UID Size 04 (4) │ │ │ │ +9E8FD UID 00000000 (0) │ │ │ │ +9E901 GID Size 04 (4) │ │ │ │ +9E902 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E906 CENTRAL HEADER #38 02014B50 (33639248) │ │ │ │ +9E90A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E90B Created OS 03 (3) 'Unix' │ │ │ │ +9E90C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E90D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E90E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E910 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E912 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E916 CRC 56E0742F (1457550383) │ │ │ │ +9E91A Compressed Size 00001477 (5239) │ │ │ │ +9E91E Uncompressed Size 00007ACF (31439) │ │ │ │ +9E922 Filename Length 0018 (24) │ │ │ │ +9E924 Extra Length 0018 (24) │ │ │ │ +9E926 Comment Length 0000 (0) │ │ │ │ +9E928 Disk Start 0000 (0) │ │ │ │ +9E92A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E92C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E930 Local Header Offset 00041ED7 (270039) │ │ │ │ +9E934 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E934: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E94C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E94E Length 0005 (5) │ │ │ │ +9E950 Flags 01 (1) 'Modification' │ │ │ │ +9E951 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E955 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E957 Length 000B (11) │ │ │ │ +9E959 Version 01 (1) │ │ │ │ +9E95A UID Size 04 (4) │ │ │ │ +9E95B UID 00000000 (0) │ │ │ │ +9E95F GID Size 04 (4) │ │ │ │ +9E960 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E964 CENTRAL HEADER #39 02014B50 (33639248) │ │ │ │ +9E968 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E969 Created OS 03 (3) 'Unix' │ │ │ │ +9E96A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E96B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E96C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E96E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E970 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E974 CRC 72AAD21B (1923797531) │ │ │ │ +9E978 Compressed Size 000018CF (6351) │ │ │ │ +9E97C Uncompressed Size 0000A7F4 (42996) │ │ │ │ +9E980 Filename Length 001F (31) │ │ │ │ +9E982 Extra Length 0018 (24) │ │ │ │ +9E984 Comment Length 0000 (0) │ │ │ │ +9E986 Disk Start 0000 (0) │ │ │ │ +9E988 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E98A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E98E Local Header Offset 000433A0 (275360) │ │ │ │ +9E992 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E992: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9E9B1 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9E9B3 Length 0005 (5) │ │ │ │ +9E9B5 Flags 01 (1) 'Modification' │ │ │ │ +9E9B6 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E9BA Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9E9BC Length 000B (11) │ │ │ │ +9E9BE Version 01 (1) │ │ │ │ +9E9BF UID Size 04 (4) │ │ │ │ +9E9C0 UID 00000000 (0) │ │ │ │ +9E9C4 GID Size 04 (4) │ │ │ │ +9E9C5 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9E9C9 CENTRAL HEADER #40 02014B50 (33639248) │ │ │ │ +9E9CD Created Zip Spec 3D (61) '6.1' │ │ │ │ +9E9CE Created OS 03 (3) 'Unix' │ │ │ │ +9E9CF Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9E9D0 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9E9D1 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9E9D3 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9E9D5 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9E9D9 CRC 705BC16B (1885061483) │ │ │ │ +9E9DD Compressed Size 000003F7 (1015) │ │ │ │ +9E9E1 Uncompressed Size 000008A3 (2211) │ │ │ │ +9E9E5 Filename Length 001E (30) │ │ │ │ +9E9E7 Extra Length 0018 (24) │ │ │ │ +9E9E9 Comment Length 0000 (0) │ │ │ │ +9E9EB Disk Start 0000 (0) │ │ │ │ +9E9ED Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9E9EF Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9E9F3 Local Header Offset 00044CC8 (281800) │ │ │ │ +9E9F7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9E9F7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EA15 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EA17 Length 0005 (5) │ │ │ │ +9EA19 Flags 01 (1) 'Modification' │ │ │ │ +9EA1A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EA1E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EA20 Length 000B (11) │ │ │ │ +9EA22 Version 01 (1) │ │ │ │ +9EA23 UID Size 04 (4) │ │ │ │ +9EA24 UID 00000000 (0) │ │ │ │ +9EA28 GID Size 04 (4) │ │ │ │ +9EA29 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EA2D CENTRAL HEADER #41 02014B50 (33639248) │ │ │ │ +9EA31 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EA32 Created OS 03 (3) 'Unix' │ │ │ │ +9EA33 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EA34 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EA35 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EA37 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EA39 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EA3D CRC BAFC6D2D (3137105197) │ │ │ │ +9EA41 Compressed Size 00004293 (17043) │ │ │ │ +9EA45 Uncompressed Size 0000D8DC (55516) │ │ │ │ +9EA49 Filename Length 0013 (19) │ │ │ │ +9EA4B Extra Length 0018 (24) │ │ │ │ +9EA4D Comment Length 0000 (0) │ │ │ │ +9EA4F Disk Start 0000 (0) │ │ │ │ +9EA51 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EA53 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EA57 Local Header Offset 00045117 (282903) │ │ │ │ +9EA5B Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EA5B: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EA6E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EA70 Length 0005 (5) │ │ │ │ +9EA72 Flags 01 (1) 'Modification' │ │ │ │ +9EA73 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EA77 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EA79 Length 000B (11) │ │ │ │ +9EA7B Version 01 (1) │ │ │ │ +9EA7C UID Size 04 (4) │ │ │ │ +9EA7D UID 00000000 (0) │ │ │ │ +9EA81 GID Size 04 (4) │ │ │ │ +9EA82 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EA86 CENTRAL HEADER #42 02014B50 (33639248) │ │ │ │ +9EA8A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EA8B Created OS 03 (3) 'Unix' │ │ │ │ +9EA8C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EA8D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EA8E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EA90 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EA92 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EA96 CRC 7070A8AD (1886431405) │ │ │ │ +9EA9A Compressed Size 000026C4 (9924) │ │ │ │ +9EA9E Uncompressed Size 00006E45 (28229) │ │ │ │ +9EAA2 Filename Length 0019 (25) │ │ │ │ +9EAA4 Extra Length 0018 (24) │ │ │ │ +9EAA6 Comment Length 0000 (0) │ │ │ │ +9EAA8 Disk Start 0000 (0) │ │ │ │ +9EAAA Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EAAC Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EAB0 Local Header Offset 000493F7 (300023) │ │ │ │ +9EAB4 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EAB4: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EACD Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EACF Length 0005 (5) │ │ │ │ +9EAD1 Flags 01 (1) 'Modification' │ │ │ │ +9EAD2 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EAD6 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EAD8 Length 000B (11) │ │ │ │ +9EADA Version 01 (1) │ │ │ │ +9EADB UID Size 04 (4) │ │ │ │ +9EADC UID 00000000 (0) │ │ │ │ +9EAE0 GID Size 04 (4) │ │ │ │ +9EAE1 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EAE5 CENTRAL HEADER #43 02014B50 (33639248) │ │ │ │ +9EAE9 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EAEA Created OS 03 (3) 'Unix' │ │ │ │ +9EAEB Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EAEC Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EAED General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EAEF Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EAF1 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EAF5 CRC 063987F6 (104433654) │ │ │ │ +9EAF9 Compressed Size 0000273A (10042) │ │ │ │ +9EAFD Uncompressed Size 00008B83 (35715) │ │ │ │ +9EB01 Filename Length 0019 (25) │ │ │ │ +9EB03 Extra Length 0018 (24) │ │ │ │ +9EB05 Comment Length 0000 (0) │ │ │ │ +9EB07 Disk Start 0000 (0) │ │ │ │ +9EB09 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EB0B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EB0F Local Header Offset 0004BB0E (310030) │ │ │ │ +9EB13 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EB13: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EB2C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EB2E Length 0005 (5) │ │ │ │ +9EB30 Flags 01 (1) 'Modification' │ │ │ │ +9EB31 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EB35 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EB37 Length 000B (11) │ │ │ │ +9EB39 Version 01 (1) │ │ │ │ +9EB3A UID Size 04 (4) │ │ │ │ +9EB3B UID 00000000 (0) │ │ │ │ +9EB3F GID Size 04 (4) │ │ │ │ +9EB40 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EB44 CENTRAL HEADER #44 02014B50 (33639248) │ │ │ │ +9EB48 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EB49 Created OS 03 (3) 'Unix' │ │ │ │ +9EB4A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EB4B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EB4C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EB4E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EB50 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EB54 CRC C1772FC5 (3245813701) │ │ │ │ +9EB58 Compressed Size 00000CF1 (3313) │ │ │ │ +9EB5C Uncompressed Size 0000517A (20858) │ │ │ │ +9EB60 Filename Length 0021 (33) │ │ │ │ +9EB62 Extra Length 0018 (24) │ │ │ │ +9EB64 Comment Length 0000 (0) │ │ │ │ +9EB66 Disk Start 0000 (0) │ │ │ │ +9EB68 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EB6A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EB6E Local Header Offset 0004E29B (320155) │ │ │ │ +9EB72 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EB72: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EB93 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EB95 Length 0005 (5) │ │ │ │ +9EB97 Flags 01 (1) 'Modification' │ │ │ │ +9EB98 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EB9C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EB9E Length 000B (11) │ │ │ │ +9EBA0 Version 01 (1) │ │ │ │ +9EBA1 UID Size 04 (4) │ │ │ │ +9EBA2 UID 00000000 (0) │ │ │ │ +9EBA6 GID Size 04 (4) │ │ │ │ +9EBA7 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EBAB CENTRAL HEADER #45 02014B50 (33639248) │ │ │ │ +9EBAF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EBB0 Created OS 03 (3) 'Unix' │ │ │ │ +9EBB1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EBB2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EBB3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EBB5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EBB7 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EBBB CRC 8C66FDEA (2355559914) │ │ │ │ +9EBBF Compressed Size 00000468 (1128) │ │ │ │ +9EBC3 Uncompressed Size 00000931 (2353) │ │ │ │ +9EBC7 Filename Length 001B (27) │ │ │ │ +9EBC9 Extra Length 0018 (24) │ │ │ │ +9EBCB Comment Length 0000 (0) │ │ │ │ +9EBCD Disk Start 0000 (0) │ │ │ │ +9EBCF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EBD1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EBD5 Local Header Offset 0004EFE7 (323559) │ │ │ │ +9EBD9 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EBD9: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EBF4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EBF6 Length 0005 (5) │ │ │ │ +9EBF8 Flags 01 (1) 'Modification' │ │ │ │ +9EBF9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EBFD Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EBFF Length 000B (11) │ │ │ │ +9EC01 Version 01 (1) │ │ │ │ +9EC02 UID Size 04 (4) │ │ │ │ +9EC03 UID 00000000 (0) │ │ │ │ +9EC07 GID Size 04 (4) │ │ │ │ +9EC08 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EC0C CENTRAL HEADER #46 02014B50 (33639248) │ │ │ │ +9EC10 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EC11 Created OS 03 (3) 'Unix' │ │ │ │ +9EC12 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EC13 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EC14 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EC16 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EC18 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EC1C CRC BF83D74B (3213088587) │ │ │ │ +9EC20 Compressed Size 000016F1 (5873) │ │ │ │ +9EC24 Uncompressed Size 00007A6D (31341) │ │ │ │ +9EC28 Filename Length 001F (31) │ │ │ │ +9EC2A Extra Length 0018 (24) │ │ │ │ +9EC2C Comment Length 0000 (0) │ │ │ │ +9EC2E Disk Start 0000 (0) │ │ │ │ +9EC30 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EC32 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EC36 Local Header Offset 0004F4A4 (324772) │ │ │ │ +9EC3A Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EC3A: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EC59 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EC5B Length 0005 (5) │ │ │ │ +9EC5D Flags 01 (1) 'Modification' │ │ │ │ +9EC5E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EC62 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EC64 Length 000B (11) │ │ │ │ +9EC66 Version 01 (1) │ │ │ │ +9EC67 UID Size 04 (4) │ │ │ │ +9EC68 UID 00000000 (0) │ │ │ │ +9EC6C GID Size 04 (4) │ │ │ │ +9EC6D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EC71 CENTRAL HEADER #47 02014B50 (33639248) │ │ │ │ +9EC75 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EC76 Created OS 03 (3) 'Unix' │ │ │ │ +9EC77 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EC78 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EC79 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EC7B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EC7D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EC81 CRC BCE431AC (3169071532) │ │ │ │ +9EC85 Compressed Size 00004173 (16755) │ │ │ │ +9EC89 Uncompressed Size 0001CF93 (118675) │ │ │ │ +9EC8D Filename Length 0010 (16) │ │ │ │ +9EC8F Extra Length 0018 (24) │ │ │ │ +9EC91 Comment Length 0000 (0) │ │ │ │ +9EC93 Disk Start 0000 (0) │ │ │ │ +9EC95 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EC97 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EC9B Local Header Offset 00050BEE (330734) │ │ │ │ +9EC9F Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EC9F: Filename 'XXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ECAF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ECB1 Length 0005 (5) │ │ │ │ +9ECB3 Flags 01 (1) 'Modification' │ │ │ │ +9ECB4 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ECB8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ECBA Length 000B (11) │ │ │ │ +9ECBC Version 01 (1) │ │ │ │ +9ECBD UID Size 04 (4) │ │ │ │ +9ECBE UID 00000000 (0) │ │ │ │ +9ECC2 GID Size 04 (4) │ │ │ │ +9ECC3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ECC7 CENTRAL HEADER #48 02014B50 (33639248) │ │ │ │ +9ECCB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ECCC Created OS 03 (3) 'Unix' │ │ │ │ +9ECCD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ECCE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ECCF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ECD1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ECD3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ECD7 CRC 7903D415 (2030294037) │ │ │ │ +9ECDB Compressed Size 00000A94 (2708) │ │ │ │ +9ECDF Uncompressed Size 00002105 (8453) │ │ │ │ +9ECE3 Filename Length 0014 (20) │ │ │ │ +9ECE5 Extra Length 0018 (24) │ │ │ │ +9ECE7 Comment Length 0000 (0) │ │ │ │ +9ECE9 Disk Start 0000 (0) │ │ │ │ +9ECEB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9ECED Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9ECF1 Local Header Offset 00054DAB (347563) │ │ │ │ +9ECF5 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9ECF5: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ED09 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ED0B Length 0005 (5) │ │ │ │ +9ED0D Flags 01 (1) 'Modification' │ │ │ │ +9ED0E Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ED12 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ED14 Length 000B (11) │ │ │ │ +9ED16 Version 01 (1) │ │ │ │ +9ED17 UID Size 04 (4) │ │ │ │ +9ED18 UID 00000000 (0) │ │ │ │ +9ED1C GID Size 04 (4) │ │ │ │ +9ED1D GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ED21 CENTRAL HEADER #49 02014B50 (33639248) │ │ │ │ +9ED25 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ED26 Created OS 03 (3) 'Unix' │ │ │ │ +9ED27 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ED28 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ED29 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ED2B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ED2D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ED31 CRC 215721B1 (559358385) │ │ │ │ +9ED35 Compressed Size 0000AC9F (44191) │ │ │ │ +9ED39 Uncompressed Size 0003E418 (255000) │ │ │ │ +9ED3D Filename Length 0017 (23) │ │ │ │ +9ED3F Extra Length 0018 (24) │ │ │ │ +9ED41 Comment Length 0000 (0) │ │ │ │ +9ED43 Disk Start 0000 (0) │ │ │ │ +9ED45 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9ED47 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9ED4B Local Header Offset 0005588D (350349) │ │ │ │ +9ED4F Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9ED4F: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9ED66 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9ED68 Length 0005 (5) │ │ │ │ +9ED6A Flags 01 (1) 'Modification' │ │ │ │ +9ED6B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ED6F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9ED71 Length 000B (11) │ │ │ │ +9ED73 Version 01 (1) │ │ │ │ +9ED74 UID Size 04 (4) │ │ │ │ +9ED75 UID 00000000 (0) │ │ │ │ +9ED79 GID Size 04 (4) │ │ │ │ +9ED7A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9ED7E CENTRAL HEADER #50 02014B50 (33639248) │ │ │ │ +9ED82 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9ED83 Created OS 03 (3) 'Unix' │ │ │ │ +9ED84 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9ED85 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9ED86 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9ED88 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9ED8A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9ED8E CRC 70C58B8F (1891994511) │ │ │ │ +9ED92 Compressed Size 00000400 (1024) │ │ │ │ +9ED96 Uncompressed Size 0000093D (2365) │ │ │ │ +9ED9A Filename Length 0013 (19) │ │ │ │ +9ED9C Extra Length 0018 (24) │ │ │ │ +9ED9E Comment Length 0000 (0) │ │ │ │ +9EDA0 Disk Start 0000 (0) │ │ │ │ +9EDA2 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EDA4 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EDA8 Local Header Offset 0006057D (394621) │ │ │ │ +9EDAC Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EDAC: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EDBF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EDC1 Length 0005 (5) │ │ │ │ +9EDC3 Flags 01 (1) 'Modification' │ │ │ │ +9EDC4 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EDC8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EDCA Length 000B (11) │ │ │ │ +9EDCC Version 01 (1) │ │ │ │ +9EDCD UID Size 04 (4) │ │ │ │ +9EDCE UID 00000000 (0) │ │ │ │ +9EDD2 GID Size 04 (4) │ │ │ │ +9EDD3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EDD7 CENTRAL HEADER #51 02014B50 (33639248) │ │ │ │ +9EDDB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EDDC Created OS 03 (3) 'Unix' │ │ │ │ +9EDDD Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EDDE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EDDF General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EDE1 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EDE3 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EDE7 CRC E37CFCDA (3816619226) │ │ │ │ +9EDEB Compressed Size 000014E0 (5344) │ │ │ │ +9EDEF Uncompressed Size 0000687B (26747) │ │ │ │ +9EDF3 Filename Length 0012 (18) │ │ │ │ +9EDF5 Extra Length 0018 (24) │ │ │ │ +9EDF7 Comment Length 0000 (0) │ │ │ │ +9EDF9 Disk Start 0000 (0) │ │ │ │ +9EDFB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EDFD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EE01 Local Header Offset 000609CA (395722) │ │ │ │ +9EE05 Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EE05: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EE17 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EE19 Length 0005 (5) │ │ │ │ +9EE1B Flags 01 (1) 'Modification' │ │ │ │ +9EE1C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EE20 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EE22 Length 000B (11) │ │ │ │ +9EE24 Version 01 (1) │ │ │ │ +9EE25 UID Size 04 (4) │ │ │ │ +9EE26 UID 00000000 (0) │ │ │ │ +9EE2A GID Size 04 (4) │ │ │ │ +9EE2B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EE2F CENTRAL HEADER #52 02014B50 (33639248) │ │ │ │ +9EE33 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EE34 Created OS 03 (3) 'Unix' │ │ │ │ +9EE35 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EE36 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EE37 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EE39 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EE3B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EE3F CRC F42D160E (4096595470) │ │ │ │ +9EE43 Compressed Size 000011EB (4587) │ │ │ │ +9EE47 Uncompressed Size 000040F5 (16629) │ │ │ │ +9EE4B Filename Length 0012 (18) │ │ │ │ +9EE4D Extra Length 0018 (24) │ │ │ │ +9EE4F Comment Length 0000 (0) │ │ │ │ +9EE51 Disk Start 0000 (0) │ │ │ │ +9EE53 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EE55 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EE59 Local Header Offset 00061EF6 (401142) │ │ │ │ +9EE5D Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EE5D: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EE6F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EE71 Length 0005 (5) │ │ │ │ +9EE73 Flags 01 (1) 'Modification' │ │ │ │ +9EE74 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EE78 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EE7A Length 000B (11) │ │ │ │ +9EE7C Version 01 (1) │ │ │ │ +9EE7D UID Size 04 (4) │ │ │ │ +9EE7E UID 00000000 (0) │ │ │ │ +9EE82 GID Size 04 (4) │ │ │ │ +9EE83 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EE87 CENTRAL HEADER #53 02014B50 (33639248) │ │ │ │ +9EE8B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EE8C Created OS 03 (3) 'Unix' │ │ │ │ +9EE8D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EE8E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EE8F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EE91 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EE93 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EE97 CRC 5405F361 (1409676129) │ │ │ │ +9EE9B Compressed Size 000009D9 (2521) │ │ │ │ +9EE9F Uncompressed Size 00003529 (13609) │ │ │ │ +9EEA3 Filename Length 0019 (25) │ │ │ │ +9EEA5 Extra Length 0018 (24) │ │ │ │ +9EEA7 Comment Length 0000 (0) │ │ │ │ +9EEA9 Disk Start 0000 (0) │ │ │ │ +9EEAB Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EEAD Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EEB1 Local Header Offset 0006312D (405805) │ │ │ │ +9EEB5 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EEB5: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EECE Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EED0 Length 0005 (5) │ │ │ │ +9EED2 Flags 01 (1) 'Modification' │ │ │ │ +9EED3 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EED7 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EED9 Length 000B (11) │ │ │ │ +9EEDB Version 01 (1) │ │ │ │ +9EEDC UID Size 04 (4) │ │ │ │ +9EEDD UID 00000000 (0) │ │ │ │ +9EEE1 GID Size 04 (4) │ │ │ │ +9EEE2 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EEE6 CENTRAL HEADER #54 02014B50 (33639248) │ │ │ │ +9EEEA Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EEEB Created OS 03 (3) 'Unix' │ │ │ │ +9EEEC Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EEED Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EEEE General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EEF0 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EEF2 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EEF6 CRC 63F1384B (1676752971) │ │ │ │ +9EEFA Compressed Size 000018AF (6319) │ │ │ │ +9EEFE Uncompressed Size 0000A605 (42501) │ │ │ │ +9EF02 Filename Length 0019 (25) │ │ │ │ +9EF04 Extra Length 0018 (24) │ │ │ │ +9EF06 Comment Length 0000 (0) │ │ │ │ +9EF08 Disk Start 0000 (0) │ │ │ │ +9EF0A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EF0C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EF10 Local Header Offset 00063B59 (408409) │ │ │ │ +9EF14 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EF14: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EF2D Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EF2F Length 0005 (5) │ │ │ │ +9EF31 Flags 01 (1) 'Modification' │ │ │ │ +9EF32 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EF36 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EF38 Length 000B (11) │ │ │ │ +9EF3A Version 01 (1) │ │ │ │ +9EF3B UID Size 04 (4) │ │ │ │ +9EF3C UID 00000000 (0) │ │ │ │ +9EF40 GID Size 04 (4) │ │ │ │ +9EF41 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EF45 CENTRAL HEADER #55 02014B50 (33639248) │ │ │ │ +9EF49 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EF4A Created OS 03 (3) 'Unix' │ │ │ │ +9EF4B Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EF4C Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EF4D General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EF4F Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EF51 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EF55 CRC 80854D35 (2156219701) │ │ │ │ +9EF59 Compressed Size 0000177D (6013) │ │ │ │ +9EF5D Uncompressed Size 0000472C (18220) │ │ │ │ +9EF61 Filename Length 0014 (20) │ │ │ │ +9EF63 Extra Length 0018 (24) │ │ │ │ +9EF65 Comment Length 0000 (0) │ │ │ │ +9EF67 Disk Start 0000 (0) │ │ │ │ +9EF69 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EF6B Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EF6F Local Header Offset 0006545B (414811) │ │ │ │ +9EF73 Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EF73: Filename 'XXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EF87 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EF89 Length 0005 (5) │ │ │ │ +9EF8B Flags 01 (1) 'Modification' │ │ │ │ +9EF8C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EF90 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EF92 Length 000B (11) │ │ │ │ +9EF94 Version 01 (1) │ │ │ │ +9EF95 UID Size 04 (4) │ │ │ │ +9EF96 UID 00000000 (0) │ │ │ │ +9EF9A GID Size 04 (4) │ │ │ │ +9EF9B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9EF9F CENTRAL HEADER #56 02014B50 (33639248) │ │ │ │ +9EFA3 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9EFA4 Created OS 03 (3) 'Unix' │ │ │ │ +9EFA5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9EFA6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9EFA7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9EFA9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9EFAB Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EFAF CRC 8CE827B6 (2364024758) │ │ │ │ +9EFB3 Compressed Size 0000040A (1034) │ │ │ │ +9EFB7 Uncompressed Size 00000825 (2085) │ │ │ │ +9EFBB Filename Length 001C (28) │ │ │ │ +9EFBD Extra Length 0018 (24) │ │ │ │ +9EFBF Comment Length 0000 (0) │ │ │ │ +9EFC1 Disk Start 0000 (0) │ │ │ │ +9EFC3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9EFC5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9EFC9 Local Header Offset 00066C26 (420902) │ │ │ │ +9EFCD Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9EFCD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9EFE9 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9EFEB Length 0005 (5) │ │ │ │ +9EFED Flags 01 (1) 'Modification' │ │ │ │ +9EFEE Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9EFF2 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9EFF4 Length 000B (11) │ │ │ │ +9EFF6 Version 01 (1) │ │ │ │ +9EFF7 UID Size 04 (4) │ │ │ │ +9EFF8 UID 00000000 (0) │ │ │ │ +9EFFC GID Size 04 (4) │ │ │ │ +9EFFD GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F001 CENTRAL HEADER #57 02014B50 (33639248) │ │ │ │ +9F005 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F006 Created OS 03 (3) 'Unix' │ │ │ │ +9F007 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F008 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F009 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F00B Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F00D Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F011 CRC D6EFCCB6 (3606039734) │ │ │ │ +9F015 Compressed Size 00002484 (9348) │ │ │ │ +9F019 Uncompressed Size 0000B56F (46447) │ │ │ │ +9F01D Filename Length 001F (31) │ │ │ │ +9F01F Extra Length 0018 (24) │ │ │ │ +9F021 Comment Length 0000 (0) │ │ │ │ +9F023 Disk Start 0000 (0) │ │ │ │ +9F025 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F027 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F02B Local Header Offset 00067086 (422022) │ │ │ │ +9F02F Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F02F: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F04E Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F050 Length 0005 (5) │ │ │ │ +9F052 Flags 01 (1) 'Modification' │ │ │ │ +9F053 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F057 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F059 Length 000B (11) │ │ │ │ +9F05B Version 01 (1) │ │ │ │ +9F05C UID Size 04 (4) │ │ │ │ +9F05D UID 00000000 (0) │ │ │ │ +9F061 GID Size 04 (4) │ │ │ │ +9F062 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F066 CENTRAL HEADER #58 02014B50 (33639248) │ │ │ │ +9F06A Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F06B Created OS 03 (3) 'Unix' │ │ │ │ +9F06C Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F06D Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F06E General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F070 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F072 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F076 CRC 1339DFE7 (322559975) │ │ │ │ +9F07A Compressed Size 00000E7C (3708) │ │ │ │ +9F07E Uncompressed Size 000052D9 (21209) │ │ │ │ +9F082 Filename Length 001F (31) │ │ │ │ +9F084 Extra Length 0018 (24) │ │ │ │ +9F086 Comment Length 0000 (0) │ │ │ │ +9F088 Disk Start 0000 (0) │ │ │ │ +9F08A Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F08C Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F090 Local Header Offset 00069563 (431459) │ │ │ │ +9F094 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F094: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F0B3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F0B5 Length 0005 (5) │ │ │ │ +9F0B7 Flags 01 (1) 'Modification' │ │ │ │ +9F0B8 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F0BC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F0BE Length 000B (11) │ │ │ │ +9F0C0 Version 01 (1) │ │ │ │ +9F0C1 UID Size 04 (4) │ │ │ │ +9F0C2 UID 00000000 (0) │ │ │ │ +9F0C6 GID Size 04 (4) │ │ │ │ +9F0C7 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F0CB CENTRAL HEADER #59 02014B50 (33639248) │ │ │ │ +9F0CF Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F0D0 Created OS 03 (3) 'Unix' │ │ │ │ +9F0D1 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F0D2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F0D3 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F0D5 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F0D7 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F0DB CRC 08EC1ED3 (149692115) │ │ │ │ +9F0DF Compressed Size 00000A44 (2628) │ │ │ │ +9F0E3 Uncompressed Size 0000247A (9338) │ │ │ │ +9F0E7 Filename Length 0013 (19) │ │ │ │ +9F0E9 Extra Length 0018 (24) │ │ │ │ +9F0EB Comment Length 0000 (0) │ │ │ │ +9F0ED Disk Start 0000 (0) │ │ │ │ +9F0EF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F0F1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F0F5 Local Header Offset 0006A438 (435256) │ │ │ │ +9F0F9 Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F0F9: Filename 'XXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F10C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F10E Length 0005 (5) │ │ │ │ +9F110 Flags 01 (1) 'Modification' │ │ │ │ +9F111 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F115 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F117 Length 000B (11) │ │ │ │ +9F119 Version 01 (1) │ │ │ │ +9F11A UID Size 04 (4) │ │ │ │ +9F11B UID 00000000 (0) │ │ │ │ +9F11F GID Size 04 (4) │ │ │ │ +9F120 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F124 CENTRAL HEADER #60 02014B50 (33639248) │ │ │ │ +9F128 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F129 Created OS 03 (3) 'Unix' │ │ │ │ +9F12A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F12B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F12C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F12E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F130 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F134 CRC E0FA7AC0 (3774511808) │ │ │ │ +9F138 Compressed Size 00002487 (9351) │ │ │ │ +9F13C Uncompressed Size 0000B84C (47180) │ │ │ │ +9F140 Filename Length 0019 (25) │ │ │ │ +9F142 Extra Length 0018 (24) │ │ │ │ +9F144 Comment Length 0000 (0) │ │ │ │ +9F146 Disk Start 0000 (0) │ │ │ │ +9F148 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F14A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F14E Local Header Offset 0006AEC9 (437961) │ │ │ │ +9F152 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F152: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F16B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F16D Length 0005 (5) │ │ │ │ +9F16F Flags 01 (1) 'Modification' │ │ │ │ +9F170 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F174 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F176 Length 000B (11) │ │ │ │ +9F178 Version 01 (1) │ │ │ │ +9F179 UID Size 04 (4) │ │ │ │ +9F17A UID 00000000 (0) │ │ │ │ +9F17E GID Size 04 (4) │ │ │ │ +9F17F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F183 CENTRAL HEADER #61 02014B50 (33639248) │ │ │ │ +9F187 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F188 Created OS 03 (3) 'Unix' │ │ │ │ +9F189 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F18A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F18B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F18D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F18F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F193 CRC 09D7483A (165103674) │ │ │ │ +9F197 Compressed Size 00000EFC (3836) │ │ │ │ +9F19B Uncompressed Size 00003A2C (14892) │ │ │ │ +9F19F Filename Length 0024 (36) │ │ │ │ +9F1A1 Extra Length 0018 (24) │ │ │ │ +9F1A3 Comment Length 0000 (0) │ │ │ │ +9F1A5 Disk Start 0000 (0) │ │ │ │ +9F1A7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F1A9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F1AD Local Header Offset 0006D3A3 (447395) │ │ │ │ +9F1B1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F1B1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F1D5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F1D7 Length 0005 (5) │ │ │ │ +9F1D9 Flags 01 (1) 'Modification' │ │ │ │ +9F1DA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F1DE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F1E0 Length 000B (11) │ │ │ │ +9F1E2 Version 01 (1) │ │ │ │ +9F1E3 UID Size 04 (4) │ │ │ │ +9F1E4 UID 00000000 (0) │ │ │ │ +9F1E8 GID Size 04 (4) │ │ │ │ +9F1E9 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F1ED CENTRAL HEADER #62 02014B50 (33639248) │ │ │ │ +9F1F1 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F1F2 Created OS 03 (3) 'Unix' │ │ │ │ +9F1F3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F1F4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F1F5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F1F7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F1F9 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F1FD CRC 6625DC1A (1713757210) │ │ │ │ +9F201 Compressed Size 00001AC0 (6848) │ │ │ │ +9F205 Uncompressed Size 00005EDC (24284) │ │ │ │ +9F209 Filename Length 0017 (23) │ │ │ │ +9F20B Extra Length 0018 (24) │ │ │ │ +9F20D Comment Length 0000 (0) │ │ │ │ +9F20F Disk Start 0000 (0) │ │ │ │ +9F211 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F213 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F217 Local Header Offset 0006E2FD (451325) │ │ │ │ +9F21B Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F21B: Filename 'XXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F232 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F234 Length 0005 (5) │ │ │ │ +9F236 Flags 01 (1) 'Modification' │ │ │ │ +9F237 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F23B Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F23D Length 000B (11) │ │ │ │ +9F23F Version 01 (1) │ │ │ │ +9F240 UID Size 04 (4) │ │ │ │ +9F241 UID 00000000 (0) │ │ │ │ +9F245 GID Size 04 (4) │ │ │ │ +9F246 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F24A CENTRAL HEADER #63 02014B50 (33639248) │ │ │ │ +9F24E Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F24F Created OS 03 (3) 'Unix' │ │ │ │ +9F250 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F251 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F252 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F254 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F256 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F25A CRC 11E32AF1 (300100337) │ │ │ │ +9F25E Compressed Size 00000ED3 (3795) │ │ │ │ +9F262 Uncompressed Size 000038E2 (14562) │ │ │ │ +9F266 Filename Length 0023 (35) │ │ │ │ +9F268 Extra Length 0018 (24) │ │ │ │ +9F26A Comment Length 0000 (0) │ │ │ │ +9F26C Disk Start 0000 (0) │ │ │ │ +9F26E Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F270 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F274 Local Header Offset 0006FE0E (458254) │ │ │ │ +9F278 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F278: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F29B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F29D Length 0005 (5) │ │ │ │ +9F29F Flags 01 (1) 'Modification' │ │ │ │ +9F2A0 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F2A4 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F2A6 Length 000B (11) │ │ │ │ +9F2A8 Version 01 (1) │ │ │ │ +9F2A9 UID Size 04 (4) │ │ │ │ +9F2AA UID 00000000 (0) │ │ │ │ +9F2AE GID Size 04 (4) │ │ │ │ +9F2AF GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F2B3 CENTRAL HEADER #64 02014B50 (33639248) │ │ │ │ +9F2B7 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F2B8 Created OS 03 (3) 'Unix' │ │ │ │ +9F2B9 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F2BA Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F2BB General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F2BD Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F2BF Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F2C3 CRC 2DB7929F (767005343) │ │ │ │ +9F2C7 Compressed Size 00000113 (275) │ │ │ │ +9F2CB Uncompressed Size 000001F3 (499) │ │ │ │ +9F2CF Filename Length 001B (27) │ │ │ │ +9F2D1 Extra Length 0018 (24) │ │ │ │ +9F2D3 Comment Length 0000 (0) │ │ │ │ +9F2D5 Disk Start 0000 (0) │ │ │ │ +9F2D7 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F2D9 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F2DD Local Header Offset 00070D3E (462142) │ │ │ │ +9F2E1 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F2E1: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F2FC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F2FE Length 0005 (5) │ │ │ │ +9F300 Flags 01 (1) 'Modification' │ │ │ │ +9F301 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F305 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F307 Length 000B (11) │ │ │ │ +9F309 Version 01 (1) │ │ │ │ +9F30A UID Size 04 (4) │ │ │ │ +9F30B UID 00000000 (0) │ │ │ │ +9F30F GID Size 04 (4) │ │ │ │ +9F310 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F314 CENTRAL HEADER #65 02014B50 (33639248) │ │ │ │ +9F318 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F319 Created OS 03 (3) 'Unix' │ │ │ │ +9F31A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F31B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F31C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F31E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F320 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F324 CRC B7B544F0 (3082110192) │ │ │ │ +9F328 Compressed Size 00001890 (6288) │ │ │ │ +9F32C Uncompressed Size 00008FAC (36780) │ │ │ │ +9F330 Filename Length 001D (29) │ │ │ │ +9F332 Extra Length 0018 (24) │ │ │ │ +9F334 Comment Length 0000 (0) │ │ │ │ +9F336 Disk Start 0000 (0) │ │ │ │ +9F338 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F33A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F33E Local Header Offset 00070EA6 (462502) │ │ │ │ +9F342 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F342: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F35F Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F361 Length 0005 (5) │ │ │ │ +9F363 Flags 01 (1) 'Modification' │ │ │ │ +9F364 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F368 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F36A Length 000B (11) │ │ │ │ +9F36C Version 01 (1) │ │ │ │ +9F36D UID Size 04 (4) │ │ │ │ +9F36E UID 00000000 (0) │ │ │ │ +9F372 GID Size 04 (4) │ │ │ │ +9F373 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F377 CENTRAL HEADER #66 02014B50 (33639248) │ │ │ │ +9F37B Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F37C Created OS 03 (3) 'Unix' │ │ │ │ +9F37D Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F37E Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F37F General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F381 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F383 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F387 CRC 5F656D2A (1600482602) │ │ │ │ +9F38B Compressed Size 0000164C (5708) │ │ │ │ +9F38F Uncompressed Size 00003A9B (15003) │ │ │ │ +9F393 Filename Length 0015 (21) │ │ │ │ +9F395 Extra Length 0018 (24) │ │ │ │ +9F397 Comment Length 0000 (0) │ │ │ │ +9F399 Disk Start 0000 (0) │ │ │ │ +9F39B Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F39D Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F3A1 Local Header Offset 0007278D (468877) │ │ │ │ +9F3A5 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F3A5: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F3BA Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F3BC Length 0005 (5) │ │ │ │ +9F3BE Flags 01 (1) 'Modification' │ │ │ │ +9F3BF Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F3C3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F3C5 Length 000B (11) │ │ │ │ +9F3C7 Version 01 (1) │ │ │ │ +9F3C8 UID Size 04 (4) │ │ │ │ +9F3C9 UID 00000000 (0) │ │ │ │ +9F3CD GID Size 04 (4) │ │ │ │ +9F3CE GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F3D2 CENTRAL HEADER #67 02014B50 (33639248) │ │ │ │ +9F3D6 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F3D7 Created OS 03 (3) 'Unix' │ │ │ │ +9F3D8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F3D9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F3DA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F3DC Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F3DE Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F3E2 CRC BBEC2220 (3152814624) │ │ │ │ +9F3E6 Compressed Size 00003B4F (15183) │ │ │ │ +9F3EA Uncompressed Size 0001185B (71771) │ │ │ │ +9F3EE Filename Length 0016 (22) │ │ │ │ +9F3F0 Extra Length 0018 (24) │ │ │ │ +9F3F2 Comment Length 0000 (0) │ │ │ │ +9F3F4 Disk Start 0000 (0) │ │ │ │ +9F3F6 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F3F8 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F3FC Local Header Offset 00073E28 (474664) │ │ │ │ +9F400 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F400: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F416 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F418 Length 0005 (5) │ │ │ │ +9F41A Flags 01 (1) 'Modification' │ │ │ │ +9F41B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F41F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F421 Length 000B (11) │ │ │ │ +9F423 Version 01 (1) │ │ │ │ +9F424 UID Size 04 (4) │ │ │ │ +9F425 UID 00000000 (0) │ │ │ │ +9F429 GID Size 04 (4) │ │ │ │ +9F42A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F42E CENTRAL HEADER #68 02014B50 (33639248) │ │ │ │ +9F432 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F433 Created OS 03 (3) 'Unix' │ │ │ │ +9F434 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F435 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F436 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F438 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F43A Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F43E CRC FEA7A5C4 (4272399812) │ │ │ │ +9F442 Compressed Size 00003E89 (16009) │ │ │ │ +9F446 Uncompressed Size 0001C17B (115067) │ │ │ │ +9F44A Filename Length 0019 (25) │ │ │ │ +9F44C Extra Length 0018 (24) │ │ │ │ +9F44E Comment Length 0000 (0) │ │ │ │ +9F450 Disk Start 0000 (0) │ │ │ │ +9F452 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F454 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F458 Local Header Offset 000779C7 (489927) │ │ │ │ +9F45C Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F45C: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F475 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F477 Length 0005 (5) │ │ │ │ +9F479 Flags 01 (1) 'Modification' │ │ │ │ +9F47A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F47E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F480 Length 000B (11) │ │ │ │ +9F482 Version 01 (1) │ │ │ │ +9F483 UID Size 04 (4) │ │ │ │ +9F484 UID 00000000 (0) │ │ │ │ +9F488 GID Size 04 (4) │ │ │ │ +9F489 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F48D CENTRAL HEADER #69 02014B50 (33639248) │ │ │ │ +9F491 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F492 Created OS 03 (3) 'Unix' │ │ │ │ +9F493 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F494 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F495 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F497 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F499 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F49D CRC C0F15AD1 (3237042897) │ │ │ │ +9F4A1 Compressed Size 00000839 (2105) │ │ │ │ +9F4A5 Uncompressed Size 00003383 (13187) │ │ │ │ +9F4A9 Filename Length 0011 (17) │ │ │ │ +9F4AB Extra Length 0018 (24) │ │ │ │ +9F4AD Comment Length 0000 (0) │ │ │ │ +9F4AF Disk Start 0000 (0) │ │ │ │ +9F4B1 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F4B3 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F4B7 Local Header Offset 0007B8A3 (506019) │ │ │ │ +9F4BB Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F4BB: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F4CC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F4CE Length 0005 (5) │ │ │ │ +9F4D0 Flags 01 (1) 'Modification' │ │ │ │ +9F4D1 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F4D5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F4D7 Length 000B (11) │ │ │ │ +9F4D9 Version 01 (1) │ │ │ │ +9F4DA UID Size 04 (4) │ │ │ │ +9F4DB UID 00000000 (0) │ │ │ │ +9F4DF GID Size 04 (4) │ │ │ │ +9F4E0 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F4E4 CENTRAL HEADER #70 02014B50 (33639248) │ │ │ │ +9F4E8 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F4E9 Created OS 03 (3) 'Unix' │ │ │ │ +9F4EA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F4EB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F4EC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F4EE Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F4F0 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F4F4 CRC 4841A80E (1212262414) │ │ │ │ +9F4F8 Compressed Size 0000518C (20876) │ │ │ │ +9F4FC Uncompressed Size 0001FB6C (129900) │ │ │ │ +9F500 Filename Length 0015 (21) │ │ │ │ +9F502 Extra Length 0018 (24) │ │ │ │ +9F504 Comment Length 0000 (0) │ │ │ │ +9F506 Disk Start 0000 (0) │ │ │ │ +9F508 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F50A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F50E Local Header Offset 0007C127 (508199) │ │ │ │ +9F512 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F512: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F527 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F529 Length 0005 (5) │ │ │ │ +9F52B Flags 01 (1) 'Modification' │ │ │ │ +9F52C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F530 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F532 Length 000B (11) │ │ │ │ +9F534 Version 01 (1) │ │ │ │ +9F535 UID Size 04 (4) │ │ │ │ +9F536 UID 00000000 (0) │ │ │ │ +9F53A GID Size 04 (4) │ │ │ │ +9F53B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F53F CENTRAL HEADER #71 02014B50 (33639248) │ │ │ │ +9F543 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F544 Created OS 03 (3) 'Unix' │ │ │ │ +9F545 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F546 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F547 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F549 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F54B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F54F CRC E990DD87 (3918585223) │ │ │ │ +9F553 Compressed Size 00001B07 (6919) │ │ │ │ +9F557 Uncompressed Size 000081CF (33231) │ │ │ │ +9F55B Filename Length 0019 (25) │ │ │ │ +9F55D Extra Length 0018 (24) │ │ │ │ +9F55F Comment Length 0000 (0) │ │ │ │ +9F561 Disk Start 0000 (0) │ │ │ │ +9F563 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F565 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F569 Local Header Offset 00081302 (529154) │ │ │ │ +9F56D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F56D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F586 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F588 Length 0005 (5) │ │ │ │ +9F58A Flags 01 (1) 'Modification' │ │ │ │ +9F58B Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F58F Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F591 Length 000B (11) │ │ │ │ +9F593 Version 01 (1) │ │ │ │ +9F594 UID Size 04 (4) │ │ │ │ +9F595 UID 00000000 (0) │ │ │ │ +9F599 GID Size 04 (4) │ │ │ │ +9F59A GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F59E CENTRAL HEADER #72 02014B50 (33639248) │ │ │ │ +9F5A2 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F5A3 Created OS 03 (3) 'Unix' │ │ │ │ +9F5A4 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F5A5 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F5A6 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F5A8 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F5AA Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F5AE CRC 19EA59E6 (434788838) │ │ │ │ +9F5B2 Compressed Size 00000D97 (3479) │ │ │ │ +9F5B6 Uncompressed Size 00002E9F (11935) │ │ │ │ +9F5BA Filename Length 0018 (24) │ │ │ │ +9F5BC Extra Length 0018 (24) │ │ │ │ +9F5BE Comment Length 0000 (0) │ │ │ │ +9F5C0 Disk Start 0000 (0) │ │ │ │ +9F5C2 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F5C4 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F5C8 Local Header Offset 00082E5C (536156) │ │ │ │ +9F5CC Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F5CC: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F5E4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F5E6 Length 0005 (5) │ │ │ │ +9F5E8 Flags 01 (1) 'Modification' │ │ │ │ +9F5E9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F5ED Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F5EF Length 000B (11) │ │ │ │ +9F5F1 Version 01 (1) │ │ │ │ +9F5F2 UID Size 04 (4) │ │ │ │ +9F5F3 UID 00000000 (0) │ │ │ │ +9F5F7 GID Size 04 (4) │ │ │ │ +9F5F8 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F5FC CENTRAL HEADER #73 02014B50 (33639248) │ │ │ │ +9F600 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F601 Created OS 03 (3) 'Unix' │ │ │ │ +9F602 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F603 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F604 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F606 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F608 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F60C CRC 0350D61E (55629342) │ │ │ │ +9F610 Compressed Size 000001E0 (480) │ │ │ │ +9F614 Uncompressed Size 00000323 (803) │ │ │ │ +9F618 Filename Length 0011 (17) │ │ │ │ +9F61A Extra Length 0018 (24) │ │ │ │ +9F61C Comment Length 0000 (0) │ │ │ │ +9F61E Disk Start 0000 (0) │ │ │ │ +9F620 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F622 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F626 Local Header Offset 00083C45 (539717) │ │ │ │ +9F62A Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F62A: Filename 'XXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F63B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F63D Length 0005 (5) │ │ │ │ +9F63F Flags 01 (1) 'Modification' │ │ │ │ +9F640 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F644 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F646 Length 000B (11) │ │ │ │ +9F648 Version 01 (1) │ │ │ │ +9F649 UID Size 04 (4) │ │ │ │ +9F64A UID 00000000 (0) │ │ │ │ +9F64E GID Size 04 (4) │ │ │ │ +9F64F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F653 CENTRAL HEADER #74 02014B50 (33639248) │ │ │ │ +9F657 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F658 Created OS 03 (3) 'Unix' │ │ │ │ +9F659 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F65A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F65B General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F65D Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F65F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F663 CRC 3FD13568 (1070675304) │ │ │ │ +9F667 Compressed Size 000006C2 (1730) │ │ │ │ +9F66B Uncompressed Size 00001439 (5177) │ │ │ │ +9F66F Filename Length 0019 (25) │ │ │ │ +9F671 Extra Length 0018 (24) │ │ │ │ +9F673 Comment Length 0000 (0) │ │ │ │ +9F675 Disk Start 0000 (0) │ │ │ │ +9F677 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F679 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F67D Local Header Offset 00083E70 (540272) │ │ │ │ +9F681 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F681: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F69A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F69C Length 0005 (5) │ │ │ │ +9F69E Flags 01 (1) 'Modification' │ │ │ │ +9F69F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F6A3 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F6A5 Length 000B (11) │ │ │ │ +9F6A7 Version 01 (1) │ │ │ │ +9F6A8 UID Size 04 (4) │ │ │ │ +9F6A9 UID 00000000 (0) │ │ │ │ +9F6AD GID Size 04 (4) │ │ │ │ +9F6AE GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F6B2 CENTRAL HEADER #75 02014B50 (33639248) │ │ │ │ +9F6B6 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F6B7 Created OS 03 (3) 'Unix' │ │ │ │ +9F6B8 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F6B9 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F6BA General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F6BC Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F6BE Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F6C2 CRC 05677F09 (90668809) │ │ │ │ +9F6C6 Compressed Size 00001B8A (7050) │ │ │ │ +9F6CA Uncompressed Size 00009F03 (40707) │ │ │ │ +9F6CE Filename Length 0018 (24) │ │ │ │ +9F6D0 Extra Length 0018 (24) │ │ │ │ +9F6D2 Comment Length 0000 (0) │ │ │ │ +9F6D4 Disk Start 0000 (0) │ │ │ │ +9F6D6 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F6D8 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F6DC Local Header Offset 00084585 (542085) │ │ │ │ +9F6E0 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F6E0: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F6F8 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F6FA Length 0005 (5) │ │ │ │ +9F6FC Flags 01 (1) 'Modification' │ │ │ │ +9F6FD Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F701 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F703 Length 000B (11) │ │ │ │ +9F705 Version 01 (1) │ │ │ │ +9F706 UID Size 04 (4) │ │ │ │ +9F707 UID 00000000 (0) │ │ │ │ +9F70B GID Size 04 (4) │ │ │ │ +9F70C GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F710 CENTRAL HEADER #76 02014B50 (33639248) │ │ │ │ +9F714 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F715 Created OS 03 (3) 'Unix' │ │ │ │ +9F716 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F717 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F718 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F71A Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F71C Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F720 CRC B8D73842 (3101112386) │ │ │ │ +9F724 Compressed Size 000016F8 (5880) │ │ │ │ +9F728 Uncompressed Size 00008AB6 (35510) │ │ │ │ +9F72C Filename Length 0012 (18) │ │ │ │ +9F72E Extra Length 0018 (24) │ │ │ │ +9F730 Comment Length 0000 (0) │ │ │ │ +9F732 Disk Start 0000 (0) │ │ │ │ +9F734 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F736 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F73A Local Header Offset 00086161 (549217) │ │ │ │ +9F73E Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F73E: Filename 'XXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F750 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F752 Length 0005 (5) │ │ │ │ +9F754 Flags 01 (1) 'Modification' │ │ │ │ +9F755 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F759 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F75B Length 000B (11) │ │ │ │ +9F75D Version 01 (1) │ │ │ │ +9F75E UID Size 04 (4) │ │ │ │ +9F75F UID 00000000 (0) │ │ │ │ +9F763 GID Size 04 (4) │ │ │ │ +9F764 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F768 CENTRAL HEADER #77 02014B50 (33639248) │ │ │ │ +9F76C Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F76D Created OS 03 (3) 'Unix' │ │ │ │ +9F76E Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F76F Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F770 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F772 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F774 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F778 CRC CF7D5083 (3481096323) │ │ │ │ +9F77C Compressed Size 00001E13 (7699) │ │ │ │ +9F780 Uncompressed Size 00008803 (34819) │ │ │ │ +9F784 Filename Length 0016 (22) │ │ │ │ +9F786 Extra Length 0018 (24) │ │ │ │ +9F788 Comment Length 0000 (0) │ │ │ │ +9F78A Disk Start 0000 (0) │ │ │ │ +9F78C Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F78E Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F792 Local Header Offset 000878A5 (555173) │ │ │ │ +9F796 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F796: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F7AC Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F7AE Length 0005 (5) │ │ │ │ +9F7B0 Flags 01 (1) 'Modification' │ │ │ │ +9F7B1 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F7B5 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F7B7 Length 000B (11) │ │ │ │ +9F7B9 Version 01 (1) │ │ │ │ +9F7BA UID Size 04 (4) │ │ │ │ +9F7BB UID 00000000 (0) │ │ │ │ +9F7BF GID Size 04 (4) │ │ │ │ +9F7C0 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F7C4 CENTRAL HEADER #78 02014B50 (33639248) │ │ │ │ +9F7C8 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F7C9 Created OS 03 (3) 'Unix' │ │ │ │ +9F7CA Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F7CB Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F7CC General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F7CE Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F7D0 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F7D4 CRC 34D63497 (886453399) │ │ │ │ +9F7D8 Compressed Size 000029AC (10668) │ │ │ │ +9F7DC Uncompressed Size 0000D04F (53327) │ │ │ │ +9F7E0 Filename Length 001A (26) │ │ │ │ +9F7E2 Extra Length 0018 (24) │ │ │ │ +9F7E4 Comment Length 0000 (0) │ │ │ │ +9F7E6 Disk Start 0000 (0) │ │ │ │ +9F7E8 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F7EA Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F7EE Local Header Offset 00089708 (562952) │ │ │ │ +9F7F2 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F7F2: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F80C Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F80E Length 0005 (5) │ │ │ │ +9F810 Flags 01 (1) 'Modification' │ │ │ │ +9F811 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F815 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F817 Length 000B (11) │ │ │ │ +9F819 Version 01 (1) │ │ │ │ +9F81A UID Size 04 (4) │ │ │ │ +9F81B UID 00000000 (0) │ │ │ │ +9F81F GID Size 04 (4) │ │ │ │ +9F820 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F824 CENTRAL HEADER #79 02014B50 (33639248) │ │ │ │ +9F828 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F829 Created OS 03 (3) 'Unix' │ │ │ │ +9F82A Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F82B Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F82C General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F82E Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F830 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F834 CRC 2A6ECA3B (711903803) │ │ │ │ +9F838 Compressed Size 000009AC (2476) │ │ │ │ +9F83C Uncompressed Size 00001DB6 (7606) │ │ │ │ +9F840 Filename Length 0018 (24) │ │ │ │ +9F842 Extra Length 0018 (24) │ │ │ │ +9F844 Comment Length 0000 (0) │ │ │ │ +9F846 Disk Start 0000 (0) │ │ │ │ +9F848 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F84A Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F84E Local Header Offset 0008C108 (573704) │ │ │ │ +9F852 Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F852: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F86A Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F86C Length 0005 (5) │ │ │ │ +9F86E Flags 01 (1) 'Modification' │ │ │ │ +9F86F Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F873 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F875 Length 000B (11) │ │ │ │ +9F877 Version 01 (1) │ │ │ │ +9F878 UID Size 04 (4) │ │ │ │ +9F879 UID 00000000 (0) │ │ │ │ +9F87D GID Size 04 (4) │ │ │ │ +9F87E GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F882 CENTRAL HEADER #80 02014B50 (33639248) │ │ │ │ +9F886 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F887 Created OS 03 (3) 'Unix' │ │ │ │ +9F888 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F889 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F88A General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F88C Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F88E Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F892 CRC F5E2129F (4125233823) │ │ │ │ +9F896 Compressed Size 000016BC (5820) │ │ │ │ +9F89A Uncompressed Size 000016CD (5837) │ │ │ │ +9F89E Filename Length 0015 (21) │ │ │ │ +9F8A0 Extra Length 0018 (24) │ │ │ │ +9F8A2 Comment Length 0000 (0) │ │ │ │ +9F8A4 Disk Start 0000 (0) │ │ │ │ +9F8A6 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F8A8 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F8AC Local Header Offset 0008CB06 (576262) │ │ │ │ +9F8B0 Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F8B0: Filename 'XXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F8C5 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F8C7 Length 0005 (5) │ │ │ │ +9F8C9 Flags 01 (1) 'Modification' │ │ │ │ +9F8CA Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F8CE Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F8D0 Length 000B (11) │ │ │ │ +9F8D2 Version 01 (1) │ │ │ │ +9F8D3 UID Size 04 (4) │ │ │ │ +9F8D4 UID 00000000 (0) │ │ │ │ +9F8D8 GID Size 04 (4) │ │ │ │ +9F8D9 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F8DD CENTRAL HEADER #81 02014B50 (33639248) │ │ │ │ +9F8E1 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F8E2 Created OS 03 (3) 'Unix' │ │ │ │ +9F8E3 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9F8E4 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F8E5 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9F8E7 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9F8E9 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F8ED CRC F5E2129F (4125233823) │ │ │ │ +9F8F1 Compressed Size 000016BC (5820) │ │ │ │ +9F8F5 Uncompressed Size 000016CD (5837) │ │ │ │ +9F8F9 Filename Length 001C (28) │ │ │ │ +9F8FB Extra Length 0018 (24) │ │ │ │ +9F8FD Comment Length 0000 (0) │ │ │ │ +9F8FF Disk Start 0000 (0) │ │ │ │ +9F901 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F903 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F907 Local Header Offset 0008E211 (582161) │ │ │ │ +9F90B Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F90B: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F927 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F929 Length 0005 (5) │ │ │ │ +9F92B Flags 01 (1) 'Modification' │ │ │ │ +9F92C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F930 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F932 Length 000B (11) │ │ │ │ +9F934 Version 01 (1) │ │ │ │ +9F935 UID Size 04 (4) │ │ │ │ +9F936 UID 00000000 (0) │ │ │ │ +9F93A GID Size 04 (4) │ │ │ │ +9F93B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F93F CENTRAL HEADER #82 02014B50 (33639248) │ │ │ │ +9F943 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F944 Created OS 03 (3) 'Unix' │ │ │ │ +9F945 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F946 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F947 General Purpose Flag 0000 (0) │ │ │ │ +9F949 Compression Method 0000 (0) 'Stored' │ │ │ │ +9F94B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F94F CRC FC95F24B (4237685323) │ │ │ │ +9F953 Compressed Size 00001B84 (7044) │ │ │ │ +9F957 Uncompressed Size 00001B84 (7044) │ │ │ │ +9F95B Filename Length 0016 (22) │ │ │ │ +9F95D Extra Length 0018 (24) │ │ │ │ +9F95F Comment Length 0000 (0) │ │ │ │ +9F961 Disk Start 0000 (0) │ │ │ │ +9F963 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F965 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F969 Local Header Offset 0008F923 (588067) │ │ │ │ +9F96D Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F96D: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F983 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F985 Length 0005 (5) │ │ │ │ +9F987 Flags 01 (1) 'Modification' │ │ │ │ +9F988 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F98C Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F98E Length 000B (11) │ │ │ │ +9F990 Version 01 (1) │ │ │ │ +9F991 UID Size 04 (4) │ │ │ │ +9F992 UID 00000000 (0) │ │ │ │ +9F996 GID Size 04 (4) │ │ │ │ +9F997 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F99B CENTRAL HEADER #83 02014B50 (33639248) │ │ │ │ +9F99F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F9A0 Created OS 03 (3) 'Unix' │ │ │ │ +9F9A1 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F9A2 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F9A3 General Purpose Flag 0000 (0) │ │ │ │ +9F9A5 Compression Method 0000 (0) 'Stored' │ │ │ │ +9F9A7 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F9AB CRC D0D71F86 (3503759238) │ │ │ │ +9F9AF Compressed Size 00000B7B (2939) │ │ │ │ +9F9B3 Uncompressed Size 00000B7B (2939) │ │ │ │ +9F9B7 Filename Length 0016 (22) │ │ │ │ +9F9B9 Extra Length 0018 (24) │ │ │ │ +9F9BB Comment Length 0000 (0) │ │ │ │ +9F9BD Disk Start 0000 (0) │ │ │ │ +9F9BF Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9F9C1 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9F9C5 Local Header Offset 000914F7 (595191) │ │ │ │ +9F9C9 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9F9C9: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9F9DF Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9F9E1 Length 0005 (5) │ │ │ │ +9F9E3 Flags 01 (1) 'Modification' │ │ │ │ +9F9E4 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9F9E8 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9F9EA Length 000B (11) │ │ │ │ +9F9EC Version 01 (1) │ │ │ │ +9F9ED UID Size 04 (4) │ │ │ │ +9F9EE UID 00000000 (0) │ │ │ │ +9F9F2 GID Size 04 (4) │ │ │ │ +9F9F3 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9F9F7 CENTRAL HEADER #84 02014B50 (33639248) │ │ │ │ +9F9FB Created Zip Spec 3D (61) '6.1' │ │ │ │ +9F9FC Created OS 03 (3) 'Unix' │ │ │ │ +9F9FD Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9F9FE Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9F9FF General Purpose Flag 0000 (0) │ │ │ │ +9FA01 Compression Method 0000 (0) 'Stored' │ │ │ │ +9FA03 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FA07 CRC FFF9C4D2 (4294558930) │ │ │ │ +9FA0B Compressed Size 0000138F (5007) │ │ │ │ +9FA0F Uncompressed Size 0000138F (5007) │ │ │ │ +9FA13 Filename Length 0016 (22) │ │ │ │ +9FA15 Extra Length 0018 (24) │ │ │ │ +9FA17 Comment Length 0000 (0) │ │ │ │ +9FA19 Disk Start 0000 (0) │ │ │ │ +9FA1B Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FA1D Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FA21 Local Header Offset 000920C2 (598210) │ │ │ │ +9FA25 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FA25: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FA3B Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FA3D Length 0005 (5) │ │ │ │ +9FA3F Flags 01 (1) 'Modification' │ │ │ │ +9FA40 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FA44 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FA46 Length 000B (11) │ │ │ │ +9FA48 Version 01 (1) │ │ │ │ +9FA49 UID Size 04 (4) │ │ │ │ +9FA4A UID 00000000 (0) │ │ │ │ +9FA4E GID Size 04 (4) │ │ │ │ +9FA4F GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FA53 CENTRAL HEADER #85 02014B50 (33639248) │ │ │ │ +9FA57 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FA58 Created OS 03 (3) 'Unix' │ │ │ │ +9FA59 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FA5A Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FA5B General Purpose Flag 0000 (0) │ │ │ │ +9FA5D Compression Method 0000 (0) 'Stored' │ │ │ │ +9FA5F Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FA63 CRC A1037E8E (2701360782) │ │ │ │ +9FA67 Compressed Size 0000145E (5214) │ │ │ │ +9FA6B Uncompressed Size 0000145E (5214) │ │ │ │ +9FA6F Filename Length 0016 (22) │ │ │ │ +9FA71 Extra Length 0018 (24) │ │ │ │ +9FA73 Comment Length 0000 (0) │ │ │ │ +9FA75 Disk Start 0000 (0) │ │ │ │ +9FA77 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FA79 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FA7D Local Header Offset 000934A1 (603297) │ │ │ │ +9FA81 Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FA81: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FA97 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FA99 Length 0005 (5) │ │ │ │ +9FA9B Flags 01 (1) 'Modification' │ │ │ │ +9FA9C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FAA0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FAA2 Length 000B (11) │ │ │ │ +9FAA4 Version 01 (1) │ │ │ │ +9FAA5 UID Size 04 (4) │ │ │ │ +9FAA6 UID 00000000 (0) │ │ │ │ +9FAAA GID Size 04 (4) │ │ │ │ +9FAAB GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FAAF CENTRAL HEADER #86 02014B50 (33639248) │ │ │ │ +9FAB3 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FAB4 Created OS 03 (3) 'Unix' │ │ │ │ +9FAB5 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FAB6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FAB7 General Purpose Flag 0000 (0) │ │ │ │ +9FAB9 Compression Method 0000 (0) 'Stored' │ │ │ │ +9FABB Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FABF CRC 5E9E64F1 (1587438833) │ │ │ │ +9FAC3 Compressed Size 000008EC (2284) │ │ │ │ +9FAC7 Uncompressed Size 000008EC (2284) │ │ │ │ +9FACB Filename Length 0016 (22) │ │ │ │ +9FACD Extra Length 0018 (24) │ │ │ │ +9FACF Comment Length 0000 (0) │ │ │ │ +9FAD1 Disk Start 0000 (0) │ │ │ │ +9FAD3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FAD5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FAD9 Local Header Offset 0009494F (608591) │ │ │ │ +9FADD Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FADD: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FAF3 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FAF5 Length 0005 (5) │ │ │ │ +9FAF7 Flags 01 (1) 'Modification' │ │ │ │ +9FAF8 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FAFC Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FAFE Length 000B (11) │ │ │ │ +9FB00 Version 01 (1) │ │ │ │ +9FB01 UID Size 04 (4) │ │ │ │ +9FB02 UID 00000000 (0) │ │ │ │ +9FB06 GID Size 04 (4) │ │ │ │ +9FB07 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FB0B CENTRAL HEADER #87 02014B50 (33639248) │ │ │ │ +9FB0F Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FB10 Created OS 03 (3) 'Unix' │ │ │ │ +9FB11 Extract Zip Spec 0A (10) '1.0' │ │ │ │ +9FB12 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FB13 General Purpose Flag 0000 (0) │ │ │ │ +9FB15 Compression Method 0000 (0) 'Stored' │ │ │ │ +9FB17 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FB1B CRC 42E340AB (1122189483) │ │ │ │ +9FB1F Compressed Size 00001F2E (7982) │ │ │ │ +9FB23 Uncompressed Size 00001F2E (7982) │ │ │ │ +9FB27 Filename Length 001E (30) │ │ │ │ +9FB29 Extra Length 0018 (24) │ │ │ │ +9FB2B Comment Length 0000 (0) │ │ │ │ +9FB2D Disk Start 0000 (0) │ │ │ │ +9FB2F Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FB31 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FB35 Local Header Offset 0009528B (610955) │ │ │ │ +9FB39 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FB39: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FB57 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FB59 Length 0005 (5) │ │ │ │ +9FB5B Flags 01 (1) 'Modification' │ │ │ │ +9FB5C Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FB60 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FB62 Length 000B (11) │ │ │ │ +9FB64 Version 01 (1) │ │ │ │ +9FB65 UID Size 04 (4) │ │ │ │ +9FB66 UID 00000000 (0) │ │ │ │ +9FB6A GID Size 04 (4) │ │ │ │ +9FB6B GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FB6F CENTRAL HEADER #88 02014B50 (33639248) │ │ │ │ +9FB73 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FB74 Created OS 03 (3) 'Unix' │ │ │ │ +9FB75 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FB76 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FB77 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FB79 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FB7B Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FB7F CRC 7DF402CB (2113143499) │ │ │ │ +9FB83 Compressed Size 00003D71 (15729) │ │ │ │ +9FB87 Uncompressed Size 00016649 (91721) │ │ │ │ +9FB8B Filename Length 001A (26) │ │ │ │ +9FB8D Extra Length 0018 (24) │ │ │ │ +9FB8F Comment Length 0000 (0) │ │ │ │ +9FB91 Disk Start 0000 (0) │ │ │ │ +9FB93 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FB95 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FB99 Local Header Offset 00097211 (619025) │ │ │ │ +9FB9D Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FB9D: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FBB7 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FBB9 Length 0005 (5) │ │ │ │ +9FBBB Flags 01 (1) 'Modification' │ │ │ │ +9FBBC Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FBC0 Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FBC2 Length 000B (11) │ │ │ │ +9FBC4 Version 01 (1) │ │ │ │ +9FBC5 UID Size 04 (4) │ │ │ │ +9FBC6 UID 00000000 (0) │ │ │ │ +9FBCA GID Size 04 (4) │ │ │ │ +9FBCB GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FBCF CENTRAL HEADER #89 02014B50 (33639248) │ │ │ │ +9FBD3 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FBD4 Created OS 03 (3) 'Unix' │ │ │ │ +9FBD5 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FBD6 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FBD7 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FBD9 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FBDB Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FBDF CRC B7721381 (3077706625) │ │ │ │ +9FBE3 Compressed Size 000029C3 (10691) │ │ │ │ +9FBE7 Uncompressed Size 0000BA6A (47722) │ │ │ │ +9FBEB Filename Length 0018 (24) │ │ │ │ +9FBED Extra Length 0018 (24) │ │ │ │ +9FBEF Comment Length 0000 (0) │ │ │ │ +9FBF1 Disk Start 0000 (0) │ │ │ │ +9FBF3 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FBF5 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FBF9 Local Header Offset 0009AFD6 (634838) │ │ │ │ +9FBFD Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FBFD: Filename 'XXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FC15 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FC17 Length 0005 (5) │ │ │ │ +9FC19 Flags 01 (1) 'Modification' │ │ │ │ +9FC1A Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FC1E Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FC20 Length 000B (11) │ │ │ │ +9FC22 Version 01 (1) │ │ │ │ +9FC23 UID Size 04 (4) │ │ │ │ +9FC24 UID 00000000 (0) │ │ │ │ +9FC28 GID Size 04 (4) │ │ │ │ +9FC29 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FC2D CENTRAL HEADER #90 02014B50 (33639248) │ │ │ │ +9FC31 Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FC32 Created OS 03 (3) 'Unix' │ │ │ │ +9FC33 Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FC34 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FC35 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FC37 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FC39 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FC3D CRC DCB3B516 (3702764822) │ │ │ │ +9FC41 Compressed Size 000000AE (174) │ │ │ │ +9FC45 Uncompressed Size 000000FC (252) │ │ │ │ +9FC49 Filename Length 0016 (22) │ │ │ │ +9FC4B Extra Length 0018 (24) │ │ │ │ +9FC4D Comment Length 0000 (0) │ │ │ │ +9FC4F Disk Start 0000 (0) │ │ │ │ +9FC51 Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FC53 Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FC57 Local Header Offset 0009D9EB (645611) │ │ │ │ +9FC5B Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FC5B: Filename 'XXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FC71 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FC73 Length 0005 (5) │ │ │ │ +9FC75 Flags 01 (1) 'Modification' │ │ │ │ +9FC76 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FC7A Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FC7C Length 000B (11) │ │ │ │ +9FC7E Version 01 (1) │ │ │ │ +9FC7F UID Size 04 (4) │ │ │ │ +9FC80 UID 00000000 (0) │ │ │ │ +9FC84 GID Size 04 (4) │ │ │ │ +9FC85 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FC89 CENTRAL HEADER #91 02014B50 (33639248) │ │ │ │ +9FC8D Created Zip Spec 3D (61) '6.1' │ │ │ │ +9FC8E Created OS 03 (3) 'Unix' │ │ │ │ +9FC8F Extract Zip Spec 14 (20) '2.0' │ │ │ │ +9FC90 Extract OS 00 (0) 'MS-DOS' │ │ │ │ +9FC91 General Purpose Flag 0000 (0) │ │ │ │ + [Bits 1-2] 0 'Normal Compression' │ │ │ │ +9FC93 Compression Method 0008 (8) 'Deflated' │ │ │ │ +9FC95 Modification Time 5B5E6A8F (1532914319) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FC99 CRC 58439733 (1480824627) │ │ │ │ +9FC9D Compressed Size 00000077 (119) │ │ │ │ +9FCA1 Uncompressed Size 000000A2 (162) │ │ │ │ +9FCA5 Filename Length 002D (45) │ │ │ │ +9FCA7 Extra Length 0018 (24) │ │ │ │ +9FCA9 Comment Length 0000 (0) │ │ │ │ +9FCAB Disk Start 0000 (0) │ │ │ │ +9FCAD Int File Attributes 0000 (0) │ │ │ │ + [Bit 0] 0 'Binary Data' │ │ │ │ +9FCAF Ext File Attributes 01A40000 (27525120) │ │ │ │ + [Bits 16-24] 01A4 (420) 'Unix attrib: rw-r--r--' │ │ │ │ +9FCB3 Local Header Offset 0009DAE9 (645865) │ │ │ │ +9FCB7 Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# │ │ │ │ +# WARNING: Offset 0x9FCB7: Filename 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' │ │ │ │ +# Zero length filename │ │ │ │ +# │ │ │ │ +9FCE4 Extra ID #1 5455 (21589) 'Extended Timestamp [UT]' │ │ │ │ +9FCE6 Length 0005 (5) │ │ │ │ +9FCE8 Flags 01 (1) 'Modification' │ │ │ │ +9FCE9 Modification Time 6903661E (1761830430) 'Thu Oct 30 13:20:30 2025' │ │ │ │ +9FCED Extra ID #2 7875 (30837) 'Unix Extra type 3 [ux]' │ │ │ │ +9FCEF Length 000B (11) │ │ │ │ +9FCF1 Version 01 (1) │ │ │ │ +9FCF2 UID Size 04 (4) │ │ │ │ +9FCF3 UID 00000000 (0) │ │ │ │ +9FCF7 GID Size 04 (4) │ │ │ │ +9FCF8 GID 00000000 (0) │ │ │ │ + │ │ │ │ +9FCFC END CENTRAL HEADER 06054B50 (101010256) │ │ │ │ +9FD00 Number of this disk 0000 (0) │ │ │ │ +9FD02 Central Dir Disk no 0000 (0) │ │ │ │ +9FD04 Entries in this disk 005B (91) │ │ │ │ +9FD06 Total Entries 005B (91) │ │ │ │ +9FD08 Size of Central Dir 00002135 (8501) │ │ │ │ +9FD0C Offset to Central Dir 0009DBC7 (646087) │ │ │ │ +9FD10 Comment Length 0000 (0) │ │ │ │ # │ │ │ │ # Warning Count: 182 │ │ │ │ # │ │ │ │ # Done │ │ │ ├── filetype from file(1) │ │ │ │ @@ -1 +1 @@ │ │ │ │ -Zip archive data, made by v6.1 UNIX, extract using at least v1.0, last modified Sep 15 2025 16:39:48, uncompressed size 20, method=store │ │ │ │ +Zip archive data, made by v6.1 UNIX, extract using at least v1.0, last modified Oct 30 2025 13:20:30, uncompressed size 20, method=store │ │ │ ├── OEBPS/typespec.xhtml │ │ │ │ @@ -143,122 +143,122 @@ │ │ │ │ and optional (=>) association types. If an association type is mandatory, an │ │ │ │ association with that type needs to be present. In the case of an optional │ │ │ │ association type it is not required for the key type to be present.

The notation #{} specifies the singleton type for the empty map. Note that │ │ │ │ this notation is not a shorthand for the map/0 type.

For convenience, the following types are also built-in. They can be thought as │ │ │ │ predefined aliases for the type unions also shown in the table.

Built-in typeDefined as
term/0any/0
binary/0<<_:_*8>>
nonempty_binary/0<<_:8, _:_*8>>
bitstring/0<<_:_*1>>
nonempty_bitstring/0<<_:1, _:_*1>>
boolean/0'false' | 'true'
byte/00..255
char/00..16#10ffff
nil/0[]
number/0integer/0 | float/0
list/0[any()]
maybe_improper_list/0maybe_improper_list(any(), any())
nonempty_list/0nonempty_list(any())
string/0[char()]
nonempty_string/0[char(),...]
iodata/0iolist() | binary()
iolist/0maybe_improper_list(byte() | binary() | iolist(), binary() | [])
map/0#{any() => any()}
function/0fun()
module/0atom/0
mfa/0{module(),atom(),arity()}
arity/00..255
identifier/0pid() | port() | reference()
node/0atom/0
timeout/0'infinity' | non_neg_integer()
no_return/0none/0

Table: Built-in types, predefined aliases

In addition, the following three built-in types exist and can be thought as │ │ │ │ defined below, though strictly their "type definition" is not valid syntax │ │ │ │ according to the type language defined above.

Built-in typeCan be thought defined by the syntax
non_neg_integer/00..
pos_integer/01..
neg_integer/0..-1

Table: Additional built-in types

Note

The following built-in list types also exist, but they are expected to be │ │ │ │ -rarely used. Hence, they have long names:

nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
│ │ │ │ -nonempty_improper_list(Type1, Type2)
│ │ │ │ -nonempty_maybe_improper_list(Type1, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, record notation is allowed to be used. Records are │ │ │ │ -shorthands for the corresponding tuples:

Record :: #Erlang_Atom{}
│ │ │ │ -        | #Erlang_Atom{Fields}

Records are extended to possibly contain type information. This is described in │ │ │ │ +rarely used. Hence, they have long names:

nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
│ │ │ │ +nonempty_improper_list(Type1, Type2)
│ │ │ │ +nonempty_maybe_improper_list(Type1, Type2)

where the last two types define the set of Erlang terms one would expect.

Also for convenience, record notation is allowed to be used. Records are │ │ │ │ +shorthands for the corresponding tuples:

Record :: #Erlang_Atom{}
│ │ │ │ +        | #Erlang_Atom{Fields}

Records are extended to possibly contain type information. This is described in │ │ │ │ Type Information in Record Declarations.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Redefining built-in types │ │ │ │

│ │ │ │

Change

Starting from Erlang/OTP 26, it is permitted to define a type having the same │ │ │ │ name as a built-in type.

It is recommended to avoid deliberately reusing built-in names because it can be │ │ │ │ confusing. However, when an Erlang/OTP release introduces a new type, code that │ │ │ │ happened to define its own type having the same name will continue to work.

As an example, imagine that the Erlang/OTP 42 release introduces a new type │ │ │ │ -gadget() defined like this:

-type gadget() :: {'gadget', reference()}.

Further imagine that some code has its own (different) definition of gadget(), │ │ │ │ -for example:

-type gadget() :: #{}.

Since redefinitions are allowed, the code will still compile (but with a │ │ │ │ +gadget() defined like this:

-type gadget() :: {'gadget', reference()}.

Further imagine that some code has its own (different) definition of gadget(), │ │ │ │ +for example:

-type gadget() :: #{}.

Since redefinitions are allowed, the code will still compile (but with a │ │ │ │ warning), and Dialyzer will not emit any additional warnings.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Declarations of User-Defined Types │ │ │ │

│ │ │ │

As seen, the basic syntax of a type is an atom followed by closed parentheses. │ │ │ │ New types are declared using -type and -opaque attributes as in the │ │ │ │ -following:

-type my_struct_type() :: Type.
│ │ │ │ --opaque my_opaq_type() :: Type.

The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ │ +following:

-type my_struct_type() :: Type.
│ │ │ │ +-opaque my_opaq_type() :: Type.

The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ │ type as defined in the previous section. A current restriction is that Type │ │ │ │ can contain only predefined types, or user-defined types which are either of the │ │ │ │ following:

For module-local types, the restriction that their definition exists in the │ │ │ │ module is enforced by the compiler and results in a compilation error. (A │ │ │ │ similar restriction currently exists for records.)

Type declarations can also be parameterized by including type variables between │ │ │ │ the parentheses. The syntax of type variables is the same as Erlang variables, │ │ │ │ that is, starts with an upper-case letter. These variables is to │ │ │ │ -appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types to declare that other modules are allowed to │ │ │ │ -refer to them as remote types. This declaration has the following form:

-export_type([T1/A1, ..., Tk/Ak]).

Here the Tis are atoms (the name of the type) and the Ais are their arguments.

Example:

-export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module 'mod', you can refer to │ │ │ │ -them from other modules using remote type expressions like the following:

mod:my_struct_type()
│ │ │ │ -mod:orddict(atom(), term())

It is not allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not │ │ │ │ +appear on the RHS of the definition. A concrete example follows:

-type orddict(Key, Val) :: [{Key, Val}].

A module can export some types to declare that other modules are allowed to │ │ │ │ +refer to them as remote types. This declaration has the following form:

-export_type([T1/A1, ..., Tk/Ak]).

Here the Tis are atoms (the name of the type) and the Ais are their arguments.

Example:

-export_type([my_struct_type/0, orddict/2]).

Assuming that these types are exported from module 'mod', you can refer to │ │ │ │ +them from other modules using remote type expressions like the following:

mod:my_struct_type()
│ │ │ │ +mod:orddict(atom(), term())

It is not allowed to refer to types that are not declared as exported.

Types declared as opaque represent sets of terms whose structure is not │ │ │ │ supposed to be visible from outside of their defining module. That is, only the │ │ │ │ module defining them is allowed to depend on their term structure. Consequently, │ │ │ │ such types do not make much sense as module local - module local types are not │ │ │ │ accessible by other modules anyway - and is always to be exported.

Read more on Opaques

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Information in Record Declarations │ │ │ │

│ │ │ │

The types of record fields can be specified in the declaration of the record. │ │ │ │ -The syntax for this is as follows:

-record(rec, {field1 :: Type1, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the │ │ │ │ -previous example is a shorthand for the following:

-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after │ │ │ │ -the initialization, as follows:

-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

The initial values for fields are to be compatible with (that is, a member of) │ │ │ │ +The syntax for this is as follows:

-record(rec, {field1 :: Type1, field2, field3 :: Type3}).

For fields without type annotations, their type defaults to any(). That is, the │ │ │ │ +previous example is a shorthand for the following:

-record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

In the presence of initial values for fields, the type must be declared after │ │ │ │ +the initialization, as follows:

-record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

The initial values for fields are to be compatible with (that is, a member of) │ │ │ │ the corresponding types. This is checked by the compiler and results in a │ │ │ │ compilation error if a violation is detected.

Change

Before Erlang/OTP 19, for fields without initial values, the singleton type │ │ │ │ 'undefined' was added to all declared types. In other words, the following │ │ │ │ -two record declarations had identical effects:

-record(rec, {f1 = 42 :: integer(),
│ │ │ │ -             f2      :: float(),
│ │ │ │ -             f3      :: 'a' | 'b'}).
│ │ │ │ +two record declarations had identical effects:

-record(rec, {f1 = 42 :: integer(),
│ │ │ │ +             f2      :: float(),
│ │ │ │ +             f3      :: 'a' | 'b'}).
│ │ │ │  
│ │ │ │ --record(rec, {f1 = 42 :: integer(),
│ │ │ │ -              f2      :: 'undefined' | float(),
│ │ │ │ -              f3      :: 'undefined' | 'a' | 'b'}).

This is no longer the case. If you require 'undefined' in your record field │ │ │ │ +-record(rec, {f1 = 42 :: integer(), │ │ │ │ + f2 :: 'undefined' | float(), │ │ │ │ + f3 :: 'undefined' | 'a' | 'b'}).

This is no longer the case. If you require 'undefined' in your record field │ │ │ │ type, you must explicitly add it to the typespec, as in the 2nd example.

Any record, containing type information or not, once defined, can be used as a │ │ │ │ type using the following syntax:

#rec{}

In addition, the record fields can be further specified when using a record type │ │ │ │ by adding type information about the field as follows:

#rec{some_field :: Type}

Any unspecified fields are assumed to have the type in the original record │ │ │ │ declaration.

Note

When records are used to create patterns for ETS and Mnesia match functions, │ │ │ │ -Dialyzer may need some help not to emit bad warnings. For example:

-type height() :: pos_integer().
│ │ │ │ --record(person, {name :: string(), height :: height()}).
│ │ │ │ +Dialyzer may need some help not to emit bad warnings. For example:

-type height() :: pos_integer().
│ │ │ │ +-record(person, {name :: string(), height :: height()}).
│ │ │ │  
│ │ │ │ -lookup(Name, Tab) ->
│ │ │ │ -    ets:match_object(Tab, #person{name = Name, _ = '_'}).

Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ │ +lookup(Name, Tab) -> │ │ │ │ + ets:match_object(Tab, #person{name = Name, _ = '_'}).

Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ │ height.

The recommended way of dealing with this is to declare the smallest record │ │ │ │ field types to accommodate all your needs, and then create refinements as │ │ │ │ -needed. The modified example:

-record(person, {name :: string(), height :: height() | '_'}).
│ │ │ │ +needed. The modified example:

-record(person, {name :: string(), height :: height() | '_'}).
│ │ │ │  
│ │ │ │ --type person() :: #person{height :: height()}.

In specifications and type declarations the type person() is to be preferred │ │ │ │ +-type person() :: #person{height :: height()}.

In specifications and type declarations the type person() is to be preferred │ │ │ │ before #person{}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Specifications for Functions │ │ │ │

│ │ │ │

A specification (or contract) for a function is given using the -spec │ │ │ │ attribute. The general format is as follows:

-spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.

An implementation of the function with the same name Function must exist in │ │ │ │ the current module, and the arity of the function must match the number of │ │ │ │ arguments, otherwise the compilation fails.

The following longer format with module name is also valid as long as Module │ │ │ │ is the name of the current module. This can be useful for documentation │ │ │ │ purposes.

-spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.

Also, for documentation purposes, argument names can be given:

-spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.

A function specification can be overloaded. That is, it can have several types, │ │ │ │ -separated by a semicolon (;). For example:

-spec foo(T1, T2) -> T3;
│ │ │ │ -         (T4, T5) -> T6.

A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ │ +separated by a semicolon (;). For example:

-spec foo(T1, T2) -> T3;
│ │ │ │ +         (T4, T5) -> T6.

A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ │ the domains of the argument types cannot overlap. For example, the following │ │ │ │ -specification results in a warning:

-spec foo(pos_integer()) -> pos_integer();
│ │ │ │ -         (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input │ │ │ │ +specification results in a warning:

-spec foo(pos_integer()) -> pos_integer();
│ │ │ │ +         (integer()) -> integer().

Type variables can be used in specifications to specify relations for the input │ │ │ │ and output arguments of a function. For example, the following specification │ │ │ │ defines the type of a polymorphic identity function:

-spec id(X) -> X.

Notice that the above specification does not restrict the input and output type │ │ │ │ in any way. These types can be constrained by guard-like subtype constraints and │ │ │ │ -provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ │ +provide bounded quantification:

-spec id(X) -> X when X :: tuple().

Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ │ constraint that can be used in the when part of a -spec attribute.

Note

The above function specification uses multiple occurrences of the same type │ │ │ │ variable. That provides more type information than the following function │ │ │ │ -specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns │ │ │ │ +specification, where the type variables are missing:

-spec id(tuple()) -> tuple().

The latter specification says that the function takes some tuple and returns │ │ │ │ some tuple. The specification with the X type variable specifies that the │ │ │ │ function takes a tuple and returns the same tuple.

However, it is up to the tools that process the specifications to choose │ │ │ │ whether to take this extra information into account or not.

The scope of a :: constraint is the (...) -> RetType specification after │ │ │ │ which it appears. To avoid confusion, it is suggested that different variables │ │ │ │ are used in different constituents of an overloaded contract, as shown in the │ │ │ │ -following example:

-spec foo({X, integer()}) -> X when X :: atom();
│ │ │ │ -         ([Y]) -> Y when Y :: number().

Some functions in Erlang are not meant to return; either because they define │ │ │ │ +following example:

-spec foo({X, integer()}) -> X when X :: atom();
│ │ │ │ +         ([Y]) -> Y when Y :: number().

Some functions in Erlang are not meant to return; either because they define │ │ │ │ servers or because they are used to throw exceptions, as in the following │ │ │ │ -function:

my_error(Err) -> throw({error, Err}).

For such functions, it is recommended to use the special no_return/0 type │ │ │ │ +function:

my_error(Err) -> throw({error, Err}).

For such functions, it is recommended to use the special no_return/0 type │ │ │ │ for their "return", through a contract of the following form:

-spec my_error(term()) -> no_return().

Note

Erlang uses the shorthand version _ as an anonymous type variable equivalent │ │ │ │ to term/0 or any/0. For example, the following function

-spec Function(string(), _) -> string().

is equivalent to:

-spec Function(string(), any()) -> string().
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/tablesdatabases.xhtml │ │ │ │ @@ -51,73 +51,73 @@ │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Element │ │ │ │ │ │ │ │

The delete operation is considered successful if the element was not present │ │ │ │ in the table. Hence all attempts to check that the element is present in the │ │ │ │ Ets/Mnesia table before deletion are unnecessary. Here follows an example for │ │ │ │ -Ets tables:

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
│ │ │ │ -    [] ->
│ │ │ │ +Ets tables:

DO

ets:delete(Tab, Key),

DO NOT

case ets:lookup(Tab, Key) of
│ │ │ │ +    [] ->
│ │ │ │          ok;
│ │ │ │ -    [_|_] ->
│ │ │ │ -        ets:delete(Tab, Key)
│ │ │ │ +    [_|_] ->
│ │ │ │ +        ets:delete(Tab, Key)
│ │ │ │  end,

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fetching Data │ │ │ │

│ │ │ │

Do not fetch data that you already have.

Consider that you have a module that handles the abstract data type Person. │ │ │ │ You export the interface function print_person/1, which uses the internal │ │ │ │ functions print_name/1, print_age/1, and print_occupation/1.

Note

If the function print_name/1, and so on, had been interface functions, the │ │ │ │ situation would have been different, as you do not want the user of the │ │ │ │ interface to know about the internal data representation.

DO

%%% Interface function
│ │ │ │ -print_person(PersonId) ->
│ │ │ │ +print_person(PersonId) ->
│ │ │ │      %% Look up the person in the named table person,
│ │ │ │ -    case ets:lookup(person, PersonId) of
│ │ │ │ -        [Person] ->
│ │ │ │ -            print_name(Person),
│ │ │ │ -            print_age(Person),
│ │ │ │ -            print_occupation(Person);
│ │ │ │ -        [] ->
│ │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │ +    case ets:lookup(person, PersonId) of
│ │ │ │ +        [Person] ->
│ │ │ │ +            print_name(Person),
│ │ │ │ +            print_age(Person),
│ │ │ │ +            print_occupation(Person);
│ │ │ │ +        [] ->
│ │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %%% Internal functions
│ │ │ │ -print_name(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │ +print_name(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │  
│ │ │ │ -print_age(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │ +print_age(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │  
│ │ │ │ -print_occupation(Person) ->
│ │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
│ │ │ │ -print_person(PersonId) ->
│ │ │ │ +print_occupation(Person) ->
│ │ │ │ +    io:format("No person ~p~n", [Person#person.occupation]).

DO NOT

%%% Interface function
│ │ │ │ +print_person(PersonId) ->
│ │ │ │      %% Look up the person in the named table person,
│ │ │ │ -    case ets:lookup(person, PersonId) of
│ │ │ │ -        [Person] ->
│ │ │ │ -            print_name(PersonID),
│ │ │ │ -            print_age(PersonID),
│ │ │ │ -            print_occupation(PersonID);
│ │ │ │ -        [] ->
│ │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │ +    case ets:lookup(person, PersonId) of
│ │ │ │ +        [Person] ->
│ │ │ │ +            print_name(PersonID),
│ │ │ │ +            print_age(PersonID),
│ │ │ │ +            print_occupation(PersonID);
│ │ │ │ +        [] ->
│ │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %%% Internal functions
│ │ │ │ -print_name(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
│ │ │ │ -
│ │ │ │ -print_age(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
│ │ │ │ -
│ │ │ │ -print_occupation(PersonID) ->
│ │ │ │ -    [Person] = ets:lookup(person, PersonId),
│ │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

│ │ │ │ +print_name(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.name]). │ │ │ │ + │ │ │ │ +print_age(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.age]). │ │ │ │ + │ │ │ │ +print_occupation(PersonID) -> │ │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ │ + io:format("No person ~p~n", [Person#person.occupation]).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Non-Persistent Database Storage │ │ │ │

│ │ │ │

For non-persistent database storage, prefer Ets tables over Mnesia │ │ │ │ local_content tables. Even the Mnesia dirty_write operations carry a fixed │ │ │ │ @@ -131,38 +131,38 @@ │ │ │ │ │ │ │ │

Assuming an Ets table that uses idno as key and contains the following:

[#person{idno = 1, name = "Adam",  age = 31, occupation = "mailman"},
│ │ │ │   #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
│ │ │ │   #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
│ │ │ │   #person{idno = 4, name = "Carl",  age = 25, occupation = "mailman"}]

If you must return all data stored in the Ets table, you can use │ │ │ │ ets:tab2list/1. However, usually you are only interested in a subset of the │ │ │ │ information in which case ets:tab2list/1 is expensive. If you only want to │ │ │ │ -extract one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +extract one field from each record, for example, the age of every person, then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name='_',
│ │ │ │                            age='$1',
│ │ │ │ -                          occupation = '_'},
│ │ │ │ -                [],
│ │ │ │ -                ['$1']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan", then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +                          occupation = '_'},
│ │ │ │ +                [],
│ │ │ │ +                ['$1']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:map(fun(X) -> X#person.age end, TabList),

If you are only interested in the age of all persons named "Bryan", then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name="Bryan",
│ │ │ │                            age='$1',
│ │ │ │ -                          occupation = '_'},
│ │ │ │ -                [],
│ │ │ │ -                ['$1']}])

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:foldl(fun(X, Acc) -> case X#person.name of
│ │ │ │ +                          occupation = '_'},
│ │ │ │ +                [],
│ │ │ │ +                ['$1']}])

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:foldl(fun(X, Acc) -> case X#person.name of
│ │ │ │                                  "Bryan" ->
│ │ │ │ -                                    [X#person.age|Acc];
│ │ │ │ +                                    [X#person.age|Acc];
│ │ │ │                                   _ ->
│ │ │ │                                       Acc
│ │ │ │                             end
│ │ │ │ -             end, [], TabList)

If you need all information stored in the Ets table about persons named "Bryan", │ │ │ │ -then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │ +             end, [], TabList)

If you need all information stored in the Ets table about persons named "Bryan", │ │ │ │ +then:

DO

ets:select(Tab, [{#person{idno='_',
│ │ │ │                            name="Bryan",
│ │ │ │                            age='_',
│ │ │ │ -                          occupation = '_'}, [], ['$_']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ -lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

│ │ │ │ + occupation = '_'}, [], ['$_']}]),

DO NOT

TabList = ets:tab2list(Tab),
│ │ │ │ +lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ordered_set Tables │ │ │ │

│ │ │ │

If the data in the table is to be accessed so that the order of the keys in the │ │ │ │ table is significant, the table type ordered_set can be used instead of the │ │ │ │ @@ -198,20 +198,20 @@ │ │ │ │ Clearly, the second table would have to be kept consistent with the master │ │ │ │ table. Mnesia can do this for you, but a home-brew index table can be very │ │ │ │ efficient compared to the overhead involved in using Mnesia.

An index table for the table in the previous examples would have to be a bag (as │ │ │ │ keys would appear more than once) and can have the following contents:

[#index_entry{name="Adam", idno=1},
│ │ │ │   #index_entry{name="Bryan", idno=2},
│ │ │ │   #index_entry{name="Bryan", idno=3},
│ │ │ │   #index_entry{name="Carl", idno=4}]

Given this index table, a lookup of the age fields for all persons named │ │ │ │ -"Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
│ │ │ │ -lists:map(fun(#index_entry{idno = ID}) ->
│ │ │ │ -                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
│ │ │ │ +"Bryan" can be done as follows:

MatchingIDs = ets:lookup(IndexTable,"Bryan"),
│ │ │ │ +lists:map(fun(#index_entry{idno = ID}) ->
│ │ │ │ +                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
│ │ │ │                   Age
│ │ │ │            end,
│ │ │ │ -          MatchingIDs),

Notice that this code does not use ets:match/2, but instead uses the │ │ │ │ + MatchingIDs),

Notice that this code does not use ets:match/2, but instead uses the │ │ │ │ ets:lookup/2 call. The lists:map/2 call is only used to traverse the idnos │ │ │ │ matching the name "Bryan" in the table; thus the number of lookups in the master │ │ │ │ table is minimized.

Keeping an index table introduces some overhead when inserting records in the │ │ │ │ table. The number of operations gained from the table must therefore be compared │ │ │ │ against the number of operations inserting objects in the table. However, notice │ │ │ │ that the gain is significant when the key can be used to lookup elements.

│ │ │ │ │ │ │ │ @@ -226,47 +226,47 @@ │ │ │ │ Secondary Index │ │ │ │

│ │ │ │

If you frequently do lookups on a field that is not the key of the table, you │ │ │ │ lose performance using mnesia:select() or │ │ │ │ mnesia:match_object() as these function traverse │ │ │ │ the whole table. Instead, you can create a secondary index and use │ │ │ │ mnesia:index_read/3 to get faster access at the expense of using more │ │ │ │ -memory.

Example:

-record(person, {idno, name, age, occupation}).
│ │ │ │ +memory.

Example:

-record(person, {idno, name, age, occupation}).
│ │ │ │          ...
│ │ │ │ -{atomic, ok} =
│ │ │ │ -mnesia:create_table(person, [{index,[#person.age]},
│ │ │ │ -                              {attributes,
│ │ │ │ -                                    record_info(fields, person)}]),
│ │ │ │ -{atomic, ok} = mnesia:add_table_index(person, age),
│ │ │ │ +{atomic, ok} =
│ │ │ │ +mnesia:create_table(person, [{index,[#person.age]},
│ │ │ │ +                              {attributes,
│ │ │ │ +                                    record_info(fields, person)}]),
│ │ │ │ +{atomic, ok} = mnesia:add_table_index(person, age),
│ │ │ │  ...
│ │ │ │  
│ │ │ │  PersonsAge42 =
│ │ │ │ -     mnesia:dirty_index_read(person, 42, #person.age),

│ │ │ │ + mnesia:dirty_index_read(person, 42, #person.age),

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Transactions │ │ │ │

│ │ │ │

Using transactions is a way to guarantee that the distributed Mnesia database │ │ │ │ remains consistent, even when many different processes update it in parallel. │ │ │ │ However, if you have real-time requirements it is recommended to use dirtry │ │ │ │ operations instead of transactions. When using dirty operations, you lose the │ │ │ │ consistency guarantee; this is usually solved by only letting one process update │ │ │ │ the table. Other processes must send update requests to that process.

Example:

...
│ │ │ │  %% Using transaction
│ │ │ │  
│ │ │ │ -Fun = fun() ->
│ │ │ │ -          [mnesia:read({Table, Key}),
│ │ │ │ -           mnesia:read({Table2, Key2})]
│ │ │ │ +Fun = fun() ->
│ │ │ │ +          [mnesia:read({Table, Key}),
│ │ │ │ +           mnesia:read({Table2, Key2})]
│ │ │ │        end,
│ │ │ │  
│ │ │ │ -{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
│ │ │ │ +{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
│ │ │ │  ...
│ │ │ │  
│ │ │ │  %% Same thing using dirty operations
│ │ │ │  ...
│ │ │ │  
│ │ │ │ -Result1 = mnesia:dirty_read({Table, Key}),
│ │ │ │ -Result2 = mnesia:dirty_read({Table2, Key2}),
│ │ │ │ +Result1 = mnesia:dirty_read({Table, Key}), │ │ │ │ +Result2 = mnesia:dirty_read({Table2, Key2}), │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/sup_princ.xhtml │ │ │ │ @@ -33,48 +33,48 @@ │ │ │ │ the order specified by this list, and are terminated in the reverse order.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │

│ │ │ │

The callback module for a supervisor starting the server from │ │ │ │ -gen_server Behaviour can look as follows:

-module(ch_sup).
│ │ │ │ --behaviour(supervisor).
│ │ │ │ +gen_server Behaviour can look as follows:

-module(ch_sup).
│ │ │ │ +-behaviour(supervisor).
│ │ │ │  
│ │ │ │ --export([start_link/0]).
│ │ │ │ --export([init/1]).
│ │ │ │ +-export([start_link/0]).
│ │ │ │ +-export([init/1]).
│ │ │ │  
│ │ │ │ -start_link() ->
│ │ │ │ -    supervisor:start_link(ch_sup, []).
│ │ │ │ +start_link() ->
│ │ │ │ +    supervisor:start_link(ch_sup, []).
│ │ │ │  
│ │ │ │ -init(_Args) ->
│ │ │ │ -    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
│ │ │ │ -    ChildSpecs = [#{id => ch3,
│ │ │ │ -                    start => {ch3, start_link, []},
│ │ │ │ +init(_Args) ->
│ │ │ │ +    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
│ │ │ │ +    ChildSpecs = [#{id => ch3,
│ │ │ │ +                    start => {ch3, start_link, []},
│ │ │ │                      restart => permanent,
│ │ │ │                      shutdown => brutal_kill,
│ │ │ │                      type => worker,
│ │ │ │ -                    modules => [ch3]}],
│ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

The SupFlags variable in the return value from init/1 represents the │ │ │ │ + modules => [ch3]}], │ │ │ │ + {ok, {SupFlags, ChildSpecs}}.

The SupFlags variable in the return value from init/1 represents the │ │ │ │ supervisor flags.

The ChildSpecs variable in the return value from init/1 is a list of │ │ │ │ child specifications.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Supervisor Flags │ │ │ │

│ │ │ │ -

This is the type definition for the supervisor flags:

sup_flags() = #{strategy => strategy(),           % optional
│ │ │ │ -                intensity => non_neg_integer(),   % optional
│ │ │ │ -                period => pos_integer(),          % optional
│ │ │ │ -                auto_shutdown => auto_shutdown()} % optional
│ │ │ │ -    strategy() = one_for_all
│ │ │ │ +

This is the type definition for the supervisor flags:

sup_flags() = #{strategy => strategy(),           % optional
│ │ │ │ +                intensity => non_neg_integer(),   % optional
│ │ │ │ +                period => pos_integer(),          % optional
│ │ │ │ +                auto_shutdown => auto_shutdown()} % optional
│ │ │ │ +    strategy() = one_for_all
│ │ │ │                 | one_for_one
│ │ │ │                 | rest_for_one
│ │ │ │                 | simple_one_for_one
│ │ │ │ -    auto_shutdown() = never
│ │ │ │ +    auto_shutdown() = never
│ │ │ │                      | any_significant
│ │ │ │                      | all_significant

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -313,28 +313,28 @@ │ │ │ │ exhaust the Maximum Restart Intensity of the │ │ │ │ parent supervisor.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Child Specification │ │ │ │

│ │ │ │ -

The type definition for a child specification is as follows:

child_spec() = #{id => child_id(),             % mandatory
│ │ │ │ -                 start => mfargs(),            % mandatory
│ │ │ │ -                 restart => restart(),         % optional
│ │ │ │ -                 significant => significant(), % optional
│ │ │ │ -                 shutdown => shutdown(),       % optional
│ │ │ │ -                 type => worker(),             % optional
│ │ │ │ -                 modules => modules()}         % optional
│ │ │ │ -    child_id() = term()
│ │ │ │ -    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
│ │ │ │ -    modules() = [module()] | dynamic
│ │ │ │ -    restart() = permanent | transient | temporary
│ │ │ │ -    significant() = boolean()
│ │ │ │ -    shutdown() = brutal_kill | timeout()
│ │ │ │ -    worker() = worker | supervisor
  • id is used to identify the child specification internally by the supervisor.

    The id key is mandatory.

    Note that this identifier occasionally has been called "name". As far as │ │ │ │ +

    The type definition for a child specification is as follows:

    child_spec() = #{id => child_id(),             % mandatory
    │ │ │ │ +                 start => mfargs(),            % mandatory
    │ │ │ │ +                 restart => restart(),         % optional
    │ │ │ │ +                 significant => significant(), % optional
    │ │ │ │ +                 shutdown => shutdown(),       % optional
    │ │ │ │ +                 type => worker(),             % optional
    │ │ │ │ +                 modules => modules()}         % optional
    │ │ │ │ +    child_id() = term()
    │ │ │ │ +    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
    │ │ │ │ +    modules() = [module()] | dynamic
    │ │ │ │ +    restart() = permanent | transient | temporary
    │ │ │ │ +    significant() = boolean()
    │ │ │ │ +    shutdown() = brutal_kill | timeout()
    │ │ │ │ +    worker() = worker | supervisor
    • id is used to identify the child specification internally by the supervisor.

      The id key is mandatory.

      Note that this identifier occasionally has been called "name". As far as │ │ │ │ possible, the terms "identifier" or "id" are now used but in order to keep │ │ │ │ backwards compatibility, some occurrences of "name" can still be found, for │ │ │ │ example in error messages.

    • start defines the function call used to start the child process. It is a │ │ │ │ module-function-arguments tuple used as apply(M, F, A).

      It is to be (or result in) a call to any of the following:

      The start key is mandatory.

    • restart defines when a terminated child process is to be │ │ │ │ restarted.

      • A permanent child process is always restarted.
      • A temporary child process is never restarted (not even when the supervisor │ │ │ │ restart strategy is rest_for_one or one_for_all and a sibling death │ │ │ │ @@ -362,53 +362,53 @@ │ │ │ │ supervisor, the default value infinity will be used.

      • type specifies whether the child process is a supervisor or a worker.

        The type key is optional. If it is not given, the default value worker │ │ │ │ will be used.

      • modules has to be a list consisting of a single element. The value │ │ │ │ of that element depends on the behaviour of the process:

        • If the child process is a gen_event, the element has to be the atom │ │ │ │ dynamic.
        • Otherwise, the element should be Module, where Module is the │ │ │ │ name of the callback module.

        This information is used by the release handler during upgrades and │ │ │ │ downgrades; see Release Handling.

        The modules key is optional. If it is not given, it defaults to [M], where │ │ │ │ M comes from the child's start {M,F,A}.

      Example: The child specification to start the server ch3 in the previous │ │ │ │ -example look as follows:

      #{id => ch3,
      │ │ │ │ -  start => {ch3, start_link, []},
      │ │ │ │ +example look as follows:

      #{id => ch3,
      │ │ │ │ +  start => {ch3, start_link, []},
      │ │ │ │    restart => permanent,
      │ │ │ │    shutdown => brutal_kill,
      │ │ │ │    type => worker,
      │ │ │ │ -  modules => [ch3]}

      or simplified, relying on the default values:

      #{id => ch3,
      │ │ │ │ +  modules => [ch3]}

      or simplified, relying on the default values:

      #{id => ch3,
      │ │ │ │    start => {ch3, start_link, []},
      │ │ │ │    shutdown => brutal_kill}

      Example: A child specification to start the event manager from the chapter about │ │ │ │ -gen_event:

      #{id => error_man,
      │ │ │ │ -  start => {gen_event, start_link, [{local, error_man}]},
      │ │ │ │ -  modules => dynamic}

      Both server and event manager are registered processes which can be expected to │ │ │ │ +gen_event:

      #{id => error_man,
      │ │ │ │ +  start => {gen_event, start_link, [{local, error_man}]},
      │ │ │ │ +  modules => dynamic}

      Both server and event manager are registered processes which can be expected to │ │ │ │ be always accessible. Thus they are specified to be permanent.

      ch3 does not need to do any cleaning up before termination. Thus, no shutdown │ │ │ │ time is needed, but brutal_kill is sufficient. error_man can need some time │ │ │ │ for the event handlers to clean up, thus the shutdown time is set to 5000 ms │ │ │ │ -(which is the default value).

      Example: A child specification to start another supervisor:

      #{id => sup,
      │ │ │ │ -  start => {sup, start_link, []},
      │ │ │ │ +(which is the default value).

      Example: A child specification to start another supervisor:

      #{id => sup,
      │ │ │ │ +  start => {sup, start_link, []},
      │ │ │ │    restart => transient,
      │ │ │ │ -  type => supervisor} % will cause default shutdown=>infinity

      │ │ │ │ + type => supervisor} % will cause default shutdown=>infinity

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting a Supervisor │ │ │ │

      │ │ │ │

      In the previous example, the supervisor is started by calling │ │ │ │ -ch_sup:start_link():

      start_link() ->
      │ │ │ │ -    supervisor:start_link(ch_sup, []).

      ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ │ +ch_sup:start_link():

      start_link() ->
      │ │ │ │ +    supervisor:start_link(ch_sup, []).

      ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ │ links to a new process, a supervisor.

      • The first argument, ch_sup, is the name of the callback module, that is, the │ │ │ │ module where the init callback function is located.
      • The second argument, [], is a term that is passed as is to the callback │ │ │ │ function init. Here, init does not need any data and ignores the argument.

      In this case, the supervisor is not registered. Instead its pid must be used. A │ │ │ │ name can be specified by calling │ │ │ │ supervisor:start_link({local, Name}, Module, Args) │ │ │ │ or │ │ │ │ supervisor:start_link({global, Name}, Module, Args).

      The new supervisor process calls the callback function ch_sup:init([]). init │ │ │ │ -has to return {ok, {SupFlags, ChildSpecs}}:

      init(_Args) ->
      │ │ │ │ -    SupFlags = #{},
      │ │ │ │ -    ChildSpecs = [#{id => ch3,
      │ │ │ │ -                    start => {ch3, start_link, []},
      │ │ │ │ -                    shutdown => brutal_kill}],
      │ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

      Subsequently, the supervisor starts its child processes according to the child │ │ │ │ +has to return {ok, {SupFlags, ChildSpecs}}:

      init(_Args) ->
      │ │ │ │ +    SupFlags = #{},
      │ │ │ │ +    ChildSpecs = [#{id => ch3,
      │ │ │ │ +                    start => {ch3, start_link, []},
      │ │ │ │ +                    shutdown => brutal_kill}],
      │ │ │ │ +    {ok, {SupFlags, ChildSpecs}}.

      Subsequently, the supervisor starts its child processes according to the child │ │ │ │ specifications in the start specification. In this case there is a single child │ │ │ │ process, called ch3.

      supervisor:start_link/3 is synchronous. It does not return until all child │ │ │ │ processes have been started.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding a Child Process │ │ │ │ @@ -437,31 +437,31 @@ │ │ │ │ │ │ │ │ │ │ │ │ Simplified one_for_one Supervisors │ │ │ │

      │ │ │ │

      A supervisor with restart strategy simple_one_for_one is a simplified │ │ │ │ one_for_one supervisor, where all child processes are dynamically added │ │ │ │ instances of the same process.

      The following is an example of a callback module for a simple_one_for_one │ │ │ │ -supervisor:

      -module(simple_sup).
      │ │ │ │ --behaviour(supervisor).
      │ │ │ │ +supervisor:

      -module(simple_sup).
      │ │ │ │ +-behaviour(supervisor).
      │ │ │ │  
      │ │ │ │ --export([start_link/0]).
      │ │ │ │ --export([init/1]).
      │ │ │ │ +-export([start_link/0]).
      │ │ │ │ +-export([init/1]).
      │ │ │ │  
      │ │ │ │ -start_link() ->
      │ │ │ │ -    supervisor:start_link(simple_sup, []).
      │ │ │ │ +start_link() ->
      │ │ │ │ +    supervisor:start_link(simple_sup, []).
      │ │ │ │  
      │ │ │ │ -init(_Args) ->
      │ │ │ │ -    SupFlags = #{strategy => simple_one_for_one,
      │ │ │ │ +init(_Args) ->
      │ │ │ │ +    SupFlags = #{strategy => simple_one_for_one,
      │ │ │ │                   intensity => 0,
      │ │ │ │ -                 period => 1},
      │ │ │ │ -    ChildSpecs = [#{id => call,
      │ │ │ │ -                    start => {call, start_link, []},
      │ │ │ │ -                    shutdown => brutal_kill}],
      │ │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

      When started, the supervisor does not start any child │ │ │ │ + period => 1}, │ │ │ │ + ChildSpecs = [#{id => call, │ │ │ │ + start => {call, start_link, []}, │ │ │ │ + shutdown => brutal_kill}], │ │ │ │ + {ok, {SupFlags, ChildSpecs}}.

      When started, the supervisor does not start any child │ │ │ │ processes. Instead, all child processes need to be added dynamically by │ │ │ │ calling supervisor:start_child(Sup, List).

      Sup is the pid, or name, of the supervisor. List is an arbitrary list of │ │ │ │ terms, which are added to the list of arguments specified in the child │ │ │ │ specification. If the start function is specified as {M, F, A}, the child │ │ │ │ process is started by calling apply(M, F, A++List).

      For example, adding a child to simple_sup above:

      supervisor:start_child(Pid, [id1])

      The result is that the child process is started by calling │ │ │ │ apply(call, start_link, []++[id1]), or actually:

      call:start_link(id1)

      A child under a simple_one_for_one supervisor can be terminated with the │ │ │ │ following:

      supervisor:terminate_child(Sup, Pid)

      Sup is the pid, or name, of the supervisor and Pid is the pid of the child.

      Because a simple_one_for_one supervisor can have many children, it shuts them │ │ │ ├── OEBPS/statem.xhtml │ │ │ │ @@ -29,15 +29,15 @@ │ │ │ │ │ │ │ │

      Established Automata Theory does not deal much with how a state transition │ │ │ │ is triggered, but assumes that the output is a function of the input │ │ │ │ (and the state) and that they are some kind of values.

      For an Event-Driven State Machine, the input is an event that triggers │ │ │ │ a state transition and the output is actions executed during │ │ │ │ the state transition. Analogously to the mathematical model │ │ │ │ of a Finite State Machine, it can be described as a set of relations │ │ │ │ -of the following form:

      State(S) x Event(E) -> Actions(A), State(S')

      These relations are interpreted as follows: if we are in state S, │ │ │ │ +of the following form:

      State(S) x Event(E) -> Actions(A), State(S')

      These relations are interpreted as follows: if we are in state S, │ │ │ │ and event E occurs, we are to perform actions A, and make a transition │ │ │ │ to state S'. Notice that S' can be equal to S, │ │ │ │ and that A can be empty.

      In gen_statem we define a state change as a state transition in which the │ │ │ │ new state S' is different from the current state S, where "different" means │ │ │ │ Erlang's strict inequality: =/= also known as "does not match". gen_statem │ │ │ │ does more things during state changes than during other state transitions.

      As A and S' depend only on S and E, the kind of state machine described │ │ │ │ here is a Mealy machine (see, for example, the Wikipedia article │ │ │ │ @@ -310,20 +310,20 @@ │ │ │ │ │ │ │ │ State Enter Calls │ │ │ │ │ │ │ │

      The gen_statem behaviour can, if this is enabled, regardless of callback │ │ │ │ mode, automatically call the state callback │ │ │ │ with special arguments whenever the state changes, so you can write │ │ │ │ state enter actions near the rest of the state transition rules. │ │ │ │ -It typically looks like this:

      StateName(enter, OldState, Data) ->
      │ │ │ │ +It typically looks like this:

      StateName(enter, OldState, Data) ->
      │ │ │ │      ... code for state enter actions here ...
      │ │ │ │ -    {keep_state, NewData};
      │ │ │ │ -StateName(EventType, EventContent, Data) ->
      │ │ │ │ +    {keep_state, NewData};
      │ │ │ │ +StateName(EventType, EventContent, Data) ->
      │ │ │ │      ... code for actions here ...
      │ │ │ │ -    {next_state, NewStateName, NewData}.

      Since the state enter call is not an event there are restrictions on the │ │ │ │ + {next_state, NewStateName, NewData}.

      Since the state enter call is not an event there are restrictions on the │ │ │ │ allowed return value and state transition actions. │ │ │ │ You must not change the state, postpone this non-event, │ │ │ │ insert any events, or change the │ │ │ │ callback module.

      The first state that is entered after gen_statem:init/1 will get │ │ │ │ a state enter call with OldState equal to the current state.

      You may repeat the state enter call using the {repeat_state,...} return │ │ │ │ value from the state callback. In this case │ │ │ │ OldState will also be equal to the current state.

      Depending on how your state machine is specified, this can be a very useful │ │ │ │ @@ -404,72 +404,72 @@ │ │ │ │ │ │ │ │ locked --> check_code : {button, Button}\n* Collect Buttons │ │ │ │ check_code --> locked : Incorrect code │ │ │ │ check_code --> open : Correct code\n* do_unlock()\n* Clear Buttons\n* Set state_timeout 10 s │ │ │ │ │ │ │ │ open --> open : {button, Digit} │ │ │ │ open --> locked : state_timeout\n* do_lock()

      This code lock state machine can be implemented using gen_statem with │ │ │ │ -the following callback module:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock).
      │ │ │ │ +the following callback module:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock).
      │ │ │ │  
      │ │ │ │ --export([start_link/1]).
      │ │ │ │ --export([button/1]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([locked/3,open/3]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ -
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ -
      │ │ │ │ -init(Code) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ -
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    state_functions.
      locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +-export([start_link/1]).
      │ │ │ │ +-export([button/1]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([locked/3,open/3]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ +
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ +
      │ │ │ │ +init(Code) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │ +
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    state_functions.
      locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ -    end.
      open(state_timeout, lock,  Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {next_state, open, Data}.
      do_lock() ->
      │ │ │ │ -    io:format("Lock~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Unlock~n", []).
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ +    end.
      open(state_timeout, lock,  Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {next_state, open, Data}.
      do_lock() ->
      │ │ │ │ +    io:format("Lock~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Unlock~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      The code is explained in the next sections.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting gen_statem │ │ │ │

      │ │ │ │

      In the example in the previous section, gen_statem is started by calling │ │ │ │ -code_lock:start_link(Code):

      start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

      start_link/1 calls function gen_statem:start_link/4, │ │ │ │ +code_lock:start_link(Code):

      start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

      start_link/1 calls function gen_statem:start_link/4, │ │ │ │ which spawns and links to a new process, a gen_statem.

      • The first argument, {local,?NAME}, specifies the name. In this case, the │ │ │ │ gen_statem is locally registered as code_lock through the macro ?NAME.

        If the name is omitted, the gen_statem is not registered. Instead its pid │ │ │ │ must be used. The name can also be specified as {global, Name}, then the │ │ │ │ gen_statem is registered using global:register_name/2 in Kernel.

      • The second argument, ?MODULE, is the name of the callback module, │ │ │ │ that is, the module where the callback functions are located, │ │ │ │ which is this module.

        The interface functions (start_link/1 and button/1) are located in the │ │ │ │ same module as the callback functions (init/1, locked/3, and open/3). │ │ │ │ @@ -479,184 +479,184 @@ │ │ │ │ see gen_statem:start_link/3.

      If name registration succeeds, the new gen_statem process calls callback │ │ │ │ function code_lock:init(Code). This function is expected to return │ │ │ │ {ok, State, Data}, where State is the initial state of the gen_statem, │ │ │ │ in this case locked; assuming that the door is locked to begin with. │ │ │ │ Data is the internal server data of the gen_statem. Here the server data │ │ │ │ is a map() with key code that stores the correct │ │ │ │ button sequence, key length store its length, and key buttons │ │ │ │ -that stores the collected buttons up to the same length.

      init(Code) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.

      Function gen_statem:start_link/3,4 │ │ │ │ +that stores the collected buttons up to the same length.

      init(Code) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.

      Function gen_statem:start_link/3,4 │ │ │ │ is synchronous. It does not return until the gen_statem is initialized │ │ │ │ and is ready to receive events.

      Function gen_statem:start_link/3,4 │ │ │ │ must be used if the gen_statem is part of a supervision tree, that is, │ │ │ │ started by a supervisor. Function, │ │ │ │ gen_statem:start/3,4 can be used to start │ │ │ │ a standalone gen_statem, meaning it is not part of a supervision tree.

      Function Module:callback_mode/0 selects │ │ │ │ the CallbackMode for the callback module, │ │ │ │ in this case state_functions. │ │ │ │ -That is, each state has its own handler function:

      callback_mode() ->
      │ │ │ │ +That is, each state has its own handler function:

      callback_mode() ->
      │ │ │ │      state_functions.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Events │ │ │ │

      │ │ │ │

      The function notifying the code lock about a button event is implemented using │ │ │ │ -gen_statem:cast/2:

      button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).

      The first argument is the name of the gen_statem and must agree with │ │ │ │ +gen_statem:cast/2:

      button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).

      The first argument is the name of the gen_statem and must agree with │ │ │ │ the name used to start it. So, we use the same macro ?NAME as when starting. │ │ │ │ {button, Button} is the event content.

      The event is sent to the gen_statem. When the event is received, the │ │ │ │ gen_statem calls StateName(cast, Event, Data), which is expected │ │ │ │ to return a tuple {next_state, NewStateName, NewData}, or │ │ │ │ {next_state, NewStateName, NewData, Actions}. StateName is the name │ │ │ │ of the current state and NewStateName is the name of the next state. │ │ │ │ NewData is a new value for the server data of the gen_statem, │ │ │ │ -and Actions is a list of actions to be performed by the gen_statem engine.

      locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +and Actions is a list of actions to be performed by the gen_statem engine.

      locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
      │ │ │ │      end.

      In state locked, when a button is pressed, it is collected with the │ │ │ │ previously pressed buttons up to the length of the correct code, then │ │ │ │ compared with the correct code. Depending on the result, the door is │ │ │ │ either unlocked and the gen_statem goes to state open, or the door │ │ │ │ remains in state locked.

      When changing to state open, the collected buttons are reset, the lock │ │ │ │ -unlocked, and a state time-out for 10 seconds is started.

      open(cast, {button,_}, Data) ->
      │ │ │ │ -    {next_state, open, Data}.

      In state open, a button event is ignored by staying in the same state. │ │ │ │ +unlocked, and a state time-out for 10 seconds is started.

      open(cast, {button,_}, Data) ->
      │ │ │ │ +    {next_state, open, Data}.

      In state open, a button event is ignored by staying in the same state. │ │ │ │ This can also be done by returning {keep_state, Data}, or in this case │ │ │ │ since Data is unchanged, by returning keep_state_and_data.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ State Time-Outs │ │ │ │

      │ │ │ │

      When a correct code has been given, the door is unlocked and the following │ │ │ │ -tuple is returned from locked/2:

      {next_state, open, Data#{buttons := []},
      │ │ │ │ - [{state_timeout,10_000,lock}]}; % Time in milliseconds

      10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ │ +tuple is returned from locked/2:

      {next_state, open, Data#{buttons := []},
      │ │ │ │ + [{state_timeout,10_000,lock}]}; % Time in milliseconds

      10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ │ a time-out occurs. Then, StateName(state_timeout, lock, Data) is called. │ │ │ │ The time-out occurs when the door has been in state open for 10 seconds. │ │ │ │ -After that the door is locked again:

      open(state_timeout, lock,  Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};

      The timer for a state time-out is automatically canceled when │ │ │ │ +After that the door is locked again:

      open(state_timeout, lock,  Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};

      The timer for a state time-out is automatically canceled when │ │ │ │ the state machine does a state change.

      You can restart, cancel, or update a state time-out. See section │ │ │ │ Time-Outs for details.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ All State Events │ │ │ │

      │ │ │ │

      Sometimes events can arrive in any state of the gen_statem. It is convenient │ │ │ │ to handle these in a common state handler function that all state functions │ │ │ │ call for events not specific to the state.

      Consider a code_length/0 function that returns the length │ │ │ │ of the correct code. We dispatch all events that are not state-specific │ │ │ │ to the common function handle_common/3:

      ...
      │ │ │ │ --export([button/1,code_length/0]).
      │ │ │ │ +-export([button/1,code_length/0]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -locked(...) -> ... ;
      │ │ │ │ -locked(EventType, EventContent, Data) ->
      │ │ │ │ -    handle_common(EventType, EventContent, Data).
      │ │ │ │ +locked(...) -> ... ;
      │ │ │ │ +locked(EventType, EventContent, Data) ->
      │ │ │ │ +    handle_common(EventType, EventContent, Data).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -open(...) -> ... ;
      │ │ │ │ -open(EventType, EventContent, Data) ->
      │ │ │ │ -    handle_common(EventType, EventContent, Data).
      │ │ │ │ -
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.

      Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

      ...
      │ │ │ │ --export([button/1,code_length/0]).
      │ │ │ │ +open(...) -> ... ;
      │ │ │ │ +open(EventType, EventContent, Data) ->
      │ │ │ │ +    handle_common(EventType, EventContent, Data).
      │ │ │ │ +
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.

      Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

      ...
      │ │ │ │ +-export([button/1,code_length/0]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      │ │ │ │  
      │ │ │ │ --define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │ +-define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │  %%
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -locked(...) -> ... ;
      │ │ │ │ +locked(...) -> ... ;
      │ │ │ │  ?HANDLE_COMMON.
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -open(...) -> ... ;
      │ │ │ │ +open(...) -> ... ;
      │ │ │ │  ?HANDLE_COMMON.

      This example uses gen_statem:call/2, which waits for a reply from the server. │ │ │ │ The reply is sent with a {reply, From, Reply} tuple in an action list in the │ │ │ │ {keep_state, ...} tuple that retains the current state. This return form is │ │ │ │ convenient when you want to stay in the current state but do not know or care │ │ │ │ about what it is.

      If the common state callback needs to know the current state a function │ │ │ │ -handle_common/4 can be used instead:

      -define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

      │ │ │ │ +handle_common/4 can be used instead:

      -define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ One State Callback │ │ │ │

      │ │ │ │

      If callback mode handle_event_function is used, │ │ │ │ all events are handled in │ │ │ │ Module:handle_event/4 and we can │ │ │ │ (but do not have to) use an event-centered approach where we first branch │ │ │ │ depending on event and then depending on state:

      ...
      │ │ │ │ --export([handle_event/4]).
      │ │ │ │ +-export([handle_event/4]).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -callback_mode() ->
      │ │ │ │ +callback_mode() ->
      │ │ │ │      handle_event_function.
      │ │ │ │  
      │ │ │ │ -handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
      │ │ │ │ +handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
      │ │ │ │      case State of
      │ │ │ │  	locked ->
      │ │ │ │ -            #{length := Length, buttons := Buttons} = Data,
      │ │ │ │ +            #{length := Length, buttons := Buttons} = Data,
      │ │ │ │              NewButtons =
      │ │ │ │                  if
      │ │ │ │ -                    length(Buttons) < Length ->
      │ │ │ │ +                    length(Buttons) < Length ->
      │ │ │ │                          Buttons;
      │ │ │ │                      true ->
      │ │ │ │ -                        tl(Buttons)
      │ │ │ │ -                end ++ [Button],
      │ │ │ │ +                        tl(Buttons)
      │ │ │ │ +                end ++ [Button],
      │ │ │ │              if
      │ │ │ │                  NewButtons =:= Code -> % Correct
      │ │ │ │ -                    do_unlock(),
      │ │ │ │ -                    {next_state, open, Data#{buttons := []},
      │ │ │ │ -                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +                    do_unlock(),
      │ │ │ │ +                    {next_state, open, Data#{buttons := []},
      │ │ │ │ +                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │                  true -> % Incomplete | Incorrect
      │ │ │ │ -                    {keep_state, Data#{buttons := NewButtons}}
      │ │ │ │ +                    {keep_state, Data#{buttons := NewButtons}}
      │ │ │ │              end;
      │ │ │ │  	open ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -handle_event(
      │ │ │ │ -  {call,From}, code_length, _State, #{code := Code} = Data) ->
      │ │ │ │ -    {keep_state, Data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      │ │ │ │ +handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +handle_event(
      │ │ │ │ +  {call,From}, code_length, _State, #{code := Code} = Data) ->
      │ │ │ │ +    {keep_state, Data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      │ │ │ │  
      │ │ │ │  ...

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

      │ │ │ │ @@ -668,59 +668,59 @@ │ │ │ │ │ │ │ │

      If the gen_statem is part of a supervision tree, no stop function is needed. │ │ │ │ The gen_statem is automatically terminated by its supervisor. Exactly how │ │ │ │ this is done is defined by a shutdown strategy │ │ │ │ set in the supervisor.

      If it is necessary to clean up before termination, the shutdown strategy │ │ │ │ must be a time-out value and the gen_statem must in function init/1 │ │ │ │ set itself to trap exit signals by calling │ │ │ │ -process_flag(trap_exit, true):

      init(Args) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    do_lock(),
      │ │ │ │ +process_flag(trap_exit, true):

      init(Args) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    do_lock(),
      │ │ │ │      ...

      When ordered to shut down, the gen_statem then calls callback function │ │ │ │ terminate(shutdown, State, Data).

      In this example, function terminate/3 locks the door if it is open, │ │ │ │ so we do not accidentally leave the door open │ │ │ │ -when the supervision tree terminates:

      terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +when the supervision tree terminates:

      terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone gen_statem │ │ │ │

      │ │ │ │

      If the gen_statem is not part of a supervision tree, it can be stopped │ │ │ │ using gen_statem:stop/1, preferably through │ │ │ │ an API function:

      ...
      │ │ │ │ --export([start_link/1,stop/0]).
      │ │ │ │ +-export([start_link/1,stop/0]).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).

      This makes the gen_statem call callback function terminate/3 just like │ │ │ │ +stop() -> │ │ │ │ + gen_statem:stop(?NAME).

      This makes the gen_statem call callback function terminate/3 just like │ │ │ │ for a supervised server and waits for the process to terminate.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Event Time-Outs │ │ │ │

      │ │ │ │

      A time-out feature inherited from gen_statem's predecessor gen_fsm, │ │ │ │ is an event time-out, that is, if an event arrives the timer is canceled. │ │ │ │ You get either an event or a time-out, but not both.

      It is ordered by the │ │ │ │ transition action {timeout, Time, EventContent}, │ │ │ │ or just an integer Time, even without the enclosing actions list (the latter │ │ │ │ is a form inherited from gen_fsm).

      This type of time-out is useful, for example, to act on inactivity. │ │ │ │ Let's restart the code sequence if no button is pressed for say 30 seconds:

      ...
      │ │ │ │  
      │ │ │ │ -locked(timeout, _, Data) ->
      │ │ │ │ -    {next_state, locked, Data#{buttons := []}};
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(timeout, _, Data) ->
      │ │ │ │ +    {next_state, locked, Data#{buttons := []}};
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {next_state, locked, Data#{buttons := NewButtons},
      │ │ │ │ -             30_000} % Time in milliseconds
      │ │ │ │ +            {next_state, locked, Data#{buttons := NewButtons},
      │ │ │ │ +             30_000} % Time in milliseconds
      │ │ │ │  ...

      Whenever we receive a button event we start an event time-out of 30 seconds, │ │ │ │ and if we get an event type of timeout we reset the remaining │ │ │ │ code sequence.

      An event time-out is canceled by any other event so you either get │ │ │ │ some other event or the time-out event. Therefore, canceling, │ │ │ │ restarting, or updating an event time-out is neither possible nor │ │ │ │ necessary. Whatever event you act on has already canceled │ │ │ │ the event time-out, so there is never a running event time-out │ │ │ │ @@ -739,30 +739,30 @@ │ │ │ │ another, maybe cancel the time-out without changing states, or perhaps run │ │ │ │ multiple time-outs in parallel. All this can be accomplished with │ │ │ │ generic time-outs. They may look a little │ │ │ │ bit like event time-outs but contain │ │ │ │ a name to allow for any number of them simultaneously and they are │ │ │ │ not automatically canceled.

      Here is how to accomplish the state time-out in the previous example │ │ │ │ by instead using a generic time-out named for example open:

      ...
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ -            {next_state, open, Data#{buttons := []},
      │ │ │ │ -             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +	    do_unlock(),
      │ │ │ │ +            {next_state, open, Data#{buttons := []},
      │ │ │ │ +             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open({timeout,open}, lock, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state,locked,Data};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data};
      │ │ │ │ +open({timeout,open}, lock, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state,locked,Data};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data};
      │ │ │ │  ...

      Specific generic time-outs can just as state time-outs │ │ │ │ be restarted or canceled by setting it to a new time or infinity.

      In this particular case we do not need to cancel the time-out since │ │ │ │ the time-out event is the only possible reason to do a state change │ │ │ │ from open to locked.

      Instead of bothering with when to cancel a time-out, a late time-out event │ │ │ │ can be handled by ignoring it if it arrives in a state │ │ │ │ where it is known to be late.

      You can restart, cancel, or update a generic time-out. │ │ │ │ See section Time-Outs for details.

      │ │ │ │ @@ -774,32 +774,32 @@ │ │ │ │

      The most versatile way to handle time-outs is to use Erlang Timers; see │ │ │ │ erlang:start_timer/3,4. Most time-out tasks │ │ │ │ can be performed with the time-out features in gen_statem, │ │ │ │ but an example of one that cannot is if you should need the return value │ │ │ │ from erlang:cancel_timer(Tref), that is, │ │ │ │ the remaining time of the timer.

      Here is how to accomplish the state time-out in the previous example │ │ │ │ by instead using an Erlang Timer:

      ...
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -	    do_unlock(),
      │ │ │ │ +	    do_unlock(),
      │ │ │ │  	    Tref =
      │ │ │ │ -                 erlang:start_timer(
      │ │ │ │ -                     10_000, self(), lock), % Time in milliseconds
      │ │ │ │ -            {next_state, open, Data#{buttons := [], timer => Tref}};
      │ │ │ │ +                 erlang:start_timer(
      │ │ │ │ +                     10_000, self(), lock), % Time in milliseconds
      │ │ │ │ +            {next_state, open, Data#{buttons := [], timer => Tref}};
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {next_state,locked,maps:remove(timer, Data)};
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data};
      │ │ │ │ +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {next_state,locked,maps:remove(timer, Data)};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data};
      │ │ │ │  ...

      Removing the timer key from the map when we do a state change to locked │ │ │ │ is not strictly necessary since we can only get into state open │ │ │ │ with an updated timer map value. But it can be nice to not have │ │ │ │ outdated values in the state Data.

      If you need to cancel a timer because of some other event, you can use │ │ │ │ erlang:cancel_timer(Tref). Note that no time-out │ │ │ │ message will arrive after this (because the timer has been │ │ │ │ explicitly canceled), unless you have already postponed one earlier │ │ │ │ @@ -815,16 +815,16 @@ │ │ │ │ Postponing Events │ │ │ │

      │ │ │ │

      If you want to ignore a particular event in the current state and handle it │ │ │ │ in a future state, you can postpone the event. A postponed event │ │ │ │ is retried after a state change, that is, OldState =/= NewState.

      Postponing is ordered by the │ │ │ │ transition action postpone.

      In this example, instead of ignoring button events while in the open state, │ │ │ │ we can postpone them handle them later in the locked state:

      ...
      │ │ │ │ -open(cast, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data,[postpone]};
      │ │ │ │ +open(cast, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data,[postpone]};
      │ │ │ │  ...

      Since a postponed event is only retried after a state change, you have to │ │ │ │ think about where to keep a state data item. You can keep it in the server │ │ │ │ Data or in the State itself, for example by having two more or less │ │ │ │ identical states to keep a boolean value, or by using a complex state (see │ │ │ │ section Complex State) with │ │ │ │ callback mode │ │ │ │ handle_event_function. If a change │ │ │ │ @@ -845,55 +845,55 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Selective Receive │ │ │ │ │ │ │ │

      Erlang's selective receive statement is often used to describe simple state │ │ │ │ machine examples in straightforward Erlang code. The following is a possible │ │ │ │ -implementation of the first example:

      -module(code_lock).
      │ │ │ │ --define(NAME, code_lock_1).
      │ │ │ │ --export([start_link/1,button/1]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    spawn(
      │ │ │ │ -      fun () ->
      │ │ │ │ -	      true = register(?NAME, self()),
      │ │ │ │ -	      do_lock(),
      │ │ │ │ -	      locked(Code, length(Code), [])
      │ │ │ │ -      end).
      │ │ │ │ +implementation of the first example:

      -module(code_lock).
      │ │ │ │ +-define(NAME, code_lock_1).
      │ │ │ │ +-export([start_link/1,button/1]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    spawn(
      │ │ │ │ +      fun () ->
      │ │ │ │ +	      true = register(?NAME, self()),
      │ │ │ │ +	      do_lock(),
      │ │ │ │ +	      locked(Code, length(Code), [])
      │ │ │ │ +      end).
      │ │ │ │  
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    ?NAME ! {button,Button}.
      locked(Code, Length, Buttons) ->
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    ?NAME ! {button,Button}.
      locked(Code, Length, Buttons) ->
      │ │ │ │      receive
      │ │ │ │ -        {button,Button} ->
      │ │ │ │ +        {button,Button} ->
      │ │ │ │              NewButtons =
      │ │ │ │                  if
      │ │ │ │ -                    length(Buttons) < Length ->
      │ │ │ │ +                    length(Buttons) < Length ->
      │ │ │ │                          Buttons;
      │ │ │ │                      true ->
      │ │ │ │ -                        tl(Buttons)
      │ │ │ │ -                end ++ [Button],
      │ │ │ │ +                        tl(Buttons)
      │ │ │ │ +                end ++ [Button],
      │ │ │ │              if
      │ │ │ │                  NewButtons =:= Code -> % Correct
      │ │ │ │ -                    do_unlock(),
      │ │ │ │ -		    open(Code, Length);
      │ │ │ │ +                    do_unlock(),
      │ │ │ │ +		    open(Code, Length);
      │ │ │ │                  true -> % Incomplete | Incorrect
      │ │ │ │ -                    locked(Code, Length, NewButtons)
      │ │ │ │ +                    locked(Code, Length, NewButtons)
      │ │ │ │              end
      │ │ │ │ -    end.
      open(Code, Length) ->
      │ │ │ │ +    end.
      open(Code, Length) ->
      │ │ │ │      receive
      │ │ │ │      after 10_000 -> % Time in milliseconds
      │ │ │ │ -	    do_lock(),
      │ │ │ │ -	    locked(Code, Length, [])
      │ │ │ │ +	    do_lock(),
      │ │ │ │ +	    locked(Code, Length, [])
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).

      The selective receive in this case causes open to implicitly postpone any │ │ │ │ +do_lock() -> │ │ │ │ + io:format("Locked~n", []). │ │ │ │ +do_unlock() -> │ │ │ │ + io:format("Open~n", []).

      The selective receive in this case causes open to implicitly postpone any │ │ │ │ events to the locked state.

      A catch-all receive should never be used from a gen_statem behaviour │ │ │ │ (or from any gen_* behaviour), as the receive statement is within │ │ │ │ the gen_* engine itself. sys-compatible behaviours must respond to │ │ │ │ system messages and therefore do that in their engine receive loop, │ │ │ │ passing non-system messages to the callback module. Using a catch-all │ │ │ │ receive can result in system messages being discarded, which in turn │ │ │ │ can lead to unexpected behaviour. If a selective receive must be used, │ │ │ │ @@ -916,40 +916,40 @@ │ │ │ │ section), especially if only one or a few states have state enter actions, │ │ │ │ this is a perfect use case for the built in │ │ │ │ state enter calls.

      You return a list containing state_enter from your │ │ │ │ callback_mode/0 function and the │ │ │ │ gen_statem engine will call your state callback once with an event │ │ │ │ (enter, OldState, ...) whenever it does a state change. Then you │ │ │ │ just need to handle these event-like calls in all states.

      ...
      │ │ │ │ -init(Code) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length = length(Code)},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ -
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [state_functions,state_enter].
      │ │ │ │ -
      │ │ │ │ -locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state,Data#{buttons => []}};
      │ │ │ │ -locked(
      │ │ │ │ -  cast, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +init(Code) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length = length(Code)},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │ +
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [state_functions,state_enter].
      │ │ │ │ +
      │ │ │ │ +locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state,Data#{buttons => []}};
      │ │ │ │ +locked(
      │ │ │ │ +  cast, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │  ...
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(enter, _OldState, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -open(state_timeout, lock, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ +open(enter, _OldState, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +open(state_timeout, lock, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │  ...

      You can repeat the state enter code by returning one of │ │ │ │ {repeat_state, ...},{repeat_state_and_data, _}, │ │ │ │ or repeat_state_and_data that otherwise behaves exactly like their │ │ │ │ keep_state siblings. See the type │ │ │ │ state_callback_result() │ │ │ │ in the Reference Manual.

      │ │ │ │ │ │ │ │ @@ -971,44 +971,44 @@ │ │ │ │ to dispatch pre-processed events as internal events to the main state │ │ │ │ machine.

      Using internal events also can make it easier to synchronize the state │ │ │ │ machines.

      A variant of this is to use a complex state with │ │ │ │ one state callback, modeling the state │ │ │ │ with, for example, a tuple {MainFSMState, SubFSMState}.

      To illustrate this we make up an example where the buttons instead generate │ │ │ │ down and up (press and release) events, and the lock responds │ │ │ │ to an up event only after the corresponding down event.

      ...
      │ │ │ │ --export([down/1, up/1]).
      │ │ │ │ +-export([down/1, up/1]).
      │ │ │ │  ...
      │ │ │ │ -down(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ +down(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │  
      │ │ │ │ -up(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ +up(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │  
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state,Data#{buttons => []}};
      │ │ │ │ -locked(
      │ │ │ │ -  internal, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ -...
      handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_common(cast, {up,Button}, Data) ->
      │ │ │ │ +locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state,Data#{buttons => []}};
      │ │ │ │ +locked(
      │ │ │ │ +  internal, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +...
      handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_common(cast, {up,Button}, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state,maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}}]};
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state,maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}}]};
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -open(internal, {button,_}, Data) ->
      │ │ │ │ -    {keep_state,Data,[postpone]};
      │ │ │ │ +open(internal, {button,_}, Data) ->
      │ │ │ │ +    {keep_state,Data,[postpone]};
      │ │ │ │  ...

      If you start this program with code_lock:start([17]) you can unlock with │ │ │ │ code_lock:down(17), code_lock:up(17).

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example Revisited │ │ │ │

      │ │ │ │ @@ -1036,152 +1036,152 @@ │ │ │ │ Also, the state diagram does not show that the code_length/0 call │ │ │ │ must be handled in every state.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: state_functions │ │ │ │

      │ │ │ │ -

      Using state functions:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock_2).
      │ │ │ │ +

      Using state functions:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock_2).
      │ │ │ │  
      │ │ │ │ --export([start_link/1,stop/0]).
      │ │ │ │ --export([down/1,up/1,code_length/0]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([locked/3,open/3]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code) ->
      │ │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).
      │ │ │ │ -
      │ │ │ │ -down(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ -up(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ -code_length() ->
      │ │ │ │ -    gen_statem:call(?NAME, code_length).
      init(Code) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, locked, Data}.
      │ │ │ │ +-export([start_link/1,stop/0]).
      │ │ │ │ +-export([down/1,up/1,code_length/0]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([locked/3,open/3]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code) ->
      │ │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
      │ │ │ │ +stop() ->
      │ │ │ │ +    gen_statem:stop(?NAME).
      │ │ │ │ +
      │ │ │ │ +down(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
      │ │ │ │ +up(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
      │ │ │ │ +code_length() ->
      │ │ │ │ +    gen_statem:call(?NAME, code_length).
      init(Code) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, locked, Data}.
      │ │ │ │  
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [state_functions,state_enter].
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [state_functions,state_enter].
      │ │ │ │  
      │ │ │ │ --define(HANDLE_COMMON,
      │ │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │ +-define(HANDLE_COMMON,
      │ │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
      │ │ │ │  %%
      │ │ │ │ -handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_common(cast, {up,Button}, Data) ->
      │ │ │ │ +handle_common(cast, {down,Button}, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_common(cast, {up,Button}, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state, maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}}]};
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state, maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}}]};
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_common({call,From}, code_length, #{code := Code}) ->
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{reply,From,length(Code)}]}.
      locked(enter, _OldState, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -locked(state_timeout, button, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -locked(
      │ │ │ │ -  internal, {button,Button},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_common({call,From}, code_length, #{code := Code}) ->
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{reply,From,length(Code)}]}.
      locked(enter, _OldState, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +locked(state_timeout, button, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +locked(
      │ │ │ │ +  internal, {button,Button},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      │ │ │ │ -?HANDLE_COMMON.
      open(enter, _OldState, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -open(state_timeout, lock, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -open(internal, {button,_}, _) ->
      │ │ │ │ -    {keep_state_and_data, [postpone]};
      │ │ │ │ +?HANDLE_COMMON.
      open(enter, _OldState, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +open(state_timeout, lock, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +open(internal, {button,_}, _) ->
      │ │ │ │ +    {keep_state_and_data, [postpone]};
      │ │ │ │  ?HANDLE_COMMON.
      │ │ │ │  
      │ │ │ │ -do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).
      │ │ │ │ +do_lock() ->
      │ │ │ │ +    io:format("Locked~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Open~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: handle_event_function │ │ │ │

      │ │ │ │

      This section describes what to change in the example to use one │ │ │ │ handle_event/4 function. The previously used approach to first branch │ │ │ │ depending on event does not work that well here because of │ │ │ │ -the state enter calls, so this example first branches depending on state:

      -export([handle_event/4]).
      callback_mode() ->
      │ │ │ │ -    [handle_event_function,state_enter].
      %%
      │ │ │ │ +the state enter calls, so this example first branches depending on state:

      -export([handle_event/4]).
      callback_mode() ->
      │ │ │ │ +    [handle_event_function,state_enter].
      %%
      │ │ │ │  %% State: locked
      │ │ │ │ -handle_event(enter, _OldState, locked, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(state_timeout, button, locked, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(
      │ │ │ │ -  internal, {button,Button}, locked,
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_event(enter, _OldState, locked, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(state_timeout, button, locked, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(
      │ │ │ │ +  internal, {button,Button}, locked,
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, open, Data};
      │ │ │ │ +            {next_state, open, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, open, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ -    {next_state, locked, Data};
      │ │ │ │ -handle_event(internal, {button,_}, open, _) ->
      │ │ │ │ -    {keep_state_and_data,[postpone]};
      %% Common events
      │ │ │ │ -handle_event(cast, {down,Button}, _State, Data) ->
      │ │ │ │ -    {keep_state, Data#{button => Button}};
      │ │ │ │ -handle_event(cast, {up,Button}, _State, Data) ->
      │ │ │ │ +handle_event(enter, _OldState, open, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +handle_event(state_timeout, lock, open, Data) ->
      │ │ │ │ +    {next_state, locked, Data};
      │ │ │ │ +handle_event(internal, {button,_}, open, _) ->
      │ │ │ │ +    {keep_state_and_data,[postpone]};
      %% Common events
      │ │ │ │ +handle_event(cast, {down,Button}, _State, Data) ->
      │ │ │ │ +    {keep_state, Data#{button => Button}};
      │ │ │ │ +handle_event(cast, {up,Button}, _State, Data) ->
      │ │ │ │      case Data of
      │ │ │ │ -        #{button := Button} ->
      │ │ │ │ -            {keep_state, maps:remove(button, Data),
      │ │ │ │ -             [{next_event,internal,{button,Button}},
      │ │ │ │ -              {state_timeout,30_000,button}]}; % Time in milliseconds
      │ │ │ │ -        #{} ->
      │ │ │ │ +        #{button := Button} ->
      │ │ │ │ +            {keep_state, maps:remove(button, Data),
      │ │ │ │ +             [{next_event,internal,{button,Button}},
      │ │ │ │ +              {state_timeout,30_000,button}]}; % Time in milliseconds
      │ │ │ │ +        #{} ->
      │ │ │ │              keep_state_and_data
      │ │ │ │      end;
      │ │ │ │ -handle_event({call,From}, code_length, _State, #{length := Length}) ->
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{reply,From,Length}]}.

      Notice that postponing buttons from the open state to the locked state │ │ │ │ +handle_event({call,From}, code_length, _State, #{length := Length}) -> │ │ │ │ + {keep_state_and_data, │ │ │ │ + [{reply,From,Length}]}.

      Notice that postponing buttons from the open state to the locked state │ │ │ │ seems like a strange thing to do for a code lock, but it at least │ │ │ │ illustrates event postponing.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Filter the State │ │ │ │

      │ │ │ │ @@ -1191,30 +1191,30 @@ │ │ │ │ and which digits that remain to unlock.

      This state data can be regarded as sensitive, and maybe not what you want │ │ │ │ in the error log because of some unpredictable event.

      Another reason to filter the state can be that the state is too large to print, │ │ │ │ as it fills the error log with uninteresting details.

      To avoid this, you can format the internal state that gets in the error log │ │ │ │ and gets returned from sys:get_status/1,2 │ │ │ │ by implementing function │ │ │ │ Module:format_status/2, │ │ │ │ for example like this:

      ...
      │ │ │ │ --export([init/1,terminate/3,format_status/2]).
      │ │ │ │ +-export([init/1,terminate/3,format_status/2]).
      │ │ │ │  ...
      │ │ │ │  
      │ │ │ │ -format_status(Opt, [_PDict,State,Data]) ->
      │ │ │ │ +format_status(Opt, [_PDict,State,Data]) ->
      │ │ │ │      StateData =
      │ │ │ │ -	{State,
      │ │ │ │ -	 maps:filter(
      │ │ │ │ -	   fun (code, _) -> false;
      │ │ │ │ -	       (_, _) -> true
      │ │ │ │ +	{State,
      │ │ │ │ +	 maps:filter(
      │ │ │ │ +	   fun (code, _) -> false;
      │ │ │ │ +	       (_, _) -> true
      │ │ │ │  	   end,
      │ │ │ │ -	   Data)},
      │ │ │ │ +	   Data)},
      │ │ │ │      case Opt of
      │ │ │ │  	terminate ->
      │ │ │ │  	    StateData;
      │ │ │ │  	normal ->
      │ │ │ │ -	    [{data,[{"State",StateData}]}]
      │ │ │ │ +	    [{data,[{"State",StateData}]}]
      │ │ │ │      end.

      It is not mandatory to implement a │ │ │ │ Module:format_status/2 function. │ │ │ │ If you do not, a default implementation is used that does the same │ │ │ │ as this example function without filtering the Data term, that is, │ │ │ │ StateData = {State, Data}, in this example containing sensitive information.

      │ │ │ │ │ │ │ │ │ │ │ │ @@ -1227,104 +1227,104 @@ │ │ │ │ like a tuple.

      One reason to use this is when you have a state item that when changed │ │ │ │ should cancel the state time-out, or one that affects │ │ │ │ the event handling in combination with postponing events. We will go for │ │ │ │ the latter and complicate the previous example by introducing │ │ │ │ a configurable lock button (this is the state item in question), │ │ │ │ which in the open state immediately locks the door, and an API function │ │ │ │ set_lock_button/1 to set the lock button.

      Suppose now that we call set_lock_button while the door is open, │ │ │ │ -and we have already postponed a button event that was the new lock button:

      1> code_lock:start_link([a,b,c], x).
      │ │ │ │ -{ok,<0.666.0>}
      │ │ │ │ -2> code_lock:button(a).
      │ │ │ │ +and we have already postponed a button event that was the new lock button:

      1> code_lock:start_link([a,b,c], x).
      │ │ │ │ +{ok,<0.666.0>}
      │ │ │ │ +2> code_lock:button(a).
      │ │ │ │  ok
      │ │ │ │ -3> code_lock:button(b).
      │ │ │ │ +3> code_lock:button(b).
      │ │ │ │  ok
      │ │ │ │ -4> code_lock:button(c).
      │ │ │ │ +4> code_lock:button(c).
      │ │ │ │  ok
      │ │ │ │  Open
      │ │ │ │ -5> code_lock:button(y).
      │ │ │ │ +5> code_lock:button(y).
      │ │ │ │  ok
      │ │ │ │ -6> code_lock:set_lock_button(y).
      │ │ │ │ +6> code_lock:set_lock_button(y).
      │ │ │ │  x
      │ │ │ │  % What should happen here?  Immediate lock or nothing?

      We could say that the button was pressed too early so it should not be │ │ │ │ recognized as the lock button. Or we can make the lock button part of │ │ │ │ the state so when we then change the lock button in the locked state, │ │ │ │ the change becomes a state change and all postponed events are retried, │ │ │ │ therefore the lock is immediately locked!

      We define the state as {StateName, LockButton}, where StateName │ │ │ │ -is as before and LockButton is the current lock button:

      -module(code_lock).
      │ │ │ │ --behaviour(gen_statem).
      │ │ │ │ --define(NAME, code_lock_3).
      │ │ │ │ +is as before and LockButton is the current lock button:

      -module(code_lock).
      │ │ │ │ +-behaviour(gen_statem).
      │ │ │ │ +-define(NAME, code_lock_3).
      │ │ │ │  
      │ │ │ │ --export([start_link/2,stop/0]).
      │ │ │ │ --export([button/1,set_lock_button/1]).
      │ │ │ │ --export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ --export([handle_event/4]).
      │ │ │ │ -
      │ │ │ │ -start_link(Code, LockButton) ->
      │ │ │ │ -    gen_statem:start_link(
      │ │ │ │ -        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
      │ │ │ │ -stop() ->
      │ │ │ │ -    gen_statem:stop(?NAME).
      │ │ │ │ -
      │ │ │ │ -button(Button) ->
      │ │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ -set_lock_button(LockButton) ->
      │ │ │ │ -    gen_statem:call(?NAME, {set_lock_button,LockButton}).
      init({Code,LockButton}) ->
      │ │ │ │ -    process_flag(trap_exit, true),
      │ │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ -    {ok, {locked,LockButton}, Data}.
      │ │ │ │ +-export([start_link/2,stop/0]).
      │ │ │ │ +-export([button/1,set_lock_button/1]).
      │ │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
      │ │ │ │ +-export([handle_event/4]).
      │ │ │ │ +
      │ │ │ │ +start_link(Code, LockButton) ->
      │ │ │ │ +    gen_statem:start_link(
      │ │ │ │ +        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
      │ │ │ │ +stop() ->
      │ │ │ │ +    gen_statem:stop(?NAME).
      │ │ │ │ +
      │ │ │ │ +button(Button) ->
      │ │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
      │ │ │ │ +set_lock_button(LockButton) ->
      │ │ │ │ +    gen_statem:call(?NAME, {set_lock_button,LockButton}).
      init({Code,LockButton}) ->
      │ │ │ │ +    process_flag(trap_exit, true),
      │ │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
      │ │ │ │ +    {ok, {locked,LockButton}, Data}.
      │ │ │ │  
      │ │ │ │ -callback_mode() ->
      │ │ │ │ -    [handle_event_function,state_enter].
      │ │ │ │ +callback_mode() ->
      │ │ │ │ +    [handle_event_function,state_enter].
      │ │ │ │  
      │ │ │ │  %% State: locked
      │ │ │ │ -handle_event(enter, _OldState, {locked,_}, Data) ->
      │ │ │ │ -    do_lock(),
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(state_timeout, button, {locked,_}, Data) ->
      │ │ │ │ -    {keep_state, Data#{buttons := []}};
      │ │ │ │ -handle_event(
      │ │ │ │ -  cast, {button,Button}, {locked,LockButton},
      │ │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │ +handle_event(enter, _OldState, {locked,_}, Data) ->
      │ │ │ │ +    do_lock(),
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(state_timeout, button, {locked,_}, Data) ->
      │ │ │ │ +    {keep_state, Data#{buttons := []}};
      │ │ │ │ +handle_event(
      │ │ │ │ +  cast, {button,Button}, {locked,LockButton},
      │ │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
      │ │ │ │      NewButtons =
      │ │ │ │          if
      │ │ │ │ -            length(Buttons) < Length ->
      │ │ │ │ +            length(Buttons) < Length ->
      │ │ │ │                  Buttons;
      │ │ │ │              true ->
      │ │ │ │ -                tl(Buttons)
      │ │ │ │ -        end ++ [Button],
      │ │ │ │ +                tl(Buttons)
      │ │ │ │ +        end ++ [Button],
      │ │ │ │      if
      │ │ │ │          NewButtons =:= Code -> % Correct
      │ │ │ │ -            {next_state, {open,LockButton}, Data};
      │ │ │ │ +            {next_state, {open,LockButton}, Data};
      │ │ │ │  	true -> % Incomplete | Incorrect
      │ │ │ │ -            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │ +            {keep_state, Data#{buttons := NewButtons},
      │ │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
      │ │ │ │      end;
      %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ -handle_event(state_timeout, lock, {open,LockButton}, Data) ->
      │ │ │ │ -    {next_state, {locked,LockButton}, Data};
      │ │ │ │ -handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
      │ │ │ │ -    {next_state, {locked,LockButton}, Data};
      │ │ │ │ -handle_event(cast, {button,_}, {open,_}, _Data) ->
      │ │ │ │ -    {keep_state_and_data,[postpone]};
      %%
      │ │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
      │ │ │ │ +handle_event(state_timeout, lock, {open,LockButton}, Data) ->
      │ │ │ │ +    {next_state, {locked,LockButton}, Data};
      │ │ │ │ +handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
      │ │ │ │ +    {next_state, {locked,LockButton}, Data};
      │ │ │ │ +handle_event(cast, {button,_}, {open,_}, _Data) ->
      │ │ │ │ +    {keep_state_and_data,[postpone]};
      %%
      │ │ │ │  %% Common events
      │ │ │ │ -handle_event(
      │ │ │ │ -  {call,From}, {set_lock_button,NewLockButton},
      │ │ │ │ -  {StateName,OldLockButton}, Data) ->
      │ │ │ │ -    {next_state, {StateName,NewLockButton}, Data,
      │ │ │ │ -     [{reply,From,OldLockButton}]}.
      do_lock() ->
      │ │ │ │ -    io:format("Locked~n", []).
      │ │ │ │ -do_unlock() ->
      │ │ │ │ -    io:format("Open~n", []).
      │ │ │ │ +handle_event(
      │ │ │ │ +  {call,From}, {set_lock_button,NewLockButton},
      │ │ │ │ +  {StateName,OldLockButton}, Data) ->
      │ │ │ │ +    {next_state, {StateName,NewLockButton}, Data,
      │ │ │ │ +     [{reply,From,OldLockButton}]}.
      do_lock() ->
      │ │ │ │ +    io:format("Locked~n", []).
      │ │ │ │ +do_unlock() ->
      │ │ │ │ +    io:format("Open~n", []).
      │ │ │ │  
      │ │ │ │ -terminate(_Reason, State, _Data) ->
      │ │ │ │ -    State =/= locked andalso do_lock(),
      │ │ │ │ +terminate(_Reason, State, _Data) ->
      │ │ │ │ +    State =/= locked andalso do_lock(),
      │ │ │ │      ok.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Hibernation │ │ │ │

      │ │ │ │

      If you have many servers in one node and they have some state(s) in their │ │ │ │ @@ -1333,19 +1333,19 @@ │ │ │ │ footprint of a server can be minimized by hibernating it through │ │ │ │ proc_lib:hibernate/3.

      Note

      It is rather costly to hibernate a process; see erlang:hibernate/3. It is │ │ │ │ not something you want to do after every event.

      We can in this example hibernate in the {open, _} state, │ │ │ │ because what normally occurs in that state is that the state time-out │ │ │ │ after a while triggers a transition to {locked, _}:

      ...
      │ │ │ │  %%
      │ │ │ │  %% State: open
      │ │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ -    do_unlock(),
      │ │ │ │ -    {keep_state_and_data,
      │ │ │ │ -     [{state_timeout,10_000,lock}, % Time in milliseconds
      │ │ │ │ -      hibernate]};
      │ │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
      │ │ │ │ +    do_unlock(),
      │ │ │ │ +    {keep_state_and_data,
      │ │ │ │ +     [{state_timeout,10_000,lock}, % Time in milliseconds
      │ │ │ │ +      hibernate]};
      │ │ │ │  ...

      The atom hibernate in the action list on the │ │ │ │ last line when entering the {open, _} state is the only change. If any event │ │ │ │ arrives in the {open, _}, state, we do not bother to rehibernate, │ │ │ │ so the server stays awake after any event.

      To change that we would need to insert action hibernate in more places. │ │ │ │ For example, the state-independent set_lock_button operation │ │ │ │ would have to use hibernate but only in the {open, _} state, │ │ │ │ which would clutter the code.

      Another not uncommon scenario is to use the │ │ │ ├── OEBPS/spec_proc.xhtml │ │ │ │ @@ -28,72 +28,72 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Debugging │ │ │ │

      │ │ │ │

      The sys module has functions for simple debugging of processes implemented │ │ │ │ using behaviours. The code_lock example from │ │ │ │ -gen_statem Behaviour is used to illustrate this:

      Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │ +gen_statem Behaviour is used to illustrate this:

      Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │  
      │ │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ -1> code_lock:start_link([1,2,3,4]).
      │ │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ +1> code_lock:start_link([1,2,3,4]).
      │ │ │ │  Lock
      │ │ │ │ -{ok,<0.90.0>}
      │ │ │ │ -2> sys:statistics(code_lock, true).
      │ │ │ │ +{ok,<0.90.0>}
      │ │ │ │ +2> sys:statistics(code_lock, true).
      │ │ │ │  ok
      │ │ │ │ -3> sys:trace(code_lock, true).
      │ │ │ │ +3> sys:trace(code_lock, true).
      │ │ │ │  ok
      │ │ │ │ -4> code_lock:button(1).
      │ │ │ │ -*DBG* code_lock receive cast {button,1} in state locked
      │ │ │ │ +4> code_lock:button(1).
      │ │ │ │ +*DBG* code_lock receive cast {button,1} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,1} in state locked
      │ │ │ │ -5> code_lock:button(2).
      │ │ │ │ -*DBG* code_lock receive cast {button,2} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,1} in state locked
      │ │ │ │ +5> code_lock:button(2).
      │ │ │ │ +*DBG* code_lock receive cast {button,2} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,2} in state locked
      │ │ │ │ -6> code_lock:button(3).
      │ │ │ │ -*DBG* code_lock receive cast {button,3} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,2} in state locked
      │ │ │ │ +6> code_lock:button(3).
      │ │ │ │ +*DBG* code_lock receive cast {button,3} in state locked
      │ │ │ │  ok
      │ │ │ │ -*DBG* code_lock consume cast {button,3} in state locked
      │ │ │ │ -7> code_lock:button(4).
      │ │ │ │ -*DBG* code_lock receive cast {button,4} in state locked
      │ │ │ │ +*DBG* code_lock consume cast {button,3} in state locked
      │ │ │ │ +7> code_lock:button(4).
      │ │ │ │ +*DBG* code_lock receive cast {button,4} in state locked
      │ │ │ │  ok
      │ │ │ │  Unlock
      │ │ │ │ -*DBG* code_lock consume cast {button,4} in state locked => open
      │ │ │ │ -*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
      │ │ │ │ +*DBG* code_lock consume cast {button,4} in state locked => open
      │ │ │ │ +*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
      │ │ │ │  *DBG* code_lock receive state_timeout lock in state open
      │ │ │ │  Lock
      │ │ │ │  *DBG* code_lock consume state_timeout lock in state open => locked
      │ │ │ │ -8> sys:statistics(code_lock, get).
      │ │ │ │ -{ok,[{start_time,{{2024,5,3},{8,11,1}}},
      │ │ │ │ -     {current_time,{{2024,5,3},{8,11,48}}},
      │ │ │ │ -     {reductions,4098},
      │ │ │ │ -     {messages_in,5},
      │ │ │ │ -     {messages_out,0}]}
      │ │ │ │ -9> sys:statistics(code_lock, false).
      │ │ │ │ +8> sys:statistics(code_lock, get).
      │ │ │ │ +{ok,[{start_time,{{2024,5,3},{8,11,1}}},
      │ │ │ │ +     {current_time,{{2024,5,3},{8,11,48}}},
      │ │ │ │ +     {reductions,4098},
      │ │ │ │ +     {messages_in,5},
      │ │ │ │ +     {messages_out,0}]}
      │ │ │ │ +9> sys:statistics(code_lock, false).
      │ │ │ │  ok
      │ │ │ │ -10> sys:trace(code_lock, false).
      │ │ │ │ +10> sys:trace(code_lock, false).
      │ │ │ │  ok
      │ │ │ │ -11> sys:get_status(code_lock).
      │ │ │ │ -{status,<0.90.0>,
      │ │ │ │ -        {module,gen_statem},
      │ │ │ │ -        [[{'$initial_call',{code_lock,init,1}},
      │ │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
      │ │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
      │ │ │ │ -         running,<0.88.0>,[],
      │ │ │ │ -         [{header,"Status for state machine code_lock"},
      │ │ │ │ -          {data,[{"Status",running},
      │ │ │ │ -                 {"Parent",<0.88.0>},
      │ │ │ │ -                 {"Modules",[code_lock]},
      │ │ │ │ -                 {"Time-outs",{0,[]}},
      │ │ │ │ -                 {"Logged Events",[]},
      │ │ │ │ -                 {"Postponed",[]}]},
      │ │ │ │ -          {data,[{"State",
      │ │ │ │ -                  {locked,#{code => [1,2,3,4],
      │ │ │ │ -                            length => 4,buttons => []}}}]}]]}

      │ │ │ │ +11> sys:get_status(code_lock). │ │ │ │ +{status,<0.90.0>, │ │ │ │ + {module,gen_statem}, │ │ │ │ + [[{'$initial_call',{code_lock,init,1}}, │ │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ │ + running,<0.88.0>,[], │ │ │ │ + [{header,"Status for state machine code_lock"}, │ │ │ │ + {data,[{"Status",running}, │ │ │ │ + {"Parent",<0.88.0>}, │ │ │ │ + {"Modules",[code_lock]}, │ │ │ │ + {"Time-outs",{0,[]}}, │ │ │ │ + {"Logged Events",[]}, │ │ │ │ + {"Postponed",[]}]}, │ │ │ │ + {data,[{"State", │ │ │ │ + {locked,#{code => [1,2,3,4], │ │ │ │ + length => 4,buttons => []}}}]}]]}

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Special Processes │ │ │ │

      │ │ │ │

      This section describes how to write a process that complies to the OTP design │ │ │ │ principles, without using a standard behaviour. Such a process is to:

      System messages are messages with a special meaning, used in the supervision │ │ │ │ @@ -103,238 +103,238 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │ │ │

      Here follows the simple server from │ │ │ │ Overview, │ │ │ │ -implemented using sys and proc_lib to fit into a supervision tree:

      -module(ch4).
      │ │ │ │ --export([start_link/0]).
      │ │ │ │ --export([alloc/0, free/1]).
      │ │ │ │ --export([init/1]).
      │ │ │ │ --export([system_continue/3, system_terminate/4,
      │ │ │ │ +implemented using sys and proc_lib to fit into a supervision tree:

      -module(ch4).
      │ │ │ │ +-export([start_link/0]).
      │ │ │ │ +-export([alloc/0, free/1]).
      │ │ │ │ +-export([init/1]).
      │ │ │ │ +-export([system_continue/3, system_terminate/4,
      │ │ │ │           write_debug/3,
      │ │ │ │ -         system_get_state/1, system_replace_state/2]).
      │ │ │ │ +         system_get_state/1, system_replace_state/2]).
      │ │ │ │  
      │ │ │ │ -start_link() ->
      │ │ │ │ -    proc_lib:start_link(ch4, init, [self()]).
      │ │ │ │ +start_link() ->
      │ │ │ │ +    proc_lib:start_link(ch4, init, [self()]).
      │ │ │ │  
      │ │ │ │ -alloc() ->
      │ │ │ │ -    ch4 ! {self(), alloc},
      │ │ │ │ +alloc() ->
      │ │ │ │ +    ch4 ! {self(), alloc},
      │ │ │ │      receive
      │ │ │ │ -        {ch4, Res} ->
      │ │ │ │ +        {ch4, Res} ->
      │ │ │ │              Res
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -free(Ch) ->
      │ │ │ │ -    ch4 ! {free, Ch},
      │ │ │ │ +free(Ch) ->
      │ │ │ │ +    ch4 ! {free, Ch},
      │ │ │ │      ok.
      │ │ │ │  
      │ │ │ │ -init(Parent) ->
      │ │ │ │ -    register(ch4, self()),
      │ │ │ │ -    Chs = channels(),
      │ │ │ │ -    Deb = sys:debug_options([]),
      │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ -    loop(Chs, Parent, Deb).
      │ │ │ │ +init(Parent) ->
      │ │ │ │ +    register(ch4, self()),
      │ │ │ │ +    Chs = channels(),
      │ │ │ │ +    Deb = sys:debug_options([]),
      │ │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ +    loop(Chs, Parent, Deb).
      │ │ │ │  
      │ │ │ │ -loop(Chs, Parent, Deb) ->
      │ │ │ │ +loop(Chs, Parent, Deb) ->
      │ │ │ │      receive
      │ │ │ │ -        {From, alloc} ->
      │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {in, alloc, From}),
      │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
      │ │ │ │ -            From ! {ch4, Ch},
      │ │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ │ -            loop(Chs2, Parent, Deb3);
      │ │ │ │ -        {free, Ch} ->
      │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ -                                    ch4, {in, {free, Ch}}),
      │ │ │ │ -            Chs2 = free(Ch, Chs),
      │ │ │ │ -            loop(Chs2, Parent, Deb2);
      │ │ │ │ -
      │ │ │ │ -        {system, From, Request} ->
      │ │ │ │ -            sys:handle_system_msg(Request, From, Parent,
      │ │ │ │ -                                  ch4, Deb, Chs)
      │ │ │ │ +        {From, alloc} ->
      │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {in, alloc, From}),
      │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
      │ │ │ │ +            From ! {ch4, Ch},
      │ │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ │ +            loop(Chs2, Parent, Deb3);
      │ │ │ │ +        {free, Ch} ->
      │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ │ +                                    ch4, {in, {free, Ch}}),
      │ │ │ │ +            Chs2 = free(Ch, Chs),
      │ │ │ │ +            loop(Chs2, Parent, Deb2);
      │ │ │ │ +
      │ │ │ │ +        {system, From, Request} ->
      │ │ │ │ +            sys:handle_system_msg(Request, From, Parent,
      │ │ │ │ +                                  ch4, Deb, Chs)
      │ │ │ │      end.
      │ │ │ │  
      │ │ │ │ -system_continue(Parent, Deb, Chs) ->
      │ │ │ │ -    loop(Chs, Parent, Deb).
      │ │ │ │ +system_continue(Parent, Deb, Chs) ->
      │ │ │ │ +    loop(Chs, Parent, Deb).
      │ │ │ │  
      │ │ │ │ -system_terminate(Reason, _Parent, _Deb, _Chs) ->
      │ │ │ │ -    exit(Reason).
      │ │ │ │ +system_terminate(Reason, _Parent, _Deb, _Chs) ->
      │ │ │ │ +    exit(Reason).
      │ │ │ │  
      │ │ │ │ -system_get_state(Chs) ->
      │ │ │ │ -    {ok, Chs}.
      │ │ │ │ +system_get_state(Chs) ->
      │ │ │ │ +    {ok, Chs}.
      │ │ │ │  
      │ │ │ │ -system_replace_state(StateFun, Chs) ->
      │ │ │ │ -    NChs = StateFun(Chs),
      │ │ │ │ -    {ok, NChs, NChs}.
      │ │ │ │ +system_replace_state(StateFun, Chs) ->
      │ │ │ │ +    NChs = StateFun(Chs),
      │ │ │ │ +    {ok, NChs, NChs}.
      │ │ │ │  
      │ │ │ │ -write_debug(Dev, Event, Name) ->
      │ │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

      As it is not relevant to the example, the channel handling functions have been │ │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

      As it is not relevant to the example, the channel handling functions have been │ │ │ │ omitted. To compile this example, the │ │ │ │ implementation of channel handling │ │ │ │ needs to be added to the module.

      Here is an example showing how the debugging functions in the sys │ │ │ │ module can be used for ch4:

      % erl
      │ │ │ │ -Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │ +Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
      │ │ │ │  
      │ │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ -1> ch4:start_link().
      │ │ │ │ -{ok,<0.90.0>}
      │ │ │ │ -2> sys:statistics(ch4, true).
      │ │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
      │ │ │ │ +1> ch4:start_link().
      │ │ │ │ +{ok,<0.90.0>}
      │ │ │ │ +2> sys:statistics(ch4, true).
      │ │ │ │  ok
      │ │ │ │ -3> sys:trace(ch4, true).
      │ │ │ │ +3> sys:trace(ch4, true).
      │ │ │ │  ok
      │ │ │ │ -4> ch4:alloc().
      │ │ │ │ -ch4 event = {in,alloc,<0.88.0>}
      │ │ │ │ -ch4 event = {out,{ch4,1},<0.88.0>}
      │ │ │ │ +4> ch4:alloc().
      │ │ │ │ +ch4 event = {in,alloc,<0.88.0>}
      │ │ │ │ +ch4 event = {out,{ch4,1},<0.88.0>}
      │ │ │ │  1
      │ │ │ │ -5> ch4:free(ch1).
      │ │ │ │ -ch4 event = {in,{free,ch1}}
      │ │ │ │ +5> ch4:free(ch1).
      │ │ │ │ +ch4 event = {in,{free,ch1}}
      │ │ │ │  ok
      │ │ │ │ -6> sys:statistics(ch4, get).
      │ │ │ │ -{ok,[{start_time,{{2024,5,3},{8,26,13}}},
      │ │ │ │ -     {current_time,{{2024,5,3},{8,26,49}}},
      │ │ │ │ -     {reductions,202},
      │ │ │ │ -     {messages_in,2},
      │ │ │ │ -     {messages_out,1}]}
      │ │ │ │ -7> sys:statistics(ch4, false).
      │ │ │ │ +6> sys:statistics(ch4, get).
      │ │ │ │ +{ok,[{start_time,{{2024,5,3},{8,26,13}}},
      │ │ │ │ +     {current_time,{{2024,5,3},{8,26,49}}},
      │ │ │ │ +     {reductions,202},
      │ │ │ │ +     {messages_in,2},
      │ │ │ │ +     {messages_out,1}]}
      │ │ │ │ +7> sys:statistics(ch4, false).
      │ │ │ │  ok
      │ │ │ │ -8> sys:trace(ch4, false).
      │ │ │ │ +8> sys:trace(ch4, false).
      │ │ │ │  ok
      │ │ │ │ -9> sys:get_status(ch4).
      │ │ │ │ -{status,<0.90.0>,
      │ │ │ │ -        {module,ch4},
      │ │ │ │ -        [[{'$initial_call',{ch4,init,1}},
      │ │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
      │ │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
      │ │ │ │ -         running,<0.88.0>,[],
      │ │ │ │ -         {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

      │ │ │ │ +9> sys:get_status(ch4). │ │ │ │ +{status,<0.90.0>, │ │ │ │ + {module,ch4}, │ │ │ │ + [[{'$initial_call',{ch4,init,1}}, │ │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ │ + running,<0.88.0>,[], │ │ │ │ + {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting the Process │ │ │ │

      │ │ │ │

      A function in the proc_lib module is to be used to start the process. Several │ │ │ │ functions are available, for example, │ │ │ │ proc_lib:spawn_link/3,4 │ │ │ │ for asynchronous start and │ │ │ │ proc_lib:start_link/3,4,5 for synchronous start.

      Information necessary for a process within a supervision tree, such as │ │ │ │ details on ancestors and the initial call, is stored when a process │ │ │ │ is started through one of these functions.

      If the process terminates with a reason other than normal or shutdown, a │ │ │ │ crash report is generated. For more information about the crash report, see │ │ │ │ Logging in Kernel User's Guide.

      In the example, synchronous start is used. The process starts by calling │ │ │ │ -ch4:start_link():

      start_link() ->
      │ │ │ │ -    proc_lib:start_link(ch4, init, [self()]).

      ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ │ +ch4:start_link():

      start_link() ->
      │ │ │ │ +    proc_lib:start_link(ch4, init, [self()]).

      ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ │ name, a function name, and an argument list as arguments. It then │ │ │ │ spawns a new process and establishes a link. The new process starts │ │ │ │ by executing the given function, here ch4:init(Pid), where Pid is │ │ │ │ the pid of the parent process (obtained by the call to │ │ │ │ self() in the call to proc_lib:start_link/3).

      All initialization, including name registration, is done in init/1. The new │ │ │ │ -process has to acknowledge that it has been started to the parent:

      init(Parent) ->
      │ │ │ │ +process has to acknowledge that it has been started to the parent:

      init(Parent) ->
      │ │ │ │      ...
      │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
      │ │ │ │ -    loop(...).

      proc_lib:start_link/3 is synchronous and does not return until │ │ │ │ + proc_lib:init_ack(Parent, {ok, self()}), │ │ │ │ + loop(...).

      proc_lib:start_link/3 is synchronous and does not return until │ │ │ │ proc_lib:init_ack/1,2 or │ │ │ │ proc_lib:init_fail/2,3 has been called, │ │ │ │ or the process has exited.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Debugging │ │ │ │

      │ │ │ │

      To support the debug facilities in sys, a debug structure is needed. The │ │ │ │ -Deb term is initialized using sys:debug_options/1:

      init(Parent) ->
      │ │ │ │ +Deb term is initialized using sys:debug_options/1:

      init(Parent) ->
      │ │ │ │      ...
      │ │ │ │ -    Deb = sys:debug_options([]),
      │ │ │ │ +    Deb = sys:debug_options([]),
      │ │ │ │      ...
      │ │ │ │ -    loop(Chs, Parent, Deb).

      sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ │ + loop(Chs, Parent, Deb).

      sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ │ example means that debugging is initially disabled. For information about the │ │ │ │ possible options, see sys in STDLIB.

      For each system event to be logged or traced, the following function │ │ │ │ -is to be called:

      sys:handle_debug(Deb, Func, Info, Event) => Deb1

      The arguments have the follow meaning:

      • Deb is the debug structure as returned from sys:debug_options/1.
      • Func is a fun specifying a (user-defined) function used to format trace │ │ │ │ +is to be called:

        sys:handle_debug(Deb, Func, Info, Event) => Deb1

        The arguments have the follow meaning:

        • Deb is the debug structure as returned from sys:debug_options/1.
        • Func is a fun specifying a (user-defined) function used to format trace │ │ │ │ output. For each system event, the format function is called as │ │ │ │ Func(Dev, Event, Info), where:
          • Dev is the I/O device to which the output is to be printed. See io │ │ │ │ in STDLIB.
          • Event and Info are passed as-is from the call to sys:handle_debug/4.
        • Info is used to pass more information to Func. It can be any term, and it │ │ │ │ is passed as-is.
        • Event is the system event. It is up to the user to define what a system │ │ │ │ event is and how it is to be represented. Typically, at least incoming and │ │ │ │ outgoing messages are considered system events and represented by the tuples │ │ │ │ {in,Msg[,From]} and {out,Msg,To[,State]}, respectively.

        sys:handle_debug/4 returns an updated debug structure Deb1.

        In the example, sys:handle_debug/4 is called for each incoming and │ │ │ │ outgoing message. The format function Func is the function │ │ │ │ -ch4:write_debug/3, which prints the message using io:format/3.

        loop(Chs, Parent, Deb) ->
        │ │ │ │ +ch4:write_debug/3, which prints the message using io:format/3.

        loop(Chs, Parent, Deb) ->
        │ │ │ │      receive
        │ │ │ │ -        {From, alloc} ->
        │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {in, alloc, From}),
        │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
        │ │ │ │ -            From ! {ch4, Ch},
        │ │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
        │ │ │ │ -            loop(Chs2, Parent, Deb3);
        │ │ │ │ -        {free, Ch} ->
        │ │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ -                                    ch4, {in, {free, Ch}}),
        │ │ │ │ -            Chs2 = free(Ch, Chs),
        │ │ │ │ -            loop(Chs2, Parent, Deb2);
        │ │ │ │ +        {From, alloc} ->
        │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {in, alloc, From}),
        │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
        │ │ │ │ +            From ! {ch4, Ch},
        │ │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
        │ │ │ │ +            loop(Chs2, Parent, Deb3);
        │ │ │ │ +        {free, Ch} ->
        │ │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
        │ │ │ │ +                                    ch4, {in, {free, Ch}}),
        │ │ │ │ +            Chs2 = free(Ch, Chs),
        │ │ │ │ +            loop(Chs2, Parent, Deb2);
        │ │ │ │          ...
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │ -write_debug(Dev, Event, Name) ->
        │ │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

        │ │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling System Messages │ │ │ │

        │ │ │ │

        System messages are received as:

        {system, From, Request}

        The content and meaning of these messages are not to be interpreted by the │ │ │ │ -process. Instead the following function is to be called:

        sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

        The arguments have the following meaning:

        • Request and From from the received system message are to be │ │ │ │ +process. Instead the following function is to be called:

          sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

          The arguments have the following meaning:

          • Request and From from the received system message are to be │ │ │ │ passed as-is to the call to sys:handle_system_msg/6.
          • Parent is the pid of the parent process.
          • Module is the name of the module implementing the speciall process.
          • Deb is the debug structure.
          • State is a term describing the internal state and is passed on to │ │ │ │ Module:system_continue/3, Module:system_terminate/4/ │ │ │ │ Module:system_get_state/1, and Module:system_replace_state/2.

          sys:handle_system_msg/6 does not return. It handles the system │ │ │ │ message and eventually calls either of the following functions:

          • Module:system_continue(Parent, Deb, State) - if process execution is to │ │ │ │ continue.

          • Module:system_terminate(Reason, Parent, Deb, State) - if the │ │ │ │ process is to terminate.

          While handling the system message, sys:handle_system_msg/6 can call │ │ │ │ one of the following functions:

          • Module:system_get_state(State) - if the process is to return its state.

          • Module:system_replace_state(StateFun, State) - if the process is │ │ │ │ to replace its state using the fun StateFun fun. See sys:replace_state/3 │ │ │ │ for more information.

          • system_code_change(Misc, Module, OldVsn, Extra) - if the process is to │ │ │ │ perform a code change.

          A process in a supervision tree is expected to terminate with the same reason as │ │ │ │ -its parent.

          In the example, system messages are handed by the following code:

          loop(Chs, Parent, Deb) ->
          │ │ │ │ +its parent.

          In the example, system messages are handed by the following code:

          loop(Chs, Parent, Deb) ->
          │ │ │ │      receive
          │ │ │ │          ...
          │ │ │ │  
          │ │ │ │ -        {system, From, Request} ->
          │ │ │ │ -            sys:handle_system_msg(Request, From, Parent,
          │ │ │ │ -                                  ch4, Deb, Chs)
          │ │ │ │ +        {system, From, Request} ->
          │ │ │ │ +            sys:handle_system_msg(Request, From, Parent,
          │ │ │ │ +                                  ch4, Deb, Chs)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -system_continue(Parent, Deb, Chs) ->
          │ │ │ │ -    loop(Chs, Parent, Deb).
          │ │ │ │ +system_continue(Parent, Deb, Chs) ->
          │ │ │ │ +    loop(Chs, Parent, Deb).
          │ │ │ │  
          │ │ │ │ -system_terminate(Reason, Parent, Deb, Chs) ->
          │ │ │ │ -    exit(Reason).
          │ │ │ │ +system_terminate(Reason, Parent, Deb, Chs) ->
          │ │ │ │ +    exit(Reason).
          │ │ │ │  
          │ │ │ │ -system_get_state(Chs) ->
          │ │ │ │ -    {ok, Chs, Chs}.
          │ │ │ │ +system_get_state(Chs) ->
          │ │ │ │ +    {ok, Chs, Chs}.
          │ │ │ │  
          │ │ │ │ -system_replace_state(StateFun, Chs) ->
          │ │ │ │ -    NChs = StateFun(Chs),
          │ │ │ │ -    {ok, NChs, NChs}.

          If a special process is configured to trap exits, it must take notice │ │ │ │ +system_replace_state(StateFun, Chs) -> │ │ │ │ + NChs = StateFun(Chs), │ │ │ │ + {ok, NChs, NChs}.

          If a special process is configured to trap exits, it must take notice │ │ │ │ of 'EXIT' messages from its parent process and terminate using the │ │ │ │ -same exit reason once the parent process has terminated.

          Here is an example:

          init(Parent) ->
          │ │ │ │ +same exit reason once the parent process has terminated.

          Here is an example:

          init(Parent) ->
          │ │ │ │      ...,
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │      ...,
          │ │ │ │ -    loop(Parent).
          │ │ │ │ +    loop(Parent).
          │ │ │ │  
          │ │ │ │ -loop(Parent) ->
          │ │ │ │ +loop(Parent) ->
          │ │ │ │      receive
          │ │ │ │          ...
          │ │ │ │ -        {'EXIT', Parent, Reason} ->
          │ │ │ │ +        {'EXIT', Parent, Reason} ->
          │ │ │ │              %% Clean up here, if needed.
          │ │ │ │ -            exit(Reason);
          │ │ │ │ +            exit(Reason);
          │ │ │ │          ...
          │ │ │ │      end.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ User-Defined Behaviours │ │ │ │

          │ │ │ │ @@ -353,69 +353,69 @@ │ │ │ │ function. Note that the -optional_callbacks attribute is to be used together │ │ │ │ with the -callback attribute; it cannot be combined with the │ │ │ │ behaviour_info() function described below.

          Tools that need to know about optional callback functions can call │ │ │ │ Behaviour:behaviour_info(optional_callbacks) to get a list of all optional │ │ │ │ callback functions.

          Note

          We recommend using the -callback attribute rather than the │ │ │ │ behaviour_info() function. The reason is that the extra type information can │ │ │ │ be used by tools to produce documentation or find discrepancies.

          As an alternative to the -callback and -optional_callbacks attributes you │ │ │ │ -may directly implement and export behaviour_info():

          behaviour_info(callbacks) ->
          │ │ │ │ -    [{Name1, Arity1},...,{NameN, ArityN}].

          where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ │ +may directly implement and export behaviour_info():

          behaviour_info(callbacks) ->
          │ │ │ │ +    [{Name1, Arity1},...,{NameN, ArityN}].

          where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ │ This function is otherwise automatically generated by the compiler using the │ │ │ │ -callback attributes.

          When the compiler encounters the module attribute -behaviour(Behaviour). in a │ │ │ │ module Mod, it calls Behaviour:behaviour_info(callbacks) and compares the │ │ │ │ result with the set of functions actually exported from Mod, and issues a │ │ │ │ warning if any callback function is missing.

          Example:

          %% User-defined behaviour module
          │ │ │ │ --module(simple_server).
          │ │ │ │ --export([start_link/2, init/3, ...]).
          │ │ │ │ +-module(simple_server).
          │ │ │ │ +-export([start_link/2, init/3, ...]).
          │ │ │ │  
          │ │ │ │ --callback init(State :: term()) -> 'ok'.
          │ │ │ │ --callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
          │ │ │ │ --callback terminate() -> 'ok'.
          │ │ │ │ --callback format_state(State :: term()) -> term().
          │ │ │ │ +-callback init(State :: term()) -> 'ok'.
          │ │ │ │ +-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
          │ │ │ │ +-callback terminate() -> 'ok'.
          │ │ │ │ +-callback format_state(State :: term()) -> term().
          │ │ │ │  
          │ │ │ │ --optional_callbacks([format_state/1]).
          │ │ │ │ +-optional_callbacks([format_state/1]).
          │ │ │ │  
          │ │ │ │  %% Alternatively you may define:
          │ │ │ │  %%
          │ │ │ │  %% -export([behaviour_info/1]).
          │ │ │ │  %% behaviour_info(callbacks) ->
          │ │ │ │  %%     [{init,1},
          │ │ │ │  %%      {handle_req,2},
          │ │ │ │  %%      {terminate,0}].
          │ │ │ │  
          │ │ │ │ -start_link(Name, Module) ->
          │ │ │ │ -    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
          │ │ │ │ +start_link(Name, Module) ->
          │ │ │ │ +    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
          │ │ │ │  
          │ │ │ │ -init(Parent, Name, Module) ->
          │ │ │ │ -    register(Name, self()),
          │ │ │ │ +init(Parent, Name, Module) ->
          │ │ │ │ +    register(Name, self()),
          │ │ │ │      ...,
          │ │ │ │ -    Dbg = sys:debug_options([]),
          │ │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
          │ │ │ │ -    loop(Parent, Module, Deb, ...).
          │ │ │ │ +    Dbg = sys:debug_options([]),
          │ │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
          │ │ │ │ +    loop(Parent, Module, Deb, ...).
          │ │ │ │  
          │ │ │ │ -...

          In a callback module:

          -module(db).
          │ │ │ │ --behaviour(simple_server).
          │ │ │ │ +...

          In a callback module:

          -module(db).
          │ │ │ │ +-behaviour(simple_server).
          │ │ │ │  
          │ │ │ │ --export([init/1, handle_req/2, terminate/0]).
          │ │ │ │ +-export([init/1, handle_req/2, terminate/0]).
          │ │ │ │  
          │ │ │ │  ...

          The contracts specified with -callback attributes in behaviour modules can be │ │ │ │ further refined by adding -spec attributes in callback modules. This can be │ │ │ │ useful as -callback contracts are usually generic. The same callback module │ │ │ │ -with contracts for the callbacks:

          -module(db).
          │ │ │ │ --behaviour(simple_server).
          │ │ │ │ +with contracts for the callbacks:

          -module(db).
          │ │ │ │ +-behaviour(simple_server).
          │ │ │ │  
          │ │ │ │ --export([init/1, handle_req/2, terminate/0]).
          │ │ │ │ +-export([init/1, handle_req/2, terminate/0]).
          │ │ │ │  
          │ │ │ │ --record(state, {field1 :: [atom()], field2 :: integer()}).
          │ │ │ │ +-record(state, {field1 :: [atom()], field2 :: integer()}).
          │ │ │ │  
          │ │ │ │ --type state()   :: #state{}.
          │ │ │ │ --type request() :: {'store', term(), term()};
          │ │ │ │ -                   {'lookup', term()}.
          │ │ │ │ +-type state()   :: #state{}.
          │ │ │ │ +-type request() :: {'store', term(), term()};
          │ │ │ │ +                   {'lookup', term()}.
          │ │ │ │  
          │ │ │ │  ...
          │ │ │ │  
          │ │ │ │ --spec handle_req(request(), state()) -> {'ok', term()}.
          │ │ │ │ +-spec handle_req(request(), state()) -> {'ok', term()}.
          │ │ │ │  
          │ │ │ │  ...

          Each -spec contract is to be a subtype of the respective -callback contract.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/seq_prog.xhtml │ │ │ │ @@ -41,293 +41,293 @@ │ │ │ │
          7 │ │ │ │ 2>

          As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and │ │ │ │ that it correctly says that 2 + 5 is 7. If you make writing mistakes in the │ │ │ │ shell, you can delete with the backspace key, as in most shells. There are many │ │ │ │ more editing commands in the shell (see │ │ │ │ tty - A command line interface in ERTS User's Guide).

          (Notice that many line numbers given by the shell in the following examples are │ │ │ │ out of sequence. This is because this tutorial was written and code-tested in │ │ │ │ -separate sessions).

          Here is a bit more complex calculation:

          2> (42 + 77) * 66 / 3.
          │ │ │ │ +separate sessions).

          Here is a bit more complex calculation:

          2> (42 + 77) * 66 / 3.
          │ │ │ │  2618.0

          Notice the use of brackets, the multiplication operator *, and the division │ │ │ │ operator /, as in normal arithmetic (see │ │ │ │ Expressions).

          Press Control-C to shut down the Erlang system and the Erlang shell.

          The following output is shown:

          BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
          │ │ │ │         (v)ersion (k)ill (D)b-tables (d)istribution
          │ │ │ │  a
          │ │ │ │ -$

          Type a to leave the Erlang system.

          Another way to shut down the Erlang system is by entering halt/0:

          3> halt().
          │ │ │ │ +$

          Type a to leave the Erlang system.

          Another way to shut down the Erlang system is by entering halt/0:

          3> halt().
          │ │ │ │  $

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Modules and Functions │ │ │ │

          │ │ │ │

          A programming language is not much use if you only can run code from the shell. │ │ │ │ So here is a small Erlang program. Enter it into a file named tut.erl using a │ │ │ │ suitable text editor. The file name tut.erl is important, and also that it is │ │ │ │ in the same directory as the one where you started erl). If you are lucky your │ │ │ │ editor has an Erlang mode that makes it easier for you to enter and format your │ │ │ │ code nicely (see The Erlang mode for Emacs │ │ │ │ in Tools User's Guide), but you can manage perfectly well without. Here is the │ │ │ │ -code to enter:

          -module(tut).
          │ │ │ │ --export([double/1]).
          │ │ │ │ +code to enter:

          -module(tut).
          │ │ │ │ +-export([double/1]).
          │ │ │ │  
          │ │ │ │ -double(X) ->
          │ │ │ │ +double(X) ->
          │ │ │ │      2 * X.

          It is not hard to guess that this program doubles the value of numbers. The │ │ │ │ first two lines of the code are described later. Let us compile the program. │ │ │ │ -This can be done in an Erlang shell as follows, where c means compile:

          3> c(tut).
          │ │ │ │ -{ok,tut}

          The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ │ +This can be done in an Erlang shell as follows, where c means compile:

          3> c(tut).
          │ │ │ │ +{ok,tut}

          The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ │ that there is some mistake in the text that you entered. Additional error │ │ │ │ messages gives an idea to what is wrong so you can modify the text and then try │ │ │ │ -to compile the program again.

          Now run the program:

          4> tut:double(10).
          │ │ │ │ +to compile the program again.

          Now run the program:

          4> tut:double(10).
          │ │ │ │  20

          As expected, double of 10 is 20.

          Now let us get back to the first two lines of the code. Erlang programs are │ │ │ │ written in files. Each file contains an Erlang module. The first line of code │ │ │ │ -in the module is the module name (see Modules):

          -module(tut).

          Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ │ +in the module is the module name (see Modules):

          -module(tut).

          Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ │ line. The files which are used to store the module must have the same name as │ │ │ │ the module but with the extension .erl. In this case the file name is │ │ │ │ tut.erl. When using a function in another module, the syntax │ │ │ │ module_name:function_name(arguments) is used. So the following means call │ │ │ │ -function double in module tut with argument 10.

          4> tut:double(10).

          The second line says that the module tut contains a function called double, │ │ │ │ -which takes one argument (X in our example):

          -export([double/1]).

          The second line also says that this function can be called from outside the │ │ │ │ +function double in module tut with argument 10.

          4> tut:double(10).

          The second line says that the module tut contains a function called double, │ │ │ │ +which takes one argument (X in our example):

          -export([double/1]).

          The second line also says that this function can be called from outside the │ │ │ │ module tut. More about this later. Again, notice the . at the end of the │ │ │ │ line.

          Now for a more complicated example, the factorial of a number. For example, the │ │ │ │ -factorial of 4 is 4 3 2 * 1, which equals 24.

          Enter the following code in a file named tut1.erl:

          -module(tut1).
          │ │ │ │ --export([fac/1]).
          │ │ │ │ +factorial of 4 is 4  3  2 * 1, which equals 24.

          Enter the following code in a file named tut1.erl:

          -module(tut1).
          │ │ │ │ +-export([fac/1]).
          │ │ │ │  
          │ │ │ │ -fac(1) ->
          │ │ │ │ +fac(1) ->
          │ │ │ │      1;
          │ │ │ │ -fac(N) ->
          │ │ │ │ -    N * fac(N - 1).

          So this is a module, called tut1 that contains a function called fac>, which │ │ │ │ -takes one argument, N.

          The first part says that the factorial of 1 is 1.:

          fac(1) ->
          │ │ │ │ +fac(N) ->
          │ │ │ │ +    N * fac(N - 1).

          So this is a module, called tut1 that contains a function called fac>, which │ │ │ │ +takes one argument, N.

          The first part says that the factorial of 1 is 1.:

          fac(1) ->
          │ │ │ │      1;

          Notice that this part ends with a semicolon ; that indicates that there is │ │ │ │ more of the function fac> to come.

          The second part says that the factorial of N is N multiplied by the factorial of │ │ │ │ -N - 1:

          fac(N) ->
          │ │ │ │ -    N * fac(N - 1).

          Notice that this part ends with a . saying that there are no more parts of │ │ │ │ -this function.

          Compile the file:

          5> c(tut1).
          │ │ │ │ -{ok,tut1}

          And now calculate the factorial of 4.

          6> tut1:fac(4).
          │ │ │ │ +N - 1:

          fac(N) ->
          │ │ │ │ +    N * fac(N - 1).

          Notice that this part ends with a . saying that there are no more parts of │ │ │ │ +this function.

          Compile the file:

          5> c(tut1).
          │ │ │ │ +{ok,tut1}

          And now calculate the factorial of 4.

          6> tut1:fac(4).
          │ │ │ │  24

          Here the function fac> in module tut1 is called with argument 4.

          A function can have many arguments. Let us expand the module tut1 with the │ │ │ │ -function to multiply two numbers:

          -module(tut1).
          │ │ │ │ --export([fac/1, mult/2]).
          │ │ │ │ +function to multiply two numbers:

          -module(tut1).
          │ │ │ │ +-export([fac/1, mult/2]).
          │ │ │ │  
          │ │ │ │ -fac(1) ->
          │ │ │ │ +fac(1) ->
          │ │ │ │      1;
          │ │ │ │ -fac(N) ->
          │ │ │ │ -    N * fac(N - 1).
          │ │ │ │ +fac(N) ->
          │ │ │ │ +    N * fac(N - 1).
          │ │ │ │  
          │ │ │ │ -mult(X, Y) ->
          │ │ │ │ +mult(X, Y) ->
          │ │ │ │      X * Y.

          Notice that it is also required to expand the -export line with the │ │ │ │ -information that there is another function mult with two arguments.

          Compile:

          7> c(tut1).
          │ │ │ │ -{ok,tut1}

          Try out the new function mult:

          8> tut1:mult(3,4).
          │ │ │ │ +information that there is another function mult with two arguments.

          Compile:

          7> c(tut1).
          │ │ │ │ +{ok,tut1}

          Try out the new function mult:

          8> tut1:mult(3,4).
          │ │ │ │  12

          In this example the numbers are integers and the arguments in the functions in │ │ │ │ the code N, X, and Y are called variables. Variables must start with a │ │ │ │ capital letter (see Variables). Examples of │ │ │ │ variables are Number, ShoeSize, and Age.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │ │

          │ │ │ │

          Atom is another data type in Erlang. Atoms start with a small letter (see │ │ │ │ Atom), for example, charles, centimeter, and │ │ │ │ inch. Atoms are simply names, nothing else. They are not like variables, which │ │ │ │ can have a value.

          Enter the next program in a file named tut2.erl). It can be useful for │ │ │ │ -converting from inches to centimeters and conversely:

          -module(tut2).
          │ │ │ │ --export([convert/2]).
          │ │ │ │ +converting from inches to centimeters and conversely:

          -module(tut2).
          │ │ │ │ +-export([convert/2]).
          │ │ │ │  
          │ │ │ │ -convert(M, inch) ->
          │ │ │ │ +convert(M, inch) ->
          │ │ │ │      M / 2.54;
          │ │ │ │  
          │ │ │ │ -convert(N, centimeter) ->
          │ │ │ │ -    N * 2.54.

          Compile:

          9> c(tut2).
          │ │ │ │ -{ok,tut2}

          Test:

          10> tut2:convert(3, inch).
          │ │ │ │ +convert(N, centimeter) ->
          │ │ │ │ +    N * 2.54.

          Compile:

          9> c(tut2).
          │ │ │ │ +{ok,tut2}

          Test:

          10> tut2:convert(3, inch).
          │ │ │ │  1.1811023622047243
          │ │ │ │ -11> tut2:convert(7, centimeter).
          │ │ │ │ +11> tut2:convert(7, centimeter).
          │ │ │ │  17.78

          Notice the introduction of decimals (floating point numbers) without any │ │ │ │ explanation. Hopefully you can cope with that.

          Let us see what happens if something other than centimeter or inch is │ │ │ │ -entered in the convert function:

          12> tut2:convert(3, miles).
          │ │ │ │ +entered in the convert function:

          12> tut2:convert(3, miles).
          │ │ │ │  ** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

          The two parts of the convert function are called its clauses. As shown, │ │ │ │ miles is not part of either of the clauses. The Erlang system cannot match │ │ │ │ either of the clauses so an error message function_clause is returned. The │ │ │ │ shell formats the error message nicely, but the error tuple is saved in the │ │ │ │ -shell's history list and can be output by the shell command v/1:

          13> v(12).
          │ │ │ │ -{'EXIT',{function_clause,[{tut2,convert,
          │ │ │ │ -                                [3,miles],
          │ │ │ │ -                                [{file,"tut2.erl"},{line,4}]},
          │ │ │ │ -                          {erl_eval,do_apply,6,
          │ │ │ │ -                                    [{file,"erl_eval.erl"},{line,677}]},
          │ │ │ │ -                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
          │ │ │ │ -                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
          │ │ │ │ -                          {shell,eval_loop,3,
          │ │ │ │ -                                 [{file,"shell.erl"},{line,627}]}]}}

          │ │ │ │ +shell's history list and can be output by the shell command v/1:

          13> v(12).
          │ │ │ │ +{'EXIT',{function_clause,[{tut2,convert,
          │ │ │ │ +                                [3,miles],
          │ │ │ │ +                                [{file,"tut2.erl"},{line,4}]},
          │ │ │ │ +                          {erl_eval,do_apply,6,
          │ │ │ │ +                                    [{file,"erl_eval.erl"},{line,677}]},
          │ │ │ │ +                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
          │ │ │ │ +                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
          │ │ │ │ +                          {shell,eval_loop,3,
          │ │ │ │ +                                 [{file,"shell.erl"},{line,627}]}]}}

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Tuples │ │ │ │

          │ │ │ │ -

          Now the tut2 program is hardly good programming style. Consider:

          tut2:convert(3, inch).

          Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ │ +

          Now the tut2 program is hardly good programming style. Consider:

          tut2:convert(3, inch).

          Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ │ is to be converted to inches? Erlang has a way to group things together to make │ │ │ │ things more understandable. These are called tuples and are surrounded by │ │ │ │ curly brackets, { and }.

          So, {inch,3} denotes 3 inches and {centimeter,5} denotes 5 centimeters. Now │ │ │ │ let us write a new program that converts centimeters to inches and conversely. │ │ │ │ -Enter the following code in a file called tut3.erl):

          -module(tut3).
          │ │ │ │ --export([convert_length/1]).
          │ │ │ │ +Enter the following code in a file called tut3.erl):

          -module(tut3).
          │ │ │ │ +-export([convert_length/1]).
          │ │ │ │  
          │ │ │ │ -convert_length({centimeter, X}) ->
          │ │ │ │ -    {inch, X / 2.54};
          │ │ │ │ -convert_length({inch, Y}) ->
          │ │ │ │ -    {centimeter, Y * 2.54}.

          Compile and test:

          14> c(tut3).
          │ │ │ │ -{ok,tut3}
          │ │ │ │ -15> tut3:convert_length({inch, 5}).
          │ │ │ │ -{centimeter,12.7}
          │ │ │ │ -16> tut3:convert_length(tut3:convert_length({inch, 5})).
          │ │ │ │ -{inch,5.0}

          Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ │ +convert_length({centimeter, X}) -> │ │ │ │ + {inch, X / 2.54}; │ │ │ │ +convert_length({inch, Y}) -> │ │ │ │ + {centimeter, Y * 2.54}.

          Compile and test:

          14> c(tut3).
          │ │ │ │ +{ok,tut3}
          │ │ │ │ +15> tut3:convert_length({inch, 5}).
          │ │ │ │ +{centimeter,12.7}
          │ │ │ │ +16> tut3:convert_length(tut3:convert_length({inch, 5})).
          │ │ │ │ +{inch,5.0}

          Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ │ reassuringly get back to the original value. That is, the argument to a function │ │ │ │ can be the result of another function. Consider how line 16 (above) works. The │ │ │ │ argument given to the function {inch,5} is first matched against the first │ │ │ │ head clause of convert_length, that is, convert_length({centimeter,X}). It │ │ │ │ can be seen that {centimeter,X} does not match {inch,5} (the head is the bit │ │ │ │ before the ->). This having failed, let us try the head of the next clause │ │ │ │ that is, convert_length({inch,Y}). This matches, and Y gets the value 5.

          Tuples can have more than two parts, in fact as many parts as you want, and │ │ │ │ contain any valid Erlang term. For example, to represent the temperature of │ │ │ │ -various cities of the world:

          {moscow, {c, -10}}
          │ │ │ │ -{cape_town, {f, 70}}
          │ │ │ │ -{paris, {f, 28}}

          Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ │ +various cities of the world:

          {moscow, {c, -10}}
          │ │ │ │ +{cape_town, {f, 70}}
          │ │ │ │ +{paris, {f, 28}}

          Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ │ element. In the tuple {moscow,{c,-10}}, element 1 is moscow and element 2 │ │ │ │ is {c,-10}. Here c represents Celsius and f Fahrenheit.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Lists │ │ │ │

          │ │ │ │

          Whereas tuples group things together, it is also needed to represent lists of │ │ │ │ things. Lists in Erlang are surrounded by square brackets, [ and ]. For │ │ │ │ -example, a list of the temperatures of various cities in the world can be:

          [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
          │ │ │ │ - {paris, {f, 28}}, {london, {f, 36}}]

          Notice that this list was so long that it did not fit on one line. This does not │ │ │ │ +example, a list of the temperatures of various cities in the world can be:

          [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
          │ │ │ │ + {paris, {f, 28}}, {london, {f, 36}}]

          Notice that this list was so long that it did not fit on one line. This does not │ │ │ │ matter, Erlang allows line breaks at all "sensible places" but not, for example, │ │ │ │ in the middle of atoms, integers, and others.

          A useful way of looking at parts of lists, is by using |. This is best │ │ │ │ -explained by an example using the shell:

          17> [First |TheRest] = [1,2,3,4,5].
          │ │ │ │ -[1,2,3,4,5]
          │ │ │ │ +explained by an example using the shell:

          17> [First |TheRest] = [1,2,3,4,5].
          │ │ │ │ +[1,2,3,4,5]
          │ │ │ │  18> First.
          │ │ │ │  1
          │ │ │ │  19> TheRest.
          │ │ │ │ -[2,3,4,5]

          To separate the first elements of the list from the rest of the list, | is │ │ │ │ -used. First has got value 1 and TheRest has got the value [2,3,4,5].

          Another example:

          20> [E1, E2 | R] = [1,2,3,4,5,6,7].
          │ │ │ │ -[1,2,3,4,5,6,7]
          │ │ │ │ +[2,3,4,5]

          To separate the first elements of the list from the rest of the list, | is │ │ │ │ +used. First has got value 1 and TheRest has got the value [2,3,4,5].

          Another example:

          20> [E1, E2 | R] = [1,2,3,4,5,6,7].
          │ │ │ │ +[1,2,3,4,5,6,7]
          │ │ │ │  21> E1.
          │ │ │ │  1
          │ │ │ │  22> E2.
          │ │ │ │  2
          │ │ │ │  23> R.
          │ │ │ │ -[3,4,5,6,7]

          Here you see the use of | to get the first two elements from the list. If you │ │ │ │ +[3,4,5,6,7]

          Here you see the use of | to get the first two elements from the list. If you │ │ │ │ try to get more elements from the list than there are elements in the list, an │ │ │ │ error is returned. Notice also the special case of the list with no elements, │ │ │ │ -[]:

          24> [A, B | C] = [1, 2].
          │ │ │ │ -[1,2]
          │ │ │ │ +[]:

          24> [A, B | C] = [1, 2].
          │ │ │ │ +[1,2]
          │ │ │ │  25> A.
          │ │ │ │  1
          │ │ │ │  26> B.
          │ │ │ │  2
          │ │ │ │  27> C.
          │ │ │ │ -[]

          In the previous examples, new variable names are used, instead of reusing the │ │ │ │ +[]

          In the previous examples, new variable names are used, instead of reusing the │ │ │ │ old ones: First, TheRest, E1, E2, R, A, B, and C. The reason for │ │ │ │ this is that a variable can only be given a value once in its context (scope). │ │ │ │ More about this later.

          The following example shows how to find the length of a list. Enter the │ │ │ │ -following code in a file named tut4.erl:

          -module(tut4).
          │ │ │ │ +following code in a file named tut4.erl:

          -module(tut4).
          │ │ │ │  
          │ │ │ │ --export([list_length/1]).
          │ │ │ │ +-export([list_length/1]).
          │ │ │ │  
          │ │ │ │ -list_length([]) ->
          │ │ │ │ +list_length([]) ->
          │ │ │ │      0;
          │ │ │ │ -list_length([First | Rest]) ->
          │ │ │ │ -    1 + list_length(Rest).

          Compile and test:

          28> c(tut4).
          │ │ │ │ -{ok,tut4}
          │ │ │ │ -29> tut4:list_length([1,2,3,4,5,6,7]).
          │ │ │ │ -7

          Explanation:

          list_length([]) ->
          │ │ │ │ -    0;

          The length of an empty list is obviously 0.

          list_length([First | Rest]) ->
          │ │ │ │ -    1 + list_length(Rest).

          The length of a list with the first element First and the remaining elements │ │ │ │ +list_length([First | Rest]) -> │ │ │ │ + 1 + list_length(Rest).

          Compile and test:

          28> c(tut4).
          │ │ │ │ +{ok,tut4}
          │ │ │ │ +29> tut4:list_length([1,2,3,4,5,6,7]).
          │ │ │ │ +7

          Explanation:

          list_length([]) ->
          │ │ │ │ +    0;

          The length of an empty list is obviously 0.

          list_length([First | Rest]) ->
          │ │ │ │ +    1 + list_length(Rest).

          The length of a list with the first element First and the remaining elements │ │ │ │ Rest is 1 + the length of Rest.

          (Advanced readers only: This is not tail recursive, there is a better way to │ │ │ │ write this function.)

          In general, tuples are used where "records" or "structs" are used in other │ │ │ │ languages. Also, lists are used when representing things with varying sizes, │ │ │ │ that is, where linked lists are used in other languages.

          Erlang does not have a string data type. Instead, strings can be represented by │ │ │ │ lists of Unicode characters. This implies for example that the list [97,98,99] │ │ │ │ is equivalent to "abc". The Erlang shell is "clever" and guesses what list you │ │ │ │ -mean and outputs it in what it thinks is the most appropriate form, for example:

          30> [97,98,99].
          │ │ │ │ +mean and outputs it in what it thinks is the most appropriate form, for example:

          30> [97,98,99].
          │ │ │ │  "abc"

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps │ │ │ │

          │ │ │ │

          Maps are a set of key to value associations. These associations are encapsulated │ │ │ │ -with #{ and }. To create an association from "key" to value 42:

          > #{ "key" => 42 }.
          │ │ │ │ -#{"key" => 42}

          Let us jump straight into the deep end with an example using some interesting │ │ │ │ +with #{ and }. To create an association from "key" to value 42:

          > #{ "key" => 42 }.
          │ │ │ │ +#{"key" => 42}

          Let us jump straight into the deep end with an example using some interesting │ │ │ │ features.

          The following example shows how to calculate alpha blending using maps to │ │ │ │ -reference color and alpha channels. Enter the code in a file named color.erl):

          -module(color).
          │ │ │ │ +reference color and alpha channels. Enter the code in a file named color.erl):

          -module(color).
          │ │ │ │  
          │ │ │ │ --export([new/4, blend/2]).
          │ │ │ │ +-export([new/4, blend/2]).
          │ │ │ │  
          │ │ │ │ --define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
          │ │ │ │ +-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
          │ │ │ │  
          │ │ │ │ -new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.
          │ │ │ │ -
          │ │ │ │ -blend(Src,Dst) ->
          │ │ │ │ -    blend(Src,Dst,alpha(Src,Dst)).
          │ │ │ │ -
          │ │ │ │ -blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ -    Dst#{
          │ │ │ │ -        red   := red(Src,Dst) / Alpha,
          │ │ │ │ -        green := green(Src,Dst) / Alpha,
          │ │ │ │ -        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │ +new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.
          │ │ │ │ +
          │ │ │ │ +blend(Src,Dst) ->
          │ │ │ │ +    blend(Src,Dst,alpha(Src,Dst)).
          │ │ │ │ +
          │ │ │ │ +blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ +    Dst#{
          │ │ │ │ +        red   := red(Src,Dst) / Alpha,
          │ │ │ │ +        green := green(Src,Dst) / Alpha,
          │ │ │ │ +        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │          alpha := Alpha
          │ │ │ │ -    };
          │ │ │ │ -blend(_,Dst,_) ->
          │ │ │ │ -    Dst#{
          │ │ │ │ +    };
          │ │ │ │ +blend(_,Dst,_) ->
          │ │ │ │ +    Dst#{
          │ │ │ │          red   := 0.0,
          │ │ │ │          green := 0.0,
          │ │ │ │          blue  := 0.0,
          │ │ │ │          alpha := 0.0
          │ │ │ │ -    }.
          │ │ │ │ +    }.
          │ │ │ │  
          │ │ │ │ -alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ -    SA + DA*(1.0 - SA).
          │ │ │ │ +alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ +    SA + DA*(1.0 - SA).
          │ │ │ │  
          │ │ │ │ -red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
          │ │ │ │ -green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
          │ │ │ │ -blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

          Compile and test:

          > c(color).
          │ │ │ │ -{ok,color}
          │ │ │ │ -> C1 = color:new(0.3,0.4,0.5,1.0).
          │ │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ -> C2 = color:new(1.0,0.8,0.1,0.3).
          │ │ │ │ -#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
          │ │ │ │ -> color:blend(C1,C2).
          │ │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ -> color:blend(C2,C1).
          │ │ │ │ -#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

          This example warrants some explanation:

          -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

          First a macro is_channel is defined to help with the guard tests. This is only │ │ │ │ +red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ │ +green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ │ +blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) -> │ │ │ │ + SV*SA + DV*DA*(1.0 - SA).

          Compile and test:

          > c(color).
          │ │ │ │ +{ok,color}
          │ │ │ │ +> C1 = color:new(0.3,0.4,0.5,1.0).
          │ │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ +> C2 = color:new(1.0,0.8,0.1,0.3).
          │ │ │ │ +#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
          │ │ │ │ +> color:blend(C1,C2).
          │ │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
          │ │ │ │ +> color:blend(C2,C1).
          │ │ │ │ +#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

          This example warrants some explanation:

          -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

          First a macro is_channel is defined to help with the guard tests. This is only │ │ │ │ here for convenience and to reduce syntax cluttering. For more information about │ │ │ │ -macros, see The Preprocessor.

          new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.

          The function new/4 creates a new map term and lets the keys red, green, │ │ │ │ +macros, see The Preprocessor.

          new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
          │ │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
          │ │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.

          The function new/4 creates a new map term and lets the keys red, green, │ │ │ │ blue, and alpha be associated with an initial value. In this case, only │ │ │ │ float values between and including 0.0 and 1.0 are allowed, as ensured by the │ │ │ │ ?is_channel/1 macro for each argument. Only the => operator is allowed when │ │ │ │ creating a new map.

          By calling blend/2 on any color term created by new/4, the resulting color │ │ │ │ -can be calculated as determined by the two map terms.

          The first thing blend/2 does is to calculate the resulting alpha channel:

          alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ -    SA + DA*(1.0 - SA).

          The value associated with key alpha is fetched for both arguments using the │ │ │ │ +can be calculated as determined by the two map terms.

          The first thing blend/2 does is to calculate the resulting alpha channel:

          alpha(#{alpha := SA}, #{alpha := DA}) ->
          │ │ │ │ +    SA + DA*(1.0 - SA).

          The value associated with key alpha is fetched for both arguments using the │ │ │ │ := operator. The other keys in the map are ignored, only the key alpha is │ │ │ │ -required and checked for.

          This is also the case for functions red/2, blue/2, and green/2.

          red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

          The difference here is that a check is made for two keys in each map argument. │ │ │ │ -The other keys are ignored.

          Finally, let us return the resulting color in blend/3:

          blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ -    Dst#{
          │ │ │ │ -        red   := red(Src,Dst) / Alpha,
          │ │ │ │ -        green := green(Src,Dst) / Alpha,
          │ │ │ │ -        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │ +required and checked for.

          This is also the case for functions red/2, blue/2, and green/2.

          red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
          │ │ │ │ +    SV*SA + DV*DA*(1.0 - SA).

          The difference here is that a check is made for two keys in each map argument. │ │ │ │ +The other keys are ignored.

          Finally, let us return the resulting color in blend/3:

          blend(Src,Dst,Alpha) when Alpha > 0.0 ->
          │ │ │ │ +    Dst#{
          │ │ │ │ +        red   := red(Src,Dst) / Alpha,
          │ │ │ │ +        green := green(Src,Dst) / Alpha,
          │ │ │ │ +        blue  := blue(Src,Dst) / Alpha,
          │ │ │ │          alpha := Alpha
          │ │ │ │ -    };

          The Dst map is updated with new channel values. The syntax for updating an │ │ │ │ + };

          The Dst map is updated with new channel values. The syntax for updating an │ │ │ │ existing key with a new value is with the := operator.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standard Modules and Manual Pages │ │ │ │

          │ │ │ │

          Erlang has many standard modules to help you do things. For example, the module │ │ │ │ @@ -347,24 +347,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Writing Output to a Terminal │ │ │ │ │ │ │ │

          It is nice to be able to do formatted output in examples, so the next example │ │ │ │ shows a simple way to use the io:format/2 function. Like all other exported │ │ │ │ -functions, you can test the io:format/2 function in the shell:

          31> io:format("hello world~n", []).
          │ │ │ │ +functions, you can test the io:format/2 function in the shell:

          31> io:format("hello world~n", []).
          │ │ │ │  hello world
          │ │ │ │  ok
          │ │ │ │ -32> io:format("this outputs one Erlang term: ~w~n", [hello]).
          │ │ │ │ +32> io:format("this outputs one Erlang term: ~w~n", [hello]).
          │ │ │ │  this outputs one Erlang term: hello
          │ │ │ │  ok
          │ │ │ │ -33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
          │ │ │ │ +33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
          │ │ │ │  this outputs two Erlang terms: helloworld
          │ │ │ │  ok
          │ │ │ │ -34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
          │ │ │ │ +34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
          │ │ │ │  this outputs two Erlang terms: hello world
          │ │ │ │  ok

          The function io:format/2 (that is, format with two arguments) takes two lists. │ │ │ │ The first one is nearly always a list written between " ". This list is printed │ │ │ │ out as it is, except that each ~w is replaced by a term taken in order from the │ │ │ │ second list. Each ~n is replaced by a new line. The io:format/2 function │ │ │ │ itself returns the atom ok if everything goes as planned. Like other functions │ │ │ │ in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a │ │ │ │ @@ -378,34 +378,34 @@ │ │ │ │ A Larger Example │ │ │ │ │ │ │ │

          Now for a larger example to consolidate what you have learnt so far. Assume that │ │ │ │ you have a list of temperature readings from a number of cities in the world. │ │ │ │ Some of them are in Celsius and some in Fahrenheit (as in the previous list). │ │ │ │ First let us convert them all to Celsius, then let us print the data neatly.

          %% This module is in file tut5.erl
          │ │ │ │  
          │ │ │ │ --module(tut5).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +-module(tut5).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │  %% Only this function is exported
          │ │ │ │ -format_temps([])->                        % No output for an empty list
          │ │ │ │ +format_temps([])->                        % No output for an empty list
          │ │ │ │      ok;
          │ │ │ │ -format_temps([City | Rest]) ->
          │ │ │ │ -    print_temp(convert_to_celsius(City)),
          │ │ │ │ -    format_temps(Rest).
          │ │ │ │ -
          │ │ │ │ -convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
          │ │ │ │ -    {Name, {c, Temp}};
          │ │ │ │ -convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
          │ │ │ │ -    {Name, {c, (Temp - 32) * 5 / 9}}.
          │ │ │ │ -
          │ │ │ │ -print_temp({Name, {c, Temp}}) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]).
          35> c(tut5).
          │ │ │ │ -{ok,tut5}
          │ │ │ │ -36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +format_temps([City | Rest]) ->
          │ │ │ │ +    print_temp(convert_to_celsius(City)),
          │ │ │ │ +    format_temps(Rest).
          │ │ │ │ +
          │ │ │ │ +convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
          │ │ │ │ +    {Name, {c, Temp}};
          │ │ │ │ +convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
          │ │ │ │ +    {Name, {c, (Temp - 32) * 5 / 9}}.
          │ │ │ │ +
          │ │ │ │ +print_temp({Name, {c, Temp}}) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]).
          35> c(tut5).
          │ │ │ │ +{ok,tut5}
          │ │ │ │ +36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  ok

          Before looking at how this program works, notice that a few comments are added │ │ │ │ to the code. A comment starts with a %-character and goes on to the end of the │ │ │ │ @@ -433,28 +433,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching, Guards, and Scope of Variables │ │ │ │ │ │ │ │

          It can be useful to find the maximum and minimum temperature in lists like this. │ │ │ │ Before extending the program to do this, let us look at functions for finding │ │ │ │ -the maximum value of the elements in a list:

          -module(tut6).
          │ │ │ │ --export([list_max/1]).
          │ │ │ │ +the maximum value of the elements in a list:

          -module(tut6).
          │ │ │ │ +-export([list_max/1]).
          │ │ │ │  
          │ │ │ │ -list_max([Head|Rest]) ->
          │ │ │ │ -   list_max(Rest, Head).
          │ │ │ │ +list_max([Head|Rest]) ->
          │ │ │ │ +   list_max(Rest, Head).
          │ │ │ │  
          │ │ │ │ -list_max([], Res) ->
          │ │ │ │ +list_max([], Res) ->
          │ │ │ │      Res;
          │ │ │ │ -list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ -    list_max(Rest, Head);
          │ │ │ │ -list_max([Head|Rest], Result_so_far)  ->
          │ │ │ │ -    list_max(Rest, Result_so_far).
          37> c(tut6).
          │ │ │ │ -{ok,tut6}
          │ │ │ │ -38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
          │ │ │ │ +list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ +    list_max(Rest, Head);
          │ │ │ │ +list_max([Head|Rest], Result_so_far)  ->
          │ │ │ │ +    list_max(Rest, Result_so_far).
          37> c(tut6).
          │ │ │ │ +{ok,tut6}
          │ │ │ │ +38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
          │ │ │ │  7

          First notice that two functions have the same name, list_max. However, each of │ │ │ │ these takes a different number of arguments (parameters). In Erlang these are │ │ │ │ regarded as completely different functions. Where you need to distinguish │ │ │ │ between these functions, you write Name/Arity, where Name is the function name │ │ │ │ and Arity is the number of arguments, in this case list_max/1 and │ │ │ │ list_max/2.

          In this example you walk through a list "carrying" a value, in this case │ │ │ │ Result_so_far. list_max/1 simply assumes that the max value of the list is │ │ │ │ @@ -483,180 +483,180 @@ │ │ │ │ 5 │ │ │ │ 40> M = 6. │ │ │ │ ** exception error: no match of right hand side value 6 │ │ │ │ 41> M = M + 1. │ │ │ │ ** exception error: no match of right hand side value 6 │ │ │ │ 42> N = M + 1. │ │ │ │ 6

          The use of the match operator is particularly useful for pulling apart Erlang │ │ │ │ -terms and creating new ones.

          43> {X, Y} = {paris, {f, 28}}.
          │ │ │ │ -{paris,{f,28}}
          │ │ │ │ +terms and creating new ones.

          43> {X, Y} = {paris, {f, 28}}.
          │ │ │ │ +{paris,{f,28}}
          │ │ │ │  44> X.
          │ │ │ │  paris
          │ │ │ │  45> Y.
          │ │ │ │ -{f,28}

          Here X gets the value paris and Y the value {f,28}.

          If you try to do the same again with another city, an error is returned:

          46> {X, Y} = {london, {f, 36}}.
          │ │ │ │ +{f,28}

          Here X gets the value paris and Y the value {f,28}.

          If you try to do the same again with another city, an error is returned:

          46> {X, Y} = {london, {f, 36}}.
          │ │ │ │  ** exception error: no match of right hand side value {london,{f,36}}

          Variables can also be used to improve the readability of programs. For example, │ │ │ │ -in function list_max/2 above, you can write:

          list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │ +in function list_max/2 above, you can write:

          list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
          │ │ │ │      New_result_far = Head,
          │ │ │ │ -    list_max(Rest, New_result_far);

          This is possibly a little clearer.

          │ │ │ │ + list_max(Rest, New_result_far);

          This is possibly a little clearer.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ More About Lists │ │ │ │

          │ │ │ │ -

          Remember that the | operator can be used to get the head of a list:

          47> [M1|T1] = [paris, london, rome].
          │ │ │ │ -[paris,london,rome]
          │ │ │ │ +

          Remember that the | operator can be used to get the head of a list:

          47> [M1|T1] = [paris, london, rome].
          │ │ │ │ +[paris,london,rome]
          │ │ │ │  48> M1.
          │ │ │ │  paris
          │ │ │ │  49> T1.
          │ │ │ │ -[london,rome]

          The | operator can also be used to add a head to a list:

          50> L1 = [madrid | T1].
          │ │ │ │ -[madrid,london,rome]
          │ │ │ │ +[london,rome]

          The | operator can also be used to add a head to a list:

          50> L1 = [madrid | T1].
          │ │ │ │ +[madrid,london,rome]
          │ │ │ │  51> L1.
          │ │ │ │ -[madrid,london,rome]

          Now an example of this when working with lists - reversing the order of a list:

          -module(tut8).
          │ │ │ │ +[madrid,london,rome]

          Now an example of this when working with lists - reversing the order of a list:

          -module(tut8).
          │ │ │ │  
          │ │ │ │ --export([reverse/1]).
          │ │ │ │ +-export([reverse/1]).
          │ │ │ │  
          │ │ │ │ -reverse(List) ->
          │ │ │ │ -    reverse(List, []).
          │ │ │ │ +reverse(List) ->
          │ │ │ │ +    reverse(List, []).
          │ │ │ │  
          │ │ │ │ -reverse([Head | Rest], Reversed_List) ->
          │ │ │ │ -    reverse(Rest, [Head | Reversed_List]);
          │ │ │ │ -reverse([], Reversed_List) ->
          │ │ │ │ -    Reversed_List.
          52> c(tut8).
          │ │ │ │ -{ok,tut8}
          │ │ │ │ -53> tut8:reverse([1,2,3]).
          │ │ │ │ -[3,2,1]

          Consider how Reversed_List is built. It starts as [], then successively the │ │ │ │ +reverse([Head | Rest], Reversed_List) -> │ │ │ │ + reverse(Rest, [Head | Reversed_List]); │ │ │ │ +reverse([], Reversed_List) -> │ │ │ │ + Reversed_List.

          52> c(tut8).
          │ │ │ │ +{ok,tut8}
          │ │ │ │ +53> tut8:reverse([1,2,3]).
          │ │ │ │ +[3,2,1]

          Consider how Reversed_List is built. It starts as [], then successively the │ │ │ │ heads are taken off of the list to be reversed and added to the the │ │ │ │ -Reversed_List, as shown in the following:

          reverse([1|2,3], []) =>
          │ │ │ │ -    reverse([2,3], [1|[]])
          │ │ │ │ +Reversed_List, as shown in the following:

          reverse([1|2,3], []) =>
          │ │ │ │ +    reverse([2,3], [1|[]])
          │ │ │ │  
          │ │ │ │ -reverse([2|3], [1]) =>
          │ │ │ │ -    reverse([3], [2|[1])
          │ │ │ │ +reverse([2|3], [1]) =>
          │ │ │ │ +    reverse([3], [2|[1])
          │ │ │ │  
          │ │ │ │ -reverse([3|[]], [2,1]) =>
          │ │ │ │ -    reverse([], [3|[2,1]])
          │ │ │ │ +reverse([3|[]], [2,1]) =>
          │ │ │ │ +    reverse([], [3|[2,1]])
          │ │ │ │  
          │ │ │ │ -reverse([], [3,2,1]) =>
          │ │ │ │ -    [3,2,1]

          The module lists contains many functions for manipulating lists, for example, │ │ │ │ +reverse([], [3,2,1]) => │ │ │ │ + [3,2,1]

          The module lists contains many functions for manipulating lists, for example, │ │ │ │ for reversing them. So before writing a list-manipulating function it is a good │ │ │ │ idea to check if one not already is written for you (see the lists manual │ │ │ │ page in STDLIB).

          Now let us get back to the cities and temperatures, but take a more structured │ │ │ │ -approach this time. First let us convert the whole list to Celsius as follows:

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +approach this time. First let us convert the whole list to Celsius as follows:

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    convert_list_to_c(List_of_cities).
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    convert_list_to_c(List_of_cities).
          │ │ │ │  
          │ │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].

          Test the function:

          54> c(tut7).
          │ │ │ │ -{ok, tut7}.
          │ │ │ │ -55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {cape_town,{c,21.11111111111111}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2.2222222222222223}},
          │ │ │ │ - {london,{c,2.2222222222222223}}]

          Explanation:

          format_temps(List_of_cities) ->
          │ │ │ │ -    convert_list_to_c(List_of_cities).

          Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) -> │ │ │ │ + Converted_City = {Name, {c, (F -32)* 5 / 9}}, │ │ │ │ + [Converted_City | convert_list_to_c(Rest)]; │ │ │ │ + │ │ │ │ +convert_list_to_c([City | Rest]) -> │ │ │ │ + [City | convert_list_to_c(Rest)]; │ │ │ │ + │ │ │ │ +convert_list_to_c([]) -> │ │ │ │ + [].

          Test the function:

          54> c(tut7).
          │ │ │ │ +{ok, tut7}.
          │ │ │ │ +55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {cape_town,{c,21.11111111111111}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2.2222222222222223}},
          │ │ │ │ + {london,{c,2.2222222222222223}}]

          Explanation:

          format_temps(List_of_cities) ->
          │ │ │ │ +    convert_list_to_c(List_of_cities).

          Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ │ off the head of the List_of_cities, converts it to Celsius if needed. The | │ │ │ │ -operator is used to add the (maybe) converted to the converted rest of the list:

          [Converted_City | convert_list_to_c(Rest)];

          or:

          [City | convert_list_to_c(Rest)];

          This is done until the end of the list is reached, that is, the list is empty:

          convert_list_to_c([]) ->
          │ │ │ │ -    [].

          Now when the list is converted, a function to print it is added:

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ -
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ -    print_temp(Converted_List).
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].
          │ │ │ │ -
          │ │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ -    print_temp(Rest);
          │ │ │ │ -print_temp([]) ->
          │ │ │ │ -    ok.
          56> c(tut7).
          │ │ │ │ -{ok,tut7}
          │ │ │ │ -57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +operator is used to add the (maybe) converted to the converted rest of the list:

          [Converted_City | convert_list_to_c(Rest)];

          or:

          [City | convert_list_to_c(Rest)];

          This is done until the end of the list is reached, that is, the list is empty:

          convert_list_to_c([]) ->
          │ │ │ │ +    [].

          Now when the list is converted, a function to print it is added:

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │ +
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ +    print_temp(Converted_List).
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) ->
          │ │ │ │ +    Converted_City = {Name, {c, (F -32)* 5 / 9}},
          │ │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([City | Rest]) ->
          │ │ │ │ +    [City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([]) ->
          │ │ │ │ +    [].
          │ │ │ │ +
          │ │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ +    print_temp(Rest);
          │ │ │ │ +print_temp([]) ->
          │ │ │ │ +    ok.
          56> c(tut7).
          │ │ │ │ +{ok,tut7}
          │ │ │ │ +57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  ok

          Now a function has to be added to find the cities with the maximum and minimum │ │ │ │ temperatures. The following program is not the most efficient way of doing this │ │ │ │ as you walk through the list of cities four times. But it is better to first │ │ │ │ strive for clarity and correctness and to make programs efficient only if │ │ │ │ -needed.

          -module(tut7).
          │ │ │ │ --export([format_temps/1]).
          │ │ │ │ +needed.

          -module(tut7).
          │ │ │ │ +-export([format_temps/1]).
          │ │ │ │  
          │ │ │ │ -format_temps(List_of_cities) ->
          │ │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ -    print_temp(Converted_List),
          │ │ │ │ -    {Max_city, Min_city} = find_max_and_min(Converted_List),
          │ │ │ │ -    print_max_and_min(Max_city, Min_city).
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
          │ │ │ │ -    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
          │ │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([City | Rest]) ->
          │ │ │ │ -    [City | convert_list_to_c(Rest)];
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c([]) ->
          │ │ │ │ -    [].
          │ │ │ │ -
          │ │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ -    print_temp(Rest);
          │ │ │ │ -print_temp([]) ->
          │ │ │ │ +format_temps(List_of_cities) ->
          │ │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
          │ │ │ │ +    print_temp(Converted_List),
          │ │ │ │ +    {Max_city, Min_city} = find_max_and_min(Converted_List),
          │ │ │ │ +    print_max_and_min(Max_city, Min_city).
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
          │ │ │ │ +    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
          │ │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([City | Rest]) ->
          │ │ │ │ +    [City | convert_list_to_c(Rest)];
          │ │ │ │ +
          │ │ │ │ +convert_list_to_c([]) ->
          │ │ │ │ +    [].
          │ │ │ │ +
          │ │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
          │ │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
          │ │ │ │ +    print_temp(Rest);
          │ │ │ │ +print_temp([]) ->
          │ │ │ │      ok.
          │ │ │ │  
          │ │ │ │ -find_max_and_min([City | Rest]) ->
          │ │ │ │ -    find_max_and_min(Rest, City, City).
          │ │ │ │ +find_max_and_min([City | Rest]) ->
          │ │ │ │ +    find_max_and_min(Rest, City, City).
          │ │ │ │  
          │ │ │ │ -find_max_and_min([{Name, {c, Temp}} | Rest],
          │ │ │ │ -         {Max_Name, {c, Max_Temp}},
          │ │ │ │ -         {Min_Name, {c, Min_Temp}}) ->
          │ │ │ │ +find_max_and_min([{Name, {c, Temp}} | Rest],
          │ │ │ │ +         {Max_Name, {c, Max_Temp}},
          │ │ │ │ +         {Min_Name, {c, Min_Temp}}) ->
          │ │ │ │      if
          │ │ │ │          Temp > Max_Temp ->
          │ │ │ │ -            Max_City = {Name, {c, Temp}};           % Change
          │ │ │ │ +            Max_City = {Name, {c, Temp}};           % Change
          │ │ │ │          true ->
          │ │ │ │ -            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
          │ │ │ │ +            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
          │ │ │ │      end,
          │ │ │ │      if
          │ │ │ │           Temp < Min_Temp ->
          │ │ │ │ -            Min_City = {Name, {c, Temp}};           % Change
          │ │ │ │ +            Min_City = {Name, {c, Temp}};           % Change
          │ │ │ │          true ->
          │ │ │ │ -            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
          │ │ │ │ +            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
          │ │ │ │      end,
          │ │ │ │ -    find_max_and_min(Rest, Max_City, Min_City);
          │ │ │ │ +    find_max_and_min(Rest, Max_City, Min_City);
          │ │ │ │  
          │ │ │ │ -find_max_and_min([], Max_City, Min_City) ->
          │ │ │ │ -    {Max_City, Min_City}.
          │ │ │ │ +find_max_and_min([], Max_City, Min_City) ->
          │ │ │ │ +    {Max_City, Min_City}.
          │ │ │ │  
          │ │ │ │ -print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
          │ │ │ │ -    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
          │ │ │ │ -    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
          58> c(tut7).
          │ │ │ │ -{ok, tut7}
          │ │ │ │ -59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
          │ │ │ │ +    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
          │ │ │ │ +    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
          58> c(tut7).
          │ │ │ │ +{ok, tut7}
          │ │ │ │ +59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          -10 c
          │ │ │ │  cape_town       21.11111111111111 c
          │ │ │ │  stockholm       -4 c
          │ │ │ │  paris           -2.2222222222222223 c
          │ │ │ │  london          2.2222222222222223 c
          │ │ │ │  Max temperature was 21.11111111111111 c in cape_town
          │ │ │ │  Min temperature was -10 c in moscow
          │ │ │ │ @@ -678,88 +678,88 @@
          │ │ │ │          Action 4
          │ │ │ │  end

          Notice that there is no ; before end. Conditions do the same as guards, that │ │ │ │ is, tests that succeed or fail. Erlang starts at the top and tests until it │ │ │ │ finds a condition that succeeds. Then it evaluates (performs) the action │ │ │ │ following the condition and ignores all other conditions and actions before the │ │ │ │ end. If no condition matches, a run-time failure occurs. A condition that │ │ │ │ always succeeds is the atom true. This is often used last in an if, meaning, │ │ │ │ -do the action following the true if all other conditions have failed.

          The following is a short program to show the workings of if.

          -module(tut9).
          │ │ │ │ --export([test_if/2]).
          │ │ │ │ +do the action following the true if all other conditions have failed.

          The following is a short program to show the workings of if.

          -module(tut9).
          │ │ │ │ +-export([test_if/2]).
          │ │ │ │  
          │ │ │ │ -test_if(A, B) ->
          │ │ │ │ +test_if(A, B) ->
          │ │ │ │      if
          │ │ │ │          A == 5 ->
          │ │ │ │ -            io:format("A == 5~n", []),
          │ │ │ │ +            io:format("A == 5~n", []),
          │ │ │ │              a_equals_5;
          │ │ │ │          B == 6 ->
          │ │ │ │ -            io:format("B == 6~n", []),
          │ │ │ │ +            io:format("B == 6~n", []),
          │ │ │ │              b_equals_6;
          │ │ │ │          A == 2, B == 3 ->                      %That is A equals 2 and B equals 3
          │ │ │ │ -            io:format("A == 2, B == 3~n", []),
          │ │ │ │ +            io:format("A == 2, B == 3~n", []),
          │ │ │ │              a_equals_2_b_equals_3;
          │ │ │ │          A == 1 ; B == 7 ->                     %That is A equals 1 or B equals 7
          │ │ │ │ -            io:format("A == 1 ; B == 7~n", []),
          │ │ │ │ +            io:format("A == 1 ; B == 7~n", []),
          │ │ │ │              a_equals_1_or_b_equals_7
          │ │ │ │ -    end.

          Testing this program gives:

          60> c(tut9).
          │ │ │ │ -{ok,tut9}
          │ │ │ │ -61> tut9:test_if(5,33).
          │ │ │ │ +    end.

          Testing this program gives:

          60> c(tut9).
          │ │ │ │ +{ok,tut9}
          │ │ │ │ +61> tut9:test_if(5,33).
          │ │ │ │  A == 5
          │ │ │ │  a_equals_5
          │ │ │ │ -62> tut9:test_if(33,6).
          │ │ │ │ +62> tut9:test_if(33,6).
          │ │ │ │  B == 6
          │ │ │ │  b_equals_6
          │ │ │ │ -63> tut9:test_if(2, 3).
          │ │ │ │ +63> tut9:test_if(2, 3).
          │ │ │ │  A == 2, B == 3
          │ │ │ │  a_equals_2_b_equals_3
          │ │ │ │ -64> tut9:test_if(1, 33).
          │ │ │ │ +64> tut9:test_if(1, 33).
          │ │ │ │  A == 1 ; B == 7
          │ │ │ │  a_equals_1_or_b_equals_7
          │ │ │ │ -65> tut9:test_if(33, 7).
          │ │ │ │ +65> tut9:test_if(33, 7).
          │ │ │ │  A == 1 ; B == 7
          │ │ │ │  a_equals_1_or_b_equals_7
          │ │ │ │ -66> tut9:test_if(33, 33).
          │ │ │ │ +66> tut9:test_if(33, 33).
          │ │ │ │  ** exception error: no true branch found when evaluating an if expression
          │ │ │ │       in function  tut9:test_if/2 (tut9.erl, line 5)

          Notice that tut9:test_if(33,33) does not cause any condition to succeed. This │ │ │ │ leads to the run time error if_clause, here nicely formatted by the shell. See │ │ │ │ Guard Sequences for details of the many guard tests │ │ │ │ available.

          case is another construct in Erlang. Recall that the convert_length function │ │ │ │ -was written as:

          convert_length({centimeter, X}) ->
          │ │ │ │ -    {inch, X / 2.54};
          │ │ │ │ -convert_length({inch, Y}) ->
          │ │ │ │ -    {centimeter, Y * 2.54}.

          The same program can also be written as:

          -module(tut10).
          │ │ │ │ --export([convert_length/1]).
          │ │ │ │ +was written as:

          convert_length({centimeter, X}) ->
          │ │ │ │ +    {inch, X / 2.54};
          │ │ │ │ +convert_length({inch, Y}) ->
          │ │ │ │ +    {centimeter, Y * 2.54}.

          The same program can also be written as:

          -module(tut10).
          │ │ │ │ +-export([convert_length/1]).
          │ │ │ │  
          │ │ │ │ -convert_length(Length) ->
          │ │ │ │ +convert_length(Length) ->
          │ │ │ │      case Length of
          │ │ │ │ -        {centimeter, X} ->
          │ │ │ │ -            {inch, X / 2.54};
          │ │ │ │ -        {inch, Y} ->
          │ │ │ │ -            {centimeter, Y * 2.54}
          │ │ │ │ -    end.
          67> c(tut10).
          │ │ │ │ -{ok,tut10}
          │ │ │ │ -68> tut10:convert_length({inch, 6}).
          │ │ │ │ -{centimeter,15.24}
          │ │ │ │ -69> tut10:convert_length({centimeter, 2.5}).
          │ │ │ │ -{inch,0.984251968503937}

          Both case and if have return values, that is, in the above example case │ │ │ │ + {centimeter, X} -> │ │ │ │ + {inch, X / 2.54}; │ │ │ │ + {inch, Y} -> │ │ │ │ + {centimeter, Y * 2.54} │ │ │ │ + end.

          67> c(tut10).
          │ │ │ │ +{ok,tut10}
          │ │ │ │ +68> tut10:convert_length({inch, 6}).
          │ │ │ │ +{centimeter,15.24}
          │ │ │ │ +69> tut10:convert_length({centimeter, 2.5}).
          │ │ │ │ +{inch,0.984251968503937}

          Both case and if have return values, that is, in the above example case │ │ │ │ returned either {inch,X/2.54} or {centimeter,Y*2.54}. The behaviour of │ │ │ │ case can also be modified by using guards. The following example clarifies │ │ │ │ this. It tells us the length of a month, given the year. The year must be known, │ │ │ │ -since February has 29 days in a leap year.

          -module(tut11).
          │ │ │ │ --export([month_length/2]).
          │ │ │ │ +since February has 29 days in a leap year.

          -module(tut11).
          │ │ │ │ +-export([month_length/2]).
          │ │ │ │  
          │ │ │ │ -month_length(Year, Month) ->
          │ │ │ │ +month_length(Year, Month) ->
          │ │ │ │      %% All years divisible by 400 are leap
          │ │ │ │      %% Years divisible by 100 are not leap (except the 400 rule above)
          │ │ │ │      %% Years divisible by 4 are leap (except the 100 rule above)
          │ │ │ │      Leap = if
          │ │ │ │ -        trunc(Year / 400) * 400 == Year ->
          │ │ │ │ +        trunc(Year / 400) * 400 == Year ->
          │ │ │ │              leap;
          │ │ │ │ -        trunc(Year / 100) * 100 == Year ->
          │ │ │ │ +        trunc(Year / 100) * 100 == Year ->
          │ │ │ │              not_leap;
          │ │ │ │ -        trunc(Year / 4) * 4 == Year ->
          │ │ │ │ +        trunc(Year / 4) * 4 == Year ->
          │ │ │ │              leap;
          │ │ │ │          true ->
          │ │ │ │              not_leap
          │ │ │ │      end,
          │ │ │ │      case Month of
          │ │ │ │          sep -> 30;
          │ │ │ │          apr -> 30;
          │ │ │ │ @@ -770,151 +770,151 @@
          │ │ │ │          jan -> 31;
          │ │ │ │          mar -> 31;
          │ │ │ │          may -> 31;
          │ │ │ │          jul -> 31;
          │ │ │ │          aug -> 31;
          │ │ │ │          oct -> 31;
          │ │ │ │          dec -> 31
          │ │ │ │ -    end.
          70> c(tut11).
          │ │ │ │ -{ok,tut11}
          │ │ │ │ -71> tut11:month_length(2004, feb).
          │ │ │ │ +    end.
          70> c(tut11).
          │ │ │ │ +{ok,tut11}
          │ │ │ │ +71> tut11:month_length(2004, feb).
          │ │ │ │  29
          │ │ │ │ -72> tut11:month_length(2003, feb).
          │ │ │ │ +72> tut11:month_length(2003, feb).
          │ │ │ │  28
          │ │ │ │ -73> tut11:month_length(1947, aug).
          │ │ │ │ +73> tut11:month_length(1947, aug).
          │ │ │ │  31

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │ │

          │ │ │ │

          BIFs are functions that for some reason are built-in to the Erlang virtual │ │ │ │ machine. BIFs often implement functionality that is impossible or is too │ │ │ │ inefficient to implement in Erlang. Some BIFs can be called using the function │ │ │ │ name only but they are by default belonging to the erlang module. For example, │ │ │ │ the call to the BIF trunc below is equivalent to a call to erlang:trunc.

          As shown, first it is checked if a year is leap. If a year is divisible by 400, │ │ │ │ it is a leap year. To determine this, first divide the year by 400 and use the │ │ │ │ BIF trunc (more about this later) to cut off any decimals. Then multiply by │ │ │ │ 400 again and see if the same value is returned again. For example, year 2004:

          2004 / 400 = 5.01
          │ │ │ │ -trunc(5.01) = 5
          │ │ │ │ +trunc(5.01) = 5
          │ │ │ │  5 * 400 = 2000

          2000 is not the same as 2004, so 2004 is not divisible by 400. Year 2000:

          2000 / 400 = 5.0
          │ │ │ │ -trunc(5.0) = 5
          │ │ │ │ +trunc(5.0) = 5
          │ │ │ │  5 * 400 = 2000

          That is, a leap year. The next two trunc-tests evaluate if the year is │ │ │ │ divisible by 100 or 4 in the same way. The first if returns leap or │ │ │ │ not_leap, which lands up in the variable Leap. This variable is used in the │ │ │ │ guard for feb in the following case that tells us how long the month is.

          This example showed the use of trunc. It is easier to use the Erlang operator │ │ │ │ rem that gives the remainder after division, for example:

          74> 2004 rem 400.
          │ │ │ │ -4

          So instead of writing:

          trunc(Year / 400) * 400 == Year ->
          │ │ │ │ +4

          So instead of writing:

          trunc(Year / 400) * 400 == Year ->
          │ │ │ │      leap;

          it can be written:

          Year rem 400 == 0 ->
          │ │ │ │      leap;

          There are many other BIFs such as trunc. Only a few BIFs can be used in │ │ │ │ guards, and you cannot use functions you have defined yourself in guards. (see │ │ │ │ Guard Sequences) (For advanced readers: This is to │ │ │ │ ensure that guards do not have side effects.) Let us play with a few of these │ │ │ │ -functions in the shell:

          75> trunc(5.6).
          │ │ │ │ +functions in the shell:

          75> trunc(5.6).
          │ │ │ │  5
          │ │ │ │ -76> round(5.6).
          │ │ │ │ +76> round(5.6).
          │ │ │ │  6
          │ │ │ │ -77> length([a,b,c,d]).
          │ │ │ │ +77> length([a,b,c,d]).
          │ │ │ │  4
          │ │ │ │ -78> float(5).
          │ │ │ │ +78> float(5).
          │ │ │ │  5.0
          │ │ │ │ -79> is_atom(hello).
          │ │ │ │ +79> is_atom(hello).
          │ │ │ │  true
          │ │ │ │ -80> is_atom("hello").
          │ │ │ │ +80> is_atom("hello").
          │ │ │ │  false
          │ │ │ │ -81> is_tuple({paris, {c, 30}}).
          │ │ │ │ +81> is_tuple({paris, {c, 30}}).
          │ │ │ │  true
          │ │ │ │ -82> is_tuple([paris, {c, 30}]).
          │ │ │ │ +82> is_tuple([paris, {c, 30}]).
          │ │ │ │  false

          All of these can be used in guards. Now for some BIFs that cannot be used in │ │ │ │ -guards:

          83> atom_to_list(hello).
          │ │ │ │ +guards:

          83> atom_to_list(hello).
          │ │ │ │  "hello"
          │ │ │ │ -84> list_to_atom("goodbye").
          │ │ │ │ +84> list_to_atom("goodbye").
          │ │ │ │  goodbye
          │ │ │ │ -85> integer_to_list(22).
          │ │ │ │ +85> integer_to_list(22).
          │ │ │ │  "22"

          These three BIFs do conversions that would be difficult (or impossible) to do in │ │ │ │ Erlang.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Higher-Order Functions (Funs) │ │ │ │

          │ │ │ │

          Erlang, like most modern functional programming languages, has higher-order │ │ │ │ -functions. Here is an example using the shell:

          86> Xf = fun(X) -> X * 2 end.
          │ │ │ │ +functions. Here is an example using the shell:

          86> Xf = fun(X) -> X * 2 end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -87> Xf(5).
          │ │ │ │ +87> Xf(5).
          │ │ │ │  10

          Here is defined a function that doubles the value of a number and assigned this │ │ │ │ function to a variable. Thus Xf(5) returns value 10. Two useful functions when │ │ │ │ -working with lists are foreach and map, which are defined as follows:

          foreach(Fun, [First|Rest]) ->
          │ │ │ │ -    Fun(First),
          │ │ │ │ -    foreach(Fun, Rest);
          │ │ │ │ -foreach(Fun, []) ->
          │ │ │ │ +working with lists are foreach and map, which are defined as follows:

          foreach(Fun, [First|Rest]) ->
          │ │ │ │ +    Fun(First),
          │ │ │ │ +    foreach(Fun, Rest);
          │ │ │ │ +foreach(Fun, []) ->
          │ │ │ │      ok.
          │ │ │ │  
          │ │ │ │ -map(Fun, [First|Rest]) ->
          │ │ │ │ -    [Fun(First)|map(Fun,Rest)];
          │ │ │ │ -map(Fun, []) ->
          │ │ │ │ -    [].

          These two functions are provided in the standard module lists. foreach takes │ │ │ │ +map(Fun, [First|Rest]) -> │ │ │ │ + [Fun(First)|map(Fun,Rest)]; │ │ │ │ +map(Fun, []) -> │ │ │ │ + [].

          These two functions are provided in the standard module lists. foreach takes │ │ │ │ a list and applies a fun to every element in the list. map creates a new list │ │ │ │ by applying a fun to every element in a list. Going back to the shell, map is │ │ │ │ -used and a fun to add 3 to every element of a list:

          88> Add_3 = fun(X) -> X + 3 end.
          │ │ │ │ +used and a fun to add 3 to every element of a list:

          88> Add_3 = fun(X) -> X + 3 end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -89> lists:map(Add_3, [1,2,3]).
          │ │ │ │ -[4,5,6]

          Let us (again) print the temperatures in a list of cities:

          90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
          │ │ │ │ -[City, X, Temp]) end.
          │ │ │ │ +89> lists:map(Add_3, [1,2,3]).
          │ │ │ │ +[4,5,6]

          Let us (again) print the temperatures in a list of cities:

          90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
          │ │ │ │ +[City, X, Temp]) end.
          │ │ │ │  #Fun<erl_eval.5.123085357>
          │ │ │ │ -91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │  moscow          c -10
          │ │ │ │  cape_town       f 70
          │ │ │ │  stockholm       c -4
          │ │ │ │  paris           f 28
          │ │ │ │  london          f 36
          │ │ │ │  ok

          Let us now define a fun that can be used to go through a list of cities and │ │ │ │ -temperatures and transform them all to Celsius.

          -module(tut13).
          │ │ │ │ +temperatures and transform them all to Celsius.

          -module(tut13).
          │ │ │ │  
          │ │ │ │ --export([convert_list_to_c/1]).
          │ │ │ │ +-export([convert_list_to_c/1]).
          │ │ │ │  
          │ │ │ │ -convert_to_c({Name, {f, Temp}}) ->
          │ │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
          │ │ │ │ -convert_to_c({Name, {c, Temp}}) ->
          │ │ │ │ -    {Name, {c, Temp}}.
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c(List) ->
          │ │ │ │ -    lists:map(fun convert_to_c/1, List).
          92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {cape_town,{c,21}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2}},
          │ │ │ │ - {london,{c,2}}]

          The convert_to_c function is the same as before, but here it is used as a fun:

          lists:map(fun convert_to_c/1, List)

          When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ │ + {Name, {c, Temp}}. │ │ │ │ + │ │ │ │ +convert_list_to_c(List) -> │ │ │ │ + lists:map(fun convert_to_c/1, List).

          92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {cape_town,{c,21}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2}},
          │ │ │ │ + {london,{c,2}}]

          The convert_to_c function is the same as before, but here it is used as a fun:

          lists:map(fun convert_to_c/1, List)

          When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ │ Function/Arity (remember that Arity = number of arguments). So in the │ │ │ │ map-call lists:map(fun convert_to_c/1, List) is written. As shown, │ │ │ │ convert_list_to_c becomes much shorter and easier to understand.

          The standard module lists also contains a function sort(Fun, List) where │ │ │ │ Fun is a fun with two arguments. This fun returns true if the first argument │ │ │ │ is less than the second argument, or else false. Sorting is added to the │ │ │ │ -convert_list_to_c:

          -module(tut13).
          │ │ │ │ +convert_list_to_c:

          -module(tut13).
          │ │ │ │  
          │ │ │ │ --export([convert_list_to_c/1]).
          │ │ │ │ +-export([convert_list_to_c/1]).
          │ │ │ │  
          │ │ │ │ -convert_to_c({Name, {f, Temp}}) ->
          │ │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
          │ │ │ │ -convert_to_c({Name, {c, Temp}}) ->
          │ │ │ │ -    {Name, {c, Temp}}.
          │ │ │ │ -
          │ │ │ │ -convert_list_to_c(List) ->
          │ │ │ │ -    New_list = lists:map(fun convert_to_c/1, List),
          │ │ │ │ -    lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
          │ │ │ │ -                       Temp1 < Temp2 end, New_list).
          93> c(tut13).
          │ │ │ │ -{ok,tut13}
          │ │ │ │ -94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ -[{moscow,{c,-10}},
          │ │ │ │ - {stockholm,{c,-4}},
          │ │ │ │ - {paris,{c,-2}},
          │ │ │ │ - {london,{c,2}},
          │ │ │ │ - {cape_town,{c,21}}]

          In sort the fun is used:

          fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

          Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ │ + {Name, {c, Temp}}. │ │ │ │ + │ │ │ │ +convert_list_to_c(List) -> │ │ │ │ + New_list = lists:map(fun convert_to_c/1, List), │ │ │ │ + lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> │ │ │ │ + Temp1 < Temp2 end, New_list).

          93> c(tut13).
          │ │ │ │ +{ok,tut13}
          │ │ │ │ +94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
          │ │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
          │ │ │ │ +[{moscow,{c,-10}},
          │ │ │ │ + {stockholm,{c,-4}},
          │ │ │ │ + {paris,{c,-2}},
          │ │ │ │ + {london,{c,2}},
          │ │ │ │ + {cape_town,{c,21}}]

          In sort the fun is used:

          fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

          Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ │ shorthand for a variable that gets a value, but the value is ignored. This can │ │ │ │ be used anywhere suitable, not just in funs. Temp1 < Temp2 returns true if │ │ │ │ Temp1 is less than Temp2.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/robustness.xhtml │ │ │ │ @@ -33,68 +33,68 @@ │ │ │ │ │ │ │ │

          Before improving the messenger program, let us look at some general principles, │ │ │ │ using the ping pong program as an example. Recall that when "ping" finishes, it │ │ │ │ tells "pong" that it has done so by sending the atom finished as a message to │ │ │ │ "pong" so that "pong" can also finish. Another way to let "pong" finish is to │ │ │ │ make "pong" exit if it does not receive a message from ping within a certain │ │ │ │ time. This can be done by adding a time-out to pong as shown in the │ │ │ │ -following example:

          -module(tut19).
          │ │ │ │ +following example:

          -module(tut19).
          │ │ │ │  
          │ │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(0, Pong_Node) ->
          │ │ │ │ -    io:format("ping finished~n", []);
          │ │ │ │ +ping(0, Pong_Node) ->
          │ │ │ │ +    io:format("ping finished~n", []);
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Node) ->
          │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ │ +ping(N, Pong_Node) ->
          │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ +pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("Pong timed out~n", [])
          │ │ │ │ +            io:format("Pong timed out~n", [])
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start_pong() ->
          │ │ │ │ -    register(pong, spawn(tut19, pong, [])).
          │ │ │ │ +start_pong() ->
          │ │ │ │ +    register(pong, spawn(tut19, pong, [])).
          │ │ │ │  
          │ │ │ │ -start_ping(Pong_Node) ->
          │ │ │ │ -    spawn(tut19, ping, [3, Pong_Node]).

          After this is compiled and the file tut19.beam is copied to the necessary │ │ │ │ +start_ping(Pong_Node) -> │ │ │ │ + spawn(tut19, ping, [3, Pong_Node]).

          After this is compiled and the file tut19.beam is copied to the necessary │ │ │ │ directories, the following is seen on (pong@kosken):

          (pong@kosken)1> tut19:start_pong().
          │ │ │ │  true
          │ │ │ │  Pong received ping
          │ │ │ │  Pong received ping
          │ │ │ │  Pong received ping
          │ │ │ │  Pong timed out

          And the following is seen on (ping@gollum):

          (ping@gollum)1> tut19:start_ping(pong@kosken).
          │ │ │ │  <0.36.0>
          │ │ │ │  Ping received pong
          │ │ │ │  Ping received pong
          │ │ │ │  Ping received pong
          │ │ │ │ -ping finished

          The time-out is set in:

          pong() ->
          │ │ │ │ +ping finished

          The time-out is set in:

          pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("Pong timed out~n", [])
          │ │ │ │ +            io:format("Pong timed out~n", [])
          │ │ │ │      end.

          The time-out (after 5000) is started when receive is entered. The time-out │ │ │ │ is canceled if {ping,Ping_PID} is received. If {ping,Ping_PID} is not │ │ │ │ received, the actions following the time-out are done after 5000 milliseconds. │ │ │ │ after must be last in the receive, that is, preceded by all other message │ │ │ │ reception specifications in the receive. It is also possible to call a │ │ │ │ -function that returned an integer for the time-out:

          after pong_timeout() ->

          In general, there are better ways than using time-outs to supervise parts of a │ │ │ │ +function that returned an integer for the time-out:

          after pong_timeout() ->

          In general, there are better ways than using time-outs to supervise parts of a │ │ │ │ distributed Erlang system. Time-outs are usually appropriate to supervise │ │ │ │ external events, for example, if you have expected a message from some external │ │ │ │ system within a specified time. For example, a time-out can be used to log a │ │ │ │ user out of the messenger system if they have not accessed it for, say, ten │ │ │ │ minutes.

          │ │ │ │ │ │ │ │ │ │ │ │ @@ -114,96 +114,96 @@ │ │ │ │ something called a signal to all the processes it has links to.

          The signal carries information about the pid it was sent from and the exit │ │ │ │ reason.

          The default behaviour of a process that receives a normal exit is to ignore the │ │ │ │ signal.

          The default behaviour in the two other cases (that is, abnormal exit) above is │ │ │ │ to:

          • Bypass all messages to the receiving process.
          • Kill the receiving process.
          • Propagate the same error signal to the links of the killed process.

          In this way you can connect all processes in a transaction together using links. │ │ │ │ If one of the processes exits abnormally, all the processes in the transaction │ │ │ │ are killed. As it is often wanted to create a process and link to it at the same │ │ │ │ time, there is a special BIF, spawn_link that does the │ │ │ │ -same as spawn, but also creates a link to the spawned process.

          Now an example of the ping pong example using links to terminate "pong":

          -module(tut20).
          │ │ │ │ +same as spawn, but also creates a link to the spawned process.

          Now an example of the ping pong example using links to terminate "pong":

          -module(tut20).
          │ │ │ │  
          │ │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Pid) ->
          │ │ │ │ -    link(Pong_Pid),
          │ │ │ │ -    ping1(N, Pong_Pid).
          │ │ │ │ +ping(N, Pong_Pid) ->
          │ │ │ │ +    link(Pong_Pid),
          │ │ │ │ +    ping1(N, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -ping1(0, _) ->
          │ │ │ │ -    exit(ping);
          │ │ │ │ +ping1(0, _) ->
          │ │ │ │ +    exit(ping);
          │ │ │ │  
          │ │ │ │ -ping1(N, Pong_Pid) ->
          │ │ │ │ -    Pong_Pid ! {ping, self()},
          │ │ │ │ +ping1(N, Pong_Pid) ->
          │ │ │ │ +    Pong_Pid ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping1(N - 1, Pong_Pid).
          │ │ │ │ +    ping1(N - 1, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ +pong() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong()
          │ │ │ │ +            pong()
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start(Ping_Node) ->
          │ │ │ │ -    PongPID = spawn(tut20, pong, []),
          │ │ │ │ -    spawn(Ping_Node, tut20, ping, [3, PongPID]).
          (s1@bill)3> tut20:start(s2@kosken).
          │ │ │ │ +start(Ping_Node) ->
          │ │ │ │ +    PongPID = spawn(tut20, pong, []),
          │ │ │ │ +    spawn(Ping_Node, tut20, ping, [3, PongPID]).
          (s1@bill)3> tut20:start(s2@kosken).
          │ │ │ │  Pong received ping
          │ │ │ │  <3820.41.0>
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong

          This is a slight modification of the ping pong program where both processes are │ │ │ │ spawned from the same start/1 function, and the "ping" process can be spawned │ │ │ │ on a separate node. Notice the use of the link BIF. "Ping" calls │ │ │ │ exit(ping) when it finishes and this causes an exit signal to be │ │ │ │ sent to "pong", which also terminates.

          It is possible to modify the default behaviour of a process so that it does not │ │ │ │ get killed when it receives abnormal exit signals. Instead, all signals are │ │ │ │ turned into normal messages on the format {'EXIT',FromPID,Reason} and added to │ │ │ │ -the end of the receiving process' message queue. This behaviour is set by:

          process_flag(trap_exit, true)

          There are several other process flags, see erlang(3). │ │ │ │ +the end of the receiving process' message queue. This behaviour is set by:

          process_flag(trap_exit, true)

          There are several other process flags, see erlang(3). │ │ │ │ Changing the default behaviour of a process in this way is usually not done in │ │ │ │ standard user programs, but is left to the supervisory programs in OTP. However, │ │ │ │ -the ping pong program is modified to illustrate exit trapping.

          -module(tut21).
          │ │ │ │ +the ping pong program is modified to illustrate exit trapping.

          -module(tut21).
          │ │ │ │  
          │ │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │ │  
          │ │ │ │ -ping(N, Pong_Pid) ->
          │ │ │ │ -    link(Pong_Pid),
          │ │ │ │ -    ping1(N, Pong_Pid).
          │ │ │ │ +ping(N, Pong_Pid) ->
          │ │ │ │ +    link(Pong_Pid),
          │ │ │ │ +    ping1(N, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -ping1(0, _) ->
          │ │ │ │ -    exit(ping);
          │ │ │ │ +ping1(0, _) ->
          │ │ │ │ +    exit(ping);
          │ │ │ │  
          │ │ │ │ -ping1(N, Pong_Pid) ->
          │ │ │ │ -    Pong_Pid ! {ping, self()},
          │ │ │ │ +ping1(N, Pong_Pid) ->
          │ │ │ │ +    Pong_Pid ! {ping, self()},
          │ │ │ │      receive
          │ │ │ │          pong ->
          │ │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │ │      end,
          │ │ │ │ -    ping1(N - 1, Pong_Pid).
          │ │ │ │ +    ping1(N - 1, Pong_Pid).
          │ │ │ │  
          │ │ │ │ -pong() ->
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ -    pong1().
          │ │ │ │ +pong() ->
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │ +    pong1().
          │ │ │ │  
          │ │ │ │ -pong1() ->
          │ │ │ │ +pong1() ->
          │ │ │ │      receive
          │ │ │ │ -        {ping, Ping_PID} ->
          │ │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ │ +        {ping, Ping_PID} ->
          │ │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │ │              Ping_PID ! pong,
          │ │ │ │ -            pong1();
          │ │ │ │ -        {'EXIT', From, Reason} ->
          │ │ │ │ -            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
          │ │ │ │ +            pong1();
          │ │ │ │ +        {'EXIT', From, Reason} ->
          │ │ │ │ +            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -start(Ping_Node) ->
          │ │ │ │ -    PongPID = spawn(tut21, pong, []),
          │ │ │ │ -    spawn(Ping_Node, tut21, ping, [3, PongPID]).
          (s1@bill)1> tut21:start(s2@gollum).
          │ │ │ │ +start(Ping_Node) ->
          │ │ │ │ +    PongPID = spawn(tut21, pong, []),
          │ │ │ │ +    spawn(Ping_Node, tut21, ping, [3, PongPID]).
          (s1@bill)1> tut21:start(s2@gollum).
          │ │ │ │  <3820.39.0>
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │  Pong received ping
          │ │ │ │  Ping received pong
          │ │ │ │ @@ -256,135 +256,135 @@
          │ │ │ │  %%% Started: messenger:client(Server_Node, Name)
          │ │ │ │  %%% To client: logoff
          │ │ │ │  %%% To client: {message_to, ToName, Message}
          │ │ │ │  %%%
          │ │ │ │  %%% Configuration: change the server_node() function to return the
          │ │ │ │  %%% name of the node where the messenger server runs
          │ │ │ │  
          │ │ │ │ --module(messenger).
          │ │ │ │ --export([start_server/0, server/0,
          │ │ │ │ -         logon/1, logoff/0, message/2, client/2]).
          │ │ │ │ +-module(messenger).
          │ │ │ │ +-export([start_server/0, server/0,
          │ │ │ │ +         logon/1, logoff/0, message/2, client/2]).
          │ │ │ │  
          │ │ │ │  %%% Change the function below to return the name of the node where the
          │ │ │ │  %%% messenger server runs
          │ │ │ │ -server_node() ->
          │ │ │ │ +server_node() ->
          │ │ │ │      messenger@super.
          │ │ │ │  
          │ │ │ │  %%% This is the server process for the "messenger"
          │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
          │ │ │ │ -server() ->
          │ │ │ │ -    process_flag(trap_exit, true),
          │ │ │ │ -    server([]).
          │ │ │ │ +server() ->
          │ │ │ │ +    process_flag(trap_exit, true),
          │ │ │ │ +    server([]).
          │ │ │ │  
          │ │ │ │ -server(User_List) ->
          │ │ │ │ +server(User_List) ->
          │ │ │ │      receive
          │ │ │ │ -        {From, logon, Name} ->
          │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
          │ │ │ │ -            server(New_User_List);
          │ │ │ │ -        {'EXIT', From, _} ->
          │ │ │ │ -            New_User_List = server_logoff(From, User_List),
          │ │ │ │ -            server(New_User_List);
          │ │ │ │ -        {From, message_to, To, Message} ->
          │ │ │ │ -            server_transfer(From, To, Message, User_List),
          │ │ │ │ -            io:format("list is now: ~p~n", [User_List]),
          │ │ │ │ -            server(User_List)
          │ │ │ │ +        {From, logon, Name} ->
          │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
          │ │ │ │ +            server(New_User_List);
          │ │ │ │ +        {'EXIT', From, _} ->
          │ │ │ │ +            New_User_List = server_logoff(From, User_List),
          │ │ │ │ +            server(New_User_List);
          │ │ │ │ +        {From, message_to, To, Message} ->
          │ │ │ │ +            server_transfer(From, To, Message, User_List),
          │ │ │ │ +            io:format("list is now: ~p~n", [User_List]),
          │ │ │ │ +            server(User_List)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% Start the server
          │ │ │ │ -start_server() ->
          │ │ │ │ -    register(messenger, spawn(messenger, server, [])).
          │ │ │ │ +start_server() ->
          │ │ │ │ +    register(messenger, spawn(messenger, server, [])).
          │ │ │ │  
          │ │ │ │  %%% Server adds a new user to the user list
          │ │ │ │ -server_logon(From, Name, User_List) ->
          │ │ │ │ +server_logon(From, Name, User_List) ->
          │ │ │ │      %% check if logged on anywhere else
          │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
          │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
          │ │ │ │          true ->
          │ │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ │              User_List;
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, logged_on},
          │ │ │ │ -            link(From),
          │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
          │ │ │ │ +            From ! {messenger, logged_on},
          │ │ │ │ +            link(From),
          │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% Server deletes a user from the user list
          │ │ │ │ -server_logoff(From, User_List) ->
          │ │ │ │ -    lists:keydelete(From, 1, User_List).
          │ │ │ │ +server_logoff(From, User_List) ->
          │ │ │ │ +    lists:keydelete(From, 1, User_List).
          │ │ │ │  
          │ │ │ │  
          │ │ │ │  %%% Server transfers a message between user
          │ │ │ │ -server_transfer(From, To, Message, User_List) ->
          │ │ │ │ +server_transfer(From, To, Message, User_List) ->
          │ │ │ │      %% check that the user is logged on and who he is
          │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
          │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ │ -        {value, {_, Name}} ->
          │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
          │ │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ │ +        {value, {_, Name}} ->
          │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% If the user exists, send the message
          │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ │      %% Find the receiver and send the message
          │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
          │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
          │ │ │ │          false ->
          │ │ │ │ -            From ! {messenger, receiver_not_found};
          │ │ │ │ -        {value, {ToPid, To}} ->
          │ │ │ │ -            ToPid ! {message_from, Name, Message},
          │ │ │ │ -            From ! {messenger, sent}
          │ │ │ │ +            From ! {messenger, receiver_not_found};
          │ │ │ │ +        {value, {ToPid, To}} ->
          │ │ │ │ +            ToPid ! {message_from, Name, Message},
          │ │ │ │ +            From ! {messenger, sent}
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │  %%% User Commands
          │ │ │ │ -logon(Name) ->
          │ │ │ │ -    case whereis(mess_client) of
          │ │ │ │ +logon(Name) ->
          │ │ │ │ +    case whereis(mess_client) of
          │ │ │ │          undefined ->
          │ │ │ │ -            register(mess_client,
          │ │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ │ +            register(mess_client,
          │ │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ │          _ -> already_logged_on
          │ │ │ │      end.
          │ │ │ │  
          │ │ │ │ -logoff() ->
          │ │ │ │ +logoff() ->
          │ │ │ │      mess_client ! logoff.
          │ │ │ │  
          │ │ │ │ -message(ToName, Message) ->
          │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
          │ │ │ │ +message(ToName, Message) ->
          │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
          │ │ │ │          undefined ->
          │ │ │ │              not_logged_on;
          │ │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ │               ok
          │ │ │ │  end.
          │ │ │ │  
          │ │ │ │  %%% The client process which runs on each user node
          │ │ │ │ -client(Server_Node, Name) ->
          │ │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ │ -    await_result(),
          │ │ │ │ -    client(Server_Node).
          │ │ │ │ +client(Server_Node, Name) ->
          │ │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ │ +    await_result(),
          │ │ │ │ +    client(Server_Node).
          │ │ │ │  
          │ │ │ │ -client(Server_Node) ->
          │ │ │ │ +client(Server_Node) ->
          │ │ │ │      receive
          │ │ │ │          logoff ->
          │ │ │ │ -            exit(normal);
          │ │ │ │ -        {message_to, ToName, Message} ->
          │ │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ │ -            await_result();
          │ │ │ │ -        {message_from, FromName, Message} ->
          │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ │ +            exit(normal);
          │ │ │ │ +        {message_to, ToName, Message} ->
          │ │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ │ +            await_result();
          │ │ │ │ +        {message_from, FromName, Message} ->
          │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ │      end,
          │ │ │ │ -    client(Server_Node).
          │ │ │ │ +    client(Server_Node).
          │ │ │ │  
          │ │ │ │  %%% wait for a response from the server
          │ │ │ │ -await_result() ->
          │ │ │ │ +await_result() ->
          │ │ │ │      receive
          │ │ │ │ -        {messenger, stop, Why} -> % Stop the client
          │ │ │ │ -            io:format("~p~n", [Why]),
          │ │ │ │ -            exit(normal);
          │ │ │ │ -        {messenger, What} ->  % Normal response
          │ │ │ │ -            io:format("~p~n", [What])
          │ │ │ │ +        {messenger, stop, Why} -> % Stop the client
          │ │ │ │ +            io:format("~p~n", [Why]),
          │ │ │ │ +            exit(normal);
          │ │ │ │ +        {messenger, What} ->  % Normal response
          │ │ │ │ +            io:format("~p~n", [What])
          │ │ │ │      after 5000 ->
          │ │ │ │ -            io:format("No response from server~n", []),
          │ │ │ │ -            exit(timeout)
          │ │ │ │ +            io:format("No response from server~n", []),
          │ │ │ │ +            exit(timeout)
          │ │ │ │      end.

          The following changes are added:

          The messenger server traps exits. If it receives an exit signal, │ │ │ │ {'EXIT',From,Reason}, this means that a client process has terminated or is │ │ │ │ unreachable for one of the following reasons:

          • The user has logged off (the "logoff" message is removed).
          • The network connection to the client is broken.
          • The node on which the client process resides has gone down.
          • The client processes has done some illegal operation.

          If an exit signal is received as above, the tuple {From,Name} is deleted from │ │ │ │ the servers User_List using the server_logoff function. If the node on which │ │ │ │ the server runs goes down, an exit signal (automatically generated by the │ │ │ │ system) is sent to all of the client processes: │ │ │ │ {'EXIT',MessengerPID,noconnection} causing all the client processes to │ │ │ ├── OEBPS/release_structure.xhtml │ │ │ │ @@ -41,37 +41,37 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Release Resource File │ │ │ │

          │ │ │ │

          To define a release, create a release resource file, or in short a .rel │ │ │ │ file. In the file, specify the name and version of the release, which ERTS │ │ │ │ -version it is based on, and which applications it consists of:

          {release, {Name,Vsn}, {erts, EVsn},
          │ │ │ │ - [{Application1, AppVsn1},
          │ │ │ │ +version it is based on, and which applications it consists of:

          {release, {Name,Vsn}, {erts, EVsn},
          │ │ │ │ + [{Application1, AppVsn1},
          │ │ │ │     ...
          │ │ │ │ -  {ApplicationN, AppVsnN}]}.

          Name, Vsn, EVsn, and AppVsn are strings.

          The file must be named Rel.rel, where Rel is a unique name.

          Each Application (atom) and AppVsn is the name and version of an application │ │ │ │ + {ApplicationN, AppVsnN}]}.

          Name, Vsn, EVsn, and AppVsn are strings.

          The file must be named Rel.rel, where Rel is a unique name.

          Each Application (atom) and AppVsn is the name and version of an application │ │ │ │ included in the release. The minimal release based on Erlang/OTP consists of the │ │ │ │ Kernel and STDLIB applications, so these applications must be included in the │ │ │ │ list.

          If the release is to be upgraded, it must also include the SASL application.

          Here is an example showing the .app file for a release of ch_app from │ │ │ │ -the Applications section:

          {application, ch_app,
          │ │ │ │ - [{description, "Channel allocator"},
          │ │ │ │ -  {vsn, "1"},
          │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
          │ │ │ │ -  {registered, [ch3]},
          │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
          │ │ │ │ -  {mod, {ch_app,[]}}
          │ │ │ │ - ]}.

          The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ │ -applications are required by ch_app. The file is called ch_rel-1.rel:

          {release,
          │ │ │ │ - {"ch_rel", "A"},
          │ │ │ │ - {erts, "14.2.5"},
          │ │ │ │ - [{kernel, "9.2.4"},
          │ │ │ │ -  {stdlib, "5.2.3"},
          │ │ │ │ -  {sasl, "4.2.1"},
          │ │ │ │ -  {ch_app, "1"}]
          │ │ │ │ -}.

          │ │ │ │ +the Applications section:

          {application, ch_app,
          │ │ │ │ + [{description, "Channel allocator"},
          │ │ │ │ +  {vsn, "1"},
          │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
          │ │ │ │ +  {registered, [ch3]},
          │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
          │ │ │ │ +  {mod, {ch_app,[]}}
          │ │ │ │ + ]}.

          The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ │ +applications are required by ch_app. The file is called ch_rel-1.rel:

          {release,
          │ │ │ │ + {"ch_rel", "A"},
          │ │ │ │ + {erts, "14.2.5"},
          │ │ │ │ + [{kernel, "9.2.4"},
          │ │ │ │ +  {stdlib, "5.2.3"},
          │ │ │ │ +  {sasl, "4.2.1"},
          │ │ │ │ +  {ch_app, "1"}]
          │ │ │ │ +}.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Generating Boot Scripts │ │ │ │

          │ │ │ │

          systools in the SASL application includes tools to build and check │ │ │ │ releases. The functions read the .rel and .app files and perform │ │ │ │ @@ -95,17 +95,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Release Package │ │ │ │ │ │ │ │

          The systools:make_tar/1,2 function takes a │ │ │ │ .rel file as input and creates a zipped tar file with the code for │ │ │ │ -the specified applications, a release package:

          1> systools:make_script("ch_rel-1").
          │ │ │ │ +the specified applications, a release package:

          1> systools:make_script("ch_rel-1").
          │ │ │ │  ok
          │ │ │ │ -2> systools:make_tar("ch_rel-1").
          │ │ │ │ +2> systools:make_tar("ch_rel-1").
          │ │ │ │  ok

          The release package by default contains:

          • The .app files
          • The .rel file
          • The object code for all applications, structured according to the │ │ │ │ application directory structure
          • The binary boot script renamed to start.boot
          % tar tf ch_rel-1.tar
          │ │ │ │  lib/kernel-9.2.4/ebin/kernel.app
          │ │ │ │  lib/kernel-9.2.4/ebin/application.beam
          │ │ │ │  ...
          │ │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
          │ │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
          │ │ │ ├── OEBPS/release_handling.xhtml
          │ │ │ │ @@ -128,38 +128,38 @@
          │ │ │ │    update
          │ │ │ │  
          │ │ │ │  

          If a more complex change has been made, for example, a change to the format of │ │ │ │ the internal state of a gen_server, simple code replacement is not sufficient. │ │ │ │ Instead, it is necessary to:

          • Suspend the processes using the module (to avoid that they try to handle any │ │ │ │ requests before the code replacement is completed).
          • Ask them to transform the internal state format and switch to the new version │ │ │ │ of the module.
          • Remove the old version.
          • Resume the processes.

          This is called synchronized code replacement and for this the following │ │ │ │ -instructions are used:

          {update, Module, {advanced, Extra}}
          │ │ │ │ -{update, Module, supervisor}

          update with argument {advanced,Extra} is used when changing the internal │ │ │ │ +instructions are used:

          {update, Module, {advanced, Extra}}
          │ │ │ │ +{update, Module, supervisor}

          update with argument {advanced,Extra} is used when changing the internal │ │ │ │ state of a behaviour as described above. It causes behaviour processes to call │ │ │ │ the callback function code_change/3, passing the term Extra and some other │ │ │ │ information as arguments. See the manual pages for the respective behaviours and │ │ │ │ Appup Cookbook.

          update with argument supervisor is used when changing the start │ │ │ │ specification of a supervisor. See Appup Cookbook.

          When a module is to be updated, the release handler finds which processes that │ │ │ │ are using the module by traversing the supervision tree of each running │ │ │ │ -application and checking all the child specifications:

          {Id, StartFunc, Restart, Shutdown, Type, Modules}

          A process uses a module if the name is listed in Modules in the child │ │ │ │ +application and checking all the child specifications:

          {Id, StartFunc, Restart, Shutdown, Type, Modules}

          A process uses a module if the name is listed in Modules in the child │ │ │ │ specification for the process.

          If Modules=dynamic, which is the case for event managers, the event manager │ │ │ │ process informs the release handler about the list of currently installed event │ │ │ │ handlers (gen_event), and it is checked if the module name is in this list │ │ │ │ instead.

          The release handler suspends, asks for code change, and resumes processes by │ │ │ │ calling the functions sys:suspend/1,2, sys:change_code/4,5, and │ │ │ │ sys:resume/1,2, respectively.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ add_module and delete_module │ │ │ │

          │ │ │ │ -

          If a new module is introduced, the following instruction is used:

          {add_module, Module}

          This instruction loads module Module. When running Erlang in │ │ │ │ +

          If a new module is introduced, the following instruction is used:

          {add_module, Module}

          This instruction loads module Module. When running Erlang in │ │ │ │ embedded mode it is necessary to use this this instruction. It is not │ │ │ │ strictly required when running Erlang in interactive mode, since the │ │ │ │ -code server automatically searches for and loads unloaded modules.

          The opposite of add_module is delete_module, which unloads a module:

          {delete_module, Module}

          Any process, in any application, with Module as residence module, is │ │ │ │ +code server automatically searches for and loads unloaded modules.

          The opposite of add_module is delete_module, which unloads a module:

          {delete_module, Module}

          Any process, in any application, with Module as residence module, is │ │ │ │ killed when the instruction is evaluated. Therefore, the user must │ │ │ │ ensure that all such processes are terminated before deleting module │ │ │ │ Module to avoid a situation with failing supervisor restarts.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Instructions │ │ │ │ @@ -246,60 +246,60 @@ │ │ │ │ .app file.

        • Each UpFromVsn is a previous version of the application to upgrade from.
        • Each DownToVsn is a previous version of the application to downgrade to.
        • Each Instructions is a list of release handling instructions.

        UpFromVsn and DownToVsn can also be specified as regular expressions. For │ │ │ │ more information about the syntax and contents of the .appup file, see │ │ │ │ appup in SASL.

        Appup Cookbook includes examples of .appup files for │ │ │ │ typical upgrade/downgrade cases.

        Example: Consider the release ch_rel-1 from │ │ │ │ Releases. Assume you want to add a function │ │ │ │ available/0 to server ch3, which returns the number of available channels │ │ │ │ (when trying out the example, make the change in a copy of the original │ │ │ │ -directory, to ensure that the first version is still available):

        -module(ch3).
        │ │ │ │ --behaviour(gen_server).
        │ │ │ │ +directory, to ensure that the first version is still available):

        -module(ch3).
        │ │ │ │ +-behaviour(gen_server).
        │ │ │ │  
        │ │ │ │ --export([start_link/0]).
        │ │ │ │ --export([alloc/0, free/1]).
        │ │ │ │ --export([available/0]).
        │ │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
        │ │ │ │ +-export([start_link/0]).
        │ │ │ │ +-export([alloc/0, free/1]).
        │ │ │ │ +-export([available/0]).
        │ │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
        │ │ │ │  
        │ │ │ │ -start_link() ->
        │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
        │ │ │ │ +start_link() ->
        │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
        │ │ │ │  
        │ │ │ │ -alloc() ->
        │ │ │ │ -    gen_server:call(ch3, alloc).
        │ │ │ │ +alloc() ->
        │ │ │ │ +    gen_server:call(ch3, alloc).
        │ │ │ │  
        │ │ │ │ -free(Ch) ->
        │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).
        │ │ │ │ +free(Ch) ->
        │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).
        │ │ │ │  
        │ │ │ │ -available() ->
        │ │ │ │ -    gen_server:call(ch3, available).
        │ │ │ │ +available() ->
        │ │ │ │ +    gen_server:call(ch3, available).
        │ │ │ │  
        │ │ │ │ -init(_Args) ->
        │ │ │ │ -    {ok, channels()}.
        │ │ │ │ +init(_Args) ->
        │ │ │ │ +    {ok, channels()}.
        │ │ │ │  
        │ │ │ │ -handle_call(alloc, _From, Chs) ->
        │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
        │ │ │ │ -    {reply, Ch, Chs2};
        │ │ │ │ -handle_call(available, _From, Chs) ->
        │ │ │ │ -    N = available(Chs),
        │ │ │ │ -    {reply, N, Chs}.
        │ │ │ │ +handle_call(alloc, _From, Chs) ->
        │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
        │ │ │ │ +    {reply, Ch, Chs2};
        │ │ │ │ +handle_call(available, _From, Chs) ->
        │ │ │ │ +    N = available(Chs),
        │ │ │ │ +    {reply, N, Chs}.
        │ │ │ │  
        │ │ │ │ -handle_cast({free, Ch}, Chs) ->
        │ │ │ │ -    Chs2 = free(Ch, Chs),
        │ │ │ │ -    {noreply, Chs2}.

        A new version of the ch_app.app file must now be created, where the version is │ │ │ │ -updated:

        {application, ch_app,
        │ │ │ │ - [{description, "Channel allocator"},
        │ │ │ │ -  {vsn, "2"},
        │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
        │ │ │ │ -  {registered, [ch3]},
        │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
        │ │ │ │ -  {mod, {ch_app,[]}}
        │ │ │ │ - ]}.

        To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + Chs2 = free(Ch, Chs), │ │ │ │ + {noreply, Chs2}.

        A new version of the ch_app.app file must now be created, where the version is │ │ │ │ +updated:

        {application, ch_app,
        │ │ │ │ + [{description, "Channel allocator"},
        │ │ │ │ +  {vsn, "2"},
        │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
        │ │ │ │ +  {registered, [ch3]},
        │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
        │ │ │ │ +  {mod, {ch_app,[]}}
        │ │ │ │ + ]}.

        To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ │ you only need to load the new (old) version of the ch3 callback module. Create │ │ │ │ -the application upgrade file ch_app.appup in the ebin directory:

        {"2",
        │ │ │ │ - [{"1", [{load_module, ch3}]}],
        │ │ │ │ - [{"1", [{load_module, ch3}]}]
        │ │ │ │ -}.

        │ │ │ │ +the application upgrade file ch_app.appup in the ebin directory:

        {"2",
        │ │ │ │ + [{"1", [{load_module, ch3}]}],
        │ │ │ │ + [{"1", [{load_module, ch3}]}]
        │ │ │ │ +}.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Release Upgrade File │ │ │ │

        │ │ │ │

        To define how to upgrade/downgrade between the new version and previous versions │ │ │ │ of a release, a release upgrade file, or in short .relup file, is to be │ │ │ │ @@ -310,22 +310,22 @@ │ │ │ │ are to be added and deleted, and which applications that must be upgraded and/or │ │ │ │ downgraded. The instructions for this are fetched from the .appup files and │ │ │ │ transformed into a single list of low-level instructions in the right order.

        If the relup file is relatively simple, it can be created manually. It is only │ │ │ │ to contain low-level instructions.

        For details about the syntax and contents of the release upgrade file, see │ │ │ │ relup in SASL.

        Example, continued from the previous section: You have a new version "2" of │ │ │ │ ch_app and an .appup file. A new version of the .rel file is also needed. │ │ │ │ This time the file is called ch_rel-2.rel and the release version string is │ │ │ │ -changed from "A" to "B":

        {release,
        │ │ │ │ - {"ch_rel", "B"},
        │ │ │ │ - {erts, "14.2.5"},
        │ │ │ │ - [{kernel, "9.2.4"},
        │ │ │ │ -  {stdlib, "5.2.3"},
        │ │ │ │ -  {sasl, "4.2.1"},
        │ │ │ │ -  {ch_app, "2"}]
        │ │ │ │ -}.

        Now the relup file can be generated:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
        │ │ │ │ +changed from "A" to "B":

        {release,
        │ │ │ │ + {"ch_rel", "B"},
        │ │ │ │ + {erts, "14.2.5"},
        │ │ │ │ + [{kernel, "9.2.4"},
        │ │ │ │ +  {stdlib, "5.2.3"},
        │ │ │ │ +  {sasl, "4.2.1"},
        │ │ │ │ +  {ch_app, "2"}]
        │ │ │ │ +}.

        Now the relup file can be generated:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
        │ │ │ │  ok

        This generates a relup file with instructions for how to upgrade from version │ │ │ │ "A" ("ch_rel-1") to version "B" ("ch_rel-2") and how to downgrade from version │ │ │ │ "B" to version "A".

        Both the old and new versions of the .app and .rel files must be in the code │ │ │ │ path, as well as the .appup and (new) .beam files. The code path can be │ │ │ │ extended by using the option path:

        1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
        │ │ │ │  [{path,["../ch_rel-1",
        │ │ │ │  "../ch_rel-1/lib/ch_app-1/ebin"]}]).
        │ │ │ │ @@ -338,25 +338,25 @@
        │ │ │ │  

        When you have made a new version of a release, a release package can be created │ │ │ │ with this new version and transferred to the target environment.

        To install the new version of the release in runtime, the release │ │ │ │ handler is used. This is a process belonging to the SASL application, │ │ │ │ which handles unpacking, installation, and removal of release │ │ │ │ packages. The release_handler module communicates with this process.

        Assuming there is an operational target system with installation root directory │ │ │ │ $ROOT, the release package with the new version of the release is to be copied │ │ │ │ to $ROOT/releases.

        First, unpack the release package. The files are then extracted from the │ │ │ │ -package:

        release_handler:unpack_release(ReleaseName) => {ok, Vsn}
        • ReleaseName is the name of the release package except the .tar.gz │ │ │ │ +package:

          release_handler:unpack_release(ReleaseName) => {ok, Vsn}
          • ReleaseName is the name of the release package except the .tar.gz │ │ │ │ extension.
          • Vsn is the version of the unpacked release, as defined in its .rel file.

          A directory $ROOT/lib/releases/Vsn is created, where the .rel file, the boot │ │ │ │ script start.boot, the system configuration file sys.config, and relup are │ │ │ │ placed. For applications with new version numbers, the application directories │ │ │ │ are placed under $ROOT/lib. Unchanged applications are not affected.

          An unpacked release can be installed. The release handler then evaluates the │ │ │ │ -instructions in relup, step by step:

          release_handler:install_release(Vsn) => {ok, FromVsn, []}

          If an error occurs during the installation, the system is rebooted using the old │ │ │ │ +instructions in relup, step by step:

          release_handler:install_release(Vsn) => {ok, FromVsn, []}

          If an error occurs during the installation, the system is rebooted using the old │ │ │ │ version of the release. If installation succeeds, the system is afterwards using │ │ │ │ the new version of the release, but if anything happens and the system is │ │ │ │ rebooted, it starts using the previous version again.

          To be made the default version, the newly installed release must be made │ │ │ │ permanent, which means the previous version becomes old:

          release_handler:make_permanent(Vsn) => ok

          The system keeps information about which versions are old and permanent in the │ │ │ │ -files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

          To downgrade from Vsn to FromVsn, install_release must be called again:

          release_handler:install_release(FromVsn) => {ok, Vsn, []}

          An installed, but not permanent, release can be removed. Information about the │ │ │ │ +files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

          To downgrade from Vsn to FromVsn, install_release must be called again:

          release_handler:install_release(FromVsn) => {ok, Vsn, []}

          An installed, but not permanent, release can be removed. Information about the │ │ │ │ release is then deleted from $ROOT/releases/RELEASES and the release-specific │ │ │ │ code, that is, the new application directories and the $ROOT/releases/Vsn │ │ │ │ directory, are removed.

          release_handler:remove_release(Vsn) => ok

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example (continued from the previous sections) │ │ │ │ @@ -367,17 +367,17 @@ │ │ │ │ is needed, the file is to contain the empty list:

          [].

          Step 2) Start the system as a simple target system. In reality, it is to be │ │ │ │ started as an embedded system. However, using erl with the correct boot script │ │ │ │ and config file is enough for illustration purposes:

          % cd $ROOT
          │ │ │ │  % bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
          │ │ │ │  ...

          $ROOT is the installation directory of the target system.

          Step 3) In another Erlang shell, generate start scripts and create a release │ │ │ │ package for the new version "B". Remember to include (a possible updated) │ │ │ │ sys.config and the relup file. For more information, see │ │ │ │ -Release Upgrade File.

          1> systools:make_script("ch_rel-2").
          │ │ │ │ +Release Upgrade File.

          1> systools:make_script("ch_rel-2").
          │ │ │ │  ok
          │ │ │ │ -2> systools:make_tar("ch_rel-2").
          │ │ │ │ +2> systools:make_tar("ch_rel-2").
          │ │ │ │  ok

          The new release package now also contains version "2" of ch_app and the │ │ │ │ relup file:

          % tar tf ch_rel-2.tar
          │ │ │ │  lib/kernel-9.2.4/ebin/kernel.app
          │ │ │ │  lib/kernel-9.2.4/ebin/application.beam
          │ │ │ │  ...
          │ │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
          │ │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
          │ │ │ │ @@ -390,31 +390,31 @@
          │ │ │ │  lib/ch_app-2/ebin/ch_sup.beam
          │ │ │ │  lib/ch_app-2/ebin/ch3.beam
          │ │ │ │  releases/B/start.boot
          │ │ │ │  releases/B/relup
          │ │ │ │  releases/B/sys.config
          │ │ │ │  releases/B/ch_rel-2.rel
          │ │ │ │  releases/ch_rel-2.rel

          Step 4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases │ │ │ │ -directory.

          Step 5) In the running target system, unpack the release package:

          1> release_handler:unpack_release("ch_rel-2").
          │ │ │ │ -{ok,"B"}

          The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ │ +directory.

          Step 5) In the running target system, unpack the release package:

          1> release_handler:unpack_release("ch_rel-2").
          │ │ │ │ +{ok,"B"}

          The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ │ ch_app-1. The kernel, stdlib, and sasl directories are not affected, as │ │ │ │ they have not changed.

          Under $ROOT/releases, a new directory B is created, containing │ │ │ │ -ch_rel-2.rel, start.boot, sys.config, and relup.

          Step 6) Check if the function ch3:available/0 is available:

          2> ch3:available().
          │ │ │ │ +ch_rel-2.rel, start.boot, sys.config, and relup.

          Step 6) Check if the function ch3:available/0 is available:

          2> ch3:available().
          │ │ │ │  ** exception error: undefined function ch3:available/0

          Step 7) Install the new release. The instructions in $ROOT/releases/B/relup │ │ │ │ are executed one by one, resulting in the new version of ch3 being loaded. The │ │ │ │ -function ch3:available/0 is now available:

          3> release_handler:install_release("B").
          │ │ │ │ -{ok,"A",[]}
          │ │ │ │ -4> ch3:available().
          │ │ │ │ +function ch3:available/0 is now available:

          3> release_handler:install_release("B").
          │ │ │ │ +{ok,"A",[]}
          │ │ │ │ +4> ch3:available().
          │ │ │ │  3
          │ │ │ │ -5> code:which(ch3).
          │ │ │ │ +5> code:which(ch3).
          │ │ │ │  ".../lib/ch_app-2/ebin/ch3.beam"
          │ │ │ │ -6> code:which(ch_sup).
          │ │ │ │ +6> code:which(ch_sup).
          │ │ │ │  ".../lib/ch_app-1/ebin/ch_sup.beam"

          Processes in ch_app for which code have not been updated, for example, the │ │ │ │ supervisor, are still evaluating code from ch_app-1.

          Step 8) If the target system is now rebooted, it uses version "A" again. The │ │ │ │ -"B" version must be made permanent, to be used when the system is rebooted.

          7> release_handler:make_permanent("B").
          │ │ │ │ +"B" version must be made permanent, to be used when the system is rebooted.

          7> release_handler:make_permanent("B").
          │ │ │ │  ok

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Application Specifications │ │ │ │

          │ │ │ │

          When a new version of a release is installed, the application specifications are │ │ │ │ @@ -423,14 +423,14 @@ │ │ │ │ boot script is generated from the same .rel file as is used to build the │ │ │ │ release package itself.

          Specifically, the application configuration parameters are automatically updated │ │ │ │ according to (in increasing priority order):

          • The data in the boot script, fetched from the new application resource file │ │ │ │ App.app
          • The new sys.config
          • Command-line arguments -App Par Val

          This means that parameter values set in the other system configuration files and │ │ │ │ values set using application:set_env/3 are disregarded.

          When an installed release is made permanent, the system process init is set to │ │ │ │ point out the new sys.config.

          After the installation, the application controller compares the old and new │ │ │ │ configuration parameters for all running applications and call the callback │ │ │ │ -function:

          Module:config_change(Changed, New, Removed)
          • Module is the application callback module as defined by the mod key in the │ │ │ │ +function:

            Module:config_change(Changed, New, Removed)
            • Module is the application callback module as defined by the mod key in the │ │ │ │ .app file.
            • Changed and New are lists of {Par,Val} for all changed and added │ │ │ │ configuration parameters, respectively.
            • Removed is a list of all parameters Par that have been removed.

            The function is optional and can be omitted when implementing an application │ │ │ │ callback module.

            │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/ref_man_records.xhtml │ │ │ │ @@ -28,17 +28,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ Defining Records │ │ │ │

          │ │ │ │

          A record definition consists of the name of the record, followed by the field │ │ │ │ names of the record. Record and field names must be atoms. Each field can be │ │ │ │ given an optional default value. If no default value is supplied, undefined is │ │ │ │ -used.

          -record(Name, {Field1 [= Expr1],
          │ │ │ │ +used.

          -record(Name, {Field1 [= Expr1],
          │ │ │ │                 ...
          │ │ │ │ -               FieldN [= ExprN]}).

          The default value for a field is an arbitrary expression, except that it must │ │ │ │ + FieldN [= ExprN]}).

          The default value for a field is an arbitrary expression, except that it must │ │ │ │ not use any variables.

          A record definition can be placed anywhere among the attributes and function │ │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ │ record.

          If a record is used in several modules, it is recommended that the record │ │ │ │ definition is placed in an include file.

          Change

          Starting from Erlang/OTP 26, records can be defined in the Erlang shell │ │ │ │ using the syntax described in this section. In earlier releases, it was │ │ │ │ necessary to use the shell built-in function rd/2.

          │ │ │ │ │ │ │ │ @@ -48,32 +48,32 @@ │ │ │ │

          │ │ │ │

          The following expression creates a new Name record where the value of each │ │ │ │ field FieldI is the value of evaluating the corresponding expression ExprI:

          #Name{Field1=Expr1, ..., FieldK=ExprK}

          The fields can be in any order, not necessarily the same order as in the record │ │ │ │ definition, and fields can be omitted. Omitted fields get their respective │ │ │ │ default value instead.

          If several fields are to be assigned the same value, the following construction │ │ │ │ can be used:

          #Name{Field1=Expr1, ..., FieldK=ExprK, _=ExprL}

          Omitted fields then get the value of evaluating ExprL instead of their default │ │ │ │ values. This feature is primarily intended to be used to create patterns for ETS │ │ │ │ -and Mnesia match functions.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +and Mnesia match functions.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -lookup(Name, Tab) ->
          │ │ │ │ -    ets:match_object(Tab, #person{name=Name, _='_'}).

          │ │ │ │ +lookup(Name, Tab) -> │ │ │ │ + ets:match_object(Tab, #person{name=Name, _='_'}).

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accessing Record Fields │ │ │ │

          │ │ │ │
          Expr#Name.Field

          Returns the value of the specified field. Expr is to evaluate to a Name │ │ │ │ -record.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +record.

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -get_person_name(Person) ->
          │ │ │ │ +get_person_name(Person) ->
          │ │ │ │      Person#person.name.

          The following expression returns the position of the specified field in the │ │ │ │ -tuple representation of the record:

          #Name.Field

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │ +tuple representation of the record:

          #Name.Field

          Example:

          -record(person, {name, phone, address}).
          │ │ │ │  
          │ │ │ │ -lookup(Name, List) ->
          │ │ │ │ -    lists:keyfind(Name, #person.name, List).

          │ │ │ │ +lookup(Name, List) -> │ │ │ │ + lists:keyfind(Name, #person.name, List).

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Records │ │ │ │

          │ │ │ │
          Expr#Name{Field1=Expr1, ..., FieldK=ExprK}

          Expr is to evaluate to a Name record. A copy of this record is returned, │ │ │ │ with the value of each specified field FieldI changed to the value of │ │ │ │ @@ -83,48 +83,48 @@ │ │ │ │ │ │ │ │ │ │ │ │ Records in Guards │ │ │ │

        │ │ │ │

        Since record expressions are expanded to tuple expressions, creating │ │ │ │ records and accessing record fields are allowed in guards. However, │ │ │ │ all subexpressions (for initializing fields), must be valid guard │ │ │ │ -expressions as well.

        Examples:

        handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
        │ │ │ │ +expressions as well.

        Examples:

        handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
        │ │ │ │      ...
        │ │ │ │  
        │ │ │ │ -handle(Msg, State) when State#state.running =:= true ->
        │ │ │ │ -    ...

        There is also a type test BIF is_record(Term, RecordTag).

        Example:

        is_person(P) when is_record(P, person) ->
        │ │ │ │ +handle(Msg, State) when State#state.running =:= true ->
        │ │ │ │ +    ...

        There is also a type test BIF is_record(Term, RecordTag).

        Example:

        is_person(P) when is_record(P, person) ->
        │ │ │ │      true;
        │ │ │ │ -is_person(_P) ->
        │ │ │ │ +is_person(_P) ->
        │ │ │ │      false.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Records in Patterns │ │ │ │

        │ │ │ │

        A pattern that matches a certain record is created in the same way as a record │ │ │ │ is created:

        #Name{Field1=Expr1, ..., FieldK=ExprK}

        In this case, one or more of Expr1 ... ExprK can be unbound variables.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │ │

        │ │ │ │ -

        Assume the following record definitions:

        -record(nrec0, {name = "nested0"}).
        │ │ │ │ --record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
        │ │ │ │ --record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
        │ │ │ │ +

        Assume the following record definitions:

        -record(nrec0, {name = "nested0"}).
        │ │ │ │ +-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
        │ │ │ │ +-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
        │ │ │ │  
        │ │ │ │ -N2 = #nrec2{},

        Accessing or updating nested records can be written without parentheses:

        "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
        │ │ │ │ +N2 = #nrec2{},

        Accessing or updating nested records can be written without parentheses:

        "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
        │ │ │ │      N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},

        which is equivalent to:

        "nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
        │ │ │ │  N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},

        Change

        Before Erlang/OTP R14, parentheses were necessary when accessing or updating │ │ │ │ nested records.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Internal Representation of Records │ │ │ │

        │ │ │ │

        Record expressions are translated to tuple expressions during compilation. A │ │ │ │ -record defined as:

        -record(Name, {Field1, ..., FieldN}).

        is internally represented by the tuple:

        {Name, Value1, ..., ValueN}

        Here each ValueI is the default value for FieldI.

        To each module using records, a pseudo function is added during compilation to │ │ │ │ -obtain information about records:

        record_info(fields, Record) -> [Field]
        │ │ │ │ -record_info(size, Record) -> Size

        Size is the size of the tuple representation, that is, one more than the │ │ │ │ +record defined as:

        -record(Name, {Field1, ..., FieldN}).

        is internally represented by the tuple:

        {Name, Value1, ..., ValueN}

        Here each ValueI is the default value for FieldI.

        To each module using records, a pseudo function is added during compilation to │ │ │ │ +obtain information about records:

        record_info(fields, Record) -> [Field]
        │ │ │ │ +record_info(size, Record) -> Size

        Size is the size of the tuple representation, that is, one more than the │ │ │ │ number of fields.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/ref_man_processes.xhtml │ │ │ │ @@ -30,18 +30,18 @@ │ │ │ │ (grow and shrink dynamically) with small memory footprint, fast to create and │ │ │ │ terminate, and the scheduling overhead is low.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Process Creation │ │ │ │

        │ │ │ │ -

        A process is created by calling spawn():

        spawn(Module, Name, Args) -> pid()
        │ │ │ │ -  Module = Name = atom()
        │ │ │ │ -  Args = [Arg1,...,ArgN]
        │ │ │ │ -    ArgI = term()

        spawn() creates a new process and returns the pid.

        The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ │ +

        A process is created by calling spawn():

        spawn(Module, Name, Args) -> pid()
        │ │ │ │ +  Module = Name = atom()
        │ │ │ │ +  Args = [Arg1,...,ArgN]
        │ │ │ │ +    ArgI = term()

        spawn() creates a new process and returns the pid.

        The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ │ arguments are the elements of the (possible empty) Args argument list.

        There exist a number of different spawn BIFs:

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Registered Processes │ │ │ │

        │ │ │ │

        Besides addressing a process by using its pid, there are also BIFs for │ │ │ ├── OEBPS/ref_man_functions.xhtml │ │ │ │ @@ -25,51 +25,51 @@ │ │ │ │ │ │ │ │ │ │ │ │ Function Declaration Syntax │ │ │ │ │ │ │ │

        A function declaration is a sequence of function clauses separated by │ │ │ │ semicolons, and terminated by a period (.).

        A function clause consists of a clause head and a clause body, separated by │ │ │ │ ->.

        A clause head consists of the function name, an argument list, and an optional │ │ │ │ -guard sequence beginning with the keyword when:

        Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
        │ │ │ │ +guard sequence beginning with the keyword when:

        Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
        │ │ │ │      Body1;
        │ │ │ │  ...;
        │ │ │ │ -Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
        │ │ │ │ +Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
        │ │ │ │      BodyK.

        The function name is an atom. Each argument is a pattern.

        The number of arguments N is the arity of the function. A function is │ │ │ │ uniquely defined by the module name, function name, and arity. That is, two │ │ │ │ functions with the same name and in the same module, but with different arities │ │ │ │ are two different functions.

        A function named f in module mod and with arity N is often denoted as │ │ │ │ mod:f/N.

        A clause body consists of a sequence of expressions separated by comma (,):

        Expr1,
        │ │ │ │  ...,
        │ │ │ │  ExprN

        Valid Erlang expressions and guard sequences are described in │ │ │ │ -Expressions.

        Example:

        fact(N) when N > 0 ->  % first clause head
        │ │ │ │ -    N * fact(N-1);     % first clause body
        │ │ │ │ +Expressions.

        Example:

        fact(N) when N > 0 ->  % first clause head
        │ │ │ │ +    N * fact(N-1);     % first clause body
        │ │ │ │  
        │ │ │ │ -fact(0) ->             % second clause head
        │ │ │ │ +fact(0) ->             % second clause head
        │ │ │ │      1.                 % second clause body

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Function Evaluation │ │ │ │

        │ │ │ │

        When a function M:F/N is called, first the code for the function is located. │ │ │ │ If the function cannot be found, an undef runtime error occurs. Notice that │ │ │ │ the function must be exported to be visible outside the module it is defined in.

        If the function is found, the function clauses are scanned sequentially until a │ │ │ │ clause is found that fulfills both of the following two conditions:

        1. The patterns in the clause head can be successfully matched against the given │ │ │ │ arguments.
        2. The guard sequence, if any, is true.

        If such a clause cannot be found, a function_clause runtime error occurs.

        If such a clause is found, the corresponding clause body is evaluated. That is, │ │ │ │ the expressions in the body are evaluated sequentially and the value of the last │ │ │ │ -expression is returned.

        Consider the function fact:

        -module(mod).
        │ │ │ │ --export([fact/1]).
        │ │ │ │ +expression is returned.

        Consider the function fact:

        -module(mod).
        │ │ │ │ +-export([fact/1]).
        │ │ │ │  
        │ │ │ │ -fact(N) when N > 0 ->
        │ │ │ │ -    N * fact(N - 1);
        │ │ │ │ -fact(0) ->
        │ │ │ │ +fact(N) when N > 0 ->
        │ │ │ │ +    N * fact(N - 1);
        │ │ │ │ +fact(0) ->
        │ │ │ │      1.

        Assume that you want to calculate the factorial for 1:

        1> mod:fact(1).

        Evaluation starts at the first clause. The pattern N is matched against │ │ │ │ argument 1. The matching succeeds and the guard (N > 0) is true, thus N is │ │ │ │ -bound to 1, and the corresponding body is evaluated:

        N * fact(N-1) => (N is bound to 1)
        │ │ │ │ -1 * fact(0)

        Now, fact(0) is called, and the function clauses are scanned │ │ │ │ +bound to 1, and the corresponding body is evaluated:

        N * fact(N-1) => (N is bound to 1)
        │ │ │ │ +1 * fact(0)

        Now, fact(0) is called, and the function clauses are scanned │ │ │ │ sequentially again. First, the pattern N is matched against 0. The │ │ │ │ matching succeeds, but the guard (N > 0) is false. Second, the │ │ │ │ pattern 0 is matched against the argument 0. The matching succeeds │ │ │ │ and the body is evaluated:

        1 * fact(0) =>
        │ │ │ │  1 * 1 =>
        │ │ │ │  1

        Evaluation has succeed and mod:fact(1) returns 1.

        If mod:fact/1 is called with a negative number as argument, no clause head │ │ │ │ matches. A function_clause runtime error occurs.

        │ │ │ │ @@ -78,17 +78,17 @@ │ │ │ │ │ │ │ │ Tail recursion │ │ │ │

        │ │ │ │

        If the last expression of a function body is a function call, a │ │ │ │ tail-recursive call is done. This is to ensure that no system │ │ │ │ resources, for example, call stack, are consumed. This means that an │ │ │ │ infinite loop using tail-recursive calls will not exhaust the call │ │ │ │ -stack and can (in principle) run forever.

        Example:

        loop(N) ->
        │ │ │ │ -    io:format("~w~n", [N]),
        │ │ │ │ -    loop(N+1).

        The earlier factorial example is a counter-example. It is not │ │ │ │ +stack and can (in principle) run forever.

        Example:

        loop(N) ->
        │ │ │ │ +    io:format("~w~n", [N]),
        │ │ │ │ +    loop(N+1).

        The earlier factorial example is a counter-example. It is not │ │ │ │ tail-recursive, since a multiplication is done on the result of the recursive │ │ │ │ call to fact(N-1).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │ │

        │ │ │ │ @@ -96,14 +96,14 @@ │ │ │ │ system. BIFs do things that are difficult or impossible to implement │ │ │ │ in Erlang. Most of the BIFs belong to module erlang, but there │ │ │ │ are also BIFs belonging to a few other modules, for example lists │ │ │ │ and ets.

        The most commonly used BIFs belonging to erlang are auto-imported. They do │ │ │ │ not need to be prefixed with the module name. Which BIFs that are auto-imported │ │ │ │ is specified in the erlang module in ERTS. For example, standard-type │ │ │ │ conversion BIFs like atom_to_list and BIFs allowed in guards can be called │ │ │ │ -without specifying the module name.

        Examples:

        1> tuple_size({a,b,c}).
        │ │ │ │ +without specifying the module name.

        Examples:

        1> tuple_size({a,b,c}).
        │ │ │ │  3
        │ │ │ │ -2> atom_to_list('Erlang').
        │ │ │ │ +2> atom_to_list('Erlang').
        │ │ │ │  "Erlang"
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/records_macros.xhtml │ │ │ │ @@ -29,40 +29,40 @@ │ │ │ │ │ │ │ │

        To illustrate this, the messenger example from the previous section is divided │ │ │ │ into the following five files:

        • mess_config.hrl

          Header file for configuration data

        • mess_interface.hrl

          Interface definitions between the client and the messenger

        • user_interface.erl

          Functions for the user interface

        • mess_client.erl

          Functions for the client side of the messenger

        • mess_server.erl

          Functions for the server side of the messenger

        While doing this, the message passing interface between the shell, the client, │ │ │ │ and the server is cleaned up and is defined using records. Also, macros are │ │ │ │ introduced:

        %%%----FILE mess_config.hrl----
        │ │ │ │  
        │ │ │ │  %%% Configure the location of the server node,
        │ │ │ │ --define(server_node, messenger@super).
        │ │ │ │ +-define(server_node, messenger@super).
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE mess_interface.hrl----
        │ │ │ │  
        │ │ │ │  %%% Message interface between client and server and client shell for
        │ │ │ │  %%% messenger program
        │ │ │ │  
        │ │ │ │  %%%Messages from Client to server received in server/1 function.
        │ │ │ │ --record(logon,{client_pid, username}).
        │ │ │ │ --record(message,{client_pid, to_name, message}).
        │ │ │ │ +-record(logon,{client_pid, username}).
        │ │ │ │ +-record(message,{client_pid, to_name, message}).
        │ │ │ │  %%% {'EXIT', ClientPid, Reason}  (client terminated or unreachable.
        │ │ │ │  
        │ │ │ │  %%% Messages from Server to Client, received in await_result/0 function
        │ │ │ │ --record(abort_client,{message}).
        │ │ │ │ +-record(abort_client,{message}).
        │ │ │ │  %%% Messages are: user_exists_at_other_node,
        │ │ │ │  %%%               you_are_not_logged_on
        │ │ │ │ --record(server_reply,{message}).
        │ │ │ │ +-record(server_reply,{message}).
        │ │ │ │  %%% Messages are: logged_on
        │ │ │ │  %%%               receiver_not_found
        │ │ │ │  %%%               sent  (Message has been sent (no guarantee)
        │ │ │ │  %%% Messages from Server to Client received in client/1 function
        │ │ │ │ --record(message_from,{from_name, message}).
        │ │ │ │ +-record(message_from,{from_name, message}).
        │ │ │ │  
        │ │ │ │  %%% Messages from shell to Client received in client/1 function
        │ │ │ │  %%% spawn(mess_client, client, [server_node(), Name])
        │ │ │ │ --record(message_to,{to_name, message}).
        │ │ │ │ +-record(message_to,{to_name, message}).
        │ │ │ │  %%% logoff
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE user_interface.erl----
        │ │ │ │  
        │ │ │ │  %%% User interface to the messenger program
        │ │ │ │  %%% login(Name)
        │ │ │ │  %%%     One user at a time can log in from each Erlang node in the
        │ │ │ │ @@ -75,177 +75,177 @@
        │ │ │ │  %%%     Logs off anybody at that node
        │ │ │ │  
        │ │ │ │  %%% message(ToName, Message)
        │ │ │ │  %%%     sends Message to ToName. Error messages if the user of this
        │ │ │ │  %%%     function is not logged on or if ToName is not logged on at
        │ │ │ │  %%%     any node.
        │ │ │ │  
        │ │ │ │ --module(user_interface).
        │ │ │ │ --export([logon/1, logoff/0, message/2]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ --include("mess_config.hrl").
        │ │ │ │ +-module(user_interface).
        │ │ │ │ +-export([logon/1, logoff/0, message/2]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +-include("mess_config.hrl").
        │ │ │ │  
        │ │ │ │ -logon(Name) ->
        │ │ │ │ -    case whereis(mess_client) of
        │ │ │ │ +logon(Name) ->
        │ │ │ │ +    case whereis(mess_client) of
        │ │ │ │          undefined ->
        │ │ │ │ -            register(mess_client,
        │ │ │ │ -                     spawn(mess_client, client, [?server_node, Name]));
        │ │ │ │ +            register(mess_client,
        │ │ │ │ +                     spawn(mess_client, client, [?server_node, Name]));
        │ │ │ │          _ -> already_logged_on
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │ -logoff() ->
        │ │ │ │ +logoff() ->
        │ │ │ │      mess_client ! logoff.
        │ │ │ │  
        │ │ │ │ -message(ToName, Message) ->
        │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
        │ │ │ │ +message(ToName, Message) ->
        │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
        │ │ │ │          undefined ->
        │ │ │ │              not_logged_on;
        │ │ │ │ -        _ -> mess_client ! #message_to{to_name=ToName, message=Message},
        │ │ │ │ +        _ -> mess_client ! #message_to{to_name=ToName, message=Message},
        │ │ │ │               ok
        │ │ │ │  end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE----
        %%%----FILE mess_client.erl----
        │ │ │ │  
        │ │ │ │  %%% The client process which runs on each user node
        │ │ │ │  
        │ │ │ │ --module(mess_client).
        │ │ │ │ --export([client/2]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ -
        │ │ │ │ -client(Server_Node, Name) ->
        │ │ │ │ -    {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
        │ │ │ │ -    await_result(),
        │ │ │ │ -    client(Server_Node).
        │ │ │ │ +-module(mess_client).
        │ │ │ │ +-export([client/2]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +
        │ │ │ │ +client(Server_Node, Name) ->
        │ │ │ │ +    {messenger, Server_Node} ! #logon{client_pid=self(), username=Name},
        │ │ │ │ +    await_result(),
        │ │ │ │ +    client(Server_Node).
        │ │ │ │  
        │ │ │ │ -client(Server_Node) ->
        │ │ │ │ +client(Server_Node) ->
        │ │ │ │      receive
        │ │ │ │          logoff ->
        │ │ │ │ -            exit(normal);
        │ │ │ │ -        #message_to{to_name=ToName, message=Message} ->
        │ │ │ │ -            {messenger, Server_Node} !
        │ │ │ │ -                #message{client_pid=self(), to_name=ToName, message=Message},
        │ │ │ │ -            await_result();
        │ │ │ │ -        {message_from, FromName, Message} ->
        │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
        │ │ │ │ +            exit(normal);
        │ │ │ │ +        #message_to{to_name=ToName, message=Message} ->
        │ │ │ │ +            {messenger, Server_Node} !
        │ │ │ │ +                #message{client_pid=self(), to_name=ToName, message=Message},
        │ │ │ │ +            await_result();
        │ │ │ │ +        {message_from, FromName, Message} ->
        │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
        │ │ │ │      end,
        │ │ │ │ -    client(Server_Node).
        │ │ │ │ +    client(Server_Node).
        │ │ │ │  
        │ │ │ │  %%% wait for a response from the server
        │ │ │ │ -await_result() ->
        │ │ │ │ +await_result() ->
        │ │ │ │      receive
        │ │ │ │ -        #abort_client{message=Why} ->
        │ │ │ │ -            io:format("~p~n", [Why]),
        │ │ │ │ -            exit(normal);
        │ │ │ │ -        #server_reply{message=What} ->
        │ │ │ │ -            io:format("~p~n", [What])
        │ │ │ │ +        #abort_client{message=Why} ->
        │ │ │ │ +            io:format("~p~n", [Why]),
        │ │ │ │ +            exit(normal);
        │ │ │ │ +        #server_reply{message=What} ->
        │ │ │ │ +            io:format("~p~n", [What])
        │ │ │ │      after 5000 ->
        │ │ │ │ -            io:format("No response from server~n", []),
        │ │ │ │ -            exit(timeout)
        │ │ │ │ +            io:format("No response from server~n", []),
        │ │ │ │ +            exit(timeout)
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE---
        %%%----FILE mess_server.erl----
        │ │ │ │  
        │ │ │ │  %%% This is the server process of the messenger service
        │ │ │ │  
        │ │ │ │ --module(mess_server).
        │ │ │ │ --export([start_server/0, server/0]).
        │ │ │ │ --include("mess_interface.hrl").
        │ │ │ │ -
        │ │ │ │ -server() ->
        │ │ │ │ -    process_flag(trap_exit, true),
        │ │ │ │ -    server([]).
        │ │ │ │ +-module(mess_server).
        │ │ │ │ +-export([start_server/0, server/0]).
        │ │ │ │ +-include("mess_interface.hrl").
        │ │ │ │ +
        │ │ │ │ +server() ->
        │ │ │ │ +    process_flag(trap_exit, true),
        │ │ │ │ +    server([]).
        │ │ │ │  
        │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
        │ │ │ │ -server(User_List) ->
        │ │ │ │ -    io:format("User list = ~p~n", [User_List]),
        │ │ │ │ +server(User_List) ->
        │ │ │ │ +    io:format("User list = ~p~n", [User_List]),
        │ │ │ │      receive
        │ │ │ │ -        #logon{client_pid=From, username=Name} ->
        │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
        │ │ │ │ -            server(New_User_List);
        │ │ │ │ -        {'EXIT', From, _} ->
        │ │ │ │ -            New_User_List = server_logoff(From, User_List),
        │ │ │ │ -            server(New_User_List);
        │ │ │ │ -        #message{client_pid=From, to_name=To, message=Message} ->
        │ │ │ │ -            server_transfer(From, To, Message, User_List),
        │ │ │ │ -            server(User_List)
        │ │ │ │ +        #logon{client_pid=From, username=Name} ->
        │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
        │ │ │ │ +            server(New_User_List);
        │ │ │ │ +        {'EXIT', From, _} ->
        │ │ │ │ +            New_User_List = server_logoff(From, User_List),
        │ │ │ │ +            server(New_User_List);
        │ │ │ │ +        #message{client_pid=From, to_name=To, message=Message} ->
        │ │ │ │ +            server_transfer(From, To, Message, User_List),
        │ │ │ │ +            server(User_List)
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%% Start the server
        │ │ │ │ -start_server() ->
        │ │ │ │ -    register(messenger, spawn(?MODULE, server, [])).
        │ │ │ │ +start_server() ->
        │ │ │ │ +    register(messenger, spawn(?MODULE, server, [])).
        │ │ │ │  
        │ │ │ │  %%% Server adds a new user to the user list
        │ │ │ │ -server_logon(From, Name, User_List) ->
        │ │ │ │ +server_logon(From, Name, User_List) ->
        │ │ │ │      %% check if logged on anywhere else
        │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
        │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
        │ │ │ │          true ->
        │ │ │ │ -            From ! #abort_client{message=user_exists_at_other_node},
        │ │ │ │ +            From ! #abort_client{message=user_exists_at_other_node},
        │ │ │ │              User_List;
        │ │ │ │          false ->
        │ │ │ │ -            From ! #server_reply{message=logged_on},
        │ │ │ │ -            link(From),
        │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
        │ │ │ │ +            From ! #server_reply{message=logged_on},
        │ │ │ │ +            link(From),
        │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%% Server deletes a user from the user list
        │ │ │ │ -server_logoff(From, User_List) ->
        │ │ │ │ -    lists:keydelete(From, 1, User_List).
        │ │ │ │ +server_logoff(From, User_List) ->
        │ │ │ │ +    lists:keydelete(From, 1, User_List).
        │ │ │ │  
        │ │ │ │  %%% Server transfers a message between user
        │ │ │ │ -server_transfer(From, To, Message, User_List) ->
        │ │ │ │ +server_transfer(From, To, Message, User_List) ->
        │ │ │ │      %% check that the user is logged on and who he is
        │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
        │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
        │ │ │ │          false ->
        │ │ │ │ -            From ! #abort_client{message=you_are_not_logged_on};
        │ │ │ │ -        {value, {_, Name}} ->
        │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
        │ │ │ │ +            From ! #abort_client{message=you_are_not_logged_on};
        │ │ │ │ +        {value, {_, Name}} ->
        │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
        │ │ │ │      end.
        │ │ │ │  %%% If the user exists, send the message
        │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
        │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
        │ │ │ │      %% Find the receiver and send the message
        │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
        │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
        │ │ │ │          false ->
        │ │ │ │ -            From ! #server_reply{message=receiver_not_found};
        │ │ │ │ -        {value, {ToPid, To}} ->
        │ │ │ │ -            ToPid ! #message_from{from_name=Name, message=Message},
        │ │ │ │ -            From !  #server_reply{message=sent}
        │ │ │ │ +            From ! #server_reply{message=receiver_not_found};
        │ │ │ │ +        {value, {ToPid, To}} ->
        │ │ │ │ +            ToPid ! #message_from{from_name=Name, message=Message},
        │ │ │ │ +            From !  #server_reply{message=sent}
        │ │ │ │      end.
        │ │ │ │  
        │ │ │ │  %%%----END FILE---

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Header Files │ │ │ │

        │ │ │ │

        As shown above, some files have extension .hrl. These are header files that │ │ │ │ -are included in the .erl files by:

        -include("File_Name").

        for example:

        -include("mess_interface.hrl").

        In the case above the file is fetched from the same directory as all the other │ │ │ │ +are included in the .erl files by:

        -include("File_Name").

        for example:

        -include("mess_interface.hrl").

        In the case above the file is fetched from the same directory as all the other │ │ │ │ files in the messenger example. (manual).

        .hrl files can contain any valid Erlang code but are most often used for record │ │ │ │ and macro definitions.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Records │ │ │ │

        │ │ │ │ -

        A record is defined as:

        -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

        For example:

        -record(message_to,{to_name, message}).

        This is equivalent to:

        {message_to, To_Name, Message}

        Creating a record is best illustrated by an example:

        #message_to{message="hello", to_name=fred)

        This creates:

        {message_to, fred, "hello"}

        Notice that you do not have to worry about the order you assign values to the │ │ │ │ +

        A record is defined as:

        -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

        For example:

        -record(message_to,{to_name, message}).

        This is equivalent to:

        {message_to, To_Name, Message}

        Creating a record is best illustrated by an example:

        #message_to{message="hello", to_name=fred)

        This creates:

        {message_to, fred, "hello"}

        Notice that you do not have to worry about the order you assign values to the │ │ │ │ various parts of the records when you create it. The advantage of using records │ │ │ │ is that by placing their definitions in header files you can conveniently define │ │ │ │ interfaces that are easy to change. For example, if you want to add a new field │ │ │ │ to the record, you only have to change the code where the new field is used and │ │ │ │ not at every place the record is referred to. If you leave out a field when │ │ │ │ creating a record, it gets the value of the atom undefined. (manual)

        Pattern matching with records is very similar to creating records. For example, │ │ │ │ -inside a case or receive:

        #message_to{to_name=ToName, message=Message} ->

        This is the same as:

        {message_to, ToName, Message}

        │ │ │ │ +inside a case or receive:

        #message_to{to_name=ToName, message=Message} ->

        This is the same as:

        {message_to, ToName, Message}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Macros │ │ │ │

        │ │ │ │

        Another thing that has been added to the messenger is a macro. The file │ │ │ │ mess_config.hrl contains the definition:

        %%% Configure the location of the server node,
        │ │ │ │ --define(server_node, messenger@super).

        This file is included in mess_server.erl:

        -include("mess_config.hrl").

        Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ │ -messenger@super.

        A macro is also used when spawning the server process:

        spawn(?MODULE, server, [])

        This is a standard macro (that is, defined by the system, not by the user). │ │ │ │ +-define(server_node, messenger@super).

        This file is included in mess_server.erl:

        -include("mess_config.hrl").

        Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ │ +messenger@super.

        A macro is also used when spawning the server process:

        spawn(?MODULE, server, [])

        This is a standard macro (that is, defined by the system, not by the user). │ │ │ │ ?MODULE is always replaced by the name of the current module (that is, the │ │ │ │ -module definition near the start of the file). There are more advanced ways │ │ │ │ of using macros with, for example, parameters.

        The three Erlang (.erl) files in the messenger example are individually │ │ │ │ compiled into object code file (.beam). The Erlang system loads and links │ │ │ │ these files into the system when they are referred to during execution of the │ │ │ │ code. In this case, they are simply put in our current working directory (that │ │ │ │ is, the place you have done "cd" to). There are ways of putting the .beam │ │ │ ├── OEBPS/prog_ex_records.xhtml │ │ │ │ @@ -27,105 +27,105 @@ │ │ │ │ Records and Tuples │ │ │ │ │ │ │ │

        The main advantage of using records rather than tuples is that fields in a │ │ │ │ record are accessed by name, whereas fields in a tuple are accessed by position. │ │ │ │ To illustrate these differences, suppose that you want to represent a person │ │ │ │ with the tuple {Name, Address, Phone}.

        To write functions that manipulate this data, remember the following:

        • The Name field is the first element of the tuple.
        • The Address field is the second element.
        • The Phone field is the third element.

        For example, to extract data from a variable P that contains such a tuple, you │ │ │ │ can write the following code and then use pattern matching to extract the │ │ │ │ -relevant fields:

        Name = element(1, P),
        │ │ │ │ -Address = element(2, P),
        │ │ │ │ +relevant fields:

        Name = element(1, P),
        │ │ │ │ +Address = element(2, P),
        │ │ │ │  ...

        Such code is difficult to read and understand, and errors occur if the numbering │ │ │ │ of the elements in the tuple is wrong. If the data representation of the fields │ │ │ │ is changed, by re-ordering, adding, or removing fields, all references to the │ │ │ │ person tuple must be checked and possibly modified.

        Records allow references to the fields by name, instead of by position. In the │ │ │ │ -following example, a record instead of a tuple is used to store the data:

        -record(person, {name, phone, address}).

        This enables references to the fields of the record by name. For example, if P │ │ │ │ +following example, a record instead of a tuple is used to store the data:

        -record(person, {name, phone, address}).

        This enables references to the fields of the record by name. For example, if P │ │ │ │ is a variable whose value is a person record, the following code access the │ │ │ │ name and address fields of the records:

        Name = P#person.name,
        │ │ │ │  Address = P#person.address,
        │ │ │ │ -...

        Internally, records are represented using tagged tuples:

        {person, Name, Phone, Address}

        │ │ │ │ +...

        Internally, records are represented using tagged tuples:

        {person, Name, Phone, Address}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Defining a Record │ │ │ │

        │ │ │ │

        This following definition of a person is used in several examples in this │ │ │ │ section. Three fields are included, name, phone, and address. The default │ │ │ │ values for name and phone is "" and [], respectively. The default value for │ │ │ │ address is the atom undefined, since no default value is supplied for this │ │ │ │ -field:

        -record(person, {name = "", phone = [], address}).

        The record must be defined in the shell to enable use of the record syntax in │ │ │ │ -the examples:

        > rd(person, {name = "", phone = [], address}).
        │ │ │ │ +field:

        -record(person, {name = "", phone = [], address}).

        The record must be defined in the shell to enable use of the record syntax in │ │ │ │ +the examples:

        > rd(person, {name = "", phone = [], address}).
        │ │ │ │  person

        This is because record definitions are only available at compile time, not at │ │ │ │ runtime. For details on records in the shell, see the shell manual page in │ │ │ │ STDLIB.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Record │ │ │ │

        │ │ │ │ -

        A new person record is created as follows:

        > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
        │ │ │ │ -#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

        As the address field was omitted, its default value is used.

        From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ │ -special field _. _ means "all fields not explicitly specified".

        Example:

        > #person{name = "Jakob", _ = '_'}.
        │ │ │ │ -#person{name = "Jakob",phone = '_',address = '_'}

        It is primarily intended to be used in ets:match/2 and │ │ │ │ +

        A new person record is created as follows:

        > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
        │ │ │ │ +#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

        As the address field was omitted, its default value is used.

        From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ │ +special field _. _ means "all fields not explicitly specified".

        Example:

        > #person{name = "Jakob", _ = '_'}.
        │ │ │ │ +#person{name = "Jakob",phone = '_',address = '_'}

        It is primarily intended to be used in ets:match/2 and │ │ │ │ mnesia:match_object/3, to set record fields to the atom '_'. (This is a │ │ │ │ wildcard in ets:match/2.)

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accessing a Record Field │ │ │ │

        │ │ │ │ -

        The following example shows how to access a record field:

        > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
        │ │ │ │ -#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
        │ │ │ │ +

        The following example shows how to access a record field:

        > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
        │ │ │ │ +#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
        │ │ │ │  > P#person.name.
        │ │ │ │  "Joe"

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating a Record │ │ │ │

        │ │ │ │ -

        The following example shows how to update a record:

        > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
        │ │ │ │ -#person{name = "Joe",phone = [1,2,3],address = "A street"}
        │ │ │ │ -> P2 = P1#person{name="Robert"}.
        │ │ │ │ -#person{name = "Robert",phone = [1,2,3],address = "A street"}

        │ │ │ │ +

        The following example shows how to update a record:

        > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
        │ │ │ │ +#person{name = "Joe",phone = [1,2,3],address = "A street"}
        │ │ │ │ +> P2 = P1#person{name="Robert"}.
        │ │ │ │ +#person{name = "Robert",phone = [1,2,3],address = "A street"}

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Testing │ │ │ │

        │ │ │ │

        The following example shows that the guard succeeds if P is record of type │ │ │ │ -person:

        foo(P) when is_record(P, person) -> a_person;
        │ │ │ │ -foo(_) -> not_a_person.

        │ │ │ │ +person:

        foo(P) when is_record(P, person) -> a_person;
        │ │ │ │ +foo(_) -> not_a_person.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Pattern Matching │ │ │ │

        │ │ │ │

        Matching can be used in combination with records, as shown in the following │ │ │ │ -example:

        > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
        │ │ │ │ -#person{name = "Joe",phone = [0,0,7],address = "A street"}
        │ │ │ │ -> #person{name = Name} = P3, Name.
        │ │ │ │ +example:

        > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
        │ │ │ │ +#person{name = "Joe",phone = [0,0,7],address = "A street"}
        │ │ │ │ +> #person{name = Name} = P3, Name.
        │ │ │ │  "Joe"

        The following function takes a list of person records and searches for the │ │ │ │ -phone number of a person with a particular name:

        find_phone([#person{name=Name, phone=Phone} | _], Name) ->
        │ │ │ │ -    {found,  Phone};
        │ │ │ │ -find_phone([_| T], Name) ->
        │ │ │ │ -    find_phone(T, Name);
        │ │ │ │ -find_phone([], Name) ->
        │ │ │ │ +phone number of a person with a particular name:

        find_phone([#person{name=Name, phone=Phone} | _], Name) ->
        │ │ │ │ +    {found,  Phone};
        │ │ │ │ +find_phone([_| T], Name) ->
        │ │ │ │ +    find_phone(T, Name);
        │ │ │ │ +find_phone([], Name) ->
        │ │ │ │      not_found.

        The fields referred to in the pattern can be given in any order.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │ │

        │ │ │ │

        The value of a field in a record can be an instance of a record. Retrieval of │ │ │ │ nested data can be done stepwise, or in a single step, as shown in the following │ │ │ │ -example:

        -record(name, {first = "Robert", last = "Ericsson"}).
        │ │ │ │ --record(person, {name = #name{}, phone}).
        │ │ │ │ +example:

        -record(name, {first = "Robert", last = "Ericsson"}).
        │ │ │ │ +-record(person, {name = #name{}, phone}).
        │ │ │ │  
        │ │ │ │ -demo() ->
        │ │ │ │ -  P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
        │ │ │ │ -  First = (P#person.name)#name.first.

        Here, demo() evaluates to "Robert".

        │ │ │ │ +demo() -> │ │ │ │ + P = #person{name= #name{first="Robert",last="Virding"}, phone=123}, │ │ │ │ + First = (P#person.name)#name.first.

        Here, demo() evaluates to "Robert".

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ A Longer Example │ │ │ │

        │ │ │ │

        Comments are embedded in the following example:

        %% File: person.hrl
        │ │ │ │  
        │ │ │ │ @@ -135,44 +135,44 @@
        │ │ │ │  %%    name:  A string (default is undefined).
        │ │ │ │  %%    age:   An integer (default is undefined).
        │ │ │ │  %%    phone: A list of integers (default is []).
        │ │ │ │  %%    dict:  A dictionary containing various information
        │ │ │ │  %%           about the person.
        │ │ │ │  %%           A {Key, Value} list (default is the empty list).
        │ │ │ │  %%------------------------------------------------------------
        │ │ │ │ --record(person, {name, age, phone = [], dict = []}).
        -module(person).
        │ │ │ │ --include("person.hrl").
        │ │ │ │ --compile(export_all). % For test purposes only.
        │ │ │ │ +-record(person, {name, age, phone = [], dict = []}).
        -module(person).
        │ │ │ │ +-include("person.hrl").
        │ │ │ │ +-compile(export_all). % For test purposes only.
        │ │ │ │  
        │ │ │ │  %% This creates an instance of a person.
        │ │ │ │  %%   Note: The phone number is not supplied so the
        │ │ │ │  %%         default value [] will be used.
        │ │ │ │  
        │ │ │ │ -make_hacker_without_phone(Name, Age) ->
        │ │ │ │ -   #person{name = Name, age = Age,
        │ │ │ │ -           dict = [{computer_knowledge, excellent},
        │ │ │ │ -                   {drinks, coke}]}.
        │ │ │ │ +make_hacker_without_phone(Name, Age) ->
        │ │ │ │ +   #person{name = Name, age = Age,
        │ │ │ │ +           dict = [{computer_knowledge, excellent},
        │ │ │ │ +                   {drinks, coke}]}.
        │ │ │ │  
        │ │ │ │  %% This demonstrates matching in arguments
        │ │ │ │  
        │ │ │ │ -print(#person{name = Name, age = Age,
        │ │ │ │ -              phone = Phone, dict = Dict}) ->
        │ │ │ │ -  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
        │ │ │ │ -            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
        │ │ │ │ +print(#person{name = Name, age = Age,
        │ │ │ │ +              phone = Phone, dict = Dict}) ->
        │ │ │ │ +  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
        │ │ │ │ +            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
        │ │ │ │  
        │ │ │ │  %% Demonstrates type testing, selector, updating.
        │ │ │ │  
        │ │ │ │ -birthday(P) when is_record(P, person) ->
        │ │ │ │ -   P#person{age = P#person.age + 1}.
        │ │ │ │ +birthday(P) when is_record(P, person) ->
        │ │ │ │ +   P#person{age = P#person.age + 1}.
        │ │ │ │  
        │ │ │ │ -register_two_hackers() ->
        │ │ │ │ -   Hacker1 = make_hacker_without_phone("Joe", 29),
        │ │ │ │ -   OldHacker = birthday(Hacker1),
        │ │ │ │ +register_two_hackers() ->
        │ │ │ │ +   Hacker1 = make_hacker_without_phone("Joe", 29),
        │ │ │ │ +   OldHacker = birthday(Hacker1),
        │ │ │ │     % The central_register_server should have
        │ │ │ │     % an interface function for this.
        │ │ │ │ -   central_register_server ! {register_person, Hacker1},
        │ │ │ │ -   central_register_server ! {register_person,
        │ │ │ │ -             OldHacker#person{name = "Robert",
        │ │ │ │ -                              phone = [0,8,3,2,4,5,3,1]}}.
        │ │ │ │ +
        central_register_server ! {register_person, Hacker1}, │ │ │ │ + central_register_server ! {register_person, │ │ │ │ + OldHacker#person{name = "Robert", │ │ │ │ + phone = [0,8,3,2,4,5,3,1]}}.
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/patterns.xhtml │ │ │ │ @@ -33,16 +33,16 @@ │ │ │ │ succeeds, any unbound variables in the pattern become bound. If the matching │ │ │ │ fails, an exception is raised.

        Examples:

        1> X.
        │ │ │ │  ** 1:1: variable 'X' is unbound **
        │ │ │ │  2> X = 2.
        │ │ │ │  2
        │ │ │ │  3> X + 1.
        │ │ │ │  3
        │ │ │ │ -4> {X, Y} = {1, 2}.
        │ │ │ │ +4> {X, Y} = {1, 2}.
        │ │ │ │  ** exception error: no match of right hand side value {1,2}
        │ │ │ │ -5> {X, Y} = {2, 3}.
        │ │ │ │ -{2,3}
        │ │ │ │ +5> {X, Y} = {2, 3}.
        │ │ │ │ +{2,3}
        │ │ │ │  6> Y.
        │ │ │ │  3
        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/otp-patch-apply.xhtml │ │ │ │ @@ -106,13 +106,13 @@ │ │ │ │ │ │ │ │ Sanity check │ │ │ │ │ │ │ │

        The application dependencies can be checked using the Erlang shell. │ │ │ │ Application dependencies are verified among installed applications by │ │ │ │ otp_patch_apply, but these are not necessarily those actually loaded. │ │ │ │ By calling system_information:sanity_check() one can validate │ │ │ │ -dependencies among applications actually loaded.

        1> system_information:sanity_check().
        │ │ │ │ +dependencies among applications actually loaded.

        1> system_information:sanity_check().
        │ │ │ │  ok

        Please take a look at the reference of sanity_check() for more │ │ │ │ information.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/opaques.xhtml │ │ │ │ @@ -27,24 +27,24 @@ │ │ │ │ Opaque Type Aliases │ │ │ │ │ │ │ │

        The main use case for opacity in Erlang is to hide the implementation of a data │ │ │ │ type, enabling evolving the API while minimizing the risk of breaking consumers. │ │ │ │ The runtime does not check opacity. Dialyzer provides some opacity-checking, but │ │ │ │ the rest is up to convention.

        This document explains what Erlang opacity is (and the trade-offs involved) via │ │ │ │ the example of the sets:set() data type. This type was │ │ │ │ -defined in the sets module like this:

        -opaque set(Element) :: #set{segs :: segs(Element)}.

        OTP 24 changed the definition to the following in │ │ │ │ -this commit.

        -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

        And this change was safer and more backwards-compatible than if the type had │ │ │ │ +defined in the sets module like this:

        -opaque set(Element) :: #set{segs :: segs(Element)}.

        OTP 24 changed the definition to the following in │ │ │ │ +this commit.

        -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

        And this change was safer and more backwards-compatible than if the type had │ │ │ │ been defined with -type instead of -opaque. Here is why: when a module │ │ │ │ defines an -opaque, the contract is that only the defining module should rely │ │ │ │ on the definition of the type: no other modules should rely on the definition.

        This means that code that pattern-matched on set as a record/tuple technically │ │ │ │ broke the contract, and opted in to being potentially broken when the definition │ │ │ │ of set() changed. Before OTP 24, this code printed ok. In OTP 24 it may │ │ │ │ -error:

        case sets:new() of
        │ │ │ │ -    Set when is_tuple(Set) ->
        │ │ │ │ -        io:format("ok")
        │ │ │ │ +error:

        case sets:new() of
        │ │ │ │ +    Set when is_tuple(Set) ->
        │ │ │ │ +        io:format("ok")
        │ │ │ │  end.

        When working with an opaque defined in another module, here are some │ │ │ │ recommendations:

        • Don't examine the underlying type using pattern-matching, guards, or functions │ │ │ │ that reveal the type, such as tuple_size/1 .
        • Instead, use functions provided by the module for working with the type. For │ │ │ │ example, sets module provides sets:new/0, sets:add_element/2, │ │ │ │ sets:is_element/2, and so on.
        • sets:set(a) is a subtype of sets:set(a | b) and not the │ │ │ │ other way around. Generally, you can rely on the property that the_opaque(T) │ │ │ │ is a subtype of the_opaque(U) when T is a subtype of U.

        When defining your own opaques, here are some recommendations:

        • Since consumers are expected to not rely on the definition of the opaque type, │ │ │ ├── OEBPS/nif.xhtml │ │ │ │ @@ -38,26 +38,26 @@ │ │ │ │ Erlang Program │ │ │ │ │ │ │ │

          Even if all functions of a module are NIFs, an Erlang module is still needed for │ │ │ │ two reasons:

          • The NIF library must be explicitly loaded by Erlang code in the same module.
          • All NIFs of a module must have an Erlang implementation as well.

          Normally these are minimal stub implementations that throw an exception. But │ │ │ │ they can also be used as fallback implementations for functions that do not have │ │ │ │ native implementations on some architectures.

          NIF libraries are loaded by calling erlang:load_nif/2, with the name of the │ │ │ │ shared library as argument. The second argument can be any term that will be │ │ │ │ -passed on to the library and used for initialization:

          -module(complex6).
          │ │ │ │ --export([foo/1, bar/1]).
          │ │ │ │ --nifs([foo/1, bar/1]).
          │ │ │ │ --on_load(init/0).
          │ │ │ │ -
          │ │ │ │ -init() ->
          │ │ │ │ -    ok = erlang:load_nif("./complex6_nif", 0).
          │ │ │ │ -
          │ │ │ │ -foo(_X) ->
          │ │ │ │ -    erlang:nif_error(nif_library_not_loaded).
          │ │ │ │ -bar(_Y) ->
          │ │ │ │ -    erlang:nif_error(nif_library_not_loaded).

          Here, the directive on_load is used to get function init to be automatically │ │ │ │ +passed on to the library and used for initialization:

          -module(complex6).
          │ │ │ │ +-export([foo/1, bar/1]).
          │ │ │ │ +-nifs([foo/1, bar/1]).
          │ │ │ │ +-on_load(init/0).
          │ │ │ │ +
          │ │ │ │ +init() ->
          │ │ │ │ +    ok = erlang:load_nif("./complex6_nif", 0).
          │ │ │ │ +
          │ │ │ │ +foo(_X) ->
          │ │ │ │ +    erlang:nif_error(nif_library_not_loaded).
          │ │ │ │ +bar(_Y) ->
          │ │ │ │ +    erlang:nif_error(nif_library_not_loaded).

          Here, the directive on_load is used to get function init to be automatically │ │ │ │ called when the module is loaded. If init returns anything other than ok, │ │ │ │ such when the loading of the NIF library fails in this example, the module is │ │ │ │ unloaded and calls to functions within it, fail.

          Loading the NIF library overrides the stub implementations and cause calls to │ │ │ │ foo and bar to be dispatched to the NIF implementations instead.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -114,22 +114,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

          │ │ │ │

          Step 1. Compile the C code:

          unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
          │ │ │ │  windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c

          Step 2: Start Erlang and compile the Erlang code:

          > erl
          │ │ │ │ -Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
          │ │ │ │ +Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
          │ │ │ │  
          │ │ │ │ -Eshell V5.7.5  (abort with ^G)
          │ │ │ │ -1> c(complex6).
          │ │ │ │ -{ok,complex6}

          Step 3: Run the example:

          3> complex6:foo(3).
          │ │ │ │ +Eshell V5.7.5  (abort with ^G)
          │ │ │ │ +1> c(complex6).
          │ │ │ │ +{ok,complex6}

          Step 3: Run the example:

          3> complex6:foo(3).
          │ │ │ │  4
          │ │ │ │ -4> complex6:bar(5).
          │ │ │ │ +4> complex6:bar(5).
          │ │ │ │  10
          │ │ │ │ -5> complex6:foo("not an integer").
          │ │ │ │ +5> complex6:foo("not an integer").
          │ │ │ │  ** exception error: bad argument
          │ │ │ │       in function  complex6:foo/1
          │ │ │ │          called as comlpex6:foo("not an integer")
          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/modules.xhtml │ │ │ │ @@ -23,20 +23,20 @@ │ │ │ │

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Module Syntax │ │ │ │

          │ │ │ │

          Erlang code is divided into modules. A module consists of a sequence of │ │ │ │ -attributes and function declarations, each terminated by a period (.).

          Example:

          -module(m).          % module attribute
          │ │ │ │ --export([fact/1]).   % module attribute
          │ │ │ │ +attributes and function declarations, each terminated by a period (.).

          Example:

          -module(m).          % module attribute
          │ │ │ │ +-export([fact/1]).   % module attribute
          │ │ │ │  
          │ │ │ │ -fact(N) when N>0 ->  % beginning of function declaration
          │ │ │ │ -    N * fact(N-1);   %  |
          │ │ │ │ -fact(0) ->           %  |
          │ │ │ │ +fact(N) when N>0 ->  % beginning of function declaration
          │ │ │ │ +    N * fact(N-1);   %  |
          │ │ │ │ +fact(0) ->           %  |
          │ │ │ │      1.               % end of function declaration

          For a description of function declarations, see │ │ │ │ Function Declaration Syntax.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Module Attributes │ │ │ │

          │ │ │ │ @@ -81,71 +81,71 @@ │ │ │ │ meaning.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Behaviour Module Attribute │ │ │ │

        │ │ │ │

        It is possible to specify that the module is the callback module for a │ │ │ │ -behaviour:

        -behaviour(Behaviour).

        The atom Behaviour gives the name of the behaviour, which can be a │ │ │ │ +behaviour:

        -behaviour(Behaviour).

        The atom Behaviour gives the name of the behaviour, which can be a │ │ │ │ user-defined behaviour or one of the following OTP standard behaviours:

        • gen_server
        • gen_statem
        • gen_event
        • supervisor

        The spelling behavior is also accepted.

        The callback functions of the module can be specified either directly by the │ │ │ │ -exported function behaviour_info/1:

        behaviour_info(callbacks) -> Callbacks.

        or by a -callback attribute for each callback function:

        -callback Name(Arguments) -> Result.

        Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ │ +exported function behaviour_info/1:

        behaviour_info(callbacks) -> Callbacks.

        or by a -callback attribute for each callback function:

        -callback Name(Arguments) -> Result.

        Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ │ is to be preferred since the extra type information can be used by tools to │ │ │ │ produce documentation or find discrepancies.

        Read more about behaviours and callback modules in │ │ │ │ OTP Design Principles.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Record Definitions │ │ │ │

        │ │ │ │ -

        The same syntax as for module attributes is used for record definitions:

        -record(Record, Fields).

        Record definitions are allowed anywhere in a module, also among the function │ │ │ │ +

        The same syntax as for module attributes is used for record definitions:

        -record(Record, Fields).

        Record definitions are allowed anywhere in a module, also among the function │ │ │ │ declarations. Read more in Records.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Preprocessor │ │ │ │

        │ │ │ │

        The same syntax as for module attributes is used by the preprocessor, which │ │ │ │ -supports file inclusion, macros, and conditional compilation:

        -include("SomeFile.hrl").
        │ │ │ │ --define(Macro, Replacement).

        Read more in Preprocessor.

        │ │ │ │ +supports file inclusion, macros, and conditional compilation:

        -include("SomeFile.hrl").
        │ │ │ │ +-define(Macro, Replacement).

        Read more in Preprocessor.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Setting File and Line │ │ │ │

        │ │ │ │

        The same syntax as for module attributes is used for changing the pre-defined │ │ │ │ -macros ?FILE and ?LINE:

        -file(File, Line).

        This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ │ +macros ?FILE and ?LINE:

        -file(File, Line).

        This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ │ source program is generated by another tool. It also indicates the │ │ │ │ correspondence of source files to lines of the original user-written file, from │ │ │ │ which the source program is produced.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Types and function specifications │ │ │ │

        │ │ │ │

        A similar syntax as for module attributes is used for specifying types and │ │ │ │ -function specifications:

        -type my_type() :: atom() | integer().
        │ │ │ │ --spec my_function(integer()) -> integer().

        Read more in Types and Function specifications.

        The description is based on │ │ │ │ +function specifications:

        -type my_type() :: atom() | integer().
        │ │ │ │ +-spec my_function(integer()) -> integer().

        Read more in Types and Function specifications.

        The description is based on │ │ │ │ EEP8 - Types and function specifications, │ │ │ │ which is not to be further updated.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documentation attributes │ │ │ │

        │ │ │ │

        The module attribute -doc(Documentation) is used to provide user documentation │ │ │ │ -for a function/type/callback:

        -doc("Example documentation").
        │ │ │ │ -example() -> ok.

        The attribute should be placed just before the entity it documents.The │ │ │ │ +for a function/type/callback:

        -doc("Example documentation").
        │ │ │ │ +example() -> ok.

        The attribute should be placed just before the entity it documents.The │ │ │ │ parenthesis are optional around Documentation. The allowed values for │ │ │ │ Documentation are:

        • literal string or │ │ │ │ utf-8 encoded binary string - The string │ │ │ │ documenting the entity. Any literal string is allowed, so both │ │ │ │ triple quoted strings and │ │ │ │ sigils that translate to literal strings can be used. │ │ │ │ -The following examples are equivalent:

          -doc("Example \"docs\"").
          │ │ │ │ --doc(<<"Example \"docs\""/utf8>>).
          │ │ │ │ +The following examples are equivalent:

          -doc("Example \"docs\"").
          │ │ │ │ +-doc(<<"Example \"docs\""/utf8>>).
          │ │ │ │  -doc ~S/Example "docs"/.
          │ │ │ │  -doc """
          │ │ │ │     Example "docs"
          │ │ │ │     """
          │ │ │ │  -doc ~B|Example "docs"|.

          For clarity it is recommended to use either normal "strings" or triple │ │ │ │ quoted strings for documentation attributes.

        • {file, file:name/0 } - Read the contents of filename and use │ │ │ │ that as the documentation string.

        • false - Set the current entity as hidden, that is, it should not be │ │ │ │ @@ -158,15 +158,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The feature directive │ │ │ │ │ │ │ │

          While not a module attribute, but rather a directive (since it might affect │ │ │ │ syntax), there is the -feature(..) directive used for enabling and disabling │ │ │ │ -features.

          The syntax is similar to that of an attribute, but has two arguments:

          -feature(FeatureName, enable | disable).

          Note that the feature directive can only appear │ │ │ │ +features.

          The syntax is similar to that of an attribute, but has two arguments:

          -feature(FeatureName, enable | disable).

          Note that the feature directive can only appear │ │ │ │ in a prefix of the module.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Comments │ │ │ │

          │ │ │ │

          Comments can be placed anywhere in a module except within strings and │ │ │ ├── OEBPS/maps.xhtml │ │ │ │ @@ -53,16 +53,16 @@ │ │ │ │ single function that constructs the map using the map syntax and always use │ │ │ │ it.

        • Always update the map using the := operator (that is, requiring that an │ │ │ │ element with that key already exists). The := operator is slightly more │ │ │ │ efficient, and it helps catching mispellings of keys.

        • Whenever possible, match multiple map elements at once.

        • Whenever possible, update multiple map elements at once.

        • Avoid default values and the maps:get/3 function. If there are default │ │ │ │ values, sharing of keys between different instances of the map will be less │ │ │ │ effective, and it is not possible to match multiple elements having default │ │ │ │ values in one go.

        • To avoid having to deal with a map that may lack some keys, maps:merge/2 can │ │ │ │ -efficiently add multiple default values. For example:

          DefaultMap = #{shoe_size => 42, editor => emacs},
          │ │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

        │ │ │ │ +efficiently add multiple default values. For example:

        DefaultMap = #{shoe_size => 42, editor => emacs},
        │ │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Dictionaries │ │ │ │

      │ │ │ │

      Using a map as a dictionary implies the following usage pattern:

      • Keys are usually variables not known at compile-time.
      • There can be any number of elements in the map.
      • Usually, no more than one element is looked up or updated at once.

      Given that usage pattern, the difference in performance between using the map │ │ │ │ syntax and the maps module is usually small. Therefore, which one to use is │ │ │ │ @@ -72,18 +72,18 @@ │ │ │ │ choice.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Sets │ │ │ │

    │ │ │ │

    Starting in OTP 24, the sets module has an option to represent sets as maps. │ │ │ │ -Examples:

    1> sets:new([{version,2}]).
    │ │ │ │ -#{}
    │ │ │ │ -2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ │ -#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ │ +Examples:

    1> sets:new([{version,2}]).
    │ │ │ │ +#{}
    │ │ │ │ +2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ │ +#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ │ few possible exceptions:

    • ordsets:intersection/2 can be more efficient than sets:intersection/2. If │ │ │ │ the intersection operation is frequently used and operations that operate on a │ │ │ │ single element in a set (such as is_element/2) are avoided, ordsets can │ │ │ │ be a better choice than sets.
    • If the intersection operation is frequently used and operations that operate │ │ │ │ on a single element in a set (such as is_element/2) must also be efficient, │ │ │ │ gb_sets can potentially be a better choice than sets.
    • If the elements of the set are integers in a fairly compact range, the set can │ │ │ │ be represented as an integer where each bit represents an element in the set. │ │ │ │ @@ -108,18 +108,18 @@ │ │ │ │ for the runtime system).

    • N - The number of elements in the map.

    • Keys - A tuple with keys of the map: {Key1,...,KeyN}. The keys are │ │ │ │ sorted.

    • Value1 - The value corresponding to the first key in the key tuple.

    • ValueN - The value corresponding to the last key in the key tuple.

    As an example, let us look at how the map #{a => foo, z => bar} is │ │ │ │ represented:

    01234
    FLATMAP2{a,z}foobar

    Table: #{a => foo, z => bar}

    Let us update the map: M#{q => baz}. The map now looks like this:

    012345
    FLATMAP3{a,q,z}foobazbar

    Table: #{a => foo, q => baz, z => bar}

    Finally, change the value of one element: M#{z := bird}. The map now looks │ │ │ │ like this:

    012345
    FLATMAP3{a,q,z}foobazbird

    Table: #{a => foo, q => baz, z => bird}

    When the value for an existing key is updated, the key tuple is not updated, │ │ │ │ allowing the key tuple to be shared with other instances of the map that have │ │ │ │ the same keys. In fact, the key tuple can be shared between all maps with the │ │ │ │ same keys with some care. To arrange that, define a function that returns a map. │ │ │ │ -For example:

    new() ->
    │ │ │ │ -    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ │ +For example:

    new() ->
    │ │ │ │ +    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ │ that the key tuple is shared when creating an instance of the map, always call │ │ │ │ -new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ │ +new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ │ keys are known at compile-time, the map is updated in one go, making the time to │ │ │ │ update a map essentially constant regardless of the number of keys updated. The │ │ │ │ same goes for matching. (When the keys are variables, one or more of the keys │ │ │ │ could be identical, so the operations need to be performed sequentially from │ │ │ │ left to right.)

    The memory size for a small map is the size of all keys and values plus 5 words. │ │ │ │ See Memory for more information about memory sizes.

    │ │ │ │ │ │ │ │ @@ -146,21 +146,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using the Map Syntax │ │ │ │

    │ │ │ │

    Using the map syntax is usually slightly more efficient than using the │ │ │ │ corresponding function in the maps module.

    The gain in efficiency for the map syntax is more noticeable for the following │ │ │ │ -operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ │ -Map3 = maps:update(y, Y, Map2),
    │ │ │ │ -Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ │ -right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ │ -left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ │ -Map3 = Map2#{Key2 := Y},
    │ │ │ │ -Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ │ +operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ │ +Map3 = maps:update(y, Y, Map2),
    │ │ │ │ +Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ │ +right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ │ +left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ │ +Map3 = Map2#{Key2 := Y},
    │ │ │ │ +Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ │ efficient than using the => operator for a small map.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Using the Functions in the maps Module │ │ │ │

    │ │ │ │

    Here follows some notes about most of the functions in the maps module. For │ │ │ │ @@ -211,23 +211,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ maps:get/3 │ │ │ │ │ │ │ │

    As an optimization, the compiler will rewrite a call to maps:get/3 to Erlang │ │ │ │ code similar to the following:

    Result = case Map of
    │ │ │ │ -             #{Key := Value} -> Value;
    │ │ │ │ -             #{} -> Default
    │ │ │ │ +             #{Key := Value} -> Value;
    │ │ │ │ +             #{} -> Default
    │ │ │ │           end

    This is reasonably efficient, but if a small map is used as an alternative to │ │ │ │ using a record it is often better not to rely on default values as it prevents │ │ │ │ sharing of keys, which may in the end use more memory than what you save from │ │ │ │ not storing default values in the map.

    If default values are nevertheless required, instead of calling maps:get/3 │ │ │ │ multiple times, consider putting the default values in a map and merging that │ │ │ │ -map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ │ +map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ │ to, as long as the default map contains all the keys that will ever be used │ │ │ │ and not just the ones with default values. Whether this is faster than calling │ │ │ │ maps:get/3 multiple times depends on the size of the map and the number of │ │ │ │ default values.

    Change

    Before OTP 26.0 maps:get/3 was implemented by calling the function instead │ │ │ │ of rewriting it as an Erlang expression. It is now slightly faster but can no │ │ │ │ longer be traced.

    │ │ │ │ │ │ │ ├── OEBPS/macros.xhtml │ │ │ │ @@ -22,56 +22,56 @@ │ │ │ │

    │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ File Inclusion │ │ │ │

    │ │ │ │ -

    A file can be included as follows:

    -include(File).
    │ │ │ │ --include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ │ +

    A file can be included as follows:

    -include(File).
    │ │ │ │ +-include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ │ as is, at the position of the directive.

    Include files are typically used for record and macro definitions that are │ │ │ │ shared by several modules. It is recommended to use the file name extension │ │ │ │ .hrl for include files.

    File can start with a path component $VAR, for some string VAR. If that is │ │ │ │ the case, the value of the environment variable VAR as returned by │ │ │ │ os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false, │ │ │ │ $VAR is left as is.

    If the filename File is absolute (possibly after variable substitution), the │ │ │ │ include file with that name is included. Otherwise, the specified file is │ │ │ │ searched for in the following directories, and in this order:

    1. The current working directory
    2. The directory where the module is being compiled
    3. The directories given by the include option

    For details, see erlc in ERTS and │ │ │ │ -compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ │ --include("incdir/my_records.hrl").
    │ │ │ │ --include("/home/user/proj/my_records.hrl").
    │ │ │ │ --include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ │ +compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ │ +-include("incdir/my_records.hrl").
    │ │ │ │ +-include("/home/user/proj/my_records.hrl").
    │ │ │ │ +-include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ │ Instead, the first path component (possibly after variable substitution) is │ │ │ │ -assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ │ +assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ │ (latest) version of Kernel, and then the subdirectory include is searched for │ │ │ │ the file file.hrl.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Defining and Using Macros │ │ │ │

    │ │ │ │ -

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ │ --define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ │ +

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ │ +-define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ │ macro.

    If a macro is used in several modules, it is recommended that the macro │ │ │ │ definition is placed in an include file.

    A macro is used as follows:

    ?Const
    │ │ │ │  ?Func(Arg1,...,ArgN)

    Macros are expanded during compilation. A simple macro ?Const is replaced with │ │ │ │ -Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ │ +Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ │  ...
    │ │ │ │ -call(Request) ->
    │ │ │ │ -    server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ │ -    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ │ +call(Request) -> │ │ │ │ + server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ │ +    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ │ occurrences of a variable Var from the macro definition are replaced with the │ │ │ │ -corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ │ +corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ │  ...
    │ │ │ │ -bar(X) ->
    │ │ │ │ -    ?MACRO1(a, b),
    │ │ │ │ -    ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ │ -    {a,a,b,b},
    │ │ │ │ -    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ │ +bar(X) -> │ │ │ │ + ?MACRO1(a, b), │ │ │ │ + ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ │ +    {a,a,b,b},
    │ │ │ │ +    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ │ definition is a valid Erlang syntactic form.

    To view the result of macro expansion, a module can be compiled with the 'P' │ │ │ │ option. compile:file(File, ['P']). This produces a listing of the parsed code │ │ │ │ after preprocessing and parse transforms, in the file File.P.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Predefined Macros │ │ │ │ @@ -90,29 +90,29 @@ │ │ │ │ │ │ │ │ │ │ │ │ Macros Overloading │ │ │ │

    │ │ │ │

    It is possible to overload macros, except for predefined macros. An overloaded │ │ │ │ macro has more than one definition, each with a different number of arguments.

    Change

    Support for overloading of macros was added in Erlang 5.7.5/OTP R13B04.

    A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results │ │ │ │ in an error message if there is at least one definition of Func with │ │ │ │ -arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ │ --define(F1(A), A).
    │ │ │ │ --define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ │ +arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ │ +-define(F1(A), A).
    │ │ │ │ +-define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ │      ?F0. % No, an empty list of arguments expected.
    │ │ │ │  
    │ │ │ │ -f1(A) ->
    │ │ │ │ -    ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ │ -    ?C().

    is expanded to

    f() ->
    │ │ │ │ -    m:f().

    │ │ │ │ +f1(A) -> │ │ │ │ + ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ │ +    ?C().

    is expanded to

    f() ->
    │ │ │ │ +    m:f().

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Removing a macro definition │ │ │ │

    │ │ │ │ -

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ +

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Conditional Compilation │ │ │ │

    │ │ │ │

    The following macro directives support conditional compilation:

    • -ifdef(Macro). - Evaluate the following lines only if Macro is │ │ │ │ defined.

    • -ifndef(Macro). - Evaluate the following lines only if Macro is not │ │ │ │ @@ -124,43 +124,43 @@ │ │ │ │ true, and the Condition evaluates to true, the lines following the elif │ │ │ │ are evaluated instead.

    • -endif. - Specifies the end of a series of control flow directives.

    Note

    Macro directives cannot be used inside functions.

    Syntactically, the Condition in if and elif must be a │ │ │ │ guard expression. Other constructs (such as │ │ │ │ a case expression) result in a compilation error.

    As opposed to the standard guard expressions, an expression in an if and │ │ │ │ elif also supports calling the psuedo-function defined(Name), which tests │ │ │ │ whether the Name argument is the name of a previously defined macro. │ │ │ │ defined(Name) evaluates to true if the macro is defined and false │ │ │ │ -otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ │ +otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ --ifdef(debug).
    │ │ │ │ --define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ │ +-ifdef(debug).
    │ │ │ │ +-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ │  -else.
    │ │ │ │ --define(LOG(X), true).
    │ │ │ │ +-define(LOG(X), true).
    │ │ │ │  -endif.
    │ │ │ │  
    │ │ │ │  ...

    When trace output is desired, debug is to be defined when the module m is │ │ │ │ compiled:

    % erlc -Ddebug m.erl
    │ │ │ │  
    │ │ │ │  or
    │ │ │ │  
    │ │ │ │ -1> c(m, {d, debug}).
    │ │ │ │ -{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ │ -with some simple trace output.

    Example:

    -module(m)
    │ │ │ │ +1> c(m, {d, debug}).
    │ │ │ │ +{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ │ +with some simple trace output.

    Example:

    -module(m)
    │ │ │ │  ...
    │ │ │ │ --if(?OTP_RELEASE >= 25).
    │ │ │ │ +-if(?OTP_RELEASE >= 25).
    │ │ │ │  %% Code that will work in OTP 25 or higher
    │ │ │ │ --elif(?OTP_RELEASE >= 26).
    │ │ │ │ +-elif(?OTP_RELEASE >= 26).
    │ │ │ │  %% Code that will work in OTP 26 or higher
    │ │ │ │  -else.
    │ │ │ │  %% Code that will work in OTP 24 or lower.
    │ │ │ │  -endif.
    │ │ │ │  ...

    This code uses the OTP_RELEASE macro to conditionally select code depending on │ │ │ │ -release.

    Example:

    -module(m)
    │ │ │ │ +release.

    Example:

    -module(m)
    │ │ │ │  ...
    │ │ │ │ --if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ │ +-if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ │  %% Debugging code that requires OTP 26 or later.
    │ │ │ │  -else.
    │ │ │ │  %% Non-debug code that works in any release.
    │ │ │ │  -endif.
    │ │ │ │  ...

    This code uses the OTP_RELEASE macro and defined(debug) to compile debug │ │ │ │ code only for OTP 26 or later.

    │ │ │ │ │ │ │ │ @@ -175,40 +175,40 @@ │ │ │ │ used. In practice this means it should appear before any -export(..) or record │ │ │ │ definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ -error() and -warning() directives │ │ │ │

    │ │ │ │ -

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ │ --export([version/0]).
    │ │ │ │ +

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ │ +-export([version/0]).
    │ │ │ │  
    │ │ │ │ --ifdef(VERSION).
    │ │ │ │ -version() -> ?VERSION.
    │ │ │ │ +-ifdef(VERSION).
    │ │ │ │ +version() -> ?VERSION.
    │ │ │ │  -else.
    │ │ │ │ --error("Macro VERSION must be defined.").
    │ │ │ │ -version() -> "".
    │ │ │ │ +-error("Macro VERSION must be defined.").
    │ │ │ │ +version() -> "".
    │ │ │ │  -endif.

    The error message will look like this:

    % erlc t.erl
    │ │ │ │ -t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ │ --export([version/0]).
    │ │ │ │ +t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ │ +-export([version/0]).
    │ │ │ │  
    │ │ │ │ --ifndef(VERSION).
    │ │ │ │ --warning("Macro VERSION not defined -- using default version.").
    │ │ │ │ --define(VERSION, "0").
    │ │ │ │ +-ifndef(VERSION).
    │ │ │ │ +-warning("Macro VERSION not defined -- using default version.").
    │ │ │ │ +-define(VERSION, "0").
    │ │ │ │  -endif.
    │ │ │ │ -version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ │ +version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ │  t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

    Change

    The -error() and -warning() directives were added in Erlang/OTP 19.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stringifying Macro Arguments │ │ │ │

    │ │ │ │

    The construction ??Arg, where Arg is a macro argument, is expanded to a │ │ │ │ string containing the tokens of the argument. This is similar to the #arg │ │ │ │ -stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ │ +stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ │  
    │ │ │ │ -?TESTCALL(myfunction(1,2)),
    │ │ │ │ -?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ │ -io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ │ +
    ?TESTCALL(myfunction(1,2)), │ │ │ │ +?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ │ +io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/listhandling.xhtml │ │ │ │ @@ -25,101 +25,101 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating a List │ │ │ │

    │ │ │ │

    Lists can only be built starting from the end and attaching list elements at the │ │ │ │ beginning. If you use the ++ operator as follows, a new list is created that │ │ │ │ is a copy of the elements in List1, followed by List2:

    List1 ++ List2

    Looking at how lists:append/2 or ++ would be implemented in plain Erlang, │ │ │ │ -clearly the first list is copied:

    append([H|T], Tail) ->
    │ │ │ │ -    [H|append(T, Tail)];
    │ │ │ │ -append([], Tail) ->
    │ │ │ │ +clearly the first list is copied:

    append([H|T], Tail) ->
    │ │ │ │ +    [H|append(T, Tail)];
    │ │ │ │ +append([], Tail) ->
    │ │ │ │      Tail.

    When recursing and building a list, it is important to ensure that you attach │ │ │ │ the new elements to the beginning of the list. In this way, you will build one │ │ │ │ -list, not hundreds or thousands of copies of the growing result list.

    Let us first see how it is not to be done:

    DO NOT

    bad_fib(N) ->
    │ │ │ │ -    bad_fib(N, 0, 1, []).
    │ │ │ │ +list, not hundreds or thousands of copies of the growing result list.

    Let us first see how it is not to be done:

    DO NOT

    bad_fib(N) ->
    │ │ │ │ +    bad_fib(N, 0, 1, []).
    │ │ │ │  
    │ │ │ │ -bad_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │ +bad_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │      Fibs;
    │ │ │ │ -bad_fib(N, Current, Next, Fibs) ->
    │ │ │ │ -    bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

    Here more than one list is built. In each iteration step a new list is created │ │ │ │ +bad_fib(N, Current, Next, Fibs) -> │ │ │ │ + bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

    Here more than one list is built. In each iteration step a new list is created │ │ │ │ that is one element longer than the new previous list.

    To avoid copying the result in each iteration, build the list in reverse order │ │ │ │ -and reverse the list when you are done:

    DO

    tail_recursive_fib(N) ->
    │ │ │ │ -    tail_recursive_fib(N, 0, 1, []).
    │ │ │ │ +and reverse the list when you are done:

    DO

    tail_recursive_fib(N) ->
    │ │ │ │ +    tail_recursive_fib(N, 0, 1, []).
    │ │ │ │  
    │ │ │ │ -tail_recursive_fib(0, _Current, _Next, Fibs) ->
    │ │ │ │ -    lists:reverse(Fibs);
    │ │ │ │ -tail_recursive_fib(N, Current, Next, Fibs) ->
    │ │ │ │ -    tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

    │ │ │ │ +tail_recursive_fib(0, _Current, _Next, Fibs) -> │ │ │ │ + lists:reverse(Fibs); │ │ │ │ +tail_recursive_fib(N, Current, Next, Fibs) -> │ │ │ │ + tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List Comprehensions │ │ │ │

    │ │ │ │ -

    A list comprehension:

    [Expr(E) || E <- List]

    is basically translated to a local function:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ -    [Expr(E)|'lc^0'(Tail, Expr)];
    │ │ │ │ -'lc^0'([], _Expr) -> [].

    If the result of the list comprehension will obviously not be used, a list │ │ │ │ -will not be constructed. For example, in this code:

    [io:put_chars(E) || E <- List],
    │ │ │ │ +

    A list comprehension:

    [Expr(E) || E <- List]

    is basically translated to a local function:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ +    [Expr(E)|'lc^0'(Tail, Expr)];
    │ │ │ │ +'lc^0'([], _Expr) -> [].

    If the result of the list comprehension will obviously not be used, a list │ │ │ │ +will not be constructed. For example, in this code:

    [io:put_chars(E) || E <- List],
    │ │ │ │  ok.

    or in this code:

    case Var of
    │ │ │ │      ... ->
    │ │ │ │ -        [io:put_chars(E) || E <- List];
    │ │ │ │ +        [io:put_chars(E) || E <- List];
    │ │ │ │      ... ->
    │ │ │ │  end,
    │ │ │ │ -some_function(...),

    the value is not assigned to a variable, not passed to another function, and not │ │ │ │ +some_function(...),

    the value is not assigned to a variable, not passed to another function, and not │ │ │ │ returned. This means that there is no need to construct a list and the compiler │ │ │ │ -will simplify the code for the list comprehension to:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ -    Expr(E),
    │ │ │ │ -    'lc^0'(Tail, Expr);
    │ │ │ │ -'lc^0'([], _Expr) -> [].

    The compiler also understands that assigning to _ means that the value will │ │ │ │ -not be used. Therefore, the code in the following example will also be optimized:

    _ = [io:put_chars(E) || E <- List],
    │ │ │ │ +will simplify the code for the list comprehension to:

    'lc^0'([E|Tail], Expr) ->
    │ │ │ │ +    Expr(E),
    │ │ │ │ +    'lc^0'(Tail, Expr);
    │ │ │ │ +'lc^0'([], _Expr) -> [].

    The compiler also understands that assigning to _ means that the value will │ │ │ │ +not be used. Therefore, the code in the following example will also be optimized:

    _ = [io:put_chars(E) || E <- List],
    │ │ │ │  ok.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Deep and Flat Lists │ │ │ │

    │ │ │ │

    lists:flatten/1 builds an entirely new list. It is therefore expensive, and │ │ │ │ even more expensive than the ++ operator (which copies its left argument, │ │ │ │ but not its right argument).

    In the following situations it is unnecessary to call lists:flatten/1:

    • When sending data to a port. Ports understand deep lists so there is no reason │ │ │ │ to flatten the list before sending it to the port.
    • When calling BIFs that accept deep lists, such as │ │ │ │ list_to_binary/1 or │ │ │ │ iolist_to_binary/1.
    • When you know that your list is only one level deep. Use lists:append/1 │ │ │ │ -instead.

    Examples:

    DO

    port_command(Port, DeepList)

    DO NOT

    port_command(Port, lists:flatten(DeepList))

    A common way to send a zero-terminated string to a port is the following:

    DO NOT

    TerminatedStr = String ++ [0],
    │ │ │ │ -port_command(Port, TerminatedStr)

    Instead:

    DO

    TerminatedStr = [String, 0],
    │ │ │ │ -port_command(Port, TerminatedStr)

    DO

    1> lists:append([[1], [2], [3]]).
    │ │ │ │ -[1,2,3]

    DO NOT

    1> lists:flatten([[1], [2], [3]]).
    │ │ │ │ -[1,2,3]

    │ │ │ │ +instead.

Examples:

DO

port_command(Port, DeepList)

DO NOT

port_command(Port, lists:flatten(DeepList))

A common way to send a zero-terminated string to a port is the following:

DO NOT

TerminatedStr = String ++ [0],
│ │ │ │ +port_command(Port, TerminatedStr)

Instead:

DO

TerminatedStr = [String, 0],
│ │ │ │ +port_command(Port, TerminatedStr)

DO

1> lists:append([[1], [2], [3]]).
│ │ │ │ +[1,2,3]

DO NOT

1> lists:flatten([[1], [2], [3]]).
│ │ │ │ +[1,2,3]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Recursive List Functions │ │ │ │

│ │ │ │

There are two basic ways to write a function that traverses a list and │ │ │ │ produces a new list.

The first way is writing a body-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ -add_42_body([H|T]) ->
│ │ │ │ -    [H + 42 | add_42_body(T)];
│ │ │ │ -add_42_body([]) ->
│ │ │ │ -    [].

The second way is writing a tail-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ -add_42_tail(List) ->
│ │ │ │ -    add_42_tail(List, []).
│ │ │ │ +add_42_body([H|T]) ->
│ │ │ │ +    [H + 42 | add_42_body(T)];
│ │ │ │ +add_42_body([]) ->
│ │ │ │ +    [].

The second way is writing a tail-recursive function:

%% Add 42 to each integer in the list.
│ │ │ │ +add_42_tail(List) ->
│ │ │ │ +    add_42_tail(List, []).
│ │ │ │  
│ │ │ │ -add_42_tail([H|T], Acc) ->
│ │ │ │ -    add_42_tail(T, [H + 42 | Acc]);
│ │ │ │ -add_42_tail([], Acc) ->
│ │ │ │ -    lists:reverse(Acc).

In early version of Erlang the tail-recursive function would typically │ │ │ │ +add_42_tail([H|T], Acc) -> │ │ │ │ + add_42_tail(T, [H + 42 | Acc]); │ │ │ │ +add_42_tail([], Acc) -> │ │ │ │ + lists:reverse(Acc).

In early version of Erlang the tail-recursive function would typically │ │ │ │ be more efficient. In modern versions of Erlang, there is usually not │ │ │ │ much difference in performance between a body-recursive list function and │ │ │ │ tail-recursive function that reverses the list at the end. Therefore, │ │ │ │ concentrate on writing beautiful code and forget about the performance │ │ │ │ of your list functions. In the time-critical parts of your code, │ │ │ │ measure before rewriting your code.

For a thorough discussion about tail and body recursion, see │ │ │ │ Erlang's Tail Recursion is Not a Silver Bullet.

Note

This section is about list functions that construct lists. A tail-recursive │ │ │ │ function that does not construct a list runs in constant space, while the │ │ │ │ corresponding body-recursive function uses stack space proportional to the │ │ │ │ length of the list.

For example, a function that sums a list of integers, is not to be written as │ │ │ │ -follows:

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
│ │ │ │ -recursive_sum([])    -> 0.

Instead:

DO

sum(L) -> sum(L, 0).
│ │ │ │ +follows:

DO NOT

recursive_sum([H|T]) -> H+recursive_sum(T);
│ │ │ │ +recursive_sum([])    -> 0.

Instead:

DO

sum(L) -> sum(L, 0).
│ │ │ │  
│ │ │ │ -sum([H|T], Sum) -> sum(T, Sum + H);
│ │ │ │ -sum([], Sum)    -> Sum.
│ │ │ │ +
sum([H|T], Sum) -> sum(T, Sum + H); │ │ │ │ +sum([], Sum) -> Sum.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/list_comprehensions.xhtml │ │ │ │ @@ -22,33 +22,33 @@ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Examples │ │ │ │

│ │ │ │ -

This section starts with a simple example, showing a generator and a filter:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
│ │ │ │ -[a,4,b,5,6]

This is read as follows: The list of X such that X is taken from the list │ │ │ │ +

This section starts with a simple example, showing a generator and a filter:

> [X || X <- [1,2,a,3,4,b,5,6], X > 3].
│ │ │ │ +[a,4,b,5,6]

This is read as follows: The list of X such that X is taken from the list │ │ │ │ [1,2,a,...] and X is greater than 3.

The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a │ │ │ │ filter.

An additional filter, is_integer(X), can be added to │ │ │ │ -restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
│ │ │ │ -[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can │ │ │ │ -be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
│ │ │ │ -[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

│ │ │ │ +restrict the result to integers:

> [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
│ │ │ │ +[4,5,6]

Generators can be combined. For example, the Cartesian product of two lists can │ │ │ │ +be written as follows:

> [{X, Y} || X <- [1,2,3], Y <- [a,b]].
│ │ │ │ +[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Quick Sort │ │ │ │

│ │ │ │ -

The well-known quick sort routine can be written as follows:

sort([]) -> [];
│ │ │ │ -sort([_] = L) -> L;
│ │ │ │ -sort([Pivot|T]) ->
│ │ │ │ -    sort([ X || X <- T, X < Pivot]) ++
│ │ │ │ -    [Pivot] ++
│ │ │ │ -    sort([ X || X <- T, X >= Pivot]).

The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ │ +

The well-known quick sort routine can be written as follows:

sort([]) -> [];
│ │ │ │ +sort([_] = L) -> L;
│ │ │ │ +sort([Pivot|T]) ->
│ │ │ │ +    sort([ X || X <- T, X < Pivot]) ++
│ │ │ │ +    [Pivot] ++
│ │ │ │ +    sort([ X || X <- T, X >= Pivot]).

The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ │ that are less than Pivot.

[X || X <- T, X >= Pivot] is the list of all elements in T that are greater │ │ │ │ than or equal to Pivot.

With the algorithm above, a list is sorted as follows:

  • A list with zero or one element is trivially sorted.
  • For lists with more than one element:
    1. The first element in the list is isolated as the pivot element.
    2. The remaining list is partitioned into two sublists, such that:
    • The first sublist contains all elements that are smaller than the pivot │ │ │ │ element.
    • The second sublist contains all elements that are greater than or equal to │ │ │ │ the pivot element.
    1. The sublists are recursively sorted by the same algorithm and the results │ │ │ │ are combined, resulting in a list consisting of:
    • All elements from the first sublist, that is all elements smaller than the │ │ │ │ pivot element, in sorted order.
    • The pivot element.
    • All elements from the second sublist, that is all elements greater than or │ │ │ │ equal to the pivot element, in sorted order.

Note

While the sorting algorithm as shown above serves as a nice example to │ │ │ │ @@ -56,90 +56,90 @@ │ │ │ │ lists module contains sorting functions that are implemented in a more │ │ │ │ efficient way.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Permutations │ │ │ │

│ │ │ │ -

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
│ │ │ │ -perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

This takes H from L in all possible ways. The result is the set of all lists │ │ │ │ +

The following example generates all permutations of the elements in a list:

perms([]) -> [[]];
│ │ │ │ +perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

This takes H from L in all possible ways. The result is the set of all lists │ │ │ │ [H|T], where T is the set of all possible permutations of L, with H │ │ │ │ -removed:

> perms([b,u,g]).
│ │ │ │ -[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

│ │ │ │ +removed:

> perms([b,u,g]).
│ │ │ │ +[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Pythagorean Triplets │ │ │ │

│ │ │ │

Pythagorean triplets are sets of integers {A,B,C} such that │ │ │ │ A**2 + B**2 = C**2.

The function pyth(N) generates a list of all integers {A,B,C} such that │ │ │ │ A**2 + B**2 = C**2 and where the sum of the sides is equal to, or less than, │ │ │ │ -N:

pyth(N) ->
│ │ │ │ -    [ {A,B,C} ||
│ │ │ │ -        A <- lists:seq(1,N),
│ │ │ │ -        B <- lists:seq(1,N),
│ │ │ │ -        C <- lists:seq(1,N),
│ │ │ │ +N:

pyth(N) ->
│ │ │ │ +    [ {A,B,C} ||
│ │ │ │ +        A <- lists:seq(1,N),
│ │ │ │ +        B <- lists:seq(1,N),
│ │ │ │ +        C <- lists:seq(1,N),
│ │ │ │          A+B+C =< N,
│ │ │ │          A*A+B*B == C*C
│ │ │ │ -    ].
> pyth(3).
│ │ │ │ -[].
│ │ │ │ -> pyth(11).
│ │ │ │ -[].
│ │ │ │ -> pyth(12).
│ │ │ │ -[{3,4,5},{4,3,5}]
│ │ │ │ -> pyth(50).
│ │ │ │ -[{3,4,5},
│ │ │ │ - {4,3,5},
│ │ │ │ - {5,12,13},
│ │ │ │ - {6,8,10},
│ │ │ │ - {8,6,10},
│ │ │ │ - {8,15,17},
│ │ │ │ - {9,12,15},
│ │ │ │ - {12,5,13},
│ │ │ │ - {12,9,15},
│ │ │ │ - {12,16,20},
│ │ │ │ - {15,8,17},
│ │ │ │ - {16,12,20}]

The following code reduces the search space and is more efficient:

pyth1(N) ->
│ │ │ │ -   [{A,B,C} ||
│ │ │ │ -       A <- lists:seq(1,N-2),
│ │ │ │ -       B <- lists:seq(A+1,N-1),
│ │ │ │ -       C <- lists:seq(B+1,N),
│ │ │ │ +    ].
> pyth(3).
│ │ │ │ +[].
│ │ │ │ +> pyth(11).
│ │ │ │ +[].
│ │ │ │ +> pyth(12).
│ │ │ │ +[{3,4,5},{4,3,5}]
│ │ │ │ +> pyth(50).
│ │ │ │ +[{3,4,5},
│ │ │ │ + {4,3,5},
│ │ │ │ + {5,12,13},
│ │ │ │ + {6,8,10},
│ │ │ │ + {8,6,10},
│ │ │ │ + {8,15,17},
│ │ │ │ + {9,12,15},
│ │ │ │ + {12,5,13},
│ │ │ │ + {12,9,15},
│ │ │ │ + {12,16,20},
│ │ │ │ + {15,8,17},
│ │ │ │ + {16,12,20}]

The following code reduces the search space and is more efficient:

pyth1(N) ->
│ │ │ │ +   [{A,B,C} ||
│ │ │ │ +       A <- lists:seq(1,N-2),
│ │ │ │ +       B <- lists:seq(A+1,N-1),
│ │ │ │ +       C <- lists:seq(B+1,N),
│ │ │ │         A+B+C =< N,
│ │ │ │ -       A*A+B*B == C*C ].

│ │ │ │ + A*A+B*B == C*C ].

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simplifications With List Comprehensions │ │ │ │

│ │ │ │

As an example, list comprehensions can be used to simplify some of the functions │ │ │ │ -in lists.erl:

append(L)   ->  [X || L1 <- L, X <- L1].
│ │ │ │ -map(Fun, L) -> [Fun(X) || X <- L].
│ │ │ │ -filter(Pred, L) -> [X || X <- L, Pred(X)].

│ │ │ │ +in lists.erl:

append(L)   ->  [X || L1 <- L, X <- L1].
│ │ │ │ +map(Fun, L) -> [Fun(X) || X <- L].
│ │ │ │ +filter(Pred, L) -> [X || X <- L, Pred(X)].

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings in List Comprehensions │ │ │ │

│ │ │ │

The scope rules for variables that occur in list comprehensions are as follows:

  • All variables that occur in a generator pattern are assumed to be "fresh" │ │ │ │ variables.
  • Any variables that are defined before the list comprehension, and that are │ │ │ │ used in filters, have the values they had before the list comprehension.
  • Variables cannot be exported from a list comprehension.

As an example of these rules, suppose you want to write the function select, │ │ │ │ which selects certain elements from a list of tuples. Suppose you write │ │ │ │ select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting all │ │ │ │ tuples from L, where the first item is X.

Compiling this gives the following diagnostic:

./FileName.erl:Line: Warning: variable 'X' shadowed in generate

This diagnostic warns that the variable X in the pattern is not the same as │ │ │ │ -the variable X that occurs in the function head.

Evaluating select gives the following result:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ -[1,2,3,7]

This is not the wanted result. To achieve the desired effect, select must be │ │ │ │ -written as follows:

select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into │ │ │ │ -the filter.

This now works as expected:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ -[2,7]

Also note that a variable in a generator pattern will shadow a variable with the │ │ │ │ -same name bound in a previous generator pattern. For example:

> [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
│ │ │ │ -[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of the rules for importing variables into a list comprehensions is │ │ │ │ +the variable X that occurs in the function head.

Evaluating select gives the following result:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ +[1,2,3,7]

This is not the wanted result. To achieve the desired effect, select must be │ │ │ │ +written as follows:

select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

The generator now contains unbound variables and the test has been moved into │ │ │ │ +the filter.

This now works as expected:

> select(b,[{a,1},{b,2},{c,3},{b,7}]).
│ │ │ │ +[2,7]

Also note that a variable in a generator pattern will shadow a variable with the │ │ │ │ +same name bound in a previous generator pattern. For example:

> [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
│ │ │ │ +[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

A consequence of the rules for importing variables into a list comprehensions is │ │ │ │ that certain pattern matching operations must be moved into the filters and │ │ │ │ -cannot be written directly in the generators.

To illustrate this, do not write as follows:

f(...) ->
│ │ │ │ +cannot be written directly in the generators.

To illustrate this, do not write as follows:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    [ Expression || PatternInvolving Y  <- Expr, ...]
│ │ │ │ -    ...

Instead, write as follows:

f(...) ->
│ │ │ │ +    [ Expression || PatternInvolving Y  <- Expr, ...]
│ │ │ │ +    ...

Instead, write as follows:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
│ │ │ │ +    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
│ │ │ │      ...
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/install-win32.xhtml │ │ │ │ @@ -200,15 +200,15 @@ │ │ │ │
$ cd erts/emulator │ │ │ │ $ make debug │ │ │ │ $ cd ../etc │ │ │ │ $ make debug │ │ │ │

and sometimes

$ cd $ERL_TOP
│ │ │ │  $ make local_setup
│ │ │ │  

So now when you run $ERL_TOP/erl.exe, you should have a debug compiled │ │ │ │ -emulator, which you will see if you do a:

1> erlang:system_info(system_version).

in the erlang shell. If the returned string contains [debug], you │ │ │ │ +emulator, which you will see if you do a:

1> erlang:system_info(system_version).

in the erlang shell. If the returned string contains [debug], you │ │ │ │ got a debug compiled emulator.

To hack the erlang libraries, you simply do a make opt in the │ │ │ │ specific "applications" directory, like:

$ cd $ERL_TOP/lib/stdlib
│ │ │ │  $ make opt
│ │ │ │  

or even in the source directory...

$ cd $ERL_TOP/lib/stdlib/src
│ │ │ │  $ make opt
│ │ │ │  

Note that you're expected to have a fresh Erlang in your path when │ │ │ │ doing this, preferably the plain 27 you have built in the previous │ │ │ │ @@ -223,19 +223,19 @@ │ │ │ │ :$ERL_TOP/erts/etc/win32/wsl_tools:$ERL_TOP/bootstrap/bin:$PATH │ │ │ │

That should make it possible to rebuild any library without hassle...

If you want to copy a library (an application) newly built, to a │ │ │ │ release area, you do like with the emulator:

$ cd $ERL_TOP/lib/stdlib
│ │ │ │  $ make TESTROOT=/tmp/erlang_release release
│ │ │ │  

Remember that:

  • Windows specific C-code goes in the $ERL_TOP/erts/emulator/sys/win32, │ │ │ │ $ERL_TOP/erts/emulator/drivers/win32 or $ERL_TOP/erts/etc/win32.

  • Windows specific erlang code should be used conditionally and the │ │ │ │ host OS tested in runtime, the exactly same beam files should be │ │ │ │ -distributed for every platform! So write code like:

    case os:type() of
    │ │ │ │ -    {win32,_} ->
    │ │ │ │ -        do_windows_specific();
    │ │ │ │ +distributed for every platform! So write code like:

    case os:type() of
    │ │ │ │ +    {win32,_} ->
    │ │ │ │ +        do_windows_specific();
    │ │ │ │      Other ->
    │ │ │ │ -        do_fallback_or_exit()
    │ │ │ │ +        do_fallback_or_exit()
    │ │ │ │  end,

That's basically all you need to get going.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Frequently Asked Questions │ │ │ │

│ │ │ │
  • Q: So, now I can build Erlang using GCC on Windows?

    A: No, unfortunately not. You'll need Microsoft's Visual C++ │ │ │ ├── OEBPS/included_applications.xhtml │ │ │ │ @@ -66,72 +66,72 @@ │ │ │ │ belonging to the primary application.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Specifying Included Applications │ │ │ │

    │ │ │ │

    Which applications to include is defined by the included_applications key in │ │ │ │ -the .app file:

    {application, prim_app,
    │ │ │ │ - [{description, "Tree application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ -  {registered, [prim_app_server]},
    │ │ │ │ -  {included_applications, [incl_app]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {prim_app_cb,[]}},
    │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ - ]}.

    │ │ │ │ +the .app file:

    {application, prim_app,
    │ │ │ │ + [{description, "Tree application"},
    │ │ │ │ +  {vsn, "1"},
    │ │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ +  {registered, [prim_app_server]},
    │ │ │ │ +  {included_applications, [incl_app]},
    │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ +  {mod, {prim_app_cb,[]}},
    │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ + ]}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Synchronizing Processes during Startup │ │ │ │

    │ │ │ │

    The supervisor tree of an included application is started as part of the │ │ │ │ supervisor tree of the including application. If there is a need for │ │ │ │ synchronization between processes in the including and included applications, │ │ │ │ this can be achieved by using start phases.

    Start phases are defined by the start_phases key in the .app file as a list │ │ │ │ of tuples {Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a │ │ │ │ term.

    The value of the mod key of the including application must be set to │ │ │ │ {application_starter,[Module,StartArgs]}, where Module as usual is the │ │ │ │ application callback module. StartArgs is a term provided as argument to the │ │ │ │ -callback function Module:start/2:

    {application, prim_app,
    │ │ │ │ - [{description, "Tree application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ -  {registered, [prim_app_server]},
    │ │ │ │ -  {included_applications, [incl_app]},
    │ │ │ │ -  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ - ]}.
    │ │ │ │ +callback function Module:start/2:

    {application, prim_app,
    │ │ │ │ + [{description, "Tree application"},
    │ │ │ │ +  {vsn, "1"},
    │ │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ │ +  {registered, [prim_app_server]},
    │ │ │ │ +  {included_applications, [incl_app]},
    │ │ │ │ +  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ +  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ │ + ]}.
    │ │ │ │  
    │ │ │ │ -{application, incl_app,
    │ │ │ │ - [{description, "Included application"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
    │ │ │ │ -  {registered, []},
    │ │ │ │ -  {start_phases, [{go,[]}]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {incl_app_cb,[]}}
    │ │ │ │ - ]}.

    When starting a primary application with included applications, the primary │ │ │ │ +{application, incl_app, │ │ │ │ + [{description, "Included application"}, │ │ │ │ + {vsn, "1"}, │ │ │ │ + {modules, [incl_app_cb, incl_app_sup, incl_app_server]}, │ │ │ │ + {registered, []}, │ │ │ │ + {start_phases, [{go,[]}]}, │ │ │ │ + {applications, [kernel, stdlib, sasl]}, │ │ │ │ + {mod, {incl_app_cb,[]}} │ │ │ │ + ]}.

    When starting a primary application with included applications, the primary │ │ │ │ application is started the normal way, that is:

    • The application controller creates an application master for the application
    • The application master calls Module:start(normal, StartArgs) to start the │ │ │ │ top supervisor.

    Then, for the primary application and each included application in top-down, │ │ │ │ left-to-right order, the application master calls │ │ │ │ Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for the │ │ │ │ primary application, in that order. If a phase is not defined for an included │ │ │ │ application, the function is not called for this phase and application.

    The following requirements apply to the .app file for an included application:

    • The {mod, {Module,StartArgs}} option must be included. This option is used │ │ │ │ to find the callback module Module of the application. StartArgs is │ │ │ │ ignored, as Module:start/2 is called only for the primary application.
    • If the included application itself contains included applications, instead the │ │ │ │ {mod, {application_starter, [Module,StartArgs]}} option must be included.
    • The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set │ │ │ │ of specified phases must be a subset of the set of phases specified for the │ │ │ │ primary application.

    When starting prim_app as defined above, the application controller calls the │ │ │ │ following callback functions before application:start(prim_app) returns a │ │ │ │ -value:

    application:start(prim_app)
    │ │ │ │ - => prim_app_cb:start(normal, [])
    │ │ │ │ - => prim_app_cb:start_phase(init, normal, [])
    │ │ │ │ - => prim_app_cb:start_phase(go, normal, [])
    │ │ │ │ - => incl_app_cb:start_phase(go, normal, [])
    │ │ │ │ +value:

    application:start(prim_app)
    │ │ │ │ + => prim_app_cb:start(normal, [])
    │ │ │ │ + => prim_app_cb:start_phase(init, normal, [])
    │ │ │ │ + => prim_app_cb:start_phase(go, normal, [])
    │ │ │ │ + => incl_app_cb:start_phase(go, normal, [])
    │ │ │ │  ok
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/gen_server_concepts.xhtml │ │ │ │ @@ -62,63 +62,63 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │ │ │

    An example of a simple server written in plain Erlang is provided in │ │ │ │ Overview. The server can be reimplemented using │ │ │ │ -gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ │ --behaviour(gen_server).
    │ │ │ │ +gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ │ +-behaviour(gen_server).
    │ │ │ │  
    │ │ │ │ --export([start_link/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ │ +-export([start_link/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ │  
    │ │ │ │ -start_link() ->
    │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ │ +start_link() ->
    │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ │  
    │ │ │ │ -alloc() ->
    │ │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ │ +alloc() ->
    │ │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │ │  
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │ │  
    │ │ │ │ -init(_Args) ->
    │ │ │ │ -    {ok, channels()}.
    │ │ │ │ +init(_Args) ->
    │ │ │ │ +    {ok, channels()}.
    │ │ │ │  
    │ │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -    {reply, Ch, Chs2}.
    │ │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +    {reply, Ch, Chs2}.
    │ │ │ │  
    │ │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ │ -    {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + Chs2 = free(Ch, Chs), │ │ │ │ + {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting a Gen_Server │ │ │ │

    │ │ │ │

    In the example in the previous section, gen_server is started by calling │ │ │ │ -ch3:start_link():

    start_link() ->
    │ │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ │ +ch3:start_link():

    start_link() ->
    │ │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ │ spawns and links to a new process, a gen_server.

    • The first argument, {local, ch3}, specifies the name. │ │ │ │ The gen_server is then locally registered as ch3.

      If the name is omitted, the gen_server is not registered. Instead its pid │ │ │ │ must be used. The name can also be given as {global, Name}, in which case │ │ │ │ the gen_server is registered using global:register_name/2.

    • The second argument, ch3, is the name of the callback module, which is │ │ │ │ the module where the callback functions are located.

      The interface functions (start_link/0, alloc/0, and free/1) are located │ │ │ │ in the same module as the callback functions (init/1, handle_call/3, and │ │ │ │ handle_cast/2). It is usually good programming practice to have the code │ │ │ │ corresponding to one process contained in a single module.

    • The third argument, [], is a term that is passed as is to the callback │ │ │ │ function init. Here, init does not need any indata and ignores the │ │ │ │ argument.

    • The fourth argument, [], is a list of options. See gen_server │ │ │ │ for the available options.

    If name registration succeeds, the new gen_server process calls the callback │ │ │ │ function ch3:init([]). init is expected to return {ok, State}, where │ │ │ │ State is the internal state of the gen_server. In this case, the state is │ │ │ │ -the available channels.

    init(_Args) ->
    │ │ │ │ -    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ │ +the available channels.

    init(_Args) ->
    │ │ │ │ +    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ │ gen_server has been initialized and is ready to receive requests.

    gen_server:start_link/4 must be used if the gen_server is part of │ │ │ │ a supervision tree, meaning that it was started by a supervisor. There │ │ │ │ is another function, gen_server:start/4, to start a standalone │ │ │ │ gen_server that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -126,32 +126,32 @@ │ │ │ │

    │ │ │ │

    The synchronous request alloc() is implemented using gen_server:call/2:

    alloc() ->
    │ │ │ │      gen_server:call(ch3, alloc).

    ch3 is the name of the gen_server and must agree with the name │ │ │ │ used to start it. alloc is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ When the request is received, the gen_server calls │ │ │ │ handle_call(Request, From, State), which is expected to return │ │ │ │ a tuple {reply,Reply,State1}. Reply is the reply that is to be sent back │ │ │ │ -to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ │ +to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ │ set of remaining available channels Chs2.

    Thus, the call ch3:alloc() returns the allocated channel Ch and the │ │ │ │ gen_server then waits for new requests, now with an updated list of │ │ │ │ available channels.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Asynchronous Requests - Cast │ │ │ │

    │ │ │ │ -

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ │ -    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ +

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ │ +    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ │ cast, and thus free, then returns ok.

    When the request is received, the gen_server calls │ │ │ │ handle_cast(Request, State), which is expected to return a tuple │ │ │ │ -{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ │ -    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ │ +{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ │ +    Chs2 = free(Ch, Chs),
    │ │ │ │ +    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ │ The gen_server is now ready for new requests.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

    │ │ │ │

    │ │ │ │ @@ -162,65 +162,65 @@ │ │ │ │

    │ │ │ │

    If the gen_server is part of a supervision tree, no stop function is needed. │ │ │ │ The gen_server is automatically terminated by its supervisor. Exactly how │ │ │ │ this is done is defined by a shutdown strategy │ │ │ │ set in the supervisor.

    If it is necessary to clean up before termination, the shutdown strategy │ │ │ │ must be a time-out value and the gen_server must be set to trap exit signals │ │ │ │ in function init. When ordered to shutdown, the gen_server then calls │ │ │ │ -the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ │ +the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ │      ...,
    │ │ │ │ -    process_flag(trap_exit, true),
    │ │ │ │ +    process_flag(trap_exit, true),
    │ │ │ │      ...,
    │ │ │ │ -    {ok, State}.
    │ │ │ │ +    {ok, State}.
    │ │ │ │  
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -terminate(shutdown, State) ->
    │ │ │ │ +terminate(shutdown, State) ->
    │ │ │ │      %% Code for cleaning up here
    │ │ │ │      ...
    │ │ │ │      ok.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone Gen_Servers │ │ │ │

    │ │ │ │

    If the gen_server is not part of a supervision tree, a stop function │ │ │ │ can be useful, for example:

    ...
    │ │ │ │ -export([stop/0]).
    │ │ │ │ +export([stop/0]).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -stop() ->
    │ │ │ │ -    gen_server:cast(ch3, stop).
    │ │ │ │ +stop() ->
    │ │ │ │ +    gen_server:cast(ch3, stop).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -handle_cast(stop, State) ->
    │ │ │ │ -    {stop, normal, State};
    │ │ │ │ -handle_cast({free, Ch}, State) ->
    │ │ │ │ +handle_cast(stop, State) ->
    │ │ │ │ +    {stop, normal, State};
    │ │ │ │ +handle_cast({free, Ch}, State) ->
    │ │ │ │      ...
    │ │ │ │  
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -terminate(normal, State) ->
    │ │ │ │ +terminate(normal, State) ->
    │ │ │ │      ok.

    The callback function handling the stop request returns a tuple │ │ │ │ {stop,normal,State1}, where normal specifies that it is │ │ │ │ a normal termination and State1 is a new value for the state │ │ │ │ of the gen_server. This causes the gen_server to call │ │ │ │ terminate(normal, State1) and then it terminates gracefully.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │ │

    │ │ │ │

    If the gen_server is to be able to receive other messages than requests, │ │ │ │ the callback function handle_info(Info, State) must be implemented │ │ │ │ to handle them. Examples of other messages are exit messages, │ │ │ │ if the gen_server is linked to other processes than the supervisor │ │ │ │ -and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ │ +and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ │      %% Code to handle exits here.
    │ │ │ │      ...
    │ │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ │      %% Code to convert state (and more) during code change.
    │ │ │ │      ...
    │ │ │ │ -    {ok, NewState}.
    │ │ │ │ +
    {ok, NewState}.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/funs.xhtml │ │ │ │ @@ -22,399 +22,399 @@ │ │ │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │ │

    │ │ │ │ -

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ │ -double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ │ -[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ │ -add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ │ -by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ │ -map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ │ -follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ │ -add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ │ +

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ │ +double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ │ +[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ │ +add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ │ +by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ │ +map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ │ +follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ │ +add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ │ arguments and returns a new list, obtained by applying F to each of the │ │ │ │ elements in L.

    The process of abstracting out the common features of a number of different │ │ │ │ programs is called procedural abstraction. Procedural abstraction can be used │ │ │ │ to write several different functions that have a similar structure, but differ │ │ │ │ in some minor detail. This is done as follows:

    1. Step 1. Write one function that represents the common features of these │ │ │ │ functions.
    2. Step 2. Parameterize the difference in terms of functions that are passed │ │ │ │ as arguments to the common function.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │ │

    │ │ │ │

    This section illustrates procedural abstraction. Initially, the following two │ │ │ │ -examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ │ -    io:format(Stream, "~p~n", [H]),
    │ │ │ │ -    print_list(Stream, T);
    │ │ │ │ -print_list(Stream, []) ->
    │ │ │ │ -    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ │ +examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ │ +    io:format(Stream, "~p~n", [H]),
    │ │ │ │ +    print_list(Stream, T);
    │ │ │ │ +print_list(Stream, []) ->
    │ │ │ │ +    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ │      Pid ! Msg,
    │ │ │ │ -    broadcast(Msg, Pids);
    │ │ │ │ -broadcast(_, []) ->
    │ │ │ │ +    broadcast(Msg, Pids);
    │ │ │ │ +broadcast(_, []) ->
    │ │ │ │      true.

    These two functions have a similar structure. They both iterate over a list and │ │ │ │ do something to each element in the list. The "something" is passed on as an │ │ │ │ -extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ │ -    F(H),
    │ │ │ │ -    foreach(F, T);
    │ │ │ │ -foreach(F, []) ->
    │ │ │ │ -    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ │ +extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ │ +    F(H),
    │ │ │ │ +    foreach(F, T);
    │ │ │ │ +foreach(F, []) ->
    │ │ │ │ +    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ │ calls Fun(X) for each element X in L and the processing occurs in the │ │ │ │ order that the elements were defined in L. map does not define the order in │ │ │ │ which its elements are processed.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Syntax of Funs │ │ │ │

    │ │ │ │

    Funs are written with the following syntax (see │ │ │ │ -Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ │ +Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ │          ...
    │ │ │ │      end

    This creates an anonymous function of N arguments and binds it to the variable │ │ │ │ F.

    Another function, FunctionName, written in the same module, can be passed as │ │ │ │ an argument, using the following syntax:

    F = fun FunctionName/Arity

    With this form of function reference, the function that is referred to does not │ │ │ │ need to be exported from the module.

    It is also possible to refer to a function defined in a different module, with │ │ │ │ -the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ │ --export([t1/0, t2/0]).
    │ │ │ │ --import(lists, [map/2]).
    │ │ │ │ +the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ │ +-export([t1/0, t2/0]).
    │ │ │ │ +-import(lists, [map/2]).
    │ │ │ │  
    │ │ │ │ -t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ │ +t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ │  
    │ │ │ │ -t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ │ +t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ │  
    │ │ │ │ -double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ │ -is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ │ -   apply(F, Args);
    │ │ │ │ -f(N, _) when is_integer(N) ->
    │ │ │ │ +double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ │ +is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ │ +   apply(F, Args);
    │ │ │ │ +f(N, _) when is_integer(N) ->
    │ │ │ │     N.

    Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve │ │ │ │ information about a fun, and the BIF erlang:fun_to_list/1 returns a textual │ │ │ │ representation of a fun. The check_process_code/2 │ │ │ │ BIF returns true if the process contains funs that depend on the old version │ │ │ │ of a module.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings Within a Fun │ │ │ │

    │ │ │ │

    The scope rules for variables that occur in funs are as follows:

    • All variables that occur in the head of a fun are assumed to be "fresh" │ │ │ │ variables.
    • Variables that are defined before the fun, and that occur in function calls or │ │ │ │ -guard tests within the fun, have the values they had outside the fun.
    • Variables cannot be exported from a fun.

    The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ │ -    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ │ -    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ │ +guard tests within the fun, have the values they had outside the fun.

  • Variables cannot be exported from a fun.

The following examples illustrate these rules:

print_list(File, List) ->
│ │ │ │ +    {ok, Stream} = file:open(File, write),
│ │ │ │ +    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
│ │ │ │ +    file:close(Stream).

Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ │ variable Stream, which is used within the fun, gets its value from the │ │ │ │ file:open line.

As any variable that occurs in the head of a fun is considered a new variable, │ │ │ │ -it is equally valid to write as follows:

print_list(File, List) ->
│ │ │ │ -    {ok, Stream} = file:open(File, write),
│ │ │ │ -    foreach(fun(File) ->
│ │ │ │ -                io:format(Stream,"~p~n",[File])
│ │ │ │ -            end, List),
│ │ │ │ -    file:close(Stream).

Here, File is used as the new variable instead of X. This is not so wise │ │ │ │ +it is equally valid to write as follows:

print_list(File, List) ->
│ │ │ │ +    {ok, Stream} = file:open(File, write),
│ │ │ │ +    foreach(fun(File) ->
│ │ │ │ +                io:format(Stream,"~p~n",[File])
│ │ │ │ +            end, List),
│ │ │ │ +    file:close(Stream).

Here, File is used as the new variable instead of X. This is not so wise │ │ │ │ because code in the fun body cannot refer to the variable File, which is │ │ │ │ defined outside of the fun. Compiling this example gives the following │ │ │ │ diagnostic:

./FileName.erl:Line: Warning: variable 'File'
│ │ │ │        shadowed in 'fun'

This indicates that the variable File, which is defined inside the fun, │ │ │ │ collides with the variable File, which is defined outside the fun.

The rules for importing variables into a fun has the consequence that certain │ │ │ │ pattern matching operations must be moved into guard expressions and cannot be │ │ │ │ written in the head of the fun. For example, you might write the following code │ │ │ │ if you intend the first clause of F to be evaluated when the value of its │ │ │ │ -argument is Y:

f(...) ->
│ │ │ │ +argument is Y:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    map(fun(X) when X == Y ->
│ │ │ │ +    map(fun(X) when X == Y ->
│ │ │ │               ;
│ │ │ │ -           (_) ->
│ │ │ │ +           (_) ->
│ │ │ │               ...
│ │ │ │ -        end, ...)
│ │ │ │ -    ...

instead of writing the following code:

f(...) ->
│ │ │ │ +        end, ...)
│ │ │ │ +    ...

instead of writing the following code:

f(...) ->
│ │ │ │      Y = ...
│ │ │ │ -    map(fun(Y) ->
│ │ │ │ +    map(fun(Y) ->
│ │ │ │               ;
│ │ │ │ -           (_) ->
│ │ │ │ +           (_) ->
│ │ │ │               ...
│ │ │ │ -        end, ...)
│ │ │ │ +        end, ...)
│ │ │ │      ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Funs and Module Lists │ │ │ │

│ │ │ │

The following examples show a dialogue with the Erlang shell. All the higher │ │ │ │ order functions discussed are exported from the module lists.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │ │

│ │ │ │ -

lists:map/2 takes a function of one argument and a list of terms:

map(F, [H|T]) -> [F(H)|map(F, T)];
│ │ │ │ -map(F, [])    -> [].

It returns the list obtained by applying the function to every argument in the │ │ │ │ +

lists:map/2 takes a function of one argument and a list of terms:

map(F, [H|T]) -> [F(H)|map(F, T)];
│ │ │ │ +map(F, [])    -> [].

It returns the list obtained by applying the function to every argument in the │ │ │ │ list.

When a new fun is defined in the shell, the value of the fun is printed as │ │ │ │ -Fun#<erl_eval>:

> Double = fun(X) -> 2 * X end.
│ │ │ │ +Fun#<erl_eval>:

> Double = fun(X) -> 2 * X end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> lists:map(Double, [1,2,3,4,5]).
│ │ │ │ -[2,4,6,8,10]

│ │ │ │ +> lists:map(Double, [1,2,3,4,5]). │ │ │ │ +[2,4,6,8,10]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ any │ │ │ │

│ │ │ │ -

lists:any/2 takes a predicate P of one argument and a list of terms:

any(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ +

lists:any/2 takes a predicate P of one argument and a list of terms:

any(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │          true  ->  true;
│ │ │ │ -        false ->  any(Pred, T)
│ │ │ │ +        false ->  any(Pred, T)
│ │ │ │      end;
│ │ │ │ -any(Pred, []) ->
│ │ │ │ +any(Pred, []) ->
│ │ │ │      false.

A predicate is a function that returns true or false. any is true if │ │ │ │ there is a term X in the list such that P(X) is true.

A predicate Big(X) is defined, which is true if its argument is greater that │ │ │ │ -10:

> Big =  fun(X) -> if X > 10 -> true; true -> false end end.
│ │ │ │ +10:

> Big =  fun(X) -> if X > 10 -> true; true -> false end end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> lists:any(Big, [1,2,3,4]).
│ │ │ │ +> lists:any(Big, [1,2,3,4]).
│ │ │ │  false
│ │ │ │ -> lists:any(Big, [1,2,3,12,5]).
│ │ │ │ +> lists:any(Big, [1,2,3,12,5]).
│ │ │ │  true

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ all │ │ │ │

│ │ │ │ -

lists:all/2 has the same arguments as any:

all(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  ->  all(Pred, T);
│ │ │ │ +

lists:all/2 has the same arguments as any:

all(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  ->  all(Pred, T);
│ │ │ │          false ->  false
│ │ │ │      end;
│ │ │ │ -all(Pred, []) ->
│ │ │ │ -    true.

It is true if the predicate applied to all elements in the list is true.

> lists:all(Big, [1,2,3,4,12,6]).
│ │ │ │ +all(Pred, []) ->
│ │ │ │ +    true.

It is true if the predicate applied to all elements in the list is true.

> lists:all(Big, [1,2,3,4,12,6]).
│ │ │ │  false
│ │ │ │ -> lists:all(Big, [12,13,14,15]).
│ │ │ │ +> lists:all(Big, [12,13,14,15]).
│ │ │ │  true

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │ │

│ │ │ │ -

lists:foreach/2 takes a function of one argument and a list of terms:

foreach(F, [H|T]) ->
│ │ │ │ -    F(H),
│ │ │ │ -    foreach(F, T);
│ │ │ │ -foreach(F, []) ->
│ │ │ │ +

lists:foreach/2 takes a function of one argument and a list of terms:

foreach(F, [H|T]) ->
│ │ │ │ +    F(H),
│ │ │ │ +    foreach(F, T);
│ │ │ │ +foreach(F, []) ->
│ │ │ │      ok.

The function is applied to each argument in the list. foreach returns ok. It │ │ │ │ -is only used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
│ │ │ │ +is only used for its side-effect:

> lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
│ │ │ │  1
│ │ │ │  2
│ │ │ │  3
│ │ │ │  4
│ │ │ │  ok

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ foldl │ │ │ │

│ │ │ │ -

lists:foldl/3 takes a function of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Tail]) ->
│ │ │ │ -    foldl(F, F(Hd, Accu), Tail);
│ │ │ │ -foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive │ │ │ │ +

lists:foldl/3 takes a function of two arguments, an accumulator and a list:

foldl(F, Accu, [Hd|Tail]) ->
│ │ │ │ +    foldl(F, F(Hd, Accu), Tail);
│ │ │ │ +foldl(F, Accu, []) -> Accu.

The function is called with two arguments. The first argument is the successive │ │ │ │ elements in the list. The second argument is the accumulator. The function must │ │ │ │ return a new accumulator, which is used the next time the function is called.

If you have a list of lists L = ["I","like","Erlang"], then you can sum the │ │ │ │ -lengths of all the strings in L as follows:

> L = ["I","like","Erlang"].
│ │ │ │ -["I","like","Erlang"]
│ │ │ │ -10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
│ │ │ │ -11

lists:foldl/3 works like a while loop in an imperative language:

L =  ["I","like","Erlang"],
│ │ │ │ +lengths of all the strings in L as follows:

> L = ["I","like","Erlang"].
│ │ │ │ +["I","like","Erlang"]
│ │ │ │ +10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
│ │ │ │ +11

lists:foldl/3 works like a while loop in an imperative language:

L =  ["I","like","Erlang"],
│ │ │ │  Sum = 0,
│ │ │ │ -while( L != []){
│ │ │ │ -    Sum += length(head(L)),
│ │ │ │ -    L = tail(L)
│ │ │ │ +while( L != []){
│ │ │ │ +    Sum += length(head(L)),
│ │ │ │ +    L = tail(L)
│ │ │ │  end

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ mapfoldl │ │ │ │

│ │ │ │ -

lists:mapfoldl/3 simultaneously maps and folds over a list:

mapfoldl(F, Accu0, [Hd|Tail]) ->
│ │ │ │ -    {R,Accu1} = F(Hd, Accu0),
│ │ │ │ -    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
│ │ │ │ -    {[R|Rs], Accu2};
│ │ │ │ -mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change all letters in L to upper case and │ │ │ │ -then count them.

First the change to upper case:

> Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
│ │ │ │ -(X) -> X
│ │ │ │ +

lists:mapfoldl/3 simultaneously maps and folds over a list:

mapfoldl(F, Accu0, [Hd|Tail]) ->
│ │ │ │ +    {R,Accu1} = F(Hd, Accu0),
│ │ │ │ +    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
│ │ │ │ +    {[R|Rs], Accu2};
│ │ │ │ +mapfoldl(F, Accu, []) -> {[], Accu}.

The following example shows how to change all letters in L to upper case and │ │ │ │ +then count them.

First the change to upper case:

> Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
│ │ │ │ +(X) -> X
│ │ │ │  end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │  > Upcase_word =
│ │ │ │ -fun(X) ->
│ │ │ │ -lists:map(Upcase, X)
│ │ │ │ +fun(X) ->
│ │ │ │ +lists:map(Upcase, X)
│ │ │ │  end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Upcase_word("Erlang").
│ │ │ │ +> Upcase_word("Erlang").
│ │ │ │  "ERLANG"
│ │ │ │ -> lists:map(Upcase_word, L).
│ │ │ │ -["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
│ │ │ │ -{Upcase_word(Word), Sum + length(Word)}
│ │ │ │ -end, 0, L).
│ │ │ │ -{["I","LIKE","ERLANG"],11}

│ │ │ │ +> lists:map(Upcase_word, L). │ │ │ │ +["I","LIKE","ERLANG"]

Now, the fold and the map can be done at the same time:

> lists:mapfoldl(fun(Word, Sum) ->
│ │ │ │ +{Upcase_word(Word), Sum + length(Word)}
│ │ │ │ +end, 0, L).
│ │ │ │ +{["I","LIKE","ERLANG"],11}

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ filter │ │ │ │

│ │ │ │

lists:filter/2 takes a predicate of one argument and a list and returns all elements │ │ │ │ -in the list that satisfy the predicate:

filter(F, [H|T]) ->
│ │ │ │ -    case F(H) of
│ │ │ │ -        true  -> [H|filter(F, T)];
│ │ │ │ -        false -> filter(F, T)
│ │ │ │ +in the list that satisfy the predicate:

filter(F, [H|T]) ->
│ │ │ │ +    case F(H) of
│ │ │ │ +        true  -> [H|filter(F, T)];
│ │ │ │ +        false -> filter(F, T)
│ │ │ │      end;
│ │ │ │ -filter(F, []) -> [].
> lists:filter(Big, [500,12,2,45,6,7]).
│ │ │ │ -[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, │ │ │ │ +filter(F, []) -> [].

> lists:filter(Big, [500,12,2,45,6,7]).
│ │ │ │ +[500,12,45]

Combining maps and filters enables writing of very succinct code. For example, │ │ │ │ to define a set difference function diff(L1, L2) to be the difference between │ │ │ │ -the lists L1 and L2, the code can be written as follows:

diff(L1, L2) ->
│ │ │ │ -    filter(fun(X) -> not member(X, L2) end, L1).

This gives the list of all elements in L1 that are not contained in L2.

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

│ │ │ │ +the lists L1 and L2, the code can be written as follows:

diff(L1, L2) ->
│ │ │ │ +    filter(fun(X) -> not member(X, L2) end, L1).

This gives the list of all elements in L1 that are not contained in L2.

The AND intersection of the list L1 and L2 is also easily defined:

intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ takewhile │ │ │ │

│ │ │ │

lists:takewhile/2 takes elements X from a list L as long as the predicate │ │ │ │ -P(X) is true:

takewhile(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> [H|takewhile(Pred, T)];
│ │ │ │ -        false -> []
│ │ │ │ +P(X) is true:

takewhile(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> [H|takewhile(Pred, T)];
│ │ │ │ +        false -> []
│ │ │ │      end;
│ │ │ │ -takewhile(Pred, []) ->
│ │ │ │ -    [].
> lists:takewhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -[200,500,45]

│ │ │ │ +takewhile(Pred, []) -> │ │ │ │ + [].

> lists:takewhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +[200,500,45]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ dropwhile │ │ │ │

│ │ │ │ -

lists:dropwhile/2 is the complement of takewhile:

dropwhile(Pred, [H|T]) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> dropwhile(Pred, T);
│ │ │ │ -        false -> [H|T]
│ │ │ │ +

lists:dropwhile/2 is the complement of takewhile:

dropwhile(Pred, [H|T]) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> dropwhile(Pred, T);
│ │ │ │ +        false -> [H|T]
│ │ │ │      end;
│ │ │ │ -dropwhile(Pred, []) ->
│ │ │ │ -    [].
> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -[5,3,45,6]

│ │ │ │ +dropwhile(Pred, []) -> │ │ │ │ + [].

> lists:dropwhile(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +[5,3,45,6]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ splitwith │ │ │ │

│ │ │ │

lists:splitwith/2 splits the list L into the two sublists {L1, L2}, where │ │ │ │ -L = takewhile(P, L) and L2 = dropwhile(P, L):

splitwith(Pred, L) ->
│ │ │ │ -    splitwith(Pred, L, []).
│ │ │ │ +L = takewhile(P, L) and L2 = dropwhile(P, L):

splitwith(Pred, L) ->
│ │ │ │ +    splitwith(Pred, L, []).
│ │ │ │  
│ │ │ │ -splitwith(Pred, [H|T], L) ->
│ │ │ │ -    case Pred(H) of
│ │ │ │ -        true  -> splitwith(Pred, T, [H|L]);
│ │ │ │ -        false -> {reverse(L), [H|T]}
│ │ │ │ +splitwith(Pred, [H|T], L) ->
│ │ │ │ +    case Pred(H) of
│ │ │ │ +        true  -> splitwith(Pred, T, [H|L]);
│ │ │ │ +        false -> {reverse(L), [H|T]}
│ │ │ │      end;
│ │ │ │ -splitwith(Pred, [], L) ->
│ │ │ │ -    {reverse(L), []}.
> lists:splitwith(Big, [200,500,45,5,3,45,6]).
│ │ │ │ -{[200,500,45],[5,3,45,6]}

│ │ │ │ +splitwith(Pred, [], L) -> │ │ │ │ + {reverse(L), []}.

> lists:splitwith(Big, [200,500,45,5,3,45,6]).
│ │ │ │ +{[200,500,45],[5,3,45,6]}

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Funs Returning Funs │ │ │ │

│ │ │ │

So far, only functions that take funs as arguments have been described. More │ │ │ │ powerful functions, that themselves return funs, can also be written. The │ │ │ │ following examples illustrate these type of functions.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Simple Higher Order Functions │ │ │ │

│ │ │ │

Adder(X) is a function that given X, returns a new function G such that │ │ │ │ -G(K) returns K + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
│ │ │ │ +G(K) returns K + X:

> Adder = fun(X) -> fun(Y) -> X + Y end end.
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Add6 = Adder(6).
│ │ │ │ +> Add6 = Adder(6).
│ │ │ │  #Fun<erl_eval.6.72228031>
│ │ │ │ -> Add6(10).
│ │ │ │ +> Add6(10).
│ │ │ │  16

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Infinite Lists │ │ │ │

│ │ │ │ -

The idea is to write something like:

-module(lazy).
│ │ │ │ --export([ints_from/1]).
│ │ │ │ -ints_from(N) ->
│ │ │ │ -    fun() ->
│ │ │ │ -            [N|ints_from(N+1)]
│ │ │ │ -    end.

Then proceed as follows:

> XX = lazy:ints_from(1).
│ │ │ │ +

The idea is to write something like:

-module(lazy).
│ │ │ │ +-export([ints_from/1]).
│ │ │ │ +ints_from(N) ->
│ │ │ │ +    fun() ->
│ │ │ │ +            [N|ints_from(N+1)]
│ │ │ │ +    end.

Then proceed as follows:

> XX = lazy:ints_from(1).
│ │ │ │  #Fun<lazy.0.29874839>
│ │ │ │ -> XX().
│ │ │ │ -[1|#Fun<lazy.0.29874839>]
│ │ │ │ -> hd(XX()).
│ │ │ │ +> XX().
│ │ │ │ +[1|#Fun<lazy.0.29874839>]
│ │ │ │ +> hd(XX()).
│ │ │ │  1
│ │ │ │ -> Y = tl(XX()).
│ │ │ │ +> Y = tl(XX()).
│ │ │ │  #Fun<lazy.0.29874839>
│ │ │ │ -> hd(Y()).
│ │ │ │ +> hd(Y()).
│ │ │ │  2

And so on. This is an example of "lazy embedding".

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Parsing │ │ │ │

│ │ │ │ -

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toks1} | fail

Toks is the list of tokens to be parsed. A successful parse returns │ │ │ │ +

The following examples show parsers of the following type:

Parser(Toks) -> {ok, Tree, Toks1} | fail

Toks is the list of tokens to be parsed. A successful parse returns │ │ │ │ {ok, Tree, Toks1}.

  • Tree is a parse tree.
  • Toks1 is a tail of Tree that contains symbols encountered after the │ │ │ │ structure that was correctly parsed.

An unsuccessful parse returns fail.

The following example illustrates a simple, functional parser that parses the │ │ │ │ grammar:

(a | b) & (c | d)

The following code defines a function pconst(X) in the module funparse, │ │ │ │ -which returns a fun that parses a list of tokens:

pconst(X) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ +which returns a fun that parses a list of tokens:

pconst(X) ->
│ │ │ │ +    fun (T) ->
│ │ │ │         case T of
│ │ │ │ -           [X|T1] -> {ok, {const, X}, T1};
│ │ │ │ +           [X|T1] -> {ok, {const, X}, T1};
│ │ │ │             _      -> fail
│ │ │ │         end
│ │ │ │ -    end.

This function can be used as follows:

> P1 = funparse:pconst(a).
│ │ │ │ +    end.

This function can be used as follows:

> P1 = funparse:pconst(a).
│ │ │ │  #Fun<funparse.0.22674075>
│ │ │ │ -> P1([a,b,c]).
│ │ │ │ -{ok,{const,a},[b,c]}
│ │ │ │ -> P1([x,y,z]).
│ │ │ │ +> P1([a,b,c]).
│ │ │ │ +{ok,{const,a},[b,c]}
│ │ │ │ +> P1([x,y,z]).
│ │ │ │  fail

Next, the two higher order functions pand and por are defined. They combine │ │ │ │ -primitive parsers to produce more complex parsers.

First pand:

pand(P1, P2) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ -        case P1(T) of
│ │ │ │ -            {ok, R1, T1} ->
│ │ │ │ -                case P2(T1) of
│ │ │ │ -                    {ok, R2, T2} ->
│ │ │ │ -                        {ok, {'and', R1, R2}};
│ │ │ │ +primitive parsers to produce more complex parsers.

First pand:

pand(P1, P2) ->
│ │ │ │ +    fun (T) ->
│ │ │ │ +        case P1(T) of
│ │ │ │ +            {ok, R1, T1} ->
│ │ │ │ +                case P2(T1) of
│ │ │ │ +                    {ok, R2, T2} ->
│ │ │ │ +                        {ok, {'and', R1, R2}};
│ │ │ │                      fail ->
│ │ │ │                          fail
│ │ │ │                  end;
│ │ │ │              fail ->
│ │ │ │                  fail
│ │ │ │          end
│ │ │ │      end.

Given a parser P1 for grammar G1, and a parser P2 for grammar G2, │ │ │ │ pand(P1, P2) returns a parser for the grammar, which consists of sequences of │ │ │ │ tokens that satisfy G1, followed by sequences of tokens that satisfy G2.

por(P1, P2) returns a parser for the language described by the grammar G1 or │ │ │ │ -G2:

por(P1, P2) ->
│ │ │ │ -    fun (T) ->
│ │ │ │ -        case P1(T) of
│ │ │ │ -            {ok, R, T1} ->
│ │ │ │ -                {ok, {'or',1,R}, T1};
│ │ │ │ +G2:

por(P1, P2) ->
│ │ │ │ +    fun (T) ->
│ │ │ │ +        case P1(T) of
│ │ │ │ +            {ok, R, T1} ->
│ │ │ │ +                {ok, {'or',1,R}, T1};
│ │ │ │              fail ->
│ │ │ │ -                case P2(T) of
│ │ │ │ -                    {ok, R1, T1} ->
│ │ │ │ -                        {ok, {'or',2,R1}, T1};
│ │ │ │ +                case P2(T) of
│ │ │ │ +                    {ok, R1, T1} ->
│ │ │ │ +                        {ok, {'or',2,R1}, T1};
│ │ │ │                      fail ->
│ │ │ │                          fail
│ │ │ │                  end
│ │ │ │          end
│ │ │ │      end.

The original problem was to parse the grammar (a | b) & (c | d). The following │ │ │ │ -code addresses this problem:

grammar() ->
│ │ │ │ -    pand(
│ │ │ │ -         por(pconst(a), pconst(b)),
│ │ │ │ -         por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
│ │ │ │ -    (grammar())(List).

The parser can be tested as follows:

> funparse:parse([a,c]).
│ │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
│ │ │ │ -> funparse:parse([a,d]).
│ │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
│ │ │ │ -> funparse:parse([b,c]).
│ │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
│ │ │ │ -> funparse:parse([b,d]).
│ │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
│ │ │ │ -> funparse:parse([a,b]).
│ │ │ │ +code addresses this problem:

grammar() ->
│ │ │ │ +    pand(
│ │ │ │ +         por(pconst(a), pconst(b)),
│ │ │ │ +         por(pconst(c), pconst(d))).

The following code adds a parser interface to the grammar:

parse(List) ->
│ │ │ │ +    (grammar())(List).

The parser can be tested as follows:

> funparse:parse([a,c]).
│ │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
│ │ │ │ +> funparse:parse([a,d]).
│ │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
│ │ │ │ +> funparse:parse([b,c]).
│ │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
│ │ │ │ +> funparse:parse([b,d]).
│ │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
│ │ │ │ +> funparse:parse([a,b]).
│ │ │ │  fail
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/expressions.xhtml │ │ │ │ @@ -56,81 +56,81 @@ │ │ │ │
Phone_number │ │ │ │ _ │ │ │ │ _Height │ │ │ │ name@node

Variables are bound to values using pattern matching. Erlang uses │ │ │ │ single assignment, that is, a variable can only be bound once.

The anonymous variable is denoted by underscore (_) and can be used when a │ │ │ │ variable is required but its value can be ignored.

Example:

[H|_] = [1,2,3]

Variables starting with underscore (_), for example, _Height, are normal │ │ │ │ variables, not anonymous. However, they are ignored by the compiler in the sense │ │ │ │ -that they do not generate warnings.

Example:

The following code:

member(_, []) ->
│ │ │ │ -    [].

can be rewritten to be more readable:

member(Elem, []) ->
│ │ │ │ -    [].

This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ │ -the code can be rewritten to:

member(_Elem, []) ->
│ │ │ │ -    [].

Notice that since variables starting with an underscore are not anonymous, the │ │ │ │ -following example matches:

{_,_} = {1,2}

But this example fails:

{_N,_N} = {1,2}

The scope for a variable is its function clause. Variables bound in a branch of │ │ │ │ +that they do not generate warnings.

Example:

The following code:

member(_, []) ->
│ │ │ │ +    [].

can be rewritten to be more readable:

member(Elem, []) ->
│ │ │ │ +    [].

This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ │ +the code can be rewritten to:

member(_Elem, []) ->
│ │ │ │ +    [].

Notice that since variables starting with an underscore are not anonymous, the │ │ │ │ +following example matches:

{_,_} = {1,2}

But this example fails:

{_N,_N} = {1,2}

The scope for a variable is its function clause. Variables bound in a branch of │ │ │ │ an if, case, or receive expression must be bound in all branches to have a │ │ │ │ value outside the expression. Otherwise they are regarded as unsafe outside │ │ │ │ the expression.

For the try expression variable scoping is limited so that variables bound in │ │ │ │ the expression are always unsafe outside the expression.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Patterns │ │ │ │

│ │ │ │

A pattern has the same structure as a term but can contain unbound variables.

Example:

Name1
│ │ │ │ -[H|T]
│ │ │ │ -{error,Reason}

Patterns are allowed in clause heads, case expressions, │ │ │ │ +[H|T] │ │ │ │ +{error,Reason}

Patterns are allowed in clause heads, case expressions, │ │ │ │ receive expressions, and │ │ │ │ match expressions.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The Compound Pattern Operator │ │ │ │

│ │ │ │

If Pattern1 and Pattern2 are valid patterns, the following is also a valid │ │ │ │ pattern:

Pattern1 = Pattern2

When matched against a term, both Pattern1 and Pattern2 are matched against │ │ │ │ -the term. The idea behind this feature is to avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
│ │ │ │ -    Signal = {connect,From,To,Number,Options},
│ │ │ │ +the term. The idea behind this feature is to avoid reconstruction of terms.

Example:

f({connect,From,To,Number,Options}, To) ->
│ │ │ │ +    Signal = {connect,From,To,Number,Options},
│ │ │ │      ...;
│ │ │ │ -f(Signal, To) ->
│ │ │ │ -    ignore.

can instead be written as

f({connect,_,To,_,_} = Signal, To) ->
│ │ │ │ +f(Signal, To) ->
│ │ │ │ +    ignore.

can instead be written as

f({connect,_,To,_,_} = Signal, To) ->
│ │ │ │      ...;
│ │ │ │ -f(Signal, To) ->
│ │ │ │ +f(Signal, To) ->
│ │ │ │      ignore.

The compound pattern operator does not imply that its operands are matched in │ │ │ │ any particular order. That means that it is not legal to bind a variable in │ │ │ │ Pattern1 and use it in Pattern2, or vice versa.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ String Prefix in Patterns │ │ │ │

│ │ │ │ -

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

│ │ │ │ +

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read:

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Expressions in Patterns │ │ │ │

│ │ │ │

An arithmetic expression can be used within a pattern if it meets both of the │ │ │ │ -following two conditions:

  • It uses only numeric or bitwise operators.
  • Its value can be evaluated to a constant when complied.

Example:

case {Value, Result} of
│ │ │ │ -    {?THRESHOLD+1, ok} -> ...

│ │ │ │ +following two conditions:

  • It uses only numeric or bitwise operators.
  • Its value can be evaluated to a constant when complied.

Example:

case {Value, Result} of
│ │ │ │ +    {?THRESHOLD+1, ok} -> ...

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The Match Operator │ │ │ │

│ │ │ │

The following matches Pattern against Expr:

Pattern = Expr

If the matching succeeds, any unbound variable in the pattern becomes bound and │ │ │ │ the value of Expr is returned.

If multiple match operators are applied in sequence, they will be evaluated from │ │ │ │ -right to left.

If the matching fails, a badmatch run-time error occurs.

Examples:

1> {A, B} = T = {answer, 42}.
│ │ │ │ -{answer,42}
│ │ │ │ +right to left.

If the matching fails, a badmatch run-time error occurs.

Examples:

1> {A, B} = T = {answer, 42}.
│ │ │ │ +{answer,42}
│ │ │ │  2> A.
│ │ │ │  answer
│ │ │ │  3> B.
│ │ │ │  42
│ │ │ │  4> T.
│ │ │ │ -{answer,42}
│ │ │ │ -5> {C, D} = [1, 2].
│ │ │ │ +{answer,42}
│ │ │ │ +5> {C, D} = [1, 2].
│ │ │ │  ** exception error: no match of right-hand side value [1,2]

Because multiple match operators are evaluated from right to left, it means │ │ │ │ that:

Pattern1 = Pattern2 = . . . = PatternN = Expression

is equivalent to:

Temporary = Expression,
│ │ │ │  PatternN = Temporary,
│ │ │ │     .
│ │ │ │     .
│ │ │ │     .,
│ │ │ │  Pattern2 = Temporary,
│ │ │ │ @@ -144,30 +144,30 @@
│ │ │ │  can safely be skipped on a first reading.

The = character is used to denote two similar but distinct operators: the │ │ │ │ match operator and the compound pattern operator. Which one is meant is │ │ │ │ determined by context.

The compound pattern operator is used to construct a compound pattern from two │ │ │ │ patterns. Compound patterns are accepted everywhere a pattern is accepted. A │ │ │ │ compound pattern matches if all of its constituent patterns match. It is not │ │ │ │ legal for a pattern that is part of a compound pattern to use variables (as keys │ │ │ │ in map patterns or sizes in binary patterns) bound in other sub patterns of the │ │ │ │ -same compound pattern.

Examples:

1> fun(#{Key := Value} = #{key := Key}) -> Value end.
│ │ │ │ +same compound pattern.

Examples:

1> fun(#{Key := Value} = #{key := Key}) -> Value end.
│ │ │ │  * 1:7: variable 'Key' is unbound
│ │ │ │ -2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}).
│ │ │ │ -{{1,2},3}
│ │ │ │ -3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>).
│ │ │ │ -{42,43,10795}

The match operator is allowed everywhere an expression is allowed. It is used │ │ │ │ +2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}). │ │ │ │ +{{1,2},3} │ │ │ │ +3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>). │ │ │ │ +{42,43,10795}

The match operator is allowed everywhere an expression is allowed. It is used │ │ │ │ to match the value of an expression to a pattern. If multiple match operators │ │ │ │ -are applied in sequence, they will be evaluated from right to left.

Examples:

1> M = #{key => key2, key2 => value}.
│ │ │ │ -#{key => key2,key2 => value}
│ │ │ │ -2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
│ │ │ │ +are applied in sequence, they will be evaluated from right to left.

Examples:

1> M = #{key => key2, key2 => value}.
│ │ │ │ +#{key => key2,key2 => value}
│ │ │ │ +2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
│ │ │ │  value
│ │ │ │ -3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
│ │ │ │ +3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
│ │ │ │  value
│ │ │ │ -4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
│ │ │ │ +4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
│ │ │ │  * 1:12: variable 'Key' is unbound
│ │ │ │ -5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
│ │ │ │ +5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
│ │ │ │  42

The expression at prompt 2> first matches the value of variable M against │ │ │ │ pattern #{key := Key}, binding variable Key. It then matches the value of │ │ │ │ M against pattern #{Key := Value} using variable Key as the key, binding │ │ │ │ variable Value.

The expression at prompt 3> matches expression (#{key := Key} = M) against │ │ │ │ pattern #{Key := Value}. The expression inside the parentheses is evaluated │ │ │ │ first. That is, M is matched against #{key := Key}, and then the value of │ │ │ │ M is matched against pattern #{Key := Value}. That is the same evaluation │ │ │ │ @@ -181,30 +181,30 @@ │ │ │ │ binding variable Y and creating a binary. The binary is then matched against │ │ │ │ pattern <<X:Y>> using the value of Y as the size of the segment.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Function Calls │ │ │ │

│ │ │ │ -
ExprF(Expr1,...,ExprN)
│ │ │ │ -ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ │ +

ExprF(Expr1,...,ExprN)
│ │ │ │ +ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ │ ExprM and ExprF must be an atom or an expression that evaluates to an atom. │ │ │ │ The function is said to be called by using the fully qualified function name. │ │ │ │ -This is often referred to as a remote or external function call.

Example:

lists:keyfind(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ │ +This is often referred to as a remote or external function call.

Example:

lists:keyfind(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ │ an atom or evaluate to a fun.

If ExprF is an atom, the function is said to be called by using the │ │ │ │ implicitly qualified function name. If the function ExprF is locally │ │ │ │ defined, it is called. Alternatively, if ExprF is explicitly imported from the │ │ │ │ M module, M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared │ │ │ │ locally nor explicitly imported, ExprF must be the name of an automatically │ │ │ │ -imported BIF.

Examples:

handle(Msg, State)
│ │ │ │ -spawn(m, init, [])

Examples where ExprF is a fun:

1> Fun1 = fun(X) -> X+1 end,
│ │ │ │ -Fun1(3).
│ │ │ │ +imported BIF.

Examples:

handle(Msg, State)
│ │ │ │ +spawn(m, init, [])

Examples where ExprF is a fun:

1> Fun1 = fun(X) -> X+1 end,
│ │ │ │ +Fun1(3).
│ │ │ │  4
│ │ │ │ -2> fun lists:append/2([1,2], [3,4]).
│ │ │ │ -[1,2,3,4]
│ │ │ │ +2> fun lists:append/2([1,2], [3,4]).
│ │ │ │ +[1,2,3,4]
│ │ │ │  3>

Notice that when calling a local function, there is a difference between using │ │ │ │ the implicitly or fully qualified function name. The latter always refers to the │ │ │ │ latest version of the module. See │ │ │ │ Compilation and Code Loading and │ │ │ │ Function Evaluation.

│ │ │ │ │ │ │ │ │ │ │ │ @@ -221,40 +221,40 @@ │ │ │ │ called instead. This is to avoid that future additions to the set of │ │ │ │ auto-imported BIFs do not silently change the behavior of old code.

However, to avoid that old (pre R14) code changed its behavior when compiled │ │ │ │ with Erlang/OTP version R14A or later, the following restriction applies: If you │ │ │ │ override the name of a BIF that was auto-imported in OTP versions prior to R14A │ │ │ │ (ERTS version 5.8) and have an implicitly qualified call to that function in │ │ │ │ your code, you either need to explicitly remove the auto-import using a compiler │ │ │ │ directive, or replace the call with a fully qualified function call. Otherwise │ │ │ │ -you get a compilation error. See the following example:

-export([length/1,f/1]).
│ │ │ │ +you get a compilation error. See the following example:

-export([length/1,f/1]).
│ │ │ │  
│ │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │  
│ │ │ │ -length([]) ->
│ │ │ │ +length([]) ->
│ │ │ │      0;
│ │ │ │ -length([H|T]) ->
│ │ │ │ -    1 + length(T). %% Calls the local function length/1
│ │ │ │ +length([H|T]) ->
│ │ │ │ +    1 + length(T). %% Calls the local function length/1
│ │ │ │  
│ │ │ │ -f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
│ │ │ │ +f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
│ │ │ │                                    %% which is allowed in guards
│ │ │ │      long.

The same logic applies to explicitly imported functions from other modules, as │ │ │ │ to locally defined functions. It is not allowed to both import a function from │ │ │ │ -another module and have the function declared in the module at the same time:

-export([f/1]).
│ │ │ │ +another module and have the function declared in the module at the same time:

-export([f/1]).
│ │ │ │  
│ │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
│ │ │ │  
│ │ │ │ --import(mod,[length/1]).
│ │ │ │ +-import(mod,[length/1]).
│ │ │ │  
│ │ │ │ -f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
│ │ │ │ +f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
│ │ │ │                                     %% which is allowed in guards
│ │ │ │  
│ │ │ │ -    erlang:length(X);              %% Explicit call to erlang:length in body
│ │ │ │ +    erlang:length(X);              %% Explicit call to erlang:length in body
│ │ │ │  
│ │ │ │ -f(X) ->
│ │ │ │ -    length(X).                     %% mod:length/1 is called

For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ │ +f(X) -> │ │ │ │ + length(X). %% mod:length/1 is called

For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ │ name with a local function or explicit import is always allowed. However, if the │ │ │ │ -compile({no_auto_import,[F/A]) directive is not used, the compiler issues a │ │ │ │ warning whenever the function is called in the module using the implicitly │ │ │ │ qualified function name.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -266,40 +266,40 @@ │ │ │ │ ...; │ │ │ │ GuardSeqN -> │ │ │ │ BodyN │ │ │ │ end

The branches of an if-expression are scanned sequentially until a guard │ │ │ │ sequence GuardSeq that evaluates to true is found. Then the corresponding │ │ │ │ Body (a sequence of expressions separated by ,) is evaluated.

The return value of Body is the return value of the if expression.

If no guard sequence is evaluated as true, an if_clause run-time error occurs. │ │ │ │ If necessary, the guard expression true can be used in the last branch, as │ │ │ │ -that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
│ │ │ │ +that guard sequence is always true.

Example:

is_greater_than(X, Y) ->
│ │ │ │      if
│ │ │ │          X > Y ->
│ │ │ │              true;
│ │ │ │          true -> % works as an 'else' branch
│ │ │ │              false
│ │ │ │      end

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Case │ │ │ │

│ │ │ │
case Expr of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

The expression Expr is evaluated and the patterns Pattern are sequentially │ │ │ │ matched against the result. If a match succeeds and the optional guard sequence │ │ │ │ GuardSeq is true, the corresponding Body is evaluated.

The return value of Body is the return value of the case expression.

If there is no matching pattern with a true guard sequence, a case_clause │ │ │ │ -run-time error occurs.

Example:

is_valid_signal(Signal) ->
│ │ │ │ +run-time error occurs.

Example:

is_valid_signal(Signal) ->
│ │ │ │      case Signal of
│ │ │ │ -        {signal, _What, _From, _To} ->
│ │ │ │ +        {signal, _What, _From, _To} ->
│ │ │ │              true;
│ │ │ │ -        {signal, _What, _To} ->
│ │ │ │ +        {signal, _What, _To} ->
│ │ │ │              true;
│ │ │ │          _Else ->
│ │ │ │              false
│ │ │ │      end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -317,57 +317,57 @@ │ │ │ │ the top-level of a maybe block. It matches the pattern Expr1 against │ │ │ │ Expr2. If the matching succeeds, any unbound variable in the pattern becomes │ │ │ │ bound. If the expression is the last expression in the maybe block, it also │ │ │ │ returns the value of Expr2. If the matching is unsuccessful, the rest of the │ │ │ │ expressions in the maybe block are skipped and the return value of the maybe │ │ │ │ block is Expr2.

None of the variables bound in a maybe block must be used in the code that │ │ │ │ follows the block.

Here is an example:

maybe
│ │ │ │ -    {ok, A} ?= a(),
│ │ │ │ +    {ok, A} ?= a(),
│ │ │ │      true = A >= 0,
│ │ │ │ -    {ok, B} ?= b(),
│ │ │ │ +    {ok, B} ?= b(),
│ │ │ │      A + B
│ │ │ │  end

Let us first assume that a() returns {ok,42} and b() returns {ok,58}. │ │ │ │ With those return values, all of the match operators will succeed, and the │ │ │ │ return value of the maybe block is A + B, which is equal to 42 + 58 = 100.

Now let us assume that a() returns error. The conditional match operator in │ │ │ │ {ok, A} ?= a() fails to match, and the return value of the maybe block is │ │ │ │ the value of the expression that failed to match, namely error. Similarly, if │ │ │ │ b() returns wrong, the return value of the maybe block is wrong.

Finally, let us assume that a() returns {ok,-1}. Because true = A >= 0 uses │ │ │ │ the match operator =, a {badmatch,false} run-time error occurs when the │ │ │ │ -expression fails to match the pattern.

The example can be written in a less succient way using nested case expressions:

case a() of
│ │ │ │ -    {ok, A} ->
│ │ │ │ +expression fails to match the pattern.

The example can be written in a less succient way using nested case expressions:

case a() of
│ │ │ │ +    {ok, A} ->
│ │ │ │          true = A >= 0,
│ │ │ │ -        case b() of
│ │ │ │ -            {ok, B} ->
│ │ │ │ +        case b() of
│ │ │ │ +            {ok, B} ->
│ │ │ │                  A + B;
│ │ │ │              Other1 ->
│ │ │ │                  Other1
│ │ │ │          end;
│ │ │ │      Other2 ->
│ │ │ │          Other2
│ │ │ │  end

The maybe block can be augmented with else clauses:

maybe
│ │ │ │      Expr1,
│ │ │ │      ...,
│ │ │ │      ExprN
│ │ │ │  else
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

If a conditional match operator fails, the failed expression is matched against │ │ │ │ the patterns in all clauses between the else and end keywords. If a match │ │ │ │ succeeds and the optional guard sequence GuardSeq is true, the corresponding │ │ │ │ Body is evaluated. The value returned from the body is the return value of the │ │ │ │ maybe block.

If there is no matching pattern with a true guard sequence, an else_clause │ │ │ │ run-time error occurs.

None of the variables bound in a maybe block must be used in the else │ │ │ │ clauses. None of the variables bound in the else clauses must be used in the │ │ │ │ code that follows the maybe block.

Here is the previous example augmented with else clauses:

maybe
│ │ │ │ -    {ok, A} ?= a(),
│ │ │ │ +    {ok, A} ?= a(),
│ │ │ │      true = A >= 0,
│ │ │ │ -    {ok, B} ?= b(),
│ │ │ │ +    {ok, B} ?= b(),
│ │ │ │      A + B
│ │ │ │  else
│ │ │ │      error -> error;
│ │ │ │      wrong -> error
│ │ │ │  end

The else clauses translate the failing value from the conditional match │ │ │ │ operators to the value error. If the failing value is not one of the │ │ │ │ recognized values, a else_clause run-time error occurs.

│ │ │ │ @@ -386,75 +386,75 @@ │ │ │ │ {Name,Node} (or a pid located at another node), also never fails.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Receive │ │ │ │

│ │ │ │
receive
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  end

Fetches a received message present in the message queue of the process. The │ │ │ │ first message in the message queue is matched sequentially against the patterns │ │ │ │ from top to bottom. If no match was found, the matching sequence is repeated for │ │ │ │ the second message in the queue, and so on. Messages are queued in the │ │ │ │ order they were received. If a match │ │ │ │ succeeds, that is, if the Pattern matches and the optional guard sequence │ │ │ │ GuardSeq is true, then the message is removed from the message queue and the │ │ │ │ corresponding Body is evaluated. All other messages in the message queue │ │ │ │ remain unchanged.

The return value of Body is the return value of the receive expression.

receive never fails. The execution is suspended, possibly indefinitely, until │ │ │ │ a message arrives that matches one of the patterns and with a true guard │ │ │ │ -sequence.

Example:

wait_for_onhook() ->
│ │ │ │ +sequence.

Example:

wait_for_onhook() ->
│ │ │ │      receive
│ │ │ │          onhook ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            idle();
│ │ │ │ -        {connect, B} ->
│ │ │ │ -            B ! {busy, self()},
│ │ │ │ -            wait_for_onhook()
│ │ │ │ +            disconnect(),
│ │ │ │ +            idle();
│ │ │ │ +        {connect, B} ->
│ │ │ │ +            B ! {busy, self()},
│ │ │ │ +            wait_for_onhook()
│ │ │ │      end.

The receive expression can be augmented with a timeout:

receive
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  after
│ │ │ │      ExprT ->
│ │ │ │          BodyT
│ │ │ │  end

receive...after works exactly as receive, except that if no matching message │ │ │ │ has arrived within ExprT milliseconds, then BodyT is evaluated instead. The │ │ │ │ return value of BodyT then becomes the return value of the receive...after │ │ │ │ expression. ExprT is to evaluate to an integer, or the atom infinity. The │ │ │ │ allowed integer range is from 0 to 4294967295, that is, the longest possible │ │ │ │ timeout is almost 50 days. With a zero value the timeout occurs immediately if │ │ │ │ there is no matching message in the message queue.

The atom infinity will make the process wait indefinitely for a matching │ │ │ │ message. This is the same as not using a timeout. It can be useful for timeout │ │ │ │ -values that are calculated at runtime.

Example:

wait_for_onhook() ->
│ │ │ │ +values that are calculated at runtime.

Example:

wait_for_onhook() ->
│ │ │ │      receive
│ │ │ │          onhook ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            idle();
│ │ │ │ -        {connect, B} ->
│ │ │ │ -            B ! {busy, self()},
│ │ │ │ -            wait_for_onhook()
│ │ │ │ +            disconnect(),
│ │ │ │ +            idle();
│ │ │ │ +        {connect, B} ->
│ │ │ │ +            B ! {busy, self()},
│ │ │ │ +            wait_for_onhook()
│ │ │ │      after
│ │ │ │          60000 ->
│ │ │ │ -            disconnect(),
│ │ │ │ -            error()
│ │ │ │ +            disconnect(),
│ │ │ │ +            error()
│ │ │ │      end.

It is legal to use a receive...after expression with no branches:

receive
│ │ │ │  after
│ │ │ │      ExprT ->
│ │ │ │          BodyT
│ │ │ │  end

This construction does not consume any messages, only suspends execution in the │ │ │ │ -process for ExprT milliseconds. This can be used to implement simple timers.

Example:

timer() ->
│ │ │ │ -    spawn(m, timer, [self()]).
│ │ │ │ +process for ExprT milliseconds. This can be used to implement simple timers.

Example:

timer() ->
│ │ │ │ +    spawn(m, timer, [self()]).
│ │ │ │  
│ │ │ │ -timer(Pid) ->
│ │ │ │ +timer(Pid) ->
│ │ │ │      receive
│ │ │ │      after
│ │ │ │          5000 ->
│ │ │ │              Pid ! timeout
│ │ │ │      end.

For more information on timers in Erlang in general, see the │ │ │ │ Timers section of the │ │ │ │ Time and Time Correction in Erlang │ │ │ │ @@ -496,21 +496,21 @@ │ │ │ │ false │ │ │ │ 4> 0.0 =:= -0.0. │ │ │ │ false │ │ │ │ 5> 0.0 =:= +0.0. │ │ │ │ true │ │ │ │ 6> 1 > a. │ │ │ │ false │ │ │ │ -7> #{c => 3} > #{a => 1, b => 2}. │ │ │ │ +7> #{c => 3} > #{a => 1, b => 2}. │ │ │ │ false │ │ │ │ -8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ │ +8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ │ true │ │ │ │ -9> <<2:2>> < <<128>>. │ │ │ │ +9> <<2:2>> < <<128>>. │ │ │ │ true │ │ │ │ -10> <<3:2>> < <<128>>. │ │ │ │ +10> <<3:2>> < <<128>>. │ │ │ │ false

Note

Prior to OTP 27, the term equivalence operators considered 0.0 │ │ │ │ and -0.0 to be the same term.

This was changed in OTP 27 but legacy code may have expected them to be │ │ │ │ considered the same. To help users catch errors that may arise from an │ │ │ │ upgrade, the compiler raises a warning when 0.0 is pattern-matched or used │ │ │ │ in a term equivalence test.

If you need to match 0.0 specifically, the warning can be silenced by │ │ │ │ writing +0.0 instead, which produces the same term but makes the compiler │ │ │ │ interpret the match as being done on purpose.

│ │ │ │ @@ -536,15 +536,15 @@ │ │ │ │ 0 │ │ │ │ 8> 2#10 bor 2#01. │ │ │ │ 3 │ │ │ │ 9> a + 10. │ │ │ │ ** exception error: an error occurred when evaluating an arithmetic expression │ │ │ │ in operator +/2 │ │ │ │ called as a + 10 │ │ │ │ -10> 1 bsl (1 bsl 64). │ │ │ │ +10> 1 bsl (1 bsl 64). │ │ │ │ ** exception error: a system limit has been reached │ │ │ │ in operator bsl/2 │ │ │ │ called as 1 bsl 18446744073709551616

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Boolean Expressions │ │ │ │ @@ -563,136 +563,136 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Short-Circuit Expressions │ │ │ │

│ │ │ │
Expr1 orelse Expr2
│ │ │ │  Expr1 andalso Expr2

Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if:

  • Expr1 evaluates to false in an orelse expression.

or

  • Expr1 evaluates to true in an andalso expression.

Returns either the value of Expr1 (that is, true or false) or the value of │ │ │ │ -Expr2 (if Expr2 is evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ │ -never evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
│ │ │ │ -         (is_list(L) andalso length(L) == 1),

Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ │ -andalso and orelse are tail-recursive.

Example 3 (tail-recursive function):

all(Pred, [Hd|Tail]) ->
│ │ │ │ -    Pred(Hd) andalso all(Pred, Tail);
│ │ │ │ -all(_, []) ->
│ │ │ │ +Expr2 (if Expr2 is evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of

This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ │ +never evaluated.

Example 2:

OnlyOne = is_atom(L) orelse
│ │ │ │ +         (is_list(L) andalso length(L) == 1),

Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ │ +andalso and orelse are tail-recursive.

Example 3 (tail-recursive function):

all(Pred, [Hd|Tail]) ->
│ │ │ │ +    Pred(Hd) andalso all(Pred, Tail);
│ │ │ │ +all(_, []) ->
│ │ │ │      true.

Change

Before Erlang/OTP R13A, Expr2 was required to evaluate to a Boolean value, │ │ │ │ and as consequence, andalso and orelse were not tail-recursive.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List Operations │ │ │ │

│ │ │ │
Expr1 ++ Expr2
│ │ │ │  Expr1 -- Expr2

The list concatenation operator ++ appends its second argument to its first │ │ │ │ and returns the resulting list.

The list subtraction operator -- produces a list that is a copy of the first │ │ │ │ argument. The procedure is as follows: for each element in the second argument, │ │ │ │ -the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3] ++ [4,5].
│ │ │ │ -[1,2,3,4,5]
│ │ │ │ -2> [1,2,3,2,1,2] -- [2,1,2].
│ │ │ │ -[3,1,2]

│ │ │ │ +the first occurrence of this element (if any) is removed.

Example:

1> [1,2,3] ++ [4,5].
│ │ │ │ +[1,2,3,4,5]
│ │ │ │ +2> [1,2,3,2,1,2] -- [2,1,2].
│ │ │ │ +[3,1,2]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Map Expressions │ │ │ │

│ │ │ │

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating Maps │ │ │ │

│ │ │ │

Constructing a new map is done by letting an expression K be associated with │ │ │ │ -another expression V:

#{K => V}

New maps can include multiple associations at construction by listing every │ │ │ │ -association:

#{K1 => V1, ..., Kn => Vn}

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and │ │ │ │ +another expression V:

#{K => V}

New maps can include multiple associations at construction by listing every │ │ │ │ +association:

#{K1 => V1, ..., Kn => Vn}

An empty map is constructed by not associating any terms with each other:

#{}

All keys and values in the map are terms. Any expression is first evaluated and │ │ │ │ then the resulting terms are used as key and value respectively.

Keys and values are separated by the => arrow and associations are separated │ │ │ │ -by a comma (,).

Examples:

M0 = #{},                 % empty map
│ │ │ │ -M1 = #{a => <<"hello">>}, % single association with literals
│ │ │ │ -M2 = #{1 => 2, b => b},   % multiple associations with literals
│ │ │ │ -M3 = #{k => {A,B}},       % single association with variables
│ │ │ │ -M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ │ -map terms.

If two matching keys are declared, the latter key takes precedence.

Example:

1> #{1 => a, 1 => b}.
│ │ │ │ -#{1 => b }
│ │ │ │ -2> #{1.0 => a, 1 => b}.
│ │ │ │ -#{1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated │ │ │ │ +by a comma (,).

Examples:

M0 = #{},                 % empty map
│ │ │ │ +M1 = #{a => <<"hello">>}, % single association with literals
│ │ │ │ +M2 = #{1 => 2, b => b},   % multiple associations with literals
│ │ │ │ +M3 = #{k => {A,B}},       % single association with variables
│ │ │ │ +M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ │ +map terms.

If two matching keys are declared, the latter key takes precedence.

Example:

1> #{1 => a, 1 => b}.
│ │ │ │ +#{1 => b }
│ │ │ │ +2> #{1.0 => a, 1 => b}.
│ │ │ │ +#{1 => b, 1.0 => a}

The order in which the expressions constructing the keys (and their associated │ │ │ │ values) are evaluated is not defined. The syntactic order of the key-value pairs │ │ │ │ in the construction is of no relevance, except in the recently mentioned case of │ │ │ │ two matching keys.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Updating Maps │ │ │ │

│ │ │ │

Updating a map has a similar syntax as constructing it.

An expression defining the map to be updated is put in front of the expression │ │ │ │ -defining the keys to be updated and their respective values:

M#{K => V}

Here M is a term of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association is │ │ │ │ +defining the keys to be updated and their respective values:

M#{K => V}

Here M is a term of type map and K and V are any expression.

If key K does not match any existing key in the map, a new association is │ │ │ │ created from key K to value V.

If key K matches an existing key in map M, its associated value is replaced │ │ │ │ by the new value V. In both cases, the evaluated map expression returns a new │ │ │ │ -map.

If M is not of type map, an exception of type badmap is raised.

To only update an existing value, the following syntax is used:

M#{K := V}

Here M is a term of type map, V is an expression and K is an expression │ │ │ │ +map.

If M is not of type map, an exception of type badmap is raised.

To only update an existing value, the following syntax is used:

M#{K := V}

Here M is a term of type map, V is an expression and K is an expression │ │ │ │ that evaluates to an existing key in M.

If key K does not match any existing keys in map M, an exception of type │ │ │ │ badkey is raised at runtime. If a matching key K is present in map M, │ │ │ │ its associated value is replaced by the new value V, and the evaluated map │ │ │ │ -expression returns a new map.

If M is not of type map, an exception of type badmap is raised.

Examples:

M0 = #{},
│ │ │ │ -M1 = M0#{a => 0},
│ │ │ │ -M2 = M1#{a => 1, b => 2},
│ │ │ │ -M3 = M2#{"function" => fun() -> f() end},
│ │ │ │ -M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

Here M0 is any map. It follows that M1 through M4 are maps as well.

More examples:

1> M = #{1 => a}.
│ │ │ │ -#{1 => a }
│ │ │ │ -2> M#{1.0 => b}.
│ │ │ │ -#{1 => a, 1.0 => b}.
│ │ │ │ -3> M#{1 := b}.
│ │ │ │ -#{1 => b}
│ │ │ │ -4> M#{1.0 := b}.
│ │ │ │ +expression returns a new map.

If M is not of type map, an exception of type badmap is raised.

Examples:

M0 = #{},
│ │ │ │ +M1 = M0#{a => 0},
│ │ │ │ +M2 = M1#{a => 1, b => 2},
│ │ │ │ +M3 = M2#{"function" => fun() -> f() end},
│ │ │ │ +M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

Here M0 is any map. It follows that M1 through M4 are maps as well.

More examples:

1> M = #{1 => a}.
│ │ │ │ +#{1 => a }
│ │ │ │ +2> M#{1.0 => b}.
│ │ │ │ +#{1 => a, 1.0 => b}.
│ │ │ │ +3> M#{1 := b}.
│ │ │ │ +#{1 => b}
│ │ │ │ +4> M#{1.0 := b}.
│ │ │ │  ** exception error: bad argument

As in construction, the order in which the key and value expressions are │ │ │ │ evaluated is not defined. The syntactic order of the key-value pairs in the │ │ │ │ update is of no relevance, except in the case where two keys match. In that │ │ │ │ case, the latter value is used.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps in Patterns │ │ │ │

│ │ │ │ -

Matching of key-value associations from maps is done as follows:

#{K := V} = M

Here M is any map. The key K must be a │ │ │ │ +

Matching of key-value associations from maps is done as follows:

#{K := V} = M

Here M is any map. The key K must be a │ │ │ │ guard expression, with all variables already │ │ │ │ bound. V can be any pattern with either bound or unbound variables.

If the variable V is unbound, it becomes bound to the value associated with │ │ │ │ the key K, which must exist in the map M. If the variable V is bound, it │ │ │ │ must match the value associated with K in M.

Change

Before Erlang/OTP 23, the expression defining the key K was restricted to be │ │ │ │ -either a single variable or a literal.

Example:

1> M = #{"tuple" => {1,2}}.
│ │ │ │ -#{"tuple" => {1,2}}
│ │ │ │ -2> #{"tuple" := {1,B}} = M.
│ │ │ │ -#{"tuple" => {1,2}}
│ │ │ │ +either a single variable or a literal.

Example:

1> M = #{"tuple" => {1,2}}.
│ │ │ │ +#{"tuple" => {1,2}}
│ │ │ │ +2> #{"tuple" := {1,B}} = M.
│ │ │ │ +#{"tuple" => {1,2}}
│ │ │ │  3> B.
│ │ │ │ -2.

This binds variable B to integer 2.

Similarly, multiple values from the map can be matched:

#{K1 := V1, ..., Kn := Vn} = M

Here keys K1 through Kn are any expressions with literals or bound │ │ │ │ +2.

This binds variable B to integer 2.

Similarly, multiple values from the map can be matched:

#{K1 := V1, ..., Kn := Vn} = M

Here keys K1 through Kn are any expressions with literals or bound │ │ │ │ variables. If all key expressions evaluate successfully and all keys │ │ │ │ exist in map M, all variables in V1 .. Vn is matched to the │ │ │ │ associated values of their respective keys.

If the matching conditions are not met the match fails.

Note that when matching a map, only the := operator (not the =>) is allowed │ │ │ │ as a delimiter for the associations.

The order in which keys are declared in matching has no relevance.

Duplicate keys are allowed in matching and match each pattern associated to the │ │ │ │ -keys:

#{K := V1, K := V2} = M

The empty map literal (#{}) matches any map when used as a pattern:

#{} = Expr

This expression matches if the expression Expr is of type map, otherwise it │ │ │ │ -fails with an exception badmatch.

Here the key to be retrieved is constructed from an expression:

#{{tag,length(List)} := V} = Map

List must be an already bound variable.

Matching Syntax

Matching of literals as keys are allowed in function heads:

%% only start if not_started
│ │ │ │ -handle_call(start, From, #{state := not_started} = S) ->
│ │ │ │ +keys:

#{K := V1, K := V2} = M

The empty map literal (#{}) matches any map when used as a pattern:

#{} = Expr

This expression matches if the expression Expr is of type map, otherwise it │ │ │ │ +fails with an exception badmatch.

Here the key to be retrieved is constructed from an expression:

#{{tag,length(List)} := V} = Map

List must be an already bound variable.

Matching Syntax

Matching of literals as keys are allowed in function heads:

%% only start if not_started
│ │ │ │ +handle_call(start, From, #{state := not_started} = S) ->
│ │ │ │  ...
│ │ │ │ -    {reply, ok, S#{state := start}};
│ │ │ │ +    {reply, ok, S#{state := start}};
│ │ │ │  
│ │ │ │  %% only change if started
│ │ │ │ -handle_call(change, From, #{state := start} = S) ->
│ │ │ │ +handle_call(change, From, #{state := start} = S) ->
│ │ │ │  ...
│ │ │ │ -    {reply, ok, S#{state := changed}};

│ │ │ │ + {reply, ok, S#{state := changed}};

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Maps in Guards │ │ │ │

│ │ │ │

Maps are allowed in guards as long as all subexpressions are valid guard │ │ │ │ expressions.

The following guard BIFs handle maps:

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Bit Syntax Expressions │ │ │ │

│ │ │ │

The bit syntax operates on bit strings. A bit string is a sequence of bits │ │ │ │ -ordered from the most significant bit to the least significant bit.

<<>>  % The empty bit string, zero length
│ │ │ │ -<<E1>>
│ │ │ │ -<<E1,...,En>>

Each element Ei specifies a segment of the bit string. The segments are │ │ │ │ +ordered from the most significant bit to the least significant bit.

<<>>  % The empty bit string, zero length
│ │ │ │ +<<E1>>
│ │ │ │ +<<E1,...,En>>

Each element Ei specifies a segment of the bit string. The segments are │ │ │ │ ordered left to right from the most significant bit to the least significant bit │ │ │ │ of the bit string.

Each segment specification Ei is a value, whose default type is integer, │ │ │ │ followed by an optional size expression and an optional type specifier list.

Ei = Value |
│ │ │ │       Value:Size |
│ │ │ │       Value/TypeSpecifierList |
│ │ │ │       Value:Size/TypeSpecifierList

When used in a bit string construction, Value is an expression that is to │ │ │ │ evaluate to an integer, float, or bit string. If the expression is not a single │ │ │ │ @@ -703,34 +703,34 @@ │ │ │ │ guard expression that evaluates to an │ │ │ │ integer. All variables in the guard expression must be already bound.

Change

Before Erlang/OTP 23, Size was restricted to be an integer or a variable │ │ │ │ bound to an integer.

The value of Size specifies the size of the segment in units (see below). The │ │ │ │ default value depends on the type (see below):

  • For integer it is 8.
  • For float it is 64.
  • For binary and bitstring it is the whole binary or bit string.

In matching, the default value for a binary or bit string segment is only valid │ │ │ │ for the last element. All other bit string or binary elements in the matching │ │ │ │ must have a size specification.

Binaries

A bit string with a length that is a multiple of 8 bits is known as a binary, │ │ │ │ which is the most common and useful type of bit string.

A binary has a canonical representation in memory. Here follows a sequence of │ │ │ │ -bytes where each byte's value is its sequence number:

<<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

Bit strings are a later generalization of binaries, so many texts and much │ │ │ │ -information about binaries apply just as well for bit strings.

Example:

1> <<A/binary, B/binary>> = <<"abcde">>.
│ │ │ │ +bytes where each byte's value is its sequence number:

<<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

Bit strings are a later generalization of binaries, so many texts and much │ │ │ │ +information about binaries apply just as well for bit strings.

Example:

1> <<A/binary, B/binary>> = <<"abcde">>.
│ │ │ │  * 1:3: a binary field without size is only allowed at the end of a binary pattern
│ │ │ │ -2> <<A:3/binary, B/binary>> = <<"abcde">>.
│ │ │ │ -<<"abcde">>
│ │ │ │ +2> <<A:3/binary, B/binary>> = <<"abcde">>.
│ │ │ │ +<<"abcde">>
│ │ │ │  3> A.
│ │ │ │ -<<"abc">>
│ │ │ │ +<<"abc">>
│ │ │ │  4> B.
│ │ │ │ -<<"de">>

For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ │ +<<"de">>

For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ │ of the segment is implicitly determined by the type and value itself.

TypeSpecifierList is a list of type specifiers, in any order, separated by │ │ │ │ hyphens (-). Default values are used for any omitted type specifiers.

  • Type= integer | float | binary | bytes | bitstring | bits | │ │ │ │ utf8 | utf16 | utf32 - The default is integer. bytes is a │ │ │ │ shorthand for binary and bits is a shorthand for bitstring. See below │ │ │ │ for more information about the utf types.

  • Signedness= signed | unsigned - Only matters for matching and when │ │ │ │ the type is integer. The default is unsigned.

  • Endianness= big | little | native - Specifies byte level (octet │ │ │ │ level) endianness (byte order). Native-endian means that the endianness is │ │ │ │ resolved at load time to be either big-endian or little-endian, depending on │ │ │ │ what is native for the CPU that the Erlang machine is run on. Endianness only │ │ │ │ matters when the Type is either integer, utf16, utf32, or float. The │ │ │ │ -default is big.

    <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
  • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ │ +default is big.

    <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
  • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ │ Defaults to 1 for integer, float, and bitstring, and to 8 for binary. │ │ │ │ For types bitstring, bits, and bytes, it is not allowed to specify a │ │ │ │ unit value different from the default value. No unit specifier must be given │ │ │ │ for the types utf8, utf16, and utf32.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -755,41 +755,41 @@ │ │ │ │ │ │ │ │ Binary segments │ │ │ │

│ │ │ │

In this section, the phrase "binary segment" refers to any one of the segment │ │ │ │ types binary, bitstring, bytes, and bits.

See also the paragraphs about Binaries.

When constructing binaries and no size is specified for a binary segment, the │ │ │ │ entire binary value is interpolated into the binary being constructed. However, │ │ │ │ the size in bits of the binary being interpolated must be evenly divisible by │ │ │ │ -the unit value for the segment; otherwise an exception is raised.

For example, the following examples all succeed:

1> <<(<<"abc">>)/bitstring>>.
│ │ │ │ -<<"abc">>
│ │ │ │ -2> <<(<<"abc">>)/binary-unit:1>>.
│ │ │ │ -<<"abc">>
│ │ │ │ -3> <<(<<"abc">>)/binary>>.
│ │ │ │ -<<"abc">>

The first two examples have a unit value of 1 for the segment, while the third │ │ │ │ +the unit value for the segment; otherwise an exception is raised.

For example, the following examples all succeed:

1> <<(<<"abc">>)/bitstring>>.
│ │ │ │ +<<"abc">>
│ │ │ │ +2> <<(<<"abc">>)/binary-unit:1>>.
│ │ │ │ +<<"abc">>
│ │ │ │ +3> <<(<<"abc">>)/binary>>.
│ │ │ │ +<<"abc">>

The first two examples have a unit value of 1 for the segment, while the third │ │ │ │ segment has a unit value of 8.

Attempting to interpolate a bit string of size 1 into a binary segment with unit │ │ │ │ -8 (the default unit for binary) fails as shown in this example:

1> <<(<<1:1>>)/binary>>.
│ │ │ │ -** exception error: bad argument

For the construction to succeed, the unit value of the segment must be 1:

2> <<(<<1:1>>)/bitstring>>.
│ │ │ │ -<<1:1>>
│ │ │ │ -3> <<(<<1:1>>)/binary-unit:1>>.
│ │ │ │ -<<1:1>>

Similarly, when matching a binary segment with no size specified, the match │ │ │ │ +8 (the default unit for binary) fails as shown in this example:

1> <<(<<1:1>>)/binary>>.
│ │ │ │ +** exception error: bad argument

For the construction to succeed, the unit value of the segment must be 1:

2> <<(<<1:1>>)/bitstring>>.
│ │ │ │ +<<1:1>>
│ │ │ │ +3> <<(<<1:1>>)/binary-unit:1>>.
│ │ │ │ +<<1:1>>

Similarly, when matching a binary segment with no size specified, the match │ │ │ │ succeeds if and only if the size in bits of the rest of the binary is evenly │ │ │ │ -divisible by the unit value:

1> <<_/binary-unit:16>> = <<"">>.
│ │ │ │ -<<>>
│ │ │ │ -2> <<_/binary-unit:16>> = <<"a">>.
│ │ │ │ +divisible by the unit value:

1> <<_/binary-unit:16>> = <<"">>.
│ │ │ │ +<<>>
│ │ │ │ +2> <<_/binary-unit:16>> = <<"a">>.
│ │ │ │  ** exception error: no match of right hand side value <<"a">>
│ │ │ │ -3> <<_/binary-unit:16>> = <<"ab">>.
│ │ │ │ -<<"ab">>
│ │ │ │ -4> <<_/binary-unit:16>> = <<"abc">>.
│ │ │ │ +3> <<_/binary-unit:16>> = <<"ab">>.
│ │ │ │ +<<"ab">>
│ │ │ │ +4> <<_/binary-unit:16>> = <<"abc">>.
│ │ │ │  ** exception error: no match of right hand side value <<"abc">>
│ │ │ │ -5> <<_/binary-unit:16>> = <<"abcd">>.
│ │ │ │ -<<"abcd">>

When a size is explicitly specified for a binary segment, the segment size in │ │ │ │ +5> <<_/binary-unit:16>> = <<"abcd">>. │ │ │ │ +<<"abcd">>

When a size is explicitly specified for a binary segment, the segment size in │ │ │ │ bits is the value of Size multiplied by the default or explicit unit value.

When constructing binaries, the size of the binary being interpolated into the │ │ │ │ -constructed binary must be at least as large as the size of the binary segment.

Examples:

1> <<(<<"abc">>):2/binary>>.
│ │ │ │ -<<"ab">>
│ │ │ │ -2> <<(<<"a">>):2/binary>>.
│ │ │ │ +constructed binary must be at least as large as the size of the binary segment.

Examples:

1> <<(<<"abc">>):2/binary>>.
│ │ │ │ +<<"ab">>
│ │ │ │ +2> <<(<<"a">>):2/binary>>.
│ │ │ │  ** exception error: construction of binary failed
│ │ │ │          *** segment 1 of type 'binary': the value <<"a">> is shorter than the size of the segment

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Unicode segments │ │ │ │

│ │ │ │ @@ -805,78 +805,78 @@ │ │ │ │ range 0 through 16#D7FF or 16#E000 through 16#10FFFF. The match fails if the │ │ │ │ returned value falls outside those ranges.

A segment of type utf8 matches 1-4 bytes in the bit string, if the bit string │ │ │ │ at the match position contains a valid UTF-8 sequence. (See RFC-3629 or the │ │ │ │ Unicode standard.)

A segment of type utf16 can match 2 or 4 bytes in the bit string. The match │ │ │ │ fails if the bit string at the match position does not contain a legal UTF-16 │ │ │ │ encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

A segment of type utf32 can match 4 bytes in the bit string in the same way as │ │ │ │ an integer segment matches 32 bits. The match fails if the resulting integer │ │ │ │ -is outside the legal ranges previously mentioned.

Examples:

1> Bin1 = <<1,17,42>>.
│ │ │ │ -<<1,17,42>>
│ │ │ │ -2> Bin2 = <<"abc">>.
│ │ │ │ -<<97,98,99>>
│ │ │ │ +is outside the legal ranges previously mentioned.

Examples:

1> Bin1 = <<1,17,42>>.
│ │ │ │ +<<1,17,42>>
│ │ │ │ +2> Bin2 = <<"abc">>.
│ │ │ │ +<<97,98,99>>
│ │ │ │  
│ │ │ │ -3> Bin3 = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ -4> <<A,B,C:16>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +3> Bin3 = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │ +4> <<A,B,C:16>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  5> C.
│ │ │ │  42
│ │ │ │ -6> <<D:16,E,F>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +6> <<D:16,E,F>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  7> D.
│ │ │ │  273
│ │ │ │  8> F.
│ │ │ │  42
│ │ │ │ -9> <<G,H/binary>> = <<1,17,42:16>>.
│ │ │ │ -<<1,17,0,42>>
│ │ │ │ +9> <<G,H/binary>> = <<1,17,42:16>>.
│ │ │ │ +<<1,17,0,42>>
│ │ │ │  10> H.
│ │ │ │ -<<17,0,42>>
│ │ │ │ -11> <<G,J/bitstring>> = <<1,17,42:12>>.
│ │ │ │ -<<1,17,2,10:4>>
│ │ │ │ +<<17,0,42>>
│ │ │ │ +11> <<G,J/bitstring>> = <<1,17,42:12>>.
│ │ │ │ +<<1,17,2,10:4>>
│ │ │ │  12> J.
│ │ │ │ -<<17,2,10:4>>
│ │ │ │ +<<17,2,10:4>>
│ │ │ │  
│ │ │ │ -13> <<1024/utf8>>.
│ │ │ │ -<<208,128>>
│ │ │ │ +13> <<1024/utf8>>.
│ │ │ │ +<<208,128>>
│ │ │ │  
│ │ │ │ -14> <<1:1,0:7>>.
│ │ │ │ -<<128>>
│ │ │ │ -15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>.
│ │ │ │ -<<35,1:4>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ │ +14> <<1:1,0:7>>. │ │ │ │ +<<128>> │ │ │ │ +15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>. │ │ │ │ +<<35,1:4>>

Notice that bit string patterns cannot be nested.

Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ │ error. The correct way is to write a space after =: "B = <<1>>.

More examples are provided in Programming Examples.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fun Expressions │ │ │ │

│ │ │ │
fun
│ │ │ │ -    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
│ │ │ │ +    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
│ │ │ │                Body1;
│ │ │ │      ...;
│ │ │ │ -    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
│ │ │ │ +    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
│ │ │ │                BodyK
│ │ │ │  end

A fun expression begins with the keyword fun and ends with the keyword end. │ │ │ │ Between them is to be a function declaration, similar to a │ │ │ │ regular function declaration, │ │ │ │ except that the function name is optional and is to be a variable, if any.

Variables in a fun head shadow the function name and both shadow variables in │ │ │ │ the function clause surrounding the fun expression. Variables bound in a fun │ │ │ │ -body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
│ │ │ │ +body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -2> Fun1(2).
│ │ │ │ +2> Fun1(2).
│ │ │ │  3
│ │ │ │ -3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
│ │ │ │ +3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -4> Fun2(7).
│ │ │ │ +4> Fun2(7).
│ │ │ │  gt
│ │ │ │ -5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
│ │ │ │ +5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
│ │ │ │  #Fun<erl_eval.6.39074546>
│ │ │ │ -6> Fun3(4).
│ │ │ │ +6> Fun3(4).
│ │ │ │  24

The following fun expressions are also allowed:

fun Name/Arity
│ │ │ │  fun Module:Name/Arity

In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must │ │ │ │ -specify an existing local function. The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ │ +specify an existing local function. The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ │ integer. Module, Name, and Arity can also be variables. A fun defined in │ │ │ │ this way refers to the function Name with arity Arity in the latest │ │ │ │ version of module Module. A fun defined in this way is not dependent on the │ │ │ │ code for the module in which it is defined.

Change

Before Erlang/OTP R15, Module, Name, and Arity were not allowed to be │ │ │ │ variables.

More examples are provided in Programming Examples.

│ │ │ │ │ │ │ │ │ │ │ │ @@ -886,35 +886,35 @@ │ │ │ │
catch Expr

Returns the value of Expr unless an exception is raised during the evaluation. In │ │ │ │ that case, the exception is caught. The return value depends on the class of the │ │ │ │ exception:

Reason depends on the type of error that occurred, and Stack is the stack of │ │ │ │ recent function calls, see Exit Reasons.

Examples:

1> catch 1+2.
│ │ │ │  3
│ │ │ │  2> catch 1+a.
│ │ │ │ -{'EXIT',{badarith,[...]}}

The BIF throw(Any) can be used for non-local return from a │ │ │ │ -function. It must be evaluated within a catch, which returns the value Any.

Example:

3> catch throw(hello).
│ │ │ │ +{'EXIT',{badarith,[...]}}

The BIF throw(Any) can be used for non-local return from a │ │ │ │ +function. It must be evaluated within a catch, which returns the value Any.

Example:

3> catch throw(hello).
│ │ │ │  hello

If throw/1 is not evaluated within a catch, a nocatch run-time │ │ │ │ error occurs.

Change

Before Erlang/OTP 24, the catch operator had the lowest precedence, making │ │ │ │ -it necessary to add parentheses when combining it with the match operator:

1> A = (catch 42).
│ │ │ │ +it necessary to add parentheses when combining it with the match operator:

1> A = (catch 42).
│ │ │ │  42
│ │ │ │  2> A.
│ │ │ │  42

Starting from Erlang/OTP 24, the parentheses can be omitted:

1> A = catch 42.
│ │ │ │  42
│ │ │ │  2> A.
│ │ │ │  42

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Try │ │ │ │

│ │ │ │
try Exprs
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

This is an enhancement of catch. It gives the │ │ │ │ possibility to:

  • Distinguish between different exception classes.
  • Choose to handle only the desired ones.
  • Passing the others on to an enclosing try or catch, or to default error │ │ │ │ handling.

Notice that although the keyword catch is used in the try expression, there │ │ │ │ is not a catch expression within the try expression.

It returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) │ │ │ │ unless an exception occurs during the evaluation. In that case the exception is │ │ │ │ caught and the patterns ExceptionPattern with the right exception class │ │ │ │ @@ -924,47 +924,47 @@ │ │ │ │ stack trace is bound to the variable when the corresponding ExceptionPattern │ │ │ │ matches.

If an exception occurs during evaluation of Exprs but there is no matching │ │ │ │ ExceptionPattern of the right Class with a true guard sequence, the │ │ │ │ exception is passed on as if Exprs had not been enclosed in a try │ │ │ │ expression.

If an exception occurs during evaluation of ExceptionBody, it is not caught.

It is allowed to omit Class and Stacktrace. An omitted Class is shorthand │ │ │ │ for throw:

try Exprs
│ │ │ │  catch
│ │ │ │ -    ExceptionPattern1 [when ExceptionGuardSeq1] ->
│ │ │ │ +    ExceptionPattern1 [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │ -    ExceptionPatternN [when ExceptionGuardSeqN] ->
│ │ │ │ +    ExceptionPatternN [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

The try expression can have an of section:

try Exprs of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │      ...;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  end

If the evaluation of Exprs succeeds without an exception, the patterns │ │ │ │ Pattern are sequentially matched against the result in the same way as for a │ │ │ │ case expression, except that if the matching fails, a │ │ │ │ try_clause run-time error occurs instead of a case_clause.

Only exceptions occurring during the evaluation of Exprs can be caught by the │ │ │ │ catch section. Exceptions occurring in a Body or due to a failed match are │ │ │ │ not caught.

The try expression can also be augmented with an after section, intended to │ │ │ │ be used for cleanup with side effects:

try Exprs of
│ │ │ │ -    Pattern1 [when GuardSeq1] ->
│ │ │ │ +    Pattern1 [when GuardSeq1] ->
│ │ │ │          Body1;
│ │ │ │      ...;
│ │ │ │ -    PatternN [when GuardSeqN] ->
│ │ │ │ +    PatternN [when GuardSeqN] ->
│ │ │ │          BodyN
│ │ │ │  catch
│ │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
│ │ │ │          ExceptionBody1;
│ │ │ │      ...;
│ │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
│ │ │ │          ExceptionBodyN
│ │ │ │  after
│ │ │ │      AfterBody
│ │ │ │  end

AfterBody is evaluated after either Body or ExceptionBody, no matter which │ │ │ │ one. The evaluated value of AfterBody is lost; the return value of the try │ │ │ │ expression is the same with an after section as without.

Even if an exception occurs during evaluation of Body or ExceptionBody, │ │ │ │ AfterBody is evaluated. In this case the exception is passed on after │ │ │ │ @@ -987,40 +987,40 @@ │ │ │ │ ExpressionBody │ │ │ │ after │ │ │ │ AfterBody │ │ │ │ end │ │ │ │ │ │ │ │ try Exprs after AfterBody end

Next is an example of using after. This closes the file, even in the event of │ │ │ │ exceptions in file:read/2 or in binary_to_term/1. The │ │ │ │ -exceptions are the same as without the try...after...end expression:

termize_file(Name) ->
│ │ │ │ -    {ok,F} = file:open(Name, [read,binary]),
│ │ │ │ +exceptions are the same as without the try...after...end expression:

termize_file(Name) ->
│ │ │ │ +    {ok,F} = file:open(Name, [read,binary]),
│ │ │ │      try
│ │ │ │ -        {ok,Bin} = file:read(F, 1024*1024),
│ │ │ │ -        binary_to_term(Bin)
│ │ │ │ +        {ok,Bin} = file:read(F, 1024*1024),
│ │ │ │ +        binary_to_term(Bin)
│ │ │ │      after
│ │ │ │ -        file:close(F)
│ │ │ │ +        file:close(F)
│ │ │ │      end.

Next is an example of using try to emulate catch Expr:

try Expr
│ │ │ │  catch
│ │ │ │      throw:Term -> Term;
│ │ │ │ -    exit:Reason -> {'EXIT',Reason};
│ │ │ │ -    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
│ │ │ │ +    exit:Reason -> {'EXIT',Reason};
│ │ │ │ +    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
│ │ │ │  end

Variables bound in the various parts of these expressions have different scopes. │ │ │ │ Variables bound just after the try keyword are:

  • bound in the of section
  • unsafe in both the catch and after sections, as well as after the whole │ │ │ │ construct

Variables bound in of section are:

  • unbound in the catch section
  • unsafe in both the after section, as well as after the whole construct

Variables bound in the catch section are unsafe in the after section, as │ │ │ │ well as after the whole construct.

Variables bound in the after section are unsafe after the whole construct.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Parenthesized Expressions │ │ │ │

│ │ │ │ -
(Expr)

Parenthesized expressions are useful to override │ │ │ │ +

(Expr)

Parenthesized expressions are useful to override │ │ │ │ operator precedences, for example, in arithmetic │ │ │ │ expressions:

1> 1 + 2 * 3.
│ │ │ │  7
│ │ │ │ -2> (1 + 2) * 3.
│ │ │ │ +2> (1 + 2) * 3.
│ │ │ │  9

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Block Expressions │ │ │ │

│ │ │ │
begin
│ │ │ │ @@ -1032,71 +1032,71 @@
│ │ │ │    
│ │ │ │      
│ │ │ │    
│ │ │ │    Comprehensions
│ │ │ │  

│ │ │ │

Comprehensions provide a succinct notation for iterating over one or more terms │ │ │ │ and constructing a new term. Comprehensions come in three different flavors, │ │ │ │ -depending on the type of term they build.

List comprehensions construct lists. They have the following syntax:

[Expr || Qualifier1, . . ., QualifierN]

Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ │ +depending on the type of term they build.

List comprehensions construct lists. They have the following syntax:

[Expr || Qualifier1, . . ., QualifierN]

Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ │ generator or a filter.

Bit string comprehensions construct bit strings or binaries. They have the │ │ │ │ -following syntax:

<< BitStringExpr || Qualifier1, . . ., QualifierN >>

BitStringExpr is an expression that evaluates to a bit string. If │ │ │ │ +following syntax:

<< BitStringExpr || Qualifier1, . . ., QualifierN >>

BitStringExpr is an expression that evaluates to a bit string. If │ │ │ │ BitStringExpr is a function call, it must be enclosed in parentheses. Each │ │ │ │ -Qualifier is either a generator or a filter.

Map comprehensions construct maps. They have the following syntax:

#{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ │ +Qualifier is either a generator or a filter.

Map comprehensions construct maps. They have the following syntax:

#{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ │ is either a generator or a filter.

Change

Map comprehensions and map generators were introduced in Erlang/OTP 26.

There are three kinds of generators.

A list generator has the following syntax:

Pattern <- ListExpr

where ListExpr is an expression that evaluates to a list of terms.

A bit string generator has the following syntax:

BitstringPattern <= BitStringExpr

where BitStringExpr is an expression that evaluates to a bit string.

A map generator has the following syntax:

KeyPattern := ValuePattern <- MapExpression

where MapExpr is an expression that evaluates to a map, or a map iterator │ │ │ │ obtained by calling maps:iterator/1 or maps:iterator/2.

A filter is an expression that evaluates to true or false.

The variables in the generator patterns shadow previously bound variables, │ │ │ │ including variables bound in a previous generator pattern.

Variables bound in a generator expression are not visible outside the │ │ │ │ -expression:

1> [{E,L} || E <- L=[1,2,3]].
│ │ │ │ +expression:

1> [{E,L} || E <- L=[1,2,3]].
│ │ │ │  * 1:5: variable 'L' is unbound

A list comprehension returns a list, where the list elements are the result │ │ │ │ of evaluating Expr for each combination of generator elements for which all │ │ │ │ filters are true.

A bit string comprehension returns a bit string, which is created by │ │ │ │ concatenating the results of evaluating BitStringExpr for each combination of │ │ │ │ bit string generator elements for which all filters are true.

A map comprehension returns a map, where the map elements are the result of │ │ │ │ evaluating KeyExpr and ValueExpr for each combination of generator elements │ │ │ │ for which all filters are true. If the key expressions are not unique, the last │ │ │ │ -occurrence is stored in the map.

Examples:

Multiplying each element in a list by two:

1> [X*2 || X <- [1,2,3]].
│ │ │ │ -[2,4,6]

Multiplying each byte in a binary by two, returning a list:

1> [X*2 || <<X>> <= <<1,2,3>>].
│ │ │ │ -[2,4,6]

Multiplying each byte in a binary by two:

1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
│ │ │ │ -<<2,4,6>>

Multiplying each element in a list by two, returning a binary:

1> << <<(X*2)>> || X <- [1,2,3] >>.
│ │ │ │ -<<2,4,6>>

Creating a mapping from an integer to its square:

1> #{X => X*X || X <- [1,2,3]}.
│ │ │ │ -#{1 => 1,2 => 4,3 => 9}

Multiplying the value of each element in a map by two:

1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
│ │ │ │ -#{a => 2,b => 4,c => 6}

Filtering a list, keeping odd numbers:

1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
│ │ │ │ -[1,3,5]

Filtering a list, keeping only elements that match:

1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
│ │ │ │ -[{a,b},{1,2}]

Combining elements from two list generators:

1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
│ │ │ │ -[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

More examples are provided in │ │ │ │ +occurrence is stored in the map.

Examples:

Multiplying each element in a list by two:

1> [X*2 || X <- [1,2,3]].
│ │ │ │ +[2,4,6]

Multiplying each byte in a binary by two, returning a list:

1> [X*2 || <<X>> <= <<1,2,3>>].
│ │ │ │ +[2,4,6]

Multiplying each byte in a binary by two:

1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
│ │ │ │ +<<2,4,6>>

Multiplying each element in a list by two, returning a binary:

1> << <<(X*2)>> || X <- [1,2,3] >>.
│ │ │ │ +<<2,4,6>>

Creating a mapping from an integer to its square:

1> #{X => X*X || X <- [1,2,3]}.
│ │ │ │ +#{1 => 1,2 => 4,3 => 9}

Multiplying the value of each element in a map by two:

1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
│ │ │ │ +#{a => 2,b => 4,c => 6}

Filtering a list, keeping odd numbers:

1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
│ │ │ │ +[1,3,5]

Filtering a list, keeping only elements that match:

1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
│ │ │ │ +[{a,b},{1,2}]

Combining elements from two list generators:

1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
│ │ │ │ +[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

More examples are provided in │ │ │ │ Programming Examples.

When there are no generators, a comprehension returns either a term constructed │ │ │ │ from a single element (the result of evaluating Expr) if all filters are true, │ │ │ │ or a term constructed from no elements (that is, [] for list comprehension, │ │ │ │ -<<>> for a bit string comprehension, and #{} for a map comprehension).

Example:

1> [2 || is_integer(2)].
│ │ │ │ -[2]
│ │ │ │ -2> [x || is_integer(x)].
│ │ │ │ -[]

What happens when the filter expression does not evaluate to a boolean value │ │ │ │ +<<>> for a bit string comprehension, and #{} for a map comprehension).

Example:

1> [2 || is_integer(2)].
│ │ │ │ +[2]
│ │ │ │ +2> [x || is_integer(x)].
│ │ │ │ +[]

What happens when the filter expression does not evaluate to a boolean value │ │ │ │ depends on the expression:

  • If the expression is a guard expression, │ │ │ │ failure to evaluate or evaluating to a non-boolean value is equivalent to │ │ │ │ evaluating to false.
  • If the expression is not a guard expression and evaluates to a non-Boolean │ │ │ │ value Val, an exception {bad_filter, Val} is triggered at runtime. If the │ │ │ │ evaluation of the expression raises an exception, it is not caught by the │ │ │ │ -comprehension.

Examples (using a guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ -[1,2,a,b,c,3,4]
│ │ │ │ -2> [E || E <- List, E rem 2].
│ │ │ │ -[]
│ │ │ │ -3> [E || E <- List, E rem 2 =:= 0].
│ │ │ │ -[2,4]

Examples (using a non-guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ -[1,2,a,b,c,3,4]
│ │ │ │ -2> FaultyIsEven = fun(E) -> E rem 2 end.
│ │ │ │ +comprehension.

Examples (using a guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ +[1,2,a,b,c,3,4]
│ │ │ │ +2> [E || E <- List, E rem 2].
│ │ │ │ +[]
│ │ │ │ +3> [E || E <- List, E rem 2 =:= 0].
│ │ │ │ +[2,4]

Examples (using a non-guard expression as filter):

1> List = [1,2,a,b,c,3,4].
│ │ │ │ +[1,2,a,b,c,3,4]
│ │ │ │ +2> FaultyIsEven = fun(E) -> E rem 2 end.
│ │ │ │  #Fun<erl_eval.42.17316486>
│ │ │ │ -3> [E || E <- List, FaultyIsEven(E)].
│ │ │ │ +3> [E || E <- List, FaultyIsEven(E)].
│ │ │ │  ** exception error: bad filter 1
│ │ │ │ -4> IsEven = fun(E) -> E rem 2 =:= 0 end.
│ │ │ │ +4> IsEven = fun(E) -> E rem 2 =:= 0 end.
│ │ │ │  #Fun<erl_eval.42.17316486>
│ │ │ │ -5> [E || E <- List, IsEven(E)].
│ │ │ │ +5> [E || E <- List, IsEven(E)].
│ │ │ │  ** exception error: an error occurred when evaluating an arithmetic expression
│ │ │ │       in operator  rem/2
│ │ │ │          called as a rem 2
│ │ │ │ -6> [E || E <- List, is_integer(E), IsEven(E)].
│ │ │ │ -[2,4]

│ │ │ │ +6> [E || E <- List, is_integer(E), IsEven(E)]. │ │ │ │ +[2,4]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Guard Sequences │ │ │ │

│ │ │ │

A guard sequence is a sequence of guards, separated by semicolon (;). The │ │ │ │ guard sequence is true if at least one of the guards is true. (The remaining │ │ │ ├── OEBPS/example.xhtml │ │ │ │ @@ -36,14 +36,14 @@ │ │ │ │ │ │ │ │ int bar(int y) { │ │ │ │ return y*2; │ │ │ │ }

The functions are deliberately kept as simple as possible, for readability │ │ │ │ reasons.

From an Erlang perspective, it is preferable to be able to call foo and bar │ │ │ │ without having to bother about that they are C functions:

% Erlang code
│ │ │ │  ...
│ │ │ │ -Res = complex:foo(X),
│ │ │ │ +Res = complex:foo(X),
│ │ │ │  ...

Here, the communication with C is hidden in the implementation of complex.erl. │ │ │ │ In the following sections, it is shown how this module can be implemented using │ │ │ │ the different interoperability mechanisms.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/events.xhtml │ │ │ │ @@ -40,43 +40,43 @@ │ │ │ │ event handler.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │

│ │ │ │

The callback module for the event handler writing error messages to the terminal │ │ │ │ -can look as follows:

-module(terminal_logger).
│ │ │ │ --behaviour(gen_event).
│ │ │ │ +can look as follows:

-module(terminal_logger).
│ │ │ │ +-behaviour(gen_event).
│ │ │ │  
│ │ │ │ --export([init/1, handle_event/2, terminate/2]).
│ │ │ │ +-export([init/1, handle_event/2, terminate/2]).
│ │ │ │  
│ │ │ │ -init(_Args) ->
│ │ │ │ -    {ok, []}.
│ │ │ │ +init(_Args) ->
│ │ │ │ +    {ok, []}.
│ │ │ │  
│ │ │ │ -handle_event(ErrorMsg, State) ->
│ │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, State}.
│ │ │ │ +handle_event(ErrorMsg, State) ->
│ │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, State}.
│ │ │ │  
│ │ │ │ -terminate(_Args, _State) ->
│ │ │ │ +terminate(_Args, _State) ->
│ │ │ │      ok.

The callback module for the event handler writing error messages to a file can │ │ │ │ -look as follows:

-module(file_logger).
│ │ │ │ --behaviour(gen_event).
│ │ │ │ +look as follows:

-module(file_logger).
│ │ │ │ +-behaviour(gen_event).
│ │ │ │  
│ │ │ │ --export([init/1, handle_event/2, terminate/2]).
│ │ │ │ +-export([init/1, handle_event/2, terminate/2]).
│ │ │ │  
│ │ │ │ -init(File) ->
│ │ │ │ -    {ok, Fd} = file:open(File, read),
│ │ │ │ -    {ok, Fd}.
│ │ │ │ -
│ │ │ │ -handle_event(ErrorMsg, Fd) ->
│ │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, Fd}.
│ │ │ │ +init(File) ->
│ │ │ │ +    {ok, Fd} = file:open(File, read),
│ │ │ │ +    {ok, Fd}.
│ │ │ │ +
│ │ │ │ +handle_event(ErrorMsg, Fd) ->
│ │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, Fd}.
│ │ │ │  
│ │ │ │ -terminate(_Args, Fd) ->
│ │ │ │ -    file:close(Fd).

The code is explained in the next sections.

│ │ │ │ +terminate(_Args, Fd) -> │ │ │ │ + file:close(Fd).

The code is explained in the next sections.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting an Event Manager │ │ │ │

│ │ │ │

To start an event manager for handling errors, as described in the previous │ │ │ │ example, call the following function:

gen_event:start_link({local, error_man})

gen_event:start_link/1 spawns and links to a new event manager process.

The argument, {local, error_man}, specifies the name under which the │ │ │ │ @@ -89,57 +89,57 @@ │ │ │ │ manager that is not part of a supervision tree.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding an Event Handler │ │ │ │

│ │ │ │

The following example shows how to start an event manager and add an event │ │ │ │ -handler to it by using the shell:

1> gen_event:start({local, error_man}).
│ │ │ │ -{ok,<0.31.0>}
│ │ │ │ -2> gen_event:add_handler(error_man, terminal_logger, []).
│ │ │ │ +handler to it by using the shell:

1> gen_event:start({local, error_man}).
│ │ │ │ +{ok,<0.31.0>}
│ │ │ │ +2> gen_event:add_handler(error_man, terminal_logger, []).
│ │ │ │  ok

This function sends a message to the event manager registered as error_man, │ │ │ │ telling it to add the event handler terminal_logger. The event manager calls │ │ │ │ the callback function terminal_logger:init([]), where the argument [] is the │ │ │ │ third argument to add_handler. init/1 is expected to return {ok, State}, │ │ │ │ -where State is the internal state of the event handler.

init(_Args) ->
│ │ │ │ -    {ok, []}.

Here, init/1 does not need any input data and ignores its argument. For │ │ │ │ +where State is the internal state of the event handler.

init(_Args) ->
│ │ │ │ +    {ok, []}.

Here, init/1 does not need any input data and ignores its argument. For │ │ │ │ terminal_logger, the internal state is not used. For file_logger, the │ │ │ │ -internal state is used to save the open file descriptor.

init(File) ->
│ │ │ │ -    {ok, Fd} = file:open(File, read),
│ │ │ │ -    {ok, Fd}.

│ │ │ │ +internal state is used to save the open file descriptor.

init(File) ->
│ │ │ │ +    {ok, Fd} = file:open(File, read),
│ │ │ │ +    {ok, Fd}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Notifying about Events │ │ │ │

│ │ │ │
3> gen_event:notify(error_man, no_reply).
│ │ │ │  ***Error*** no_reply
│ │ │ │  ok

error_man is the name of the event manager and no_reply is the event.

The event is made into a message and sent to the event manager. When the event │ │ │ │ is received, the event manager calls handle_event(Event, State) for each │ │ │ │ installed event handler, in the same order as they were added. The function is │ │ │ │ expected to return a tuple {ok,State1}, where State1 is a new value for the │ │ │ │ -state of the event handler.

In terminal_logger:

handle_event(ErrorMsg, State) ->
│ │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, State}.

In file_logger:

handle_event(ErrorMsg, Fd) ->
│ │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ -    {ok, Fd}.

│ │ │ │ +state of the event handler.

In terminal_logger:

handle_event(ErrorMsg, State) ->
│ │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, State}.

In file_logger:

handle_event(ErrorMsg, Fd) ->
│ │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
│ │ │ │ +    {ok, Fd}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Event Handler │ │ │ │

│ │ │ │ -
4> gen_event:delete_handler(error_man, terminal_logger, []).
│ │ │ │ +
4> gen_event:delete_handler(error_man, terminal_logger, []).
│ │ │ │  ok

This function sends a message to the event manager registered as error_man, │ │ │ │ telling it to delete the event handler terminal_logger. The event manager │ │ │ │ calls the callback function terminal_logger:terminate([], State), where the │ │ │ │ argument [] is the third argument to delete_handler. terminate/2 is to be │ │ │ │ the opposite of init/1 and do any necessary cleaning up. Its return value is │ │ │ │ -ignored.

For terminal_logger, no cleaning up is necessary:

terminate(_Args, _State) ->
│ │ │ │ -    ok.

For file_logger, the file descriptor opened in init must be closed:

terminate(_Args, Fd) ->
│ │ │ │ -    file:close(Fd).

│ │ │ │ +ignored.

For terminal_logger, no cleaning up is necessary:

terminate(_Args, _State) ->
│ │ │ │ +    ok.

For file_logger, the file descriptor opened in init must be closed:

terminate(_Args, Fd) ->
│ │ │ │ +    file:close(Fd).

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │ │

│ │ │ │

When an event manager is stopped, it gives each of the installed event handlers │ │ │ │ the chance to clean up by calling terminate/2, the same way as when deleting a │ │ │ │ @@ -154,29 +154,29 @@ │ │ │ │ this is done is defined by a shutdown strategy set in │ │ │ │ the supervisor.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Standalone Event Managers │ │ │ │

│ │ │ │ -

An event manager can also be stopped by calling:

1> gen_event:stop(error_man).
│ │ │ │ +

An event manager can also be stopped by calling:

1> gen_event:stop(error_man).
│ │ │ │  ok

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │ │

│ │ │ │

If the gen_event process is to be able to receive other messages │ │ │ │ than events, the callback function handle_info(Info, State) must be │ │ │ │ implemented to handle them. Examples of other messages are exit │ │ │ │ messages if the event manager is linked to other processes than the │ │ │ │ supervisor (for example via gen_event:add_sup_handler/3) and is │ │ │ │ -trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
│ │ │ │ +trapping exit signals.

handle_info({'EXIT', Pid, Reason}, State) ->
│ │ │ │      %% Code to handle exits here.
│ │ │ │      ...
│ │ │ │ -    {noreply, State1}.

The final function to implement is code_change/3:

code_change(OldVsn, State, Extra) ->
│ │ │ │ +    {noreply, State1}.

The final function to implement is code_change/3:

code_change(OldVsn, State, Extra) ->
│ │ │ │      %% Code to convert state (and more) during code change.
│ │ │ │      ...
│ │ │ │ -    {ok, NewState}.
│ │ │ │ +
{ok, NewState}.
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/errors.xhtml │ │ │ │ @@ -56,22 +56,22 @@ │ │ │ │ classes, with different origins. The try expression can │ │ │ │ distinguish between the different classes, whereas the │ │ │ │ catch expression cannot. try and catch are described │ │ │ │ in Expressions.

ClassOrigin
errorRun-time error, for example, 1+a, or the process called error/1
exitThe process called exit/1
throwThe process called throw/1

Table: Exception Classes.

All of the above exceptions can also be generated by calling erlang:raise/3.

An exception consists of its class, an exit reason (see │ │ │ │ Exit Reason), and a stack trace (which aids in finding │ │ │ │ the code location of the exception).

The stack trace can be bound to a variable from within a try expression for │ │ │ │ any exception class, or as part of the exit reason when a run-time error is │ │ │ │ -caught by a catch. Example:

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
│ │ │ │ -[{shell,apply_fun,3,[]},
│ │ │ │ - {erl_eval,do_apply,6,[]},
│ │ │ │ - ...]
│ │ │ │ -> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
│ │ │ │ -[{shell,apply_fun,3,[]},
│ │ │ │ - {erl_eval,do_apply,6,[]},
│ │ │ │ - ...]

│ │ │ │ +caught by a catch. Example:

> {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
│ │ │ │ +[{shell,apply_fun,3,[]},
│ │ │ │ + {erl_eval,do_apply,6,[]},
│ │ │ │ + ...]
│ │ │ │ +> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
│ │ │ │ +[{shell,apply_fun,3,[]},
│ │ │ │ + {erl_eval,do_apply,6,[]},
│ │ │ │ + ...]

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ The call-stack back trace (stacktrace) │ │ │ │

│ │ │ │

The stack back-trace (stacktrace) is a list that │ │ │ │ contains {Module, Function, Arity, ExtraInfo} and/or {Fun, Arity, ExtraInfo} │ │ │ ├── OEBPS/error_logging.xhtml │ │ │ │ @@ -48,36 +48,36 @@ │ │ │ │ reports and other error and information reports are by default logged through │ │ │ │ the log handler which is set up when the Kernel application is started.

Prior to Erlang/OTP 21.0, supervisor, crash, and progress reports were only │ │ │ │ logged when the SASL application was running. This behaviour can, for backwards │ │ │ │ compatibility, be enabled by setting the Kernel configuration parameter │ │ │ │ logger_sasl_compatible to │ │ │ │ true. For more information, see │ │ │ │ SASL Error Logging in the SASL User's Guide.

% erl -kernel logger_level info
│ │ │ │ -Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
│ │ │ │ +Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
│ │ │ │  
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
│ │ │ │      application: kernel
│ │ │ │      started_at: nonode@nohost
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
│ │ │ │      application: stdlib
│ │ │ │      started_at: nonode@nohost
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
│ │ │ │ -    supervisor: {local,kernel_safe_sup}
│ │ │ │ -    started: [{pid,<0.74.0>},
│ │ │ │ -              {id,disk_log_sup},
│ │ │ │ -              {mfargs,{disk_log_sup,start_link,[]}},
│ │ │ │ -              {restart_type,permanent},
│ │ │ │ -              {shutdown,1000},
│ │ │ │ -              {child_type,supervisor}]
│ │ │ │ +    supervisor: {local,kernel_safe_sup}
│ │ │ │ +    started: [{pid,<0.74.0>},
│ │ │ │ +              {id,disk_log_sup},
│ │ │ │ +              {mfargs,{disk_log_sup,start_link,[]}},
│ │ │ │ +              {restart_type,permanent},
│ │ │ │ +              {shutdown,1000},
│ │ │ │ +              {child_type,supervisor}]
│ │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
│ │ │ │ -    supervisor: {local,kernel_safe_sup}
│ │ │ │ -    started: [{pid,<0.75.0>},
│ │ │ │ -              {id,disk_log_server},
│ │ │ │ -              {mfargs,{disk_log_server,start_link,[]}},
│ │ │ │ -              {restart_type,permanent},
│ │ │ │ -              {shutdown,2000},
│ │ │ │ -              {child_type,worker}]
│ │ │ │ -Eshell V10.0  (abort with ^G)
│ │ │ │ +    supervisor: {local,kernel_safe_sup}
│ │ │ │ +    started: [{pid,<0.75.0>},
│ │ │ │ +              {id,disk_log_server},
│ │ │ │ +              {mfargs,{disk_log_server,start_link,[]}},
│ │ │ │ +              {restart_type,permanent},
│ │ │ │ +              {shutdown,2000},
│ │ │ │ +              {child_type,worker}]
│ │ │ │ +Eshell V10.0  (abort with ^G)
│ │ │ │  1>
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/erl_interface.xhtml │ │ │ │ @@ -25,119 +25,119 @@ │ │ │ │ to read the port example in Ports before reading this section.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Erlang Program │ │ │ │

│ │ │ │

The following example shows an Erlang program communicating with a C program │ │ │ │ -over a plain port with home made encoding:

-module(complex1).
│ │ │ │ --export([start/1, stop/0, init/1]).
│ │ │ │ --export([foo/1, bar/1]).
│ │ │ │ -
│ │ │ │ -start(ExtPrg) ->
│ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ -stop() ->
│ │ │ │ +over a plain port with home made encoding:

-module(complex1).
│ │ │ │ +-export([start/1, stop/0, init/1]).
│ │ │ │ +-export([foo/1, bar/1]).
│ │ │ │ +
│ │ │ │ +start(ExtPrg) ->
│ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ +stop() ->
│ │ │ │      complex ! stop.
│ │ │ │  
│ │ │ │ -foo(X) ->
│ │ │ │ -    call_port({foo, X}).
│ │ │ │ -bar(Y) ->
│ │ │ │ -    call_port({bar, Y}).
│ │ │ │ +foo(X) ->
│ │ │ │ +    call_port({foo, X}).
│ │ │ │ +bar(Y) ->
│ │ │ │ +    call_port({bar, Y}).
│ │ │ │  
│ │ │ │ -call_port(Msg) ->
│ │ │ │ -    complex ! {call, self(), Msg},
│ │ │ │ +call_port(Msg) ->
│ │ │ │ +    complex ! {call, self(), Msg},
│ │ │ │      receive
│ │ │ │ -	{complex, Result} ->
│ │ │ │ +	{complex, Result} ->
│ │ │ │  	    Result
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -init(ExtPrg) ->
│ │ │ │ -    register(complex, self()),
│ │ │ │ -    process_flag(trap_exit, true),
│ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
│ │ │ │ -    loop(Port).
│ │ │ │ +init(ExtPrg) ->
│ │ │ │ +    register(complex, self()),
│ │ │ │ +    process_flag(trap_exit, true),
│ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
│ │ │ │ +    loop(Port).
│ │ │ │  
│ │ │ │ -loop(Port) ->
│ │ │ │ +loop(Port) ->
│ │ │ │      receive
│ │ │ │ -	{call, Caller, Msg} ->
│ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
│ │ │ │ +	{call, Caller, Msg} ->
│ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
│ │ │ │  	    receive
│ │ │ │ -		{Port, {data, Data}} ->
│ │ │ │ -		    Caller ! {complex, decode(Data)}
│ │ │ │ +		{Port, {data, Data}} ->
│ │ │ │ +		    Caller ! {complex, decode(Data)}
│ │ │ │  	    end,
│ │ │ │ -	    loop(Port);
│ │ │ │ +	    loop(Port);
│ │ │ │  	stop ->
│ │ │ │ -	    Port ! {self(), close},
│ │ │ │ +	    Port ! {self(), close},
│ │ │ │  	    receive
│ │ │ │ -		{Port, closed} ->
│ │ │ │ -		    exit(normal)
│ │ │ │ +		{Port, closed} ->
│ │ │ │ +		    exit(normal)
│ │ │ │  	    end;
│ │ │ │ -	{'EXIT', Port, Reason} ->
│ │ │ │ -	    exit(port_terminated)
│ │ │ │ +	{'EXIT', Port, Reason} ->
│ │ │ │ +	    exit(port_terminated)
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -encode({foo, X}) -> [1, X];
│ │ │ │ -encode({bar, Y}) -> [2, Y].
│ │ │ │ +encode({foo, X}) -> [1, X];
│ │ │ │ +encode({bar, Y}) -> [2, Y].
│ │ │ │  
│ │ │ │ -decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the │ │ │ │ +decode([Int]) -> Int.

There are two differences when using Erl_Interface on the C side compared to the │ │ │ │ example in Ports, using only the plain port:

  • As Erl_Interface operates on the Erlang external term format, the port must be │ │ │ │ set to use binaries.
  • Instead of inventing an encoding/decoding scheme, the │ │ │ │ term_to_binary/1 and │ │ │ │ -binary_to_term/1 BIFs are to be used.

That is:

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
│ │ │ │ +binary_to_term/1 BIFs are to be used.

That is:

open_port({spawn, ExtPrg}, [{packet, 2}])

is replaced with:

open_port({spawn, ExtPrg}, [{packet, 2}, binary])

And:

Port ! {self(), {command, encode(Msg)}},
│ │ │ │  receive
│ │ │ │ -  {Port, {data, Data}} ->
│ │ │ │ -    Caller ! {complex, decode(Data)}
│ │ │ │ -end

is replaced with:

Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │ +  {Port, {data, Data}} ->
│ │ │ │ +    Caller ! {complex, decode(Data)}
│ │ │ │ +end

is replaced with:

Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │  receive
│ │ │ │ -  {Port, {data, Data}} ->
│ │ │ │ -    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ -end

The resulting Erlang program is as follows:

-module(complex2).
│ │ │ │ --export([start/1, stop/0, init/1]).
│ │ │ │ --export([foo/1, bar/1]).
│ │ │ │ -
│ │ │ │ -start(ExtPrg) ->
│ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ -stop() ->
│ │ │ │ +  {Port, {data, Data}} ->
│ │ │ │ +    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ +end

The resulting Erlang program is as follows:

-module(complex2).
│ │ │ │ +-export([start/1, stop/0, init/1]).
│ │ │ │ +-export([foo/1, bar/1]).
│ │ │ │ +
│ │ │ │ +start(ExtPrg) ->
│ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
│ │ │ │ +stop() ->
│ │ │ │      complex ! stop.
│ │ │ │  
│ │ │ │ -foo(X) ->
│ │ │ │ -    call_port({foo, X}).
│ │ │ │ -bar(Y) ->
│ │ │ │ -    call_port({bar, Y}).
│ │ │ │ +foo(X) ->
│ │ │ │ +    call_port({foo, X}).
│ │ │ │ +bar(Y) ->
│ │ │ │ +    call_port({bar, Y}).
│ │ │ │  
│ │ │ │ -call_port(Msg) ->
│ │ │ │ -    complex ! {call, self(), Msg},
│ │ │ │ +call_port(Msg) ->
│ │ │ │ +    complex ! {call, self(), Msg},
│ │ │ │      receive
│ │ │ │ -	{complex, Result} ->
│ │ │ │ +	{complex, Result} ->
│ │ │ │  	    Result
│ │ │ │      end.
│ │ │ │  
│ │ │ │ -init(ExtPrg) ->
│ │ │ │ -    register(complex, self()),
│ │ │ │ -    process_flag(trap_exit, true),
│ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
│ │ │ │ -    loop(Port).
│ │ │ │ +init(ExtPrg) ->
│ │ │ │ +    register(complex, self()),
│ │ │ │ +    process_flag(trap_exit, true),
│ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
│ │ │ │ +    loop(Port).
│ │ │ │  
│ │ │ │ -loop(Port) ->
│ │ │ │ +loop(Port) ->
│ │ │ │      receive
│ │ │ │ -	{call, Caller, Msg} ->
│ │ │ │ -	    Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │ +	{call, Caller, Msg} ->
│ │ │ │ +	    Port ! {self(), {command, term_to_binary(Msg)}},
│ │ │ │  	    receive
│ │ │ │ -		{Port, {data, Data}} ->
│ │ │ │ -		    Caller ! {complex, binary_to_term(Data)}
│ │ │ │ +		{Port, {data, Data}} ->
│ │ │ │ +		    Caller ! {complex, binary_to_term(Data)}
│ │ │ │  	    end,
│ │ │ │ -	    loop(Port);
│ │ │ │ +	    loop(Port);
│ │ │ │  	stop ->
│ │ │ │ -	    Port ! {self(), close},
│ │ │ │ +	    Port ! {self(), close},
│ │ │ │  	    receive
│ │ │ │ -		{Port, closed} ->
│ │ │ │ -		    exit(normal)
│ │ │ │ +		{Port, closed} ->
│ │ │ │ +		    exit(normal)
│ │ │ │  	    end;
│ │ │ │ -	{'EXIT', Port, Reason} ->
│ │ │ │ -	    exit(port_terminated)
│ │ │ │ +	{'EXIT', Port, Reason} ->
│ │ │ │ +	    exit(port_terminated)
│ │ │ │      end.

Notice that calling complex2:foo/1 and complex2:bar/1 results in the tuple │ │ │ │ {foo,X} or {bar,Y} being sent to the complex process, which codes them as │ │ │ │ binaries and sends them to the port. This means that the C program must be able │ │ │ │ to handle these two tuples.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -267,24 +267,24 @@ │ │ │ │ -L/usr/local/otp/lib/erl_interface-3.9.2/lib \ │ │ │ │ complex.c erl_comm.c ei.c -lei -lpthread

In Erlang/OTP R5B and later versions of OTP, the include and lib directories │ │ │ │ are situated under $OTPROOT/lib/erl_interface-VSN, where $OTPROOT is the │ │ │ │ root directory of the OTP installation (/usr/local/otp in the recent example) │ │ │ │ and VSN is the version of the Erl_interface application (3.2.1 in the recent │ │ │ │ example).

In R4B and earlier versions of OTP, include and lib are situated under │ │ │ │ $OTPROOT/usr.

Step 2. Start Erlang and compile the Erlang code:

$ erl
│ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
│ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
│ │ │ │  
│ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ -1> c(complex2).
│ │ │ │ -{ok,complex2}

Step 3. Run the example:

2> complex2:start("./extprg").
│ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ +1> c(complex2).
│ │ │ │ +{ok,complex2}

Step 3. Run the example:

2> complex2:start("./extprg").
│ │ │ │  <0.34.0>
│ │ │ │ -3> complex2:foo(3).
│ │ │ │ +3> complex2:foo(3).
│ │ │ │  4
│ │ │ │ -4> complex2:bar(5).
│ │ │ │ +4> complex2:bar(5).
│ │ │ │  10
│ │ │ │ -5> complex2:bar(352).
│ │ │ │ +5> complex2:bar(352).
│ │ │ │  704
│ │ │ │ -6> complex2:stop().
│ │ │ │ +6> complex2:stop().
│ │ │ │  stop
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/eff_guide_processes.xhtml │ │ │ │ @@ -24,45 +24,45 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating an Erlang Process │ │ │ │

│ │ │ │

An Erlang process is lightweight compared to threads and processes in operating │ │ │ │ systems.

A newly spawned Erlang process uses 327 words of memory. The size can be found │ │ │ │ -as follows:

Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
│ │ │ │ +as follows:

Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
│ │ │ │  
│ │ │ │ -Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ -1> Fun = fun() -> receive after infinity -> ok end end.
│ │ │ │ +Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
│ │ │ │ +1> Fun = fun() -> receive after infinity -> ok end end.
│ │ │ │  #Fun<erl_eval.43.39164016>
│ │ │ │ -2> {_,Bytes} = process_info(spawn(Fun), memory).
│ │ │ │ -{memory,2616}
│ │ │ │ -3> Bytes div erlang:system_info(wordsize).
│ │ │ │ +2> {_,Bytes} = process_info(spawn(Fun), memory).
│ │ │ │ +{memory,2616}
│ │ │ │ +3> Bytes div erlang:system_info(wordsize).
│ │ │ │  327

The size includes 233 words for the heap area (which includes the stack). The │ │ │ │ garbage collector increases the heap as needed.

The main (outer) loop for a process must be tail-recursive. Otherwise, the │ │ │ │ -stack grows until the process terminates.

DO NOT

loop() ->
│ │ │ │ +stack grows until the process terminates.

DO NOT

loop() ->
│ │ │ │    receive
│ │ │ │ -     {sys, Msg} ->
│ │ │ │ -         handle_sys_msg(Msg),
│ │ │ │ -         loop();
│ │ │ │ -     {From, Msg} ->
│ │ │ │ -          Reply = handle_msg(Msg),
│ │ │ │ +     {sys, Msg} ->
│ │ │ │ +         handle_sys_msg(Msg),
│ │ │ │ +         loop();
│ │ │ │ +     {From, Msg} ->
│ │ │ │ +          Reply = handle_msg(Msg),
│ │ │ │            From ! Reply,
│ │ │ │ -          loop()
│ │ │ │ +          loop()
│ │ │ │    end,
│ │ │ │ -  io:format("Message is processed~n", []).

The call to io:format/2 will never be executed, but a return address will │ │ │ │ + io:format("Message is processed~n", []).

The call to io:format/2 will never be executed, but a return address will │ │ │ │ still be pushed to the stack each time loop/0 is called recursively. The │ │ │ │ -correct tail-recursive version of the function looks as follows:

DO

loop() ->
│ │ │ │ +correct tail-recursive version of the function looks as follows:

DO

loop() ->
│ │ │ │     receive
│ │ │ │ -      {sys, Msg} ->
│ │ │ │ -         handle_sys_msg(Msg),
│ │ │ │ -         loop();
│ │ │ │ -      {From, Msg} ->
│ │ │ │ -         Reply = handle_msg(Msg),
│ │ │ │ +      {sys, Msg} ->
│ │ │ │ +         handle_sys_msg(Msg),
│ │ │ │ +         loop();
│ │ │ │ +      {From, Msg} ->
│ │ │ │ +         Reply = handle_msg(Msg),
│ │ │ │           From ! Reply,
│ │ │ │ -         loop()
│ │ │ │ +         loop()
│ │ │ │   end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Initial Heap Size │ │ │ │

│ │ │ │

The default initial heap size of 233 words is quite conservative to support │ │ │ │ @@ -94,30 +94,30 @@ │ │ │ │ │ │ │ │ │ │ │ │ Receiving messages │ │ │ │ │ │ │ │

The cost of receiving messages depends on how complicated the receive │ │ │ │ expression is. A simple expression that matches any message is very cheap │ │ │ │ because it retrieves the first message in the message queue:

DO

receive
│ │ │ │ -    Message -> handle_msg(Message)
│ │ │ │ +    Message -> handle_msg(Message)
│ │ │ │  end.

However, this is not always convenient: we can receive a message that we do not │ │ │ │ know how to handle at this point, so it is common to only match the messages we │ │ │ │ expect:

receive
│ │ │ │ -    {Tag, Message} -> handle_msg(Message)
│ │ │ │ +    {Tag, Message} -> handle_msg(Message)
│ │ │ │  end.

While this is convenient it means that the entire message queue must be searched │ │ │ │ until it finds a matching message. This is very expensive for processes with │ │ │ │ long message queues, so there is an optimization for the common case of │ │ │ │ -sending a request and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
│ │ │ │ -Process ! {self(), MRef, Request},
│ │ │ │ +sending a request and waiting for a response shortly after:

DO

MRef = monitor(process, Process),
│ │ │ │ +Process ! {self(), MRef, Request},
│ │ │ │  receive
│ │ │ │ -    {MRef, Reply} ->
│ │ │ │ -        erlang:demonitor(MRef, [flush]),
│ │ │ │ -        handle_reply(Reply);
│ │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ -        handle_error(Reason)
│ │ │ │ +    {MRef, Reply} ->
│ │ │ │ +        erlang:demonitor(MRef, [flush]),
│ │ │ │ +        handle_reply(Reply);
│ │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ +        handle_error(Reason)
│ │ │ │  end.

Since the compiler knows that the reference created by │ │ │ │ monitor/2 cannot exist before the call (since it is a globally │ │ │ │ unique identifier), and that the receive only matches messages that contain │ │ │ │ said reference, it will tell the emulator to search only the messages that │ │ │ │ arrived after the call to monitor/2.

The above is a simple example where one is but guaranteed that the optimization │ │ │ │ will take, but what about more complicated code?

│ │ │ │ │ │ │ │ @@ -133,101 +133,101 @@ │ │ │ │ efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference │ │ │ │ efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position │ │ │ │ efficiency_guide.erl:208: Warning: OPTIMIZED: all clauses match reference created by monitor/2 at efficiency_guide.erl:206 │ │ │ │ efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218 │ │ │ │ efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1

To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ │ example:

%% DO
│ │ │ │ -simple_receive() ->
│ │ │ │ +simple_receive() ->
│ │ │ │  %% efficiency_guide.erl:194: Warning: INFO: not a selective receive, this is always fast
│ │ │ │  receive
│ │ │ │ -    Message -> handle_msg(Message)
│ │ │ │ +    Message -> handle_msg(Message)
│ │ │ │  end.
│ │ │ │  
│ │ │ │  %% DO NOT, unless Tag is known to be a suitable reference: see
│ │ │ │  %% cross_function_receive/0 further down.
│ │ │ │ -selective_receive(Tag, Message) ->
│ │ │ │ +selective_receive(Tag, Message) ->
│ │ │ │  %% efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
│ │ │ │  receive
│ │ │ │ -    {Tag, Message} -> handle_msg(Message)
│ │ │ │ +    {Tag, Message} -> handle_msg(Message)
│ │ │ │  end.
│ │ │ │  
│ │ │ │  %% DO
│ │ │ │ -optimized_receive(Process, Request) ->
│ │ │ │ +optimized_receive(Process, Request) ->
│ │ │ │  %% efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
│ │ │ │ -    MRef = monitor(process, Process),
│ │ │ │ -    Process ! {self(), MRef, Request},
│ │ │ │ +    MRef = monitor(process, Process),
│ │ │ │ +    Process ! {self(), MRef, Request},
│ │ │ │      %% efficiency_guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency_guide.erl:206
│ │ │ │      receive
│ │ │ │ -        {MRef, Reply} ->
│ │ │ │ -        erlang:demonitor(MRef, [flush]),
│ │ │ │ -        handle_reply(Reply);
│ │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ -    handle_error(Reason)
│ │ │ │ +        {MRef, Reply} ->
│ │ │ │ +        erlang:demonitor(MRef, [flush]),
│ │ │ │ +        handle_reply(Reply);
│ │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
│ │ │ │ +    handle_error(Reason)
│ │ │ │      end.
│ │ │ │  
│ │ │ │  %% DO
│ │ │ │ -cross_function_receive() ->
│ │ │ │ +cross_function_receive() ->
│ │ │ │      %% efficiency_guide.erl:218: Warning: OPTIMIZED: reference used to mark a message queue position
│ │ │ │ -    Ref = make_ref(),
│ │ │ │ +    Ref = make_ref(),
│ │ │ │      %% efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
│ │ │ │ -    cross_function_receive(Ref).
│ │ │ │ +    cross_function_receive(Ref).
│ │ │ │  
│ │ │ │ -cross_function_receive(Ref) ->
│ │ │ │ +cross_function_receive(Ref) ->
│ │ │ │      %% efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
│ │ │ │      receive
│ │ │ │ -        {Ref, Message} -> handle_msg(Message)
│ │ │ │ +        {Ref, Message} -> handle_msg(Message)
│ │ │ │      end.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Literal Pool │ │ │ │

│ │ │ │

Constant Erlang terms (hereafter called literals) are kept in literal pools; │ │ │ │ each loaded module has its own pool. The following function does not build the │ │ │ │ tuple every time it is called (only to have it discarded the next time the │ │ │ │ garbage collector was run), but the tuple is located in the module's literal │ │ │ │ -pool:

DO

days_in_month(M) ->
│ │ │ │ -    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ │ +pool:

DO

days_in_month(M) ->
│ │ │ │ +    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ │ it is copied. The reason is that the module containing the literal can be │ │ │ │ unloaded in the future.

When a literal is sent to another process, it is not copied. When a module │ │ │ │ holding a literal is unloaded, the literal will be copied to the heap of all │ │ │ │ processes that hold references to that literal.

There also exists a global literal pool that is managed by the │ │ │ │ persistent_term module.

By default, 1 GB of virtual address space is reserved for all literal pools (in │ │ │ │ BEAM code and persistent terms). The amount of virtual address space reserved │ │ │ │ for literals can be changed by using the │ │ │ │ +MIscs option when starting the emulator.

Here is an example how the reserved virtual address space for literals can be │ │ │ │ raised to 2 GB (2048 MB):

erl +MIscs 2048

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Loss of Sharing │ │ │ │

│ │ │ │ -

An Erlang term can have shared subterms. Here is a simple example:

{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

  • When a term is sent to another process
  • When a term is passed as the initial process arguments in the spawn call
  • When a term is stored in an Ets table

That is an optimization. Most applications do not send messages with shared │ │ │ │ -subterms.

The following example shows how a shared subterm can be created:

kilo_byte() ->
│ │ │ │ -    kilo_byte(10, [42]).
│ │ │ │ +

An Erlang term can have shared subterms. Here is a simple example:

{SubTerm, SubTerm}

Shared subterms are not preserved in the following cases:

  • When a term is sent to another process
  • When a term is passed as the initial process arguments in the spawn call
  • When a term is stored in an Ets table

That is an optimization. Most applications do not send messages with shared │ │ │ │ +subterms.

The following example shows how a shared subterm can be created:

kilo_byte() ->
│ │ │ │ +    kilo_byte(10, [42]).
│ │ │ │  
│ │ │ │ -kilo_byte(0, Acc) ->
│ │ │ │ +kilo_byte(0, Acc) ->
│ │ │ │      Acc;
│ │ │ │ -kilo_byte(N, Acc) ->
│ │ │ │ -    kilo_byte(N-1, [Acc|Acc]).

kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ │ +kilo_byte(N, Acc) -> │ │ │ │ + kilo_byte(N-1, [Acc|Acc]).

kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ │ is called, the deep list can be converted to a binary of 1024 bytes:

1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
│ │ │ │  1024

Using the erts_debug:size/1 BIF, it can be seen that the deep list only │ │ │ │ -requires 22 words of heap space:

2> erts_debug:size(efficiency_guide:kilo_byte()).
│ │ │ │ +requires 22 words of heap space:

2> erts_debug:size(efficiency_guide:kilo_byte()).
│ │ │ │  22

Using the erts_debug:flat_size/1 BIF, the size of the deep list can be │ │ │ │ calculated if sharing is ignored. It becomes the size of the list when it has │ │ │ │ -been sent to another process or stored in an Ets table:

3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
│ │ │ │ +been sent to another process or stored in an Ets table:

3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
│ │ │ │  4094

It can be verified that sharing will be lost if the data is inserted into an Ets │ │ │ │ -table:

4> T = ets:new(tab, []).
│ │ │ │ +table:

4> T = ets:new(tab, []).
│ │ │ │  #Ref<0.1662103692.2407923716.214181>
│ │ │ │ -5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
│ │ │ │ +5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
│ │ │ │  true
│ │ │ │ -6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │ +6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │  4094
│ │ │ │ -7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │ +7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
│ │ │ │  4094

When the data has passed through an Ets table, erts_debug:size/1 and │ │ │ │ erts_debug:flat_size/1 return the same value. Sharing has been lost.

It is possible to build an experimental variant of the runtime system that │ │ │ │ will preserve sharing when copying terms by giving the │ │ │ │ --enable-sharing-preserving option to the configure script.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/eff_guide_functions.xhtml │ │ │ │ @@ -27,67 +27,67 @@ │ │ │ │ Pattern Matching │ │ │ │

│ │ │ │

Pattern matching in function head as well as in case and receive clauses are │ │ │ │ optimized by the compiler. With a few exceptions, there is nothing to gain by │ │ │ │ rearranging clauses.

One exception is pattern matching of binaries. The compiler does not rearrange │ │ │ │ clauses that match binaries. Placing the clause that matches against the empty │ │ │ │ binary last is usually slightly faster than placing it first.

The following is a rather unnatural example to show another exception where │ │ │ │ -rearranging clauses is beneficial:

DO NOT

atom_map1(one) -> 1;
│ │ │ │ -atom_map1(two) -> 2;
│ │ │ │ -atom_map1(three) -> 3;
│ │ │ │ -atom_map1(Int) when is_integer(Int) -> Int;
│ │ │ │ -atom_map1(four) -> 4;
│ │ │ │ -atom_map1(five) -> 5;
│ │ │ │ -atom_map1(six) -> 6.

The problem is the clause with the variable Int. As a variable can match │ │ │ │ +rearranging clauses is beneficial:

DO NOT

atom_map1(one) -> 1;
│ │ │ │ +atom_map1(two) -> 2;
│ │ │ │ +atom_map1(three) -> 3;
│ │ │ │ +atom_map1(Int) when is_integer(Int) -> Int;
│ │ │ │ +atom_map1(four) -> 4;
│ │ │ │ +atom_map1(five) -> 5;
│ │ │ │ +atom_map1(six) -> 6.

The problem is the clause with the variable Int. As a variable can match │ │ │ │ anything, including the atoms four, five, and six, which the following │ │ │ │ clauses also match, the compiler must generate suboptimal code that executes as │ │ │ │ follows:

  • First, the input value is compared to one, two, and three (using a │ │ │ │ single instruction that does a binary search; thus, quite efficient even if │ │ │ │ there are many values) to select which one of the first three clauses to │ │ │ │ execute (if any).
  • If none of the first three clauses match, the fourth clause match as a │ │ │ │ variable always matches.
  • If the guard test is_integer(Int) succeeds, the fourth │ │ │ │ clause is executed.
  • If the guard test fails, the input value is compared to four, five, and │ │ │ │ six, and the appropriate clause is selected. (There is a function_clause │ │ │ │ -exception if none of the values matched.)

Rewriting to either:

DO

atom_map2(one) -> 1;
│ │ │ │ -atom_map2(two) -> 2;
│ │ │ │ -atom_map2(three) -> 3;
│ │ │ │ -atom_map2(four) -> 4;
│ │ │ │ -atom_map2(five) -> 5;
│ │ │ │ -atom_map2(six) -> 6;
│ │ │ │ -atom_map2(Int) when is_integer(Int) -> Int.

or:

DO

atom_map3(Int) when is_integer(Int) -> Int;
│ │ │ │ -atom_map3(one) -> 1;
│ │ │ │ -atom_map3(two) -> 2;
│ │ │ │ -atom_map3(three) -> 3;
│ │ │ │ -atom_map3(four) -> 4;
│ │ │ │ -atom_map3(five) -> 5;
│ │ │ │ -atom_map3(six) -> 6.

gives slightly more efficient matching code.

Another example:

DO NOT

map_pairs1(_Map, [], Ys) ->
│ │ │ │ +exception if none of the values matched.)

Rewriting to either:

DO

atom_map2(one) -> 1;
│ │ │ │ +atom_map2(two) -> 2;
│ │ │ │ +atom_map2(three) -> 3;
│ │ │ │ +atom_map2(four) -> 4;
│ │ │ │ +atom_map2(five) -> 5;
│ │ │ │ +atom_map2(six) -> 6;
│ │ │ │ +atom_map2(Int) when is_integer(Int) -> Int.

or:

DO

atom_map3(Int) when is_integer(Int) -> Int;
│ │ │ │ +atom_map3(one) -> 1;
│ │ │ │ +atom_map3(two) -> 2;
│ │ │ │ +atom_map3(three) -> 3;
│ │ │ │ +atom_map3(four) -> 4;
│ │ │ │ +atom_map3(five) -> 5;
│ │ │ │ +atom_map3(six) -> 6.

gives slightly more efficient matching code.

Another example:

DO NOT

map_pairs1(_Map, [], Ys) ->
│ │ │ │      Ys;
│ │ │ │ -map_pairs1(_Map, Xs, []) ->
│ │ │ │ +map_pairs1(_Map, Xs, []) ->
│ │ │ │      Xs;
│ │ │ │ -map_pairs1(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ -    [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

The first argument is not a problem. It is variable, but it is a variable in │ │ │ │ +map_pairs1(Map, [X|Xs], [Y|Ys]) -> │ │ │ │ + [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

The first argument is not a problem. It is variable, but it is a variable in │ │ │ │ all clauses. The problem is the variable in the second argument, Xs, in the │ │ │ │ middle clause. Because the variable can match anything, the compiler is not │ │ │ │ allowed to rearrange the clauses, but must generate code that matches them in │ │ │ │ the order written.

If the function is rewritten as follows, the compiler is free to rearrange the │ │ │ │ -clauses:

DO

map_pairs2(_Map, [], Ys) ->
│ │ │ │ +clauses:

DO

map_pairs2(_Map, [], Ys) ->
│ │ │ │      Ys;
│ │ │ │ -map_pairs2(_Map, [_|_]=Xs, [] ) ->
│ │ │ │ +map_pairs2(_Map, [_|_]=Xs, [] ) ->
│ │ │ │      Xs;
│ │ │ │ -map_pairs2(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ -    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:

DO NOT (already done by the compiler)

explicit_map_pairs(Map, Xs0, Ys0) ->
│ │ │ │ +map_pairs2(Map, [X|Xs], [Y|Ys]) ->
│ │ │ │ +    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

The compiler will generate code similar to this:

DO NOT (already done by the compiler)

explicit_map_pairs(Map, Xs0, Ys0) ->
│ │ │ │      case Xs0 of
│ │ │ │ -	[X|Xs] ->
│ │ │ │ +	[X|Xs] ->
│ │ │ │  	    case Ys0 of
│ │ │ │ -		[Y|Ys] ->
│ │ │ │ -		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
│ │ │ │ -		[] ->
│ │ │ │ +		[Y|Ys] ->
│ │ │ │ +		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
│ │ │ │ +		[] ->
│ │ │ │  		    Xs0
│ │ │ │  	    end;
│ │ │ │ -	[] ->
│ │ │ │ +	[] ->
│ │ │ │  	    Ys0
│ │ │ │      end.

This is slightly faster for probably the most common case that the input lists │ │ │ │ are not empty or very short. (Another advantage is that Dialyzer can deduce a │ │ │ │ better type for the Xs variable.)

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/drivers.xhtml │ │ │ │ @@ -27,23 +27,23 @@ │ │ │ │ Drivers and Concurrency │ │ │ │

│ │ │ │

The runtime system always takes a lock before running any code in a driver.

By default, that lock is at the driver level, that is, if several ports have │ │ │ │ been opened to the same driver, only code for one port at the same time can be │ │ │ │ running.

A driver can be configured to have one lock for each port instead.

If a driver is used in a functional way (that is, holds no state, but only does │ │ │ │ some heavy calculation and returns a result), several ports with registered │ │ │ │ names can be opened beforehand, and the port to be used can be chosen based on │ │ │ │ -the scheduler ID as follows:

-define(PORT_NAMES(),
│ │ │ │ -	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
│ │ │ │ +the scheduler ID as follows:

-define(PORT_NAMES(),
│ │ │ │ +	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
│ │ │ │  	 some_driver_05, some_driver_06, some_driver_07, some_driver_08,
│ │ │ │  	 some_driver_09, some_driver_10, some_driver_11, some_driver_12,
│ │ │ │ -	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
│ │ │ │ +	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
│ │ │ │  
│ │ │ │ -client_port() ->
│ │ │ │ -    element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
│ │ │ │ -	    ?PORT_NAMES()).

As long as there are no more than 16 schedulers, there will never be any lock │ │ │ │ +client_port() -> │ │ │ │ + element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1, │ │ │ │ + ?PORT_NAMES()).

As long as there are no more than 16 schedulers, there will never be any lock │ │ │ │ contention on the port lock for the driver.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Avoiding Copying Binaries When Calling a Driver │ │ │ │

│ │ │ │

There are basically two ways to avoid copying a binary that is sent to a driver:

  • If the Data argument for port_control/3 is a │ │ │ ├── OEBPS/documentation.xhtml │ │ │ │ @@ -17,23 +17,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

    │ │ │ │ Documentation │ │ │ │

    │ │ │ │

    Documentation in Erlang is done through the -moduledoc and -doc │ │ │ │ -attributes. For example:

    -module(arith).
    │ │ │ │ +attributes. For example:

    -module(arith).
    │ │ │ │  -moduledoc """
    │ │ │ │  A module for basic arithmetic.
    │ │ │ │  """.
    │ │ │ │  
    │ │ │ │ --export([add/2]).
    │ │ │ │ +-export([add/2]).
    │ │ │ │  
    │ │ │ │  -doc "Adds two numbers.".
    │ │ │ │ -add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ │ +add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ │ or function declaration. It documents the overall purpose of the module.

    The -doc attribute always precedes the function or │ │ │ │ attribute it documents. The │ │ │ │ attributes that can be documented are │ │ │ │ user-defined types │ │ │ │ (-type and -opaque) and │ │ │ │ behaviour module attributes │ │ │ │ (-callback).

    By default the format used for documentation attributes is │ │ │ │ @@ -45,55 +45,55 @@ │ │ │ │ Documentation Attributes.

    -doc attributes have been available since Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documentation metadata │ │ │ │

    │ │ │ │

    It is possible to add metadata to the documentation entry. You do this by adding │ │ │ │ -a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ │ +a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ │  -moduledoc """
    │ │ │ │  A module for basic arithmetic.
    │ │ │ │  """.
    │ │ │ │ --moduledoc #{since => "1.0"}.
    │ │ │ │ +-moduledoc #{since => "1.0"}.
    │ │ │ │  
    │ │ │ │ --export([add/2]).
    │ │ │ │ +-export([add/2]).
    │ │ │ │  
    │ │ │ │  -doc "Adds two numbers.".
    │ │ │ │ --doc(#{since => "1.0"}).
    │ │ │ │ -add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ │ +-doc(#{since => "1.0"}). │ │ │ │ +add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ │ user. There can be multiple metadata documentation entries, in which case the │ │ │ │ maps will be merged with the latest taking precedence if there are duplicate │ │ │ │ keys. Example:

    -doc "Adds two numbers.".
    │ │ │ │ --doc #{since => "1.0", author => "Joe"}.
    │ │ │ │ --doc #{since => "2.0"}.
    │ │ │ │ -add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ │ +-doc #{since => "1.0", author => "Joe"}. │ │ │ │ +-doc #{since => "2.0"}. │ │ │ │ +add(One, Two) -> One + Two.

This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

The keys and values in the metadata map can be any type, but it is recommended │ │ │ │ that only atoms are used for keys and │ │ │ │ strings for the values.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ External documentation files │ │ │ │

│ │ │ │

The -moduledoc and -doc can also be placed in external files. To do so use │ │ │ │ -doc {file, "path/to/doc.md"} to point to the documentation. The path used is │ │ │ │ relative to the file where the -doc attribute is located. For example:

%% doc/add.md
│ │ │ │  Adds two numbers.

and

%% src/arith.erl
│ │ │ │ --doc({file, "../doc/add.md"}).
│ │ │ │ -add(One, Two) -> One + Two.

│ │ │ │ +-doc({file, "../doc/add.md"}). │ │ │ │ +add(One, Two) -> One + Two.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documenting a module │ │ │ │

│ │ │ │

The module description should include details on how to use the API and examples │ │ │ │ of the different functions working together. Here is a good place to use images │ │ │ │ and other diagrams to better show the usage of the module. Instead of writing a │ │ │ │ long text in the moduledoc attribute, it could be better to break it out into │ │ │ │ an external page.

The moduledoc attribute should start with a short paragraph describing the │ │ │ │ -module and then go into greater details. For example:

-module(arith).
│ │ │ │ +module and then go into greater details. For example:

-module(arith).
│ │ │ │  -moduledoc """
│ │ │ │     A module for basic arithmetic.
│ │ │ │  
│ │ │ │     This module can be used to add and subtract values. For example:
│ │ │ │  
│ │ │ │     ```erlang
│ │ │ │     1> arith:substract(arith:add(2, 3), 1).
│ │ │ │ @@ -108,94 +108,94 @@
│ │ │ │  

There are three reserved metadata keys for -moduledoc:

  • since - Shows in which version of the application the module was added. │ │ │ │ If this is added, all functions, types, and callbacks within will also receive │ │ │ │ the same since value unless specified in the metadata of the function, type │ │ │ │ or callback.
  • deprecated - Shows a text in the documentation explaining that it is │ │ │ │ deprecated and what to use instead.
  • format - The format to use for all documentation in this module. The │ │ │ │ default is text/markdown. It should be written using the │ │ │ │ mime type │ │ │ │ -of the format.

Example:

-moduledoc {file, "../doc/arith.asciidoc"}.
│ │ │ │ --moduledoc #{since => "0.1", format => "text/asciidoc"}.
│ │ │ │ --moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

│ │ │ │ +of the format.

Example:

-moduledoc {file, "../doc/arith.asciidoc"}.
│ │ │ │ +-moduledoc #{since => "0.1", format => "text/asciidoc"}.
│ │ │ │ +-moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Documenting functions, user-defined types, and callbacks │ │ │ │

│ │ │ │

Functions, types, and callbacks can be documented using the -doc attribute. │ │ │ │ Each entry should start with a short paragraph describing the purpose of entity, │ │ │ │ and then go into greater detail in needed.

It is not recommended to include images or diagrams in this documentation as it │ │ │ │ is used by IDEs and c:h/1 to show the documentation to the user.

For example:

-doc """
│ │ │ │  A number that can be used by the arith module.
│ │ │ │  
│ │ │ │  We use a special number here so that we know
│ │ │ │  that this number comes from this module.
│ │ │ │  """.
│ │ │ │ --opaque number() :: {arith, erlang:number()}.
│ │ │ │ +-opaque number() :: {arith, erlang:number()}.
│ │ │ │  
│ │ │ │  -doc """
│ │ │ │  Adds two numbers.
│ │ │ │  
│ │ │ │  ### Example:
│ │ │ │  
│ │ │ │  ```
│ │ │ │  1> arith:add(arith:number(1), arith:number(2)). {number, 3}
│ │ │ │  ```
│ │ │ │  """.
│ │ │ │ --spec add(number(), number()) -> number().
│ │ │ │ -add({number, One}, {number, Two}) -> {number, One + Two}.

│ │ │ │ +-spec add(number(), number()) -> number(). │ │ │ │ +add({number, One}, {number, Two}) -> {number, One + Two}.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Doc metadata │ │ │ │

│ │ │ │

There are four reserved metadata keys for -doc:

  • since => unicode:chardata() - Shows which version of the application the │ │ │ │ module was added.

  • deprecated => unicode:chardata() - Shows a text in the documentation │ │ │ │ explaining that it is deprecated and what to use instead. The compiler will │ │ │ │ automatically insert this key if there is a -deprecated attribute marking a │ │ │ │ function as deprecated.

  • equiv => unicode:chardata() | F/A | F(...) - Notes that this function is equivalent to │ │ │ │ another function in this module. The equivalence can be described using either │ │ │ │ -Func/Arity, Func(Args) or a unicode string. For example:

    -doc #{equiv => add/3}.
    │ │ │ │ -add(One, Two) -> add(One, Two, []).
    │ │ │ │ -add(One, Two, Options) -> ...

    or

    -doc #{equiv => add(One, Two, [])}.
    │ │ │ │ --spec add(One :: number(), Two :: number()) -> number().
    │ │ │ │ -add(One, Two) -> add(One, Two, []).
    │ │ │ │ -add(One, Two, Options) -> ...

    The entry into the EEP-48 doc chunk metadata is │ │ │ │ +Func/Arity, Func(Args) or a unicode string. For example:

    -doc #{equiv => add/3}.
    │ │ │ │ +add(One, Two) -> add(One, Two, []).
    │ │ │ │ +add(One, Two, Options) -> ...

    or

    -doc #{equiv => add(One, Two, [])}.
    │ │ │ │ +-spec add(One :: number(), Two :: number()) -> number().
    │ │ │ │ +add(One, Two) -> add(One, Two, []).
    │ │ │ │ +add(One, Two, Options) -> ...

    The entry into the EEP-48 doc chunk metadata is │ │ │ │ the value converted to a string.

  • exported => boolean() - A boolean/0 signifying if the entry is exported │ │ │ │ or not. This value is automatically set by the compiler and should not be set │ │ │ │ by the user.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Doc signatures │ │ │ │

│ │ │ │

The doc signature is a short text shown to describe the function and its arguments. │ │ │ │ By default it is determined by looking at the names of the arguments in the │ │ │ │ --spec or function. For example:

add(One, Two) -> One + Two.
│ │ │ │ +-spec or function. For example:

add(One, Two) -> One + Two.
│ │ │ │  
│ │ │ │ --spec sub(One :: integer(), Two :: integer()) -> integer().
│ │ │ │ -sub(X, Y) -> X - Y.

will have a signature of add(One, Two) and sub(One, Two).

For types or callbacks, the signature is derived from the type or callback │ │ │ │ -specification. For example:

-type number(Value) :: {number, Value}.
│ │ │ │ +-spec sub(One :: integer(), Two :: integer()) -> integer().
│ │ │ │ +sub(X, Y) -> X - Y.

will have a signature of add(One, Two) and sub(One, Two).

For types or callbacks, the signature is derived from the type or callback │ │ │ │ +specification. For example:

-type number(Value) :: {number, Value}.
│ │ │ │  %% signature will be `number(Value)`
│ │ │ │  
│ │ │ │ --opaque number() :: {number, number()}.
│ │ │ │ +-opaque number() :: {number, number()}.
│ │ │ │  %% signature will be `number()`
│ │ │ │  
│ │ │ │ --callback increment(In :: number()) -> Out.
│ │ │ │ +-callback increment(In :: number()) -> Out.
│ │ │ │  %% signature will be `increment(In)`
│ │ │ │  
│ │ │ │ --callback increment(In) -> Out when In :: number().
│ │ │ │ +-callback increment(In) -> Out when In :: number().
│ │ │ │  %% signature will be `increment(In)`

If it is not possible to "easily" figure out a nice signature from the code, the │ │ │ │ MFA syntax is used instead. For example: add/2, number/1, increment/1

It is possible to supply a custom signature by placing it as the first line of the │ │ │ │ -doc attribute. The provided signature must be in the form of a function │ │ │ │ declaration up until the ->. For example:

-doc """
│ │ │ │  add(One, Two)
│ │ │ │  
│ │ │ │  Adds two numbers.
│ │ │ │  """.
│ │ │ │ -add(A, B) -> A + B.

Will create the signature add(One, Two). The signature will be removed from the │ │ │ │ +add(A, B) -> A + B.

Will create the signature add(One, Two). The signature will be removed from the │ │ │ │ documentation string, so in the example above only the text "Adds two numbers" │ │ │ │ will be part of the documentation. This works for functions, types, and │ │ │ │ callbacks.

│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Compiling and getting documentation │ │ │ │ @@ -280,21 +280,21 @@ │ │ │ │ Using ExDoc to generate HTML/ePub documentation │ │ │ │

│ │ │ │

ExDoc has built-in support to generate │ │ │ │ documentation from Markdown. The simplest way is by using the │ │ │ │ rebar3_ex_doc plugin. To set up a │ │ │ │ rebar3 project to use ExDoc to generate │ │ │ │ documentation add the following to your rebar3.config.

%% Enable the plugin
│ │ │ │ -{plugins, [rebar3_ex_doc]}.
│ │ │ │ +{plugins, [rebar3_ex_doc]}.
│ │ │ │  
│ │ │ │ -{ex_doc, [
│ │ │ │ -  {extras, ["README.md"]},
│ │ │ │ -  {main, "README.md"},
│ │ │ │ -  {source_url, "https://github.com/namespace/your_app"}
│ │ │ │ -]}.

When configured you can run rebar3 ex_doc to generate the │ │ │ │ +{ex_doc, [ │ │ │ │ + {extras, ["README.md"]}, │ │ │ │ + {main, "README.md"}, │ │ │ │ + {source_url, "https://github.com/namespace/your_app"} │ │ │ │ +]}.

When configured you can run rebar3 ex_doc to generate the │ │ │ │ documentation to doc/index.html. For more details and options see │ │ │ │ the rebar3_ex_doc documentation.

You can also download the │ │ │ │ release escript bundle from │ │ │ │ github and run it from the command line. The documentation for using the escript │ │ │ │ is found by running ex_doc --help.

If you are writing documentation that will be using │ │ │ │ ExDoc to generate HTML/ePub it is highly │ │ │ │ recommended to read its documentation.

│ │ │ ├── OEBPS/distributed_applications.xhtml │ │ │ │ @@ -55,36 +55,36 @@ │ │ │ │ (within the time-out specified by sync_nodes_timeout).
  • sync_nodes_timeout = integer() | infinity - Specifies how many milliseconds │ │ │ │ to wait for the other nodes to start.

  • When started, the node waits for all nodes specified by sync_nodes_mandatory │ │ │ │ and sync_nodes_optional to come up. When all nodes are up, or when all │ │ │ │ mandatory nodes are up and the time specified by sync_nodes_timeout has │ │ │ │ elapsed, all applications start. If not all mandatory nodes are up, the node │ │ │ │ terminates.

    Example:

    An application myapp is to run at the node cp1@cave. If this node goes down, │ │ │ │ myapp is to be restarted at cp2@cave or cp3@cave. A system configuration │ │ │ │ -file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ │ -  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ │ -   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ │ -   {sync_nodes_timeout, 5000}
    │ │ │ │ -  ]
    │ │ │ │ - }
    │ │ │ │ -].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ │ +file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ │ +  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ │ +   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ │ +   {sync_nodes_timeout, 5000}
    │ │ │ │ +  ]
    │ │ │ │ + }
    │ │ │ │ +].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ │ except for the list of mandatory nodes, which is to be [cp1@cave, cp3@cave] │ │ │ │ for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.

    Note

    All involved nodes must have the same value for distributed and │ │ │ │ sync_nodes_timeout. Otherwise the system behavior is undefined.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Distributed Applications │ │ │ │

    │ │ │ │

    When all involved (mandatory) nodes have been started, the distributed │ │ │ │ application can be started by calling application:start(Application) at all │ │ │ │ of these nodes.

    A boot script (see Releases) can be used that │ │ │ │ automatically starts the application.

    The application is started at the first operational node that is listed in the │ │ │ │ list of nodes in the distributed configuration parameter. The application is │ │ │ │ started as usual. That is, an application master is created and calls the │ │ │ │ -application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ │ +application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ │ specifying the system configuration file:

    > erl -sname cp1 -config cp1
    │ │ │ │  > erl -sname cp2 -config cp2
    │ │ │ │  > erl -sname cp3 -config cp3

    When all nodes are operational, myapp can be started. This is achieved by │ │ │ │ calling application:start(myapp) at all three nodes. It is then started at │ │ │ │ cp1, as shown in the following figure:

    Application myapp - Situation 1

    Similarly, the application must be stopped by calling │ │ │ │ application:stop(Application) at all involved nodes.

    │ │ │ │ │ │ │ │ @@ -92,30 +92,30 @@ │ │ │ │ │ │ │ │ Failover │ │ │ │

    │ │ │ │

    If the node where the application is running goes down, the application is │ │ │ │ restarted (after the specified time-out) at the first operational node that is │ │ │ │ listed in the list of nodes in the distributed configuration parameter. This │ │ │ │ is called a failover.

    The application is started the normal way at the new node, that is, by the │ │ │ │ -application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ │ +application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ │ Included Applications). The application is then │ │ │ │ -instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ │ +instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ │ cp3, has the least number of running applications, but waits for 5 seconds for │ │ │ │ cp1 to restart. If cp1 does not restart and cp2 runs fewer applications │ │ │ │ than cp3, myapp is restarted on cp2.

    Application myapp - Situation 2

    Suppose now that cp2 goes also down and does not restart within 5 seconds. │ │ │ │ myapp is now restarted on cp3.

    Application myapp - Situation 3

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Takeover │ │ │ │

    │ │ │ │

    If a node is started, which has higher priority according to distributed than │ │ │ │ the node where a distributed application is running, the application is │ │ │ │ restarted at the new node and stopped at the old node. This is called a │ │ │ │ -takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ │ +takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ │ myapp, as the order between the cp2 and cp3 nodes is undefined.

    Application myapp - Situation 4

    However, if cp1 also restarts, the function application:takeover/2 moves │ │ │ │ myapp to cp1, as cp1 has a higher priority than cp3 for this │ │ │ │ application. In this case, Module:start({takeover, cp3@cave}, StartArgs) is │ │ │ │ executed at cp1 to start the application.

    Application myapp - Situation 5

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/distributed.xhtml │ │ │ │ @@ -47,25 +47,25 @@ │ │ │ │ │ │ │ │

    A node is an executing Erlang runtime system that has been given a name, using │ │ │ │ the command-line flag -name (long names) or │ │ │ │ -sname (short names).

    The format of the node name is an atom name@host. name is the name given by │ │ │ │ the user. host is the full host name if long names are used, or the first part │ │ │ │ of the host name if short names are used. Function node() │ │ │ │ returns the name of the node.

    Example:

    % erl -name dilbert
    │ │ │ │ -(dilbert@uab.ericsson.se)1> node().
    │ │ │ │ +(dilbert@uab.ericsson.se)1> node().
    │ │ │ │  'dilbert@uab.ericsson.se'
    │ │ │ │  
    │ │ │ │  % erl -sname dilbert
    │ │ │ │ -(dilbert@uab)1> node().
    │ │ │ │ +(dilbert@uab)1> node().
    │ │ │ │  dilbert@uab

    The node name can also be given in runtime by calling net_kernel:start/1.

    Example:

    % erl
    │ │ │ │ -1> node().
    │ │ │ │ +1> node().
    │ │ │ │  nonode@nohost
    │ │ │ │ -2> net_kernel:start([dilbert,shortnames]).
    │ │ │ │ -{ok,<0.102.0>}
    │ │ │ │ -(dilbert@uab)3> node().
    │ │ │ │ +2> net_kernel:start([dilbert,shortnames]).
    │ │ │ │ +{ok,<0.102.0>}
    │ │ │ │ +(dilbert@uab)3> node().
    │ │ │ │  dilbert@uab

    Note

    A node with a long node name cannot communicate with a node with a short node │ │ │ │ name.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Node Connections │ │ │ │

    │ │ │ ├── OEBPS/design_principles.xhtml │ │ │ │ @@ -57,135 +57,135 @@ │ │ │ │ the code for a process in a generic part (a behaviour module) and a specific │ │ │ │ part (a callback module).

    The behaviour module is part of Erlang/OTP. To implement a process such as a │ │ │ │ supervisor, the user only needs to implement the callback module, which is to │ │ │ │ export a pre-defined set of functions, the callback functions.

    The following example illustrate how code can be divided into a generic and a │ │ │ │ specific part. Consider the following code (written in plain Erlang) for a │ │ │ │ simple server, which keeps track of a number of "channels". Other processes can │ │ │ │ allocate and free the channels by calling the functions alloc/0 and free/1, │ │ │ │ -respectively.

    -module(ch1).
    │ │ │ │ --export([start/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/0]).
    │ │ │ │ +respectively.

    -module(ch1).
    │ │ │ │ +-export([start/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/0]).
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    spawn(ch1, init, []).
    │ │ │ │ +start() ->
    │ │ │ │ +    spawn(ch1, init, []).
    │ │ │ │  
    │ │ │ │ -alloc() ->
    │ │ │ │ -    ch1 ! {self(), alloc},
    │ │ │ │ +alloc() ->
    │ │ │ │ +    ch1 ! {self(), alloc},
    │ │ │ │      receive
    │ │ │ │ -        {ch1, Res} ->
    │ │ │ │ +        {ch1, Res} ->
    │ │ │ │              Res
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    ch1 ! {free, Ch},
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    ch1 ! {free, Ch},
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │ -init() ->
    │ │ │ │ -    register(ch1, self()),
    │ │ │ │ -    Chs = channels(),
    │ │ │ │ -    loop(Chs).
    │ │ │ │ +init() ->
    │ │ │ │ +    register(ch1, self()),
    │ │ │ │ +    Chs = channels(),
    │ │ │ │ +    loop(Chs).
    │ │ │ │  
    │ │ │ │ -loop(Chs) ->
    │ │ │ │ +loop(Chs) ->
    │ │ │ │      receive
    │ │ │ │ -        {From, alloc} ->
    │ │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ │ -            From ! {ch1, Ch},
    │ │ │ │ -            loop(Chs2);
    │ │ │ │ -        {free, Ch} ->
    │ │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ │ -            loop(Chs2)
    │ │ │ │ -    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ │ --export([start/1]).
    │ │ │ │ --export([call/2, cast/2]).
    │ │ │ │ --export([init/1]).
    │ │ │ │ +        {From, alloc} ->
    │ │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ │ +            From ! {ch1, Ch},
    │ │ │ │ +            loop(Chs2);
    │ │ │ │ +        {free, Ch} ->
    │ │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ │ +            loop(Chs2)
    │ │ │ │ +    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ │ +-export([start/1]).
    │ │ │ │ +-export([call/2, cast/2]).
    │ │ │ │ +-export([init/1]).
    │ │ │ │  
    │ │ │ │ -start(Mod) ->
    │ │ │ │ -    spawn(server, init, [Mod]).
    │ │ │ │ +start(Mod) ->
    │ │ │ │ +    spawn(server, init, [Mod]).
    │ │ │ │  
    │ │ │ │ -call(Name, Req) ->
    │ │ │ │ -    Name ! {call, self(), Req},
    │ │ │ │ +call(Name, Req) ->
    │ │ │ │ +    Name ! {call, self(), Req},
    │ │ │ │      receive
    │ │ │ │ -        {Name, Res} ->
    │ │ │ │ +        {Name, Res} ->
    │ │ │ │              Res
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -cast(Name, Req) ->
    │ │ │ │ -    Name ! {cast, Req},
    │ │ │ │ +cast(Name, Req) ->
    │ │ │ │ +    Name ! {cast, Req},
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │ -init(Mod) ->
    │ │ │ │ -    register(Mod, self()),
    │ │ │ │ -    State = Mod:init(),
    │ │ │ │ -    loop(Mod, State).
    │ │ │ │ +init(Mod) ->
    │ │ │ │ +    register(Mod, self()),
    │ │ │ │ +    State = Mod:init(),
    │ │ │ │ +    loop(Mod, State).
    │ │ │ │  
    │ │ │ │ -loop(Mod, State) ->
    │ │ │ │ +loop(Mod, State) ->
    │ │ │ │      receive
    │ │ │ │ -        {call, From, Req} ->
    │ │ │ │ -            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ │ -            From ! {Mod, Res},
    │ │ │ │ -            loop(Mod, State2);
    │ │ │ │ -        {cast, Req} ->
    │ │ │ │ -            State2 = Mod:handle_cast(Req, State),
    │ │ │ │ -            loop(Mod, State2)
    │ │ │ │ -    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ │ --export([start/0]).
    │ │ │ │ --export([alloc/0, free/1]).
    │ │ │ │ --export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ │ -
    │ │ │ │ -start() ->
    │ │ │ │ -    server:start(ch2).
    │ │ │ │ -
    │ │ │ │ -alloc() ->
    │ │ │ │ -    server:call(ch2, alloc).
    │ │ │ │ -
    │ │ │ │ -free(Ch) ->
    │ │ │ │ -    server:cast(ch2, {free, Ch}).
    │ │ │ │ +        {call, From, Req} ->
    │ │ │ │ +            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ │ +            From ! {Mod, Res},
    │ │ │ │ +            loop(Mod, State2);
    │ │ │ │ +        {cast, Req} ->
    │ │ │ │ +            State2 = Mod:handle_cast(Req, State),
    │ │ │ │ +            loop(Mod, State2)
    │ │ │ │ +    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ │ +-export([start/0]).
    │ │ │ │ +-export([alloc/0, free/1]).
    │ │ │ │ +-export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ │ +
    │ │ │ │ +start() ->
    │ │ │ │ +    server:start(ch2).
    │ │ │ │ +
    │ │ │ │ +alloc() ->
    │ │ │ │ +    server:call(ch2, alloc).
    │ │ │ │ +
    │ │ │ │ +free(Ch) ->
    │ │ │ │ +    server:cast(ch2, {free, Ch}).
    │ │ │ │  
    │ │ │ │ -init() ->
    │ │ │ │ -    channels().
    │ │ │ │ +init() ->
    │ │ │ │ +    channels().
    │ │ │ │  
    │ │ │ │ -handle_call(alloc, Chs) ->
    │ │ │ │ -    alloc(Chs). % => {Ch,Chs2}
    │ │ │ │ +handle_call(alloc, Chs) ->
    │ │ │ │ +    alloc(Chs). % => {Ch,Chs2}
    │ │ │ │  
    │ │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ │ -    free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ │ + free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ │ the client functions. This means that the name can be changed without │ │ │ │ affecting them.
    • The protocol (messages sent to and received from the server) is also hidden. │ │ │ │ This is good programming practice and allows one to change the protocol │ │ │ │ without changing the code using the interface functions.
    • The functionality of server can be extended without having to change ch2 │ │ │ │ or any other callback module.

    In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1, │ │ │ │ and free/2 has been intentionally left out, as it is not relevant to the │ │ │ │ example. For completeness, one way to write these functions is given below. This │ │ │ │ is an example only, a realistic implementation must be able to handle situations │ │ │ │ -like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ │ -   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ │ +like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ │ +   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ │  
    │ │ │ │ -alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ │ -   {H, {[H|Allocated], T}}.
    │ │ │ │ +alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ │ +   {H, {[H|Allocated], T}}.
    │ │ │ │  
    │ │ │ │ -free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ │ -   case lists:member(Ch, Alloc) of
    │ │ │ │ +free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ │ +   case lists:member(Ch, Alloc) of
    │ │ │ │        true ->
    │ │ │ │ -         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ │ +         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ │        false ->
    │ │ │ │           Channels
    │ │ │ │     end.

    Code written without using behaviours can be more efficient, but the increased │ │ │ │ efficiency is at the expense of generality. The ability to manage all │ │ │ │ applications in the system in a consistent manner is important.

    Using behaviours also makes it easier to read and understand code written by │ │ │ │ other programmers. Improvised programming structures, while possibly more │ │ │ │ efficient, are always more difficult to understand.

    The server module corresponds, greatly simplified, to the Erlang/OTP behaviour │ │ │ │ gen_server.

    The standard Erlang/OTP behaviours are:

    • gen_server

      For implementing the server of a client-server relation

    • gen_statem

      For implementing state machines

    • gen_event

      For implementing event handling functionality

    • supervisor

      For implementing a supervisor in a supervision tree

    The compiler understands the module attribute -behaviour(Behaviour) and issues │ │ │ │ -warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ │ --behaviour(gen_server).
    │ │ │ │ +warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ │ +-behaviour(gen_server).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -3> c(chs3).
    │ │ │ │ +3> c(chs3).
    │ │ │ │  ./chs3.erl:10: Warning: undefined call-back function handle_call/3
    │ │ │ │ -{ok,chs3}

    │ │ │ │ +{ok,chs3}

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Applications │ │ │ │

    │ │ │ │

    Erlang/OTP comes with a number of components, each implementing some specific │ │ │ │ functionality. Components are with Erlang/OTP terminology called applications. │ │ │ ├── OEBPS/data_types.xhtml │ │ │ │ @@ -97,18 +97,18 @@ │ │ │ │ │ │ │ │ Representation of Floating Point Numbers │ │ │ │ │ │ │ │

    When working with floats you may not see what you expect when printing or doing │ │ │ │ arithmetic operations. This is because floats are represented by a fixed number │ │ │ │ of bits in a base-2 system while printed floats are represented with a base-10 │ │ │ │ system. Erlang uses 64-bit floats. Here are examples of this phenomenon:

    1> 0.1+0.2.
    │ │ │ │ -0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ │ -  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ │ -{3.602879701896397e16, true,
    │ │ │ │ - 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ │ +0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ │ +  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ │ +{3.602879701896397e16, true,
    │ │ │ │ + 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ │ Erlang's pretty printer rounds 36028797018963968.0 to 3.602879701896397e16 │ │ │ │ (=36028797018963970.0) as all values in the range │ │ │ │ [36028797018963966.0, 36028797018963972.0] are represented by │ │ │ │ 36028797018963968.0.

    For more information about floats and issues with them see:

    If you need to work with exact decimal fractions, for instance to represent │ │ │ │ money, it is recommended to use a library that handles that, or work in │ │ │ │ cents instead of dollars or euros so that decimal fractions are not needed.

    Also note that Erlang's floats do not exactly match IEEE 754 floats, │ │ │ │ in that neither Inf nor NaN are supported in Erlang. Any │ │ │ │ @@ -142,52 +142,52 @@ │ │ │ │ by eight are called binaries.

    Examples:

    1> <<10,20>>.
    │ │ │ │  <<10,20>>
    │ │ │ │  2> <<"ABC">>.
    │ │ │ │  <<"ABC">>
    │ │ │ │  3> <<1:1,0:1>>.
    │ │ │ │  <<2:2>>

    The is_bitstring/1 BIF tests whether a │ │ │ │ term is a bit string, and the is_binary/1 │ │ │ │ -BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ │ +BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ │  true
    │ │ │ │ -2> is_binary(<<1:1>>).
    │ │ │ │ +2> is_binary(<<1:1>>).
    │ │ │ │  false
    │ │ │ │ -3> is_binary(<<42>>).
    │ │ │ │ +3> is_binary(<<42>>).
    │ │ │ │  true
    │ │ │ │  

    For more examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Reference │ │ │ │

    │ │ │ │

    A term that is unique │ │ │ │ among connected nodes. A reference is created by calling the │ │ │ │ make_ref/0 BIF. The │ │ │ │ is_reference/1 BIF tests whether a term │ │ │ │ -is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ │ +is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ │  #Ref<0.76482849.3801088007.198204>
    │ │ │ │ -2> is_reference(Ref).
    │ │ │ │ +2> is_reference(Ref).
    │ │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Fun │ │ │ │

    │ │ │ │

    A fun is a functional object. Funs make it possible to create an anonymous │ │ │ │ function and pass the function itself — not its name — as argument to other │ │ │ │ -functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ │ +functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ │ -2> Fun1(2).
    │ │ │ │ +2> Fun1(2).
    │ │ │ │  3

    The is_function/1 and is_function/2 │ │ │ │ -BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ │ +BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ │  #Fun<erl_eval.43.105768164>
    │ │ │ │ -2> is_function(F).
    │ │ │ │ +2> is_function(F).
    │ │ │ │  true
    │ │ │ │ -3> is_function(F, 0).
    │ │ │ │ +3> is_function(F, 0).
    │ │ │ │  true
    │ │ │ │ -4> is_function(F, 1).
    │ │ │ │ +4> is_function(F, 1).
    │ │ │ │  false

    Read more about funs in Fun Expressions. For more │ │ │ │ examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Port Identifier │ │ │ │

    │ │ │ │ @@ -205,94 +205,94 @@ │ │ │ │ for a new process after a while.

    The BIF self/0 returns the Pid of the calling process. When │ │ │ │ creating a new process, the parent │ │ │ │ process will be able to get the Pid of the child process either via the return │ │ │ │ value, as is the case when calling the spawn/3 BIF, or via │ │ │ │ a message, which is the case when calling the │ │ │ │ spawn_request/5 BIF. A Pid is typically used when │ │ │ │ when sending a process a signal. The │ │ │ │ -is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ │ --export([loop/0]).
    │ │ │ │ +is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ │ +-export([loop/0]).
    │ │ │ │  
    │ │ │ │ -loop() ->
    │ │ │ │ +loop() ->
    │ │ │ │      receive
    │ │ │ │          who_are_you ->
    │ │ │ │ -            io:format("I am ~p~n", [self()]),
    │ │ │ │ -            loop()
    │ │ │ │ +            io:format("I am ~p~n", [self()]),
    │ │ │ │ +            loop()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -1> P = spawn(m, loop, []).
    │ │ │ │ +1> P = spawn(m, loop, []).
    │ │ │ │  <0.58.0>
    │ │ │ │  2> P ! who_are_you.
    │ │ │ │  I am <0.58.0>
    │ │ │ │  who_are_you

    Read more about processes in Processes.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Tuple │ │ │ │

    │ │ │ │

    A tuple is a compound data type with a fixed number of terms:

    {Term1,...,TermN}

    Each term Term in the tuple is called an element. The number of elements is │ │ │ │ -said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ │ -{adam,24,{july,29}}
    │ │ │ │ -2> element(1,P).
    │ │ │ │ +said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ │ +{adam,24,{july,29}}
    │ │ │ │ +2> element(1,P).
    │ │ │ │  adam
    │ │ │ │ -3> element(3,P).
    │ │ │ │ -{july,29}
    │ │ │ │ -4> P2 = setelement(2,P,25).
    │ │ │ │ -{adam,25,{july,29}}
    │ │ │ │ -5> tuple_size(P).
    │ │ │ │ +3> element(3,P).
    │ │ │ │ +{july,29}
    │ │ │ │ +4> P2 = setelement(2,P,25).
    │ │ │ │ +{adam,25,{july,29}}
    │ │ │ │ +5> tuple_size(P).
    │ │ │ │  3
    │ │ │ │ -6> tuple_size({}).
    │ │ │ │ +6> tuple_size({}).
    │ │ │ │  0
    │ │ │ │ -7> is_tuple({a,b,c}).
    │ │ │ │ +7> is_tuple({a,b,c}).
    │ │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Map │ │ │ │

    │ │ │ │

    A map is a compound data type with a variable number of key-value associations:

    #{Key1 => Value1, ..., KeyN => ValueN}

    Each key-value association in the map is called an association pair. The key │ │ │ │ and value parts of the pair are called elements. The number of association │ │ │ │ -pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ │ -#{age => 24,date => {july,29},name => adam}
    │ │ │ │ -2> maps:get(name, M1).
    │ │ │ │ +pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ │ +#{age => 24,date => {july,29},name => adam}
    │ │ │ │ +2> maps:get(name, M1).
    │ │ │ │  adam
    │ │ │ │ -3> maps:get(date, M1).
    │ │ │ │ -{july,29}
    │ │ │ │ -4> M2 = maps:update(age, 25, M1).
    │ │ │ │ -#{age => 25,date => {july,29},name => adam}
    │ │ │ │ -5> map_size(M).
    │ │ │ │ +3> maps:get(date, M1).
    │ │ │ │ +{july,29}
    │ │ │ │ +4> M2 = maps:update(age, 25, M1).
    │ │ │ │ +#{age => 25,date => {july,29},name => adam}
    │ │ │ │ +5> map_size(M).
    │ │ │ │  3
    │ │ │ │ -6> map_size(#{}).
    │ │ │ │ +6> map_size(#{}).
    │ │ │ │  0

    A collection of maps processing functions are found in module maps │ │ │ │ in STDLIB.

    Read more about maps in Map Expressions.

    Change

    Maps were introduced as an experimental feature in Erlang/OTP R17. Their │ │ │ │ functionality was extended and became fully supported in Erlang/OTP 18.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ List │ │ │ │

    │ │ │ │

    A list is a compound data type with a variable number of terms.

    [Term1,...,TermN]

    Each term Term in the list is called an element. The number of elements is │ │ │ │ said to be the length of the list.

    Formally, a list is either the empty list [] or consists of a head (first │ │ │ │ element) and a tail (remainder of the list). The tail is also a list. The │ │ │ │ latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is │ │ │ │ equivalent with the list [Term1|[...|[TermN|[]]]].

    Example:

    [] is a list, thus
    [c|[]] is a list, thus
    [b|[c|[]]] is a list, thus
    [a|[b|[c|[]]]] is a list, or in short [a,b,c]

    A list where the tail is a list is sometimes called a proper list. It is │ │ │ │ allowed to have a list where the tail is not a list, for example, [a|b]. │ │ │ │ -However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ │ -[a,2,{c,4}]
    │ │ │ │ -2> [H|T] = L1.
    │ │ │ │ -[a,2,{c,4}]
    │ │ │ │ +However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ │ +[a,2,{c,4}]
    │ │ │ │ +2> [H|T] = L1.
    │ │ │ │ +[a,2,{c,4}]
    │ │ │ │  3> H.
    │ │ │ │  a
    │ │ │ │  4> T.
    │ │ │ │ -[2,{c,4}]
    │ │ │ │ -5> L2 = [d|T].
    │ │ │ │ -[d,2,{c,4}]
    │ │ │ │ -6> length(L1).
    │ │ │ │ +[2,{c,4}]
    │ │ │ │ +5> L2 = [d|T].
    │ │ │ │ +[d,2,{c,4}]
    │ │ │ │ +6> length(L1).
    │ │ │ │  3
    │ │ │ │ -7> length([]).
    │ │ │ │ +7> length([]).
    │ │ │ │  0

    A collection of list processing functions are found in module │ │ │ │ lists in STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ String │ │ │ │

    │ │ │ │ @@ -412,41 +412,41 @@ │ │ │ │ Record │ │ │ │ │ │ │ │

    A record is a data structure for storing a fixed number of elements. It has │ │ │ │ named fields and is similar to a struct in C. However, a record is not a true │ │ │ │ data type. Instead, record expressions are translated to tuple expressions │ │ │ │ during compilation. Therefore, record expressions are not understood by the │ │ │ │ shell unless special actions are taken. For details, see module shell │ │ │ │ -in STDLIB.

    Examples:

    -module(person).
    │ │ │ │ --export([new/2]).
    │ │ │ │ +in STDLIB.

    Examples:

    -module(person).
    │ │ │ │ +-export([new/2]).
    │ │ │ │  
    │ │ │ │ --record(person, {name, age}).
    │ │ │ │ +-record(person, {name, age}).
    │ │ │ │  
    │ │ │ │ -new(Name, Age) ->
    │ │ │ │ -    #person{name=Name, age=Age}.
    │ │ │ │ +new(Name, Age) ->
    │ │ │ │ +    #person{name=Name, age=Age}.
    │ │ │ │  
    │ │ │ │ -1> person:new(ernie, 44).
    │ │ │ │ -{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ │ +1> person:new(ernie, 44). │ │ │ │ +{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ │ found in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Boolean │ │ │ │

    │ │ │ │

    There is no Boolean data type in Erlang. Instead the atoms true and false │ │ │ │ are used to denote Boolean values. The is_boolean/1 │ │ │ │ BIF tests whether a term is a boolean.

    Examples:

    1> 2 =< 3.
    │ │ │ │  true
    │ │ │ │  2> true or false.
    │ │ │ │  true
    │ │ │ │ -3> is_boolean(true).
    │ │ │ │ +3> is_boolean(true).
    │ │ │ │  true
    │ │ │ │ -4> is_boolean(false).
    │ │ │ │ +4> is_boolean(false).
    │ │ │ │  true
    │ │ │ │ -5> is_boolean(ok).
    │ │ │ │ +5> is_boolean(ok).
    │ │ │ │  false

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Escape Sequences │ │ │ │

    │ │ │ │

    Within strings ("-delimited), quoted atoms, and the content of │ │ │ │ @@ -464,44 +464,44 @@ │ │ │ │ ~b or ~s sigils the escape sequences for normal │ │ │ │ strings, above, are used.

    Change

    Triple-quoted strings and sigils were introduced in Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Type Conversions │ │ │ │

    │ │ │ │ -

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ │ +

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ │  "hello"
    │ │ │ │ -2> list_to_atom("hello").
    │ │ │ │ +2> list_to_atom("hello").
    │ │ │ │  hello
    │ │ │ │ -3> binary_to_list(<<"hello">>).
    │ │ │ │ +3> binary_to_list(<<"hello">>).
    │ │ │ │  "hello"
    │ │ │ │ -4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ │ +4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ │  "hello"
    │ │ │ │ -5> list_to_binary("hello").
    │ │ │ │ -<<104,101,108,108,111>>
    │ │ │ │ -6> float_to_list(7.0).
    │ │ │ │ +5> list_to_binary("hello").
    │ │ │ │ +<<104,101,108,108,111>>
    │ │ │ │ +6> float_to_list(7.0).
    │ │ │ │  "7.00000000000000000000e+00"
    │ │ │ │ -7> list_to_float("7.000e+00").
    │ │ │ │ +7> list_to_float("7.000e+00").
    │ │ │ │  7.0
    │ │ │ │ -8> integer_to_list(77).
    │ │ │ │ +8> integer_to_list(77).
    │ │ │ │  "77"
    │ │ │ │ -9> list_to_integer("77").
    │ │ │ │ +9> list_to_integer("77").
    │ │ │ │  77
    │ │ │ │ -10> tuple_to_list({a,b,c}).
    │ │ │ │ -[a,b,c]
    │ │ │ │ -11> list_to_tuple([a,b,c]).
    │ │ │ │ -{a,b,c}
    │ │ │ │ -12> term_to_binary({a,b,c}).
    │ │ │ │ -<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ │ -13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ │ -{a,b,c}
    │ │ │ │ -14> binary_to_integer(<<"77">>).
    │ │ │ │ +10> tuple_to_list({a,b,c}).
    │ │ │ │ +[a,b,c]
    │ │ │ │ +11> list_to_tuple([a,b,c]).
    │ │ │ │ +{a,b,c}
    │ │ │ │ +12> term_to_binary({a,b,c}).
    │ │ │ │ +<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ │ +13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ │ +{a,b,c}
    │ │ │ │ +14> binary_to_integer(<<"77">>).
    │ │ │ │  77
    │ │ │ │ -15> integer_to_binary(77).
    │ │ │ │ -<<"77">>
    │ │ │ │ -16> float_to_binary(7.0).
    │ │ │ │ -<<"7.00000000000000000000e+00">>
    │ │ │ │ -17> binary_to_float(<<"7.000e+00">>).
    │ │ │ │ +15> integer_to_binary(77).
    │ │ │ │ +<<"77">>
    │ │ │ │ +16> float_to_binary(7.0).
    │ │ │ │ +<<"7.00000000000000000000e+00">>
    │ │ │ │ +17> binary_to_float(<<"7.000e+00">>).
    │ │ │ │  7.0
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/create_target.xhtml │ │ │ │ @@ -43,21 +43,21 @@ │ │ │ │ Creating a Target System │ │ │ │ │ │ │ │

    It is assumed that you have a working Erlang/OTP system structured according to │ │ │ │ the OTP design principles.

    Step 1. Create a .rel file (see the rel(4) manual page in │ │ │ │ SASL), which specifies the ERTS version and lists all applications that are to │ │ │ │ be included in the new basic target system. An example is the following │ │ │ │ mysystem.rel file:

    %% mysystem.rel
    │ │ │ │ -{release,
    │ │ │ │ - {"MYSYSTEM", "FIRST"},
    │ │ │ │ - {erts, "5.10.4"},
    │ │ │ │ - [{kernel, "2.16.4"},
    │ │ │ │ -  {stdlib, "1.19.4"},
    │ │ │ │ -  {sasl, "2.3.4"},
    │ │ │ │ -  {pea, "1.0"}]}.

    The listed applications are not only original Erlang/OTP applications but │ │ │ │ +{release, │ │ │ │ + {"MYSYSTEM", "FIRST"}, │ │ │ │ + {erts, "5.10.4"}, │ │ │ │ + [{kernel, "2.16.4"}, │ │ │ │ + {stdlib, "1.19.4"}, │ │ │ │ + {sasl, "2.3.4"}, │ │ │ │ + {pea, "1.0"}]}.

    The listed applications are not only original Erlang/OTP applications but │ │ │ │ possibly also new applications that you have written (here exemplified by the │ │ │ │ application Pea (pea)).

    Step 2. Start Erlang/OTP from the directory where the mysystem.rel file │ │ │ │ resides:

    % erl -pa /home/user/target_system/myapps/pea-1.0/ebin

    The -pa argument prepends the path to the ebin directory for │ │ │ │ the Pea application to the code path.

    Step 3. Create the target system:

    1> target_system:create("mysystem").

    The function target_system:create/1 performs the following:

    1. Reads the file mysystem.rel and creates a new file plain.rel. │ │ │ │ The new file is identical to the original, except that it only │ │ │ │ lists the Kernel and STDLIB applications.

    2. From the files mysystem.rel and plain.rel creates the files │ │ │ │ mysystem.script, mysystem.boot, plain.script, and plain.boot │ │ │ │ @@ -147,25 +147,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Creating the Next Version │ │ │ │ │ │ │ │

      In this example the Pea application has been changed, and so are the │ │ │ │ applications ERTS, Kernel, STDLIB and SASL.

      Step 1. Create the file .rel:

      %% mysystem2.rel
      │ │ │ │ -{release,
      │ │ │ │ - {"MYSYSTEM", "SECOND"},
      │ │ │ │ - {erts, "6.0"},
      │ │ │ │ - [{kernel, "3.0"},
      │ │ │ │ -  {stdlib, "2.0"},
      │ │ │ │ -  {sasl, "2.4"},
      │ │ │ │ -  {pea, "2.0"}]}.

      Step 2. Create the application upgrade file (see │ │ │ │ +{release, │ │ │ │ + {"MYSYSTEM", "SECOND"}, │ │ │ │ + {erts, "6.0"}, │ │ │ │ + [{kernel, "3.0"}, │ │ │ │ + {stdlib, "2.0"}, │ │ │ │ + {sasl, "2.4"}, │ │ │ │ + {pea, "2.0"}]}.

    Step 2. Create the application upgrade file (see │ │ │ │ appup in SASL) for Pea, for example:

    %% pea.appup
    │ │ │ │ -{"2.0",
    │ │ │ │ - [{"1.0",[{load_module,pea_lib}]}],
    │ │ │ │ - [{"1.0",[{load_module,pea_lib}]}]}.

    Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ │ +{"2.0", │ │ │ │ + [{"1.0",[{load_module,pea_lib}]}], │ │ │ │ + [{"1.0",[{load_module,pea_lib}]}]}.

    Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ │ Erlang/OTP system, giving the path to the new version of Pea:

    % erl -pa /home/user/target_system/myapps/pea-2.0/ebin

    Step 4. Create the release upgrade file (see relup │ │ │ │ in SASL):

    1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],
    │ │ │ │      [{path,["/home/user/target_system/myapps/pea-1.0/ebin",
    │ │ │ │      "/my/old/erlang/lib/*/ebin"]}]).

    Here "mysystem" is the base release and "mysystem2" is the release to │ │ │ │ upgrade to.

    The path option is used for pointing out the old version of all applications. │ │ │ │ (The new versions are already in the code path - assuming of course that the │ │ │ │ Erlang node on which this is executed is running the correct version of │ │ │ │ @@ -197,21 +197,21 @@ │ │ │ │ {continue_after_restart,"FIRST",[]} │ │ │ │ heart: Tue Apr 1 12:15:10 2014: Erlang has closed. │ │ │ │ heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating. │ │ │ │ [End]

    The above return value and output after the call to │ │ │ │ release_handler:install_release/1 means that the release_handler has │ │ │ │ restarted the node by using heart. This is always done when the upgrade │ │ │ │ involves a change of the applications ERTS, Kernel, STDLIB, or SASL. For more │ │ │ │ -information, see Upgrade when Erlang/OTP has Changed.

    The node is accessible through a new pipe:

    % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

    List the available releases in the system:

    1> release_handler:which_releases().
    │ │ │ │ -[{"MYSYSTEM","SECOND",
    │ │ │ │ -  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │ -  current},
    │ │ │ │ - {"MYSYSTEM","FIRST",
    │ │ │ │ -  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ -  permanent}]

    Our new release, "SECOND", is now the current release, but we can also see that │ │ │ │ +information, see Upgrade when Erlang/OTP has Changed.

    The node is accessible through a new pipe:

    % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

    List the available releases in the system:

    1> release_handler:which_releases().
    │ │ │ │ +[{"MYSYSTEM","SECOND",
    │ │ │ │ +  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │ +  current},
    │ │ │ │ + {"MYSYSTEM","FIRST",
    │ │ │ │ +  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ +  permanent}]

    Our new release, "SECOND", is now the current release, but we can also see that │ │ │ │ our "FIRST" release is still permanent. This means that if the node would be │ │ │ │ restarted now, it would come up running the "FIRST" release again.

    Step 3. Make the new release permanent:

    2> release_handler:make_permanent("SECOND").

    Check the releases again:

    3> release_handler:which_releases().
    │ │ │ │  [{"MYSYSTEM","SECOND",
    │ │ │ │    ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
    │ │ │ │    permanent},
    │ │ │ │   {"MYSYSTEM","FIRST",
    │ │ │ │    ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
    │ │ │ │ @@ -220,264 +220,264 @@
    │ │ │ │    
    │ │ │ │      
    │ │ │ │    
    │ │ │ │    Listing of target_system.erl
    │ │ │ │  
    │ │ │ │  

    This module can also be found in the examples directory of the SASL │ │ │ │ application.

    
    │ │ │ │ --module(target_system).
    │ │ │ │ --export([create/1, create/2, install/2]).
    │ │ │ │ +-module(target_system).
    │ │ │ │ +-export([create/1, create/2, install/2]).
    │ │ │ │  
    │ │ │ │  %% Note: RelFileName below is the *stem* without trailing .rel,
    │ │ │ │  %% .script etc.
    │ │ │ │  %%
    │ │ │ │  
    │ │ │ │  %% create(RelFileName)
    │ │ │ │  %%
    │ │ │ │ -create(RelFileName) ->
    │ │ │ │ -    create(RelFileName,[]).
    │ │ │ │ +create(RelFileName) ->
    │ │ │ │ +    create(RelFileName,[]).
    │ │ │ │  
    │ │ │ │ -create(RelFileName,SystoolsOpts) ->
    │ │ │ │ +create(RelFileName,SystoolsOpts) ->
    │ │ │ │      RelFile = RelFileName ++ ".rel",
    │ │ │ │ -    Dir = filename:dirname(RelFileName),
    │ │ │ │ -    PlainRelFileName = filename:join(Dir,"plain"),
    │ │ │ │ +    Dir = filename:dirname(RelFileName),
    │ │ │ │ +    PlainRelFileName = filename:join(Dir,"plain"),
    │ │ │ │      PlainRelFile = PlainRelFileName ++ ".rel",
    │ │ │ │ -    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
    │ │ │ │ -    {ok, [RelSpec]} = file:consult(RelFile),
    │ │ │ │ -    io:fwrite("Creating file: ~ts from ~ts ...~n",
    │ │ │ │ -              [PlainRelFile, RelFile]),
    │ │ │ │ -    {release,
    │ │ │ │ -     {RelName, RelVsn},
    │ │ │ │ -     {erts, ErtsVsn},
    │ │ │ │ -     AppVsns} = RelSpec,
    │ │ │ │ -    PlainRelSpec = {release,
    │ │ │ │ -                    {RelName, RelVsn},
    │ │ │ │ -                    {erts, ErtsVsn},
    │ │ │ │ -                    lists:filter(fun({kernel, _}) ->
    │ │ │ │ +    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
    │ │ │ │ +    {ok, [RelSpec]} = file:consult(RelFile),
    │ │ │ │ +    io:fwrite("Creating file: ~ts from ~ts ...~n",
    │ │ │ │ +              [PlainRelFile, RelFile]),
    │ │ │ │ +    {release,
    │ │ │ │ +     {RelName, RelVsn},
    │ │ │ │ +     {erts, ErtsVsn},
    │ │ │ │ +     AppVsns} = RelSpec,
    │ │ │ │ +    PlainRelSpec = {release,
    │ │ │ │ +                    {RelName, RelVsn},
    │ │ │ │ +                    {erts, ErtsVsn},
    │ │ │ │ +                    lists:filter(fun({kernel, _}) ->
    │ │ │ │                                           true;
    │ │ │ │ -                                    ({stdlib, _}) ->
    │ │ │ │ +                                    ({stdlib, _}) ->
    │ │ │ │                                           true;
    │ │ │ │ -                                    (_) ->
    │ │ │ │ +                                    (_) ->
    │ │ │ │                                           false
    │ │ │ │ -                                 end, AppVsns)
    │ │ │ │ -                   },
    │ │ │ │ -    {ok, Fd} = file:open(PlainRelFile, [write]),
    │ │ │ │ -    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
    │ │ │ │ -    file:close(Fd),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ -	      [PlainRelFileName,PlainRelFileName]),
    │ │ │ │ -    make_script(PlainRelFileName,SystoolsOpts),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ -              [RelFileName, RelFileName]),
    │ │ │ │ -    make_script(RelFileName,SystoolsOpts),
    │ │ │ │ +                                 end, AppVsns)
    │ │ │ │ +                   },
    │ │ │ │ +    {ok, Fd} = file:open(PlainRelFile, [write]),
    │ │ │ │ +    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
    │ │ │ │ +    file:close(Fd),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ +	      [PlainRelFileName,PlainRelFileName]),
    │ │ │ │ +    make_script(PlainRelFileName,SystoolsOpts),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
    │ │ │ │ +              [RelFileName, RelFileName]),
    │ │ │ │ +    make_script(RelFileName,SystoolsOpts),
    │ │ │ │  
    │ │ │ │      TarFileName = RelFileName ++ ".tar.gz",
    │ │ │ │ -    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
    │ │ │ │ -    make_tar(RelFileName,SystoolsOpts),
    │ │ │ │ +    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
    │ │ │ │ +    make_tar(RelFileName,SystoolsOpts),
    │ │ │ │  
    │ │ │ │ -    TmpDir = filename:join(Dir,"tmp"),
    │ │ │ │ -    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
    │ │ │ │ -    file:make_dir(TmpDir),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
    │ │ │ │ -    extract_tar(TarFileName, TmpDir),
    │ │ │ │ -
    │ │ │ │ -    TmpBinDir = filename:join([TmpDir, "bin"]),
    │ │ │ │ -    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
    │ │ │ │ -    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
    │ │ │ │ -              [ErtsBinDir]),
    │ │ │ │ -    file:delete(filename:join([ErtsBinDir, "erl"])),
    │ │ │ │ -    file:delete(filename:join([ErtsBinDir, "start"])),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
    │ │ │ │ -    file:make_dir(TmpBinDir),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
    │ │ │ │ -              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
    │ │ │ │ -    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
    │ │ │ │ +    TmpDir = filename:join(Dir,"tmp"),
    │ │ │ │ +    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
    │ │ │ │ +    file:make_dir(TmpDir),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
    │ │ │ │ +    extract_tar(TarFileName, TmpDir),
    │ │ │ │ +
    │ │ │ │ +    TmpBinDir = filename:join([TmpDir, "bin"]),
    │ │ │ │ +    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
    │ │ │ │ +    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
    │ │ │ │ +              [ErtsBinDir]),
    │ │ │ │ +    file:delete(filename:join([ErtsBinDir, "erl"])),
    │ │ │ │ +    file:delete(filename:join([ErtsBinDir, "start"])),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
    │ │ │ │ +    file:make_dir(TmpBinDir),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
    │ │ │ │ +              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
    │ │ │ │ +    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
    │ │ │ │  
    │ │ │ │ -    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
    │ │ │ │ +    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
    │ │ │ │                "~ts to ~ts ...~n",
    │ │ │ │ -              [ErtsBinDir, TmpBinDir]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "epmd"]),
    │ │ │ │ -              filename:join([TmpBinDir, "epmd"]), [preserve]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "run_erl"]),
    │ │ │ │ -              filename:join([TmpBinDir, "run_erl"]), [preserve]),
    │ │ │ │ -    copy_file(filename:join([ErtsBinDir, "to_erl"]),
    │ │ │ │ -              filename:join([TmpBinDir, "to_erl"]), [preserve]),
    │ │ │ │ +              [ErtsBinDir, TmpBinDir]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "epmd"]),
    │ │ │ │ +              filename:join([TmpBinDir, "epmd"]), [preserve]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "run_erl"]),
    │ │ │ │ +              filename:join([TmpBinDir, "run_erl"]), [preserve]),
    │ │ │ │ +    copy_file(filename:join([ErtsBinDir, "to_erl"]),
    │ │ │ │ +              filename:join([TmpBinDir, "to_erl"]), [preserve]),
    │ │ │ │  
    │ │ │ │      %% This is needed if 'start' script created from 'start.src' shall
    │ │ │ │      %% be used as it points out this directory as log dir for 'run_erl'
    │ │ │ │ -    TmpLogDir = filename:join([TmpDir, "log"]),
    │ │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
    │ │ │ │ -    ok = file:make_dir(TmpLogDir),
    │ │ │ │ -
    │ │ │ │ -    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
    │ │ │ │ -    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
    │ │ │ │ -    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
    │ │ │ │ -    write_file(StartErlDataFile, StartErlData),
    │ │ │ │ -
    │ │ │ │ -    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
    │ │ │ │ -	      [TarFileName,TmpDir]),
    │ │ │ │ -    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
    │ │ │ │ +    TmpLogDir = filename:join([TmpDir, "log"]),
    │ │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
    │ │ │ │ +    ok = file:make_dir(TmpLogDir),
    │ │ │ │ +
    │ │ │ │ +    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
    │ │ │ │ +    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
    │ │ │ │ +    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
    │ │ │ │ +    write_file(StartErlDataFile, StartErlData),
    │ │ │ │ +
    │ │ │ │ +    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
    │ │ │ │ +	      [TarFileName,TmpDir]),
    │ │ │ │ +    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
    │ │ │ │      %% {ok, Cwd} = file:get_cwd(),
    │ │ │ │      %% file:set_cwd("tmp"),
    │ │ │ │      ErtsDir = "erts-"++ErtsVsn,
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
    │ │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
    │ │ │ │ -    erl_tar:close(Tar),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
    │ │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
    │ │ │ │ +    erl_tar:close(Tar),
    │ │ │ │      %% file:set_cwd(Cwd),
    │ │ │ │ -    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
    │ │ │ │ -    remove_dir_tree(TmpDir),
    │ │ │ │ +    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
    │ │ │ │ +    remove_dir_tree(TmpDir),
    │ │ │ │      ok.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │ -install(RelFileName, RootDir) ->
    │ │ │ │ +install(RelFileName, RootDir) ->
    │ │ │ │      TarFile = RelFileName ++ ".tar.gz",
    │ │ │ │ -    io:fwrite("Extracting ~ts ...~n", [TarFile]),
    │ │ │ │ -    extract_tar(TarFile, RootDir),
    │ │ │ │ -    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
    │ │ │ │ -    {ok, StartErlData} = read_txt_file(StartErlDataFile),
    │ │ │ │ -    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
    │ │ │ │ -    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
    │ │ │ │ -    BinDir = filename:join([RootDir, "bin"]),
    │ │ │ │ -    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
    │ │ │ │ -              "form erl, start and start_erl ...\n"),
    │ │ │ │ -    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
    │ │ │ │ -                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
    │ │ │ │ -                      [preserve]),
    │ │ │ │ +    io:fwrite("Extracting ~ts ...~n", [TarFile]),
    │ │ │ │ +    extract_tar(TarFile, RootDir),
    │ │ │ │ +    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
    │ │ │ │ +    {ok, StartErlData} = read_txt_file(StartErlDataFile),
    │ │ │ │ +    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
    │ │ │ │ +    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
    │ │ │ │ +    BinDir = filename:join([RootDir, "bin"]),
    │ │ │ │ +    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
    │ │ │ │ +              "form erl, start and start_erl ...\n"),
    │ │ │ │ +    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
    │ │ │ │ +                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
    │ │ │ │ +                      [preserve]),
    │ │ │ │      %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
    │ │ │ │      %%! not have correct permissions, so the above 'preserve' option did not help
    │ │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
    │ │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
    │ │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
    │ │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
    │ │ │ │  
    │ │ │ │ -    io:fwrite("Creating the RELEASES file ...\n"),
    │ │ │ │ -    create_RELEASES(RootDir, filename:join([RootDir, "releases",
    │ │ │ │ -					    filename:basename(RelFileName)])).
    │ │ │ │ +    io:fwrite("Creating the RELEASES file ...\n"),
    │ │ │ │ +    create_RELEASES(RootDir, filename:join([RootDir, "releases",
    │ │ │ │ +					    filename:basename(RelFileName)])).
    │ │ │ │  
    │ │ │ │  %% LOCALS
    │ │ │ │  
    │ │ │ │  %% make_script(RelFileName,Opts)
    │ │ │ │  %%
    │ │ │ │ -make_script(RelFileName,Opts) ->
    │ │ │ │ -    systools:make_script(RelFileName, [no_module_tests,
    │ │ │ │ -				       {outdir,filename:dirname(RelFileName)}
    │ │ │ │ -				       |Opts]).
    │ │ │ │ +make_script(RelFileName,Opts) ->
    │ │ │ │ +    systools:make_script(RelFileName, [no_module_tests,
    │ │ │ │ +				       {outdir,filename:dirname(RelFileName)}
    │ │ │ │ +				       |Opts]).
    │ │ │ │  
    │ │ │ │  %% make_tar(RelFileName,Opts)
    │ │ │ │  %%
    │ │ │ │ -make_tar(RelFileName,Opts) ->
    │ │ │ │ -    RootDir = code:root_dir(),
    │ │ │ │ -    systools:make_tar(RelFileName, [{erts, RootDir},
    │ │ │ │ -				    {outdir,filename:dirname(RelFileName)}
    │ │ │ │ -				    |Opts]).
    │ │ │ │ +make_tar(RelFileName,Opts) ->
    │ │ │ │ +    RootDir = code:root_dir(),
    │ │ │ │ +    systools:make_tar(RelFileName, [{erts, RootDir},
    │ │ │ │ +				    {outdir,filename:dirname(RelFileName)}
    │ │ │ │ +				    |Opts]).
    │ │ │ │  
    │ │ │ │  %% extract_tar(TarFile, DestDir)
    │ │ │ │  %%
    │ │ │ │ -extract_tar(TarFile, DestDir) ->
    │ │ │ │ -    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
    │ │ │ │ +extract_tar(TarFile, DestDir) ->
    │ │ │ │ +    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
    │ │ │ │  
    │ │ │ │ -create_RELEASES(DestDir, RelFileName) ->
    │ │ │ │ -    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
    │ │ │ │ +create_RELEASES(DestDir, RelFileName) ->
    │ │ │ │ +    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
    │ │ │ │  
    │ │ │ │ -subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ -    lists:foreach(fun(Script) ->
    │ │ │ │ -                          subst_src_script(Script, SrcDir, DestDir,
    │ │ │ │ -                                           Vars, Opts)
    │ │ │ │ -                  end, Scripts).
    │ │ │ │ -
    │ │ │ │ -subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ -    subst_file(filename:join([SrcDir, Script ++ ".src"]),
    │ │ │ │ -               filename:join([DestDir, Script]),
    │ │ │ │ -               Vars, Opts).
    │ │ │ │ -
    │ │ │ │ -subst_file(Src, Dest, Vars, Opts) ->
    │ │ │ │ -    {ok, Conts} = read_txt_file(Src),
    │ │ │ │ -    NConts = subst(Conts, Vars),
    │ │ │ │ -    write_file(Dest, NConts),
    │ │ │ │ -    case lists:member(preserve, Opts) of
    │ │ │ │ +subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ +    lists:foreach(fun(Script) ->
    │ │ │ │ +                          subst_src_script(Script, SrcDir, DestDir,
    │ │ │ │ +                                           Vars, Opts)
    │ │ │ │ +                  end, Scripts).
    │ │ │ │ +
    │ │ │ │ +subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
    │ │ │ │ +    subst_file(filename:join([SrcDir, Script ++ ".src"]),
    │ │ │ │ +               filename:join([DestDir, Script]),
    │ │ │ │ +               Vars, Opts).
    │ │ │ │ +
    │ │ │ │ +subst_file(Src, Dest, Vars, Opts) ->
    │ │ │ │ +    {ok, Conts} = read_txt_file(Src),
    │ │ │ │ +    NConts = subst(Conts, Vars),
    │ │ │ │ +    write_file(Dest, NConts),
    │ │ │ │ +    case lists:member(preserve, Opts) of
    │ │ │ │          true ->
    │ │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ -            file:write_file_info(Dest, FileInfo);
    │ │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ +            file:write_file_info(Dest, FileInfo);
    │ │ │ │          false ->
    │ │ │ │              ok
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %% subst(Str, Vars)
    │ │ │ │  %% Vars = [{Var, Val}]
    │ │ │ │  %% Var = Val = string()
    │ │ │ │  %% Substitute all occurrences of %Var% for Val in Str, using the list
    │ │ │ │  %% of variables in Vars.
    │ │ │ │  %%
    │ │ │ │ -subst(Str, Vars) ->
    │ │ │ │ -    subst(Str, Vars, []).
    │ │ │ │ +subst(Str, Vars) ->
    │ │ │ │ +    subst(Str, Vars, []).
    │ │ │ │  
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([$%, C| Rest], Vars, Result) when  C == $_ ->
    │ │ │ │ -    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ -subst([C| Rest], Vars, Result) ->
    │ │ │ │ -    subst(Rest, Vars, [C| Result]);
    │ │ │ │ -subst([], _Vars, Result) ->
    │ │ │ │ -    lists:reverse(Result).
    │ │ │ │ -
    │ │ │ │ -subst_var([$%| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ -    Key = lists:reverse(VarAcc),
    │ │ │ │ -    case lists:keysearch(Key, 1, Vars) of
    │ │ │ │ -        {value, {Key, Value}} ->
    │ │ │ │ -            subst(Rest, Vars, lists:reverse(Value, Result));
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([$%, C| Rest], Vars, Result) when  C == $_ ->
    │ │ │ │ +    subst_var([C| Rest], Vars, Result, []);
    │ │ │ │ +subst([C| Rest], Vars, Result) ->
    │ │ │ │ +    subst(Rest, Vars, [C| Result]);
    │ │ │ │ +subst([], _Vars, Result) ->
    │ │ │ │ +    lists:reverse(Result).
    │ │ │ │ +
    │ │ │ │ +subst_var([$%| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ +    Key = lists:reverse(VarAcc),
    │ │ │ │ +    case lists:keysearch(Key, 1, Vars) of
    │ │ │ │ +        {value, {Key, Value}} ->
    │ │ │ │ +            subst(Rest, Vars, lists:reverse(Value, Result));
    │ │ │ │          false ->
    │ │ │ │ -            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
    │ │ │ │ +            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
    │ │ │ │      end;
    │ │ │ │ -subst_var([C| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ -    subst_var(Rest, Vars, Result, [C| VarAcc]);
    │ │ │ │ -subst_var([], Vars, Result, VarAcc) ->
    │ │ │ │ -    subst([], Vars, [VarAcc ++ [$%| Result]]).
    │ │ │ │ -
    │ │ │ │ -copy_file(Src, Dest) ->
    │ │ │ │ -    copy_file(Src, Dest, []).
    │ │ │ │ -
    │ │ │ │ -copy_file(Src, Dest, Opts) ->
    │ │ │ │ -    {ok,_} = file:copy(Src, Dest),
    │ │ │ │ -    case lists:member(preserve, Opts) of
    │ │ │ │ +subst_var([C| Rest], Vars, Result, VarAcc) ->
    │ │ │ │ +    subst_var(Rest, Vars, Result, [C| VarAcc]);
    │ │ │ │ +subst_var([], Vars, Result, VarAcc) ->
    │ │ │ │ +    subst([], Vars, [VarAcc ++ [$%| Result]]).
    │ │ │ │ +
    │ │ │ │ +copy_file(Src, Dest) ->
    │ │ │ │ +    copy_file(Src, Dest, []).
    │ │ │ │ +
    │ │ │ │ +copy_file(Src, Dest, Opts) ->
    │ │ │ │ +    {ok,_} = file:copy(Src, Dest),
    │ │ │ │ +    case lists:member(preserve, Opts) of
    │ │ │ │          true ->
    │ │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ -            file:write_file_info(Dest, FileInfo);
    │ │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
    │ │ │ │ +            file:write_file_info(Dest, FileInfo);
    │ │ │ │          false ->
    │ │ │ │              ok
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -write_file(FName, Conts) ->
    │ │ │ │ -    Enc = file:native_name_encoding(),
    │ │ │ │ -    {ok, Fd} = file:open(FName, [write]),
    │ │ │ │ -    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
    │ │ │ │ -    file:close(Fd).
    │ │ │ │ -
    │ │ │ │ -read_txt_file(File) ->
    │ │ │ │ -    {ok, Bin} = file:read_file(File),
    │ │ │ │ -    {ok, binary_to_list(Bin)}.
    │ │ │ │ -
    │ │ │ │ -remove_dir_tree(Dir) ->
    │ │ │ │ -    remove_all_files(".", [Dir]).
    │ │ │ │ -
    │ │ │ │ -remove_all_files(Dir, Files) ->
    │ │ │ │ -    lists:foreach(fun(File) ->
    │ │ │ │ -                          FilePath = filename:join([Dir, File]),
    │ │ │ │ -                          case filelib:is_dir(FilePath) of
    │ │ │ │ +write_file(FName, Conts) ->
    │ │ │ │ +    Enc = file:native_name_encoding(),
    │ │ │ │ +    {ok, Fd} = file:open(FName, [write]),
    │ │ │ │ +    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
    │ │ │ │ +    file:close(Fd).
    │ │ │ │ +
    │ │ │ │ +read_txt_file(File) ->
    │ │ │ │ +    {ok, Bin} = file:read_file(File),
    │ │ │ │ +    {ok, binary_to_list(Bin)}.
    │ │ │ │ +
    │ │ │ │ +remove_dir_tree(Dir) ->
    │ │ │ │ +    remove_all_files(".", [Dir]).
    │ │ │ │ +
    │ │ │ │ +remove_all_files(Dir, Files) ->
    │ │ │ │ +    lists:foreach(fun(File) ->
    │ │ │ │ +                          FilePath = filename:join([Dir, File]),
    │ │ │ │ +                          case filelib:is_dir(FilePath) of
    │ │ │ │                                true ->
    │ │ │ │ -                                  {ok, DirFiles} = file:list_dir(FilePath),
    │ │ │ │ -                                  remove_all_files(FilePath, DirFiles),
    │ │ │ │ -                                  file:del_dir(FilePath);
    │ │ │ │ +                                  {ok, DirFiles} = file:list_dir(FilePath),
    │ │ │ │ +                                  remove_all_files(FilePath, DirFiles),
    │ │ │ │ +                                  file:del_dir(FilePath);
    │ │ │ │                                _ ->
    │ │ │ │ -                                  file:delete(FilePath)
    │ │ │ │ +                                  file:delete(FilePath)
    │ │ │ │                            end
    │ │ │ │ -                  end, Files).
    │ │ │ │ + end, Files).
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/content.opf │ │ │ │ ├── OEBPS/content.opf │ │ │ │ │ @@ -1,14 +1,14 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Erlang System Documentation - 27.3.4.3 │ │ │ │ │ - urn:uuid:1381d819-5afb-a28c-c4a6-46da8c7da982 │ │ │ │ │ + urn:uuid:a6d88d47-248b-d668-bfed-f3c9a978ff9d │ │ │ │ │ en │ │ │ │ │ - 2025-09-15T16:39:48Z │ │ │ │ │ + 2025-10-30T13:20:29Z │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ @@ -82,21 +82,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ + │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ - │ │ │ │ │ │ │ │ │ │ + │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/conc_prog.xhtml │ │ │ │ @@ -37,107 +37,107 @@ │ │ │ │ threads of execution in an Erlang program and to allow these threads to │ │ │ │ communicate with each other. In Erlang, each thread of execution is called a │ │ │ │ process.

    (Aside: the term "process" is usually used when the threads of execution share │ │ │ │ no data with each other and the term "thread" when they share data in some way. │ │ │ │ Threads of execution in Erlang share no data, that is why they are called │ │ │ │ processes).

    The Erlang BIF spawn is used to create a new process: │ │ │ │ spawn(Module, Exported_Function, List of Arguments). Consider the following │ │ │ │ -module:

    -module(tut14).
    │ │ │ │ +module:

    -module(tut14).
    │ │ │ │  
    │ │ │ │ --export([start/0, say_something/2]).
    │ │ │ │ +-export([start/0, say_something/2]).
    │ │ │ │  
    │ │ │ │ -say_something(What, 0) ->
    │ │ │ │ +say_something(What, 0) ->
    │ │ │ │      done;
    │ │ │ │ -say_something(What, Times) ->
    │ │ │ │ -    io:format("~p~n", [What]),
    │ │ │ │ -    say_something(What, Times - 1).
    │ │ │ │ -
    │ │ │ │ -start() ->
    │ │ │ │ -    spawn(tut14, say_something, [hello, 3]),
    │ │ │ │ -    spawn(tut14, say_something, [goodbye, 3]).
    5> c(tut14).
    │ │ │ │ -{ok,tut14}
    │ │ │ │ -6> tut14:say_something(hello, 3).
    │ │ │ │ +say_something(What, Times) ->
    │ │ │ │ +    io:format("~p~n", [What]),
    │ │ │ │ +    say_something(What, Times - 1).
    │ │ │ │ +
    │ │ │ │ +start() ->
    │ │ │ │ +    spawn(tut14, say_something, [hello, 3]),
    │ │ │ │ +    spawn(tut14, say_something, [goodbye, 3]).
    5> c(tut14).
    │ │ │ │ +{ok,tut14}
    │ │ │ │ +6> tut14:say_something(hello, 3).
    │ │ │ │  hello
    │ │ │ │  hello
    │ │ │ │  hello
    │ │ │ │  done

    As shown, the function say_something writes its first argument the number of │ │ │ │ times specified by second argument. The function start starts two Erlang │ │ │ │ processes, one that writes "hello" three times and one that writes "goodbye" │ │ │ │ three times. Both processes use the function say_something. Notice that a │ │ │ │ function used in this way by spawn, to start a process, must be exported from │ │ │ │ -the module (that is, in the -export at the start of the module).

    9> tut14:start().
    │ │ │ │ +the module (that is, in the -export at the start of the module).

    9> tut14:start().
    │ │ │ │  hello
    │ │ │ │  goodbye
    │ │ │ │  <0.63.0>
    │ │ │ │  hello
    │ │ │ │  goodbye
    │ │ │ │  hello
    │ │ │ │  goodbye

    Notice that it did not write "hello" three times and then "goodbye" three times. │ │ │ │ Instead, the first process wrote a "hello", the second a "goodbye", the first │ │ │ │ another "hello" and so forth. But where did the <0.63.0> come from? The return │ │ │ │ value of a function is the return value of the last "thing" in the function. The │ │ │ │ -last thing in the function start is

    spawn(tut14, say_something, [goodbye, 3]).

    spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ │ +last thing in the function start is

    spawn(tut14, say_something, [goodbye, 3]).

    spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ │ process. So <0.63.0> is the pid of the spawn function call above. The next │ │ │ │ example shows how to use pids.

    Notice also that ~p is used instead of ~w in io:format/2. To quote the manual:

    ~p Writes the data with standard syntax in the same way as ~w, but breaks terms │ │ │ │ whose printed representation is longer than one line into many lines and indents │ │ │ │ each line sensibly. It also tries to detect flat lists of printable characters and │ │ │ │ to output these as strings

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Message Passing │ │ │ │

    │ │ │ │

    In the following example two processes are created and they send messages to │ │ │ │ -each other a number of times.

    -module(tut15).
    │ │ │ │ +each other a number of times.

    -module(tut15).
    │ │ │ │  
    │ │ │ │ --export([start/0, ping/2, pong/0]).
    │ │ │ │ +-export([start/0, ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_PID) ->
    │ │ │ │ +ping(0, Pong_PID) ->
    │ │ │ │      Pong_PID ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_PID) ->
    │ │ │ │ -    Pong_PID ! {ping, self()},
    │ │ │ │ +ping(N, Pong_PID) ->
    │ │ │ │ +    Pong_PID ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_PID).
    │ │ │ │ +    ping(N - 1, Pong_PID).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    Pong_PID = spawn(tut15, pong, []),
    │ │ │ │ -    spawn(tut15, ping, [3, Pong_PID]).
    1> c(tut15).
    │ │ │ │ -{ok,tut15}
    │ │ │ │ -2> tut15: start().
    │ │ │ │ +start() ->
    │ │ │ │ +    Pong_PID = spawn(tut15, pong, []),
    │ │ │ │ +    spawn(tut15, ping, [3, Pong_PID]).
    1> c(tut15).
    │ │ │ │ +{ok,tut15}
    │ │ │ │ +2> tut15: start().
    │ │ │ │  <0.36.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished
    │ │ │ │ -Pong finished

    The function start first creates a process, let us call it "pong":

    Pong_PID = spawn(tut15, pong, [])

    This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ │ -"pong" process. The function start now creates another process "ping":

    spawn(tut15, ping, [3, Pong_PID]),

    This process executes:

    tut15:ping(3, Pong_PID)

    <0.36.0> is the return value from the start function.

    The process "pong" now does:

    receive
    │ │ │ │ +Pong finished

    The function start first creates a process, let us call it "pong":

    Pong_PID = spawn(tut15, pong, [])

    This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ │ +"pong" process. The function start now creates another process "ping":

    spawn(tut15, ping, [3, Pong_PID]),

    This process executes:

    tut15:ping(3, Pong_PID)

    <0.36.0> is the return value from the start function.

    The process "pong" now does:

    receive
    │ │ │ │      finished ->
    │ │ │ │ -        io:format("Pong finished~n", []);
    │ │ │ │ -    {ping, Ping_PID} ->
    │ │ │ │ -        io:format("Pong received ping~n", []),
    │ │ │ │ +        io:format("Pong finished~n", []);
    │ │ │ │ +    {ping, Ping_PID} ->
    │ │ │ │ +        io:format("Pong received ping~n", []),
    │ │ │ │          Ping_PID ! pong,
    │ │ │ │ -        pong()
    │ │ │ │ +        pong()
    │ │ │ │  end.

    The receive construct is used to allow processes to wait for messages from │ │ │ │ other processes. It has the following format:

    receive
    │ │ │ │     pattern1 ->
    │ │ │ │         actions1;
    │ │ │ │     pattern2 ->
    │ │ │ │         actions2;
    │ │ │ │     ....
    │ │ │ │ @@ -158,84 +158,84 @@
    │ │ │ │  queue (keeping the first message and any other messages in the queue). If the
    │ │ │ │  second message does not match, the third message is tried, and so on, until the
    │ │ │ │  end of the queue is reached. If the end of the queue is reached, the process
    │ │ │ │  blocks (stops execution) and waits until a new message is received and this
    │ │ │ │  procedure is repeated.

    The Erlang implementation is "clever" and minimizes the number of times each │ │ │ │ message is tested against the patterns in each receive.

    Now back to the ping pong example.

    "Pong" is waiting for messages. If the atom finished is received, "pong" │ │ │ │ writes "Pong finished" to the output and, as it has nothing more to do, │ │ │ │ -terminates. If it receives a message with the format:

    {ping, Ping_PID}

    it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ │ +terminates. If it receives a message with the format:

    {ping, Ping_PID}

    it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ │ process "ping":

    Ping_PID ! pong

    Notice how the operator "!" is used to send messages. The syntax of "!" is:

    Pid ! Message

    That is, Message (any Erlang term) is sent to the process with identity Pid.

    After sending the message pong to the process "ping", "pong" calls the pong │ │ │ │ function again, which causes it to get back to the receive again and wait for │ │ │ │ -another message.

    Now let us look at the process "ping". Recall that it was started by executing:

    tut15:ping(3, Pong_PID)

    Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ │ +another message.

    Now let us look at the process "ping". Recall that it was started by executing:

    tut15:ping(3, Pong_PID)

    Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ │ since the value of the first argument is 3 (not 0) (first clause head is │ │ │ │ -ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

    The second clause sends a message to "pong":

    Pong_PID ! {ping, self()},

    self/0 returns the pid of the process that executes self/0, in this case the │ │ │ │ +ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

    The second clause sends a message to "pong":

    Pong_PID ! {ping, self()},

    self/0 returns the pid of the process that executes self/0, in this case the │ │ │ │ pid of "ping". (Recall the code for "pong", this lands up in the variable │ │ │ │ Ping_PID in the receive previously explained.)

    "Ping" now waits for a reply from "pong":

    receive
    │ │ │ │      pong ->
    │ │ │ │ -        io:format("Ping received pong~n", [])
    │ │ │ │ +        io:format("Ping received pong~n", [])
    │ │ │ │  end,

    It writes "Ping received pong" when this reply arrives, after which "ping" calls │ │ │ │ -the ping function again.

    ping(N - 1, Pong_PID)

    N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ │ -occurs, the first clause of ping/2 is executed:

    ping(0, Pong_PID) ->
    │ │ │ │ +the ping function again.

    ping(N - 1, Pong_PID)

    N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ │ +occurs, the first clause of ping/2 is executed:

    ping(0, Pong_PID) ->
    │ │ │ │      Pong_PID !  finished,
    │ │ │ │ -    io:format("ping finished~n", []);

    The atom finished is sent to "pong" (causing it to terminate as described │ │ │ │ + io:format("ping finished~n", []);

    The atom finished is sent to "pong" (causing it to terminate as described │ │ │ │ above) and "ping finished" is written to the output. "Ping" then terminates as │ │ │ │ it has nothing left to do.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Registered Process Names │ │ │ │

    │ │ │ │

    In the above example, "pong" was first created to be able to give the identity │ │ │ │ of "pong" when "ping" was started. That is, in some way "ping" must be able to │ │ │ │ know the identity of "pong" to be able to send a message to it. Sometimes │ │ │ │ processes which need to know each other's identities are started independently │ │ │ │ of each other. Erlang thus provides a mechanism for processes to be given names │ │ │ │ so that these names can be used as identities instead of pids. This is done by │ │ │ │ -using the register BIF:

    register(some_atom, Pid)

    Let us now rewrite the ping pong example using this and give the name pong to │ │ │ │ -the "pong" process:

    -module(tut16).
    │ │ │ │ +using the register BIF:

    register(some_atom, Pid)

    Let us now rewrite the ping pong example using this and give the name pong to │ │ │ │ +the "pong" process:

    -module(tut16).
    │ │ │ │  
    │ │ │ │ --export([start/0, ping/1, pong/0]).
    │ │ │ │ +-export([start/0, ping/1, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0) ->
    │ │ │ │ +ping(0) ->
    │ │ │ │      pong ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N) ->
    │ │ │ │ -    pong ! {ping, self()},
    │ │ │ │ +ping(N) ->
    │ │ │ │ +    pong ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1).
    │ │ │ │ +    ping(N - 1).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start() ->
    │ │ │ │ -    register(pong, spawn(tut16, pong, [])),
    │ │ │ │ -    spawn(tut16, ping, [3]).
    2> c(tut16).
    │ │ │ │ -{ok, tut16}
    │ │ │ │ -3> tut16:start().
    │ │ │ │ +start() ->
    │ │ │ │ +    register(pong, spawn(tut16, pong, [])),
    │ │ │ │ +    spawn(tut16, ping, [3]).
    2> c(tut16).
    │ │ │ │ +{ok, tut16}
    │ │ │ │ +3> tut16:start().
    │ │ │ │  <0.38.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished
    │ │ │ │ -Pong finished

    Here the start/0 function,

    register(pong, spawn(tut16, pong, [])),

    both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ │ -process, messages can be sent to pong by:

    pong ! {ping, self()},

    ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

    │ │ │ │ +Pong finished

    Here the start/0 function,

    register(pong, spawn(tut16, pong, [])),

    both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ │ +process, messages can be sent to pong by:

    pong ! {ping, self()},

    ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Distributed Programming │ │ │ │

    │ │ │ │

    Let us rewrite the ping pong program with "ping" and "pong" on different │ │ │ │ computers. First a few things are needed to set up to get this to work. The │ │ │ │ @@ -255,106 +255,106 @@ │ │ │ │ of the file. This is a requirement.

    When you start an Erlang system that is going to talk to other Erlang systems, │ │ │ │ you must give it a name, for example:

    $ erl -sname my_name

    We will see more details of this later. If you want to experiment with │ │ │ │ distributed Erlang, but you only have one computer to work on, you can start two │ │ │ │ separate Erlang systems on the same computer but give them different names. Each │ │ │ │ Erlang system running on a computer is called an Erlang node.

    (Note: erl -sname assumes that all nodes are in the same IP domain and we can │ │ │ │ use only the first component of the IP address, if we want to use nodes in │ │ │ │ different domains we use -name instead, but then all IP address must be given │ │ │ │ -in full.)

    Here is the ping pong example modified to run on two separate nodes:

    -module(tut17).
    │ │ │ │ +in full.)

    Here is the ping pong example modified to run on two separate nodes:

    -module(tut17).
    │ │ │ │  
    │ │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +ping(0, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! finished,
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │ +ping(N, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start_pong() ->
    │ │ │ │ -    register(pong, spawn(tut17, pong, [])).
    │ │ │ │ +start_pong() ->
    │ │ │ │ +    register(pong, spawn(tut17, pong, [])).
    │ │ │ │  
    │ │ │ │ -start_ping(Pong_Node) ->
    │ │ │ │ -    spawn(tut17, ping, [3, Pong_Node]).

    Let us assume there are two computers called gollum and kosken. First a node is │ │ │ │ +start_ping(Pong_Node) -> │ │ │ │ + spawn(tut17, ping, [3, Pong_Node]).

    Let us assume there are two computers called gollum and kosken. First a node is │ │ │ │ started on kosken, called ping, and then a node on gollum, called pong.

    On kosken (on a Linux/UNIX system):

    kosken> erl -sname ping
    │ │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │  Eshell V5.2.3.7  (abort with ^G)
    │ │ │ │  (ping@kosken)1>

    On gollum:

    gollum> erl -sname pong
    │ │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │  Eshell V5.2.3.7  (abort with ^G)
    │ │ │ │ -(pong@gollum)1>

    Now the "pong" process on gollum is started:

    (pong@gollum)1> tut17:start_pong().
    │ │ │ │ +(pong@gollum)1>

    Now the "pong" process on gollum is started:

    (pong@gollum)1> tut17:start_pong().
    │ │ │ │  true

    And the "ping" process on kosken is started (from the code above you can see │ │ │ │ that a parameter of the start_ping function is the node name of the Erlang │ │ │ │ -system where "pong" is running):

    (ping@kosken)1> tut17:start_ping(pong@gollum).
    │ │ │ │ +system where "pong" is running):

    (ping@kosken)1> tut17:start_ping(pong@gollum).
    │ │ │ │  <0.37.0>
    │ │ │ │  Ping received pong
    │ │ │ │  Ping received pong
    │ │ │ │  Ping received pong
    │ │ │ │  ping finished

    As shown, the ping pong program has run. On the "pong" side:

    (pong@gollum)2> 
    │ │ │ │  Pong received ping
    │ │ │ │  Pong received ping
    │ │ │ │  Pong received ping
    │ │ │ │  Pong finished
    │ │ │ │ -(pong@gollum)2> 

    Looking at the tut17 code, you see that the pong function itself is │ │ │ │ +(pong@gollum)2>

    Looking at the tut17 code, you see that the pong function itself is │ │ │ │ unchanged, the following lines work in the same way irrespective of on which │ │ │ │ -node the "ping" process is executes:

    {ping, Ping_PID} ->
    │ │ │ │ -    io:format("Pong received ping~n", []),
    │ │ │ │ +node the "ping" process is executes:

    {ping, Ping_PID} ->
    │ │ │ │ +    io:format("Pong received ping~n", []),
    │ │ │ │      Ping_PID ! pong,

    Thus, Erlang pids contain information about where the process executes. So if │ │ │ │ you know the pid of a process, the ! operator can be used to send it a │ │ │ │ -message disregarding if the process is on the same node or on a different node.

    A difference is how messages are sent to a registered process on another node:

    {pong, Pong_Node} ! {ping, self()},

    A tuple {registered_name,node_name} is used instead of just the │ │ │ │ +message disregarding if the process is on the same node or on a different node.

    A difference is how messages are sent to a registered process on another node:

    {pong, Pong_Node} ! {ping, self()},

    A tuple {registered_name,node_name} is used instead of just the │ │ │ │ registered_name.

    In the previous example, "ping" and "pong" were started from the shells of two │ │ │ │ separate Erlang nodes. spawn can also be used to start processes in other │ │ │ │ nodes.

    The next example is the ping pong program, yet again, but this time "ping" is │ │ │ │ -started in another node:

    -module(tut18).
    │ │ │ │ +started in another node:

    -module(tut18).
    │ │ │ │  
    │ │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │ │  
    │ │ │ │ -ping(0, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! finished,
    │ │ │ │ -    io:format("ping finished~n", []);
    │ │ │ │ +ping(0, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! finished,
    │ │ │ │ +    io:format("ping finished~n", []);
    │ │ │ │  
    │ │ │ │ -ping(N, Pong_Node) ->
    │ │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │ +ping(N, Pong_Node) ->
    │ │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │ │      receive
    │ │ │ │          pong ->
    │ │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │ │      end,
    │ │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │ │  
    │ │ │ │ -pong() ->
    │ │ │ │ +pong() ->
    │ │ │ │      receive
    │ │ │ │          finished ->
    │ │ │ │ -            io:format("Pong finished~n", []);
    │ │ │ │ -        {ping, Ping_PID} ->
    │ │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ │ +            io:format("Pong finished~n", []);
    │ │ │ │ +        {ping, Ping_PID} ->
    │ │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │ │              Ping_PID ! pong,
    │ │ │ │ -            pong()
    │ │ │ │ +            pong()
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -start(Ping_Node) ->
    │ │ │ │ -    register(pong, spawn(tut18, pong, [])),
    │ │ │ │ -    spawn(Ping_Node, tut18, ping, [3, node()]).

    Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ │ -been started on kosken, then on gollum this is done:

    (pong@gollum)1> tut18:start(ping@kosken).
    │ │ │ │ +start(Ping_Node) ->
    │ │ │ │ +    register(pong, spawn(tut18, pong, [])),
    │ │ │ │ +    spawn(Ping_Node, tut18, ping, [3, node()]).

    Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ │ +been started on kosken, then on gollum this is done:

    (pong@gollum)1> tut18:start(ping@kosken).
    │ │ │ │  <3934.39.0>
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │  Pong received ping
    │ │ │ │  Ping received pong
    │ │ │ │ @@ -421,184 +421,184 @@
    │ │ │ │  %%% Started: messenger:client(Server_Node, Name)
    │ │ │ │  %%% To client: logoff
    │ │ │ │  %%% To client: {message_to, ToName, Message}
    │ │ │ │  %%%
    │ │ │ │  %%% Configuration: change the server_node() function to return the
    │ │ │ │  %%% name of the node where the messenger server runs
    │ │ │ │  
    │ │ │ │ --module(messenger).
    │ │ │ │ --export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
    │ │ │ │ +-module(messenger).
    │ │ │ │ +-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
    │ │ │ │  
    │ │ │ │  %%% Change the function below to return the name of the node where the
    │ │ │ │  %%% messenger server runs
    │ │ │ │ -server_node() ->
    │ │ │ │ +server_node() ->
    │ │ │ │      messenger@super.
    │ │ │ │  
    │ │ │ │  %%% This is the server process for the "messenger"
    │ │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
    │ │ │ │ -server(User_List) ->
    │ │ │ │ +server(User_List) ->
    │ │ │ │      receive
    │ │ │ │ -        {From, logon, Name} ->
    │ │ │ │ -            New_User_List = server_logon(From, Name, User_List),
    │ │ │ │ -            server(New_User_List);
    │ │ │ │ -        {From, logoff} ->
    │ │ │ │ -            New_User_List = server_logoff(From, User_List),
    │ │ │ │ -            server(New_User_List);
    │ │ │ │ -        {From, message_to, To, Message} ->
    │ │ │ │ -            server_transfer(From, To, Message, User_List),
    │ │ │ │ -            io:format("list is now: ~p~n", [User_List]),
    │ │ │ │ -            server(User_List)
    │ │ │ │ +        {From, logon, Name} ->
    │ │ │ │ +            New_User_List = server_logon(From, Name, User_List),
    │ │ │ │ +            server(New_User_List);
    │ │ │ │ +        {From, logoff} ->
    │ │ │ │ +            New_User_List = server_logoff(From, User_List),
    │ │ │ │ +            server(New_User_List);
    │ │ │ │ +        {From, message_to, To, Message} ->
    │ │ │ │ +            server_transfer(From, To, Message, User_List),
    │ │ │ │ +            io:format("list is now: ~p~n", [User_List]),
    │ │ │ │ +            server(User_List)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %%% Start the server
    │ │ │ │ -start_server() ->
    │ │ │ │ -    register(messenger, spawn(messenger, server, [[]])).
    │ │ │ │ +start_server() ->
    │ │ │ │ +    register(messenger, spawn(messenger, server, [[]])).
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% Server adds a new user to the user list
    │ │ │ │ -server_logon(From, Name, User_List) ->
    │ │ │ │ +server_logon(From, Name, User_List) ->
    │ │ │ │      %% check if logged on anywhere else
    │ │ │ │ -    case lists:keymember(Name, 2, User_List) of
    │ │ │ │ +    case lists:keymember(Name, 2, User_List) of
    │ │ │ │          true ->
    │ │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ │              User_List;
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, logged_on},
    │ │ │ │ -            [{From, Name} | User_List]        %add user to the list
    │ │ │ │ +            From ! {messenger, logged_on},
    │ │ │ │ +            [{From, Name} | User_List]        %add user to the list
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  %%% Server deletes a user from the user list
    │ │ │ │ -server_logoff(From, User_List) ->
    │ │ │ │ -    lists:keydelete(From, 1, User_List).
    │ │ │ │ +server_logoff(From, User_List) ->
    │ │ │ │ +    lists:keydelete(From, 1, User_List).
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% Server transfers a message between user
    │ │ │ │ -server_transfer(From, To, Message, User_List) ->
    │ │ │ │ +server_transfer(From, To, Message, User_List) ->
    │ │ │ │      %% check that the user is logged on and who he is
    │ │ │ │ -    case lists:keysearch(From, 1, User_List) of
    │ │ │ │ +    case lists:keysearch(From, 1, User_List) of
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ │ -        {value, {From, Name}} ->
    │ │ │ │ -            server_transfer(From, Name, To, Message, User_List)
    │ │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ │ +        {value, {From, Name}} ->
    │ │ │ │ +            server_transfer(From, Name, To, Message, User_List)
    │ │ │ │      end.
    │ │ │ │  %%% If the user exists, send the message
    │ │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ │      %% Find the receiver and send the message
    │ │ │ │ -    case lists:keysearch(To, 2, User_List) of
    │ │ │ │ +    case lists:keysearch(To, 2, User_List) of
    │ │ │ │          false ->
    │ │ │ │ -            From ! {messenger, receiver_not_found};
    │ │ │ │ -        {value, {ToPid, To}} ->
    │ │ │ │ -            ToPid ! {message_from, Name, Message},
    │ │ │ │ -            From ! {messenger, sent}
    │ │ │ │ +            From ! {messenger, receiver_not_found};
    │ │ │ │ +        {value, {ToPid, To}} ->
    │ │ │ │ +            ToPid ! {message_from, Name, Message},
    │ │ │ │ +            From ! {messenger, sent}
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% User Commands
    │ │ │ │ -logon(Name) ->
    │ │ │ │ -    case whereis(mess_client) of
    │ │ │ │ +logon(Name) ->
    │ │ │ │ +    case whereis(mess_client) of
    │ │ │ │          undefined ->
    │ │ │ │ -            register(mess_client,
    │ │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ │ +            register(mess_client,
    │ │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ │          _ -> already_logged_on
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -logoff() ->
    │ │ │ │ +logoff() ->
    │ │ │ │      mess_client ! logoff.
    │ │ │ │  
    │ │ │ │ -message(ToName, Message) ->
    │ │ │ │ -    case whereis(mess_client) of % Test if the client is running
    │ │ │ │ +message(ToName, Message) ->
    │ │ │ │ +    case whereis(mess_client) of % Test if the client is running
    │ │ │ │          undefined ->
    │ │ │ │              not_logged_on;
    │ │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ │               ok
    │ │ │ │  end.
    │ │ │ │  
    │ │ │ │  
    │ │ │ │  %%% The client process which runs on each server node
    │ │ │ │ -client(Server_Node, Name) ->
    │ │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ │ -    await_result(),
    │ │ │ │ -    client(Server_Node).
    │ │ │ │ +client(Server_Node, Name) ->
    │ │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ │ +    await_result(),
    │ │ │ │ +    client(Server_Node).
    │ │ │ │  
    │ │ │ │ -client(Server_Node) ->
    │ │ │ │ +client(Server_Node) ->
    │ │ │ │      receive
    │ │ │ │          logoff ->
    │ │ │ │ -            {messenger, Server_Node} ! {self(), logoff},
    │ │ │ │ -            exit(normal);
    │ │ │ │ -        {message_to, ToName, Message} ->
    │ │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ │ -            await_result();
    │ │ │ │ -        {message_from, FromName, Message} ->
    │ │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ │ +            {messenger, Server_Node} ! {self(), logoff},
    │ │ │ │ +            exit(normal);
    │ │ │ │ +        {message_to, ToName, Message} ->
    │ │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ │ +            await_result();
    │ │ │ │ +        {message_from, FromName, Message} ->
    │ │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ │      end,
    │ │ │ │ -    client(Server_Node).
    │ │ │ │ +    client(Server_Node).
    │ │ │ │  
    │ │ │ │  %%% wait for a response from the server
    │ │ │ │ -await_result() ->
    │ │ │ │ +await_result() ->
    │ │ │ │      receive
    │ │ │ │ -        {messenger, stop, Why} -> % Stop the client
    │ │ │ │ -            io:format("~p~n", [Why]),
    │ │ │ │ -            exit(normal);
    │ │ │ │ -        {messenger, What} ->  % Normal response
    │ │ │ │ -            io:format("~p~n", [What])
    │ │ │ │ +        {messenger, stop, Why} -> % Stop the client
    │ │ │ │ +            io:format("~p~n", [Why]),
    │ │ │ │ +            exit(normal);
    │ │ │ │ +        {messenger, What} ->  % Normal response
    │ │ │ │ +            io:format("~p~n", [What])
    │ │ │ │      end.

    To use this program, you need to:

    • Configure the server_node() function.
    • Copy the compiled code (messenger.beam) to the directory on each computer │ │ │ │ where you start Erlang.

    In the following example using this program, nodes are started on four different │ │ │ │ computers. If you do not have that many machines available on your network, you │ │ │ │ can start several nodes on the same machine.

    Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, │ │ │ │ -c3@gollum.

    First the server at messenger@super is started up:

    (messenger@super)1> messenger:start_server().
    │ │ │ │ -true

    Now Peter logs on at c1@bilbo:

    (c1@bilbo)1> messenger:logon(peter).
    │ │ │ │ +c3@gollum.

    First the server at messenger@super is started up:

    (messenger@super)1> messenger:start_server().
    │ │ │ │ +true

    Now Peter logs on at c1@bilbo:

    (c1@bilbo)1> messenger:logon(peter).
    │ │ │ │  true
    │ │ │ │ -logged_on

    James logs on at c2@kosken:

    (c2@kosken)1> messenger:logon(james).
    │ │ │ │ +logged_on

    James logs on at c2@kosken:

    (c2@kosken)1> messenger:logon(james).
    │ │ │ │  true
    │ │ │ │ -logged_on

    And Fred logs on at c3@gollum:

    (c3@gollum)1> messenger:logon(fred).
    │ │ │ │ +logged_on

    And Fred logs on at c3@gollum:

    (c3@gollum)1> messenger:logon(fred).
    │ │ │ │  true
    │ │ │ │ -logged_on

    Now Peter sends Fred a message:

    (c1@bilbo)2> messenger:message(fred, "hello").
    │ │ │ │ +logged_on

    Now Peter sends Fred a message:

    (c1@bilbo)2> messenger:message(fred, "hello").
    │ │ │ │  ok
    │ │ │ │  sent

    Fred receives the message and sends a message to Peter and logs off:

    Message from peter: "hello"
    │ │ │ │ -(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
    │ │ │ │ +(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
    │ │ │ │  ok
    │ │ │ │  sent
    │ │ │ │ -(c3@gollum)3> messenger:logoff().
    │ │ │ │ -logoff

    James now tries to send a message to Fred:

    (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
    │ │ │ │ +(c3@gollum)3> messenger:logoff().
    │ │ │ │ +logoff

    James now tries to send a message to Fred:

    (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
    │ │ │ │  ok
    │ │ │ │  receiver_not_found

    But this fails as Fred has already logged off.

    First let us look at some of the new concepts that have been introduced.

    There are two versions of the server_transfer function: one with four │ │ │ │ arguments (server_transfer/4) and one with five (server_transfer/5). These │ │ │ │ are regarded by Erlang as two separate functions.

    Notice how to write the server function so that it calls itself, through │ │ │ │ server(User_List), and thus creates a loop. The Erlang compiler is "clever" │ │ │ │ and optimizes the code so that this really is a sort of loop and not a proper │ │ │ │ function call. But this only works if there is no code after the call. │ │ │ │ Otherwise, the compiler expects the call to return and make a proper function │ │ │ │ call. This would result in the process getting bigger and bigger for every loop.

    Functions in the lists module are used. This is a very useful module and a │ │ │ │ study of the manual page is recommended (erl -man lists). │ │ │ │ lists:keymember(Key,Position,Lists) looks through a list of tuples and looks │ │ │ │ at Position in each tuple to see if it is the same as Key. The first element │ │ │ │ is position 1. If it finds a tuple where the element at Position is the same │ │ │ │ -as Key, it returns true, otherwise false.

    3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +as Key, it returns true, otherwise false.

    3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │  true
    │ │ │ │ -4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │  false

    lists:keydelete works in the same way but deletes the first tuple found (if │ │ │ │ -any) and returns the remaining list:

    5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ -[{x,y,z},{b,b,b},{q,r,s}]

    lists:keysearch is like lists:keymember, but it returns │ │ │ │ +any) and returns the remaining list:

    5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
    │ │ │ │ +[{x,y,z},{b,b,b},{q,r,s}]

    lists:keysearch is like lists:keymember, but it returns │ │ │ │ {value,Tuple_Found} or the atom false.

    There are many very useful functions in the lists module.

    An Erlang process (conceptually) runs until it does a receive and there is no │ │ │ │ message which it wants to receive in the message queue. "conceptually" is used │ │ │ │ here because the Erlang system shares the CPU time between the active processes │ │ │ │ in the system.

    A process terminates when there is nothing more for it to do, that is, the last │ │ │ │ function it calls simply returns and does not call another function. Another way │ │ │ │ for a process to terminate is for it to call exit/1. The argument │ │ │ │ to exit/1 has a special meaning, which is discussed later. In this │ │ │ │ example, exit(normal) is done, which has the same effect as a │ │ │ │ process running out of functions to call.

    The BIF whereis(RegisteredName) checks if a registered process │ │ │ │ of name RegisteredName exists. If it exists, the pid of that process is │ │ │ │ returned. If it does not exist, the atom undefined is returned.

    You should by now be able to understand most of the code in the │ │ │ │ messenger-module. Let us study one case in detail: a message is sent from one │ │ │ │ -user to another.

    The first user "sends" the message in the example above by:

    messenger:message(fred, "hello")

    After testing that the client process exists:

    whereis(mess_client)

    And a message is sent to mess_client:

    mess_client ! {message_to, fred, "hello"}

    The client sends the message to the server by:

    {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

    And waits for a reply from the server.

    The server receives this message and calls:

    server_transfer(From, fred, "hello", User_List),

    This checks that the pid From is in the User_List:

    lists:keysearch(From, 1, User_List)

    If keysearch returns the atom false, some error has occurred and the server │ │ │ │ -sends back the message:

    From ! {messenger, stop, you_are_not_logged_on}

    This is received by the client, which in turn does exit(normal) │ │ │ │ +user to another.

    The first user "sends" the message in the example above by:

    messenger:message(fred, "hello")

    After testing that the client process exists:

    whereis(mess_client)

    And a message is sent to mess_client:

    mess_client ! {message_to, fred, "hello"}

    The client sends the message to the server by:

    {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

    And waits for a reply from the server.

    The server receives this message and calls:

    server_transfer(From, fred, "hello", User_List),

    This checks that the pid From is in the User_List:

    lists:keysearch(From, 1, User_List)

    If keysearch returns the atom false, some error has occurred and the server │ │ │ │ +sends back the message:

    From ! {messenger, stop, you_are_not_logged_on}

    This is received by the client, which in turn does exit(normal) │ │ │ │ and terminates. If keysearch returns {value,{From,Name}} it is certain that │ │ │ │ -the user is logged on and that his name (peter) is in variable Name.

    Let us now call:

    server_transfer(From, peter, fred, "hello", User_List)

    Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ │ +the user is logged on and that his name (peter) is in variable Name.

    Let us now call:

    server_transfer(From, peter, fred, "hello", User_List)

    Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ │ function server_transfer/4. Another keysearch is done on User_List to find │ │ │ │ -the pid of the client corresponding to fred:

    lists:keysearch(fred, 2, User_List)

    This time argument 2 is used, which is the second element in the tuple. If this │ │ │ │ +the pid of the client corresponding to fred:

    lists:keysearch(fred, 2, User_List)

    This time argument 2 is used, which is the second element in the tuple. If this │ │ │ │ returns the atom false, fred is not logged on and the following message is │ │ │ │ -sent:

    From ! {messenger, receiver_not_found};

    This is received by the client.

    If keysearch returns:

    {value, {ToPid, fred}}

    The following message is sent to fred's client:

    ToPid ! {message_from, peter, "hello"},

    The following message is sent to peter's client:

    From ! {messenger, sent}

    Fred's client receives the message and prints it:

    {message_from, peter, "hello"} ->
    │ │ │ │ -    io:format("Message from ~p: ~p~n", [peter, "hello"])

    Peter's client receives the message in the await_result function.

    │ │ │ │ +sent:

    From ! {messenger, receiver_not_found};

    This is received by the client.

    If keysearch returns:

    {value, {ToPid, fred}}

    The following message is sent to fred's client:

    ToPid ! {message_from, peter, "hello"},

    The following message is sent to peter's client:

    From ! {messenger, sent}

    Fred's client receives the message and prints it:

    {message_from, peter, "hello"} ->
    │ │ │ │ +    io:format("Message from ~p: ~p~n", [peter, "hello"])

    Peter's client receives the message in the await_result function.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/commoncaveats.xhtml │ │ │ │ @@ -23,31 +23,31 @@ │ │ │ │

    This section lists a few constructs to watch out for.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Operator ++ │ │ │ │

    │ │ │ │

    The ++ operator copies its left-hand side operand. That is clearly │ │ │ │ -seen if we do our own implementation in Erlang:

    my_plus_plus([H|T], Tail) ->
    │ │ │ │ -    [H|my_plus_plus(T, Tail)];
    │ │ │ │ -my_plus_plus([], Tail) ->
    │ │ │ │ -    Tail.

    We must be careful how we use ++ in a loop. First is how not to use it:

    DO NOT

    naive_reverse([H|T]) ->
    │ │ │ │ -    naive_reverse(T) ++ [H];
    │ │ │ │ -naive_reverse([]) ->
    │ │ │ │ -    [].

    As the ++ operator copies its left-hand side operand, the growing │ │ │ │ -result is copied repeatedly, leading to quadratic complexity.

    On the other hand, using ++ in loop like this is perfectly fine:

    OK

    naive_but_ok_reverse(List) ->
    │ │ │ │ -    naive_but_ok_reverse(List, []).
    │ │ │ │ +seen if we do our own implementation in Erlang:

    my_plus_plus([H|T], Tail) ->
    │ │ │ │ +    [H|my_plus_plus(T, Tail)];
    │ │ │ │ +my_plus_plus([], Tail) ->
    │ │ │ │ +    Tail.

    We must be careful how we use ++ in a loop. First is how not to use it:

    DO NOT

    naive_reverse([H|T]) ->
    │ │ │ │ +    naive_reverse(T) ++ [H];
    │ │ │ │ +naive_reverse([]) ->
    │ │ │ │ +    [].

    As the ++ operator copies its left-hand side operand, the growing │ │ │ │ +result is copied repeatedly, leading to quadratic complexity.

    On the other hand, using ++ in loop like this is perfectly fine:

    OK

    naive_but_ok_reverse(List) ->
    │ │ │ │ +    naive_but_ok_reverse(List, []).
    │ │ │ │  
    │ │ │ │ -naive_but_ok_reverse([H|T], Acc) ->
    │ │ │ │ -    naive_but_ok_reverse(T, [H] ++ Acc);
    │ │ │ │ -naive_but_ok_reverse([], Acc) ->
    │ │ │ │ +naive_but_ok_reverse([H|T], Acc) ->
    │ │ │ │ +    naive_but_ok_reverse(T, [H] ++ Acc);
    │ │ │ │ +naive_but_ok_reverse([], Acc) ->
    │ │ │ │      Acc.

    Each list element is copied only once. The growing result Acc is the right-hand │ │ │ │ -side operand, which it is not copied.

    Experienced Erlang programmers would probably write as follows:

    DO

    vanilla_reverse([H|T], Acc) ->
    │ │ │ │ -    vanilla_reverse(T, [H|Acc]);
    │ │ │ │ -vanilla_reverse([], Acc) ->
    │ │ │ │ +side operand, which it is not copied.

    Experienced Erlang programmers would probably write as follows:

    DO

    vanilla_reverse([H|T], Acc) ->
    │ │ │ │ +    vanilla_reverse(T, [H|Acc]);
    │ │ │ │ +vanilla_reverse([], Acc) ->
    │ │ │ │      Acc.

    In principle, this is slightly more efficient because the list element [H] │ │ │ │ is not built before being copied and discarded. In practice, the compiler │ │ │ │ rewrites [H] ++ Acc to [H|Acc].

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Timer Module │ │ │ │ @@ -65,77 +65,77 @@ │ │ │ │ therefore harmless.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Accidental Copying and Loss of Sharing │ │ │ │

    │ │ │ │

    When spawning a new process using a fun, one can accidentally copy more data to │ │ │ │ -the process than intended. For example:

    DO NOT

    accidental1(State) ->
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [State#state.info])
    │ │ │ │ -          end).

    The code in the fun will extract one element from the record and print it. The │ │ │ │ +the process than intended. For example:

    DO NOT

    accidental1(State) ->
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [State#state.info])
    │ │ │ │ +          end).

    The code in the fun will extract one element from the record and print it. The │ │ │ │ rest of the state record is not used. However, when the spawn/1 │ │ │ │ -function is executed, the entire record is copied to the newly created process.

    The same kind of problem can happen with a map:

    DO NOT

    accidental2(State) ->
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [map_get(info, State)])
    │ │ │ │ -          end).

    In the following example (part of a module implementing the gen_server │ │ │ │ -behavior) the created fun is sent to another process:

    DO NOT

    handle_call(give_me_a_fun, _From, State) ->
    │ │ │ │ -    Fun = fun() -> State#state.size =:= 42 end,
    │ │ │ │ -    {reply, Fun, State}.

    How bad that unnecessary copy is depends on the contents of the record or the │ │ │ │ -map.

    For example, if the state record is initialized like this:

    init1() ->
    │ │ │ │ -    #state{data=lists:seq(1, 10000)}.

    a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ │ +function is executed, the entire record is copied to the newly created process.

    The same kind of problem can happen with a map:

    DO NOT

    accidental2(State) ->
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [map_get(info, State)])
    │ │ │ │ +          end).

    In the following example (part of a module implementing the gen_server │ │ │ │ +behavior) the created fun is sent to another process:

    DO NOT

    handle_call(give_me_a_fun, _From, State) ->
    │ │ │ │ +    Fun = fun() -> State#state.size =:= 42 end,
    │ │ │ │ +    {reply, Fun, State}.

    How bad that unnecessary copy is depends on the contents of the record or the │ │ │ │ +map.

    For example, if the state record is initialized like this:

    init1() ->
    │ │ │ │ +    #state{data=lists:seq(1, 10000)}.

    a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ │ newly created process.

    An unnecessary copy of 10000 element list can be bad enough, but it can get even │ │ │ │ worse if the state record contains shared subterms. Here is a simple example │ │ │ │ -of a term with a shared subterm:

    {SubTerm, SubTerm}

    When a term is copied to another process, sharing of subterms will be lost and │ │ │ │ -the copied term can be many times larger than the original term. For example:

    init2() ->
    │ │ │ │ -    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
    │ │ │ │ -    #state{data=Shared}.

    In the process that calls init2/0, the size of the data field in the state │ │ │ │ +of a term with a shared subterm:

    {SubTerm, SubTerm}

    When a term is copied to another process, sharing of subterms will be lost and │ │ │ │ +the copied term can be many times larger than the original term. For example:

    init2() ->
    │ │ │ │ +    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
    │ │ │ │ +    #state{data=Shared}.

    In the process that calls init2/0, the size of the data field in the state │ │ │ │ record will be 32 heap words. When the record is copied to the newly created │ │ │ │ process, sharing will be lost and the size of the copied data field will be │ │ │ │ 131070 heap words. More details about │ │ │ │ loss off sharing are found in a later │ │ │ │ section.

    To avoid the problem, outside of the fun extract only the fields of the record │ │ │ │ -that are actually used:

    DO

    fixed_accidental1(State) ->
    │ │ │ │ +that are actually used:

    DO

    fixed_accidental1(State) ->
    │ │ │ │      Info = State#state.info,
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [Info])
    │ │ │ │ -          end).

    Similarly, outside of the fun extract only the map elements that are actually │ │ │ │ -used:

    DO

    fixed_accidental2(State) ->
    │ │ │ │ -    Info = map_get(info, State),
    │ │ │ │ -    spawn(fun() ->
    │ │ │ │ -                  io:format("~p\n", [Info])
    │ │ │ │ -          end).

    │ │ │ │ + spawn(fun() -> │ │ │ │ + io:format("~p\n", [Info]) │ │ │ │ + end).

    Similarly, outside of the fun extract only the map elements that are actually │ │ │ │ +used:

    DO

    fixed_accidental2(State) ->
    │ │ │ │ +    Info = map_get(info, State),
    │ │ │ │ +    spawn(fun() ->
    │ │ │ │ +                  io:format("~p\n", [Info])
    │ │ │ │ +          end).

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ list_to_atom/1 │ │ │ │

    │ │ │ │

    Atoms are not garbage-collected. Once an atom is created, it is never removed. │ │ │ │ The emulator terminates if the limit for the number of atoms (1,048,576 by │ │ │ │ default) is reached.

    Therefore, converting arbitrary input strings to atoms can be dangerous in a │ │ │ │ system that runs continuously. If only certain well-defined atoms are allowed as │ │ │ │ input, list_to_existing_atom/1 or │ │ │ │ binary_to_existing_atom/1 can be used │ │ │ │ to guard against a denial-of-service attack. (All atoms that are allowed must │ │ │ │ have been created earlier, for example, by using all of them in a module │ │ │ │ and loading that module.)

    Using list_to_atom/1 to construct an atom that │ │ │ │ -is passed to apply/3 is quite expensive.

    DO NOT

    apply(list_to_atom("some_prefix"++Var), foo, Args)

    │ │ │ │ +is passed to apply/3 is quite expensive.

    DO NOT

    apply(list_to_atom("some_prefix"++Var), foo, Args)

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ length/1 │ │ │ │

    │ │ │ │

    The time for calculating the length of a list is proportional to the length of │ │ │ │ the list, as opposed to tuple_size/1, │ │ │ │ byte_size/1, and bit_size/1, which all │ │ │ │ execute in constant time.

    Normally, there is no need to worry about the speed of length/1, │ │ │ │ because it is efficiently implemented in C. In time-critical code, you might │ │ │ │ want to avoid it if the input list could potentially be very long.

    Some uses of length/1 can be replaced by matching. For example, │ │ │ │ -the following code:

    foo(L) when length(L) >= 3 ->
    │ │ │ │ -    ...

    can be rewritten to:

    foo([_,_,_|_]=L) ->
    │ │ │ │ +the following code:

    foo(L) when length(L) >= 3 ->
    │ │ │ │ +    ...

    can be rewritten to:

    foo([_,_,_|_]=L) ->
    │ │ │ │     ...

    One slight difference is that length(L) fails if L is an │ │ │ │ improper list, while the pattern in the second code fragment accepts an improper │ │ │ │ list.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ setelement/3 │ │ │ │ @@ -143,18 +143,18 @@ │ │ │ │

    setelement/3 copies the tuple it modifies. Therefore, │ │ │ │ updating a tuple in a loop using setelement/3 creates a new │ │ │ │ copy of the tuple every time.

    There is one exception to the rule that the tuple is copied. If the compiler │ │ │ │ clearly can see that destructively updating the tuple would give the same result │ │ │ │ as if the tuple was copied, the call to setelement/3 is │ │ │ │ replaced with a special destructive setelement instruction. In the following │ │ │ │ code sequence, the first setelement/3 call copies the tuple │ │ │ │ -and modifies the ninth element:

    multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
    │ │ │ │ -    T1 = setelement(9, T0, bar),
    │ │ │ │ -    T2 = setelement(7, T1, foobar),
    │ │ │ │ -    setelement(5, T2, new_value).

    The two following setelement/3 calls modify the tuple in │ │ │ │ +and modifies the ninth element:

    multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
    │ │ │ │ +    T1 = setelement(9, T0, bar),
    │ │ │ │ +    T2 = setelement(7, T1, foobar),
    │ │ │ │ +    setelement(5, T2, new_value).

    The two following setelement/3 calls modify the tuple in │ │ │ │ place.

    For the optimization to be applied, all the following conditions must be true:

    • The tuple argument must be known to be a tuple of a known size.
    • The indices must be integer literals, not variables or expressions.
    • The indices must be given in descending order.
    • There must be no calls to another function in between the calls to │ │ │ │ setelement/3.
    • The tuple returned from one setelement/3 call must only be │ │ │ │ used in the subsequent call to setelement/3.

    If the code cannot be structured as in the multiple_setelement/1 example, the │ │ │ │ best way to modify multiple elements in a large tuple is to convert the tuple to │ │ │ │ a list, modify the list, and convert it back to a tuple.

    │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/code_loading.xhtml │ │ │ │ @@ -27,16 +27,16 @@ │ │ │ │ │ │ │ │ │ │ │ │ Compilation │ │ │ │

    │ │ │ │

    Erlang programs must be compiled to object code. The compiler can generate a │ │ │ │ new file that contains the object code. The current abstract machine, which runs │ │ │ │ the object code, is called BEAM, therefore the object files get the suffix │ │ │ │ -.beam. The compiler can also generate a binary which can be loaded directly.

    The compiler is located in the module compile in Compiler.

    compile:file(Module)
    │ │ │ │ -compile:file(Module, Options)

    The Erlang shell understands the command c(Module), which both compiles and │ │ │ │ +.beam. The compiler can also generate a binary which can be loaded directly.

    The compiler is located in the module compile in Compiler.

    compile:file(Module)
    │ │ │ │ +compile:file(Module, Options)

    The Erlang shell understands the command c(Module), which both compiles and │ │ │ │ loads Module.

    There is also a module make, which provides a set of functions similar to the │ │ │ │ UNIX type Make functions, see module make in Tools.

    The compiler can also be accessed from the OS prompt using the │ │ │ │ erl executable in ERTS.

    % erl -compile Module1...ModuleN
    │ │ │ │  % erl -make

    The erlc program provides way to compile modules from the OS │ │ │ │ shell, see the erlc executable in ERTS. It │ │ │ │ understands a number of flags that can be used to define macros, add search │ │ │ │ paths for include files, and more.

    % erlc <flags> File1.erl...FileN.erl

    │ │ │ │ @@ -61,51 +61,51 @@ │ │ │ │ When a module is loaded into the system for the first time, the code becomes │ │ │ │ 'current'. If then a new instance of the module is loaded, the code of the │ │ │ │ previous instance becomes 'old' and the new instance becomes 'current'.

    Both old and current code is valid, and can be evaluated concurrently. Fully │ │ │ │ qualified function calls always refer to current code. Old code can still be │ │ │ │ evaluated because of processes lingering in the old code.

    If a third instance of the module is loaded, the code server removes (purges) │ │ │ │ the old code and any processes lingering in it is terminated. Then the third │ │ │ │ instance becomes 'current' and the previously current code becomes 'old'.

    To change from old code to current code, a process must make a fully qualified │ │ │ │ -function call.

    Example:

    -module(m).
    │ │ │ │ --export([loop/0]).
    │ │ │ │ +function call.

    Example:

    -module(m).
    │ │ │ │ +-export([loop/0]).
    │ │ │ │  
    │ │ │ │ -loop() ->
    │ │ │ │ +loop() ->
    │ │ │ │      receive
    │ │ │ │          code_switch ->
    │ │ │ │ -            m:loop();
    │ │ │ │ +            m:loop();
    │ │ │ │          Msg ->
    │ │ │ │              ...
    │ │ │ │ -            loop()
    │ │ │ │ +            loop()
    │ │ │ │      end.

    To make the process change code, send the message code_switch to it. The │ │ │ │ process then makes a fully qualified call to m:loop() and changes to current │ │ │ │ code. Notice that m:loop/0 must be exported.

    For code replacement of funs to work, use the syntax │ │ │ │ fun Module:FunctionName/Arity.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running a Function When a Module is Loaded │ │ │ │

    │ │ │ │

    The -on_load() directive names a function that is to be run automatically when │ │ │ │ -a module is loaded.

    Its syntax is as follows:

    -on_load(Name/0).

    It is not necessary to export the function. It is called in a freshly spawned │ │ │ │ +a module is loaded.

    Its syntax is as follows:

    -on_load(Name/0).

    It is not necessary to export the function. It is called in a freshly spawned │ │ │ │ process (which terminates as soon as the function returns).

    The function must return ok if the module is to become the new current code │ │ │ │ for the module and become callable.

    Returning any other value or generating an exception causes the new code to be │ │ │ │ unloaded. If the return value is not an atom, a warning error report is sent to │ │ │ │ the error logger.

    If there already is current code for the module, that code will remain current │ │ │ │ and can be called until the on_load function has returned. If the on_load │ │ │ │ function fails, the current code (if any) will remain current. If there is no │ │ │ │ current code for a module, any process that makes an external call to the module │ │ │ │ before the on_load function has finished will be suspended until the on_load │ │ │ │ function have finished.

    Change

    Before Erlang/OTP 19, if the on_load function failed, any previously current │ │ │ │ code would become old, essentially leaving the system without any working and │ │ │ │ reachable instance of the module.

    In embedded mode, first all modules are loaded. Then all on_load functions are │ │ │ │ called. The system is terminated unless all of the on_load functions return │ │ │ │ -ok.

    Example:

    -module(m).
    │ │ │ │ --on_load(load_my_nifs/0).
    │ │ │ │ +ok.

    Example:

    -module(m).
    │ │ │ │ +-on_load(load_my_nifs/0).
    │ │ │ │  
    │ │ │ │ -load_my_nifs() ->
    │ │ │ │ +load_my_nifs() ->
    │ │ │ │      NifPath = ...,    %Set up the path to the NIF library.
    │ │ │ │      Info = ...,       %Initialize the Info term
    │ │ │ │ -    erlang:load_nif(NifPath, Info).

    If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ │ + erlang:load_nif(NifPath, Info).

    If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ │ report is sent to the error loader.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/c_portdriver.xhtml │ │ │ │ @@ -56,112 +56,112 @@ │ │ │ │

    Like a port program, the port communicates with an Erlang process. All │ │ │ │ communication goes through one Erlang process that is the connected process of │ │ │ │ the port driver. Terminating this process closes the port driver.

    Before the port is created, the driver must be loaded. This is done with the │ │ │ │ function erl_ddll:load_driver/2, with the name of the shared library as │ │ │ │ argument.

    The port is then created using the BIF open_port/2, with the │ │ │ │ tuple {spawn, DriverName} as the first argument. The string SharedLib is the │ │ │ │ name of the port driver. The second argument is a list of options, none in this │ │ │ │ -case:

    -module(complex5).
    │ │ │ │ --export([start/1, init/1]).
    │ │ │ │ +case:

    -module(complex5).
    │ │ │ │ +-export([start/1, init/1]).
    │ │ │ │  
    │ │ │ │ -start(SharedLib) ->
    │ │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │ +start(SharedLib) ->
    │ │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │          ok -> ok;
    │ │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ │ -        _ -> exit({error, could_not_load_driver})
    │ │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ │ +        _ -> exit({error, could_not_load_driver})
    │ │ │ │      end,
    │ │ │ │ -    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │ +    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │  
    │ │ │ │ -init(SharedLib) ->
    │ │ │ │ -  register(complex, self()),
    │ │ │ │ -  Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ -  loop(Port).

    Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ │ -message to the complex process and receive the following reply:

    foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +init(SharedLib) ->
    │ │ │ │ +  register(complex, self()),
    │ │ │ │ +  Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ +  loop(Port).

    Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ │ +message to the complex process and receive the following reply:

    foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -        {complex, Result} ->
    │ │ │ │ +        {complex, Result} ->
    │ │ │ │              Result
    │ │ │ │ -    end.

    The complex process performs the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │ +    end.

    The complex process performs the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -        {call, Caller, Msg} ->
    │ │ │ │ -            Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +        {call, Caller, Msg} ->
    │ │ │ │ +            Port ! {self(), {command, encode(Msg)}},
    │ │ │ │              receive
    │ │ │ │ -                {Port, {data, Data}} ->
    │ │ │ │ -                    Caller ! {complex, decode(Data)}
    │ │ │ │ +                {Port, {data, Data}} ->
    │ │ │ │ +                    Caller ! {complex, decode(Data)}
    │ │ │ │              end,
    │ │ │ │ -            loop(Port)
    │ │ │ │ +            loop(Port)
    │ │ │ │      end.

    Assuming that both the arguments and the results from the C functions are less │ │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ │ -represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    The resulting Erlang program, including functions for stopping the port and │ │ │ │ +decode([Int]) -> Int.

    The resulting Erlang program, including functions for stopping the port and │ │ │ │ detecting port failures, is as follows:

    
    │ │ │ │ --module(complex5).
    │ │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ │ --export([foo/1, bar/1]).
    │ │ │ │ +-module(complex5).
    │ │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ │ +-export([foo/1, bar/1]).
    │ │ │ │  
    │ │ │ │ -start(SharedLib) ->
    │ │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │ +start(SharedLib) ->
    │ │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
    │ │ │ │  	ok -> ok;
    │ │ │ │ -	{error, already_loaded} -> ok;
    │ │ │ │ -	_ -> exit({error, could_not_load_driver})
    │ │ │ │ +	{error, already_loaded} -> ok;
    │ │ │ │ +	_ -> exit({error, could_not_load_driver})
    │ │ │ │      end,
    │ │ │ │ -    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │ +    spawn(?MODULE, init, [SharedLib]).
    │ │ │ │  
    │ │ │ │ -init(SharedLib) ->
    │ │ │ │ -    register(complex, self()),
    │ │ │ │ -    Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ -    loop(Port).
    │ │ │ │ +init(SharedLib) ->
    │ │ │ │ +    register(complex, self()),
    │ │ │ │ +    Port = open_port({spawn, SharedLib}, []),
    │ │ │ │ +    loop(Port).
    │ │ │ │  
    │ │ │ │ -stop() ->
    │ │ │ │ +stop() ->
    │ │ │ │      complex ! stop.
    │ │ │ │  
    │ │ │ │ -foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -	{complex, Result} ->
    │ │ │ │ +	{complex, Result} ->
    │ │ │ │  	    Result
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -loop(Port) ->
    │ │ │ │ +loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -	{call, Caller, Msg} ->
    │ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +	{call, Caller, Msg} ->
    │ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, {data, Data}} ->
    │ │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ │ +		{Port, {data, Data}} ->
    │ │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │ │  	    end,
    │ │ │ │ -	    loop(Port);
    │ │ │ │ +	    loop(Port);
    │ │ │ │  	stop ->
    │ │ │ │ -	    Port ! {self(), close},
    │ │ │ │ +	    Port ! {self(), close},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, closed} ->
    │ │ │ │ -		    exit(normal)
    │ │ │ │ +		{Port, closed} ->
    │ │ │ │ +		    exit(normal)
    │ │ │ │  	    end;
    │ │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ │ -	    io:format("~p ~n", [Reason]),
    │ │ │ │ -	    exit(port_terminated)
    │ │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ │ +	    io:format("~p ~n", [Reason]),
    │ │ │ │ +	    exit(port_terminated)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    │ │ │ │ +decode([Int]) -> Int.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ C Driver │ │ │ │

    │ │ │ │

    The C driver is a module that is compiled and linked into a shared library. It │ │ │ │ uses a driver structure and includes the header file erl_driver.h.

    The driver structure is filled with the driver name and function pointers. It is │ │ │ │ @@ -252,22 +252,22 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

    │ │ │ │

    Step 1. Compile the C code:

    unix> gcc -o example_drv.so -fpic -shared complex.c port_driver.c
    │ │ │ │  windows> cl -LD -MD -Fe example_drv.dll complex.c port_driver.c

    Step 2. Start Erlang and compile the Erlang code:

    > erl
    │ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │  
    │ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ -1> c(complex5).
    │ │ │ │ -{ok,complex5}

    Step 3. Run the example:

    2> complex5:start("example_drv").
    │ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ +1> c(complex5).
    │ │ │ │ +{ok,complex5}

    Step 3. Run the example:

    2> complex5:start("example_drv").
    │ │ │ │  <0.34.0>
    │ │ │ │ -3> complex5:foo(3).
    │ │ │ │ +3> complex5:foo(3).
    │ │ │ │  4
    │ │ │ │ -4> complex5:bar(5).
    │ │ │ │ +4> complex5:bar(5).
    │ │ │ │  10
    │ │ │ │ -5> complex5:stop().
    │ │ │ │ +5> complex5:stop().
    │ │ │ │  stop
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/c_port.xhtml │ │ │ │ @@ -53,101 +53,101 @@ │ │ │ │ external program, if it is written properly).

    The port is created using the BIF open_port/2 with │ │ │ │ {spawn,ExtPrg} as the first argument. The string ExtPrg is the name of the │ │ │ │ external program, including any command line arguments. The second argument is a │ │ │ │ list of options, in this case only {packet,2}. This option says that a 2 byte │ │ │ │ length indicator is to be used to simplify the communication between C and │ │ │ │ Erlang. The Erlang port automatically adds the length indicator, but this must │ │ │ │ be done explicitly in the external C program.

    The process is also set to trap exits, which enables detection of failure of the │ │ │ │ -external program:

    -module(complex1).
    │ │ │ │ --export([start/1, init/1]).
    │ │ │ │ +external program:

    -module(complex1).
    │ │ │ │ +-export([start/1, init/1]).
    │ │ │ │  
    │ │ │ │ -start(ExtPrg) ->
    │ │ │ │ -  spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ +start(ExtPrg) ->
    │ │ │ │ +  spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │  
    │ │ │ │ -init(ExtPrg) ->
    │ │ │ │ -  register(complex, self()),
    │ │ │ │ -  process_flag(trap_exit, true),
    │ │ │ │ -  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ -  loop(Port).

    Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ │ -message to the complex process and receive the following replies:

    foo(X) ->
    │ │ │ │ -  call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -  call_port({bar, Y}).
    │ │ │ │ +init(ExtPrg) ->
    │ │ │ │ +  register(complex, self()),
    │ │ │ │ +  process_flag(trap_exit, true),
    │ │ │ │ +  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ +  loop(Port).

    Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ │ +message to the complex process and receive the following replies:

    foo(X) ->
    │ │ │ │ +  call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +  call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -  complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +  complex ! {call, self(), Msg},
    │ │ │ │    receive
    │ │ │ │ -    {complex, Result} ->
    │ │ │ │ +    {complex, Result} ->
    │ │ │ │        Result
    │ │ │ │ -  end.

    The complex process does the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │ +  end.

    The complex process does the following:

    • Encodes the message into a sequence of bytes.
    • Sends it to the port.
    • Waits for a reply.
    • Decodes the reply.
    • Sends it back to the caller:
    loop(Port) ->
    │ │ │ │    receive
    │ │ │ │ -    {call, Caller, Msg} ->
    │ │ │ │ -      Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +    {call, Caller, Msg} ->
    │ │ │ │ +      Port ! {self(), {command, encode(Msg)}},
    │ │ │ │        receive
    │ │ │ │ -        {Port, {data, Data}} ->
    │ │ │ │ -          Caller ! {complex, decode(Data)}
    │ │ │ │ +        {Port, {data, Data}} ->
    │ │ │ │ +          Caller ! {complex, decode(Data)}
    │ │ │ │        end,
    │ │ │ │ -      loop(Port)
    │ │ │ │ +      loop(Port)
    │ │ │ │    end.

    Assuming that both the arguments and the results from the C functions are less │ │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ │ -represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +represented by a single byte as well:

    encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    The resulting Erlang program, including functionality for stopping the port and │ │ │ │ -detecting port failures, is as follows:

    -module(complex1).
    │ │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ │ --export([foo/1, bar/1]).
    │ │ │ │ -
    │ │ │ │ -start(ExtPrg) ->
    │ │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ -stop() ->
    │ │ │ │ +decode([Int]) -> Int.

    The resulting Erlang program, including functionality for stopping the port and │ │ │ │ +detecting port failures, is as follows:

    -module(complex1).
    │ │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ │ +-export([foo/1, bar/1]).
    │ │ │ │ +
    │ │ │ │ +start(ExtPrg) ->
    │ │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ │ +stop() ->
    │ │ │ │      complex ! stop.
    │ │ │ │  
    │ │ │ │ -foo(X) ->
    │ │ │ │ -    call_port({foo, X}).
    │ │ │ │ -bar(Y) ->
    │ │ │ │ -    call_port({bar, Y}).
    │ │ │ │ +foo(X) ->
    │ │ │ │ +    call_port({foo, X}).
    │ │ │ │ +bar(Y) ->
    │ │ │ │ +    call_port({bar, Y}).
    │ │ │ │  
    │ │ │ │ -call_port(Msg) ->
    │ │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ │ +call_port(Msg) ->
    │ │ │ │ +    complex ! {call, self(), Msg},
    │ │ │ │      receive
    │ │ │ │ -	{complex, Result} ->
    │ │ │ │ +	{complex, Result} ->
    │ │ │ │  	    Result
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -init(ExtPrg) ->
    │ │ │ │ -    register(complex, self()),
    │ │ │ │ -    process_flag(trap_exit, true),
    │ │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ -    loop(Port).
    │ │ │ │ +init(ExtPrg) ->
    │ │ │ │ +    register(complex, self()),
    │ │ │ │ +    process_flag(trap_exit, true),
    │ │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ │ +    loop(Port).
    │ │ │ │  
    │ │ │ │ -loop(Port) ->
    │ │ │ │ +loop(Port) ->
    │ │ │ │      receive
    │ │ │ │ -	{call, Caller, Msg} ->
    │ │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │ +	{call, Caller, Msg} ->
    │ │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, {data, Data}} ->
    │ │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ │ +		{Port, {data, Data}} ->
    │ │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │ │  	    end,
    │ │ │ │ -	    loop(Port);
    │ │ │ │ +	    loop(Port);
    │ │ │ │  	stop ->
    │ │ │ │ -	    Port ! {self(), close},
    │ │ │ │ +	    Port ! {self(), close},
    │ │ │ │  	    receive
    │ │ │ │ -		{Port, closed} ->
    │ │ │ │ -		    exit(normal)
    │ │ │ │ +		{Port, closed} ->
    │ │ │ │ +		    exit(normal)
    │ │ │ │  	    end;
    │ │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ │ -	    exit(port_terminated)
    │ │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ │ +	    exit(port_terminated)
    │ │ │ │      end.
    │ │ │ │  
    │ │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │ │  
    │ │ │ │ -decode([Int]) -> Int.

    │ │ │ │ +decode([Int]) -> Int.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ C Program │ │ │ │

    │ │ │ │

    On the C side, it is necessary to write functions for receiving and sending data │ │ │ │ with 2 byte length indicators from/to Erlang. By default, the C program is to │ │ │ │ @@ -238,22 +238,22 @@ │ │ │ │ and terminates.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │

    │ │ │ │

    Step 1. Compile the C code:

    $ gcc -o extprg complex.c erl_comm.c port.c

    Step 2. Start Erlang and compile the Erlang code:

    $ erl
    │ │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ │  
    │ │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ -1> c(complex1).
    │ │ │ │ -{ok,complex1}

    Step 3. Run the example:

    2> complex1:start("./extprg").
    │ │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ │ +1> c(complex1).
    │ │ │ │ +{ok,complex1}

    Step 3. Run the example:

    2> complex1:start("./extprg").
    │ │ │ │  <0.34.0>
    │ │ │ │ -3> complex1:foo(3).
    │ │ │ │ +3> complex1:foo(3).
    │ │ │ │  4
    │ │ │ │ -4> complex1:bar(5).
    │ │ │ │ +4> complex1:bar(5).
    │ │ │ │  10
    │ │ │ │ -5> complex1:stop().
    │ │ │ │ +5> complex1:stop().
    │ │ │ │  stop
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/bit_syntax.xhtml │ │ │ │ @@ -24,48 +24,48 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Introduction │ │ │ │ │ │ │ │

    The complete specification for the bit syntax appears in the │ │ │ │ Reference Manual.

    In Erlang, a Bin is used for constructing binaries and matching binary patterns. │ │ │ │ -A Bin is written with the following syntax:

    <<E1, E2, ... En>>

    A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ │ -enable construction of binaries:

    Bin = <<E1, E2, ... En>>

    All elements must be bound. Or match a binary:

    <<E1, E2, ... En>> = Bin

    Here, Bin is bound and the elements are bound or unbound, as in any match.

    A Bin does not need to consist of a whole number of bytes.

    A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ │ +A Bin is written with the following syntax:

    <<E1, E2, ... En>>

    A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ │ +enable construction of binaries:

    Bin = <<E1, E2, ... En>>

    All elements must be bound. Or match a binary:

    <<E1, E2, ... En>> = Bin

    Here, Bin is bound and the elements are bound or unbound, as in any match.

    A Bin does not need to consist of a whole number of bytes.

    A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ │ not need to be divisible by 8. If the number of bits is divisible by 8, the │ │ │ │ bitstring is also a binary.

    Each element specifies a certain segment of the bitstring. A segment is a set │ │ │ │ of contiguous bits of the binary (not necessarily on a byte boundary). The first │ │ │ │ element specifies the initial segment, the second element specifies the │ │ │ │ following segment, and so on.

    The following examples illustrate how binaries are constructed, or matched, and │ │ │ │ how elements and tails are specified.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Examples │ │ │ │

    │ │ │ │

    Example 1: A binary can be constructed from a set of constants or a string │ │ │ │ -literal:

    Bin11 = <<1, 17, 42>>,
    │ │ │ │ -Bin12 = <<"abc">>

    This gives two binaries of size 3, with the following evaluations:

    Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ │ +literal:

    Bin11 = <<1, 17, 42>>,
    │ │ │ │ +Bin12 = <<"abc">>

    This gives two binaries of size 3, with the following evaluations:

    Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ │ variables:

    A = 1, B = 17, C = 42,
    │ │ │ │ -Bin2 = <<A, B, C:16>>

    This gives a binary of size 4. Here, a size expression is used for the │ │ │ │ +Bin2 = <<A, B, C:16>>

    This gives a binary of size 4. Here, a size expression is used for the │ │ │ │ variable C to specify a 16-bits segment of Bin2.

    binary_to_list(Bin2) evaluates to [1, 17, 00, 42].

    Example 3: A Bin can also be used for matching. D, E, and F are unbound │ │ │ │ -variables, and Bin2 is bound, as in Example 2:

    <<D:16, E, F/binary>> = Bin2

    This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ │ +variables, and Bin2 is bound, as in Example 2:

    <<D:16, E, F/binary>> = Bin2

    This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ │ binary_to_list(F) = [42].

    Example 4: The following is a more elaborate example of matching. Here, │ │ │ │ Dgram is bound to the consecutive bytes of an IP datagram of IP protocol │ │ │ │ -version 4. The ambition is to extract the header and the data of the datagram:

    -define(IP_VERSION, 4).
    │ │ │ │ --define(IP_MIN_HDR_LEN, 5).
    │ │ │ │ +version 4. The ambition is to extract the header and the data of the datagram:

    -define(IP_VERSION, 4).
    │ │ │ │ +-define(IP_MIN_HDR_LEN, 5).
    │ │ │ │  
    │ │ │ │ -DgramSize = byte_size(Dgram),
    │ │ │ │ +DgramSize = byte_size(Dgram),
    │ │ │ │  case Dgram of
    │ │ │ │ -    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
    │ │ │ │ +    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
    │ │ │ │        ID:16, Flgs:3, FragOff:13,
    │ │ │ │        TTL:8, Proto:8, HdrChkSum:16,
    │ │ │ │        SrcIP:32,
    │ │ │ │ -      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
    │ │ │ │ -        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
    │ │ │ │ -        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    │ │ │ │ +      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
    │ │ │ │ +        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
    │ │ │ │ +        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
    │ │ │ │      ...
    │ │ │ │  end.

    Here, the segment corresponding to the Opts variable has a type modifier, │ │ │ │ specifying that Opts is to bind to a binary. All other variables have the │ │ │ │ default type equal to unsigned integer.

    An IP datagram header is of variable length. This length is measured in the │ │ │ │ number of 32-bit words and is given in the segment corresponding to HLen. The │ │ │ │ minimum value of HLen is 5. It is the segment corresponding to Opts that is │ │ │ │ variable, so if HLen is equal to 5, Opts becomes an empty binary.

    The tail variables RestDgram and Data bind to binaries, as all tail │ │ │ │ @@ -123,77 +123,77 @@ │ │ │ │

    This section describes the rules for constructing binaries using the bit syntax. │ │ │ │ Unlike when constructing lists or tuples, the construction of a binary can fail │ │ │ │ with a badarg exception.

    There can be zero or more segments in a binary to be constructed. The expression │ │ │ │ <<>> constructs a zero length binary.

    Each segment in a binary can consist of zero or more bits. There are no │ │ │ │ alignment rules for individual segments of type integer and float. For │ │ │ │ binaries and bitstrings without size, the unit specifies the alignment. Since │ │ │ │ the default alignment for the binary type is 8, the size of a binary segment │ │ │ │ -must be a multiple of 8 bits, that is, only whole bytes.

    Example:

    <<Bin/binary,Bitstring/bitstring>>

    The variable Bin must contain a whole number of bytes, because the binary │ │ │ │ +must be a multiple of 8 bits, that is, only whole bytes.

    Example:

    <<Bin/binary,Bitstring/bitstring>>

    The variable Bin must contain a whole number of bytes, because the binary │ │ │ │ type defaults to unit:8. A badarg exception is generated if Bin consist │ │ │ │ of, for example, 17 bits.

    The Bitstring variable can consist of any number of bits, for example, 0, 1, │ │ │ │ 8, 11, 17, 42, and so on. This is because the default unit for bitstrings │ │ │ │ is 1.

    For clarity, it is recommended not to change the unit size for binaries. │ │ │ │ Instead, use binary when you need byte alignment and bitstring when you need │ │ │ │ bit alignment.

    The following example successfully constructs a bitstring of 7 bits, provided │ │ │ │ -that all of X and Y are integers:

    <<X:1,Y:6>>

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When constructing binaries, Value and Size can be any Erlang expression. │ │ │ │ +that all of X and Y are integers:

    <<X:1,Y:6>>

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When constructing binaries, Value and Size can be any Erlang expression. │ │ │ │ However, for syntactical reasons, both Value and Size must be enclosed in │ │ │ │ parenthesis if the expression consists of anything more than a single literal or │ │ │ │ -a variable. The following gives a compiler syntax error:

    <<X+1:8>>

    This expression must be rewritten into the following, to be accepted by the │ │ │ │ -compiler:

    <<(X+1):8>>

    │ │ │ │ +a variable. The following gives a compiler syntax error:

    <<X+1:8>>

    This expression must be rewritten into the following, to be accepted by the │ │ │ │ +compiler:

    <<(X+1):8>>

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Including Literal Strings │ │ │ │

    │ │ │ │ -

    A literal string can be written instead of an element:

    <<"hello">>

    This is syntactic sugar for the following:

    <<$h,$e,$l,$l,$o>>

    │ │ │ │ +

    A literal string can be written instead of an element:

    <<"hello">>

    This is syntactic sugar for the following:

    <<$h,$e,$l,$l,$o>>

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │ │

    │ │ │ │

    This section describes the rules for matching binaries, using the bit syntax.

    There can be zero or more segments in a binary pattern. A binary pattern can │ │ │ │ occur wherever patterns are allowed, including inside other patterns. Binary │ │ │ │ patterns cannot be nested. The pattern <<>> matches a zero length binary.

    Each segment in a binary can consist of zero or more bits. A segment of type │ │ │ │ binary must have a size evenly divisible by 8 (or divisible by the unit size, │ │ │ │ if the unit size has been changed). A segment of type bitstring has no │ │ │ │ restrictions on the size. A segment of type float must have size 64 or 32.

    As mentioned earlier, segments have the following general syntax:

    Value:Size/TypeSpecifierList

    When matching Value, value must be either a variable or an integer, or a │ │ │ │ floating point literal. Expressions are not allowed.

    Size must be a │ │ │ │ guard expression, which can use │ │ │ │ -literals and previously bound variables. The following is not allowed:

    foo(N, <<X:N,T/binary>>) ->
    │ │ │ │ -   {X,T}.

    The two occurrences of N are not related. The compiler will complain that the │ │ │ │ -N in the size field is unbound.

    The correct way to write this example is as follows:

    foo(N, Bin) ->
    │ │ │ │ -   <<X:N,T/binary>> = Bin,
    │ │ │ │ -   {X,T}.

    Note

    Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ │ +literals and previously bound variables. The following is not allowed:

    foo(N, <<X:N,T/binary>>) ->
    │ │ │ │ +   {X,T}.

    The two occurrences of N are not related. The compiler will complain that the │ │ │ │ +N in the size field is unbound.

    The correct way to write this example is as follows:

    foo(N, Bin) ->
    │ │ │ │ +   <<X:N,T/binary>> = Bin,
    │ │ │ │ +   {X,T}.

    Note

    Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ │ an integer.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Binding and Using a Size Variable │ │ │ │

    │ │ │ │

    There is one exception to the rule that a variable that is used as size must be │ │ │ │ previously bound. It is possible to match and bind a variable, and use it as a │ │ │ │ -size within the same binary pattern. For example:

    bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
    │ │ │ │ -   {Payload,Rest}.

    Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ │ -used at the number of bytes to match out as a binary.

    Starting in OTP 23, the size can be a guard expression:

    bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
    │ │ │ │ -   {Payload,Rest}.

    Here Sz is the combined size of the header and the payload, so we will need to │ │ │ │ +size within the same binary pattern. For example:

    bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
    │ │ │ │ +   {Payload,Rest}.

    Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ │ +used at the number of bytes to match out as a binary.

    Starting in OTP 23, the size can be a guard expression:

    bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
    │ │ │ │ +   {Payload,Rest}.

    Here Sz is the combined size of the header and the payload, so we will need to │ │ │ │ subtract one byte to get the size of the payload.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Getting the Rest of the Binary or Bitstring │ │ │ │

    │ │ │ │ -

    To match out the rest of a binary, specify a binary field without size:

    foo(<<A:8,Rest/binary>>) ->

    The size of the tail must be evenly divisible by 8.

    To match out the rest of a bitstring, specify a field without size:

    foo(<<A:8,Rest/bitstring>>) ->

    There are no restrictions on the number of bits in the tail.

    │ │ │ │ +

    To match out the rest of a binary, specify a binary field without size:

    foo(<<A:8,Rest/binary>>) ->

    The size of the tail must be evenly divisible by 8.

    To match out the rest of a bitstring, specify a field without size:

    foo(<<A:8,Rest/bitstring>>) ->

    There are no restrictions on the number of bits in the tail.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Appending to a Binary │ │ │ │

    │ │ │ │ -

    Appending to a binary in an efficient way can be done as follows:

    triples_to_bin(T) ->
    │ │ │ │ -    triples_to_bin(T, <<>>).
    │ │ │ │ +

    Appending to a binary in an efficient way can be done as follows:

    triples_to_bin(T) ->
    │ │ │ │ +    triples_to_bin(T, <<>>).
    │ │ │ │  
    │ │ │ │ -triples_to_bin([{X,Y,Z} | T], Acc) ->
    │ │ │ │ -    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
    │ │ │ │ -triples_to_bin([], Acc) ->
    │ │ │ │ +triples_to_bin([{X,Y,Z} | T], Acc) ->
    │ │ │ │ +    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
    │ │ │ │ +triples_to_bin([], Acc) ->
    │ │ │ │      Acc.
    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/binaryhandling.xhtml │ │ │ │ @@ -19,43 +19,43 @@ │ │ │ │ │ │ │ │

    │ │ │ │ Constructing and Matching Binaries │ │ │ │

    │ │ │ │

    This section gives a few examples on how to handle binaries in an efficient way. │ │ │ │ The sections that follow take an in-depth look at how binaries are implemented │ │ │ │ and how to best take advantages of the optimizations done by the compiler and │ │ │ │ -runtime system.

    Binaries can be efficiently built in the following way:

    DO

    my_list_to_binary(List) ->
    │ │ │ │ -    my_list_to_binary(List, <<>>).
    │ │ │ │ +runtime system.

    Binaries can be efficiently built in the following way:

    DO

    my_list_to_binary(List) ->
    │ │ │ │ +    my_list_to_binary(List, <<>>).
    │ │ │ │  
    │ │ │ │ -my_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    my_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ -my_list_to_binary([], Acc) ->
    │ │ │ │ +my_list_to_binary([H|T], Acc) ->
    │ │ │ │ +    my_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ +my_list_to_binary([], Acc) ->
    │ │ │ │      Acc.

    Appending data to a binary as in the example is efficient because it is │ │ │ │ specially optimized by the runtime system to avoid copying the Acc binary │ │ │ │ -every time.

    Prepending data to a binary in a loop is not efficient:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ -    rev_list_to_binary(List, <<>>).
    │ │ │ │ +every time.

    Prepending data to a binary in a loop is not efficient:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ +    rev_list_to_binary(List, <<>>).
    │ │ │ │  
    │ │ │ │ -rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    rev_list_to_binary(T, <<H,Acc/binary>>);
    │ │ │ │ -rev_list_to_binary([], Acc) ->
    │ │ │ │ +rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ +    rev_list_to_binary(T, <<H,Acc/binary>>);
    │ │ │ │ +rev_list_to_binary([], Acc) ->
    │ │ │ │      Acc.

    This is not efficient for long lists because the Acc binary is copied every │ │ │ │ -time. One way to make the function more efficient is like this:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ -    rev_list_to_binary(lists:reverse(List), <<>>).
    │ │ │ │ +time. One way to make the function more efficient is like this:

    DO NOT

    rev_list_to_binary(List) ->
    │ │ │ │ +    rev_list_to_binary(lists:reverse(List), <<>>).
    │ │ │ │  
    │ │ │ │ -rev_list_to_binary([H|T], Acc) ->
    │ │ │ │ -    rev_list_to_binary(T, <<Acc/binary,H>>);
    │ │ │ │ -rev_list_to_binary([], Acc) ->
    │ │ │ │ -    Acc.

    Another way to avoid copying the binary each time is like this:

    DO

    rev_list_to_binary([H|T]) ->
    │ │ │ │ -    RevTail = rev_list_to_binary(T),
    │ │ │ │ -    <<RevTail/binary,H>>;
    │ │ │ │ -rev_list_to_binary([]) ->
    │ │ │ │ -    <<>>.

    Note that in each of the DO examples, the binary to be appended to is always │ │ │ │ -given as the first segment.

    Binaries can be efficiently matched in the following way:

    DO

    my_binary_to_list(<<H,T/binary>>) ->
    │ │ │ │ -    [H|my_binary_to_list(T)];
    │ │ │ │ -my_binary_to_list(<<>>) -> [].

    │ │ │ │ +rev_list_to_binary([H|T], Acc) -> │ │ │ │ + rev_list_to_binary(T, <<Acc/binary,H>>); │ │ │ │ +rev_list_to_binary([], Acc) -> │ │ │ │ + Acc.

    Another way to avoid copying the binary each time is like this:

    DO

    rev_list_to_binary([H|T]) ->
    │ │ │ │ +    RevTail = rev_list_to_binary(T),
    │ │ │ │ +    <<RevTail/binary,H>>;
    │ │ │ │ +rev_list_to_binary([]) ->
    │ │ │ │ +    <<>>.

    Note that in each of the DO examples, the binary to be appended to is always │ │ │ │ +given as the first segment.

    Binaries can be efficiently matched in the following way:

    DO

    my_binary_to_list(<<H,T/binary>>) ->
    │ │ │ │ +    [H|my_binary_to_list(T)];
    │ │ │ │ +my_binary_to_list(<<>>) -> [].

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ How Binaries are Implemented │ │ │ │

    │ │ │ │

    Internally, binaries and bitstrings are implemented in the same way. In this │ │ │ │ section, they are called binaries because that is what they are called in the │ │ │ │ @@ -110,29 +110,29 @@ │ │ │ │ called referential transparency) of Erlang would break.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Constructing Binaries │ │ │ │

    │ │ │ │

    Appending to a binary or bitstring in the following way is specially optimized │ │ │ │ -to avoid copying the binary:

    <<Binary/binary, ...>>
    │ │ │ │ +to avoid copying the binary:

    <<Binary/binary, ...>>
    │ │ │ │  %% - OR -
    │ │ │ │ -<<Binary/bitstring, ...>>

    This optimization is applied by the runtime system in a way that makes it │ │ │ │ +<<Binary/bitstring, ...>>

    This optimization is applied by the runtime system in a way that makes it │ │ │ │ effective in most circumstances (for exceptions, see │ │ │ │ Circumstances That Force Copying). The │ │ │ │ optimization in its basic form does not need any help from the compiler. │ │ │ │ However, the compiler add hints to the runtime system when it is safe to apply │ │ │ │ the optimization in a more efficient way.

    Change

    The compiler support for making the optimization more efficient was added in │ │ │ │ Erlang/OTP 26.

    To explain how the basic optimization works, let us examine the following code │ │ │ │ -line by line:

    Bin0 = <<0>>,                    %% 1
    │ │ │ │ -Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
    │ │ │ │ -Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
    │ │ │ │ -Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
    │ │ │ │ -Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
    │ │ │ │ -{Bin4,Bin3}                      %% 6
    • Line 1 (marked with the %% 1 comment), assigns a │ │ │ │ +line by line:

      Bin0 = <<0>>,                    %% 1
      │ │ │ │ +Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
      │ │ │ │ +Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
      │ │ │ │ +Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
      │ │ │ │ +Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
      │ │ │ │ +{Bin4,Bin3}                      %% 6
      • Line 1 (marked with the %% 1 comment), assigns a │ │ │ │ heap binary to the Bin0 variable.

      • Line 2 is an append operation. As Bin0 has not been involved in an append │ │ │ │ operation, a new refc binary is created and │ │ │ │ the contents of Bin0 is copied into it. The ProcBin part of the refc │ │ │ │ binary has its size set to the size of the data stored in the binary, while │ │ │ │ the binary object has extra space allocated. The size of the binary object is │ │ │ │ either twice the size of Bin1 or 256, whichever is larger. In this case it │ │ │ │ is 256.

      • Line 3 is more interesting. Bin1 has been used in an append operation, and │ │ │ │ @@ -158,23 +158,23 @@ │ │ │ │ handle an append operation to a heap binary by copying it to a refc binary (line │ │ │ │ 2), and also handle an append operation to a previous version of the binary by │ │ │ │ copying it (line 5). The support for doing that does not come for free. For │ │ │ │ example, to make it possible to know when it is necessary to copy the binary, │ │ │ │ for every append operation, the runtime system must create a sub binary.

        When the compiler can determine that none of those situations need to be handled │ │ │ │ and that the append operation cannot possibly fail, the compiler generates code │ │ │ │ that causes the runtime system to apply a more efficient variant of the │ │ │ │ -optimization.

        Example:

        -module(repack).
        │ │ │ │ --export([repack/1]).
        │ │ │ │ +optimization.

        Example:

        -module(repack).
        │ │ │ │ +-export([repack/1]).
        │ │ │ │  
        │ │ │ │ -repack(Bin) when is_binary(Bin) ->
        │ │ │ │ -    repack(Bin, <<>>).
        │ │ │ │ +repack(Bin) when is_binary(Bin) ->
        │ │ │ │ +    repack(Bin, <<>>).
        │ │ │ │  
        │ │ │ │ -repack(<<C:8,T/binary>>, Result) ->
        │ │ │ │ -    repack(T, <<Result/binary,C:16>>);
        │ │ │ │ -repack(<<>>, Result) ->
        │ │ │ │ +repack(<<C:8,T/binary>>, Result) ->
        │ │ │ │ +    repack(T, <<Result/binary,C:16>>);
        │ │ │ │ +repack(<<>>, Result) ->
        │ │ │ │      Result.

        The repack/2 function only keeps a single version of the binary, so there is │ │ │ │ never any need to copy the binary. The compiler rewrites the creation of the │ │ │ │ empty binary in repack/1 to instead create a refc binary with 256 bytes │ │ │ │ already reserved; thus, the append operation in repack/2 never needs to handle │ │ │ │ a binary not prepared for appending.

        │ │ │ │ │ │ │ │ │ │ │ │ @@ -186,72 +186,72 @@ │ │ │ │ reason is that the binary object can be moved (reallocated) during an append │ │ │ │ operation, and when that happens, the pointer in the ProcBin must be updated. If │ │ │ │ there would be more than one ProcBin pointing to the binary object, it would not │ │ │ │ be possible to find and update all of them.

        Therefore, certain operations on a binary mark it so that any future append │ │ │ │ operation will be forced to copy the binary. In most cases, the binary object │ │ │ │ will be shrunk at the same time to reclaim the extra space allocated for │ │ │ │ growing.

        When appending to a binary as follows, only the binary returned from the latest │ │ │ │ -append operation will support further cheap append operations:

        Bin = <<Bin0,...>>

        In the code fragment in the beginning of this section, appending to Bin will │ │ │ │ +append operation will support further cheap append operations:

        Bin = <<Bin0,...>>

        In the code fragment in the beginning of this section, appending to Bin will │ │ │ │ be cheap, while appending to Bin0 will force the creation of a new binary and │ │ │ │ copying of the contents of Bin0.

        If a binary is sent as a message to a process or port, the binary will be shrunk │ │ │ │ and any further append operation will copy the binary data into a new binary. │ │ │ │ For example, in the following code fragment Bin1 will be copied in the third │ │ │ │ -line:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ +line:

        Bin1 = <<Bin0,...>>,
        │ │ │ │  PortOrPid ! Bin1,
        │ │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The same happens if you insert a binary into an Ets table, send it to a port │ │ │ │ +Bin = <<Bin1,...>> %% Bin1 will be COPIED

        The same happens if you insert a binary into an Ets table, send it to a port │ │ │ │ using erlang:port_command/2, or pass it to │ │ │ │ enif_inspect_binary in a NIF.

        Matching a binary will also cause it to shrink and the next append operation │ │ │ │ -will copy the binary data:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ -<<X,Y,Z,T/binary>> = Bin1,
        │ │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The reason is that a match context contains a │ │ │ │ +will copy the binary data:

        Bin1 = <<Bin0,...>>,
        │ │ │ │ +<<X,Y,Z,T/binary>> = Bin1,
        │ │ │ │ +Bin = <<Bin1,...>>  %% Bin1 will be COPIED

        The reason is that a match context contains a │ │ │ │ direct pointer to the binary data.

        If a process simply keeps binaries (either in "loop data" or in the process │ │ │ │ dictionary), the garbage collector can eventually shrink the binaries. If only │ │ │ │ one such binary is kept, it will not be shrunk. If the process later appends to │ │ │ │ a binary that has been shrunk, the binary object will be reallocated to make │ │ │ │ place for the data to be appended.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │ │

        │ │ │ │ -

        Let us revisit the example in the beginning of the previous section:

        DO

        my_binary_to_list(<<H,T/binary>>) ->
        │ │ │ │ -    [H|my_binary_to_list(T)];
        │ │ │ │ -my_binary_to_list(<<>>) -> [].

        The first time my_binary_to_list/1 is called, a │ │ │ │ +

        Let us revisit the example in the beginning of the previous section:

        DO

        my_binary_to_list(<<H,T/binary>>) ->
        │ │ │ │ +    [H|my_binary_to_list(T)];
        │ │ │ │ +my_binary_to_list(<<>>) -> [].

        The first time my_binary_to_list/1 is called, a │ │ │ │ match context is created. The match context │ │ │ │ points to the first byte of the binary. 1 byte is matched out and the match │ │ │ │ context is updated to point to the second byte in the binary.

        At this point it would make sense to create a │ │ │ │ sub binary, but in this particular example the │ │ │ │ compiler sees that there will soon be a call to a function (in this case, to │ │ │ │ my_binary_to_list/1 itself) that immediately will create a new match context │ │ │ │ and discard the sub binary.

        Therefore my_binary_to_list/1 calls itself with the match context instead of │ │ │ │ with a sub binary. The instruction that initializes the matching operation │ │ │ │ basically does nothing when it sees that it was passed a match context instead │ │ │ │ of a binary.

        When the end of the binary is reached and the second clause matches, the match │ │ │ │ context will simply be discarded (removed in the next garbage collection, as │ │ │ │ there is no longer any reference to it).

        To summarize, my_binary_to_list/1 only needs to create one match context and │ │ │ │ no sub binaries.

        Notice that the match context in my_binary_to_list/1 was discarded when the │ │ │ │ entire binary had been traversed. What happens if the iteration stops before it │ │ │ │ -has reached the end of the binary? Will the optimization still work?

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +has reached the end of the binary? Will the optimization still work?

        after_zero(<<0,T/binary>>) ->
        │ │ │ │      T;
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -after_zero(<<>>) ->
        │ │ │ │ -    <<>>.

        Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ │ +after_zero(<<_,T/binary>>) -> │ │ │ │ + after_zero(T); │ │ │ │ +after_zero(<<>>) -> │ │ │ │ + <<>>.

        Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ │ second clause:

        ...
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -...

        But it will generate code that builds a sub binary in the first clause:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +after_zero(<<_,T/binary>>) ->
        │ │ │ │ +    after_zero(T);
        │ │ │ │ +...

        But it will generate code that builds a sub binary in the first clause:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │      T;
        │ │ │ │  ...

        Therefore, after_zero/1 builds one match context and one sub binary (assuming │ │ │ │ -it is passed a binary that contains a zero byte).

        Code like the following will also be optimized:

        all_but_zeroes_to_list(Buffer, Acc, 0) ->
        │ │ │ │ -    {lists:reverse(Acc),Buffer};
        │ │ │ │ -all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
        │ │ │ │ -    all_but_zeroes_to_list(T, Acc, Remaining-1);
        │ │ │ │ -all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
        │ │ │ │ -    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

        The compiler removes building of sub binaries in the second and third clauses, │ │ │ │ +it is passed a binary that contains a zero byte).

        Code like the following will also be optimized:

        all_but_zeroes_to_list(Buffer, Acc, 0) ->
        │ │ │ │ +    {lists:reverse(Acc),Buffer};
        │ │ │ │ +all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
        │ │ │ │ +    all_but_zeroes_to_list(T, Acc, Remaining-1);
        │ │ │ │ +all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
        │ │ │ │ +    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

        The compiler removes building of sub binaries in the second and third clauses, │ │ │ │ and it adds an instruction to the first clause that converts Buffer from a │ │ │ │ match context to a sub binary (or do nothing if Buffer is a binary already).

        But in more complicated code, how can one know whether the optimization is │ │ │ │ applied or not?

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Option bin_opt_info │ │ │ │ @@ -259,35 +259,35 @@ │ │ │ │

        Use the bin_opt_info option to have the compiler print a lot of information │ │ │ │ about binary optimizations. It can be given either to the compiler or erlc:

        erlc +bin_opt_info Mod.erl

        or passed through an environment variable:

        export ERL_COMPILER_OPTIONS=bin_opt_info

        Notice that the bin_opt_info is not meant to be a permanent option added to │ │ │ │ your Makefiles, because all messages that it generates cannot be eliminated. │ │ │ │ Therefore, passing the option through the environment is in most cases the most │ │ │ │ practical approach.

        The warnings look as follows:

        ./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
        │ │ │ │  ./efficiency_guide.erl:62: Warning: OPTIMIZED: match context reused

        To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ │ -example:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │ +example:

        after_zero(<<0,T/binary>>) ->
        │ │ │ │           %% BINARY CREATED: binary is returned from the function
        │ │ │ │      T;
        │ │ │ │ -after_zero(<<_,T/binary>>) ->
        │ │ │ │ +after_zero(<<_,T/binary>>) ->
        │ │ │ │           %% OPTIMIZED: match context reused
        │ │ │ │ -    after_zero(T);
        │ │ │ │ -after_zero(<<>>) ->
        │ │ │ │ -    <<>>.

        The warning for the first clause says that the creation of a sub binary cannot │ │ │ │ + after_zero(T); │ │ │ │ +after_zero(<<>>) -> │ │ │ │ + <<>>.

        The warning for the first clause says that the creation of a sub binary cannot │ │ │ │ be delayed, because it will be returned. The warning for the second clause says │ │ │ │ that a sub binary will not be created (yet).

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Unused Variables │ │ │ │

        │ │ │ │

        The compiler figures out if a variable is unused. The same code is generated for │ │ │ │ -each of the following functions:

        count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
        │ │ │ │ -count1(<<>>, Count) -> Count.
        │ │ │ │ +each of the following functions:

        count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
        │ │ │ │ +count1(<<>>, Count) -> Count.
        │ │ │ │  
        │ │ │ │ -count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
        │ │ │ │ -count2(<<>>, Count) -> Count.
        │ │ │ │ +count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
        │ │ │ │ +count2(<<>>, Count) -> Count.
        │ │ │ │  
        │ │ │ │ -count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
        │ │ │ │ -count3(<<>>, Count) -> Count.

        In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ │ +count3(<<_H,T/binary>>, Count) -> count3(T, Count+1); │ │ │ │ +count3(<<>>, Count) -> Count.

        In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ │ out.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/benchmarking.xhtml │ │ │ │ @@ -49,16 +49,16 @@ │ │ │ │ fast as possible, what can we do? One way could be to generate more │ │ │ │ than two bytes at the time.

        % erlperf 'rand:bytes(100).' 'crypto:strong_rand_bytes(100).'
        │ │ │ │  Code                                   ||        QPS       Time   Rel
        │ │ │ │  rand:bytes(100).                        1    2124 Ki     470 ns  100%
        │ │ │ │  crypto:strong_rand_bytes(100).          1    1915 Ki     522 ns   90%

        rand:bytes/1 is still faster when we generate 100 bytes at the time, │ │ │ │ but the relative difference is smaller.

        % erlperf 'rand:bytes(1000).' 'crypto:strong_rand_bytes(1000).'
        │ │ │ │  Code                                    ||        QPS       Time   Rel
        │ │ │ │ -crypto:strong_rand_bytes(1000).          1    1518 Ki     658 ns  100%
        │ │ │ │ -rand:bytes(1000).                        1     284 Ki    3521 ns   19%

        When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ │ +crypto:strong_rand_bytes(1000). 1 1518 Ki 658 ns 100% │ │ │ │ +rand:bytes(1000). 1 284 Ki 3521 ns 19%

        When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ │ now the fastest.

        │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Benchmarking using Erlang/OTP functionality │ │ │ │

        │ │ │ │

        Benchmarks can measure wall-clock time or CPU time.

        • timer:tc/3 measures wall-clock time. The advantage with wall-clock time is │ │ │ ├── OEBPS/appup_cookbook.xhtml │ │ │ │ @@ -25,18 +25,18 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Functional Module │ │ │ │ │ │ │ │

          When a functional module has been changed, for example, if a new function has │ │ │ │ been added or a bug has been corrected, simple code replacement is sufficient, │ │ │ │ -for example:

          {"2",
          │ │ │ │ - [{"1", [{load_module, m}]}],
          │ │ │ │ - [{"1", [{load_module, m}]}]
          │ │ │ │ -}.

          │ │ │ │ +for example:

          {"2",
          │ │ │ │ + [{"1", [{load_module, m}]}],
          │ │ │ │ + [{"1", [{load_module, m}]}]
          │ │ │ │ +}.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Residence Module │ │ │ │

          │ │ │ │

          In a system implemented according to the OTP design principles, all processes, │ │ │ │ except system processes and special processes, reside in one of the behaviours │ │ │ │ @@ -47,46 +47,46 @@ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Callback Module │ │ │ │ │ │ │ │

          A callback module is a functional module, and for code extensions simple code │ │ │ │ replacement is sufficient.

          Example

          When adding a function to ch3, as described in the example in │ │ │ │ -Release Handling, ch_app.appup looks as follows:

          {"2",
          │ │ │ │ - [{"1", [{load_module, ch3}]}],
          │ │ │ │ - [{"1", [{load_module, ch3}]}]
          │ │ │ │ -}.

          OTP also supports changing the internal state of behaviour processes; see │ │ │ │ +Release Handling, ch_app.appup looks as follows:

          {"2",
          │ │ │ │ + [{"1", [{load_module, ch3}]}],
          │ │ │ │ + [{"1", [{load_module, ch3}]}]
          │ │ │ │ +}.

          OTP also supports changing the internal state of behaviour processes; see │ │ │ │ Changing Internal State.

          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Internal State │ │ │ │

          │ │ │ │

          In this case, simple code replacement is not sufficient. The process must │ │ │ │ explicitly transform its state using the callback function code_change/3 before │ │ │ │ switching to the new version of the callback module. Thus, synchronized code │ │ │ │ replacement is used.

          Example

          Consider the ch3 module from │ │ │ │ gen_server Behaviour. The internal state is a term │ │ │ │ Chs representing the available channels. Assume you want to add a counter N, │ │ │ │ which keeps track of the number of alloc requests so far. This means that the │ │ │ │ -format must be changed to {Chs,N}.

          The .appup file can look as follows:

          {"2",
          │ │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}],
          │ │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}]
          │ │ │ │ -}.

          The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ │ +format must be changed to {Chs,N}.

          The .appup file can look as follows:

          {"2",
          │ │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}],
          │ │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}]
          │ │ │ │ +}.

          The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ │ which says that the affected processes are to do a state transformation before │ │ │ │ loading the new version of the module. This is done by the processes calling the │ │ │ │ callback function code_change/3 (see gen_server in STDLIB). │ │ │ │ -The term Extra, in this case [], is passed as is to the function:

          -module(ch3).
          │ │ │ │ +The term Extra, in this case [], is passed as is to the function:

          -module(ch3).
          │ │ │ │  ...
          │ │ │ │ --export([code_change/3]).
          │ │ │ │ +-export([code_change/3]).
          │ │ │ │  ...
          │ │ │ │ -code_change({down, _Vsn}, {Chs, N}, _Extra) ->
          │ │ │ │ -    {ok, Chs};
          │ │ │ │ -code_change(_Vsn, Chs, _Extra) ->
          │ │ │ │ -    {ok, {Chs, 0}}.

          The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ │ +code_change({down, _Vsn}, {Chs, N}, _Extra) -> │ │ │ │ + {ok, Chs}; │ │ │ │ +code_change(_Vsn, Chs, _Extra) -> │ │ │ │ + {ok, {Chs, 0}}.

          The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ │ a upgrade. The term Vsn is fetched from the 'original' version of the module, │ │ │ │ that is, the version you are upgrading from, or downgrading to.

          The version is defined by the module attribute vsn, if any. There is no such │ │ │ │ attribute in ch3, so in this case the version is the checksum (a huge integer) │ │ │ │ of the beam file, an uninteresting value, which is ignored.

          The other callback functions of ch3 must also be modified and perhaps a new │ │ │ │ interface function must be added, but this is not shown here.

          │ │ │ │ │ │ │ │ │ │ │ │ @@ -95,67 +95,67 @@ │ │ │ │

          │ │ │ │

          Assume that a module is extended by adding an interface function, as in the │ │ │ │ example in Release Handling, where a function │ │ │ │ available/0 is added to ch3.

          If a call is added to this function, say in module m1, a runtime error could │ │ │ │ can occur during release upgrade if the new version of m1 is loaded first and │ │ │ │ calls ch3:available/0 before the new version of ch3 is loaded.

          Thus, ch3 must be loaded before m1, in the upgrade case, and conversely in │ │ │ │ the downgrade case. m1 is said to be dependent on ch3. In a release │ │ │ │ -handling instruction, this is expressed by the DepMods element:

          {load_module, Module, DepMods}
          │ │ │ │ -{update, Module, {advanced, Extra}, DepMods}

          DepMods is a list of modules, on which Module is dependent.

          Example

          The module m1 in application myapp is dependent on ch3 when │ │ │ │ +handling instruction, this is expressed by the DepMods element:

          {load_module, Module, DepMods}
          │ │ │ │ +{update, Module, {advanced, Extra}, DepMods}

          DepMods is a list of modules, on which Module is dependent.

          Example

          The module m1 in application myapp is dependent on ch3 when │ │ │ │ upgrading from "1" to "2", or downgrading from "2" to "1":

          myapp.appup:
          │ │ │ │  
          │ │ │ │ -{"2",
          │ │ │ │ - [{"1", [{load_module, m1, [ch3]}]}],
          │ │ │ │ - [{"1", [{load_module, m1, [ch3]}]}]
          │ │ │ │ -}.
          │ │ │ │ +{"2",
          │ │ │ │ + [{"1", [{load_module, m1, [ch3]}]}],
          │ │ │ │ + [{"1", [{load_module, m1, [ch3]}]}]
          │ │ │ │ +}.
          │ │ │ │  
          │ │ │ │  ch_app.appup:
          │ │ │ │  
          │ │ │ │ -{"2",
          │ │ │ │ - [{"1", [{load_module, ch3}]}],
          │ │ │ │ - [{"1", [{load_module, ch3}]}]
          │ │ │ │ -}.

          If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ │ -look as follows:

          {"2",
          │ │ │ │ - [{"1",
          │ │ │ │ -   [{load_module, ch3},
          │ │ │ │ -    {load_module, m1, [ch3]}]}],
          │ │ │ │ - [{"1",
          │ │ │ │ -   [{load_module, ch3},
          │ │ │ │ -    {load_module, m1, [ch3]}]}]
          │ │ │ │ -}.

          m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ │ +{"2", │ │ │ │ + [{"1", [{load_module, ch3}]}], │ │ │ │ + [{"1", [{load_module, ch3}]}] │ │ │ │ +}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ │ +look as follows:

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{load_module, ch3},
    │ │ │ │ +    {load_module, m1, [ch3]}]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{load_module, ch3},
    │ │ │ │ +    {load_module, m1, [ch3]}]}]
    │ │ │ │ +}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ │ difference between up- and downgrading and generates a correct relup, where │ │ │ │ ch3 is loaded before m1 when upgrading, but m1 is loaded before ch3 when │ │ │ │ downgrading.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Code for a Special Process │ │ │ │

    │ │ │ │

    In this case, simple code replacement is not sufficient. When a new version of a │ │ │ │ residence module for a special process is loaded, the process must make a fully │ │ │ │ qualified call to its loop function to switch to the new code. Thus, │ │ │ │ synchronized code replacement must be used.

    Note

    The name(s) of the user-defined residence module(s) must be listed in the │ │ │ │ Modules part of the child specification for the special process. Otherwise │ │ │ │ the release handler cannot find the process.

    Example

    Consider the example ch4 in sys and proc_lib. │ │ │ │ -When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ │ - permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ │ +When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ │ + permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ │ to be loaded when upgrading from version "1" to "2" of this application, │ │ │ │ -sp_app.appup can look as follows:

    {"2",
    │ │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ │ -}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ │ +sp_app.appup can look as follows:

    {"2",
    │ │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ │ +}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ │ instruction makes the special process call the callback function │ │ │ │ system_code_change/4, a function the user must implement. The term Extra, in │ │ │ │ -this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ │ +this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ │  ...
    │ │ │ │ --export([system_code_change/4]).
    │ │ │ │ +-export([system_code_change/4]).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -system_code_change(Chs, _Module, _OldVsn, _Extra) ->
    │ │ │ │ -    {ok, Chs}.
    • The first argument is the internal state State, passed from │ │ │ │ +system_code_change(Chs, _Module, _OldVsn, _Extra) -> │ │ │ │ + {ok, Chs}.

    In this case, all arguments but the first are ignored and the function simply │ │ │ │ returns the internal state again. This is enough if the code only has been │ │ │ │ extended. If instead the internal state is changed (similar to the example in │ │ │ │ @@ -176,85 +176,85 @@ │ │ │ │ Changing Properties │ │ │ │ │ │ │ │

    Since the supervisor is to change its internal state, synchronized code │ │ │ │ replacement is required. However, a special update instruction must be used.

    First, the new version of the callback module must be loaded, both in the case │ │ │ │ of upgrade and downgrade. Then the new return value of init/1 can be checked │ │ │ │ and the internal state be changed accordingly.

    The following upgrade instruction is used for supervisors:

    {update, Module, supervisor}

    Example

    To change the restart strategy of ch_sup (from │ │ │ │ Supervisor Behaviour) from one_for_one to one_for_all, │ │ │ │ -change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ │ +change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ │  ...
    │ │ │ │  
    │ │ │ │ -init(_Args) ->
    │ │ │ │ -    {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ -}.

    │ │ │ │ +init(_Args) -> │ │ │ │ + {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Child Specifications │ │ │ │

    │ │ │ │

    The instruction, and thus the .appup file, when changing an existing child │ │ │ │ -specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ -}.

    The changes do not affect existing child processes. For example, changing the │ │ │ │ +specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ │ +}.

    The changes do not affect existing child processes. For example, changing the │ │ │ │ start function only specifies how the child process is to be restarted, if │ │ │ │ needed later on.

    The id of the child specification cannot be changed.

    Changing the Modules field of the child specification can affect the release │ │ │ │ handling process itself, as this field is used to identify which processes are │ │ │ │ affected when doing a synchronized code replacement.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding and Deleting Child Processes │ │ │ │

    │ │ │ │

    As stated earlier, changing child specifications does not affect existing child │ │ │ │ processes. New child specifications are automatically added, but not deleted. │ │ │ │ Child processes are not automatically started or terminated, this must be done │ │ │ │ using apply instructions.

    Example

    Assume a new child process m1 is to be added to ch_sup when │ │ │ │ upgrading ch_app from "1" to "2". This means m1 is to be deleted when │ │ │ │ -downgrading from "2" to "1":

    {"2",
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{update, ch_sup, supervisor},
    │ │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ -   ]}],
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ -    {update, ch_sup, supervisor}
    │ │ │ │ -   ]}]
    │ │ │ │ -}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ │ +downgrading from "2" to "1":

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{update, ch_sup, supervisor},
    │ │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ +   ]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ +    {update, ch_sup, supervisor}
    │ │ │ │ +   ]}]
    │ │ │ │ +}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ │ supervisor is not registered, it cannot be accessed directly from the script. │ │ │ │ Instead a help function that finds the pid of the supervisor and calls │ │ │ │ supervisor:restart_child, and so on, must be written. This function is then to │ │ │ │ be called from the script using the apply instruction.

    If the module m1 is introduced in version "2" of ch_app, it must also be │ │ │ │ -loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{add_module, m1},
    │ │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ -   ]}],
    │ │ │ │ - [{"1",
    │ │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ │ -    {delete_module, m1}
    │ │ │ │ -   ]}]
    │ │ │ │ -}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ │ +loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{add_module, m1},
    │ │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ │ +   ]}],
    │ │ │ │ + [{"1",
    │ │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ │ +    {delete_module, m1}
    │ │ │ │ +   ]}]
    │ │ │ │ +}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ │ m1 must be loaded, and the supervisor child specification changed, before the │ │ │ │ new child process can be started. When downgrading, the child process must be │ │ │ │ terminated before the child specification is changed and the module is deleted.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Adding or Deleting a Module │ │ │ │

    │ │ │ │ -

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ │ - [{"1", [{add_module, m}]}],
    │ │ │ │ - [{"1", [{delete_module, m}]}]

    │ │ │ │ +

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ │ + [{"1", [{add_module, m}]}],
    │ │ │ │ + [{"1", [{delete_module, m}]}]

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting or Terminating a Process │ │ │ │

    │ │ │ │

    In a system structured according to the OTP design principles, any process would │ │ │ │ be a child process belonging to a supervisor, see │ │ │ │ @@ -274,29 +274,29 @@ │ │ │ │ Restarting an Application │ │ │ │ │ │ │ │

    Restarting an application is useful when a change is too complicated to be made │ │ │ │ without restarting the processes, for example, if the supervisor hierarchy has │ │ │ │ been restructured.

    Example

    When adding a child m1 to ch_sup, as in │ │ │ │ Adding and Deleting Child Processes in Changing a │ │ │ │ Supervisor, an alternative to updating the supervisor is to restart the entire │ │ │ │ -application:

    {"2",
    │ │ │ │ - [{"1", [{restart_application, ch_app}]}],
    │ │ │ │ - [{"1", [{restart_application, ch_app}]}]
    │ │ │ │ -}.

    │ │ │ │ +application:

    {"2",
    │ │ │ │ + [{"1", [{restart_application, ch_app}]}],
    │ │ │ │ + [{"1", [{restart_application, ch_app}]}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing an Application Specification │ │ │ │

    │ │ │ │

    When installing a release, the application specifications are automatically │ │ │ │ updated before evaluating the relup script. Thus, no instructions are needed │ │ │ │ -in the .appup file:

    {"2",
    │ │ │ │ - [{"1", []}],
    │ │ │ │ - [{"1", []}]
    │ │ │ │ -}.

    │ │ │ │ +in the .appup file:

    {"2",
    │ │ │ │ + [{"1", []}],
    │ │ │ │ + [{"1", []}]
    │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Application Configuration │ │ │ │

    │ │ │ │

    Changing an application configuration by updating the env key in the .app │ │ │ │ file is an instance of changing an application specification, see the previous │ │ │ │ @@ -311,26 +311,26 @@ │ │ │ │ applications apply to primary applications only. There are no corresponding │ │ │ │ instructions for included applications. However, since an included application │ │ │ │ is really a supervision tree with a topmost supervisor, started as a child │ │ │ │ process to a supervisor in the including application, a .relup file can be │ │ │ │ manually created.

    Example

    Assume there is a release containing an application prim_app, which │ │ │ │ have a supervisor prim_sup in its supervision tree.

    In a new version of the release, the application ch_app is to be included in │ │ │ │ prim_app. That is, its topmost supervisor ch_sup is to be started as a child │ │ │ │ -process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ │ -    {ok, {...supervisor flags...,
    │ │ │ │ -          [...,
    │ │ │ │ -           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ │ -            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ │ -           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ │ - [...,
    │ │ │ │ -  {vsn, "2"},
    │ │ │ │ +process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ │ +    {ok, {...supervisor flags...,
    │ │ │ │ +          [...,
    │ │ │ │ +           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ │ +            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ │ +           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ │ + [...,
    │ │ │ │ +  {vsn, "2"},
    │ │ │ │    ...,
    │ │ │ │ -  {included_applications, [ch_app]},
    │ │ │ │ +  {included_applications, [ch_app]},
    │ │ │ │    ...
    │ │ │ │ - ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ │ + ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ │   ...,
    │ │ │ │   [...,
    │ │ │ │    {prim_app, "2"},
    │ │ │ │    {ch_app, "1"}]}.

    The included application can be started in two ways. This is described in the │ │ │ │ next two sections.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -385,74 +385,74 @@ │ │ │ │

    Step 4b) Another way to start the included application (or stop it in the case │ │ │ │ of downgrade) is by combining instructions for adding and removing child │ │ │ │ processes to/from prim_sup with instructions for loading/unloading all │ │ │ │ ch_app code and its application specification.

    Again, the .relup file is created manually, either from scratch or by editing a │ │ │ │ generated version. Load all code for ch_app first, and also load the │ │ │ │ application specification, before prim_sup is updated. When downgrading, │ │ │ │ prim_sup is to updated first, before the code for ch_app and its application │ │ │ │ -specification are unloaded.

    {"B",
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ │ -    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ │ +specification are unloaded.

    {"B",
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ │ +    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ │      point_of_no_return,
    │ │ │ │ -    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ -    {apply,{application,load,[ch_app]}},
    │ │ │ │ -    {suspend,[prim_sup]},
    │ │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {code_change,up,[{prim_sup,[]}]},
    │ │ │ │ -    {resume,[prim_sup]},
    │ │ │ │ -    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ │ +    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ +    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ +    {apply,{application,load,[ch_app]}},
    │ │ │ │ +    {suspend,[prim_sup]},
    │ │ │ │ +    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ +    {code_change,up,[{prim_sup,[]}]},
    │ │ │ │ +    {resume,[prim_sup]},
    │ │ │ │ +    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ │      point_of_no_return,
    │ │ │ │ -    {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
    │ │ │ │ -    {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
    │ │ │ │ -    {suspend,[prim_sup]},
    │ │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {code_change,down,[{prim_sup,[]}]},
    │ │ │ │ -    {resume,[prim_sup]},
    │ │ │ │ -    {remove,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ │ -    {remove,{ch3,brutal_purge,brutal_purge}},
    │ │ │ │ -    {purge,[ch_sup,ch3]},
    │ │ │ │ -    {apply,{application,unload,[ch_app]}}]}]
    │ │ │ │ -}.

    │ │ │ │ + {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}}, │ │ │ │ + {apply,{supervisor,delete_child,[prim_sup,ch_sup]}}, │ │ │ │ + {suspend,[prim_sup]}, │ │ │ │ + {load,{prim_sup,brutal_purge,brutal_purge}}, │ │ │ │ + {code_change,down,[{prim_sup,[]}]}, │ │ │ │ + {resume,[prim_sup]}, │ │ │ │ + {remove,{ch_sup,brutal_purge,brutal_purge}}, │ │ │ │ + {remove,{ch3,brutal_purge,brutal_purge}}, │ │ │ │ + {purge,[ch_sup,ch3]}, │ │ │ │ + {apply,{application,unload,[ch_app]}}]}] │ │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Changing Non-Erlang Code │ │ │ │

    │ │ │ │

    Changing code for a program written in another programming language than Erlang, │ │ │ │ for example, a port program, is application-dependent and OTP provides no │ │ │ │ special support.

    Example

    When changing code for a port program, assume that the Erlang process │ │ │ │ controlling the port is a gen_server portc and that the port is opened in │ │ │ │ -the callback function init/1:

    init(...) ->
    │ │ │ │ +the callback function init/1:

    init(...) ->
    │ │ │ │      ...,
    │ │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │      ...,
    │ │ │ │ -    {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ │ + {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ │ extended with a code_change/3 function, which closes the old port and opens a │ │ │ │ new port. (If necessary, the gen_server can first request data that must be │ │ │ │ -saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ │ +saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ │      State#state.port ! close,
    │ │ │ │      receive
    │ │ │ │ -        {Port,close} ->
    │ │ │ │ +        {Port,close} ->
    │ │ │ │              true
    │ │ │ │      end,
    │ │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ -    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ │ -file:

    ["2",
    │ │ │ │ - [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ │ - [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ │ -].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ │ -the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ │ +    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ │ +file:

    ["2",
    │ │ │ │ + [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ │ + [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ │ +].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ │ +the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ │  ...

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Runtime System Restart and Upgrade │ │ │ │

    │ │ │ │

    Two upgrade instructions restart the runtime system:

    • restart_new_emulator

      Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically │ │ │ │ @@ -460,20 +460,20 @@ │ │ │ │ executed before all other upgrade instructions. For more information about │ │ │ │ this instruction, see restart_new_emulator (Low-Level) in │ │ │ │ Release Handling Instructions.

    • restart_emulator

      Used when a restart of the runtime system is required after all other upgrade │ │ │ │ instructions are executed. For more information about this instruction, see │ │ │ │ restart_emulator (Low-Level) in │ │ │ │ Release Handling Instructions.

    If a runtime system restart is necessary and no upgrade instructions are needed, │ │ │ │ that is, if the restart itself is enough for the upgraded applications to start │ │ │ │ -running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [restart_emulator]}],
    │ │ │ │ - [{"A",
    │ │ │ │ -   [],
    │ │ │ │ -   [restart_emulator]}]
    │ │ │ │ -}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ │ +running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [restart_emulator]}],
    │ │ │ │ + [{"A",
    │ │ │ │ +   [],
    │ │ │ │ +   [restart_emulator]}]
    │ │ │ │ +}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ │ of release packages, automatic path updates, and so on, can be used without │ │ │ │ having to specify .appup files.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ ├── OEBPS/applications.xhtml │ │ │ │ @@ -40,34 +40,34 @@ │ │ │ │ directory structure.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Callback Module │ │ │ │

    │ │ │ │

    How to start and stop the code for the application, including its supervision │ │ │ │ -tree, is described by two callback functions:

    start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
    │ │ │ │ -stop(State)
    • start/2 is called when starting the application and is to create the │ │ │ │ +tree, is described by two callback functions:

      start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
      │ │ │ │ +stop(State)
      • start/2 is called when starting the application and is to create the │ │ │ │ supervision tree by starting the top supervisor. It is expected to return the │ │ │ │ pid of the top supervisor and an optional term, State, which defaults to │ │ │ │ []. This term is passed as is to stop/1.
      • StartType is usually the atom normal. It has other values only in the case │ │ │ │ of a takeover or failover; see │ │ │ │ Distributed Applications.
      • StartArgs is defined by the key mod in the │ │ │ │ application resource file.
      • stop/1 is called after the application has been stopped and is to do any │ │ │ │ necessary cleaning up. The actual stopping of the application, that is, │ │ │ │ shutting down the supervision tree, is handled automatically as described in │ │ │ │ Starting and Stopping Applications.

      Example of an application callback module for packaging the supervision tree │ │ │ │ -from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ │ --behaviour(application).
      │ │ │ │ +from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ │ +-behaviour(application).
      │ │ │ │  
      │ │ │ │ --export([start/2, stop/1]).
      │ │ │ │ +-export([start/2, stop/1]).
      │ │ │ │  
      │ │ │ │ -start(_Type, _Args) ->
      │ │ │ │ -    ch_sup:start_link().
      │ │ │ │ +start(_Type, _Args) ->
      │ │ │ │ +    ch_sup:start_link().
      │ │ │ │  
      │ │ │ │ -stop(_State) ->
      │ │ │ │ +stop(_State) ->
      │ │ │ │      ok.

      A library application that cannot be started or stopped does not need any │ │ │ │ application callback module.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Resource File │ │ │ │

      │ │ │ │ @@ -78,22 +78,22 @@ │ │ │ │ keys.

    The contents of a minimal .app file for a library application libapp looks │ │ │ │ as follows:

    {application, libapp, []}.

    The contents of a minimal .app file ch_app.app for a supervision tree │ │ │ │ application like ch_app looks as follows:

    {application, ch_app,
    │ │ │ │   [{mod, {ch_app,[]}}]}.

    The key mod defines the callback module and start argument of the application, │ │ │ │ in this case ch_app and [], respectively. This means that the following is │ │ │ │ called when the application is to be started:

    ch_app:start(normal, [])

    The following is called when the application is stopped:

    ch_app:stop([])

    When using systools, the Erlang/OTP tools for packaging code (see Section │ │ │ │ Releases), the keys description, vsn, modules, │ │ │ │ -registered, and applications are also to be specified:

    {application, ch_app,
    │ │ │ │ - [{description, "Channel allocator"},
    │ │ │ │ -  {vsn, "1"},
    │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ │ -  {registered, [ch3]},
    │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ │ - ]}.
    • description - A short description, a string. Defaults to "".
    • vsn - Version number, a string. Defaults to "".
    • modules - All modules introduced by this application. systools uses │ │ │ │ +registered, and applications are also to be specified:

      {application, ch_app,
      │ │ │ │ + [{description, "Channel allocator"},
      │ │ │ │ +  {vsn, "1"},
      │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ +  {registered, [ch3]},
      │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ +  {mod, {ch_app,[]}}
      │ │ │ │ + ]}.
      • description - A short description, a string. Defaults to "".
      • vsn - Version number, a string. Defaults to "".
      • modules - All modules introduced by this application. systools uses │ │ │ │ this list when generating boot scripts and tar files. A module must only │ │ │ │ be included in one application. Defaults to [].
      • registered - All names of registered processes in the application. │ │ │ │ systools uses this list to detect name clashes between applications. │ │ │ │ Defaults to [].
      • applications - All applications that must be started before this │ │ │ │ application is started. systools uses this list to generate correct boot │ │ │ │ scripts. Defaults to []. Notice that all applications have dependencies to │ │ │ │ at least Kernel and STDLIB.

      Note

      For details about the syntax and contents of the application resource file, │ │ │ │ @@ -205,38 +205,38 @@ │ │ │ │ stop applications.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Loading and Unloading Applications │ │ │ │

      │ │ │ │

      Before an application can be started, it must be loaded. The application │ │ │ │ -controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ │ +controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ │  ok
      │ │ │ │ -2> application:loaded_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ │ - {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ │ +2> application:loaded_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ │ + {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ │ unloaded. The information about the application is erased from the internal │ │ │ │ -database of the application controller.

      3> application:unload(ch_app).
      │ │ │ │ +database of the application controller.

      3> application:unload(ch_app).
      │ │ │ │  ok
      │ │ │ │ -4> application:loaded_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ │ +4> application:loaded_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ │ application. Code loading is handled in the usual way by the code server.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Applications │ │ │ │

      │ │ │ │ -

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ │ +

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ │  ok
      │ │ │ │ -6> application:which_applications().
      │ │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ │ - {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ │ +6> application:which_applications(). │ │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ │ + {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ │ it using application:load/1. It checks the value of the applications key to │ │ │ │ ensure that all applications that are to be started before this application are │ │ │ │ running.

      Following that, the application controller creates an application master for │ │ │ │ the application.

      The application master establishes itself as the group │ │ │ │ leader of all processes in the application │ │ │ │ and will forward I/O to the previous group leader.

      Note

      The purpose of the application master being the group leader is to easily │ │ │ │ keep track of which processes that belong to the application. That is needed │ │ │ │ @@ -252,55 +252,55 @@ │ │ │ │ defined by the mod key.

      │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Configuring an Application │ │ │ │

      │ │ │ │

      An application can be configured using configuration parameters. These are a │ │ │ │ -list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ │ - [{description, "Channel allocator"},
      │ │ │ │ -  {vsn, "1"},
      │ │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ -  {registered, [ch3]},
      │ │ │ │ -  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ -  {mod, {ch_app,[]}},
      │ │ │ │ -  {env, [{file, "/usr/local/log"}]}
      │ │ │ │ - ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ │ +list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ │ + [{description, "Channel allocator"},
      │ │ │ │ +  {vsn, "1"},
      │ │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ │ +  {registered, [ch3]},
      │ │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ │ +  {mod, {ch_app,[]}},
      │ │ │ │ +  {env, [{file, "/usr/local/log"}]}
      │ │ │ │ + ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ │ value of a configuration parameter by calling application:get_env(App, Par) or │ │ │ │ a number of similar functions. For more information, see module application │ │ │ │ in Kernel.

      Example:

      % erl
      │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ │  
      │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
      │ │ │ │ -1> application:start(ch_app).
      │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
      │ │ │ │ +1> application:start(ch_app).
      │ │ │ │  ok
      │ │ │ │ -2> application:get_env(ch_app, file).
      │ │ │ │ -{ok,"/usr/local/log"}

      The values in the .app file can be overridden by values in a system │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"/usr/local/log"}

    The values in the .app file can be overridden by values in a system │ │ │ │ configuration file. This is a file that contains configuration parameters for │ │ │ │ -relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ │ +relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ │   ...,
    │ │ │ │ - {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ │ + {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ │ started with the command-line argument -config Name. For details, see │ │ │ │ config in Kernel.

    Example:

    A file test.config is created with the following contents:

    [{ch_app, [{file, "testlog"}]}].

    The value of file overrides the value of file as defined in the .app file:

    % erl -config test
    │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ -1> application:start(ch_app).
    │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ +1> application:start(ch_app).
    │ │ │ │  ok
    │ │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ │ -{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ │ configuration file is to be used and that file is to be called sys.config.

    The values in the .app file and the values in a system configuration file can │ │ │ │ be overridden directly from the command line:

    % erl -ApplName Par1 Val1 ... ParN ValN

    Example:

    % erl -ch_app file '"testlog"'
    │ │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ │  
    │ │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ -1> application:start(ch_app).
    │ │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ │ +1> application:start(ch_app).
    │ │ │ │  ok
    │ │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ │ -{ok,"testlog"}

    │ │ │ │ +2> application:get_env(ch_app, file). │ │ │ │ +{ok,"testlog"}

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Application Start Types │ │ │ │

    │ │ │ │

    A start type is defined when starting the application:

    application:start(Application, Type)

    application:start(Application) is the same as calling │ │ │ │ application:start(Application, temporary). The type can also be permanent or │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/applications.html │ │ │ @@ -135,34 +135,34 @@ │ │ │ directory structure.

    │ │ │ │ │ │ │ │ │ │ │ │ Application Callback Module │ │ │

    │ │ │

    How to start and stop the code for the application, including its supervision │ │ │ -tree, is described by two callback functions:

    start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
    │ │ │ -stop(State)
    • start/2 is called when starting the application and is to create the │ │ │ +tree, is described by two callback functions:

      start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State}
      │ │ │ +stop(State)
      • start/2 is called when starting the application and is to create the │ │ │ supervision tree by starting the top supervisor. It is expected to return the │ │ │ pid of the top supervisor and an optional term, State, which defaults to │ │ │ []. This term is passed as is to stop/1.
      • StartType is usually the atom normal. It has other values only in the case │ │ │ of a takeover or failover; see │ │ │ Distributed Applications.
      • StartArgs is defined by the key mod in the │ │ │ application resource file.
      • stop/1 is called after the application has been stopped and is to do any │ │ │ necessary cleaning up. The actual stopping of the application, that is, │ │ │ shutting down the supervision tree, is handled automatically as described in │ │ │ Starting and Stopping Applications.

      Example of an application callback module for packaging the supervision tree │ │ │ -from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ --behaviour(application).
      │ │ │ +from Supervisor Behaviour:

      -module(ch_app).
      │ │ │ +-behaviour(application).
      │ │ │  
      │ │ │ --export([start/2, stop/1]).
      │ │ │ +-export([start/2, stop/1]).
      │ │ │  
      │ │ │ -start(_Type, _Args) ->
      │ │ │ -    ch_sup:start_link().
      │ │ │ +start(_Type, _Args) ->
      │ │ │ +    ch_sup:start_link().
      │ │ │  
      │ │ │ -stop(_State) ->
      │ │ │ +stop(_State) ->
      │ │ │      ok.

      A library application that cannot be started or stopped does not need any │ │ │ application callback module.

      │ │ │ │ │ │ │ │ │ │ │ │ Application Resource File │ │ │

      │ │ │ @@ -173,22 +173,22 @@ │ │ │ keys.

    The contents of a minimal .app file for a library application libapp looks │ │ │ as follows:

    {application, libapp, []}.

    The contents of a minimal .app file ch_app.app for a supervision tree │ │ │ application like ch_app looks as follows:

    {application, ch_app,
    │ │ │   [{mod, {ch_app,[]}}]}.

    The key mod defines the callback module and start argument of the application, │ │ │ in this case ch_app and [], respectively. This means that the following is │ │ │ called when the application is to be started:

    ch_app:start(normal, [])

    The following is called when the application is stopped:

    ch_app:stop([])

    When using systools, the Erlang/OTP tools for packaging code (see Section │ │ │ Releases), the keys description, vsn, modules, │ │ │ -registered, and applications are also to be specified:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.
    • description - A short description, a string. Defaults to "".
    • vsn - Version number, a string. Defaults to "".
    • modules - All modules introduced by this application. systools uses │ │ │ +registered, and applications are also to be specified:

      {application, ch_app,
      │ │ │ + [{description, "Channel allocator"},
      │ │ │ +  {vsn, "1"},
      │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ +  {registered, [ch3]},
      │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ +  {mod, {ch_app,[]}}
      │ │ │ + ]}.
      • description - A short description, a string. Defaults to "".
      • vsn - Version number, a string. Defaults to "".
      • modules - All modules introduced by this application. systools uses │ │ │ this list when generating boot scripts and tar files. A module must only │ │ │ be included in one application. Defaults to [].
      • registered - All names of registered processes in the application. │ │ │ systools uses this list to detect name clashes between applications. │ │ │ Defaults to [].
      • applications - All applications that must be started before this │ │ │ application is started. systools uses this list to generate correct boot │ │ │ scripts. Defaults to []. Notice that all applications have dependencies to │ │ │ at least Kernel and STDLIB.

      Note

      For details about the syntax and contents of the application resource file, │ │ │ @@ -300,38 +300,38 @@ │ │ │ stop applications.

      │ │ │ │ │ │ │ │ │ │ │ │ Loading and Unloading Applications │ │ │

      │ │ │

      Before an application can be started, it must be loaded. The application │ │ │ -controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │ +controller reads and stores the information from the .app file:

      1> application:load(ch_app).
      │ │ │  ok
      │ │ │ -2> application:loaded_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ - {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ +2> application:loaded_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ + {ch_app,"Channel allocator","1"}]

      An application that has been stopped, or has never been started, can be │ │ │ unloaded. The information about the application is erased from the internal │ │ │ -database of the application controller.

      3> application:unload(ch_app).
      │ │ │ +database of the application controller.

      3> application:unload(ch_app).
      │ │ │  ok
      │ │ │ -4> application:loaded_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ +4> application:loaded_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}]

      Note

      Loading/unloading an application does not load/unload the code used by the │ │ │ application. Code loading is handled in the usual way by the code server.

      │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Applications │ │ │

      │ │ │ -

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │ +

      An application is started by calling:

      5> application:start(ch_app).
      │ │ │  ok
      │ │ │ -6> application:which_applications().
      │ │ │ -[{kernel,"ERTS  CXC 138 10","2.8.1.3"},
      │ │ │ - {stdlib,"ERTS  CXC 138 10","1.11.4.3"},
      │ │ │ - {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ +6> application:which_applications(). │ │ │ +[{kernel,"ERTS CXC 138 10","2.8.1.3"}, │ │ │ + {stdlib,"ERTS CXC 138 10","1.11.4.3"}, │ │ │ + {ch_app,"Channel allocator","1"}]

      If the application is not already loaded, the application controller first loads │ │ │ it using application:load/1. It checks the value of the applications key to │ │ │ ensure that all applications that are to be started before this application are │ │ │ running.

      Following that, the application controller creates an application master for │ │ │ the application.

      The application master establishes itself as the group │ │ │ leader of all processes in the application │ │ │ and will forward I/O to the previous group leader.

      Note

      The purpose of the application master being the group leader is to easily │ │ │ keep track of which processes that belong to the application. That is needed │ │ │ @@ -347,55 +347,55 @@ │ │ │ defined by the mod key.

      │ │ │ │ │ │ │ │ │ │ │ │ Configuring an Application │ │ │

      │ │ │

      An application can be configured using configuration parameters. These are a │ │ │ -list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ - [{description, "Channel allocator"},
      │ │ │ -  {vsn, "1"},
      │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ -  {registered, [ch3]},
      │ │ │ -  {applications, [kernel, stdlib, sasl]},
      │ │ │ -  {mod, {ch_app,[]}},
      │ │ │ -  {env, [{file, "/usr/local/log"}]}
      │ │ │ - ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ +list of {Par,Val} tuples specified by a key env in the .app file:

      {application, ch_app,
      │ │ │ + [{description, "Channel allocator"},
      │ │ │ +  {vsn, "1"},
      │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
      │ │ │ +  {registered, [ch3]},
      │ │ │ +  {applications, [kernel, stdlib, sasl]},
      │ │ │ +  {mod, {ch_app,[]}},
      │ │ │ +  {env, [{file, "/usr/local/log"}]}
      │ │ │ + ]}.

      Par is to be an atom. Val is any term. The application can retrieve the │ │ │ value of a configuration parameter by calling application:get_env(App, Par) or │ │ │ a number of similar functions. For more information, see module application │ │ │ in Kernel.

      Example:

      % erl
      │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
      │ │ │  
      │ │ │ -Eshell V5.2.3.6  (abort with ^G)
      │ │ │ -1> application:start(ch_app).
      │ │ │ +Eshell V5.2.3.6  (abort with ^G)
      │ │ │ +1> application:start(ch_app).
      │ │ │  ok
      │ │ │ -2> application:get_env(ch_app, file).
      │ │ │ -{ok,"/usr/local/log"}

      The values in the .app file can be overridden by values in a system │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"/usr/local/log"}

    The values in the .app file can be overridden by values in a system │ │ │ configuration file. This is a file that contains configuration parameters for │ │ │ -relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │ +relevant applications:

    [{Application1, [{Par11,Val11},...]},
    │ │ │   ...,
    │ │ │ - {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ + {ApplicationN, [{ParN1,ValN1},...]}].

    The system configuration is to be called Name.config and Erlang is to be │ │ │ started with the command-line argument -config Name. For details, see │ │ │ config in Kernel.

    Example:

    A file test.config is created with the following contents:

    [{ch_app, [{file, "testlog"}]}].

    The value of file overrides the value of file as defined in the .app file:

    % erl -config test
    │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │  
    │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ -1> application:start(ch_app).
    │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ +1> application:start(ch_app).
    │ │ │  ok
    │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ -{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"testlog"}

    If release handling is used, exactly one system │ │ │ configuration file is to be used and that file is to be called sys.config.

    The values in the .app file and the values in a system configuration file can │ │ │ be overridden directly from the command line:

    % erl -ApplName Par1 Val1 ... ParN ValN

    Example:

    % erl -ch_app file '"testlog"'
    │ │ │ -Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │ +Erlang (BEAM) emulator version 5.2.3.6 [hipe] [threads:0]
    │ │ │  
    │ │ │ -Eshell V5.2.3.6  (abort with ^G)
    │ │ │ -1> application:start(ch_app).
    │ │ │ +Eshell V5.2.3.6  (abort with ^G)
    │ │ │ +1> application:start(ch_app).
    │ │ │  ok
    │ │ │ -2> application:get_env(ch_app, file).
    │ │ │ -{ok,"testlog"}

    │ │ │ +2> application:get_env(ch_app, file). │ │ │ +{ok,"testlog"}

    │ │ │ │ │ │ │ │ │ │ │ │ Application Start Types │ │ │

    │ │ │

    A start type is defined when starting the application:

    application:start(Application, Type)

    application:start(Application) is the same as calling │ │ │ application:start(Application, temporary). The type can also be permanent or │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/appup_cookbook.html │ │ │ @@ -120,18 +120,18 @@ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Functional Module │ │ │ │ │ │

    When a functional module has been changed, for example, if a new function has │ │ │ been added or a bug has been corrected, simple code replacement is sufficient, │ │ │ -for example:

    {"2",
    │ │ │ - [{"1", [{load_module, m}]}],
    │ │ │ - [{"1", [{load_module, m}]}]
    │ │ │ -}.

    │ │ │ +for example:

    {"2",
    │ │ │ + [{"1", [{load_module, m}]}],
    │ │ │ + [{"1", [{load_module, m}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing a Residence Module │ │ │

    │ │ │

    In a system implemented according to the OTP design principles, all processes, │ │ │ except system processes and special processes, reside in one of the behaviours │ │ │ @@ -142,46 +142,46 @@ │ │ │ │ │ │ │ │ │ │ │ │ Changing a Callback Module │ │ │ │ │ │

    A callback module is a functional module, and for code extensions simple code │ │ │ replacement is sufficient.

    Example

    When adding a function to ch3, as described in the example in │ │ │ -Release Handling, ch_app.appup looks as follows:

    {"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    OTP also supports changing the internal state of behaviour processes; see │ │ │ +Release Handling, ch_app.appup looks as follows:

    {"2",
    │ │ │ + [{"1", [{load_module, ch3}]}],
    │ │ │ + [{"1", [{load_module, ch3}]}]
    │ │ │ +}.

    OTP also supports changing the internal state of behaviour processes; see │ │ │ Changing Internal State.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Internal State │ │ │

    │ │ │

    In this case, simple code replacement is not sufficient. The process must │ │ │ explicitly transform its state using the callback function code_change/3 before │ │ │ switching to the new version of the callback module. Thus, synchronized code │ │ │ replacement is used.

    Example

    Consider the ch3 module from │ │ │ gen_server Behaviour. The internal state is a term │ │ │ Chs representing the available channels. Assume you want to add a counter N, │ │ │ which keeps track of the number of alloc requests so far. This means that the │ │ │ -format must be changed to {Chs,N}.

    The .appup file can look as follows:

    {"2",
    │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}],
    │ │ │ - [{"1", [{update, ch3, {advanced, []}}]}]
    │ │ │ -}.

    The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ +format must be changed to {Chs,N}.

    The .appup file can look as follows:

    {"2",
    │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}],
    │ │ │ + [{"1", [{update, ch3, {advanced, []}}]}]
    │ │ │ +}.

    The third element of the update instruction is a tuple {advanced,Extra}, │ │ │ which says that the affected processes are to do a state transformation before │ │ │ loading the new version of the module. This is done by the processes calling the │ │ │ callback function code_change/3 (see gen_server in STDLIB). │ │ │ -The term Extra, in this case [], is passed as is to the function:

    -module(ch3).
    │ │ │ +The term Extra, in this case [], is passed as is to the function:

    -module(ch3).
    │ │ │  ...
    │ │ │ --export([code_change/3]).
    │ │ │ +-export([code_change/3]).
    │ │ │  ...
    │ │ │ -code_change({down, _Vsn}, {Chs, N}, _Extra) ->
    │ │ │ -    {ok, Chs};
    │ │ │ -code_change(_Vsn, Chs, _Extra) ->
    │ │ │ -    {ok, {Chs, 0}}.

    The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ +code_change({down, _Vsn}, {Chs, N}, _Extra) -> │ │ │ + {ok, Chs}; │ │ │ +code_change(_Vsn, Chs, _Extra) -> │ │ │ + {ok, {Chs, 0}}.

    The first argument is {down,Vsn} if there is a downgrade, or Vsn if there is │ │ │ a upgrade. The term Vsn is fetched from the 'original' version of the module, │ │ │ that is, the version you are upgrading from, or downgrading to.

    The version is defined by the module attribute vsn, if any. There is no such │ │ │ attribute in ch3, so in this case the version is the checksum (a huge integer) │ │ │ of the beam file, an uninteresting value, which is ignored.

    The other callback functions of ch3 must also be modified and perhaps a new │ │ │ interface function must be added, but this is not shown here.

    │ │ │ │ │ │ │ │ │ @@ -190,67 +190,67 @@ │ │ │

    │ │ │

    Assume that a module is extended by adding an interface function, as in the │ │ │ example in Release Handling, where a function │ │ │ available/0 is added to ch3.

    If a call is added to this function, say in module m1, a runtime error could │ │ │ can occur during release upgrade if the new version of m1 is loaded first and │ │ │ calls ch3:available/0 before the new version of ch3 is loaded.

    Thus, ch3 must be loaded before m1, in the upgrade case, and conversely in │ │ │ the downgrade case. m1 is said to be dependent on ch3. In a release │ │ │ -handling instruction, this is expressed by the DepMods element:

    {load_module, Module, DepMods}
    │ │ │ -{update, Module, {advanced, Extra}, DepMods}

    DepMods is a list of modules, on which Module is dependent.

    Example

    The module m1 in application myapp is dependent on ch3 when │ │ │ +handling instruction, this is expressed by the DepMods element:

    {load_module, Module, DepMods}
    │ │ │ +{update, Module, {advanced, Extra}, DepMods}

    DepMods is a list of modules, on which Module is dependent.

    Example

    The module m1 in application myapp is dependent on ch3 when │ │ │ upgrading from "1" to "2", or downgrading from "2" to "1":

    myapp.appup:
    │ │ │  
    │ │ │ -{"2",
    │ │ │ - [{"1", [{load_module, m1, [ch3]}]}],
    │ │ │ - [{"1", [{load_module, m1, [ch3]}]}]
    │ │ │ -}.
    │ │ │ +{"2",
    │ │ │ + [{"1", [{load_module, m1, [ch3]}]}],
    │ │ │ + [{"1", [{load_module, m1, [ch3]}]}]
    │ │ │ +}.
    │ │ │  
    │ │ │  ch_app.appup:
    │ │ │  
    │ │ │ -{"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ -look as follows:

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{load_module, ch3},
    │ │ │ -    {load_module, m1, [ch3]}]}],
    │ │ │ - [{"1",
    │ │ │ -   [{load_module, ch3},
    │ │ │ -    {load_module, m1, [ch3]}]}]
    │ │ │ -}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ +{"2", │ │ │ + [{"1", [{load_module, ch3}]}], │ │ │ + [{"1", [{load_module, ch3}]}] │ │ │ +}.

    If instead m1 and ch3 belong to the same application, the .appup file can │ │ │ +look as follows:

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{load_module, ch3},
    │ │ │ +    {load_module, m1, [ch3]}]}],
    │ │ │ + [{"1",
    │ │ │ +   [{load_module, ch3},
    │ │ │ +    {load_module, m1, [ch3]}]}]
    │ │ │ +}.

    m1 is dependent on ch3 also when downgrading. systools knows the │ │ │ difference between up- and downgrading and generates a correct relup, where │ │ │ ch3 is loaded before m1 when upgrading, but m1 is loaded before ch3 when │ │ │ downgrading.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Code for a Special Process │ │ │

    │ │ │

    In this case, simple code replacement is not sufficient. When a new version of a │ │ │ residence module for a special process is loaded, the process must make a fully │ │ │ qualified call to its loop function to switch to the new code. Thus, │ │ │ synchronized code replacement must be used.

    Note

    The name(s) of the user-defined residence module(s) must be listed in the │ │ │ Modules part of the child specification for the special process. Otherwise │ │ │ the release handler cannot find the process.

    Example

    Consider the example ch4 in sys and proc_lib. │ │ │ -When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ - permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ +When started by a supervisor, the child specification can look as follows:

    {ch4, {ch4, start_link, []},
    │ │ │ + permanent, brutal_kill, worker, [ch4]}

    If ch4 is part of the application sp_app and a new version of the module is │ │ │ to be loaded when upgrading from version "1" to "2" of this application, │ │ │ -sp_app.appup can look as follows:

    {"2",
    │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ - [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ -}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ +sp_app.appup can look as follows:

    {"2",
    │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}],
    │ │ │ + [{"1", [{update, ch4, {advanced, []}}]}]
    │ │ │ +}.

    The update instruction must contain the tuple {advanced,Extra}. The │ │ │ instruction makes the special process call the callback function │ │ │ system_code_change/4, a function the user must implement. The term Extra, in │ │ │ -this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │ +this case [], is passed as is to system_code_change/4:

    -module(ch4).
    │ │ │  ...
    │ │ │ --export([system_code_change/4]).
    │ │ │ +-export([system_code_change/4]).
    │ │ │  ...
    │ │ │  
    │ │ │ -system_code_change(Chs, _Module, _OldVsn, _Extra) ->
    │ │ │ -    {ok, Chs}.
    • The first argument is the internal state State, passed from │ │ │ +system_code_change(Chs, _Module, _OldVsn, _Extra) -> │ │ │ + {ok, Chs}.

    In this case, all arguments but the first are ignored and the function simply │ │ │ returns the internal state again. This is enough if the code only has been │ │ │ extended. If instead the internal state is changed (similar to the example in │ │ │ @@ -271,85 +271,85 @@ │ │ │ Changing Properties │ │ │ │ │ │

    Since the supervisor is to change its internal state, synchronized code │ │ │ replacement is required. However, a special update instruction must be used.

    First, the new version of the callback module must be loaded, both in the case │ │ │ of upgrade and downgrade. Then the new return value of init/1 can be checked │ │ │ and the internal state be changed accordingly.

    The following upgrade instruction is used for supervisors:

    {update, Module, supervisor}

    Example

    To change the restart strategy of ch_sup (from │ │ │ Supervisor Behaviour) from one_for_one to one_for_all, │ │ │ -change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │ +change the callback function init/1 in ch_sup.erl:

    -module(ch_sup).
    │ │ │  ...
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ -}.

    │ │ │ +init(_Args) -> │ │ │ + {ok, {#{strategy => one_for_all, ...}, ...}}.

    The file ch_app.appup:

    {"2",
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Child Specifications │ │ │

    │ │ │

    The instruction, and thus the .appup file, when changing an existing child │ │ │ -specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ - [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ -}.

    The changes do not affect existing child processes. For example, changing the │ │ │ +specification, is the same as when changing properties as described earlier:

    {"2",
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}],
    │ │ │ + [{"1", [{update, ch_sup, supervisor}]}]
    │ │ │ +}.

    The changes do not affect existing child processes. For example, changing the │ │ │ start function only specifies how the child process is to be restarted, if │ │ │ needed later on.

    The id of the child specification cannot be changed.

    Changing the Modules field of the child specification can affect the release │ │ │ handling process itself, as this field is used to identify which processes are │ │ │ affected when doing a synchronized code replacement.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding and Deleting Child Processes │ │ │

    │ │ │

    As stated earlier, changing child specifications does not affect existing child │ │ │ processes. New child specifications are automatically added, but not deleted. │ │ │ Child processes are not automatically started or terminated, this must be done │ │ │ using apply instructions.

    Example

    Assume a new child process m1 is to be added to ch_sup when │ │ │ upgrading ch_app from "1" to "2". This means m1 is to be deleted when │ │ │ -downgrading from "2" to "1":

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{update, ch_sup, supervisor},
    │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ -   ]}],
    │ │ │ - [{"1",
    │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ -    {update, ch_sup, supervisor}
    │ │ │ -   ]}]
    │ │ │ -}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ +downgrading from "2" to "1":

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{update, ch_sup, supervisor},
    │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ +   ]}],
    │ │ │ + [{"1",
    │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ +    {update, ch_sup, supervisor}
    │ │ │ +   ]}]
    │ │ │ +}.

    The order of the instructions is important.

    The supervisor must be registered as ch_sup for the script to work. If the │ │ │ supervisor is not registered, it cannot be accessed directly from the script. │ │ │ Instead a help function that finds the pid of the supervisor and calls │ │ │ supervisor:restart_child, and so on, must be written. This function is then to │ │ │ be called from the script using the apply instruction.

    If the module m1 is introduced in version "2" of ch_app, it must also be │ │ │ -loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ - [{"1",
    │ │ │ -   [{add_module, m1},
    │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ -    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ -   ]}],
    │ │ │ - [{"1",
    │ │ │ -   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ -    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ -    {update, ch_sup, supervisor},
    │ │ │ -    {delete_module, m1}
    │ │ │ -   ]}]
    │ │ │ -}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ +loaded when upgrading and deleted when downgrading:

    {"2",
    │ │ │ + [{"1",
    │ │ │ +   [{add_module, m1},
    │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ +    {apply, {supervisor, restart_child, [ch_sup, m1]}}
    │ │ │ +   ]}],
    │ │ │ + [{"1",
    │ │ │ +   [{apply, {supervisor, terminate_child, [ch_sup, m1]}},
    │ │ │ +    {apply, {supervisor, delete_child, [ch_sup, m1]}},
    │ │ │ +    {update, ch_sup, supervisor},
    │ │ │ +    {delete_module, m1}
    │ │ │ +   ]}]
    │ │ │ +}.

    As stated earlier, the order of the instructions is important. When upgrading, │ │ │ m1 must be loaded, and the supervisor child specification changed, before the │ │ │ new child process can be started. When downgrading, the child process must be │ │ │ terminated before the child specification is changed and the module is deleted.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding or Deleting a Module │ │ │

    │ │ │ -

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ - [{"1", [{add_module, m}]}],
    │ │ │ - [{"1", [{delete_module, m}]}]

    │ │ │ +

    _Example

    _ A new functional module m is added to ch_app:

    {"2",
    │ │ │ + [{"1", [{add_module, m}]}],
    │ │ │ + [{"1", [{delete_module, m}]}]

    │ │ │ │ │ │ │ │ │ │ │ │ Starting or Terminating a Process │ │ │

    │ │ │

    In a system structured according to the OTP design principles, any process would │ │ │ be a child process belonging to a supervisor, see │ │ │ @@ -369,29 +369,29 @@ │ │ │ Restarting an Application │ │ │ │ │ │

    Restarting an application is useful when a change is too complicated to be made │ │ │ without restarting the processes, for example, if the supervisor hierarchy has │ │ │ been restructured.

    Example

    When adding a child m1 to ch_sup, as in │ │ │ Adding and Deleting Child Processes in Changing a │ │ │ Supervisor, an alternative to updating the supervisor is to restart the entire │ │ │ -application:

    {"2",
    │ │ │ - [{"1", [{restart_application, ch_app}]}],
    │ │ │ - [{"1", [{restart_application, ch_app}]}]
    │ │ │ -}.

    │ │ │ +application:

    {"2",
    │ │ │ + [{"1", [{restart_application, ch_app}]}],
    │ │ │ + [{"1", [{restart_application, ch_app}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing an Application Specification │ │ │

    │ │ │

    When installing a release, the application specifications are automatically │ │ │ updated before evaluating the relup script. Thus, no instructions are needed │ │ │ -in the .appup file:

    {"2",
    │ │ │ - [{"1", []}],
    │ │ │ - [{"1", []}]
    │ │ │ -}.

    │ │ │ +in the .appup file:

    {"2",
    │ │ │ + [{"1", []}],
    │ │ │ + [{"1", []}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Application Configuration │ │ │

    │ │ │

    Changing an application configuration by updating the env key in the .app │ │ │ file is an instance of changing an application specification, see the previous │ │ │ @@ -406,26 +406,26 @@ │ │ │ applications apply to primary applications only. There are no corresponding │ │ │ instructions for included applications. However, since an included application │ │ │ is really a supervision tree with a topmost supervisor, started as a child │ │ │ process to a supervisor in the including application, a .relup file can be │ │ │ manually created.

    Example

    Assume there is a release containing an application prim_app, which │ │ │ have a supervisor prim_sup in its supervision tree.

    In a new version of the release, the application ch_app is to be included in │ │ │ prim_app. That is, its topmost supervisor ch_sup is to be started as a child │ │ │ -process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ -    {ok, {...supervisor flags...,
    │ │ │ -          [...,
    │ │ │ -           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ -            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ -           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ - [...,
    │ │ │ -  {vsn, "2"},
    │ │ │ +process to prim_sup.

    The workflow is as follows:

    Step 1) Edit the code for prim_sup:

    init(...) ->
    │ │ │ +    {ok, {...supervisor flags...,
    │ │ │ +          [...,
    │ │ │ +           {ch_sup, {ch_sup,start_link,[]},
    │ │ │ +            permanent,infinity,supervisor,[ch_sup]},
    │ │ │ +           ...]}}.

    Step 2) Edit the .app file for prim_app:

    {application, prim_app,
    │ │ │ + [...,
    │ │ │ +  {vsn, "2"},
    │ │ │    ...,
    │ │ │ -  {included_applications, [ch_app]},
    │ │ │ +  {included_applications, [ch_app]},
    │ │ │    ...
    │ │ │ - ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │ + ]}.

    Step 3) Create a new .rel file, including ch_app:

    {release,
    │ │ │   ...,
    │ │ │   [...,
    │ │ │    {prim_app, "2"},
    │ │ │    {ch_app, "1"}]}.

    The included application can be started in two ways. This is described in the │ │ │ next two sections.

    │ │ │ │ │ │ │ │ │ @@ -480,74 +480,74 @@ │ │ │

    Step 4b) Another way to start the included application (or stop it in the case │ │ │ of downgrade) is by combining instructions for adding and removing child │ │ │ processes to/from prim_sup with instructions for loading/unloading all │ │ │ ch_app code and its application specification.

    Again, the .relup file is created manually, either from scratch or by editing a │ │ │ generated version. Load all code for ch_app first, and also load the │ │ │ application specification, before prim_sup is updated. When downgrading, │ │ │ prim_sup is to updated first, before the code for ch_app and its application │ │ │ -specification are unloaded.

    {"B",
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ -    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │ +specification are unloaded.

    {"B",
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [{load_object_code,{ch_app,"1",[ch_sup,ch3]}},
    │ │ │ +    {load_object_code,{prim_app,"2",[prim_sup]}},
    │ │ │      point_of_no_return,
    │ │ │ -    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ -    {apply,{application,load,[ch_app]}},
    │ │ │ -    {suspend,[prim_sup]},
    │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {code_change,up,[{prim_sup,[]}]},
    │ │ │ -    {resume,[prim_sup]},
    │ │ │ -    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │ +    {load,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ +    {load,{ch3,brutal_purge,brutal_purge}},
    │ │ │ +    {apply,{application,load,[ch_app]}},
    │ │ │ +    {suspend,[prim_sup]},
    │ │ │ +    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ +    {code_change,up,[{prim_sup,[]}]},
    │ │ │ +    {resume,[prim_sup]},
    │ │ │ +    {apply,{supervisor,restart_child,[prim_sup,ch_sup]}}]}],
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [{load_object_code,{prim_app,"1",[prim_sup]}},
    │ │ │      point_of_no_return,
    │ │ │ -    {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}},
    │ │ │ -    {apply,{supervisor,delete_child,[prim_sup,ch_sup]}},
    │ │ │ -    {suspend,[prim_sup]},
    │ │ │ -    {load,{prim_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {code_change,down,[{prim_sup,[]}]},
    │ │ │ -    {resume,[prim_sup]},
    │ │ │ -    {remove,{ch_sup,brutal_purge,brutal_purge}},
    │ │ │ -    {remove,{ch3,brutal_purge,brutal_purge}},
    │ │ │ -    {purge,[ch_sup,ch3]},
    │ │ │ -    {apply,{application,unload,[ch_app]}}]}]
    │ │ │ -}.

    │ │ │ + {apply,{supervisor,terminate_child,[prim_sup,ch_sup]}}, │ │ │ + {apply,{supervisor,delete_child,[prim_sup,ch_sup]}}, │ │ │ + {suspend,[prim_sup]}, │ │ │ + {load,{prim_sup,brutal_purge,brutal_purge}}, │ │ │ + {code_change,down,[{prim_sup,[]}]}, │ │ │ + {resume,[prim_sup]}, │ │ │ + {remove,{ch_sup,brutal_purge,brutal_purge}}, │ │ │ + {remove,{ch3,brutal_purge,brutal_purge}}, │ │ │ + {purge,[ch_sup,ch3]}, │ │ │ + {apply,{application,unload,[ch_app]}}]}] │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Changing Non-Erlang Code │ │ │

    │ │ │

    Changing code for a program written in another programming language than Erlang, │ │ │ for example, a port program, is application-dependent and OTP provides no │ │ │ special support.

    Example

    When changing code for a port program, assume that the Erlang process │ │ │ controlling the port is a gen_server portc and that the port is opened in │ │ │ -the callback function init/1:

    init(...) ->
    │ │ │ +the callback function init/1:

    init(...) ->
    │ │ │      ...,
    │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │      ...,
    │ │ │ -    {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ + {ok, #state{port=Port, ...}}.

    If the port program is to be updated, the code for the gen_server can be │ │ │ extended with a code_change/3 function, which closes the old port and opens a │ │ │ new port. (If necessary, the gen_server can first request data that must be │ │ │ -saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │ +saved from the port program and pass this data to the new port):

    code_change(_OldVsn, State, port) ->
    │ │ │      State#state.port ! close,
    │ │ │      receive
    │ │ │ -        {Port,close} ->
    │ │ │ +        {Port,close} ->
    │ │ │              true
    │ │ │      end,
    │ │ │ -    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ -    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ -    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ -file:

    ["2",
    │ │ │ - [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ - [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ -].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ -the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │ +    PortPrg = filename:join(code:priv_dir(App), "portc"),
    │ │ │ +    Port = open_port({spawn,PortPrg}, [...]),
    │ │ │ +    {ok, #state{port=Port, ...}}.

    Update the application version number in the .app file and write an .appup │ │ │ +file:

    ["2",
    │ │ │ + [{"1", [{update, portc, {advanced,port}}]}],
    │ │ │ + [{"1", [{update, portc, {advanced,port}}]}]
    │ │ │ +].

    Ensure that the priv directory, where the C program is located, is included in │ │ │ +the new release package:

    1> systools:make_tar("my_release", [{dirs,[priv]}]).
    │ │ │  ...

    │ │ │ │ │ │ │ │ │ │ │ │ Runtime System Restart and Upgrade │ │ │

    │ │ │

    Two upgrade instructions restart the runtime system:

    • restart_new_emulator

      Intended when ERTS, Kernel, STDLIB, or SASL is upgraded. It is automatically │ │ │ @@ -555,22 +555,22 @@ │ │ │ executed before all other upgrade instructions. For more information about │ │ │ this instruction, see restart_new_emulator (Low-Level) in │ │ │ Release Handling Instructions.

    • restart_emulator

      Used when a restart of the runtime system is required after all other upgrade │ │ │ instructions are executed. For more information about this instruction, see │ │ │ restart_emulator (Low-Level) in │ │ │ Release Handling Instructions.

    If a runtime system restart is necessary and no upgrade instructions are needed, │ │ │ that is, if the restart itself is enough for the upgraded applications to start │ │ │ -running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [restart_emulator]}],
    │ │ │ - [{"A",
    │ │ │ -   [],
    │ │ │ -   [restart_emulator]}]
    │ │ │ -}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ +running the new versions, a simple .relup file can be created manually:

    {"B",
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [restart_emulator]}],
    │ │ │ + [{"A",
    │ │ │ +   [],
    │ │ │ +   [restart_emulator]}]
    │ │ │ +}.

    In this case, the release handler framework with automatic packing and unpacking │ │ │ of release packages, automatic path updates, and so on, can be used without │ │ │ having to specify .appup files.

    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/benchmarking.html │ │ │ @@ -144,16 +144,16 @@ │ │ │ fast as possible, what can we do? One way could be to generate more │ │ │ than two bytes at the time.

    % erlperf 'rand:bytes(100).' 'crypto:strong_rand_bytes(100).'
    │ │ │  Code                                   ||        QPS       Time   Rel
    │ │ │  rand:bytes(100).                        1    2124 Ki     470 ns  100%
    │ │ │  crypto:strong_rand_bytes(100).          1    1915 Ki     522 ns   90%

    rand:bytes/1 is still faster when we generate 100 bytes at the time, │ │ │ but the relative difference is smaller.

    % erlperf 'rand:bytes(1000).' 'crypto:strong_rand_bytes(1000).'
    │ │ │  Code                                    ||        QPS       Time   Rel
    │ │ │ -crypto:strong_rand_bytes(1000).          1    1518 Ki     658 ns  100%
    │ │ │ -rand:bytes(1000).                        1     284 Ki    3521 ns   19%

    When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ +crypto:strong_rand_bytes(1000). 1 1518 Ki 658 ns 100% │ │ │ +rand:bytes(1000). 1 284 Ki 3521 ns 19%

    When we generate 1000 bytes at the time, crypto:strong_rand_bytes/1 is │ │ │ now the fastest.

    │ │ │ │ │ │ │ │ │ │ │ │ Benchmarking using Erlang/OTP functionality │ │ │

    │ │ │

    Benchmarks can measure wall-clock time or CPU time.

    • timer:tc/3 measures wall-clock time. The advantage with wall-clock time is │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/binaryhandling.html │ │ │ @@ -114,43 +114,43 @@ │ │ │ │ │ │ Constructing and Matching Binaries │ │ │ │ │ │ │ │ │

      This section gives a few examples on how to handle binaries in an efficient way. │ │ │ The sections that follow take an in-depth look at how binaries are implemented │ │ │ and how to best take advantages of the optimizations done by the compiler and │ │ │ -runtime system.

      Binaries can be efficiently built in the following way:

      DO

      my_list_to_binary(List) ->
      │ │ │ -    my_list_to_binary(List, <<>>).
      │ │ │ +runtime system.

      Binaries can be efficiently built in the following way:

      DO

      my_list_to_binary(List) ->
      │ │ │ +    my_list_to_binary(List, <<>>).
      │ │ │  
      │ │ │ -my_list_to_binary([H|T], Acc) ->
      │ │ │ -    my_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ -my_list_to_binary([], Acc) ->
      │ │ │ +my_list_to_binary([H|T], Acc) ->
      │ │ │ +    my_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ +my_list_to_binary([], Acc) ->
      │ │ │      Acc.

      Appending data to a binary as in the example is efficient because it is │ │ │ specially optimized by the runtime system to avoid copying the Acc binary │ │ │ -every time.

      Prepending data to a binary in a loop is not efficient:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ -    rev_list_to_binary(List, <<>>).
      │ │ │ +every time.

      Prepending data to a binary in a loop is not efficient:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ +    rev_list_to_binary(List, <<>>).
      │ │ │  
      │ │ │ -rev_list_to_binary([H|T], Acc) ->
      │ │ │ -    rev_list_to_binary(T, <<H,Acc/binary>>);
      │ │ │ -rev_list_to_binary([], Acc) ->
      │ │ │ +rev_list_to_binary([H|T], Acc) ->
      │ │ │ +    rev_list_to_binary(T, <<H,Acc/binary>>);
      │ │ │ +rev_list_to_binary([], Acc) ->
      │ │ │      Acc.

      This is not efficient for long lists because the Acc binary is copied every │ │ │ -time. One way to make the function more efficient is like this:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ -    rev_list_to_binary(lists:reverse(List), <<>>).
      │ │ │ +time. One way to make the function more efficient is like this:

      DO NOT

      rev_list_to_binary(List) ->
      │ │ │ +    rev_list_to_binary(lists:reverse(List), <<>>).
      │ │ │  
      │ │ │ -rev_list_to_binary([H|T], Acc) ->
      │ │ │ -    rev_list_to_binary(T, <<Acc/binary,H>>);
      │ │ │ -rev_list_to_binary([], Acc) ->
      │ │ │ -    Acc.

      Another way to avoid copying the binary each time is like this:

      DO

      rev_list_to_binary([H|T]) ->
      │ │ │ -    RevTail = rev_list_to_binary(T),
      │ │ │ -    <<RevTail/binary,H>>;
      │ │ │ -rev_list_to_binary([]) ->
      │ │ │ -    <<>>.

      Note that in each of the DO examples, the binary to be appended to is always │ │ │ -given as the first segment.

      Binaries can be efficiently matched in the following way:

      DO

      my_binary_to_list(<<H,T/binary>>) ->
      │ │ │ -    [H|my_binary_to_list(T)];
      │ │ │ -my_binary_to_list(<<>>) -> [].

      │ │ │ +rev_list_to_binary([H|T], Acc) -> │ │ │ + rev_list_to_binary(T, <<Acc/binary,H>>); │ │ │ +rev_list_to_binary([], Acc) -> │ │ │ + Acc.

      Another way to avoid copying the binary each time is like this:

      DO

      rev_list_to_binary([H|T]) ->
      │ │ │ +    RevTail = rev_list_to_binary(T),
      │ │ │ +    <<RevTail/binary,H>>;
      │ │ │ +rev_list_to_binary([]) ->
      │ │ │ +    <<>>.

      Note that in each of the DO examples, the binary to be appended to is always │ │ │ +given as the first segment.

      Binaries can be efficiently matched in the following way:

      DO

      my_binary_to_list(<<H,T/binary>>) ->
      │ │ │ +    [H|my_binary_to_list(T)];
      │ │ │ +my_binary_to_list(<<>>) -> [].

      │ │ │ │ │ │ │ │ │ │ │ │ How Binaries are Implemented │ │ │

      │ │ │

      Internally, binaries and bitstrings are implemented in the same way. In this │ │ │ section, they are called binaries because that is what they are called in the │ │ │ @@ -205,29 +205,29 @@ │ │ │ called referential transparency) of Erlang would break.

      │ │ │ │ │ │ │ │ │ │ │ │ Constructing Binaries │ │ │

      │ │ │

      Appending to a binary or bitstring in the following way is specially optimized │ │ │ -to avoid copying the binary:

      <<Binary/binary, ...>>
      │ │ │ +to avoid copying the binary:

      <<Binary/binary, ...>>
      │ │ │  %% - OR -
      │ │ │ -<<Binary/bitstring, ...>>

      This optimization is applied by the runtime system in a way that makes it │ │ │ +<<Binary/bitstring, ...>>

      This optimization is applied by the runtime system in a way that makes it │ │ │ effective in most circumstances (for exceptions, see │ │ │ Circumstances That Force Copying). The │ │ │ optimization in its basic form does not need any help from the compiler. │ │ │ However, the compiler add hints to the runtime system when it is safe to apply │ │ │ the optimization in a more efficient way.

      Change

      The compiler support for making the optimization more efficient was added in │ │ │ Erlang/OTP 26.

      To explain how the basic optimization works, let us examine the following code │ │ │ -line by line:

      Bin0 = <<0>>,                    %% 1
      │ │ │ -Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
      │ │ │ -Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
      │ │ │ -Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
      │ │ │ -Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
      │ │ │ -{Bin4,Bin3}                      %% 6
      • Line 1 (marked with the %% 1 comment), assigns a │ │ │ +line by line:

        Bin0 = <<0>>,                    %% 1
        │ │ │ +Bin1 = <<Bin0/binary,1,2,3>>,    %% 2
        │ │ │ +Bin2 = <<Bin1/binary,4,5,6>>,    %% 3
        │ │ │ +Bin3 = <<Bin2/binary,7,8,9>>,    %% 4
        │ │ │ +Bin4 = <<Bin1/binary,17>>,       %% 5 !!!
        │ │ │ +{Bin4,Bin3}                      %% 6
        • Line 1 (marked with the %% 1 comment), assigns a │ │ │ heap binary to the Bin0 variable.

        • Line 2 is an append operation. As Bin0 has not been involved in an append │ │ │ operation, a new refc binary is created and │ │ │ the contents of Bin0 is copied into it. The ProcBin part of the refc │ │ │ binary has its size set to the size of the data stored in the binary, while │ │ │ the binary object has extra space allocated. The size of the binary object is │ │ │ either twice the size of Bin1 or 256, whichever is larger. In this case it │ │ │ is 256.

        • Line 3 is more interesting. Bin1 has been used in an append operation, and │ │ │ @@ -253,23 +253,23 @@ │ │ │ handle an append operation to a heap binary by copying it to a refc binary (line │ │ │ 2), and also handle an append operation to a previous version of the binary by │ │ │ copying it (line 5). The support for doing that does not come for free. For │ │ │ example, to make it possible to know when it is necessary to copy the binary, │ │ │ for every append operation, the runtime system must create a sub binary.

          When the compiler can determine that none of those situations need to be handled │ │ │ and that the append operation cannot possibly fail, the compiler generates code │ │ │ that causes the runtime system to apply a more efficient variant of the │ │ │ -optimization.

          Example:

          -module(repack).
          │ │ │ --export([repack/1]).
          │ │ │ +optimization.

          Example:

          -module(repack).
          │ │ │ +-export([repack/1]).
          │ │ │  
          │ │ │ -repack(Bin) when is_binary(Bin) ->
          │ │ │ -    repack(Bin, <<>>).
          │ │ │ +repack(Bin) when is_binary(Bin) ->
          │ │ │ +    repack(Bin, <<>>).
          │ │ │  
          │ │ │ -repack(<<C:8,T/binary>>, Result) ->
          │ │ │ -    repack(T, <<Result/binary,C:16>>);
          │ │ │ -repack(<<>>, Result) ->
          │ │ │ +repack(<<C:8,T/binary>>, Result) ->
          │ │ │ +    repack(T, <<Result/binary,C:16>>);
          │ │ │ +repack(<<>>, Result) ->
          │ │ │      Result.

          The repack/2 function only keeps a single version of the binary, so there is │ │ │ never any need to copy the binary. The compiler rewrites the creation of the │ │ │ empty binary in repack/1 to instead create a refc binary with 256 bytes │ │ │ already reserved; thus, the append operation in repack/2 never needs to handle │ │ │ a binary not prepared for appending.

          │ │ │ │ │ │ │ │ │ @@ -281,72 +281,72 @@ │ │ │ reason is that the binary object can be moved (reallocated) during an append │ │ │ operation, and when that happens, the pointer in the ProcBin must be updated. If │ │ │ there would be more than one ProcBin pointing to the binary object, it would not │ │ │ be possible to find and update all of them.

          Therefore, certain operations on a binary mark it so that any future append │ │ │ operation will be forced to copy the binary. In most cases, the binary object │ │ │ will be shrunk at the same time to reclaim the extra space allocated for │ │ │ growing.

          When appending to a binary as follows, only the binary returned from the latest │ │ │ -append operation will support further cheap append operations:

          Bin = <<Bin0,...>>

          In the code fragment in the beginning of this section, appending to Bin will │ │ │ +append operation will support further cheap append operations:

          Bin = <<Bin0,...>>

          In the code fragment in the beginning of this section, appending to Bin will │ │ │ be cheap, while appending to Bin0 will force the creation of a new binary and │ │ │ copying of the contents of Bin0.

          If a binary is sent as a message to a process or port, the binary will be shrunk │ │ │ and any further append operation will copy the binary data into a new binary. │ │ │ For example, in the following code fragment Bin1 will be copied in the third │ │ │ -line:

          Bin1 = <<Bin0,...>>,
          │ │ │ +line:

          Bin1 = <<Bin0,...>>,
          │ │ │  PortOrPid ! Bin1,
          │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The same happens if you insert a binary into an Ets table, send it to a port │ │ │ +Bin = <<Bin1,...>> %% Bin1 will be COPIED

          The same happens if you insert a binary into an Ets table, send it to a port │ │ │ using erlang:port_command/2, or pass it to │ │ │ enif_inspect_binary in a NIF.

          Matching a binary will also cause it to shrink and the next append operation │ │ │ -will copy the binary data:

          Bin1 = <<Bin0,...>>,
          │ │ │ -<<X,Y,Z,T/binary>> = Bin1,
          │ │ │ -Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The reason is that a match context contains a │ │ │ +will copy the binary data:

          Bin1 = <<Bin0,...>>,
          │ │ │ +<<X,Y,Z,T/binary>> = Bin1,
          │ │ │ +Bin = <<Bin1,...>>  %% Bin1 will be COPIED

          The reason is that a match context contains a │ │ │ direct pointer to the binary data.

          If a process simply keeps binaries (either in "loop data" or in the process │ │ │ dictionary), the garbage collector can eventually shrink the binaries. If only │ │ │ one such binary is kept, it will not be shrunk. If the process later appends to │ │ │ a binary that has been shrunk, the binary object will be reallocated to make │ │ │ place for the data to be appended.

          │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │

          │ │ │ -

          Let us revisit the example in the beginning of the previous section:

          DO

          my_binary_to_list(<<H,T/binary>>) ->
          │ │ │ -    [H|my_binary_to_list(T)];
          │ │ │ -my_binary_to_list(<<>>) -> [].

          The first time my_binary_to_list/1 is called, a │ │ │ +

          Let us revisit the example in the beginning of the previous section:

          DO

          my_binary_to_list(<<H,T/binary>>) ->
          │ │ │ +    [H|my_binary_to_list(T)];
          │ │ │ +my_binary_to_list(<<>>) -> [].

          The first time my_binary_to_list/1 is called, a │ │ │ match context is created. The match context │ │ │ points to the first byte of the binary. 1 byte is matched out and the match │ │ │ context is updated to point to the second byte in the binary.

          At this point it would make sense to create a │ │ │ sub binary, but in this particular example the │ │ │ compiler sees that there will soon be a call to a function (in this case, to │ │ │ my_binary_to_list/1 itself) that immediately will create a new match context │ │ │ and discard the sub binary.

          Therefore my_binary_to_list/1 calls itself with the match context instead of │ │ │ with a sub binary. The instruction that initializes the matching operation │ │ │ basically does nothing when it sees that it was passed a match context instead │ │ │ of a binary.

          When the end of the binary is reached and the second clause matches, the match │ │ │ context will simply be discarded (removed in the next garbage collection, as │ │ │ there is no longer any reference to it).

          To summarize, my_binary_to_list/1 only needs to create one match context and │ │ │ no sub binaries.

          Notice that the match context in my_binary_to_list/1 was discarded when the │ │ │ entire binary had been traversed. What happens if the iteration stops before it │ │ │ -has reached the end of the binary? Will the optimization still work?

          after_zero(<<0,T/binary>>) ->
          │ │ │ +has reached the end of the binary? Will the optimization still work?

          after_zero(<<0,T/binary>>) ->
          │ │ │      T;
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ -    after_zero(T);
          │ │ │ -after_zero(<<>>) ->
          │ │ │ -    <<>>.

          Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ +after_zero(<<_,T/binary>>) -> │ │ │ + after_zero(T); │ │ │ +after_zero(<<>>) -> │ │ │ + <<>>.

          Yes, it will. The compiler will remove the building of the sub binary in the │ │ │ second clause:

          ...
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ -    after_zero(T);
          │ │ │ -...

          But it will generate code that builds a sub binary in the first clause:

          after_zero(<<0,T/binary>>) ->
          │ │ │ +after_zero(<<_,T/binary>>) ->
          │ │ │ +    after_zero(T);
          │ │ │ +...

          But it will generate code that builds a sub binary in the first clause:

          after_zero(<<0,T/binary>>) ->
          │ │ │      T;
          │ │ │  ...

          Therefore, after_zero/1 builds one match context and one sub binary (assuming │ │ │ -it is passed a binary that contains a zero byte).

          Code like the following will also be optimized:

          all_but_zeroes_to_list(Buffer, Acc, 0) ->
          │ │ │ -    {lists:reverse(Acc),Buffer};
          │ │ │ -all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
          │ │ │ -    all_but_zeroes_to_list(T, Acc, Remaining-1);
          │ │ │ -all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
          │ │ │ -    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

          The compiler removes building of sub binaries in the second and third clauses, │ │ │ +it is passed a binary that contains a zero byte).

          Code like the following will also be optimized:

          all_but_zeroes_to_list(Buffer, Acc, 0) ->
          │ │ │ +    {lists:reverse(Acc),Buffer};
          │ │ │ +all_but_zeroes_to_list(<<0,T/binary>>, Acc, Remaining) ->
          │ │ │ +    all_but_zeroes_to_list(T, Acc, Remaining-1);
          │ │ │ +all_but_zeroes_to_list(<<Byte,T/binary>>, Acc, Remaining) ->
          │ │ │ +    all_but_zeroes_to_list(T, [Byte|Acc], Remaining-1).

          The compiler removes building of sub binaries in the second and third clauses, │ │ │ and it adds an instruction to the first clause that converts Buffer from a │ │ │ match context to a sub binary (or do nothing if Buffer is a binary already).

          But in more complicated code, how can one know whether the optimization is │ │ │ applied or not?

          │ │ │ │ │ │ │ │ │ │ │ │ Option bin_opt_info │ │ │ @@ -354,38 +354,38 @@ │ │ │

          Use the bin_opt_info option to have the compiler print a lot of information │ │ │ about binary optimizations. It can be given either to the compiler or erlc:

          erlc +bin_opt_info Mod.erl

          or passed through an environment variable:

          export ERL_COMPILER_OPTIONS=bin_opt_info

          Notice that the bin_opt_info is not meant to be a permanent option added to │ │ │ your Makefiles, because all messages that it generates cannot be eliminated. │ │ │ Therefore, passing the option through the environment is in most cases the most │ │ │ practical approach.

          The warnings look as follows:

          ./efficiency_guide.erl:60: Warning: NOT OPTIMIZED: binary is returned from the function
          │ │ │  ./efficiency_guide.erl:62: Warning: OPTIMIZED: match context reused

          To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ -example:

          after_zero(<<0,T/binary>>) ->
          │ │ │ +example:

          after_zero(<<0,T/binary>>) ->
          │ │ │           %% BINARY CREATED: binary is returned from the function
          │ │ │      T;
          │ │ │ -after_zero(<<_,T/binary>>) ->
          │ │ │ +after_zero(<<_,T/binary>>) ->
          │ │ │           %% OPTIMIZED: match context reused
          │ │ │ -    after_zero(T);
          │ │ │ -after_zero(<<>>) ->
          │ │ │ -    <<>>.

          The warning for the first clause says that the creation of a sub binary cannot │ │ │ + after_zero(T); │ │ │ +after_zero(<<>>) -> │ │ │ + <<>>.

          The warning for the first clause says that the creation of a sub binary cannot │ │ │ be delayed, because it will be returned. The warning for the second clause says │ │ │ that a sub binary will not be created (yet).

          │ │ │ │ │ │ │ │ │ │ │ │ Unused Variables │ │ │

          │ │ │

          The compiler figures out if a variable is unused. The same code is generated for │ │ │ -each of the following functions:

          count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
          │ │ │ -count1(<<>>, Count) -> Count.
          │ │ │ +each of the following functions:

          count1(<<_,T/binary>>, Count) -> count1(T, Count+1);
          │ │ │ +count1(<<>>, Count) -> Count.
          │ │ │  
          │ │ │ -count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
          │ │ │ -count2(<<>>, Count) -> Count.
          │ │ │ +count2(<<H,T/binary>>, Count) -> count2(T, Count+1);
          │ │ │ +count2(<<>>, Count) -> Count.
          │ │ │  
          │ │ │ -count3(<<_H,T/binary>>, Count) -> count3(T, Count+1);
          │ │ │ -count3(<<>>, Count) -> Count.

          In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ +count3(<<_H,T/binary>>, Count) -> count3(T, Count+1); │ │ │ +count3(<<>>, Count) -> Count.

          In each iteration, the first 8 bits in the binary will be skipped, not matched │ │ │ out.

          │ │ │ │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ Introduction │ │ │ │ │ │

          The complete specification for the bit syntax appears in the │ │ │ Reference Manual.

          In Erlang, a Bin is used for constructing binaries and matching binary patterns. │ │ │ -A Bin is written with the following syntax:

          <<E1, E2, ... En>>

          A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ -enable construction of binaries:

          Bin = <<E1, E2, ... En>>

          All elements must be bound. Or match a binary:

          <<E1, E2, ... En>> = Bin

          Here, Bin is bound and the elements are bound or unbound, as in any match.

          A Bin does not need to consist of a whole number of bytes.

          A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ +A Bin is written with the following syntax:

          <<E1, E2, ... En>>

          A Bin is a low-level sequence of bits or bytes. The purpose of a Bin is to │ │ │ +enable construction of binaries:

          Bin = <<E1, E2, ... En>>

          All elements must be bound. Or match a binary:

          <<E1, E2, ... En>> = Bin

          Here, Bin is bound and the elements are bound or unbound, as in any match.

          A Bin does not need to consist of a whole number of bytes.

          A bitstring is a sequence of zero or more bits, where the number of bits does │ │ │ not need to be divisible by 8. If the number of bits is divisible by 8, the │ │ │ bitstring is also a binary.

          Each element specifies a certain segment of the bitstring. A segment is a set │ │ │ of contiguous bits of the binary (not necessarily on a byte boundary). The first │ │ │ element specifies the initial segment, the second element specifies the │ │ │ following segment, and so on.

          The following examples illustrate how binaries are constructed, or matched, and │ │ │ how elements and tails are specified.

          │ │ │ │ │ │ │ │ │ │ │ │ Examples │ │ │

          │ │ │

          Example 1: A binary can be constructed from a set of constants or a string │ │ │ -literal:

          Bin11 = <<1, 17, 42>>,
          │ │ │ -Bin12 = <<"abc">>

          This gives two binaries of size 3, with the following evaluations:

          Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ +literal:

          Bin11 = <<1, 17, 42>>,
          │ │ │ +Bin12 = <<"abc">>

          This gives two binaries of size 3, with the following evaluations:

          Example 2:Similarly, a binary can be constructed from a set of bound │ │ │ variables:

          A = 1, B = 17, C = 42,
          │ │ │ -Bin2 = <<A, B, C:16>>

          This gives a binary of size 4. Here, a size expression is used for the │ │ │ +Bin2 = <<A, B, C:16>>

          This gives a binary of size 4. Here, a size expression is used for the │ │ │ variable C to specify a 16-bits segment of Bin2.

          binary_to_list(Bin2) evaluates to [1, 17, 00, 42].

          Example 3: A Bin can also be used for matching. D, E, and F are unbound │ │ │ -variables, and Bin2 is bound, as in Example 2:

          <<D:16, E, F/binary>> = Bin2

          This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ +variables, and Bin2 is bound, as in Example 2:

          <<D:16, E, F/binary>> = Bin2

          This gives D = 273, E = 00, and F binds to a binary of size 1: │ │ │ binary_to_list(F) = [42].

          Example 4: The following is a more elaborate example of matching. Here, │ │ │ Dgram is bound to the consecutive bytes of an IP datagram of IP protocol │ │ │ -version 4. The ambition is to extract the header and the data of the datagram:

          -define(IP_VERSION, 4).
          │ │ │ --define(IP_MIN_HDR_LEN, 5).
          │ │ │ +version 4. The ambition is to extract the header and the data of the datagram:

          -define(IP_VERSION, 4).
          │ │ │ +-define(IP_MIN_HDR_LEN, 5).
          │ │ │  
          │ │ │ -DgramSize = byte_size(Dgram),
          │ │ │ +DgramSize = byte_size(Dgram),
          │ │ │  case Dgram of
          │ │ │ -    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
          │ │ │ +    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
          │ │ │        ID:16, Flgs:3, FragOff:13,
          │ │ │        TTL:8, Proto:8, HdrChkSum:16,
          │ │ │        SrcIP:32,
          │ │ │ -      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
          │ │ │ -        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
          │ │ │ -        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
          │ │ │ +      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
          │ │ │ +        OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
          │ │ │ +        <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
          │ │ │      ...
          │ │ │  end.

          Here, the segment corresponding to the Opts variable has a type modifier, │ │ │ specifying that Opts is to bind to a binary. All other variables have the │ │ │ default type equal to unsigned integer.

          An IP datagram header is of variable length. This length is measured in the │ │ │ number of 32-bit words and is given in the segment corresponding to HLen. The │ │ │ minimum value of HLen is 5. It is the segment corresponding to Opts that is │ │ │ variable, so if HLen is equal to 5, Opts becomes an empty binary.

          The tail variables RestDgram and Data bind to binaries, as all tail │ │ │ @@ -218,80 +218,80 @@ │ │ │

          This section describes the rules for constructing binaries using the bit syntax. │ │ │ Unlike when constructing lists or tuples, the construction of a binary can fail │ │ │ with a badarg exception.

          There can be zero or more segments in a binary to be constructed. The expression │ │ │ <<>> constructs a zero length binary.

          Each segment in a binary can consist of zero or more bits. There are no │ │ │ alignment rules for individual segments of type integer and float. For │ │ │ binaries and bitstrings without size, the unit specifies the alignment. Since │ │ │ the default alignment for the binary type is 8, the size of a binary segment │ │ │ -must be a multiple of 8 bits, that is, only whole bytes.

          Example:

          <<Bin/binary,Bitstring/bitstring>>

          The variable Bin must contain a whole number of bytes, because the binary │ │ │ +must be a multiple of 8 bits, that is, only whole bytes.

          Example:

          <<Bin/binary,Bitstring/bitstring>>

          The variable Bin must contain a whole number of bytes, because the binary │ │ │ type defaults to unit:8. A badarg exception is generated if Bin consist │ │ │ of, for example, 17 bits.

          The Bitstring variable can consist of any number of bits, for example, 0, 1, │ │ │ 8, 11, 17, 42, and so on. This is because the default unit for bitstrings │ │ │ is 1.

          For clarity, it is recommended not to change the unit size for binaries. │ │ │ Instead, use binary when you need byte alignment and bitstring when you need │ │ │ bit alignment.

          The following example successfully constructs a bitstring of 7 bits, provided │ │ │ -that all of X and Y are integers:

          <<X:1,Y:6>>

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When constructing binaries, Value and Size can be any Erlang expression. │ │ │ +that all of X and Y are integers:

          <<X:1,Y:6>>

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When constructing binaries, Value and Size can be any Erlang expression. │ │ │ However, for syntactical reasons, both Value and Size must be enclosed in │ │ │ parenthesis if the expression consists of anything more than a single literal or │ │ │ -a variable. The following gives a compiler syntax error:

          <<X+1:8>>

          This expression must be rewritten into the following, to be accepted by the │ │ │ -compiler:

          <<(X+1):8>>

          │ │ │ +a variable. The following gives a compiler syntax error:

          <<X+1:8>>

          This expression must be rewritten into the following, to be accepted by the │ │ │ +compiler:

          <<(X+1):8>>

          │ │ │ │ │ │ │ │ │ │ │ │ Including Literal Strings │ │ │

          │ │ │ -

          A literal string can be written instead of an element:

          <<"hello">>

          This is syntactic sugar for the following:

          <<$h,$e,$l,$l,$o>>

          │ │ │ +

          A literal string can be written instead of an element:

          <<"hello">>

          This is syntactic sugar for the following:

          <<$h,$e,$l,$l,$o>>

          │ │ │ │ │ │ │ │ │ │ │ │ Matching Binaries │ │ │

          │ │ │

          This section describes the rules for matching binaries, using the bit syntax.

          There can be zero or more segments in a binary pattern. A binary pattern can │ │ │ occur wherever patterns are allowed, including inside other patterns. Binary │ │ │ patterns cannot be nested. The pattern <<>> matches a zero length binary.

          Each segment in a binary can consist of zero or more bits. A segment of type │ │ │ binary must have a size evenly divisible by 8 (or divisible by the unit size, │ │ │ if the unit size has been changed). A segment of type bitstring has no │ │ │ restrictions on the size. A segment of type float must have size 64 or 32.

          As mentioned earlier, segments have the following general syntax:

          Value:Size/TypeSpecifierList

          When matching Value, value must be either a variable or an integer, or a │ │ │ floating point literal. Expressions are not allowed.

          Size must be a │ │ │ guard expression, which can use │ │ │ -literals and previously bound variables. The following is not allowed:

          foo(N, <<X:N,T/binary>>) ->
          │ │ │ -   {X,T}.

          The two occurrences of N are not related. The compiler will complain that the │ │ │ -N in the size field is unbound.

          The correct way to write this example is as follows:

          foo(N, Bin) ->
          │ │ │ -   <<X:N,T/binary>> = Bin,
          │ │ │ -   {X,T}.

          Note

          Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ +literals and previously bound variables. The following is not allowed:

          foo(N, <<X:N,T/binary>>) ->
          │ │ │ +   {X,T}.

          The two occurrences of N are not related. The compiler will complain that the │ │ │ +N in the size field is unbound.

          The correct way to write this example is as follows:

          foo(N, Bin) ->
          │ │ │ +   <<X:N,T/binary>> = Bin,
          │ │ │ +   {X,T}.

          Note

          Before OTP 23, Size was restricted to be an integer or a variable bound to │ │ │ an integer.

          │ │ │ │ │ │ │ │ │ │ │ │ Binding and Using a Size Variable │ │ │

          │ │ │

          There is one exception to the rule that a variable that is used as size must be │ │ │ previously bound. It is possible to match and bind a variable, and use it as a │ │ │ -size within the same binary pattern. For example:

          bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
          │ │ │ -   {Payload,Rest}.

          Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ -used at the number of bytes to match out as a binary.

          Starting in OTP 23, the size can be a guard expression:

          bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
          │ │ │ -   {Payload,Rest}.

          Here Sz is the combined size of the header and the payload, so we will need to │ │ │ +size within the same binary pattern. For example:

          bar(<<Sz:8,Payload:Sz/binary-unit:8,Rest/binary>>) ->
          │ │ │ +   {Payload,Rest}.

          Here Sz is bound to the value in the first byte of the binary. Sz is then │ │ │ +used at the number of bytes to match out as a binary.

          Starting in OTP 23, the size can be a guard expression:

          bar(<<Sz:8,Payload:((Sz-1)*8)/binary,Rest/binary>>) ->
          │ │ │ +   {Payload,Rest}.

          Here Sz is the combined size of the header and the payload, so we will need to │ │ │ subtract one byte to get the size of the payload.

          │ │ │ │ │ │ │ │ │ │ │ │ Getting the Rest of the Binary or Bitstring │ │ │

          │ │ │ -

          To match out the rest of a binary, specify a binary field without size:

          foo(<<A:8,Rest/binary>>) ->

          The size of the tail must be evenly divisible by 8.

          To match out the rest of a bitstring, specify a field without size:

          foo(<<A:8,Rest/bitstring>>) ->

          There are no restrictions on the number of bits in the tail.

          │ │ │ +

          To match out the rest of a binary, specify a binary field without size:

          foo(<<A:8,Rest/binary>>) ->

          The size of the tail must be evenly divisible by 8.

          To match out the rest of a bitstring, specify a field without size:

          foo(<<A:8,Rest/bitstring>>) ->

          There are no restrictions on the number of bits in the tail.

          │ │ │ │ │ │ │ │ │ │ │ │ Appending to a Binary │ │ │

          │ │ │ -

          Appending to a binary in an efficient way can be done as follows:

          triples_to_bin(T) ->
          │ │ │ -    triples_to_bin(T, <<>>).
          │ │ │ +

          Appending to a binary in an efficient way can be done as follows:

          triples_to_bin(T) ->
          │ │ │ +    triples_to_bin(T, <<>>).
          │ │ │  
          │ │ │ -triples_to_bin([{X,Y,Z} | T], Acc) ->
          │ │ │ -    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
          │ │ │ -triples_to_bin([], Acc) ->
          │ │ │ +triples_to_bin([{X,Y,Z} | T], Acc) ->
          │ │ │ +    triples_to_bin(T, <<Acc/binary,X:32,Y:32,Z:32>>);
          │ │ │ +triples_to_bin([], Acc) ->
          │ │ │      Acc.
          │ │ │ │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          open_port/2 with │ │ │ {spawn,ExtPrg} as the first argument. The string ExtPrg is the name of the │ │ │ external program, including any command line arguments. The second argument is a │ │ │ list of options, in this case only {packet,2}. This option says that a 2 byte │ │ │ length indicator is to be used to simplify the communication between C and │ │ │ Erlang. The Erlang port automatically adds the length indicator, but this must │ │ │ be done explicitly in the external C program.

          The process is also set to trap exits, which enables detection of failure of the │ │ │ -external program:

          -module(complex1).
          │ │ │ --export([start/1, init/1]).
          │ │ │ +external program:

          -module(complex1).
          │ │ │ +-export([start/1, init/1]).
          │ │ │  
          │ │ │ -start(ExtPrg) ->
          │ │ │ -  spawn(?MODULE, init, [ExtPrg]).
          │ │ │ +start(ExtPrg) ->
          │ │ │ +  spawn(?MODULE, init, [ExtPrg]).
          │ │ │  
          │ │ │ -init(ExtPrg) ->
          │ │ │ -  register(complex, self()),
          │ │ │ -  process_flag(trap_exit, true),
          │ │ │ -  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ -  loop(Port).

          Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ -message to the complex process and receive the following replies:

          foo(X) ->
          │ │ │ -  call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -  call_port({bar, Y}).
          │ │ │ +init(ExtPrg) ->
          │ │ │ +  register(complex, self()),
          │ │ │ +  process_flag(trap_exit, true),
          │ │ │ +  Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ +  loop(Port).

          Now complex1:foo/1 and complex1:bar/1 can be implemented. Both send a │ │ │ +message to the complex process and receive the following replies:

          foo(X) ->
          │ │ │ +  call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +  call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -  complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +  complex ! {call, self(), Msg},
          │ │ │    receive
          │ │ │ -    {complex, Result} ->
          │ │ │ +    {complex, Result} ->
          │ │ │        Result
          │ │ │ -  end.

          The complex process does the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │ +  end.

          The complex process does the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │    receive
          │ │ │ -    {call, Caller, Msg} ->
          │ │ │ -      Port ! {self(), {command, encode(Msg)}},
          │ │ │ +    {call, Caller, Msg} ->
          │ │ │ +      Port ! {self(), {command, encode(Msg)}},
          │ │ │        receive
          │ │ │ -        {Port, {data, Data}} ->
          │ │ │ -          Caller ! {complex, decode(Data)}
          │ │ │ +        {Port, {data, Data}} ->
          │ │ │ +          Caller ! {complex, decode(Data)}
          │ │ │        end,
          │ │ │ -      loop(Port)
          │ │ │ +      loop(Port)
          │ │ │    end.

          Assuming that both the arguments and the results from the C functions are less │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ -represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          The resulting Erlang program, including functionality for stopping the port and │ │ │ -detecting port failures, is as follows:

          -module(complex1).
          │ │ │ --export([start/1, stop/0, init/1]).
          │ │ │ --export([foo/1, bar/1]).
          │ │ │ -
          │ │ │ -start(ExtPrg) ->
          │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
          │ │ │ -stop() ->
          │ │ │ +decode([Int]) -> Int.

          The resulting Erlang program, including functionality for stopping the port and │ │ │ +detecting port failures, is as follows:

          -module(complex1).
          │ │ │ +-export([start/1, stop/0, init/1]).
          │ │ │ +-export([foo/1, bar/1]).
          │ │ │ +
          │ │ │ +start(ExtPrg) ->
          │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
          │ │ │ +stop() ->
          │ │ │      complex ! stop.
          │ │ │  
          │ │ │ -foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -	{complex, Result} ->
          │ │ │ +	{complex, Result} ->
          │ │ │  	    Result
          │ │ │      end.
          │ │ │  
          │ │ │ -init(ExtPrg) ->
          │ │ │ -    register(complex, self()),
          │ │ │ -    process_flag(trap_exit, true),
          │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ -    loop(Port).
          │ │ │ +init(ExtPrg) ->
          │ │ │ +    register(complex, self()),
          │ │ │ +    process_flag(trap_exit, true),
          │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
          │ │ │ +    loop(Port).
          │ │ │  
          │ │ │ -loop(Port) ->
          │ │ │ +loop(Port) ->
          │ │ │      receive
          │ │ │ -	{call, Caller, Msg} ->
          │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
          │ │ │ +	{call, Caller, Msg} ->
          │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
          │ │ │  	    receive
          │ │ │ -		{Port, {data, Data}} ->
          │ │ │ -		    Caller ! {complex, decode(Data)}
          │ │ │ +		{Port, {data, Data}} ->
          │ │ │ +		    Caller ! {complex, decode(Data)}
          │ │ │  	    end,
          │ │ │ -	    loop(Port);
          │ │ │ +	    loop(Port);
          │ │ │  	stop ->
          │ │ │ -	    Port ! {self(), close},
          │ │ │ +	    Port ! {self(), close},
          │ │ │  	    receive
          │ │ │ -		{Port, closed} ->
          │ │ │ -		    exit(normal)
          │ │ │ +		{Port, closed} ->
          │ │ │ +		    exit(normal)
          │ │ │  	    end;
          │ │ │ -	{'EXIT', Port, Reason} ->
          │ │ │ -	    exit(port_terminated)
          │ │ │ +	{'EXIT', Port, Reason} ->
          │ │ │ +	    exit(port_terminated)
          │ │ │      end.
          │ │ │  
          │ │ │ -encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          │ │ │ +decode([Int]) -> Int.

          │ │ │ │ │ │ │ │ │ │ │ │ C Program │ │ │

          │ │ │

          On the C side, it is necessary to write functions for receiving and sending data │ │ │ with 2 byte length indicators from/to Erlang. By default, the C program is to │ │ │ @@ -333,25 +333,25 @@ │ │ │ and terminates.

          │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │

          │ │ │

          Step 1. Compile the C code:

          $ gcc -o extprg complex.c erl_comm.c port.c

          Step 2. Start Erlang and compile the Erlang code:

          $ erl
          │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │  
          │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ -1> c(complex1).
          │ │ │ -{ok,complex1}

          Step 3. Run the example:

          2> complex1:start("./extprg").
          │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ +1> c(complex1).
          │ │ │ +{ok,complex1}

          Step 3. Run the example:

          2> complex1:start("./extprg").
          │ │ │  <0.34.0>
          │ │ │ -3> complex1:foo(3).
          │ │ │ +3> complex1:foo(3).
          │ │ │  4
          │ │ │ -4> complex1:bar(5).
          │ │ │ +4> complex1:bar(5).
          │ │ │  10
          │ │ │ -5> complex1:stop().
          │ │ │ +5> complex1:stop().
          │ │ │  stop
          │ │ │
          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          erl_ddll:load_driver/2, with the name of the shared library as │ │ │ argument.

          The port is then created using the BIF open_port/2, with the │ │ │ tuple {spawn, DriverName} as the first argument. The string SharedLib is the │ │ │ name of the port driver. The second argument is a list of options, none in this │ │ │ -case:

          -module(complex5).
          │ │ │ --export([start/1, init/1]).
          │ │ │ +case:

          -module(complex5).
          │ │ │ +-export([start/1, init/1]).
          │ │ │  
          │ │ │ -start(SharedLib) ->
          │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │ +start(SharedLib) ->
          │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │          ok -> ok;
          │ │ │ -        {error, already_loaded} -> ok;
          │ │ │ -        _ -> exit({error, could_not_load_driver})
          │ │ │ +        {error, already_loaded} -> ok;
          │ │ │ +        _ -> exit({error, could_not_load_driver})
          │ │ │      end,
          │ │ │ -    spawn(?MODULE, init, [SharedLib]).
          │ │ │ +    spawn(?MODULE, init, [SharedLib]).
          │ │ │  
          │ │ │ -init(SharedLib) ->
          │ │ │ -  register(complex, self()),
          │ │ │ -  Port = open_port({spawn, SharedLib}, []),
          │ │ │ -  loop(Port).

          Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ -message to the complex process and receive the following reply:

          foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +init(SharedLib) ->
          │ │ │ +  register(complex, self()),
          │ │ │ +  Port = open_port({spawn, SharedLib}, []),
          │ │ │ +  loop(Port).

          Now complex5:foo/1 and complex5:bar/1 can be implemented. Both send a │ │ │ +message to the complex process and receive the following reply:

          foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -        {complex, Result} ->
          │ │ │ +        {complex, Result} ->
          │ │ │              Result
          │ │ │ -    end.

          The complex process performs the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │ +    end.

          The complex process performs the following:

          • Encodes the message into a sequence of bytes.
          • Sends it to the port.
          • Waits for a reply.
          • Decodes the reply.
          • Sends it back to the caller:
          loop(Port) ->
          │ │ │      receive
          │ │ │ -        {call, Caller, Msg} ->
          │ │ │ -            Port ! {self(), {command, encode(Msg)}},
          │ │ │ +        {call, Caller, Msg} ->
          │ │ │ +            Port ! {self(), {command, encode(Msg)}},
          │ │ │              receive
          │ │ │ -                {Port, {data, Data}} ->
          │ │ │ -                    Caller ! {complex, decode(Data)}
          │ │ │ +                {Port, {data, Data}} ->
          │ │ │ +                    Caller ! {complex, decode(Data)}
          │ │ │              end,
          │ │ │ -            loop(Port)
          │ │ │ +            loop(Port)
          │ │ │      end.

          Assuming that both the arguments and the results from the C functions are less │ │ │ than 256, a simple encoding/decoding scheme is employed. In this scheme, foo │ │ │ is represented by byte 1, bar is represented by 2, and the argument/result is │ │ │ -represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +represented by a single byte as well:

          encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          The resulting Erlang program, including functions for stopping the port and │ │ │ +decode([Int]) -> Int.

          The resulting Erlang program, including functions for stopping the port and │ │ │ detecting port failures, is as follows:

          
          │ │ │ --module(complex5).
          │ │ │ --export([start/1, stop/0, init/1]).
          │ │ │ --export([foo/1, bar/1]).
          │ │ │ +-module(complex5).
          │ │ │ +-export([start/1, stop/0, init/1]).
          │ │ │ +-export([foo/1, bar/1]).
          │ │ │  
          │ │ │ -start(SharedLib) ->
          │ │ │ -    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │ +start(SharedLib) ->
          │ │ │ +    case erl_ddll:load_driver(".", SharedLib) of
          │ │ │  	ok -> ok;
          │ │ │ -	{error, already_loaded} -> ok;
          │ │ │ -	_ -> exit({error, could_not_load_driver})
          │ │ │ +	{error, already_loaded} -> ok;
          │ │ │ +	_ -> exit({error, could_not_load_driver})
          │ │ │      end,
          │ │ │ -    spawn(?MODULE, init, [SharedLib]).
          │ │ │ +    spawn(?MODULE, init, [SharedLib]).
          │ │ │  
          │ │ │ -init(SharedLib) ->
          │ │ │ -    register(complex, self()),
          │ │ │ -    Port = open_port({spawn, SharedLib}, []),
          │ │ │ -    loop(Port).
          │ │ │ +init(SharedLib) ->
          │ │ │ +    register(complex, self()),
          │ │ │ +    Port = open_port({spawn, SharedLib}, []),
          │ │ │ +    loop(Port).
          │ │ │  
          │ │ │ -stop() ->
          │ │ │ +stop() ->
          │ │ │      complex ! stop.
          │ │ │  
          │ │ │ -foo(X) ->
          │ │ │ -    call_port({foo, X}).
          │ │ │ -bar(Y) ->
          │ │ │ -    call_port({bar, Y}).
          │ │ │ +foo(X) ->
          │ │ │ +    call_port({foo, X}).
          │ │ │ +bar(Y) ->
          │ │ │ +    call_port({bar, Y}).
          │ │ │  
          │ │ │ -call_port(Msg) ->
          │ │ │ -    complex ! {call, self(), Msg},
          │ │ │ +call_port(Msg) ->
          │ │ │ +    complex ! {call, self(), Msg},
          │ │ │      receive
          │ │ │ -	{complex, Result} ->
          │ │ │ +	{complex, Result} ->
          │ │ │  	    Result
          │ │ │      end.
          │ │ │  
          │ │ │ -loop(Port) ->
          │ │ │ +loop(Port) ->
          │ │ │      receive
          │ │ │ -	{call, Caller, Msg} ->
          │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
          │ │ │ +	{call, Caller, Msg} ->
          │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
          │ │ │  	    receive
          │ │ │ -		{Port, {data, Data}} ->
          │ │ │ -		    Caller ! {complex, decode(Data)}
          │ │ │ +		{Port, {data, Data}} ->
          │ │ │ +		    Caller ! {complex, decode(Data)}
          │ │ │  	    end,
          │ │ │ -	    loop(Port);
          │ │ │ +	    loop(Port);
          │ │ │  	stop ->
          │ │ │ -	    Port ! {self(), close},
          │ │ │ +	    Port ! {self(), close},
          │ │ │  	    receive
          │ │ │ -		{Port, closed} ->
          │ │ │ -		    exit(normal)
          │ │ │ +		{Port, closed} ->
          │ │ │ +		    exit(normal)
          │ │ │  	    end;
          │ │ │ -	{'EXIT', Port, Reason} ->
          │ │ │ -	    io:format("~p ~n", [Reason]),
          │ │ │ -	    exit(port_terminated)
          │ │ │ +	{'EXIT', Port, Reason} ->
          │ │ │ +	    io:format("~p ~n", [Reason]),
          │ │ │ +	    exit(port_terminated)
          │ │ │      end.
          │ │ │  
          │ │ │ -encode({foo, X}) -> [1, X];
          │ │ │ -encode({bar, Y}) -> [2, Y].
          │ │ │ +encode({foo, X}) -> [1, X];
          │ │ │ +encode({bar, Y}) -> [2, Y].
          │ │ │  
          │ │ │ -decode([Int]) -> Int.

          │ │ │ +decode([Int]) -> Int.

          │ │ │ │ │ │ │ │ │ │ │ │ C Driver │ │ │

          │ │ │

          The C driver is a module that is compiled and linked into a shared library. It │ │ │ uses a driver structure and includes the header file erl_driver.h.

          The driver structure is filled with the driver name and function pointers. It is │ │ │ @@ -347,25 +347,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │ │ │ │

          Step 1. Compile the C code:

          unix> gcc -o example_drv.so -fpic -shared complex.c port_driver.c
          │ │ │  windows> cl -LD -MD -Fe example_drv.dll complex.c port_driver.c

          Step 2. Start Erlang and compile the Erlang code:

          > erl
          │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
          │ │ │  
          │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ -1> c(complex5).
          │ │ │ -{ok,complex5}

          Step 3. Run the example:

          2> complex5:start("example_drv").
          │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
          │ │ │ +1> c(complex5).
          │ │ │ +{ok,complex5}

          Step 3. Run the example:

          2> complex5:start("example_drv").
          │ │ │  <0.34.0>
          │ │ │ -3> complex5:foo(3).
          │ │ │ +3> complex5:foo(3).
          │ │ │  4
          │ │ │ -4> complex5:bar(5).
          │ │ │ +4> complex5:bar(5).
          │ │ │  10
          │ │ │ -5> complex5:stop().
          │ │ │ +5> complex5:stop().
          │ │ │  stop
          │ │ │
          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ Compilation │ │ │ │ │ │

          Erlang programs must be compiled to object code. The compiler can generate a │ │ │ new file that contains the object code. The current abstract machine, which runs │ │ │ the object code, is called BEAM, therefore the object files get the suffix │ │ │ -.beam. The compiler can also generate a binary which can be loaded directly.

          The compiler is located in the module compile in Compiler.

          compile:file(Module)
          │ │ │ -compile:file(Module, Options)

          The Erlang shell understands the command c(Module), which both compiles and │ │ │ +.beam. The compiler can also generate a binary which can be loaded directly.

          The compiler is located in the module compile in Compiler.

          compile:file(Module)
          │ │ │ +compile:file(Module, Options)

          The Erlang shell understands the command c(Module), which both compiles and │ │ │ loads Module.

          There is also a module make, which provides a set of functions similar to the │ │ │ UNIX type Make functions, see module make in Tools.

          The compiler can also be accessed from the OS prompt using the │ │ │ erl executable in ERTS.

          % erl -compile Module1...ModuleN
          │ │ │  % erl -make

          The erlc program provides way to compile modules from the OS │ │ │ shell, see the erlc executable in ERTS. It │ │ │ understands a number of flags that can be used to define macros, add search │ │ │ paths for include files, and more.

          % erlc <flags> File1.erl...FileN.erl

          │ │ │ @@ -156,54 +156,54 @@ │ │ │ When a module is loaded into the system for the first time, the code becomes │ │ │ 'current'. If then a new instance of the module is loaded, the code of the │ │ │ previous instance becomes 'old' and the new instance becomes 'current'.

          Both old and current code is valid, and can be evaluated concurrently. Fully │ │ │ qualified function calls always refer to current code. Old code can still be │ │ │ evaluated because of processes lingering in the old code.

          If a third instance of the module is loaded, the code server removes (purges) │ │ │ the old code and any processes lingering in it is terminated. Then the third │ │ │ instance becomes 'current' and the previously current code becomes 'old'.

          To change from old code to current code, a process must make a fully qualified │ │ │ -function call.

          Example:

          -module(m).
          │ │ │ --export([loop/0]).
          │ │ │ +function call.

          Example:

          -module(m).
          │ │ │ +-export([loop/0]).
          │ │ │  
          │ │ │ -loop() ->
          │ │ │ +loop() ->
          │ │ │      receive
          │ │ │          code_switch ->
          │ │ │ -            m:loop();
          │ │ │ +            m:loop();
          │ │ │          Msg ->
          │ │ │              ...
          │ │ │ -            loop()
          │ │ │ +            loop()
          │ │ │      end.

          To make the process change code, send the message code_switch to it. The │ │ │ process then makes a fully qualified call to m:loop() and changes to current │ │ │ code. Notice that m:loop/0 must be exported.

          For code replacement of funs to work, use the syntax │ │ │ fun Module:FunctionName/Arity.

          │ │ │ │ │ │ │ │ │ │ │ │ Running a Function When a Module is Loaded │ │ │

          │ │ │

          The -on_load() directive names a function that is to be run automatically when │ │ │ -a module is loaded.

          Its syntax is as follows:

          -on_load(Name/0).

          It is not necessary to export the function. It is called in a freshly spawned │ │ │ +a module is loaded.

          Its syntax is as follows:

          -on_load(Name/0).

          It is not necessary to export the function. It is called in a freshly spawned │ │ │ process (which terminates as soon as the function returns).

          The function must return ok if the module is to become the new current code │ │ │ for the module and become callable.

          Returning any other value or generating an exception causes the new code to be │ │ │ unloaded. If the return value is not an atom, a warning error report is sent to │ │ │ the error logger.

          If there already is current code for the module, that code will remain current │ │ │ and can be called until the on_load function has returned. If the on_load │ │ │ function fails, the current code (if any) will remain current. If there is no │ │ │ current code for a module, any process that makes an external call to the module │ │ │ before the on_load function has finished will be suspended until the on_load │ │ │ function have finished.

          Change

          Before Erlang/OTP 19, if the on_load function failed, any previously current │ │ │ code would become old, essentially leaving the system without any working and │ │ │ reachable instance of the module.

          In embedded mode, first all modules are loaded. Then all on_load functions are │ │ │ called. The system is terminated unless all of the on_load functions return │ │ │ -ok.

          Example:

          -module(m).
          │ │ │ --on_load(load_my_nifs/0).
          │ │ │ +ok.

          Example:

          -module(m).
          │ │ │ +-on_load(load_my_nifs/0).
          │ │ │  
          │ │ │ -load_my_nifs() ->
          │ │ │ +load_my_nifs() ->
          │ │ │      NifPath = ...,    %Set up the path to the NIF library.
          │ │ │      Info = ...,       %Initialize the Info term
          │ │ │ -    erlang:load_nif(NifPath, Info).

          If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ + erlang:load_nif(NifPath, Info).

          If the call to erlang:load_nif/2 fails, the module is unloaded and a warning │ │ │ report is sent to the error loader.

          │ │ │

          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          │ │ │ │ │ │ │ │ │ Operator ++ │ │ │

          │ │ │

          The ++ operator copies its left-hand side operand. That is clearly │ │ │ -seen if we do our own implementation in Erlang:

          my_plus_plus([H|T], Tail) ->
          │ │ │ -    [H|my_plus_plus(T, Tail)];
          │ │ │ -my_plus_plus([], Tail) ->
          │ │ │ -    Tail.

          We must be careful how we use ++ in a loop. First is how not to use it:

          DO NOT

          naive_reverse([H|T]) ->
          │ │ │ -    naive_reverse(T) ++ [H];
          │ │ │ -naive_reverse([]) ->
          │ │ │ -    [].

          As the ++ operator copies its left-hand side operand, the growing │ │ │ -result is copied repeatedly, leading to quadratic complexity.

          On the other hand, using ++ in loop like this is perfectly fine:

          OK

          naive_but_ok_reverse(List) ->
          │ │ │ -    naive_but_ok_reverse(List, []).
          │ │ │ +seen if we do our own implementation in Erlang:

          my_plus_plus([H|T], Tail) ->
          │ │ │ +    [H|my_plus_plus(T, Tail)];
          │ │ │ +my_plus_plus([], Tail) ->
          │ │ │ +    Tail.

          We must be careful how we use ++ in a loop. First is how not to use it:

          DO NOT

          naive_reverse([H|T]) ->
          │ │ │ +    naive_reverse(T) ++ [H];
          │ │ │ +naive_reverse([]) ->
          │ │ │ +    [].

          As the ++ operator copies its left-hand side operand, the growing │ │ │ +result is copied repeatedly, leading to quadratic complexity.

          On the other hand, using ++ in loop like this is perfectly fine:

          OK

          naive_but_ok_reverse(List) ->
          │ │ │ +    naive_but_ok_reverse(List, []).
          │ │ │  
          │ │ │ -naive_but_ok_reverse([H|T], Acc) ->
          │ │ │ -    naive_but_ok_reverse(T, [H] ++ Acc);
          │ │ │ -naive_but_ok_reverse([], Acc) ->
          │ │ │ +naive_but_ok_reverse([H|T], Acc) ->
          │ │ │ +    naive_but_ok_reverse(T, [H] ++ Acc);
          │ │ │ +naive_but_ok_reverse([], Acc) ->
          │ │ │      Acc.

          Each list element is copied only once. The growing result Acc is the right-hand │ │ │ -side operand, which it is not copied.

          Experienced Erlang programmers would probably write as follows:

          DO

          vanilla_reverse([H|T], Acc) ->
          │ │ │ -    vanilla_reverse(T, [H|Acc]);
          │ │ │ -vanilla_reverse([], Acc) ->
          │ │ │ +side operand, which it is not copied.

          Experienced Erlang programmers would probably write as follows:

          DO

          vanilla_reverse([H|T], Acc) ->
          │ │ │ +    vanilla_reverse(T, [H|Acc]);
          │ │ │ +vanilla_reverse([], Acc) ->
          │ │ │      Acc.

          In principle, this is slightly more efficient because the list element [H] │ │ │ is not built before being copied and discarded. In practice, the compiler │ │ │ rewrites [H] ++ Acc to [H|Acc].

          │ │ │ │ │ │ │ │ │ │ │ │ Timer Module │ │ │ @@ -160,77 +160,77 @@ │ │ │ therefore harmless.

          │ │ │ │ │ │ │ │ │ │ │ │ Accidental Copying and Loss of Sharing │ │ │

          │ │ │

          When spawning a new process using a fun, one can accidentally copy more data to │ │ │ -the process than intended. For example:

          DO NOT

          accidental1(State) ->
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [State#state.info])
          │ │ │ -          end).

          The code in the fun will extract one element from the record and print it. The │ │ │ +the process than intended. For example:

          DO NOT

          accidental1(State) ->
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [State#state.info])
          │ │ │ +          end).

          The code in the fun will extract one element from the record and print it. The │ │ │ rest of the state record is not used. However, when the spawn/1 │ │ │ -function is executed, the entire record is copied to the newly created process.

          The same kind of problem can happen with a map:

          DO NOT

          accidental2(State) ->
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [map_get(info, State)])
          │ │ │ -          end).

          In the following example (part of a module implementing the gen_server │ │ │ -behavior) the created fun is sent to another process:

          DO NOT

          handle_call(give_me_a_fun, _From, State) ->
          │ │ │ -    Fun = fun() -> State#state.size =:= 42 end,
          │ │ │ -    {reply, Fun, State}.

          How bad that unnecessary copy is depends on the contents of the record or the │ │ │ -map.

          For example, if the state record is initialized like this:

          init1() ->
          │ │ │ -    #state{data=lists:seq(1, 10000)}.

          a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ +function is executed, the entire record is copied to the newly created process.

          The same kind of problem can happen with a map:

          DO NOT

          accidental2(State) ->
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [map_get(info, State)])
          │ │ │ +          end).

          In the following example (part of a module implementing the gen_server │ │ │ +behavior) the created fun is sent to another process:

          DO NOT

          handle_call(give_me_a_fun, _From, State) ->
          │ │ │ +    Fun = fun() -> State#state.size =:= 42 end,
          │ │ │ +    {reply, Fun, State}.

          How bad that unnecessary copy is depends on the contents of the record or the │ │ │ +map.

          For example, if the state record is initialized like this:

          init1() ->
          │ │ │ +    #state{data=lists:seq(1, 10000)}.

          a list with 10000 elements (or about 20000 heap words) will be copied to the │ │ │ newly created process.

          An unnecessary copy of 10000 element list can be bad enough, but it can get even │ │ │ worse if the state record contains shared subterms. Here is a simple example │ │ │ -of a term with a shared subterm:

          {SubTerm, SubTerm}

          When a term is copied to another process, sharing of subterms will be lost and │ │ │ -the copied term can be many times larger than the original term. For example:

          init2() ->
          │ │ │ -    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
          │ │ │ -    #state{data=Shared}.

          In the process that calls init2/0, the size of the data field in the state │ │ │ +of a term with a shared subterm:

          {SubTerm, SubTerm}

          When a term is copied to another process, sharing of subterms will be lost and │ │ │ +the copied term can be many times larger than the original term. For example:

          init2() ->
          │ │ │ +    SharedSubTerms = lists:foldl(fun(_, A) -> [A|A] end, [0], lists:seq(1, 15)),
          │ │ │ +    #state{data=Shared}.

          In the process that calls init2/0, the size of the data field in the state │ │ │ record will be 32 heap words. When the record is copied to the newly created │ │ │ process, sharing will be lost and the size of the copied data field will be │ │ │ 131070 heap words. More details about │ │ │ loss off sharing are found in a later │ │ │ section.

          To avoid the problem, outside of the fun extract only the fields of the record │ │ │ -that are actually used:

          DO

          fixed_accidental1(State) ->
          │ │ │ +that are actually used:

          DO

          fixed_accidental1(State) ->
          │ │ │      Info = State#state.info,
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [Info])
          │ │ │ -          end).

          Similarly, outside of the fun extract only the map elements that are actually │ │ │ -used:

          DO

          fixed_accidental2(State) ->
          │ │ │ -    Info = map_get(info, State),
          │ │ │ -    spawn(fun() ->
          │ │ │ -                  io:format("~p\n", [Info])
          │ │ │ -          end).

          │ │ │ + spawn(fun() -> │ │ │ + io:format("~p\n", [Info]) │ │ │ + end).

          Similarly, outside of the fun extract only the map elements that are actually │ │ │ +used:

          DO

          fixed_accidental2(State) ->
          │ │ │ +    Info = map_get(info, State),
          │ │ │ +    spawn(fun() ->
          │ │ │ +                  io:format("~p\n", [Info])
          │ │ │ +          end).

          │ │ │ │ │ │ │ │ │ │ │ │ list_to_atom/1 │ │ │

          │ │ │

          Atoms are not garbage-collected. Once an atom is created, it is never removed. │ │ │ The emulator terminates if the limit for the number of atoms (1,048,576 by │ │ │ default) is reached.

          Therefore, converting arbitrary input strings to atoms can be dangerous in a │ │ │ system that runs continuously. If only certain well-defined atoms are allowed as │ │ │ input, list_to_existing_atom/1 or │ │ │ binary_to_existing_atom/1 can be used │ │ │ to guard against a denial-of-service attack. (All atoms that are allowed must │ │ │ have been created earlier, for example, by using all of them in a module │ │ │ and loading that module.)

          Using list_to_atom/1 to construct an atom that │ │ │ -is passed to apply/3 is quite expensive.

          DO NOT

          apply(list_to_atom("some_prefix"++Var), foo, Args)

          │ │ │ +is passed to apply/3 is quite expensive.

          DO NOT

          apply(list_to_atom("some_prefix"++Var), foo, Args)

          │ │ │ │ │ │ │ │ │ │ │ │ length/1 │ │ │

          │ │ │

          The time for calculating the length of a list is proportional to the length of │ │ │ the list, as opposed to tuple_size/1, │ │ │ byte_size/1, and bit_size/1, which all │ │ │ execute in constant time.

          Normally, there is no need to worry about the speed of length/1, │ │ │ because it is efficiently implemented in C. In time-critical code, you might │ │ │ want to avoid it if the input list could potentially be very long.

          Some uses of length/1 can be replaced by matching. For example, │ │ │ -the following code:

          foo(L) when length(L) >= 3 ->
          │ │ │ -    ...

          can be rewritten to:

          foo([_,_,_|_]=L) ->
          │ │ │ +the following code:

          foo(L) when length(L) >= 3 ->
          │ │ │ +    ...

          can be rewritten to:

          foo([_,_,_|_]=L) ->
          │ │ │     ...

          One slight difference is that length(L) fails if L is an │ │ │ improper list, while the pattern in the second code fragment accepts an improper │ │ │ list.

          │ │ │ │ │ │ │ │ │ │ │ │ setelement/3 │ │ │ @@ -238,18 +238,18 @@ │ │ │

          setelement/3 copies the tuple it modifies. Therefore, │ │ │ updating a tuple in a loop using setelement/3 creates a new │ │ │ copy of the tuple every time.

          There is one exception to the rule that the tuple is copied. If the compiler │ │ │ clearly can see that destructively updating the tuple would give the same result │ │ │ as if the tuple was copied, the call to setelement/3 is │ │ │ replaced with a special destructive setelement instruction. In the following │ │ │ code sequence, the first setelement/3 call copies the tuple │ │ │ -and modifies the ninth element:

          multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
          │ │ │ -    T1 = setelement(9, T0, bar),
          │ │ │ -    T2 = setelement(7, T1, foobar),
          │ │ │ -    setelement(5, T2, new_value).

          The two following setelement/3 calls modify the tuple in │ │ │ +and modifies the ninth element:

          multiple_setelement(T0) when tuple_size(T0) =:= 9 ->
          │ │ │ +    T1 = setelement(9, T0, bar),
          │ │ │ +    T2 = setelement(7, T1, foobar),
          │ │ │ +    setelement(5, T2, new_value).

          The two following setelement/3 calls modify the tuple in │ │ │ place.

          For the optimization to be applied, all the following conditions must be true:

          • The tuple argument must be known to be a tuple of a known size.
          • The indices must be integer literals, not variables or expressions.
          • The indices must be given in descending order.
          • There must be no calls to another function in between the calls to │ │ │ setelement/3.
          • The tuple returned from one setelement/3 call must only be │ │ │ used in the subsequent call to setelement/3.

          If the code cannot be structured as in the multiple_setelement/1 example, the │ │ │ best way to modify multiple elements in a large tuple is to convert the tuple to │ │ │ a list, modify the list, and convert it back to a tuple.

          │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/conc_prog.html │ │ │ @@ -132,107 +132,107 @@ │ │ │ threads of execution in an Erlang program and to allow these threads to │ │ │ communicate with each other. In Erlang, each thread of execution is called a │ │ │ process.

          (Aside: the term "process" is usually used when the threads of execution share │ │ │ no data with each other and the term "thread" when they share data in some way. │ │ │ Threads of execution in Erlang share no data, that is why they are called │ │ │ processes).

          The Erlang BIF spawn is used to create a new process: │ │ │ spawn(Module, Exported_Function, List of Arguments). Consider the following │ │ │ -module:

          -module(tut14).
          │ │ │ +module:

          -module(tut14).
          │ │ │  
          │ │ │ --export([start/0, say_something/2]).
          │ │ │ +-export([start/0, say_something/2]).
          │ │ │  
          │ │ │ -say_something(What, 0) ->
          │ │ │ +say_something(What, 0) ->
          │ │ │      done;
          │ │ │ -say_something(What, Times) ->
          │ │ │ -    io:format("~p~n", [What]),
          │ │ │ -    say_something(What, Times - 1).
          │ │ │ -
          │ │ │ -start() ->
          │ │ │ -    spawn(tut14, say_something, [hello, 3]),
          │ │ │ -    spawn(tut14, say_something, [goodbye, 3]).
          5> c(tut14).
          │ │ │ -{ok,tut14}
          │ │ │ -6> tut14:say_something(hello, 3).
          │ │ │ +say_something(What, Times) ->
          │ │ │ +    io:format("~p~n", [What]),
          │ │ │ +    say_something(What, Times - 1).
          │ │ │ +
          │ │ │ +start() ->
          │ │ │ +    spawn(tut14, say_something, [hello, 3]),
          │ │ │ +    spawn(tut14, say_something, [goodbye, 3]).
          5> c(tut14).
          │ │ │ +{ok,tut14}
          │ │ │ +6> tut14:say_something(hello, 3).
          │ │ │  hello
          │ │ │  hello
          │ │ │  hello
          │ │ │  done

          As shown, the function say_something writes its first argument the number of │ │ │ times specified by second argument. The function start starts two Erlang │ │ │ processes, one that writes "hello" three times and one that writes "goodbye" │ │ │ three times. Both processes use the function say_something. Notice that a │ │ │ function used in this way by spawn, to start a process, must be exported from │ │ │ -the module (that is, in the -export at the start of the module).

          9> tut14:start().
          │ │ │ +the module (that is, in the -export at the start of the module).

          9> tut14:start().
          │ │ │  hello
          │ │ │  goodbye
          │ │ │  <0.63.0>
          │ │ │  hello
          │ │ │  goodbye
          │ │ │  hello
          │ │ │  goodbye

          Notice that it did not write "hello" three times and then "goodbye" three times. │ │ │ Instead, the first process wrote a "hello", the second a "goodbye", the first │ │ │ another "hello" and so forth. But where did the <0.63.0> come from? The return │ │ │ value of a function is the return value of the last "thing" in the function. The │ │ │ -last thing in the function start is

          spawn(tut14, say_something, [goodbye, 3]).

          spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ +last thing in the function start is

          spawn(tut14, say_something, [goodbye, 3]).

          spawn returns a process identifier, or pid, which uniquely identifies the │ │ │ process. So <0.63.0> is the pid of the spawn function call above. The next │ │ │ example shows how to use pids.

          Notice also that ~p is used instead of ~w in io:format/2. To quote the manual:

          ~p Writes the data with standard syntax in the same way as ~w, but breaks terms │ │ │ whose printed representation is longer than one line into many lines and indents │ │ │ each line sensibly. It also tries to detect flat lists of printable characters and │ │ │ to output these as strings

          │ │ │ │ │ │ │ │ │ │ │ │ Message Passing │ │ │

          │ │ │

          In the following example two processes are created and they send messages to │ │ │ -each other a number of times.

          -module(tut15).
          │ │ │ +each other a number of times.

          -module(tut15).
          │ │ │  
          │ │ │ --export([start/0, ping/2, pong/0]).
          │ │ │ +-export([start/0, ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_PID) ->
          │ │ │ +ping(0, Pong_PID) ->
          │ │ │      Pong_PID ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_PID) ->
          │ │ │ -    Pong_PID ! {ping, self()},
          │ │ │ +ping(N, Pong_PID) ->
          │ │ │ +    Pong_PID ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_PID).
          │ │ │ +    ping(N - 1, Pong_PID).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start() ->
          │ │ │ -    Pong_PID = spawn(tut15, pong, []),
          │ │ │ -    spawn(tut15, ping, [3, Pong_PID]).
          1> c(tut15).
          │ │ │ -{ok,tut15}
          │ │ │ -2> tut15: start().
          │ │ │ +start() ->
          │ │ │ +    Pong_PID = spawn(tut15, pong, []),
          │ │ │ +    spawn(tut15, ping, [3, Pong_PID]).
          1> c(tut15).
          │ │ │ +{ok,tut15}
          │ │ │ +2> tut15: start().
          │ │ │  <0.36.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  ping finished
          │ │ │ -Pong finished

          The function start first creates a process, let us call it "pong":

          Pong_PID = spawn(tut15, pong, [])

          This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ -"pong" process. The function start now creates another process "ping":

          spawn(tut15, ping, [3, Pong_PID]),

          This process executes:

          tut15:ping(3, Pong_PID)

          <0.36.0> is the return value from the start function.

          The process "pong" now does:

          receive
          │ │ │ +Pong finished

          The function start first creates a process, let us call it "pong":

          Pong_PID = spawn(tut15, pong, [])

          This process executes tut15:pong(). Pong_PID is the process identity of the │ │ │ +"pong" process. The function start now creates another process "ping":

          spawn(tut15, ping, [3, Pong_PID]),

          This process executes:

          tut15:ping(3, Pong_PID)

          <0.36.0> is the return value from the start function.

          The process "pong" now does:

          receive
          │ │ │      finished ->
          │ │ │ -        io:format("Pong finished~n", []);
          │ │ │ -    {ping, Ping_PID} ->
          │ │ │ -        io:format("Pong received ping~n", []),
          │ │ │ +        io:format("Pong finished~n", []);
          │ │ │ +    {ping, Ping_PID} ->
          │ │ │ +        io:format("Pong received ping~n", []),
          │ │ │          Ping_PID ! pong,
          │ │ │ -        pong()
          │ │ │ +        pong()
          │ │ │  end.

          The receive construct is used to allow processes to wait for messages from │ │ │ other processes. It has the following format:

          receive
          │ │ │     pattern1 ->
          │ │ │         actions1;
          │ │ │     pattern2 ->
          │ │ │         actions2;
          │ │ │     ....
          │ │ │ @@ -253,84 +253,84 @@
          │ │ │  queue (keeping the first message and any other messages in the queue). If the
          │ │ │  second message does not match, the third message is tried, and so on, until the
          │ │ │  end of the queue is reached. If the end of the queue is reached, the process
          │ │ │  blocks (stops execution) and waits until a new message is received and this
          │ │ │  procedure is repeated.

          The Erlang implementation is "clever" and minimizes the number of times each │ │ │ message is tested against the patterns in each receive.

          Now back to the ping pong example.

          "Pong" is waiting for messages. If the atom finished is received, "pong" │ │ │ writes "Pong finished" to the output and, as it has nothing more to do, │ │ │ -terminates. If it receives a message with the format:

          {ping, Ping_PID}

          it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ +terminates. If it receives a message with the format:

          {ping, Ping_PID}

          it writes "Pong received ping" to the output and sends the atom pong to the │ │ │ process "ping":

          Ping_PID ! pong

          Notice how the operator "!" is used to send messages. The syntax of "!" is:

          Pid ! Message

          That is, Message (any Erlang term) is sent to the process with identity Pid.

          After sending the message pong to the process "ping", "pong" calls the pong │ │ │ function again, which causes it to get back to the receive again and wait for │ │ │ -another message.

          Now let us look at the process "ping". Recall that it was started by executing:

          tut15:ping(3, Pong_PID)

          Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ +another message.

          Now let us look at the process "ping". Recall that it was started by executing:

          tut15:ping(3, Pong_PID)

          Looking at the function ping/2, the second clause of ping/2 is executed │ │ │ since the value of the first argument is 3 (not 0) (first clause head is │ │ │ -ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

          The second clause sends a message to "pong":

          Pong_PID ! {ping, self()},

          self/0 returns the pid of the process that executes self/0, in this case the │ │ │ +ping(0,Pong_PID), second clause head is ping(N,Pong_PID), so N becomes 3).

          The second clause sends a message to "pong":

          Pong_PID ! {ping, self()},

          self/0 returns the pid of the process that executes self/0, in this case the │ │ │ pid of "ping". (Recall the code for "pong", this lands up in the variable │ │ │ Ping_PID in the receive previously explained.)

          "Ping" now waits for a reply from "pong":

          receive
          │ │ │      pong ->
          │ │ │ -        io:format("Ping received pong~n", [])
          │ │ │ +        io:format("Ping received pong~n", [])
          │ │ │  end,

          It writes "Ping received pong" when this reply arrives, after which "ping" calls │ │ │ -the ping function again.

          ping(N - 1, Pong_PID)

          N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ -occurs, the first clause of ping/2 is executed:

          ping(0, Pong_PID) ->
          │ │ │ +the ping function again.

          ping(N - 1, Pong_PID)

          N-1 causes the first argument to be decremented until it becomes 0. When this │ │ │ +occurs, the first clause of ping/2 is executed:

          ping(0, Pong_PID) ->
          │ │ │      Pong_PID !  finished,
          │ │ │ -    io:format("ping finished~n", []);

          The atom finished is sent to "pong" (causing it to terminate as described │ │ │ + io:format("ping finished~n", []);

          The atom finished is sent to "pong" (causing it to terminate as described │ │ │ above) and "ping finished" is written to the output. "Ping" then terminates as │ │ │ it has nothing left to do.

          │ │ │ │ │ │ │ │ │ │ │ │ Registered Process Names │ │ │

          │ │ │

          In the above example, "pong" was first created to be able to give the identity │ │ │ of "pong" when "ping" was started. That is, in some way "ping" must be able to │ │ │ know the identity of "pong" to be able to send a message to it. Sometimes │ │ │ processes which need to know each other's identities are started independently │ │ │ of each other. Erlang thus provides a mechanism for processes to be given names │ │ │ so that these names can be used as identities instead of pids. This is done by │ │ │ -using the register BIF:

          register(some_atom, Pid)

          Let us now rewrite the ping pong example using this and give the name pong to │ │ │ -the "pong" process:

          -module(tut16).
          │ │ │ +using the register BIF:

          register(some_atom, Pid)

          Let us now rewrite the ping pong example using this and give the name pong to │ │ │ +the "pong" process:

          -module(tut16).
          │ │ │  
          │ │ │ --export([start/0, ping/1, pong/0]).
          │ │ │ +-export([start/0, ping/1, pong/0]).
          │ │ │  
          │ │ │ -ping(0) ->
          │ │ │ +ping(0) ->
          │ │ │      pong ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N) ->
          │ │ │ -    pong ! {ping, self()},
          │ │ │ +ping(N) ->
          │ │ │ +    pong ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1).
          │ │ │ +    ping(N - 1).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start() ->
          │ │ │ -    register(pong, spawn(tut16, pong, [])),
          │ │ │ -    spawn(tut16, ping, [3]).
          2> c(tut16).
          │ │ │ -{ok, tut16}
          │ │ │ -3> tut16:start().
          │ │ │ +start() ->
          │ │ │ +    register(pong, spawn(tut16, pong, [])),
          │ │ │ +    spawn(tut16, ping, [3]).
          2> c(tut16).
          │ │ │ +{ok, tut16}
          │ │ │ +3> tut16:start().
          │ │ │  <0.38.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  ping finished
          │ │ │ -Pong finished

          Here the start/0 function,

          register(pong, spawn(tut16, pong, [])),

          both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ -process, messages can be sent to pong by:

          pong ! {ping, self()},

          ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

          │ │ │ +Pong finished

          Here the start/0 function,

          register(pong, spawn(tut16, pong, [])),

          both spawns the "pong" process and gives it the name pong. In the "ping" │ │ │ +process, messages can be sent to pong by:

          pong ! {ping, self()},

          ping/2 now becomes ping/1 as the argument Pong_PID is not needed.

          │ │ │ │ │ │ │ │ │ │ │ │ Distributed Programming │ │ │

          │ │ │

          Let us rewrite the ping pong program with "ping" and "pong" on different │ │ │ computers. First a few things are needed to set up to get this to work. The │ │ │ @@ -350,106 +350,106 @@ │ │ │ of the file. This is a requirement.

          When you start an Erlang system that is going to talk to other Erlang systems, │ │ │ you must give it a name, for example:

          $ erl -sname my_name

          We will see more details of this later. If you want to experiment with │ │ │ distributed Erlang, but you only have one computer to work on, you can start two │ │ │ separate Erlang systems on the same computer but give them different names. Each │ │ │ Erlang system running on a computer is called an Erlang node.

          (Note: erl -sname assumes that all nodes are in the same IP domain and we can │ │ │ use only the first component of the IP address, if we want to use nodes in │ │ │ different domains we use -name instead, but then all IP address must be given │ │ │ -in full.)

          Here is the ping pong example modified to run on two separate nodes:

          -module(tut17).
          │ │ │ +in full.)

          Here is the ping pong example modified to run on two separate nodes:

          -module(tut17).
          │ │ │  
          │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +ping(0, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! finished,
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ +ping(N, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start_pong() ->
          │ │ │ -    register(pong, spawn(tut17, pong, [])).
          │ │ │ +start_pong() ->
          │ │ │ +    register(pong, spawn(tut17, pong, [])).
          │ │ │  
          │ │ │ -start_ping(Pong_Node) ->
          │ │ │ -    spawn(tut17, ping, [3, Pong_Node]).

          Let us assume there are two computers called gollum and kosken. First a node is │ │ │ +start_ping(Pong_Node) -> │ │ │ + spawn(tut17, ping, [3, Pong_Node]).

          Let us assume there are two computers called gollum and kosken. First a node is │ │ │ started on kosken, called ping, and then a node on gollum, called pong.

          On kosken (on a Linux/UNIX system):

          kosken> erl -sname ping
          │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
          │ │ │  
          │ │ │  Eshell V5.2.3.7  (abort with ^G)
          │ │ │  (ping@kosken)1>

          On gollum:

          gollum> erl -sname pong
          │ │ │  Erlang (BEAM) emulator version 5.2.3.7 [hipe] [threads:0]
          │ │ │  
          │ │ │  Eshell V5.2.3.7  (abort with ^G)
          │ │ │ -(pong@gollum)1>

          Now the "pong" process on gollum is started:

          (pong@gollum)1> tut17:start_pong().
          │ │ │ +(pong@gollum)1>

          Now the "pong" process on gollum is started:

          (pong@gollum)1> tut17:start_pong().
          │ │ │  true

          And the "ping" process on kosken is started (from the code above you can see │ │ │ that a parameter of the start_ping function is the node name of the Erlang │ │ │ -system where "pong" is running):

          (ping@kosken)1> tut17:start_ping(pong@gollum).
          │ │ │ +system where "pong" is running):

          (ping@kosken)1> tut17:start_ping(pong@gollum).
          │ │ │  <0.37.0>
          │ │ │  Ping received pong
          │ │ │  Ping received pong
          │ │ │  Ping received pong
          │ │ │  ping finished

          As shown, the ping pong program has run. On the "pong" side:

          (pong@gollum)2> 
          │ │ │  Pong received ping
          │ │ │  Pong received ping
          │ │ │  Pong received ping
          │ │ │  Pong finished
          │ │ │ -(pong@gollum)2> 

          Looking at the tut17 code, you see that the pong function itself is │ │ │ +(pong@gollum)2>

          Looking at the tut17 code, you see that the pong function itself is │ │ │ unchanged, the following lines work in the same way irrespective of on which │ │ │ -node the "ping" process is executes:

          {ping, Ping_PID} ->
          │ │ │ -    io:format("Pong received ping~n", []),
          │ │ │ +node the "ping" process is executes:

          {ping, Ping_PID} ->
          │ │ │ +    io:format("Pong received ping~n", []),
          │ │ │      Ping_PID ! pong,

          Thus, Erlang pids contain information about where the process executes. So if │ │ │ you know the pid of a process, the ! operator can be used to send it a │ │ │ -message disregarding if the process is on the same node or on a different node.

          A difference is how messages are sent to a registered process on another node:

          {pong, Pong_Node} ! {ping, self()},

          A tuple {registered_name,node_name} is used instead of just the │ │ │ +message disregarding if the process is on the same node or on a different node.

          A difference is how messages are sent to a registered process on another node:

          {pong, Pong_Node} ! {ping, self()},

          A tuple {registered_name,node_name} is used instead of just the │ │ │ registered_name.

          In the previous example, "ping" and "pong" were started from the shells of two │ │ │ separate Erlang nodes. spawn can also be used to start processes in other │ │ │ nodes.

          The next example is the ping pong program, yet again, but this time "ping" is │ │ │ -started in another node:

          -module(tut18).
          │ │ │ +started in another node:

          -module(tut18).
          │ │ │  
          │ │ │ --export([start/1,  ping/2, pong/0]).
          │ │ │ +-export([start/1,  ping/2, pong/0]).
          │ │ │  
          │ │ │ -ping(0, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! finished,
          │ │ │ -    io:format("ping finished~n", []);
          │ │ │ +ping(0, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! finished,
          │ │ │ +    io:format("ping finished~n", []);
          │ │ │  
          │ │ │ -ping(N, Pong_Node) ->
          │ │ │ -    {pong, Pong_Node} ! {ping, self()},
          │ │ │ +ping(N, Pong_Node) ->
          │ │ │ +    {pong, Pong_Node} ! {ping, self()},
          │ │ │      receive
          │ │ │          pong ->
          │ │ │ -            io:format("Ping received pong~n", [])
          │ │ │ +            io:format("Ping received pong~n", [])
          │ │ │      end,
          │ │ │ -    ping(N - 1, Pong_Node).
          │ │ │ +    ping(N - 1, Pong_Node).
          │ │ │  
          │ │ │ -pong() ->
          │ │ │ +pong() ->
          │ │ │      receive
          │ │ │          finished ->
          │ │ │ -            io:format("Pong finished~n", []);
          │ │ │ -        {ping, Ping_PID} ->
          │ │ │ -            io:format("Pong received ping~n", []),
          │ │ │ +            io:format("Pong finished~n", []);
          │ │ │ +        {ping, Ping_PID} ->
          │ │ │ +            io:format("Pong received ping~n", []),
          │ │ │              Ping_PID ! pong,
          │ │ │ -            pong()
          │ │ │ +            pong()
          │ │ │      end.
          │ │ │  
          │ │ │ -start(Ping_Node) ->
          │ │ │ -    register(pong, spawn(tut18, pong, [])),
          │ │ │ -    spawn(Ping_Node, tut18, ping, [3, node()]).

          Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ -been started on kosken, then on gollum this is done:

          (pong@gollum)1> tut18:start(ping@kosken).
          │ │ │ +start(Ping_Node) ->
          │ │ │ +    register(pong, spawn(tut18, pong, [])),
          │ │ │ +    spawn(Ping_Node, tut18, ping, [3, node()]).

          Assuming an Erlang system called ping (but not the "ping" process) has already │ │ │ +been started on kosken, then on gollum this is done:

          (pong@gollum)1> tut18:start(ping@kosken).
          │ │ │  <3934.39.0>
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │  Pong received ping
          │ │ │  Ping received pong
          │ │ │ @@ -516,188 +516,188 @@
          │ │ │  %%% Started: messenger:client(Server_Node, Name)
          │ │ │  %%% To client: logoff
          │ │ │  %%% To client: {message_to, ToName, Message}
          │ │ │  %%%
          │ │ │  %%% Configuration: change the server_node() function to return the
          │ │ │  %%% name of the node where the messenger server runs
          │ │ │  
          │ │ │ --module(messenger).
          │ │ │ --export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
          │ │ │ +-module(messenger).
          │ │ │ +-export([start_server/0, server/1, logon/1, logoff/0, message/2, client/2]).
          │ │ │  
          │ │ │  %%% Change the function below to return the name of the node where the
          │ │ │  %%% messenger server runs
          │ │ │ -server_node() ->
          │ │ │ +server_node() ->
          │ │ │      messenger@super.
          │ │ │  
          │ │ │  %%% This is the server process for the "messenger"
          │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
          │ │ │ -server(User_List) ->
          │ │ │ +server(User_List) ->
          │ │ │      receive
          │ │ │ -        {From, logon, Name} ->
          │ │ │ -            New_User_List = server_logon(From, Name, User_List),
          │ │ │ -            server(New_User_List);
          │ │ │ -        {From, logoff} ->
          │ │ │ -            New_User_List = server_logoff(From, User_List),
          │ │ │ -            server(New_User_List);
          │ │ │ -        {From, message_to, To, Message} ->
          │ │ │ -            server_transfer(From, To, Message, User_List),
          │ │ │ -            io:format("list is now: ~p~n", [User_List]),
          │ │ │ -            server(User_List)
          │ │ │ +        {From, logon, Name} ->
          │ │ │ +            New_User_List = server_logon(From, Name, User_List),
          │ │ │ +            server(New_User_List);
          │ │ │ +        {From, logoff} ->
          │ │ │ +            New_User_List = server_logoff(From, User_List),
          │ │ │ +            server(New_User_List);
          │ │ │ +        {From, message_to, To, Message} ->
          │ │ │ +            server_transfer(From, To, Message, User_List),
          │ │ │ +            io:format("list is now: ~p~n", [User_List]),
          │ │ │ +            server(User_List)
          │ │ │      end.
          │ │ │  
          │ │ │  %%% Start the server
          │ │ │ -start_server() ->
          │ │ │ -    register(messenger, spawn(messenger, server, [[]])).
          │ │ │ +start_server() ->
          │ │ │ +    register(messenger, spawn(messenger, server, [[]])).
          │ │ │  
          │ │ │  
          │ │ │  %%% Server adds a new user to the user list
          │ │ │ -server_logon(From, Name, User_List) ->
          │ │ │ +server_logon(From, Name, User_List) ->
          │ │ │      %% check if logged on anywhere else
          │ │ │ -    case lists:keymember(Name, 2, User_List) of
          │ │ │ +    case lists:keymember(Name, 2, User_List) of
          │ │ │          true ->
          │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
          │ │ │              User_List;
          │ │ │          false ->
          │ │ │ -            From ! {messenger, logged_on},
          │ │ │ -            [{From, Name} | User_List]        %add user to the list
          │ │ │ +            From ! {messenger, logged_on},
          │ │ │ +            [{From, Name} | User_List]        %add user to the list
          │ │ │      end.
          │ │ │  
          │ │ │  %%% Server deletes a user from the user list
          │ │ │ -server_logoff(From, User_List) ->
          │ │ │ -    lists:keydelete(From, 1, User_List).
          │ │ │ +server_logoff(From, User_List) ->
          │ │ │ +    lists:keydelete(From, 1, User_List).
          │ │ │  
          │ │ │  
          │ │ │  %%% Server transfers a message between user
          │ │ │ -server_transfer(From, To, Message, User_List) ->
          │ │ │ +server_transfer(From, To, Message, User_List) ->
          │ │ │      %% check that the user is logged on and who he is
          │ │ │ -    case lists:keysearch(From, 1, User_List) of
          │ │ │ +    case lists:keysearch(From, 1, User_List) of
          │ │ │          false ->
          │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ -        {value, {From, Name}} ->
          │ │ │ -            server_transfer(From, Name, To, Message, User_List)
          │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
          │ │ │ +        {value, {From, Name}} ->
          │ │ │ +            server_transfer(From, Name, To, Message, User_List)
          │ │ │      end.
          │ │ │  %%% If the user exists, send the message
          │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
          │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
          │ │ │      %% Find the receiver and send the message
          │ │ │ -    case lists:keysearch(To, 2, User_List) of
          │ │ │ +    case lists:keysearch(To, 2, User_List) of
          │ │ │          false ->
          │ │ │ -            From ! {messenger, receiver_not_found};
          │ │ │ -        {value, {ToPid, To}} ->
          │ │ │ -            ToPid ! {message_from, Name, Message},
          │ │ │ -            From ! {messenger, sent}
          │ │ │ +            From ! {messenger, receiver_not_found};
          │ │ │ +        {value, {ToPid, To}} ->
          │ │ │ +            ToPid ! {message_from, Name, Message},
          │ │ │ +            From ! {messenger, sent}
          │ │ │      end.
          │ │ │  
          │ │ │  
          │ │ │  %%% User Commands
          │ │ │ -logon(Name) ->
          │ │ │ -    case whereis(mess_client) of
          │ │ │ +logon(Name) ->
          │ │ │ +    case whereis(mess_client) of
          │ │ │          undefined ->
          │ │ │ -            register(mess_client,
          │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
          │ │ │ +            register(mess_client,
          │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
          │ │ │          _ -> already_logged_on
          │ │ │      end.
          │ │ │  
          │ │ │ -logoff() ->
          │ │ │ +logoff() ->
          │ │ │      mess_client ! logoff.
          │ │ │  
          │ │ │ -message(ToName, Message) ->
          │ │ │ -    case whereis(mess_client) of % Test if the client is running
          │ │ │ +message(ToName, Message) ->
          │ │ │ +    case whereis(mess_client) of % Test if the client is running
          │ │ │          undefined ->
          │ │ │              not_logged_on;
          │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
          │ │ │               ok
          │ │ │  end.
          │ │ │  
          │ │ │  
          │ │ │  %%% The client process which runs on each server node
          │ │ │ -client(Server_Node, Name) ->
          │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ -    await_result(),
          │ │ │ -    client(Server_Node).
          │ │ │ +client(Server_Node, Name) ->
          │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
          │ │ │ +    await_result(),
          │ │ │ +    client(Server_Node).
          │ │ │  
          │ │ │ -client(Server_Node) ->
          │ │ │ +client(Server_Node) ->
          │ │ │      receive
          │ │ │          logoff ->
          │ │ │ -            {messenger, Server_Node} ! {self(), logoff},
          │ │ │ -            exit(normal);
          │ │ │ -        {message_to, ToName, Message} ->
          │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ -            await_result();
          │ │ │ -        {message_from, FromName, Message} ->
          │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │ +            {messenger, Server_Node} ! {self(), logoff},
          │ │ │ +            exit(normal);
          │ │ │ +        {message_to, ToName, Message} ->
          │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
          │ │ │ +            await_result();
          │ │ │ +        {message_from, FromName, Message} ->
          │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
          │ │ │      end,
          │ │ │ -    client(Server_Node).
          │ │ │ +    client(Server_Node).
          │ │ │  
          │ │ │  %%% wait for a response from the server
          │ │ │ -await_result() ->
          │ │ │ +await_result() ->
          │ │ │      receive
          │ │ │ -        {messenger, stop, Why} -> % Stop the client
          │ │ │ -            io:format("~p~n", [Why]),
          │ │ │ -            exit(normal);
          │ │ │ -        {messenger, What} ->  % Normal response
          │ │ │ -            io:format("~p~n", [What])
          │ │ │ +        {messenger, stop, Why} -> % Stop the client
          │ │ │ +            io:format("~p~n", [Why]),
          │ │ │ +            exit(normal);
          │ │ │ +        {messenger, What} ->  % Normal response
          │ │ │ +            io:format("~p~n", [What])
          │ │ │      end.

          To use this program, you need to:

          • Configure the server_node() function.
          • Copy the compiled code (messenger.beam) to the directory on each computer │ │ │ where you start Erlang.

          In the following example using this program, nodes are started on four different │ │ │ computers. If you do not have that many machines available on your network, you │ │ │ can start several nodes on the same machine.

          Four Erlang nodes are started up: messenger@super, c1@bilbo, c2@kosken, │ │ │ -c3@gollum.

          First the server at messenger@super is started up:

          (messenger@super)1> messenger:start_server().
          │ │ │ -true

          Now Peter logs on at c1@bilbo:

          (c1@bilbo)1> messenger:logon(peter).
          │ │ │ +c3@gollum.

          First the server at messenger@super is started up:

          (messenger@super)1> messenger:start_server().
          │ │ │ +true

          Now Peter logs on at c1@bilbo:

          (c1@bilbo)1> messenger:logon(peter).
          │ │ │  true
          │ │ │ -logged_on

          James logs on at c2@kosken:

          (c2@kosken)1> messenger:logon(james).
          │ │ │ +logged_on

          James logs on at c2@kosken:

          (c2@kosken)1> messenger:logon(james).
          │ │ │  true
          │ │ │ -logged_on

          And Fred logs on at c3@gollum:

          (c3@gollum)1> messenger:logon(fred).
          │ │ │ +logged_on

          And Fred logs on at c3@gollum:

          (c3@gollum)1> messenger:logon(fred).
          │ │ │  true
          │ │ │ -logged_on

          Now Peter sends Fred a message:

          (c1@bilbo)2> messenger:message(fred, "hello").
          │ │ │ +logged_on

          Now Peter sends Fred a message:

          (c1@bilbo)2> messenger:message(fred, "hello").
          │ │ │  ok
          │ │ │  sent

          Fred receives the message and sends a message to Peter and logs off:

          Message from peter: "hello"
          │ │ │ -(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
          │ │ │ +(c3@gollum)2> messenger:message(peter, "go away, I'm busy").
          │ │ │  ok
          │ │ │  sent
          │ │ │ -(c3@gollum)3> messenger:logoff().
          │ │ │ -logoff

          James now tries to send a message to Fred:

          (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
          │ │ │ +(c3@gollum)3> messenger:logoff().
          │ │ │ +logoff

          James now tries to send a message to Fred:

          (c2@kosken)2> messenger:message(fred, "peter doesn't like you").
          │ │ │  ok
          │ │ │  receiver_not_found

          But this fails as Fred has already logged off.

          First let us look at some of the new concepts that have been introduced.

          There are two versions of the server_transfer function: one with four │ │ │ arguments (server_transfer/4) and one with five (server_transfer/5). These │ │ │ are regarded by Erlang as two separate functions.

          Notice how to write the server function so that it calls itself, through │ │ │ server(User_List), and thus creates a loop. The Erlang compiler is "clever" │ │ │ and optimizes the code so that this really is a sort of loop and not a proper │ │ │ function call. But this only works if there is no code after the call. │ │ │ Otherwise, the compiler expects the call to return and make a proper function │ │ │ call. This would result in the process getting bigger and bigger for every loop.

          Functions in the lists module are used. This is a very useful module and a │ │ │ study of the manual page is recommended (erl -man lists). │ │ │ lists:keymember(Key,Position,Lists) looks through a list of tuples and looks │ │ │ at Position in each tuple to see if it is the same as Key. The first element │ │ │ is position 1. If it finds a tuple where the element at Position is the same │ │ │ -as Key, it returns true, otherwise false.

          3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +as Key, it returns true, otherwise false.

          3> lists:keymember(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │  true
          │ │ │ -4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +4> lists:keymember(p, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │  false

          lists:keydelete works in the same way but deletes the first tuple found (if │ │ │ -any) and returns the remaining list:

          5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ -[{x,y,z},{b,b,b},{q,r,s}]

          lists:keysearch is like lists:keymember, but it returns │ │ │ +any) and returns the remaining list:

          5> lists:keydelete(a, 2, [{x,y,z},{b,b,b},{b,a,c},{q,r,s}]).
          │ │ │ +[{x,y,z},{b,b,b},{q,r,s}]

          lists:keysearch is like lists:keymember, but it returns │ │ │ {value,Tuple_Found} or the atom false.

          There are many very useful functions in the lists module.

          An Erlang process (conceptually) runs until it does a receive and there is no │ │ │ message which it wants to receive in the message queue. "conceptually" is used │ │ │ here because the Erlang system shares the CPU time between the active processes │ │ │ in the system.

          A process terminates when there is nothing more for it to do, that is, the last │ │ │ function it calls simply returns and does not call another function. Another way │ │ │ for a process to terminate is for it to call exit/1. The argument │ │ │ to exit/1 has a special meaning, which is discussed later. In this │ │ │ example, exit(normal) is done, which has the same effect as a │ │ │ process running out of functions to call.

          The BIF whereis(RegisteredName) checks if a registered process │ │ │ of name RegisteredName exists. If it exists, the pid of that process is │ │ │ returned. If it does not exist, the atom undefined is returned.

          You should by now be able to understand most of the code in the │ │ │ messenger-module. Let us study one case in detail: a message is sent from one │ │ │ -user to another.

          The first user "sends" the message in the example above by:

          messenger:message(fred, "hello")

          After testing that the client process exists:

          whereis(mess_client)

          And a message is sent to mess_client:

          mess_client ! {message_to, fred, "hello"}

          The client sends the message to the server by:

          {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

          And waits for a reply from the server.

          The server receives this message and calls:

          server_transfer(From, fred, "hello", User_List),

          This checks that the pid From is in the User_List:

          lists:keysearch(From, 1, User_List)

          If keysearch returns the atom false, some error has occurred and the server │ │ │ -sends back the message:

          From ! {messenger, stop, you_are_not_logged_on}

          This is received by the client, which in turn does exit(normal) │ │ │ +user to another.

          The first user "sends" the message in the example above by:

          messenger:message(fred, "hello")

          After testing that the client process exists:

          whereis(mess_client)

          And a message is sent to mess_client:

          mess_client ! {message_to, fred, "hello"}

          The client sends the message to the server by:

          {messenger, messenger@super} ! {self(), message_to, fred, "hello"},

          And waits for a reply from the server.

          The server receives this message and calls:

          server_transfer(From, fred, "hello", User_List),

          This checks that the pid From is in the User_List:

          lists:keysearch(From, 1, User_List)

          If keysearch returns the atom false, some error has occurred and the server │ │ │ +sends back the message:

          From ! {messenger, stop, you_are_not_logged_on}

          This is received by the client, which in turn does exit(normal) │ │ │ and terminates. If keysearch returns {value,{From,Name}} it is certain that │ │ │ -the user is logged on and that his name (peter) is in variable Name.

          Let us now call:

          server_transfer(From, peter, fred, "hello", User_List)

          Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ +the user is logged on and that his name (peter) is in variable Name.

          Let us now call:

          server_transfer(From, peter, fred, "hello", User_List)

          Notice that as this is server_transfer/5, it is not the same as the previous │ │ │ function server_transfer/4. Another keysearch is done on User_List to find │ │ │ -the pid of the client corresponding to fred:

          lists:keysearch(fred, 2, User_List)

          This time argument 2 is used, which is the second element in the tuple. If this │ │ │ +the pid of the client corresponding to fred:

          lists:keysearch(fred, 2, User_List)

          This time argument 2 is used, which is the second element in the tuple. If this │ │ │ returns the atom false, fred is not logged on and the following message is │ │ │ -sent:

          From ! {messenger, receiver_not_found};

          This is received by the client.

          If keysearch returns:

          {value, {ToPid, fred}}

          The following message is sent to fred's client:

          ToPid ! {message_from, peter, "hello"},

          The following message is sent to peter's client:

          From ! {messenger, sent}

          Fred's client receives the message and prints it:

          {message_from, peter, "hello"} ->
          │ │ │ -    io:format("Message from ~p: ~p~n", [peter, "hello"])

          Peter's client receives the message in the await_result function.

          │ │ │ +sent:

          From ! {messenger, receiver_not_found};

          This is received by the client.

          If keysearch returns:

          {value, {ToPid, fred}}

          The following message is sent to fred's client:

          ToPid ! {message_from, peter, "hello"},

          The following message is sent to peter's client:

          From ! {messenger, sent}

          Fred's client receives the message and prints it:

          {message_from, peter, "hello"} ->
          │ │ │ +    io:format("Message from ~p: ~p~n", [peter, "hello"])

          Peter's client receives the message in the await_result function.

          │ │ │

          │ │ │ │ │ │
          │ │ │
          │ │ │ │ │ │

          rel(4) manual page in │ │ │ SASL), which specifies the ERTS version and lists all applications that are to │ │ │ be included in the new basic target system. An example is the following │ │ │ mysystem.rel file:

          %% mysystem.rel
          │ │ │ -{release,
          │ │ │ - {"MYSYSTEM", "FIRST"},
          │ │ │ - {erts, "5.10.4"},
          │ │ │ - [{kernel, "2.16.4"},
          │ │ │ -  {stdlib, "1.19.4"},
          │ │ │ -  {sasl, "2.3.4"},
          │ │ │ -  {pea, "1.0"}]}.

          The listed applications are not only original Erlang/OTP applications but │ │ │ +{release, │ │ │ + {"MYSYSTEM", "FIRST"}, │ │ │ + {erts, "5.10.4"}, │ │ │ + [{kernel, "2.16.4"}, │ │ │ + {stdlib, "1.19.4"}, │ │ │ + {sasl, "2.3.4"}, │ │ │ + {pea, "1.0"}]}.

          The listed applications are not only original Erlang/OTP applications but │ │ │ possibly also new applications that you have written (here exemplified by the │ │ │ application Pea (pea)).

          Step 2. Start Erlang/OTP from the directory where the mysystem.rel file │ │ │ resides:

          % erl -pa /home/user/target_system/myapps/pea-1.0/ebin

          The -pa argument prepends the path to the ebin directory for │ │ │ the Pea application to the code path.

          Step 3. Create the target system:

          1> target_system:create("mysystem").

          The function target_system:create/1 performs the following:

          1. Reads the file mysystem.rel and creates a new file plain.rel. │ │ │ The new file is identical to the original, except that it only │ │ │ lists the Kernel and STDLIB applications.

          2. From the files mysystem.rel and plain.rel creates the files │ │ │ mysystem.script, mysystem.boot, plain.script, and plain.boot │ │ │ @@ -242,25 +242,25 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating the Next Version │ │ │ │ │ │

            In this example the Pea application has been changed, and so are the │ │ │ applications ERTS, Kernel, STDLIB and SASL.

            Step 1. Create the file .rel:

            %% mysystem2.rel
            │ │ │ -{release,
            │ │ │ - {"MYSYSTEM", "SECOND"},
            │ │ │ - {erts, "6.0"},
            │ │ │ - [{kernel, "3.0"},
            │ │ │ -  {stdlib, "2.0"},
            │ │ │ -  {sasl, "2.4"},
            │ │ │ -  {pea, "2.0"}]}.

            Step 2. Create the application upgrade file (see │ │ │ +{release, │ │ │ + {"MYSYSTEM", "SECOND"}, │ │ │ + {erts, "6.0"}, │ │ │ + [{kernel, "3.0"}, │ │ │ + {stdlib, "2.0"}, │ │ │ + {sasl, "2.4"}, │ │ │ + {pea, "2.0"}]}.

          Step 2. Create the application upgrade file (see │ │ │ appup in SASL) for Pea, for example:

          %% pea.appup
          │ │ │ -{"2.0",
          │ │ │ - [{"1.0",[{load_module,pea_lib}]}],
          │ │ │ - [{"1.0",[{load_module,pea_lib}]}]}.

          Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ +{"2.0", │ │ │ + [{"1.0",[{load_module,pea_lib}]}], │ │ │ + [{"1.0",[{load_module,pea_lib}]}]}.

      Step 3. From the directory where the file mysystem2.rel resides, start the │ │ │ Erlang/OTP system, giving the path to the new version of Pea:

      % erl -pa /home/user/target_system/myapps/pea-2.0/ebin

      Step 4. Create the release upgrade file (see relup │ │ │ in SASL):

      1> systools:make_relup("mysystem2",["mysystem"],["mysystem"],
      │ │ │      [{path,["/home/user/target_system/myapps/pea-1.0/ebin",
      │ │ │      "/my/old/erlang/lib/*/ebin"]}]).

      Here "mysystem" is the base release and "mysystem2" is the release to │ │ │ upgrade to.

      The path option is used for pointing out the old version of all applications. │ │ │ (The new versions are already in the code path - assuming of course that the │ │ │ Erlang node on which this is executed is running the correct version of │ │ │ @@ -292,21 +292,21 @@ │ │ │ {continue_after_restart,"FIRST",[]} │ │ │ heart: Tue Apr 1 12:15:10 2014: Erlang has closed. │ │ │ heart: Tue Apr 1 12:15:11 2014: Executed "/usr/local/erl-target/bin/start /usr/local/erl-target/releases/new_start_erl.data" -> 0. Terminating. │ │ │ [End]

      The above return value and output after the call to │ │ │ release_handler:install_release/1 means that the release_handler has │ │ │ restarted the node by using heart. This is always done when the upgrade │ │ │ involves a change of the applications ERTS, Kernel, STDLIB, or SASL. For more │ │ │ -information, see Upgrade when Erlang/OTP has Changed.

      The node is accessible through a new pipe:

      % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

      List the available releases in the system:

      1> release_handler:which_releases().
      │ │ │ -[{"MYSYSTEM","SECOND",
      │ │ │ -  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │ -  current},
      │ │ │ - {"MYSYSTEM","FIRST",
      │ │ │ -  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ -  permanent}]

      Our new release, "SECOND", is now the current release, but we can also see that │ │ │ +information, see Upgrade when Erlang/OTP has Changed.

      The node is accessible through a new pipe:

      % /usr/local/erl-target/bin/to_erl /tmp/erlang.pipe.2

      List the available releases in the system:

      1> release_handler:which_releases().
      │ │ │ +[{"MYSYSTEM","SECOND",
      │ │ │ +  ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │ +  current},
      │ │ │ + {"MYSYSTEM","FIRST",
      │ │ │ +  ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ +  permanent}]

      Our new release, "SECOND", is now the current release, but we can also see that │ │ │ our "FIRST" release is still permanent. This means that if the node would be │ │ │ restarted now, it would come up running the "FIRST" release again.

      Step 3. Make the new release permanent:

      2> release_handler:make_permanent("SECOND").

      Check the releases again:

      3> release_handler:which_releases().
      │ │ │  [{"MYSYSTEM","SECOND",
      │ │ │    ["kernel-3.0","stdlib-2.0","sasl-2.4","pea-2.0"],
      │ │ │    permanent},
      │ │ │   {"MYSYSTEM","FIRST",
      │ │ │    ["kernel-2.16.4","stdlib-1.19.4","sasl-2.3.4","pea-1.0"],
      │ │ │ @@ -315,268 +315,268 @@
      │ │ │    
      │ │ │      
      │ │ │    
      │ │ │    Listing of target_system.erl
      │ │ │  
      │ │ │  

      This module can also be found in the examples directory of the SASL │ │ │ application.

      
      │ │ │ --module(target_system).
      │ │ │ --export([create/1, create/2, install/2]).
      │ │ │ +-module(target_system).
      │ │ │ +-export([create/1, create/2, install/2]).
      │ │ │  
      │ │ │  %% Note: RelFileName below is the *stem* without trailing .rel,
      │ │ │  %% .script etc.
      │ │ │  %%
      │ │ │  
      │ │ │  %% create(RelFileName)
      │ │ │  %%
      │ │ │ -create(RelFileName) ->
      │ │ │ -    create(RelFileName,[]).
      │ │ │ +create(RelFileName) ->
      │ │ │ +    create(RelFileName,[]).
      │ │ │  
      │ │ │ -create(RelFileName,SystoolsOpts) ->
      │ │ │ +create(RelFileName,SystoolsOpts) ->
      │ │ │      RelFile = RelFileName ++ ".rel",
      │ │ │ -    Dir = filename:dirname(RelFileName),
      │ │ │ -    PlainRelFileName = filename:join(Dir,"plain"),
      │ │ │ +    Dir = filename:dirname(RelFileName),
      │ │ │ +    PlainRelFileName = filename:join(Dir,"plain"),
      │ │ │      PlainRelFile = PlainRelFileName ++ ".rel",
      │ │ │ -    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
      │ │ │ -    {ok, [RelSpec]} = file:consult(RelFile),
      │ │ │ -    io:fwrite("Creating file: ~ts from ~ts ...~n",
      │ │ │ -              [PlainRelFile, RelFile]),
      │ │ │ -    {release,
      │ │ │ -     {RelName, RelVsn},
      │ │ │ -     {erts, ErtsVsn},
      │ │ │ -     AppVsns} = RelSpec,
      │ │ │ -    PlainRelSpec = {release,
      │ │ │ -                    {RelName, RelVsn},
      │ │ │ -                    {erts, ErtsVsn},
      │ │ │ -                    lists:filter(fun({kernel, _}) ->
      │ │ │ +    io:fwrite("Reading file: ~ts ...~n", [RelFile]),
      │ │ │ +    {ok, [RelSpec]} = file:consult(RelFile),
      │ │ │ +    io:fwrite("Creating file: ~ts from ~ts ...~n",
      │ │ │ +              [PlainRelFile, RelFile]),
      │ │ │ +    {release,
      │ │ │ +     {RelName, RelVsn},
      │ │ │ +     {erts, ErtsVsn},
      │ │ │ +     AppVsns} = RelSpec,
      │ │ │ +    PlainRelSpec = {release,
      │ │ │ +                    {RelName, RelVsn},
      │ │ │ +                    {erts, ErtsVsn},
      │ │ │ +                    lists:filter(fun({kernel, _}) ->
      │ │ │                                           true;
      │ │ │ -                                    ({stdlib, _}) ->
      │ │ │ +                                    ({stdlib, _}) ->
      │ │ │                                           true;
      │ │ │ -                                    (_) ->
      │ │ │ +                                    (_) ->
      │ │ │                                           false
      │ │ │ -                                 end, AppVsns)
      │ │ │ -                   },
      │ │ │ -    {ok, Fd} = file:open(PlainRelFile, [write]),
      │ │ │ -    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
      │ │ │ -    file:close(Fd),
      │ │ │ -
      │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ -	      [PlainRelFileName,PlainRelFileName]),
      │ │ │ -    make_script(PlainRelFileName,SystoolsOpts),
      │ │ │ -
      │ │ │ -    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ -              [RelFileName, RelFileName]),
      │ │ │ -    make_script(RelFileName,SystoolsOpts),
      │ │ │ +                                 end, AppVsns)
      │ │ │ +                   },
      │ │ │ +    {ok, Fd} = file:open(PlainRelFile, [write]),
      │ │ │ +    io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
      │ │ │ +    file:close(Fd),
      │ │ │ +
      │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ +	      [PlainRelFileName,PlainRelFileName]),
      │ │ │ +    make_script(PlainRelFileName,SystoolsOpts),
      │ │ │ +
      │ │ │ +    io:fwrite("Making \"~ts.script\" and \"~ts.boot\" files ...~n",
      │ │ │ +              [RelFileName, RelFileName]),
      │ │ │ +    make_script(RelFileName,SystoolsOpts),
      │ │ │  
      │ │ │      TarFileName = RelFileName ++ ".tar.gz",
      │ │ │ -    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
      │ │ │ -    make_tar(RelFileName,SystoolsOpts),
      │ │ │ +    io:fwrite("Creating tar file ~ts ...~n", [TarFileName]),
      │ │ │ +    make_tar(RelFileName,SystoolsOpts),
      │ │ │  
      │ │ │ -    TmpDir = filename:join(Dir,"tmp"),
      │ │ │ -    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
      │ │ │ -    file:make_dir(TmpDir),
      │ │ │ -
      │ │ │ -    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
      │ │ │ -    extract_tar(TarFileName, TmpDir),
      │ │ │ -
      │ │ │ -    TmpBinDir = filename:join([TmpDir, "bin"]),
      │ │ │ -    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
      │ │ │ -    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
      │ │ │ -              [ErtsBinDir]),
      │ │ │ -    file:delete(filename:join([ErtsBinDir, "erl"])),
      │ │ │ -    file:delete(filename:join([ErtsBinDir, "start"])),
      │ │ │ -
      │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
      │ │ │ -    file:make_dir(TmpBinDir),
      │ │ │ -
      │ │ │ -    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
      │ │ │ -              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
      │ │ │ -    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
      │ │ │ +    TmpDir = filename:join(Dir,"tmp"),
      │ │ │ +    io:fwrite("Creating directory ~tp ...~n",[TmpDir]),
      │ │ │ +    file:make_dir(TmpDir),
      │ │ │ +
      │ │ │ +    io:fwrite("Extracting ~ts into directory ~ts ...~n", [TarFileName,TmpDir]),
      │ │ │ +    extract_tar(TarFileName, TmpDir),
      │ │ │ +
      │ │ │ +    TmpBinDir = filename:join([TmpDir, "bin"]),
      │ │ │ +    ErtsBinDir = filename:join([TmpDir, "erts-" ++ ErtsVsn, "bin"]),
      │ │ │ +    io:fwrite("Deleting \"erl\" and \"start\" in directory ~ts ...~n",
      │ │ │ +              [ErtsBinDir]),
      │ │ │ +    file:delete(filename:join([ErtsBinDir, "erl"])),
      │ │ │ +    file:delete(filename:join([ErtsBinDir, "start"])),
      │ │ │ +
      │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpBinDir]),
      │ │ │ +    file:make_dir(TmpBinDir),
      │ │ │ +
      │ │ │ +    io:fwrite("Copying file \"~ts.boot\" to ~ts ...~n",
      │ │ │ +              [PlainRelFileName, filename:join([TmpBinDir, "start.boot"])]),
      │ │ │ +    copy_file(PlainRelFileName++".boot",filename:join([TmpBinDir, "start.boot"])),
      │ │ │  
      │ │ │ -    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
      │ │ │ +    io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
      │ │ │                "~ts to ~ts ...~n",
      │ │ │ -              [ErtsBinDir, TmpBinDir]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "epmd"]),
      │ │ │ -              filename:join([TmpBinDir, "epmd"]), [preserve]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "run_erl"]),
      │ │ │ -              filename:join([TmpBinDir, "run_erl"]), [preserve]),
      │ │ │ -    copy_file(filename:join([ErtsBinDir, "to_erl"]),
      │ │ │ -              filename:join([TmpBinDir, "to_erl"]), [preserve]),
      │ │ │ +              [ErtsBinDir, TmpBinDir]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "epmd"]),
      │ │ │ +              filename:join([TmpBinDir, "epmd"]), [preserve]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "run_erl"]),
      │ │ │ +              filename:join([TmpBinDir, "run_erl"]), [preserve]),
      │ │ │ +    copy_file(filename:join([ErtsBinDir, "to_erl"]),
      │ │ │ +              filename:join([TmpBinDir, "to_erl"]), [preserve]),
      │ │ │  
      │ │ │      %% This is needed if 'start' script created from 'start.src' shall
      │ │ │      %% be used as it points out this directory as log dir for 'run_erl'
      │ │ │ -    TmpLogDir = filename:join([TmpDir, "log"]),
      │ │ │ -    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
      │ │ │ -    ok = file:make_dir(TmpLogDir),
      │ │ │ -
      │ │ │ -    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
      │ │ │ -    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
      │ │ │ -    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
      │ │ │ -    write_file(StartErlDataFile, StartErlData),
      │ │ │ -
      │ │ │ -    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
      │ │ │ -	      [TarFileName,TmpDir]),
      │ │ │ -    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
      │ │ │ +    TmpLogDir = filename:join([TmpDir, "log"]),
      │ │ │ +    io:fwrite("Creating temporary directory ~ts ...~n", [TmpLogDir]),
      │ │ │ +    ok = file:make_dir(TmpLogDir),
      │ │ │ +
      │ │ │ +    StartErlDataFile = filename:join([TmpDir, "releases", "start_erl.data"]),
      │ │ │ +    io:fwrite("Creating ~ts ...~n", [StartErlDataFile]),
      │ │ │ +    StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
      │ │ │ +    write_file(StartErlDataFile, StartErlData),
      │ │ │ +
      │ │ │ +    io:fwrite("Recreating tar file ~ts from contents in directory ~ts ...~n",
      │ │ │ +	      [TarFileName,TmpDir]),
      │ │ │ +    {ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
      │ │ │      %% {ok, Cwd} = file:get_cwd(),
      │ │ │      %% file:set_cwd("tmp"),
      │ │ │      ErtsDir = "erts-"++ErtsVsn,
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
      │ │ │ -    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
      │ │ │ -    erl_tar:close(Tar),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"bin"), "bin", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,ErtsDir), ErtsDir, []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"releases"), "releases", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"lib"), "lib", []),
      │ │ │ +    erl_tar:add(Tar, filename:join(TmpDir,"log"), "log", []),
      │ │ │ +    erl_tar:close(Tar),
      │ │ │      %% file:set_cwd(Cwd),
      │ │ │ -    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
      │ │ │ -    remove_dir_tree(TmpDir),
      │ │ │ +    io:fwrite("Removing directory ~ts ...~n",[TmpDir]),
      │ │ │ +    remove_dir_tree(TmpDir),
      │ │ │      ok.
      │ │ │  
      │ │ │  
      │ │ │ -install(RelFileName, RootDir) ->
      │ │ │ +install(RelFileName, RootDir) ->
      │ │ │      TarFile = RelFileName ++ ".tar.gz",
      │ │ │ -    io:fwrite("Extracting ~ts ...~n", [TarFile]),
      │ │ │ -    extract_tar(TarFile, RootDir),
      │ │ │ -    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
      │ │ │ -    {ok, StartErlData} = read_txt_file(StartErlDataFile),
      │ │ │ -    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
      │ │ │ -    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
      │ │ │ -    BinDir = filename:join([RootDir, "bin"]),
      │ │ │ -    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
      │ │ │ -              "form erl, start and start_erl ...\n"),
      │ │ │ -    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
      │ │ │ -                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
      │ │ │ -                      [preserve]),
      │ │ │ +    io:fwrite("Extracting ~ts ...~n", [TarFile]),
      │ │ │ +    extract_tar(TarFile, RootDir),
      │ │ │ +    StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
      │ │ │ +    {ok, StartErlData} = read_txt_file(StartErlDataFile),
      │ │ │ +    [ErlVsn, _RelVsn| _] = string:tokens(StartErlData, " \n"),
      │ │ │ +    ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
      │ │ │ +    BinDir = filename:join([RootDir, "bin"]),
      │ │ │ +    io:fwrite("Substituting in erl.src, start.src and start_erl.src to "
      │ │ │ +              "form erl, start and start_erl ...\n"),
      │ │ │ +    subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,
      │ │ │ +                      [{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
      │ │ │ +                      [preserve]),
      │ │ │      %%! Workaround for pre OTP 17.0: start.src and start_erl.src did
      │ │ │      %%! not have correct permissions, so the above 'preserve' option did not help
      │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
      │ │ │ -    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
      │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start"),8#0755),
      │ │ │ +    ok = file:change_mode(filename:join(BinDir,"start_erl"),8#0755),
      │ │ │  
      │ │ │ -    io:fwrite("Creating the RELEASES file ...\n"),
      │ │ │ -    create_RELEASES(RootDir, filename:join([RootDir, "releases",
      │ │ │ -					    filename:basename(RelFileName)])).
      │ │ │ +    io:fwrite("Creating the RELEASES file ...\n"),
      │ │ │ +    create_RELEASES(RootDir, filename:join([RootDir, "releases",
      │ │ │ +					    filename:basename(RelFileName)])).
      │ │ │  
      │ │ │  %% LOCALS
      │ │ │  
      │ │ │  %% make_script(RelFileName,Opts)
      │ │ │  %%
      │ │ │ -make_script(RelFileName,Opts) ->
      │ │ │ -    systools:make_script(RelFileName, [no_module_tests,
      │ │ │ -				       {outdir,filename:dirname(RelFileName)}
      │ │ │ -				       |Opts]).
      │ │ │ +make_script(RelFileName,Opts) ->
      │ │ │ +    systools:make_script(RelFileName, [no_module_tests,
      │ │ │ +				       {outdir,filename:dirname(RelFileName)}
      │ │ │ +				       |Opts]).
      │ │ │  
      │ │ │  %% make_tar(RelFileName,Opts)
      │ │ │  %%
      │ │ │ -make_tar(RelFileName,Opts) ->
      │ │ │ -    RootDir = code:root_dir(),
      │ │ │ -    systools:make_tar(RelFileName, [{erts, RootDir},
      │ │ │ -				    {outdir,filename:dirname(RelFileName)}
      │ │ │ -				    |Opts]).
      │ │ │ +make_tar(RelFileName,Opts) ->
      │ │ │ +    RootDir = code:root_dir(),
      │ │ │ +    systools:make_tar(RelFileName, [{erts, RootDir},
      │ │ │ +				    {outdir,filename:dirname(RelFileName)}
      │ │ │ +				    |Opts]).
      │ │ │  
      │ │ │  %% extract_tar(TarFile, DestDir)
      │ │ │  %%
      │ │ │ -extract_tar(TarFile, DestDir) ->
      │ │ │ -    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
      │ │ │ +extract_tar(TarFile, DestDir) ->
      │ │ │ +    erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).
      │ │ │  
      │ │ │ -create_RELEASES(DestDir, RelFileName) ->
      │ │ │ -    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
      │ │ │ +create_RELEASES(DestDir, RelFileName) ->
      │ │ │ +    release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").
      │ │ │  
      │ │ │ -subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ -    lists:foreach(fun(Script) ->
      │ │ │ -                          subst_src_script(Script, SrcDir, DestDir,
      │ │ │ -                                           Vars, Opts)
      │ │ │ -                  end, Scripts).
      │ │ │ -
      │ │ │ -subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ -    subst_file(filename:join([SrcDir, Script ++ ".src"]),
      │ │ │ -               filename:join([DestDir, Script]),
      │ │ │ -               Vars, Opts).
      │ │ │ -
      │ │ │ -subst_file(Src, Dest, Vars, Opts) ->
      │ │ │ -    {ok, Conts} = read_txt_file(Src),
      │ │ │ -    NConts = subst(Conts, Vars),
      │ │ │ -    write_file(Dest, NConts),
      │ │ │ -    case lists:member(preserve, Opts) of
      │ │ │ +subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ +    lists:foreach(fun(Script) ->
      │ │ │ +                          subst_src_script(Script, SrcDir, DestDir,
      │ │ │ +                                           Vars, Opts)
      │ │ │ +                  end, Scripts).
      │ │ │ +
      │ │ │ +subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
      │ │ │ +    subst_file(filename:join([SrcDir, Script ++ ".src"]),
      │ │ │ +               filename:join([DestDir, Script]),
      │ │ │ +               Vars, Opts).
      │ │ │ +
      │ │ │ +subst_file(Src, Dest, Vars, Opts) ->
      │ │ │ +    {ok, Conts} = read_txt_file(Src),
      │ │ │ +    NConts = subst(Conts, Vars),
      │ │ │ +    write_file(Dest, NConts),
      │ │ │ +    case lists:member(preserve, Opts) of
      │ │ │          true ->
      │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ -            file:write_file_info(Dest, FileInfo);
      │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ +            file:write_file_info(Dest, FileInfo);
      │ │ │          false ->
      │ │ │              ok
      │ │ │      end.
      │ │ │  
      │ │ │  %% subst(Str, Vars)
      │ │ │  %% Vars = [{Var, Val}]
      │ │ │  %% Var = Val = string()
      │ │ │  %% Substitute all occurrences of %Var% for Val in Str, using the list
      │ │ │  %% of variables in Vars.
      │ │ │  %%
      │ │ │ -subst(Str, Vars) ->
      │ │ │ -    subst(Str, Vars, []).
      │ │ │ +subst(Str, Vars) ->
      │ │ │ +    subst(Str, Vars, []).
      │ │ │  
      │ │ │ -subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([$%, C| Rest], Vars, Result) when  C == $_ ->
      │ │ │ -    subst_var([C| Rest], Vars, Result, []);
      │ │ │ -subst([C| Rest], Vars, Result) ->
      │ │ │ -    subst(Rest, Vars, [C| Result]);
      │ │ │ -subst([], _Vars, Result) ->
      │ │ │ -    lists:reverse(Result).
      │ │ │ -
      │ │ │ -subst_var([$%| Rest], Vars, Result, VarAcc) ->
      │ │ │ -    Key = lists:reverse(VarAcc),
      │ │ │ -    case lists:keysearch(Key, 1, Vars) of
      │ │ │ -        {value, {Key, Value}} ->
      │ │ │ -            subst(Rest, Vars, lists:reverse(Value, Result));
      │ │ │ +subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([$%, C| Rest], Vars, Result) when  C == $_ ->
      │ │ │ +    subst_var([C| Rest], Vars, Result, []);
      │ │ │ +subst([C| Rest], Vars, Result) ->
      │ │ │ +    subst(Rest, Vars, [C| Result]);
      │ │ │ +subst([], _Vars, Result) ->
      │ │ │ +    lists:reverse(Result).
      │ │ │ +
      │ │ │ +subst_var([$%| Rest], Vars, Result, VarAcc) ->
      │ │ │ +    Key = lists:reverse(VarAcc),
      │ │ │ +    case lists:keysearch(Key, 1, Vars) of
      │ │ │ +        {value, {Key, Value}} ->
      │ │ │ +            subst(Rest, Vars, lists:reverse(Value, Result));
      │ │ │          false ->
      │ │ │ -            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
      │ │ │ +            subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
      │ │ │      end;
      │ │ │ -subst_var([C| Rest], Vars, Result, VarAcc) ->
      │ │ │ -    subst_var(Rest, Vars, Result, [C| VarAcc]);
      │ │ │ -subst_var([], Vars, Result, VarAcc) ->
      │ │ │ -    subst([], Vars, [VarAcc ++ [$%| Result]]).
      │ │ │ -
      │ │ │ -copy_file(Src, Dest) ->
      │ │ │ -    copy_file(Src, Dest, []).
      │ │ │ -
      │ │ │ -copy_file(Src, Dest, Opts) ->
      │ │ │ -    {ok,_} = file:copy(Src, Dest),
      │ │ │ -    case lists:member(preserve, Opts) of
      │ │ │ +subst_var([C| Rest], Vars, Result, VarAcc) ->
      │ │ │ +    subst_var(Rest, Vars, Result, [C| VarAcc]);
      │ │ │ +subst_var([], Vars, Result, VarAcc) ->
      │ │ │ +    subst([], Vars, [VarAcc ++ [$%| Result]]).
      │ │ │ +
      │ │ │ +copy_file(Src, Dest) ->
      │ │ │ +    copy_file(Src, Dest, []).
      │ │ │ +
      │ │ │ +copy_file(Src, Dest, Opts) ->
      │ │ │ +    {ok,_} = file:copy(Src, Dest),
      │ │ │ +    case lists:member(preserve, Opts) of
      │ │ │          true ->
      │ │ │ -            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ -            file:write_file_info(Dest, FileInfo);
      │ │ │ +            {ok, FileInfo} = file:read_file_info(Src),
      │ │ │ +            file:write_file_info(Dest, FileInfo);
      │ │ │          false ->
      │ │ │              ok
      │ │ │      end.
      │ │ │  
      │ │ │ -write_file(FName, Conts) ->
      │ │ │ -    Enc = file:native_name_encoding(),
      │ │ │ -    {ok, Fd} = file:open(FName, [write]),
      │ │ │ -    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
      │ │ │ -    file:close(Fd).
      │ │ │ -
      │ │ │ -read_txt_file(File) ->
      │ │ │ -    {ok, Bin} = file:read_file(File),
      │ │ │ -    {ok, binary_to_list(Bin)}.
      │ │ │ -
      │ │ │ -remove_dir_tree(Dir) ->
      │ │ │ -    remove_all_files(".", [Dir]).
      │ │ │ -
      │ │ │ -remove_all_files(Dir, Files) ->
      │ │ │ -    lists:foreach(fun(File) ->
      │ │ │ -                          FilePath = filename:join([Dir, File]),
      │ │ │ -                          case filelib:is_dir(FilePath) of
      │ │ │ +write_file(FName, Conts) ->
      │ │ │ +    Enc = file:native_name_encoding(),
      │ │ │ +    {ok, Fd} = file:open(FName, [write]),
      │ │ │ +    file:write(Fd, unicode:characters_to_binary(Conts,Enc,Enc)),
      │ │ │ +    file:close(Fd).
      │ │ │ +
      │ │ │ +read_txt_file(File) ->
      │ │ │ +    {ok, Bin} = file:read_file(File),
      │ │ │ +    {ok, binary_to_list(Bin)}.
      │ │ │ +
      │ │ │ +remove_dir_tree(Dir) ->
      │ │ │ +    remove_all_files(".", [Dir]).
      │ │ │ +
      │ │ │ +remove_all_files(Dir, Files) ->
      │ │ │ +    lists:foreach(fun(File) ->
      │ │ │ +                          FilePath = filename:join([Dir, File]),
      │ │ │ +                          case filelib:is_dir(FilePath) of
      │ │ │                                true ->
      │ │ │ -                                  {ok, DirFiles} = file:list_dir(FilePath),
      │ │ │ -                                  remove_all_files(FilePath, DirFiles),
      │ │ │ -                                  file:del_dir(FilePath);
      │ │ │ +                                  {ok, DirFiles} = file:list_dir(FilePath),
      │ │ │ +                                  remove_all_files(FilePath, DirFiles),
      │ │ │ +                                  file:del_dir(FilePath);
      │ │ │                                _ ->
      │ │ │ -                                  file:delete(FilePath)
      │ │ │ +                                  file:delete(FilePath)
      │ │ │                            end
      │ │ │ -                  end, Files).
      │ │ │ + end, Files).
      │ │ │ │ │ │ │ │ │
      │ │ │
      │ │ │ │ │ │ │ │ │ Representation of Floating Point Numbers │ │ │ │ │ │

      When working with floats you may not see what you expect when printing or doing │ │ │ arithmetic operations. This is because floats are represented by a fixed number │ │ │ of bits in a base-2 system while printed floats are represented with a base-10 │ │ │ system. Erlang uses 64-bit floats. Here are examples of this phenomenon:

      1> 0.1+0.2.
      │ │ │ -0.30000000000000004

      The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

      1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
      │ │ │ -  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
      │ │ │ -{3.602879701896397e16, true,
      │ │ │ - 3.602879701896397e16, false}.

      The value 36028797018963968 can be represented exactly as a float value but │ │ │ +0.30000000000000004

    The real numbers 0.1 and 0.2 cannot be represented exactly as floats.

    1> {36028797018963968.0, 36028797018963968 == 36028797018963968.0,
    │ │ │ +  36028797018963970.0, 36028797018963970 == 36028797018963970.0}.
    │ │ │ +{3.602879701896397e16, true,
    │ │ │ + 3.602879701896397e16, false}.

    The value 36028797018963968 can be represented exactly as a float value but │ │ │ Erlang's pretty printer rounds 36028797018963968.0 to 3.602879701896397e16 │ │ │ (=36028797018963970.0) as all values in the range │ │ │ [36028797018963966.0, 36028797018963972.0] are represented by │ │ │ 36028797018963968.0.

    For more information about floats and issues with them see:

    If you need to work with exact decimal fractions, for instance to represent │ │ │ money, it is recommended to use a library that handles that, or work in │ │ │ cents instead of dollars or euros so that decimal fractions are not needed.

    Also note that Erlang's floats do not exactly match IEEE 754 floats, │ │ │ in that neither Inf nor NaN are supported in Erlang. Any │ │ │ @@ -237,52 +237,52 @@ │ │ │ by eight are called binaries.

    Examples:

    1> <<10,20>>.
    │ │ │  <<10,20>>
    │ │ │  2> <<"ABC">>.
    │ │ │  <<"ABC">>
    │ │ │  3> <<1:1,0:1>>.
    │ │ │  <<2:2>>

    The is_bitstring/1 BIF tests whether a │ │ │ term is a bit string, and the is_binary/1 │ │ │ -BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │ +BIF tests whether a term is a binary.

    Examples:

    1> is_bitstring(<<1:1>>).
    │ │ │  true
    │ │ │ -2> is_binary(<<1:1>>).
    │ │ │ +2> is_binary(<<1:1>>).
    │ │ │  false
    │ │ │ -3> is_binary(<<42>>).
    │ │ │ +3> is_binary(<<42>>).
    │ │ │  true
    │ │ │  

    For more examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Reference │ │ │

    │ │ │

    A term that is unique │ │ │ among connected nodes. A reference is created by calling the │ │ │ make_ref/0 BIF. The │ │ │ is_reference/1 BIF tests whether a term │ │ │ -is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │ +is a reference.

    Examples:

    1> Ref = make_ref().
    │ │ │  #Ref<0.76482849.3801088007.198204>
    │ │ │ -2> is_reference(Ref).
    │ │ │ +2> is_reference(Ref).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ Fun │ │ │

    │ │ │

    A fun is a functional object. Funs make it possible to create an anonymous │ │ │ function and pass the function itself — not its name — as argument to other │ │ │ -functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ +functions.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -2> Fun1(2).
    │ │ │ +2> Fun1(2).
    │ │ │  3

    The is_function/1 and is_function/2 │ │ │ -BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │ +BIFs tests whether a term is a fun.

    Examples:

    1> F = fun() -> ok end.
    │ │ │  #Fun<erl_eval.43.105768164>
    │ │ │ -2> is_function(F).
    │ │ │ +2> is_function(F).
    │ │ │  true
    │ │ │ -3> is_function(F, 0).
    │ │ │ +3> is_function(F, 0).
    │ │ │  true
    │ │ │ -4> is_function(F, 1).
    │ │ │ +4> is_function(F, 1).
    │ │ │  false

    Read more about funs in Fun Expressions. For more │ │ │ examples, see Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Port Identifier │ │ │

    │ │ │ @@ -300,94 +300,94 @@ │ │ │ for a new process after a while.

    The BIF self/0 returns the Pid of the calling process. When │ │ │ creating a new process, the parent │ │ │ process will be able to get the Pid of the child process either via the return │ │ │ value, as is the case when calling the spawn/3 BIF, or via │ │ │ a message, which is the case when calling the │ │ │ spawn_request/5 BIF. A Pid is typically used when │ │ │ when sending a process a signal. The │ │ │ -is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ --export([loop/0]).
    │ │ │ +is_pid/1 BIF tests whether a term is a Pid.

    Example:

    -module(m).
    │ │ │ +-export([loop/0]).
    │ │ │  
    │ │ │ -loop() ->
    │ │ │ +loop() ->
    │ │ │      receive
    │ │ │          who_are_you ->
    │ │ │ -            io:format("I am ~p~n", [self()]),
    │ │ │ -            loop()
    │ │ │ +            io:format("I am ~p~n", [self()]),
    │ │ │ +            loop()
    │ │ │      end.
    │ │ │  
    │ │ │ -1> P = spawn(m, loop, []).
    │ │ │ +1> P = spawn(m, loop, []).
    │ │ │  <0.58.0>
    │ │ │  2> P ! who_are_you.
    │ │ │  I am <0.58.0>
    │ │ │  who_are_you

    Read more about processes in Processes.

    │ │ │ │ │ │ │ │ │ │ │ │ Tuple │ │ │

    │ │ │

    A tuple is a compound data type with a fixed number of terms:

    {Term1,...,TermN}

    Each term Term in the tuple is called an element. The number of elements is │ │ │ -said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ -{adam,24,{july,29}}
    │ │ │ -2> element(1,P).
    │ │ │ +said to be the size of the tuple.

    There exists a number of BIFs to manipulate tuples.

    Examples:

    1> P = {adam,24,{july,29}}.
    │ │ │ +{adam,24,{july,29}}
    │ │ │ +2> element(1,P).
    │ │ │  adam
    │ │ │ -3> element(3,P).
    │ │ │ -{july,29}
    │ │ │ -4> P2 = setelement(2,P,25).
    │ │ │ -{adam,25,{july,29}}
    │ │ │ -5> tuple_size(P).
    │ │ │ +3> element(3,P).
    │ │ │ +{july,29}
    │ │ │ +4> P2 = setelement(2,P,25).
    │ │ │ +{adam,25,{july,29}}
    │ │ │ +5> tuple_size(P).
    │ │ │  3
    │ │ │ -6> tuple_size({}).
    │ │ │ +6> tuple_size({}).
    │ │ │  0
    │ │ │ -7> is_tuple({a,b,c}).
    │ │ │ +7> is_tuple({a,b,c}).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ Map │ │ │

    │ │ │

    A map is a compound data type with a variable number of key-value associations:

    #{Key1 => Value1, ..., KeyN => ValueN}

    Each key-value association in the map is called an association pair. The key │ │ │ and value parts of the pair are called elements. The number of association │ │ │ -pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ -#{age => 24,date => {july,29},name => adam}
    │ │ │ -2> maps:get(name, M1).
    │ │ │ +pairs is said to be the size of the map.

    There exists a number of BIFs to manipulate maps.

    Examples:

    1> M1 = #{name => adam, age => 24, date => {july,29}}.
    │ │ │ +#{age => 24,date => {july,29},name => adam}
    │ │ │ +2> maps:get(name, M1).
    │ │ │  adam
    │ │ │ -3> maps:get(date, M1).
    │ │ │ -{july,29}
    │ │ │ -4> M2 = maps:update(age, 25, M1).
    │ │ │ -#{age => 25,date => {july,29},name => adam}
    │ │ │ -5> map_size(M).
    │ │ │ +3> maps:get(date, M1).
    │ │ │ +{july,29}
    │ │ │ +4> M2 = maps:update(age, 25, M1).
    │ │ │ +#{age => 25,date => {july,29},name => adam}
    │ │ │ +5> map_size(M).
    │ │ │  3
    │ │ │ -6> map_size(#{}).
    │ │ │ +6> map_size(#{}).
    │ │ │  0

    A collection of maps processing functions are found in module maps │ │ │ in STDLIB.

    Read more about maps in Map Expressions.

    Change

    Maps were introduced as an experimental feature in Erlang/OTP R17. Their │ │ │ functionality was extended and became fully supported in Erlang/OTP 18.

    │ │ │ │ │ │ │ │ │ │ │ │ List │ │ │

    │ │ │

    A list is a compound data type with a variable number of terms.

    [Term1,...,TermN]

    Each term Term in the list is called an element. The number of elements is │ │ │ said to be the length of the list.

    Formally, a list is either the empty list [] or consists of a head (first │ │ │ element) and a tail (remainder of the list). The tail is also a list. The │ │ │ latter can be expressed as [H|T]. The notation [Term1,...,TermN] above is │ │ │ equivalent with the list [Term1|[...|[TermN|[]]]].

    Example:

    [] is a list, thus
    [c|[]] is a list, thus
    [b|[c|[]]] is a list, thus
    [a|[b|[c|[]]]] is a list, or in short [a,b,c]

    A list where the tail is a list is sometimes called a proper list. It is │ │ │ allowed to have a list where the tail is not a list, for example, [a|b]. │ │ │ -However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ -[a,2,{c,4}]
    │ │ │ -2> [H|T] = L1.
    │ │ │ -[a,2,{c,4}]
    │ │ │ +However, this type of list is of little practical use.

    Examples:

    1> L1 = [a,2,{c,4}].
    │ │ │ +[a,2,{c,4}]
    │ │ │ +2> [H|T] = L1.
    │ │ │ +[a,2,{c,4}]
    │ │ │  3> H.
    │ │ │  a
    │ │ │  4> T.
    │ │ │ -[2,{c,4}]
    │ │ │ -5> L2 = [d|T].
    │ │ │ -[d,2,{c,4}]
    │ │ │ -6> length(L1).
    │ │ │ +[2,{c,4}]
    │ │ │ +5> L2 = [d|T].
    │ │ │ +[d,2,{c,4}]
    │ │ │ +6> length(L1).
    │ │ │  3
    │ │ │ -7> length([]).
    │ │ │ +7> length([]).
    │ │ │  0

    A collection of list processing functions are found in module │ │ │ lists in STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ String │ │ │

    │ │ │ @@ -507,41 +507,41 @@ │ │ │ Record │ │ │ │ │ │

    A record is a data structure for storing a fixed number of elements. It has │ │ │ named fields and is similar to a struct in C. However, a record is not a true │ │ │ data type. Instead, record expressions are translated to tuple expressions │ │ │ during compilation. Therefore, record expressions are not understood by the │ │ │ shell unless special actions are taken. For details, see module shell │ │ │ -in STDLIB.

    Examples:

    -module(person).
    │ │ │ --export([new/2]).
    │ │ │ +in STDLIB.

    Examples:

    -module(person).
    │ │ │ +-export([new/2]).
    │ │ │  
    │ │ │ --record(person, {name, age}).
    │ │ │ +-record(person, {name, age}).
    │ │ │  
    │ │ │ -new(Name, Age) ->
    │ │ │ -    #person{name=Name, age=Age}.
    │ │ │ +new(Name, Age) ->
    │ │ │ +    #person{name=Name, age=Age}.
    │ │ │  
    │ │ │ -1> person:new(ernie, 44).
    │ │ │ -{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ +1> person:new(ernie, 44). │ │ │ +{person,ernie,44}

    Read more about records in Records. More examples are │ │ │ found in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Boolean │ │ │

    │ │ │

    There is no Boolean data type in Erlang. Instead the atoms true and false │ │ │ are used to denote Boolean values. The is_boolean/1 │ │ │ BIF tests whether a term is a boolean.

    Examples:

    1> 2 =< 3.
    │ │ │  true
    │ │ │  2> true or false.
    │ │ │  true
    │ │ │ -3> is_boolean(true).
    │ │ │ +3> is_boolean(true).
    │ │ │  true
    │ │ │ -4> is_boolean(false).
    │ │ │ +4> is_boolean(false).
    │ │ │  true
    │ │ │ -5> is_boolean(ok).
    │ │ │ +5> is_boolean(ok).
    │ │ │  false

    │ │ │ │ │ │ │ │ │ │ │ │ Escape Sequences │ │ │

    │ │ │

    Within strings ("-delimited), quoted atoms, and the content of │ │ │ @@ -559,47 +559,47 @@ │ │ │ ~b or ~s sigils the escape sequences for normal │ │ │ strings, above, are used.

    Change

    Triple-quoted strings and sigils were introduced in Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ Type Conversions │ │ │

    │ │ │ -

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │ +

    There are a number of BIFs for type conversions.

    Examples:

    1> atom_to_list(hello).
    │ │ │  "hello"
    │ │ │ -2> list_to_atom("hello").
    │ │ │ +2> list_to_atom("hello").
    │ │ │  hello
    │ │ │ -3> binary_to_list(<<"hello">>).
    │ │ │ +3> binary_to_list(<<"hello">>).
    │ │ │  "hello"
    │ │ │ -4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │ +4> binary_to_list(<<104,101,108,108,111>>).
    │ │ │  "hello"
    │ │ │ -5> list_to_binary("hello").
    │ │ │ -<<104,101,108,108,111>>
    │ │ │ -6> float_to_list(7.0).
    │ │ │ +5> list_to_binary("hello").
    │ │ │ +<<104,101,108,108,111>>
    │ │ │ +6> float_to_list(7.0).
    │ │ │  "7.00000000000000000000e+00"
    │ │ │ -7> list_to_float("7.000e+00").
    │ │ │ +7> list_to_float("7.000e+00").
    │ │ │  7.0
    │ │ │ -8> integer_to_list(77).
    │ │ │ +8> integer_to_list(77).
    │ │ │  "77"
    │ │ │ -9> list_to_integer("77").
    │ │ │ +9> list_to_integer("77").
    │ │ │  77
    │ │ │ -10> tuple_to_list({a,b,c}).
    │ │ │ -[a,b,c]
    │ │ │ -11> list_to_tuple([a,b,c]).
    │ │ │ -{a,b,c}
    │ │ │ -12> term_to_binary({a,b,c}).
    │ │ │ -<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ -13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ -{a,b,c}
    │ │ │ -14> binary_to_integer(<<"77">>).
    │ │ │ +10> tuple_to_list({a,b,c}).
    │ │ │ +[a,b,c]
    │ │ │ +11> list_to_tuple([a,b,c]).
    │ │ │ +{a,b,c}
    │ │ │ +12> term_to_binary({a,b,c}).
    │ │ │ +<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
    │ │ │ +13> binary_to_term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
    │ │ │ +{a,b,c}
    │ │ │ +14> binary_to_integer(<<"77">>).
    │ │ │  77
    │ │ │ -15> integer_to_binary(77).
    │ │ │ -<<"77">>
    │ │ │ -16> float_to_binary(7.0).
    │ │ │ -<<"7.00000000000000000000e+00">>
    │ │ │ -17> binary_to_float(<<"7.000e+00">>).
    │ │ │ +15> integer_to_binary(77).
    │ │ │ +<<"77">>
    │ │ │ +16> float_to_binary(7.0).
    │ │ │ +<<"7.00000000000000000000e+00">>
    │ │ │ +17> binary_to_float(<<"7.000e+00">>).
    │ │ │  7.0
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    -module(ch1).
    │ │ │ --export([start/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/0]).
    │ │ │ +respectively.

    -module(ch1).
    │ │ │ +-export([start/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/0]).
    │ │ │  
    │ │ │ -start() ->
    │ │ │ -    spawn(ch1, init, []).
    │ │ │ +start() ->
    │ │ │ +    spawn(ch1, init, []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    ch1 ! {self(), alloc},
    │ │ │ +alloc() ->
    │ │ │ +    ch1 ! {self(), alloc},
    │ │ │      receive
    │ │ │ -        {ch1, Res} ->
    │ │ │ +        {ch1, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    ch1 ! {free, Ch},
    │ │ │ +free(Ch) ->
    │ │ │ +    ch1 ! {free, Ch},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -    register(ch1, self()),
    │ │ │ -    Chs = channels(),
    │ │ │ -    loop(Chs).
    │ │ │ +init() ->
    │ │ │ +    register(ch1, self()),
    │ │ │ +    Chs = channels(),
    │ │ │ +    loop(Chs).
    │ │ │  
    │ │ │ -loop(Chs) ->
    │ │ │ +loop(Chs) ->
    │ │ │      receive
    │ │ │ -        {From, alloc} ->
    │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ -            From ! {ch1, Ch},
    │ │ │ -            loop(Chs2);
    │ │ │ -        {free, Ch} ->
    │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ -            loop(Chs2)
    │ │ │ -    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ --export([start/1]).
    │ │ │ --export([call/2, cast/2]).
    │ │ │ --export([init/1]).
    │ │ │ +        {From, alloc} ->
    │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ +            From ! {ch1, Ch},
    │ │ │ +            loop(Chs2);
    │ │ │ +        {free, Ch} ->
    │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ +            loop(Chs2)
    │ │ │ +    end.

    The code for the server can be rewritten into a generic part server.erl:

    -module(server).
    │ │ │ +-export([start/1]).
    │ │ │ +-export([call/2, cast/2]).
    │ │ │ +-export([init/1]).
    │ │ │  
    │ │ │ -start(Mod) ->
    │ │ │ -    spawn(server, init, [Mod]).
    │ │ │ +start(Mod) ->
    │ │ │ +    spawn(server, init, [Mod]).
    │ │ │  
    │ │ │ -call(Name, Req) ->
    │ │ │ -    Name ! {call, self(), Req},
    │ │ │ +call(Name, Req) ->
    │ │ │ +    Name ! {call, self(), Req},
    │ │ │      receive
    │ │ │ -        {Name, Res} ->
    │ │ │ +        {Name, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -cast(Name, Req) ->
    │ │ │ -    Name ! {cast, Req},
    │ │ │ +cast(Name, Req) ->
    │ │ │ +    Name ! {cast, Req},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init(Mod) ->
    │ │ │ -    register(Mod, self()),
    │ │ │ -    State = Mod:init(),
    │ │ │ -    loop(Mod, State).
    │ │ │ +init(Mod) ->
    │ │ │ +    register(Mod, self()),
    │ │ │ +    State = Mod:init(),
    │ │ │ +    loop(Mod, State).
    │ │ │  
    │ │ │ -loop(Mod, State) ->
    │ │ │ +loop(Mod, State) ->
    │ │ │      receive
    │ │ │ -        {call, From, Req} ->
    │ │ │ -            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ -            From ! {Mod, Res},
    │ │ │ -            loop(Mod, State2);
    │ │ │ -        {cast, Req} ->
    │ │ │ -            State2 = Mod:handle_cast(Req, State),
    │ │ │ -            loop(Mod, State2)
    │ │ │ -    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ --export([start/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ -
    │ │ │ -start() ->
    │ │ │ -    server:start(ch2).
    │ │ │ -
    │ │ │ -alloc() ->
    │ │ │ -    server:call(ch2, alloc).
    │ │ │ -
    │ │ │ -free(Ch) ->
    │ │ │ -    server:cast(ch2, {free, Ch}).
    │ │ │ +        {call, From, Req} ->
    │ │ │ +            {Res, State2} = Mod:handle_call(Req, State),
    │ │ │ +            From ! {Mod, Res},
    │ │ │ +            loop(Mod, State2);
    │ │ │ +        {cast, Req} ->
    │ │ │ +            State2 = Mod:handle_cast(Req, State),
    │ │ │ +            loop(Mod, State2)
    │ │ │ +    end.

    And a callback module ch2.erl:

    -module(ch2).
    │ │ │ +-export([start/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/0, handle_call/2, handle_cast/2]).
    │ │ │ +
    │ │ │ +start() ->
    │ │ │ +    server:start(ch2).
    │ │ │ +
    │ │ │ +alloc() ->
    │ │ │ +    server:call(ch2, alloc).
    │ │ │ +
    │ │ │ +free(Ch) ->
    │ │ │ +    server:cast(ch2, {free, Ch}).
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -    channels().
    │ │ │ +init() ->
    │ │ │ +    channels().
    │ │ │  
    │ │ │ -handle_call(alloc, Chs) ->
    │ │ │ -    alloc(Chs). % => {Ch,Chs2}
    │ │ │ +handle_call(alloc, Chs) ->
    │ │ │ +    alloc(Chs). % => {Ch,Chs2}
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + free(Ch, Chs). % => Chs2

    Notice the following:

    • The code in server can be reused to build many different servers.
    • The server name, in this example the atom ch2, is hidden from the users of │ │ │ the client functions. This means that the name can be changed without │ │ │ affecting them.
    • The protocol (messages sent to and received from the server) is also hidden. │ │ │ This is good programming practice and allows one to change the protocol │ │ │ without changing the code using the interface functions.
    • The functionality of server can be extended without having to change ch2 │ │ │ or any other callback module.

    In ch1.erl and ch2.erl above, the implementation of channels/0, alloc/1, │ │ │ and free/2 has been intentionally left out, as it is not relevant to the │ │ │ example. For completeness, one way to write these functions is given below. This │ │ │ is an example only, a realistic implementation must be able to handle situations │ │ │ -like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ -   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │ +like running out of channels to allocate, and so on.

    channels() ->
    │ │ │ +   {_Allocated = [], _Free = lists:seq(1, 100)}.
    │ │ │  
    │ │ │ -alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ -   {H, {[H|Allocated], T}}.
    │ │ │ +alloc({Allocated, [H|T] = _Free}) ->
    │ │ │ +   {H, {[H|Allocated], T}}.
    │ │ │  
    │ │ │ -free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ -   case lists:member(Ch, Alloc) of
    │ │ │ +free(Ch, {Alloc, Free} = Channels) ->
    │ │ │ +   case lists:member(Ch, Alloc) of
    │ │ │        true ->
    │ │ │ -         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │ +         {lists:delete(Ch, Alloc), [Ch|Free]};
    │ │ │        false ->
    │ │ │           Channels
    │ │ │     end.

    Code written without using behaviours can be more efficient, but the increased │ │ │ efficiency is at the expense of generality. The ability to manage all │ │ │ applications in the system in a consistent manner is important.

    Using behaviours also makes it easier to read and understand code written by │ │ │ other programmers. Improvised programming structures, while possibly more │ │ │ efficient, are always more difficult to understand.

    The server module corresponds, greatly simplified, to the Erlang/OTP behaviour │ │ │ gen_server.

    The standard Erlang/OTP behaviours are:

    • gen_server

      For implementing the server of a client-server relation

    • gen_statem

      For implementing state machines

    • gen_event

      For implementing event handling functionality

    • supervisor

      For implementing a supervisor in a supervision tree

    The compiler understands the module attribute -behaviour(Behaviour) and issues │ │ │ -warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +warnings about missing callback functions, for example:

    -module(chs3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  ...
    │ │ │  
    │ │ │ -3> c(chs3).
    │ │ │ +3> c(chs3).
    │ │ │  ./chs3.erl:10: Warning: undefined call-back function handle_call/3
    │ │ │ -{ok,chs3}

    │ │ │ +{ok,chs3}

    │ │ │ │ │ │ │ │ │ │ │ │ Applications │ │ │

    │ │ │

    Erlang/OTP comes with a number of components, each implementing some specific │ │ │ functionality. Components are with Erlang/OTP terminology called applications. │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/distributed.html │ │ │ @@ -142,25 +142,25 @@ │ │ │ │ │ │

    A node is an executing Erlang runtime system that has been given a name, using │ │ │ the command-line flag -name (long names) or │ │ │ -sname (short names).

    The format of the node name is an atom name@host. name is the name given by │ │ │ the user. host is the full host name if long names are used, or the first part │ │ │ of the host name if short names are used. Function node() │ │ │ returns the name of the node.

    Example:

    % erl -name dilbert
    │ │ │ -(dilbert@uab.ericsson.se)1> node().
    │ │ │ +(dilbert@uab.ericsson.se)1> node().
    │ │ │  'dilbert@uab.ericsson.se'
    │ │ │  
    │ │ │  % erl -sname dilbert
    │ │ │ -(dilbert@uab)1> node().
    │ │ │ +(dilbert@uab)1> node().
    │ │ │  dilbert@uab

    The node name can also be given in runtime by calling net_kernel:start/1.

    Example:

    % erl
    │ │ │ -1> node().
    │ │ │ +1> node().
    │ │ │  nonode@nohost
    │ │ │ -2> net_kernel:start([dilbert,shortnames]).
    │ │ │ -{ok,<0.102.0>}
    │ │ │ -(dilbert@uab)3> node().
    │ │ │ +2> net_kernel:start([dilbert,shortnames]).
    │ │ │ +{ok,<0.102.0>}
    │ │ │ +(dilbert@uab)3> node().
    │ │ │  dilbert@uab

    Note

    A node with a long node name cannot communicate with a node with a short node │ │ │ name.

    │ │ │ │ │ │ │ │ │ │ │ │ Node Connections │ │ │

    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/distributed_applications.html │ │ │ @@ -150,36 +150,36 @@ │ │ │ (within the time-out specified by sync_nodes_timeout).
  • sync_nodes_timeout = integer() | infinity - Specifies how many milliseconds │ │ │ to wait for the other nodes to start.

  • When started, the node waits for all nodes specified by sync_nodes_mandatory │ │ │ and sync_nodes_optional to come up. When all nodes are up, or when all │ │ │ mandatory nodes are up and the time specified by sync_nodes_timeout has │ │ │ elapsed, all applications start. If not all mandatory nodes are up, the node │ │ │ terminates.

    Example:

    An application myapp is to run at the node cp1@cave. If this node goes down, │ │ │ myapp is to be restarted at cp2@cave or cp3@cave. A system configuration │ │ │ -file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ -  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ -   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ -   {sync_nodes_timeout, 5000}
    │ │ │ -  ]
    │ │ │ - }
    │ │ │ -].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ +file cp1.config for cp1@cave can look as follows:

    [{kernel,
    │ │ │ +  [{distributed, [{myapp, 5000, [cp1@cave, {cp2@cave, cp3@cave}]}]},
    │ │ │ +   {sync_nodes_mandatory, [cp2@cave, cp3@cave]},
    │ │ │ +   {sync_nodes_timeout, 5000}
    │ │ │ +  ]
    │ │ │ + }
    │ │ │ +].

    The system configuration files for cp2@cave and cp3@cave are identical, │ │ │ except for the list of mandatory nodes, which is to be [cp1@cave, cp3@cave] │ │ │ for cp2@cave and [cp1@cave, cp2@cave] for cp3@cave.

    Note

    All involved nodes must have the same value for distributed and │ │ │ sync_nodes_timeout. Otherwise the system behavior is undefined.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting and Stopping Distributed Applications │ │ │

    │ │ │

    When all involved (mandatory) nodes have been started, the distributed │ │ │ application can be started by calling application:start(Application) at all │ │ │ of these nodes.

    A boot script (see Releases) can be used that │ │ │ automatically starts the application.

    The application is started at the first operational node that is listed in the │ │ │ list of nodes in the distributed configuration parameter. The application is │ │ │ started as usual. That is, an application master is created and calls the │ │ │ -application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ +application callback function:

    Module:start(normal, StartArgs)

    Example:

    Continuing the example from the previous section, the three nodes are started, │ │ │ specifying the system configuration file:

    > erl -sname cp1 -config cp1
    │ │ │  > erl -sname cp2 -config cp2
    │ │ │  > erl -sname cp3 -config cp3

    When all nodes are operational, myapp can be started. This is achieved by │ │ │ calling application:start(myapp) at all three nodes. It is then started at │ │ │ cp1, as shown in the following figure:

    Application myapp - Situation 1

    Similarly, the application must be stopped by calling │ │ │ application:stop(Application) at all involved nodes.

    │ │ │ │ │ │ @@ -187,30 +187,30 @@ │ │ │ │ │ │ Failover │ │ │

    │ │ │

    If the node where the application is running goes down, the application is │ │ │ restarted (after the specified time-out) at the first operational node that is │ │ │ listed in the list of nodes in the distributed configuration parameter. This │ │ │ is called a failover.

    The application is started the normal way at the new node, that is, by the │ │ │ -application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ +application master calling:

    Module:start(normal, StartArgs)

    An exception is if the application has the start_phases key defined (see │ │ │ Included Applications). The application is then │ │ │ -instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ +instead started by calling:

    Module:start({failover, Node}, StartArgs)

    Here Node is the terminated node.

    Example:

    If cp1 goes down, the system checks which one of the other nodes, cp2 or │ │ │ cp3, has the least number of running applications, but waits for 5 seconds for │ │ │ cp1 to restart. If cp1 does not restart and cp2 runs fewer applications │ │ │ than cp3, myapp is restarted on cp2.

    Application myapp - Situation 2

    Suppose now that cp2 goes also down and does not restart within 5 seconds. │ │ │ myapp is now restarted on cp3.

    Application myapp - Situation 3

    │ │ │ │ │ │ │ │ │ │ │ │ Takeover │ │ │

    │ │ │

    If a node is started, which has higher priority according to distributed than │ │ │ the node where a distributed application is running, the application is │ │ │ restarted at the new node and stopped at the old node. This is called a │ │ │ -takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ +takeover.

    The application is started by the application master calling:

    Module:start({takeover, Node}, StartArgs)

    Here Node is the old node.

    Example:

    If myapp is running at cp3, and if cp2 now restarts, it does not restart │ │ │ myapp, as the order between the cp2 and cp3 nodes is undefined.

    Application myapp - Situation 4

    However, if cp1 also restarts, the function application:takeover/2 moves │ │ │ myapp to cp1, as cp1 has a higher priority than cp3 for this │ │ │ application. In this case, Module:start({takeover, cp3@cave}, StartArgs) is │ │ │ executed at cp1 to start the application.

    Application myapp - Situation 5

    │ │ │
    │ │ │ │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/documentation.html │ │ │ @@ -112,23 +112,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ Documentation │ │ │ │ │ │ │ │ │

    Documentation in Erlang is done through the -moduledoc and -doc │ │ │ -attributes. For example:

    -module(arith).
    │ │ │ +attributes. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │  A module for basic arithmetic.
    │ │ │  """.
    │ │ │  
    │ │ │ --export([add/2]).
    │ │ │ +-export([add/2]).
    │ │ │  
    │ │ │  -doc "Adds two numbers.".
    │ │ │ -add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ +add(One, Two) -> One + Two.

    The -moduledoc attribute has to be located before the first -doc attribute │ │ │ or function declaration. It documents the overall purpose of the module.

    The -doc attribute always precedes the function or │ │ │ attribute it documents. The │ │ │ attributes that can be documented are │ │ │ user-defined types │ │ │ (-type and -opaque) and │ │ │ behaviour module attributes │ │ │ (-callback).

    By default the format used for documentation attributes is │ │ │ @@ -140,55 +140,55 @@ │ │ │ Documentation Attributes.

    -doc attributes have been available since Erlang/OTP 27.

    │ │ │ │ │ │ │ │ │ │ │ │ Documentation metadata │ │ │

    │ │ │

    It is possible to add metadata to the documentation entry. You do this by adding │ │ │ -a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │ +a -moduledoc or -doc attribute with a map as argument. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │  A module for basic arithmetic.
    │ │ │  """.
    │ │ │ --moduledoc #{since => "1.0"}.
    │ │ │ +-moduledoc #{since => "1.0"}.
    │ │ │  
    │ │ │ --export([add/2]).
    │ │ │ +-export([add/2]).
    │ │ │  
    │ │ │  -doc "Adds two numbers.".
    │ │ │ --doc(#{since => "1.0"}).
    │ │ │ -add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ +-doc(#{since => "1.0"}). │ │ │ +add(One, Two) -> One + Two.

    The metadata is used by documentation tools to provide extra information to the │ │ │ user. There can be multiple metadata documentation entries, in which case the │ │ │ maps will be merged with the latest taking precedence if there are duplicate │ │ │ keys. Example:

    -doc "Adds two numbers.".
    │ │ │ --doc #{since => "1.0", author => "Joe"}.
    │ │ │ --doc #{since => "2.0"}.
    │ │ │ -add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ +-doc #{since => "1.0", author => "Joe"}. │ │ │ +-doc #{since => "2.0"}. │ │ │ +add(One, Two) -> One + Two.

    This will result in a metadata entry of #{since => "2.0", author => "Joe"}.

    The keys and values in the metadata map can be any type, but it is recommended │ │ │ that only atoms are used for keys and │ │ │ strings for the values.

    │ │ │ │ │ │ │ │ │ │ │ │ External documentation files │ │ │

    │ │ │

    The -moduledoc and -doc can also be placed in external files. To do so use │ │ │ -doc {file, "path/to/doc.md"} to point to the documentation. The path used is │ │ │ relative to the file where the -doc attribute is located. For example:

    %% doc/add.md
    │ │ │  Adds two numbers.

    and

    %% src/arith.erl
    │ │ │ --doc({file, "../doc/add.md"}).
    │ │ │ -add(One, Two) -> One + Two.

    │ │ │ +-doc({file, "../doc/add.md"}). │ │ │ +add(One, Two) -> One + Two.

    │ │ │ │ │ │ │ │ │ │ │ │ Documenting a module │ │ │

    │ │ │

    The module description should include details on how to use the API and examples │ │ │ of the different functions working together. Here is a good place to use images │ │ │ and other diagrams to better show the usage of the module. Instead of writing a │ │ │ long text in the moduledoc attribute, it could be better to break it out into │ │ │ an external page.

    The moduledoc attribute should start with a short paragraph describing the │ │ │ -module and then go into greater details. For example:

    -module(arith).
    │ │ │ +module and then go into greater details. For example:

    -module(arith).
    │ │ │  -moduledoc """
    │ │ │     A module for basic arithmetic.
    │ │ │  
    │ │ │     This module can be used to add and subtract values. For example:
    │ │ │  
    │ │ │     ```erlang
    │ │ │     1> arith:substract(arith:add(2, 3), 1).
    │ │ │ @@ -203,94 +203,94 @@
    │ │ │  

    There are three reserved metadata keys for -moduledoc:

    • since - Shows in which version of the application the module was added. │ │ │ If this is added, all functions, types, and callbacks within will also receive │ │ │ the same since value unless specified in the metadata of the function, type │ │ │ or callback.
    • deprecated - Shows a text in the documentation explaining that it is │ │ │ deprecated and what to use instead.
    • format - The format to use for all documentation in this module. The │ │ │ default is text/markdown. It should be written using the │ │ │ mime type │ │ │ -of the format.

    Example:

    -moduledoc {file, "../doc/arith.asciidoc"}.
    │ │ │ --moduledoc #{since => "0.1", format => "text/asciidoc"}.
    │ │ │ --moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

    │ │ │ +of the format.

    Example:

    -moduledoc {file, "../doc/arith.asciidoc"}.
    │ │ │ +-moduledoc #{since => "0.1", format => "text/asciidoc"}.
    │ │ │ +-moduledoc #{deprecated => "Use the Erlang arithmetic operators instead."}.

    │ │ │ │ │ │ │ │ │ │ │ │ Documenting functions, user-defined types, and callbacks │ │ │

    │ │ │

    Functions, types, and callbacks can be documented using the -doc attribute. │ │ │ Each entry should start with a short paragraph describing the purpose of entity, │ │ │ and then go into greater detail in needed.

    It is not recommended to include images or diagrams in this documentation as it │ │ │ is used by IDEs and c:h/1 to show the documentation to the user.

    For example:

    -doc """
    │ │ │  A number that can be used by the arith module.
    │ │ │  
    │ │ │  We use a special number here so that we know
    │ │ │  that this number comes from this module.
    │ │ │  """.
    │ │ │ --opaque number() :: {arith, erlang:number()}.
    │ │ │ +-opaque number() :: {arith, erlang:number()}.
    │ │ │  
    │ │ │  -doc """
    │ │ │  Adds two numbers.
    │ │ │  
    │ │ │  ### Example:
    │ │ │  
    │ │ │  ```
    │ │ │  1> arith:add(arith:number(1), arith:number(2)). {number, 3}
    │ │ │  ```
    │ │ │  """.
    │ │ │ --spec add(number(), number()) -> number().
    │ │ │ -add({number, One}, {number, Two}) -> {number, One + Two}.

    │ │ │ +-spec add(number(), number()) -> number(). │ │ │ +add({number, One}, {number, Two}) -> {number, One + Two}.

    │ │ │ │ │ │ │ │ │ │ │ │ Doc metadata │ │ │

    │ │ │

    There are four reserved metadata keys for -doc:

    • since => unicode:chardata() - Shows which version of the application the │ │ │ module was added.

    • deprecated => unicode:chardata() - Shows a text in the documentation │ │ │ explaining that it is deprecated and what to use instead. The compiler will │ │ │ automatically insert this key if there is a -deprecated attribute marking a │ │ │ function as deprecated.

    • equiv => unicode:chardata() | F/A | F(...) - Notes that this function is equivalent to │ │ │ another function in this module. The equivalence can be described using either │ │ │ -Func/Arity, Func(Args) or a unicode string. For example:

      -doc #{equiv => add/3}.
      │ │ │ -add(One, Two) -> add(One, Two, []).
      │ │ │ -add(One, Two, Options) -> ...

      or

      -doc #{equiv => add(One, Two, [])}.
      │ │ │ --spec add(One :: number(), Two :: number()) -> number().
      │ │ │ -add(One, Two) -> add(One, Two, []).
      │ │ │ -add(One, Two, Options) -> ...

      The entry into the EEP-48 doc chunk metadata is │ │ │ +Func/Arity, Func(Args) or a unicode string. For example:

      -doc #{equiv => add/3}.
      │ │ │ +add(One, Two) -> add(One, Two, []).
      │ │ │ +add(One, Two, Options) -> ...

      or

      -doc #{equiv => add(One, Two, [])}.
      │ │ │ +-spec add(One :: number(), Two :: number()) -> number().
      │ │ │ +add(One, Two) -> add(One, Two, []).
      │ │ │ +add(One, Two, Options) -> ...

      The entry into the EEP-48 doc chunk metadata is │ │ │ the value converted to a string.

    • exported => boolean() - A boolean/0 signifying if the entry is exported │ │ │ or not. This value is automatically set by the compiler and should not be set │ │ │ by the user.

    │ │ │ │ │ │ │ │ │ │ │ │ Doc signatures │ │ │

    │ │ │

    The doc signature is a short text shown to describe the function and its arguments. │ │ │ By default it is determined by looking at the names of the arguments in the │ │ │ --spec or function. For example:

    add(One, Two) -> One + Two.
    │ │ │ +-spec or function. For example:

    add(One, Two) -> One + Two.
    │ │ │  
    │ │ │ --spec sub(One :: integer(), Two :: integer()) -> integer().
    │ │ │ -sub(X, Y) -> X - Y.

    will have a signature of add(One, Two) and sub(One, Two).

    For types or callbacks, the signature is derived from the type or callback │ │ │ -specification. For example:

    -type number(Value) :: {number, Value}.
    │ │ │ +-spec sub(One :: integer(), Two :: integer()) -> integer().
    │ │ │ +sub(X, Y) -> X - Y.

    will have a signature of add(One, Two) and sub(One, Two).

    For types or callbacks, the signature is derived from the type or callback │ │ │ +specification. For example:

    -type number(Value) :: {number, Value}.
    │ │ │  %% signature will be `number(Value)`
    │ │ │  
    │ │ │ --opaque number() :: {number, number()}.
    │ │ │ +-opaque number() :: {number, number()}.
    │ │ │  %% signature will be `number()`
    │ │ │  
    │ │ │ --callback increment(In :: number()) -> Out.
    │ │ │ +-callback increment(In :: number()) -> Out.
    │ │ │  %% signature will be `increment(In)`
    │ │ │  
    │ │ │ --callback increment(In) -> Out when In :: number().
    │ │ │ +-callback increment(In) -> Out when In :: number().
    │ │ │  %% signature will be `increment(In)`

    If it is not possible to "easily" figure out a nice signature from the code, the │ │ │ MFA syntax is used instead. For example: add/2, number/1, increment/1

    It is possible to supply a custom signature by placing it as the first line of the │ │ │ -doc attribute. The provided signature must be in the form of a function │ │ │ declaration up until the ->. For example:

    -doc """
    │ │ │  add(One, Two)
    │ │ │  
    │ │ │  Adds two numbers.
    │ │ │  """.
    │ │ │ -add(A, B) -> A + B.

    Will create the signature add(One, Two). The signature will be removed from the │ │ │ +add(A, B) -> A + B.

    Will create the signature add(One, Two). The signature will be removed from the │ │ │ documentation string, so in the example above only the text "Adds two numbers" │ │ │ will be part of the documentation. This works for functions, types, and │ │ │ callbacks.

    │ │ │ │ │ │ │ │ │ │ │ │ Compiling and getting documentation │ │ │ @@ -375,21 +375,21 @@ │ │ │ Using ExDoc to generate HTML/ePub documentation │ │ │

    │ │ │

    ExDoc has built-in support to generate │ │ │ documentation from Markdown. The simplest way is by using the │ │ │ rebar3_ex_doc plugin. To set up a │ │ │ rebar3 project to use ExDoc to generate │ │ │ documentation add the following to your rebar3.config.

    %% Enable the plugin
    │ │ │ -{plugins, [rebar3_ex_doc]}.
    │ │ │ +{plugins, [rebar3_ex_doc]}.
    │ │ │  
    │ │ │ -{ex_doc, [
    │ │ │ -  {extras, ["README.md"]},
    │ │ │ -  {main, "README.md"},
    │ │ │ -  {source_url, "https://github.com/namespace/your_app"}
    │ │ │ -]}.

    When configured you can run rebar3 ex_doc to generate the │ │ │ +{ex_doc, [ │ │ │ + {extras, ["README.md"]}, │ │ │ + {main, "README.md"}, │ │ │ + {source_url, "https://github.com/namespace/your_app"} │ │ │ +]}.

    When configured you can run rebar3 ex_doc to generate the │ │ │ documentation to doc/index.html. For more details and options see │ │ │ the rebar3_ex_doc documentation.

    You can also download the │ │ │ release escript bundle from │ │ │ github and run it from the command line. The documentation for using the escript │ │ │ is found by running ex_doc --help.

    If you are writing documentation that will be using │ │ │ ExDoc to generate HTML/ePub it is highly │ │ │ recommended to read its documentation.

    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/drivers.html │ │ │ @@ -122,23 +122,23 @@ │ │ │ Drivers and Concurrency │ │ │ │ │ │

    The runtime system always takes a lock before running any code in a driver.

    By default, that lock is at the driver level, that is, if several ports have │ │ │ been opened to the same driver, only code for one port at the same time can be │ │ │ running.

    A driver can be configured to have one lock for each port instead.

    If a driver is used in a functional way (that is, holds no state, but only does │ │ │ some heavy calculation and returns a result), several ports with registered │ │ │ names can be opened beforehand, and the port to be used can be chosen based on │ │ │ -the scheduler ID as follows:

    -define(PORT_NAMES(),
    │ │ │ -	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
    │ │ │ +the scheduler ID as follows:

    -define(PORT_NAMES(),
    │ │ │ +	{some_driver_01, some_driver_02, some_driver_03, some_driver_04,
    │ │ │  	 some_driver_05, some_driver_06, some_driver_07, some_driver_08,
    │ │ │  	 some_driver_09, some_driver_10, some_driver_11, some_driver_12,
    │ │ │ -	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
    │ │ │ +	 some_driver_13, some_driver_14, some_driver_15, some_driver_16}).
    │ │ │  
    │ │ │ -client_port() ->
    │ │ │ -    element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1,
    │ │ │ -	    ?PORT_NAMES()).

    As long as there are no more than 16 schedulers, there will never be any lock │ │ │ +client_port() -> │ │ │ + element(erlang:system_info(scheduler_id) rem tuple_size(?PORT_NAMES()) + 1, │ │ │ + ?PORT_NAMES()).

    As long as there are no more than 16 schedulers, there will never be any lock │ │ │ contention on the port lock for the driver.

    │ │ │ │ │ │ │ │ │ │ │ │ Avoiding Copying Binaries When Calling a Driver │ │ │

    │ │ │

    There are basically two ways to avoid copying a binary that is sent to a driver:

    • If the Data argument for port_control/3 is a │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_functions.html │ │ │ @@ -122,67 +122,67 @@ │ │ │ Pattern Matching │ │ │ │ │ │

      Pattern matching in function head as well as in case and receive clauses are │ │ │ optimized by the compiler. With a few exceptions, there is nothing to gain by │ │ │ rearranging clauses.

      One exception is pattern matching of binaries. The compiler does not rearrange │ │ │ clauses that match binaries. Placing the clause that matches against the empty │ │ │ binary last is usually slightly faster than placing it first.

      The following is a rather unnatural example to show another exception where │ │ │ -rearranging clauses is beneficial:

      DO NOT

      atom_map1(one) -> 1;
      │ │ │ -atom_map1(two) -> 2;
      │ │ │ -atom_map1(three) -> 3;
      │ │ │ -atom_map1(Int) when is_integer(Int) -> Int;
      │ │ │ -atom_map1(four) -> 4;
      │ │ │ -atom_map1(five) -> 5;
      │ │ │ -atom_map1(six) -> 6.

      The problem is the clause with the variable Int. As a variable can match │ │ │ +rearranging clauses is beneficial:

      DO NOT

      atom_map1(one) -> 1;
      │ │ │ +atom_map1(two) -> 2;
      │ │ │ +atom_map1(three) -> 3;
      │ │ │ +atom_map1(Int) when is_integer(Int) -> Int;
      │ │ │ +atom_map1(four) -> 4;
      │ │ │ +atom_map1(five) -> 5;
      │ │ │ +atom_map1(six) -> 6.

      The problem is the clause with the variable Int. As a variable can match │ │ │ anything, including the atoms four, five, and six, which the following │ │ │ clauses also match, the compiler must generate suboptimal code that executes as │ │ │ follows:

      • First, the input value is compared to one, two, and three (using a │ │ │ single instruction that does a binary search; thus, quite efficient even if │ │ │ there are many values) to select which one of the first three clauses to │ │ │ execute (if any).
      • If none of the first three clauses match, the fourth clause match as a │ │ │ variable always matches.
      • If the guard test is_integer(Int) succeeds, the fourth │ │ │ clause is executed.
      • If the guard test fails, the input value is compared to four, five, and │ │ │ six, and the appropriate clause is selected. (There is a function_clause │ │ │ -exception if none of the values matched.)

      Rewriting to either:

      DO

      atom_map2(one) -> 1;
      │ │ │ -atom_map2(two) -> 2;
      │ │ │ -atom_map2(three) -> 3;
      │ │ │ -atom_map2(four) -> 4;
      │ │ │ -atom_map2(five) -> 5;
      │ │ │ -atom_map2(six) -> 6;
      │ │ │ -atom_map2(Int) when is_integer(Int) -> Int.

      or:

      DO

      atom_map3(Int) when is_integer(Int) -> Int;
      │ │ │ -atom_map3(one) -> 1;
      │ │ │ -atom_map3(two) -> 2;
      │ │ │ -atom_map3(three) -> 3;
      │ │ │ -atom_map3(four) -> 4;
      │ │ │ -atom_map3(five) -> 5;
      │ │ │ -atom_map3(six) -> 6.

      gives slightly more efficient matching code.

      Another example:

      DO NOT

      map_pairs1(_Map, [], Ys) ->
      │ │ │ +exception if none of the values matched.)

    Rewriting to either:

    DO

    atom_map2(one) -> 1;
    │ │ │ +atom_map2(two) -> 2;
    │ │ │ +atom_map2(three) -> 3;
    │ │ │ +atom_map2(four) -> 4;
    │ │ │ +atom_map2(five) -> 5;
    │ │ │ +atom_map2(six) -> 6;
    │ │ │ +atom_map2(Int) when is_integer(Int) -> Int.

    or:

    DO

    atom_map3(Int) when is_integer(Int) -> Int;
    │ │ │ +atom_map3(one) -> 1;
    │ │ │ +atom_map3(two) -> 2;
    │ │ │ +atom_map3(three) -> 3;
    │ │ │ +atom_map3(four) -> 4;
    │ │ │ +atom_map3(five) -> 5;
    │ │ │ +atom_map3(six) -> 6.

    gives slightly more efficient matching code.

    Another example:

    DO NOT

    map_pairs1(_Map, [], Ys) ->
    │ │ │      Ys;
    │ │ │ -map_pairs1(_Map, Xs, []) ->
    │ │ │ +map_pairs1(_Map, Xs, []) ->
    │ │ │      Xs;
    │ │ │ -map_pairs1(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ -    [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

    The first argument is not a problem. It is variable, but it is a variable in │ │ │ +map_pairs1(Map, [X|Xs], [Y|Ys]) -> │ │ │ + [Map(X, Y)|map_pairs1(Map, Xs, Ys)].

    The first argument is not a problem. It is variable, but it is a variable in │ │ │ all clauses. The problem is the variable in the second argument, Xs, in the │ │ │ middle clause. Because the variable can match anything, the compiler is not │ │ │ allowed to rearrange the clauses, but must generate code that matches them in │ │ │ the order written.

    If the function is rewritten as follows, the compiler is free to rearrange the │ │ │ -clauses:

    DO

    map_pairs2(_Map, [], Ys) ->
    │ │ │ +clauses:

    DO

    map_pairs2(_Map, [], Ys) ->
    │ │ │      Ys;
    │ │ │ -map_pairs2(_Map, [_|_]=Xs, [] ) ->
    │ │ │ +map_pairs2(_Map, [_|_]=Xs, [] ) ->
    │ │ │      Xs;
    │ │ │ -map_pairs2(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ -    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

    The compiler will generate code similar to this:

    DO NOT (already done by the compiler)

    explicit_map_pairs(Map, Xs0, Ys0) ->
    │ │ │ +map_pairs2(Map, [X|Xs], [Y|Ys]) ->
    │ │ │ +    [Map(X, Y)|map_pairs2(Map, Xs, Ys)].

    The compiler will generate code similar to this:

    DO NOT (already done by the compiler)

    explicit_map_pairs(Map, Xs0, Ys0) ->
    │ │ │      case Xs0 of
    │ │ │ -	[X|Xs] ->
    │ │ │ +	[X|Xs] ->
    │ │ │  	    case Ys0 of
    │ │ │ -		[Y|Ys] ->
    │ │ │ -		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
    │ │ │ -		[] ->
    │ │ │ +		[Y|Ys] ->
    │ │ │ +		    [Map(X, Y)|explicit_map_pairs(Map, Xs, Ys)];
    │ │ │ +		[] ->
    │ │ │  		    Xs0
    │ │ │  	    end;
    │ │ │ -	[] ->
    │ │ │ +	[] ->
    │ │ │  	    Ys0
    │ │ │      end.

    This is slightly faster for probably the most common case that the input lists │ │ │ are not empty or very short. (Another advantage is that Dialyzer can deduce a │ │ │ better type for the Xs variable.)

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/eff_guide_processes.html │ │ │ @@ -119,45 +119,45 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating an Erlang Process │ │ │

    │ │ │

    An Erlang process is lightweight compared to threads and processes in operating │ │ │ systems.

    A newly spawned Erlang process uses 327 words of memory. The size can be found │ │ │ -as follows:

    Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +as follows:

    Erlang/OTP 27 [erts-14.2.3] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> Fun = fun() -> receive after infinity -> ok end end.
    │ │ │ +Eshell V14.2.3 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> Fun = fun() -> receive after infinity -> ok end end.
    │ │ │  #Fun<erl_eval.43.39164016>
    │ │ │ -2> {_,Bytes} = process_info(spawn(Fun), memory).
    │ │ │ -{memory,2616}
    │ │ │ -3> Bytes div erlang:system_info(wordsize).
    │ │ │ +2> {_,Bytes} = process_info(spawn(Fun), memory).
    │ │ │ +{memory,2616}
    │ │ │ +3> Bytes div erlang:system_info(wordsize).
    │ │ │  327

    The size includes 233 words for the heap area (which includes the stack). The │ │ │ garbage collector increases the heap as needed.

    The main (outer) loop for a process must be tail-recursive. Otherwise, the │ │ │ -stack grows until the process terminates.

    DO NOT

    loop() ->
    │ │ │ +stack grows until the process terminates.

    DO NOT

    loop() ->
    │ │ │    receive
    │ │ │ -     {sys, Msg} ->
    │ │ │ -         handle_sys_msg(Msg),
    │ │ │ -         loop();
    │ │ │ -     {From, Msg} ->
    │ │ │ -          Reply = handle_msg(Msg),
    │ │ │ +     {sys, Msg} ->
    │ │ │ +         handle_sys_msg(Msg),
    │ │ │ +         loop();
    │ │ │ +     {From, Msg} ->
    │ │ │ +          Reply = handle_msg(Msg),
    │ │ │            From ! Reply,
    │ │ │ -          loop()
    │ │ │ +          loop()
    │ │ │    end,
    │ │ │ -  io:format("Message is processed~n", []).

    The call to io:format/2 will never be executed, but a return address will │ │ │ + io:format("Message is processed~n", []).

    The call to io:format/2 will never be executed, but a return address will │ │ │ still be pushed to the stack each time loop/0 is called recursively. The │ │ │ -correct tail-recursive version of the function looks as follows:

    DO

    loop() ->
    │ │ │ +correct tail-recursive version of the function looks as follows:

    DO

    loop() ->
    │ │ │     receive
    │ │ │ -      {sys, Msg} ->
    │ │ │ -         handle_sys_msg(Msg),
    │ │ │ -         loop();
    │ │ │ -      {From, Msg} ->
    │ │ │ -         Reply = handle_msg(Msg),
    │ │ │ +      {sys, Msg} ->
    │ │ │ +         handle_sys_msg(Msg),
    │ │ │ +         loop();
    │ │ │ +      {From, Msg} ->
    │ │ │ +         Reply = handle_msg(Msg),
    │ │ │           From ! Reply,
    │ │ │ -         loop()
    │ │ │ +         loop()
    │ │ │   end.

    │ │ │ │ │ │ │ │ │ │ │ │ Initial Heap Size │ │ │

    │ │ │

    The default initial heap size of 233 words is quite conservative to support │ │ │ @@ -189,30 +189,30 @@ │ │ │ │ │ │ │ │ │ Receiving messages │ │ │ │ │ │

    The cost of receiving messages depends on how complicated the receive │ │ │ expression is. A simple expression that matches any message is very cheap │ │ │ because it retrieves the first message in the message queue:

    DO

    receive
    │ │ │ -    Message -> handle_msg(Message)
    │ │ │ +    Message -> handle_msg(Message)
    │ │ │  end.

    However, this is not always convenient: we can receive a message that we do not │ │ │ know how to handle at this point, so it is common to only match the messages we │ │ │ expect:

    receive
    │ │ │ -    {Tag, Message} -> handle_msg(Message)
    │ │ │ +    {Tag, Message} -> handle_msg(Message)
    │ │ │  end.

    While this is convenient it means that the entire message queue must be searched │ │ │ until it finds a matching message. This is very expensive for processes with │ │ │ long message queues, so there is an optimization for the common case of │ │ │ -sending a request and waiting for a response shortly after:

    DO

    MRef = monitor(process, Process),
    │ │ │ -Process ! {self(), MRef, Request},
    │ │ │ +sending a request and waiting for a response shortly after:

    DO

    MRef = monitor(process, Process),
    │ │ │ +Process ! {self(), MRef, Request},
    │ │ │  receive
    │ │ │ -    {MRef, Reply} ->
    │ │ │ -        erlang:demonitor(MRef, [flush]),
    │ │ │ -        handle_reply(Reply);
    │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ -        handle_error(Reason)
    │ │ │ +    {MRef, Reply} ->
    │ │ │ +        erlang:demonitor(MRef, [flush]),
    │ │ │ +        handle_reply(Reply);
    │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ +        handle_error(Reason)
    │ │ │  end.

    Since the compiler knows that the reference created by │ │ │ monitor/2 cannot exist before the call (since it is a globally │ │ │ unique identifier), and that the receive only matches messages that contain │ │ │ said reference, it will tell the emulator to search only the messages that │ │ │ arrived after the call to monitor/2.

    The above is a simple example where one is but guaranteed that the optimization │ │ │ will take, but what about more complicated code?

    │ │ │ │ │ │ @@ -228,101 +228,101 @@ │ │ │ efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference │ │ │ efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position │ │ │ efficiency_guide.erl:208: Warning: OPTIMIZED: all clauses match reference created by monitor/2 at efficiency_guide.erl:206 │ │ │ efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218 │ │ │ efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1

    To make it clearer exactly what code the warnings refer to, the warnings in the │ │ │ following examples are inserted as comments after the clause they refer to, for │ │ │ example:

    %% DO
    │ │ │ -simple_receive() ->
    │ │ │ +simple_receive() ->
    │ │ │  %% efficiency_guide.erl:194: Warning: INFO: not a selective receive, this is always fast
    │ │ │  receive
    │ │ │ -    Message -> handle_msg(Message)
    │ │ │ +    Message -> handle_msg(Message)
    │ │ │  end.
    │ │ │  
    │ │ │  %% DO NOT, unless Tag is known to be a suitable reference: see
    │ │ │  %% cross_function_receive/0 further down.
    │ │ │ -selective_receive(Tag, Message) ->
    │ │ │ +selective_receive(Tag, Message) ->
    │ │ │  %% efficiency_guide.erl:200: Warning: NOT OPTIMIZED: all clauses do not match a suitable reference
    │ │ │  receive
    │ │ │ -    {Tag, Message} -> handle_msg(Message)
    │ │ │ +    {Tag, Message} -> handle_msg(Message)
    │ │ │  end.
    │ │ │  
    │ │ │  %% DO
    │ │ │ -optimized_receive(Process, Request) ->
    │ │ │ +optimized_receive(Process, Request) ->
    │ │ │  %% efficiency_guide.erl:206: Warning: OPTIMIZED: reference used to mark a message queue position
    │ │ │ -    MRef = monitor(process, Process),
    │ │ │ -    Process ! {self(), MRef, Request},
    │ │ │ +    MRef = monitor(process, Process),
    │ │ │ +    Process ! {self(), MRef, Request},
    │ │ │      %% efficiency_guide.erl:208: Warning: OPTIMIZED: matches reference created by monitor/2 at efficiency_guide.erl:206
    │ │ │      receive
    │ │ │ -        {MRef, Reply} ->
    │ │ │ -        erlang:demonitor(MRef, [flush]),
    │ │ │ -        handle_reply(Reply);
    │ │ │ -    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ -    handle_error(Reason)
    │ │ │ +        {MRef, Reply} ->
    │ │ │ +        erlang:demonitor(MRef, [flush]),
    │ │ │ +        handle_reply(Reply);
    │ │ │ +    {'DOWN', MRef, _, _, Reason} ->
    │ │ │ +    handle_error(Reason)
    │ │ │      end.
    │ │ │  
    │ │ │  %% DO
    │ │ │ -cross_function_receive() ->
    │ │ │ +cross_function_receive() ->
    │ │ │      %% efficiency_guide.erl:218: Warning: OPTIMIZED: reference used to mark a message queue position
    │ │ │ -    Ref = make_ref(),
    │ │ │ +    Ref = make_ref(),
    │ │ │      %% efficiency_guide.erl:219: Warning: INFO: passing reference created by make_ref/0 at efficiency_guide.erl:218
    │ │ │ -    cross_function_receive(Ref).
    │ │ │ +    cross_function_receive(Ref).
    │ │ │  
    │ │ │ -cross_function_receive(Ref) ->
    │ │ │ +cross_function_receive(Ref) ->
    │ │ │      %% efficiency_guide.erl:222: Warning: OPTIMIZED: all clauses match reference in function parameter 1
    │ │ │      receive
    │ │ │ -        {Ref, Message} -> handle_msg(Message)
    │ │ │ +        {Ref, Message} -> handle_msg(Message)
    │ │ │      end.

    │ │ │ │ │ │ │ │ │ │ │ │ Literal Pool │ │ │

    │ │ │

    Constant Erlang terms (hereafter called literals) are kept in literal pools; │ │ │ each loaded module has its own pool. The following function does not build the │ │ │ tuple every time it is called (only to have it discarded the next time the │ │ │ garbage collector was run), but the tuple is located in the module's literal │ │ │ -pool:

    DO

    days_in_month(M) ->
    │ │ │ -    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

    If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ +pool:

    DO

    days_in_month(M) ->
    │ │ │ +    element(M, {31,28,31,30,31,30,31,31,30,31,30,31}).

    If a literal, or a term that contains a literal, is inserted into an Ets table, │ │ │ it is copied. The reason is that the module containing the literal can be │ │ │ unloaded in the future.

    When a literal is sent to another process, it is not copied. When a module │ │ │ holding a literal is unloaded, the literal will be copied to the heap of all │ │ │ processes that hold references to that literal.

    There also exists a global literal pool that is managed by the │ │ │ persistent_term module.

    By default, 1 GB of virtual address space is reserved for all literal pools (in │ │ │ BEAM code and persistent terms). The amount of virtual address space reserved │ │ │ for literals can be changed by using the │ │ │ +MIscs option when starting the emulator.

    Here is an example how the reserved virtual address space for literals can be │ │ │ raised to 2 GB (2048 MB):

    erl +MIscs 2048

    │ │ │ │ │ │ │ │ │ │ │ │ Loss of Sharing │ │ │

    │ │ │ -

    An Erlang term can have shared subterms. Here is a simple example:

    {SubTerm, SubTerm}

    Shared subterms are not preserved in the following cases:

    • When a term is sent to another process
    • When a term is passed as the initial process arguments in the spawn call
    • When a term is stored in an Ets table

    That is an optimization. Most applications do not send messages with shared │ │ │ -subterms.

    The following example shows how a shared subterm can be created:

    kilo_byte() ->
    │ │ │ -    kilo_byte(10, [42]).
    │ │ │ +

    An Erlang term can have shared subterms. Here is a simple example:

    {SubTerm, SubTerm}

    Shared subterms are not preserved in the following cases:

    • When a term is sent to another process
    • When a term is passed as the initial process arguments in the spawn call
    • When a term is stored in an Ets table

    That is an optimization. Most applications do not send messages with shared │ │ │ +subterms.

    The following example shows how a shared subterm can be created:

    kilo_byte() ->
    │ │ │ +    kilo_byte(10, [42]).
    │ │ │  
    │ │ │ -kilo_byte(0, Acc) ->
    │ │ │ +kilo_byte(0, Acc) ->
    │ │ │      Acc;
    │ │ │ -kilo_byte(N, Acc) ->
    │ │ │ -    kilo_byte(N-1, [Acc|Acc]).

    kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ +kilo_byte(N, Acc) -> │ │ │ + kilo_byte(N-1, [Acc|Acc]).

    kilo_byte/1 creates a deep list. If list_to_binary/1 │ │ │ is called, the deep list can be converted to a binary of 1024 bytes:

    1> byte_size(list_to_binary(efficiency_guide:kilo_byte())).
    │ │ │  1024

    Using the erts_debug:size/1 BIF, it can be seen that the deep list only │ │ │ -requires 22 words of heap space:

    2> erts_debug:size(efficiency_guide:kilo_byte()).
    │ │ │ +requires 22 words of heap space:

    2> erts_debug:size(efficiency_guide:kilo_byte()).
    │ │ │  22

    Using the erts_debug:flat_size/1 BIF, the size of the deep list can be │ │ │ calculated if sharing is ignored. It becomes the size of the list when it has │ │ │ -been sent to another process or stored in an Ets table:

    3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
    │ │ │ +been sent to another process or stored in an Ets table:

    3> erts_debug:flat_size(efficiency_guide:kilo_byte()).
    │ │ │  4094

    It can be verified that sharing will be lost if the data is inserted into an Ets │ │ │ -table:

    4> T = ets:new(tab, []).
    │ │ │ +table:

    4> T = ets:new(tab, []).
    │ │ │  #Ref<0.1662103692.2407923716.214181>
    │ │ │ -5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
    │ │ │ +5> ets:insert(T, {key,efficiency_guide:kilo_byte()}).
    │ │ │  true
    │ │ │ -6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
    │ │ │ +6> erts_debug:size(element(2, hd(ets:lookup(T, key)))).
    │ │ │  4094
    │ │ │ -7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
    │ │ │ +7> erts_debug:flat_size(element(2, hd(ets:lookup(T, key)))).
    │ │ │  4094

    When the data has passed through an Ets table, erts_debug:size/1 and │ │ │ erts_debug:flat_size/1 return the same value. Sharing has been lost.

    It is possible to build an experimental variant of the runtime system that │ │ │ will preserve sharing when copying terms by giving the │ │ │ --enable-sharing-preserving option to the configure script.

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/erl_interface.html │ │ │ @@ -120,119 +120,119 @@ │ │ │ to read the port example in Ports before reading this section.

    │ │ │ │ │ │ │ │ │ │ │ │ Erlang Program │ │ │

    │ │ │

    The following example shows an Erlang program communicating with a C program │ │ │ -over a plain port with home made encoding:

    -module(complex1).
    │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ -
    │ │ │ -start(ExtPrg) ->
    │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ -stop() ->
    │ │ │ +over a plain port with home made encoding:

    -module(complex1).
    │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +
    │ │ │ +start(ExtPrg) ->
    │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ +stop() ->
    │ │ │      complex ! stop.
    │ │ │  
    │ │ │ -foo(X) ->
    │ │ │ -    call_port({foo, X}).
    │ │ │ -bar(Y) ->
    │ │ │ -    call_port({bar, Y}).
    │ │ │ +foo(X) ->
    │ │ │ +    call_port({foo, X}).
    │ │ │ +bar(Y) ->
    │ │ │ +    call_port({bar, Y}).
    │ │ │  
    │ │ │ -call_port(Msg) ->
    │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ +call_port(Msg) ->
    │ │ │ +    complex ! {call, self(), Msg},
    │ │ │      receive
    │ │ │ -	{complex, Result} ->
    │ │ │ +	{complex, Result} ->
    │ │ │  	    Result
    │ │ │      end.
    │ │ │  
    │ │ │ -init(ExtPrg) ->
    │ │ │ -    register(complex, self()),
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ -    loop(Port).
    │ │ │ +init(ExtPrg) ->
    │ │ │ +    register(complex, self()),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}]),
    │ │ │ +    loop(Port).
    │ │ │  
    │ │ │ -loop(Port) ->
    │ │ │ +loop(Port) ->
    │ │ │      receive
    │ │ │ -	{call, Caller, Msg} ->
    │ │ │ -	    Port ! {self(), {command, encode(Msg)}},
    │ │ │ +	{call, Caller, Msg} ->
    │ │ │ +	    Port ! {self(), {command, encode(Msg)}},
    │ │ │  	    receive
    │ │ │ -		{Port, {data, Data}} ->
    │ │ │ -		    Caller ! {complex, decode(Data)}
    │ │ │ +		{Port, {data, Data}} ->
    │ │ │ +		    Caller ! {complex, decode(Data)}
    │ │ │  	    end,
    │ │ │ -	    loop(Port);
    │ │ │ +	    loop(Port);
    │ │ │  	stop ->
    │ │ │ -	    Port ! {self(), close},
    │ │ │ +	    Port ! {self(), close},
    │ │ │  	    receive
    │ │ │ -		{Port, closed} ->
    │ │ │ -		    exit(normal)
    │ │ │ +		{Port, closed} ->
    │ │ │ +		    exit(normal)
    │ │ │  	    end;
    │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ -	    exit(port_terminated)
    │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ +	    exit(port_terminated)
    │ │ │      end.
    │ │ │  
    │ │ │ -encode({foo, X}) -> [1, X];
    │ │ │ -encode({bar, Y}) -> [2, Y].
    │ │ │ +encode({foo, X}) -> [1, X];
    │ │ │ +encode({bar, Y}) -> [2, Y].
    │ │ │  
    │ │ │ -decode([Int]) -> Int.

    There are two differences when using Erl_Interface on the C side compared to the │ │ │ +decode([Int]) -> Int.

    There are two differences when using Erl_Interface on the C side compared to the │ │ │ example in Ports, using only the plain port:

    • As Erl_Interface operates on the Erlang external term format, the port must be │ │ │ set to use binaries.
    • Instead of inventing an encoding/decoding scheme, the │ │ │ term_to_binary/1 and │ │ │ -binary_to_term/1 BIFs are to be used.

    That is:

    open_port({spawn, ExtPrg}, [{packet, 2}])

    is replaced with:

    open_port({spawn, ExtPrg}, [{packet, 2}, binary])

    And:

    Port ! {self(), {command, encode(Msg)}},
    │ │ │ +binary_to_term/1 BIFs are to be used.

    That is:

    open_port({spawn, ExtPrg}, [{packet, 2}])

    is replaced with:

    open_port({spawn, ExtPrg}, [{packet, 2}, binary])

    And:

    Port ! {self(), {command, encode(Msg)}},
    │ │ │  receive
    │ │ │ -  {Port, {data, Data}} ->
    │ │ │ -    Caller ! {complex, decode(Data)}
    │ │ │ -end

    is replaced with:

    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │ +  {Port, {data, Data}} ->
    │ │ │ +    Caller ! {complex, decode(Data)}
    │ │ │ +end

    is replaced with:

    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │  receive
    │ │ │ -  {Port, {data, Data}} ->
    │ │ │ -    Caller ! {complex, binary_to_term(Data)}
    │ │ │ -end

    The resulting Erlang program is as follows:

    -module(complex2).
    │ │ │ --export([start/1, stop/0, init/1]).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ -
    │ │ │ -start(ExtPrg) ->
    │ │ │ -    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ -stop() ->
    │ │ │ +  {Port, {data, Data}} ->
    │ │ │ +    Caller ! {complex, binary_to_term(Data)}
    │ │ │ +end

    The resulting Erlang program is as follows:

    -module(complex2).
    │ │ │ +-export([start/1, stop/0, init/1]).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +
    │ │ │ +start(ExtPrg) ->
    │ │ │ +    spawn(?MODULE, init, [ExtPrg]).
    │ │ │ +stop() ->
    │ │ │      complex ! stop.
    │ │ │  
    │ │ │ -foo(X) ->
    │ │ │ -    call_port({foo, X}).
    │ │ │ -bar(Y) ->
    │ │ │ -    call_port({bar, Y}).
    │ │ │ +foo(X) ->
    │ │ │ +    call_port({foo, X}).
    │ │ │ +bar(Y) ->
    │ │ │ +    call_port({bar, Y}).
    │ │ │  
    │ │ │ -call_port(Msg) ->
    │ │ │ -    complex ! {call, self(), Msg},
    │ │ │ +call_port(Msg) ->
    │ │ │ +    complex ! {call, self(), Msg},
    │ │ │      receive
    │ │ │ -	{complex, Result} ->
    │ │ │ +	{complex, Result} ->
    │ │ │  	    Result
    │ │ │      end.
    │ │ │  
    │ │ │ -init(ExtPrg) ->
    │ │ │ -    register(complex, self()),
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
    │ │ │ -    loop(Port).
    │ │ │ +init(ExtPrg) ->
    │ │ │ +    register(complex, self()),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    Port = open_port({spawn, ExtPrg}, [{packet, 2}, binary]),
    │ │ │ +    loop(Port).
    │ │ │  
    │ │ │ -loop(Port) ->
    │ │ │ +loop(Port) ->
    │ │ │      receive
    │ │ │ -	{call, Caller, Msg} ->
    │ │ │ -	    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │ +	{call, Caller, Msg} ->
    │ │ │ +	    Port ! {self(), {command, term_to_binary(Msg)}},
    │ │ │  	    receive
    │ │ │ -		{Port, {data, Data}} ->
    │ │ │ -		    Caller ! {complex, binary_to_term(Data)}
    │ │ │ +		{Port, {data, Data}} ->
    │ │ │ +		    Caller ! {complex, binary_to_term(Data)}
    │ │ │  	    end,
    │ │ │ -	    loop(Port);
    │ │ │ +	    loop(Port);
    │ │ │  	stop ->
    │ │ │ -	    Port ! {self(), close},
    │ │ │ +	    Port ! {self(), close},
    │ │ │  	    receive
    │ │ │ -		{Port, closed} ->
    │ │ │ -		    exit(normal)
    │ │ │ +		{Port, closed} ->
    │ │ │ +		    exit(normal)
    │ │ │  	    end;
    │ │ │ -	{'EXIT', Port, Reason} ->
    │ │ │ -	    exit(port_terminated)
    │ │ │ +	{'EXIT', Port, Reason} ->
    │ │ │ +	    exit(port_terminated)
    │ │ │      end.

    Notice that calling complex2:foo/1 and complex2:bar/1 results in the tuple │ │ │ {foo,X} or {bar,Y} being sent to the complex process, which codes them as │ │ │ binaries and sends them to the port. This means that the C program must be able │ │ │ to handle these two tuples.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -362,27 +362,27 @@ │ │ │ -L/usr/local/otp/lib/erl_interface-3.9.2/lib \ │ │ │ complex.c erl_comm.c ei.c -lei -lpthread

    In Erlang/OTP R5B and later versions of OTP, the include and lib directories │ │ │ are situated under $OTPROOT/lib/erl_interface-VSN, where $OTPROOT is the │ │ │ root directory of the OTP installation (/usr/local/otp in the recent example) │ │ │ and VSN is the version of the Erl_interface application (3.2.1 in the recent │ │ │ example).

    In R4B and earlier versions of OTP, include and lib are situated under │ │ │ $OTPROOT/usr.

    Step 2. Start Erlang and compile the Erlang code:

    $ erl
    │ │ │ -Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │ +Erlang/OTP 26 [erts-14.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit:ns]
    │ │ │  
    │ │ │ -Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> c(complex2).
    │ │ │ -{ok,complex2}

    Step 3. Run the example:

    2> complex2:start("./extprg").
    │ │ │ +Eshell V14.2 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> c(complex2).
    │ │ │ +{ok,complex2}

    Step 3. Run the example:

    2> complex2:start("./extprg").
    │ │ │  <0.34.0>
    │ │ │ -3> complex2:foo(3).
    │ │ │ +3> complex2:foo(3).
    │ │ │  4
    │ │ │ -4> complex2:bar(5).
    │ │ │ +4> complex2:bar(5).
    │ │ │  10
    │ │ │ -5> complex2:bar(352).
    │ │ │ +5> complex2:bar(352).
    │ │ │  704
    │ │ │ -6> complex2:stop().
    │ │ │ +6> complex2:stop().
    │ │ │  stop
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    logger_sasl_compatible to │ │ │ true. For more information, see │ │ │ SASL Error Logging in the SASL User's Guide.

    % erl -kernel logger_level info
    │ │ │ -Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
    │ │ │ +Erlang/OTP 21 [erts-10.0] [source-13c50db] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:1] [hipe]
    │ │ │  
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.916404 ===
    │ │ │      application: kernel
    │ │ │      started_at: nonode@nohost
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.922908 ===
    │ │ │      application: stdlib
    │ │ │      started_at: nonode@nohost
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.925755 ===
    │ │ │ -    supervisor: {local,kernel_safe_sup}
    │ │ │ -    started: [{pid,<0.74.0>},
    │ │ │ -              {id,disk_log_sup},
    │ │ │ -              {mfargs,{disk_log_sup,start_link,[]}},
    │ │ │ -              {restart_type,permanent},
    │ │ │ -              {shutdown,1000},
    │ │ │ -              {child_type,supervisor}]
    │ │ │ +    supervisor: {local,kernel_safe_sup}
    │ │ │ +    started: [{pid,<0.74.0>},
    │ │ │ +              {id,disk_log_sup},
    │ │ │ +              {mfargs,{disk_log_sup,start_link,[]}},
    │ │ │ +              {restart_type,permanent},
    │ │ │ +              {shutdown,1000},
    │ │ │ +              {child_type,supervisor}]
    │ │ │  =PROGRESS REPORT==== 8-Jun-2018::16:54:19.926056 ===
    │ │ │ -    supervisor: {local,kernel_safe_sup}
    │ │ │ -    started: [{pid,<0.75.0>},
    │ │ │ -              {id,disk_log_server},
    │ │ │ -              {mfargs,{disk_log_server,start_link,[]}},
    │ │ │ -              {restart_type,permanent},
    │ │ │ -              {shutdown,2000},
    │ │ │ -              {child_type,worker}]
    │ │ │ -Eshell V10.0  (abort with ^G)
    │ │ │ +    supervisor: {local,kernel_safe_sup}
    │ │ │ +    started: [{pid,<0.75.0>},
    │ │ │ +              {id,disk_log_server},
    │ │ │ +              {mfargs,{disk_log_server,start_link,[]}},
    │ │ │ +              {restart_type,permanent},
    │ │ │ +              {shutdown,2000},
    │ │ │ +              {child_type,worker}]
    │ │ │ +Eshell V10.0  (abort with ^G)
    │ │ │  1>
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ try expression can │ │ │ distinguish between the different classes, whereas the │ │ │ catch expression cannot. try and catch are described │ │ │ in Expressions.

    ClassOrigin
    errorRun-time error, for example, 1+a, or the process called error/1
    exitThe process called exit/1
    throwThe process called throw/1

    Table: Exception Classes.

    All of the above exceptions can also be generated by calling erlang:raise/3.

    An exception consists of its class, an exit reason (see │ │ │ Exit Reason), and a stack trace (which aids in finding │ │ │ the code location of the exception).

    The stack trace can be bound to a variable from within a try expression for │ │ │ any exception class, or as part of the exit reason when a run-time error is │ │ │ -caught by a catch. Example:

    > {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
    │ │ │ -[{shell,apply_fun,3,[]},
    │ │ │ - {erl_eval,do_apply,6,[]},
    │ │ │ - ...]
    │ │ │ -> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
    │ │ │ -[{shell,apply_fun,3,[]},
    │ │ │ - {erl_eval,do_apply,6,[]},
    │ │ │ - ...]

    │ │ │ +caught by a catch. Example:

    > {'EXIT',{test,Stacktrace}} = (catch error(test)), Stacktrace.
    │ │ │ +[{shell,apply_fun,3,[]},
    │ │ │ + {erl_eval,do_apply,6,[]},
    │ │ │ + ...]
    │ │ │ +> try throw(test) catch Class:Reason:Stacktrace -> Stacktrace end.
    │ │ │ +[{shell,apply_fun,3,[]},
    │ │ │ + {erl_eval,do_apply,6,[]},
    │ │ │ + ...]

    │ │ │ │ │ │ │ │ │ │ │ │ The call-stack back trace (stacktrace) │ │ │

    │ │ │

    The stack back-trace (stacktrace) is a list that │ │ │ contains {Module, Function, Arity, ExtraInfo} and/or {Fun, Arity, ExtraInfo} │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/events.html │ │ │ @@ -135,43 +135,43 @@ │ │ │ event handler.

    │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │

    │ │ │

    The callback module for the event handler writing error messages to the terminal │ │ │ -can look as follows:

    -module(terminal_logger).
    │ │ │ --behaviour(gen_event).
    │ │ │ +can look as follows:

    -module(terminal_logger).
    │ │ │ +-behaviour(gen_event).
    │ │ │  
    │ │ │ --export([init/1, handle_event/2, terminate/2]).
    │ │ │ +-export([init/1, handle_event/2, terminate/2]).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, []}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, []}.
    │ │ │  
    │ │ │ -handle_event(ErrorMsg, State) ->
    │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, State}.
    │ │ │ +handle_event(ErrorMsg, State) ->
    │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, State}.
    │ │ │  
    │ │ │ -terminate(_Args, _State) ->
    │ │ │ +terminate(_Args, _State) ->
    │ │ │      ok.

    The callback module for the event handler writing error messages to a file can │ │ │ -look as follows:

    -module(file_logger).
    │ │ │ --behaviour(gen_event).
    │ │ │ +look as follows:

    -module(file_logger).
    │ │ │ +-behaviour(gen_event).
    │ │ │  
    │ │ │ --export([init/1, handle_event/2, terminate/2]).
    │ │ │ +-export([init/1, handle_event/2, terminate/2]).
    │ │ │  
    │ │ │ -init(File) ->
    │ │ │ -    {ok, Fd} = file:open(File, read),
    │ │ │ -    {ok, Fd}.
    │ │ │ -
    │ │ │ -handle_event(ErrorMsg, Fd) ->
    │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, Fd}.
    │ │ │ +init(File) ->
    │ │ │ +    {ok, Fd} = file:open(File, read),
    │ │ │ +    {ok, Fd}.
    │ │ │ +
    │ │ │ +handle_event(ErrorMsg, Fd) ->
    │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, Fd}.
    │ │ │  
    │ │ │ -terminate(_Args, Fd) ->
    │ │ │ -    file:close(Fd).

    The code is explained in the next sections.

    │ │ │ +terminate(_Args, Fd) -> │ │ │ + file:close(Fd).

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting an Event Manager │ │ │

    │ │ │

    To start an event manager for handling errors, as described in the previous │ │ │ example, call the following function:

    gen_event:start_link({local, error_man})

    gen_event:start_link/1 spawns and links to a new event manager process.

    The argument, {local, error_man}, specifies the name under which the │ │ │ @@ -184,57 +184,57 @@ │ │ │ manager that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ Adding an Event Handler │ │ │

    │ │ │

    The following example shows how to start an event manager and add an event │ │ │ -handler to it by using the shell:

    1> gen_event:start({local, error_man}).
    │ │ │ -{ok,<0.31.0>}
    │ │ │ -2> gen_event:add_handler(error_man, terminal_logger, []).
    │ │ │ +handler to it by using the shell:

    1> gen_event:start({local, error_man}).
    │ │ │ +{ok,<0.31.0>}
    │ │ │ +2> gen_event:add_handler(error_man, terminal_logger, []).
    │ │ │  ok

    This function sends a message to the event manager registered as error_man, │ │ │ telling it to add the event handler terminal_logger. The event manager calls │ │ │ the callback function terminal_logger:init([]), where the argument [] is the │ │ │ third argument to add_handler. init/1 is expected to return {ok, State}, │ │ │ -where State is the internal state of the event handler.

    init(_Args) ->
    │ │ │ -    {ok, []}.

    Here, init/1 does not need any input data and ignores its argument. For │ │ │ +where State is the internal state of the event handler.

    init(_Args) ->
    │ │ │ +    {ok, []}.

    Here, init/1 does not need any input data and ignores its argument. For │ │ │ terminal_logger, the internal state is not used. For file_logger, the │ │ │ -internal state is used to save the open file descriptor.

    init(File) ->
    │ │ │ -    {ok, Fd} = file:open(File, read),
    │ │ │ -    {ok, Fd}.

    │ │ │ +internal state is used to save the open file descriptor.

    init(File) ->
    │ │ │ +    {ok, Fd} = file:open(File, read),
    │ │ │ +    {ok, Fd}.

    │ │ │ │ │ │ │ │ │ │ │ │ Notifying about Events │ │ │

    │ │ │
    3> gen_event:notify(error_man, no_reply).
    │ │ │  ***Error*** no_reply
    │ │ │  ok

    error_man is the name of the event manager and no_reply is the event.

    The event is made into a message and sent to the event manager. When the event │ │ │ is received, the event manager calls handle_event(Event, State) for each │ │ │ installed event handler, in the same order as they were added. The function is │ │ │ expected to return a tuple {ok,State1}, where State1 is a new value for the │ │ │ -state of the event handler.

    In terminal_logger:

    handle_event(ErrorMsg, State) ->
    │ │ │ -    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, State}.

    In file_logger:

    handle_event(ErrorMsg, Fd) ->
    │ │ │ -    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ -    {ok, Fd}.

    │ │ │ +state of the event handler.

    In terminal_logger:

    handle_event(ErrorMsg, State) ->
    │ │ │ +    io:format("***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, State}.

    In file_logger:

    handle_event(ErrorMsg, Fd) ->
    │ │ │ +    io:format(Fd, "***Error*** ~p~n", [ErrorMsg]),
    │ │ │ +    {ok, Fd}.

    │ │ │ │ │ │ │ │ │ │ │ │ Deleting an Event Handler │ │ │

    │ │ │ -
    4> gen_event:delete_handler(error_man, terminal_logger, []).
    │ │ │ +
    4> gen_event:delete_handler(error_man, terminal_logger, []).
    │ │ │  ok

    This function sends a message to the event manager registered as error_man, │ │ │ telling it to delete the event handler terminal_logger. The event manager │ │ │ calls the callback function terminal_logger:terminate([], State), where the │ │ │ argument [] is the third argument to delete_handler. terminate/2 is to be │ │ │ the opposite of init/1 and do any necessary cleaning up. Its return value is │ │ │ -ignored.

    For terminal_logger, no cleaning up is necessary:

    terminate(_Args, _State) ->
    │ │ │ -    ok.

    For file_logger, the file descriptor opened in init must be closed:

    terminate(_Args, Fd) ->
    │ │ │ -    file:close(Fd).

    │ │ │ +ignored.

    For terminal_logger, no cleaning up is necessary:

    terminate(_Args, _State) ->
    │ │ │ +    ok.

    For file_logger, the file descriptor opened in init must be closed:

    terminate(_Args, Fd) ->
    │ │ │ +    file:close(Fd).

    │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

    │ │ │

    When an event manager is stopped, it gives each of the installed event handlers │ │ │ the chance to clean up by calling terminate/2, the same way as when deleting a │ │ │ @@ -249,33 +249,33 @@ │ │ │ this is done is defined by a shutdown strategy set in │ │ │ the supervisor.

    │ │ │ │ │ │ │ │ │ │ │ │ Standalone Event Managers │ │ │

    │ │ │ -

    An event manager can also be stopped by calling:

    1> gen_event:stop(error_man).
    │ │ │ +

    An event manager can also be stopped by calling:

    1> gen_event:stop(error_man).
    │ │ │  ok

    │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │

    │ │ │

    If the gen_event process is to be able to receive other messages │ │ │ than events, the callback function handle_info(Info, State) must be │ │ │ implemented to handle them. Examples of other messages are exit │ │ │ messages if the event manager is linked to other processes than the │ │ │ supervisor (for example via gen_event:add_sup_handler/3) and is │ │ │ -trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ +trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │      %% Code to handle exits here.
    │ │ │      ...
    │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │      %% Code to convert state (and more) during code change.
    │ │ │      ...
    │ │ │ -    {ok, NewState}.
    │ │ │ +
    {ok, NewState}.
    │ │ │
    │ │ │ │ │ │

    pattern matching. Erlang uses │ │ │ single assignment, that is, a variable can only be bound once.

    The anonymous variable is denoted by underscore (_) and can be used when a │ │ │ variable is required but its value can be ignored.

    Example:

    [H|_] = [1,2,3]

    Variables starting with underscore (_), for example, _Height, are normal │ │ │ variables, not anonymous. However, they are ignored by the compiler in the sense │ │ │ -that they do not generate warnings.

    Example:

    The following code:

    member(_, []) ->
    │ │ │ -    [].

    can be rewritten to be more readable:

    member(Elem, []) ->
    │ │ │ -    [].

    This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ -the code can be rewritten to:

    member(_Elem, []) ->
    │ │ │ -    [].

    Notice that since variables starting with an underscore are not anonymous, the │ │ │ -following example matches:

    {_,_} = {1,2}

    But this example fails:

    {_N,_N} = {1,2}

    The scope for a variable is its function clause. Variables bound in a branch of │ │ │ +that they do not generate warnings.

    Example:

    The following code:

    member(_, []) ->
    │ │ │ +    [].

    can be rewritten to be more readable:

    member(Elem, []) ->
    │ │ │ +    [].

    This causes a warning for an unused variable, Elem. To avoid the warning, │ │ │ +the code can be rewritten to:

    member(_Elem, []) ->
    │ │ │ +    [].

    Notice that since variables starting with an underscore are not anonymous, the │ │ │ +following example matches:

    {_,_} = {1,2}

    But this example fails:

    {_N,_N} = {1,2}

    The scope for a variable is its function clause. Variables bound in a branch of │ │ │ an if, case, or receive expression must be bound in all branches to have a │ │ │ value outside the expression. Otherwise they are regarded as unsafe outside │ │ │ the expression.

    For the try expression variable scoping is limited so that variables bound in │ │ │ the expression are always unsafe outside the expression.

    │ │ │ │ │ │ │ │ │ │ │ │ Patterns │ │ │

    │ │ │

    A pattern has the same structure as a term but can contain unbound variables.

    Example:

    Name1
    │ │ │ -[H|T]
    │ │ │ -{error,Reason}

    Patterns are allowed in clause heads, case expressions, │ │ │ +[H|T] │ │ │ +{error,Reason}

    Patterns are allowed in clause heads, case expressions, │ │ │ receive expressions, and │ │ │ match expressions.

    │ │ │ │ │ │ │ │ │ │ │ │ The Compound Pattern Operator │ │ │

    │ │ │

    If Pattern1 and Pattern2 are valid patterns, the following is also a valid │ │ │ pattern:

    Pattern1 = Pattern2

    When matched against a term, both Pattern1 and Pattern2 are matched against │ │ │ -the term. The idea behind this feature is to avoid reconstruction of terms.

    Example:

    f({connect,From,To,Number,Options}, To) ->
    │ │ │ -    Signal = {connect,From,To,Number,Options},
    │ │ │ +the term. The idea behind this feature is to avoid reconstruction of terms.

    Example:

    f({connect,From,To,Number,Options}, To) ->
    │ │ │ +    Signal = {connect,From,To,Number,Options},
    │ │ │      ...;
    │ │ │ -f(Signal, To) ->
    │ │ │ -    ignore.

    can instead be written as

    f({connect,_,To,_,_} = Signal, To) ->
    │ │ │ +f(Signal, To) ->
    │ │ │ +    ignore.

    can instead be written as

    f({connect,_,To,_,_} = Signal, To) ->
    │ │ │      ...;
    │ │ │ -f(Signal, To) ->
    │ │ │ +f(Signal, To) ->
    │ │ │      ignore.

    The compound pattern operator does not imply that its operands are matched in │ │ │ any particular order. That means that it is not legal to bind a variable in │ │ │ Pattern1 and use it in Pattern2, or vice versa.

    │ │ │ │ │ │ │ │ │ │ │ │ String Prefix in Patterns │ │ │

    │ │ │ -

    When matching strings, the following is a valid pattern:

    f("prefix" ++ Str) -> ...

    This is syntactic sugar for the equivalent, but harder to read:

    f([$p,$r,$e,$f,$i,$x | Str]) -> ...

    │ │ │ +

    When matching strings, the following is a valid pattern:

    f("prefix" ++ Str) -> ...

    This is syntactic sugar for the equivalent, but harder to read:

    f([$p,$r,$e,$f,$i,$x | Str]) -> ...

    │ │ │ │ │ │ │ │ │ │ │ │ Expressions in Patterns │ │ │

    │ │ │

    An arithmetic expression can be used within a pattern if it meets both of the │ │ │ -following two conditions:

    • It uses only numeric or bitwise operators.
    • Its value can be evaluated to a constant when complied.

    Example:

    case {Value, Result} of
    │ │ │ -    {?THRESHOLD+1, ok} -> ...

    │ │ │ +following two conditions:

    • It uses only numeric or bitwise operators.
    • Its value can be evaluated to a constant when complied.

    Example:

    case {Value, Result} of
    │ │ │ +    {?THRESHOLD+1, ok} -> ...

    │ │ │ │ │ │ │ │ │ │ │ │ The Match Operator │ │ │

    │ │ │

    The following matches Pattern against Expr:

    Pattern = Expr

    If the matching succeeds, any unbound variable in the pattern becomes bound and │ │ │ the value of Expr is returned.

    If multiple match operators are applied in sequence, they will be evaluated from │ │ │ -right to left.

    If the matching fails, a badmatch run-time error occurs.

    Examples:

    1> {A, B} = T = {answer, 42}.
    │ │ │ -{answer,42}
    │ │ │ +right to left.

    If the matching fails, a badmatch run-time error occurs.

    Examples:

    1> {A, B} = T = {answer, 42}.
    │ │ │ +{answer,42}
    │ │ │  2> A.
    │ │ │  answer
    │ │ │  3> B.
    │ │ │  42
    │ │ │  4> T.
    │ │ │ -{answer,42}
    │ │ │ -5> {C, D} = [1, 2].
    │ │ │ +{answer,42}
    │ │ │ +5> {C, D} = [1, 2].
    │ │ │  ** exception error: no match of right-hand side value [1,2]

    Because multiple match operators are evaluated from right to left, it means │ │ │ that:

    Pattern1 = Pattern2 = . . . = PatternN = Expression

    is equivalent to:

    Temporary = Expression,
    │ │ │  PatternN = Temporary,
    │ │ │     .
    │ │ │     .
    │ │ │     .,
    │ │ │  Pattern2 = Temporary,
    │ │ │ @@ -239,30 +239,30 @@
    │ │ │  can safely be skipped on a first reading.

    The = character is used to denote two similar but distinct operators: the │ │ │ match operator and the compound pattern operator. Which one is meant is │ │ │ determined by context.

    The compound pattern operator is used to construct a compound pattern from two │ │ │ patterns. Compound patterns are accepted everywhere a pattern is accepted. A │ │ │ compound pattern matches if all of its constituent patterns match. It is not │ │ │ legal for a pattern that is part of a compound pattern to use variables (as keys │ │ │ in map patterns or sizes in binary patterns) bound in other sub patterns of the │ │ │ -same compound pattern.

    Examples:

    1> fun(#{Key := Value} = #{key := Key}) -> Value end.
    │ │ │ +same compound pattern.

    Examples:

    1> fun(#{Key := Value} = #{key := Key}) -> Value end.
    │ │ │  * 1:7: variable 'Key' is unbound
    │ │ │ -2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}).
    │ │ │ -{{1,2},3}
    │ │ │ -3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>).
    │ │ │ -{42,43,10795}

    The match operator is allowed everywhere an expression is allowed. It is used │ │ │ +2> F = fun({A, B} = E) -> {E, A + B} end, F({1,2}). │ │ │ +{{1,2},3} │ │ │ +3> G = fun(<<A:8,B:8>> = <<C:16>>) -> {A, B, C} end, G(<<42,43>>). │ │ │ +{42,43,10795}

    The match operator is allowed everywhere an expression is allowed. It is used │ │ │ to match the value of an expression to a pattern. If multiple match operators │ │ │ -are applied in sequence, they will be evaluated from right to left.

    Examples:

    1> M = #{key => key2, key2 => value}.
    │ │ │ -#{key => key2,key2 => value}
    │ │ │ -2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
    │ │ │ +are applied in sequence, they will be evaluated from right to left.

    Examples:

    1> M = #{key => key2, key2 => value}.
    │ │ │ +#{key => key2,key2 => value}
    │ │ │ +2> f(Key), #{Key := Value} = #{key := Key} = M, Value.
    │ │ │  value
    │ │ │ -3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
    │ │ │ +3> f(Key), #{Key := Value} = (#{key := Key} = M), Value.
    │ │ │  value
    │ │ │ -4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
    │ │ │ +4> f(Key), (#{Key := Value} = #{key := Key}) = M, Value.
    │ │ │  * 1:12: variable 'Key' is unbound
    │ │ │ -5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
    │ │ │ +5> <<X:Y>> = begin Y = 8, <<42:8>> end, X.
    │ │ │  42

    The expression at prompt 2> first matches the value of variable M against │ │ │ pattern #{key := Key}, binding variable Key. It then matches the value of │ │ │ M against pattern #{Key := Value} using variable Key as the key, binding │ │ │ variable Value.

    The expression at prompt 3> matches expression (#{key := Key} = M) against │ │ │ pattern #{Key := Value}. The expression inside the parentheses is evaluated │ │ │ first. That is, M is matched against #{key := Key}, and then the value of │ │ │ M is matched against pattern #{Key := Value}. That is the same evaluation │ │ │ @@ -276,30 +276,30 @@ │ │ │ binding variable Y and creating a binary. The binary is then matched against │ │ │ pattern <<X:Y>> using the value of Y as the size of the segment.

    │ │ │ │ │ │ │ │ │ │ │ │ Function Calls │ │ │

    │ │ │ -
    ExprF(Expr1,...,ExprN)
    │ │ │ -ExprM:ExprF(Expr1,...,ExprN)

    In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ +

    ExprF(Expr1,...,ExprN)
    │ │ │ +ExprM:ExprF(Expr1,...,ExprN)

    In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of │ │ │ ExprM and ExprF must be an atom or an expression that evaluates to an atom. │ │ │ The function is said to be called by using the fully qualified function name. │ │ │ -This is often referred to as a remote or external function call.

    Example:

    lists:keyfind(Name, 1, List)

    In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ +This is often referred to as a remote or external function call.

    Example:

    lists:keyfind(Name, 1, List)

    In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be │ │ │ an atom or evaluate to a fun.

    If ExprF is an atom, the function is said to be called by using the │ │ │ implicitly qualified function name. If the function ExprF is locally │ │ │ defined, it is called. Alternatively, if ExprF is explicitly imported from the │ │ │ M module, M:ExprF(Expr1,...,ExprN) is called. If ExprF is neither declared │ │ │ locally nor explicitly imported, ExprF must be the name of an automatically │ │ │ -imported BIF.

    Examples:

    handle(Msg, State)
    │ │ │ -spawn(m, init, [])

    Examples where ExprF is a fun:

    1> Fun1 = fun(X) -> X+1 end,
    │ │ │ -Fun1(3).
    │ │ │ +imported BIF.

    Examples:

    handle(Msg, State)
    │ │ │ +spawn(m, init, [])

    Examples where ExprF is a fun:

    1> Fun1 = fun(X) -> X+1 end,
    │ │ │ +Fun1(3).
    │ │ │  4
    │ │ │ -2> fun lists:append/2([1,2], [3,4]).
    │ │ │ -[1,2,3,4]
    │ │ │ +2> fun lists:append/2([1,2], [3,4]).
    │ │ │ +[1,2,3,4]
    │ │ │  3>

    Notice that when calling a local function, there is a difference between using │ │ │ the implicitly or fully qualified function name. The latter always refers to the │ │ │ latest version of the module. See │ │ │ Compilation and Code Loading and │ │ │ Function Evaluation.

    │ │ │ │ │ │ │ │ │ @@ -316,40 +316,40 @@ │ │ │ called instead. This is to avoid that future additions to the set of │ │ │ auto-imported BIFs do not silently change the behavior of old code.

    However, to avoid that old (pre R14) code changed its behavior when compiled │ │ │ with Erlang/OTP version R14A or later, the following restriction applies: If you │ │ │ override the name of a BIF that was auto-imported in OTP versions prior to R14A │ │ │ (ERTS version 5.8) and have an implicitly qualified call to that function in │ │ │ your code, you either need to explicitly remove the auto-import using a compiler │ │ │ directive, or replace the call with a fully qualified function call. Otherwise │ │ │ -you get a compilation error. See the following example:

    -export([length/1,f/1]).
    │ │ │ +you get a compilation error. See the following example:

    -export([length/1,f/1]).
    │ │ │  
    │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │  
    │ │ │ -length([]) ->
    │ │ │ +length([]) ->
    │ │ │      0;
    │ │ │ -length([H|T]) ->
    │ │ │ -    1 + length(T). %% Calls the local function length/1
    │ │ │ +length([H|T]) ->
    │ │ │ +    1 + length(T). %% Calls the local function length/1
    │ │ │  
    │ │ │ -f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
    │ │ │ +f(X) when erlang:length(X) > 3 -> %% Calls erlang:length/1,
    │ │ │                                    %% which is allowed in guards
    │ │ │      long.

    The same logic applies to explicitly imported functions from other modules, as │ │ │ to locally defined functions. It is not allowed to both import a function from │ │ │ -another module and have the function declared in the module at the same time:

    -export([f/1]).
    │ │ │ +another module and have the function declared in the module at the same time:

    -export([f/1]).
    │ │ │  
    │ │ │ --compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │ +-compile({no_auto_import,[length/1]}). % erlang:length/1 no longer autoimported
    │ │ │  
    │ │ │ --import(mod,[length/1]).
    │ │ │ +-import(mod,[length/1]).
    │ │ │  
    │ │ │ -f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
    │ │ │ +f(X) when erlang:length(X) > 33 -> %% Calls erlang:length/1,
    │ │ │                                     %% which is allowed in guards
    │ │ │  
    │ │ │ -    erlang:length(X);              %% Explicit call to erlang:length in body
    │ │ │ +    erlang:length(X);              %% Explicit call to erlang:length in body
    │ │ │  
    │ │ │ -f(X) ->
    │ │ │ -    length(X).                     %% mod:length/1 is called

    For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ +f(X) -> │ │ │ + length(X). %% mod:length/1 is called

    For auto-imported BIFs added in Erlang/OTP R14A and thereafter, overriding the │ │ │ name with a local function or explicit import is always allowed. However, if the │ │ │ -compile({no_auto_import,[F/A]) directive is not used, the compiler issues a │ │ │ warning whenever the function is called in the module using the implicitly │ │ │ qualified function name.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -361,40 +361,40 @@ │ │ │ ...; │ │ │ GuardSeqN -> │ │ │ BodyN │ │ │ end

    The branches of an if-expression are scanned sequentially until a guard │ │ │ sequence GuardSeq that evaluates to true is found. Then the corresponding │ │ │ Body (a sequence of expressions separated by ,) is evaluated.

    The return value of Body is the return value of the if expression.

    If no guard sequence is evaluated as true, an if_clause run-time error occurs. │ │ │ If necessary, the guard expression true can be used in the last branch, as │ │ │ -that guard sequence is always true.

    Example:

    is_greater_than(X, Y) ->
    │ │ │ +that guard sequence is always true.

    Example:

    is_greater_than(X, Y) ->
    │ │ │      if
    │ │ │          X > Y ->
    │ │ │              true;
    │ │ │          true -> % works as an 'else' branch
    │ │ │              false
    │ │ │      end

    │ │ │ │ │ │ │ │ │ │ │ │ Case │ │ │

    │ │ │
    case Expr of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    The expression Expr is evaluated and the patterns Pattern are sequentially │ │ │ matched against the result. If a match succeeds and the optional guard sequence │ │ │ GuardSeq is true, the corresponding Body is evaluated.

    The return value of Body is the return value of the case expression.

    If there is no matching pattern with a true guard sequence, a case_clause │ │ │ -run-time error occurs.

    Example:

    is_valid_signal(Signal) ->
    │ │ │ +run-time error occurs.

    Example:

    is_valid_signal(Signal) ->
    │ │ │      case Signal of
    │ │ │ -        {signal, _What, _From, _To} ->
    │ │ │ +        {signal, _What, _From, _To} ->
    │ │ │              true;
    │ │ │ -        {signal, _What, _To} ->
    │ │ │ +        {signal, _What, _To} ->
    │ │ │              true;
    │ │ │          _Else ->
    │ │ │              false
    │ │ │      end.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -412,57 +412,57 @@ │ │ │ the top-level of a maybe block. It matches the pattern Expr1 against │ │ │ Expr2. If the matching succeeds, any unbound variable in the pattern becomes │ │ │ bound. If the expression is the last expression in the maybe block, it also │ │ │ returns the value of Expr2. If the matching is unsuccessful, the rest of the │ │ │ expressions in the maybe block are skipped and the return value of the maybe │ │ │ block is Expr2.

    None of the variables bound in a maybe block must be used in the code that │ │ │ follows the block.

    Here is an example:

    maybe
    │ │ │ -    {ok, A} ?= a(),
    │ │ │ +    {ok, A} ?= a(),
    │ │ │      true = A >= 0,
    │ │ │ -    {ok, B} ?= b(),
    │ │ │ +    {ok, B} ?= b(),
    │ │ │      A + B
    │ │ │  end

    Let us first assume that a() returns {ok,42} and b() returns {ok,58}. │ │ │ With those return values, all of the match operators will succeed, and the │ │ │ return value of the maybe block is A + B, which is equal to 42 + 58 = 100.

    Now let us assume that a() returns error. The conditional match operator in │ │ │ {ok, A} ?= a() fails to match, and the return value of the maybe block is │ │ │ the value of the expression that failed to match, namely error. Similarly, if │ │ │ b() returns wrong, the return value of the maybe block is wrong.

    Finally, let us assume that a() returns {ok,-1}. Because true = A >= 0 uses │ │ │ the match operator =, a {badmatch,false} run-time error occurs when the │ │ │ -expression fails to match the pattern.

    The example can be written in a less succient way using nested case expressions:

    case a() of
    │ │ │ -    {ok, A} ->
    │ │ │ +expression fails to match the pattern.

    The example can be written in a less succient way using nested case expressions:

    case a() of
    │ │ │ +    {ok, A} ->
    │ │ │          true = A >= 0,
    │ │ │ -        case b() of
    │ │ │ -            {ok, B} ->
    │ │ │ +        case b() of
    │ │ │ +            {ok, B} ->
    │ │ │                  A + B;
    │ │ │              Other1 ->
    │ │ │                  Other1
    │ │ │          end;
    │ │ │      Other2 ->
    │ │ │          Other2
    │ │ │  end

    The maybe block can be augmented with else clauses:

    maybe
    │ │ │      Expr1,
    │ │ │      ...,
    │ │ │      ExprN
    │ │ │  else
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    If a conditional match operator fails, the failed expression is matched against │ │ │ the patterns in all clauses between the else and end keywords. If a match │ │ │ succeeds and the optional guard sequence GuardSeq is true, the corresponding │ │ │ Body is evaluated. The value returned from the body is the return value of the │ │ │ maybe block.

    If there is no matching pattern with a true guard sequence, an else_clause │ │ │ run-time error occurs.

    None of the variables bound in a maybe block must be used in the else │ │ │ clauses. None of the variables bound in the else clauses must be used in the │ │ │ code that follows the maybe block.

    Here is the previous example augmented with else clauses:

    maybe
    │ │ │ -    {ok, A} ?= a(),
    │ │ │ +    {ok, A} ?= a(),
    │ │ │      true = A >= 0,
    │ │ │ -    {ok, B} ?= b(),
    │ │ │ +    {ok, B} ?= b(),
    │ │ │      A + B
    │ │ │  else
    │ │ │      error -> error;
    │ │ │      wrong -> error
    │ │ │  end

    The else clauses translate the failing value from the conditional match │ │ │ operators to the value error. If the failing value is not one of the │ │ │ recognized values, a else_clause run-time error occurs.

    │ │ │ @@ -481,75 +481,75 @@ │ │ │ {Name,Node} (or a pid located at another node), also never fails.

    │ │ │ │ │ │ │ │ │ │ │ │ Receive │ │ │

    │ │ │
    receive
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  end

    Fetches a received message present in the message queue of the process. The │ │ │ first message in the message queue is matched sequentially against the patterns │ │ │ from top to bottom. If no match was found, the matching sequence is repeated for │ │ │ the second message in the queue, and so on. Messages are queued in the │ │ │ order they were received. If a match │ │ │ succeeds, that is, if the Pattern matches and the optional guard sequence │ │ │ GuardSeq is true, then the message is removed from the message queue and the │ │ │ corresponding Body is evaluated. All other messages in the message queue │ │ │ remain unchanged.

    The return value of Body is the return value of the receive expression.

    receive never fails. The execution is suspended, possibly indefinitely, until │ │ │ a message arrives that matches one of the patterns and with a true guard │ │ │ -sequence.

    Example:

    wait_for_onhook() ->
    │ │ │ +sequence.

    Example:

    wait_for_onhook() ->
    │ │ │      receive
    │ │ │          onhook ->
    │ │ │ -            disconnect(),
    │ │ │ -            idle();
    │ │ │ -        {connect, B} ->
    │ │ │ -            B ! {busy, self()},
    │ │ │ -            wait_for_onhook()
    │ │ │ +            disconnect(),
    │ │ │ +            idle();
    │ │ │ +        {connect, B} ->
    │ │ │ +            B ! {busy, self()},
    │ │ │ +            wait_for_onhook()
    │ │ │      end.

    The receive expression can be augmented with a timeout:

    receive
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  after
    │ │ │      ExprT ->
    │ │ │          BodyT
    │ │ │  end

    receive...after works exactly as receive, except that if no matching message │ │ │ has arrived within ExprT milliseconds, then BodyT is evaluated instead. The │ │ │ return value of BodyT then becomes the return value of the receive...after │ │ │ expression. ExprT is to evaluate to an integer, or the atom infinity. The │ │ │ allowed integer range is from 0 to 4294967295, that is, the longest possible │ │ │ timeout is almost 50 days. With a zero value the timeout occurs immediately if │ │ │ there is no matching message in the message queue.

    The atom infinity will make the process wait indefinitely for a matching │ │ │ message. This is the same as not using a timeout. It can be useful for timeout │ │ │ -values that are calculated at runtime.

    Example:

    wait_for_onhook() ->
    │ │ │ +values that are calculated at runtime.

    Example:

    wait_for_onhook() ->
    │ │ │      receive
    │ │ │          onhook ->
    │ │ │ -            disconnect(),
    │ │ │ -            idle();
    │ │ │ -        {connect, B} ->
    │ │ │ -            B ! {busy, self()},
    │ │ │ -            wait_for_onhook()
    │ │ │ +            disconnect(),
    │ │ │ +            idle();
    │ │ │ +        {connect, B} ->
    │ │ │ +            B ! {busy, self()},
    │ │ │ +            wait_for_onhook()
    │ │ │      after
    │ │ │          60000 ->
    │ │ │ -            disconnect(),
    │ │ │ -            error()
    │ │ │ +            disconnect(),
    │ │ │ +            error()
    │ │ │      end.

    It is legal to use a receive...after expression with no branches:

    receive
    │ │ │  after
    │ │ │      ExprT ->
    │ │ │          BodyT
    │ │ │  end

    This construction does not consume any messages, only suspends execution in the │ │ │ -process for ExprT milliseconds. This can be used to implement simple timers.

    Example:

    timer() ->
    │ │ │ -    spawn(m, timer, [self()]).
    │ │ │ +process for ExprT milliseconds. This can be used to implement simple timers.

    Example:

    timer() ->
    │ │ │ +    spawn(m, timer, [self()]).
    │ │ │  
    │ │ │ -timer(Pid) ->
    │ │ │ +timer(Pid) ->
    │ │ │      receive
    │ │ │      after
    │ │ │          5000 ->
    │ │ │              Pid ! timeout
    │ │ │      end.

    For more information on timers in Erlang in general, see the │ │ │ Timers section of the │ │ │ Time and Time Correction in Erlang │ │ │ @@ -591,21 +591,21 @@ │ │ │ false │ │ │ 4> 0.0 =:= -0.0. │ │ │ false │ │ │ 5> 0.0 =:= +0.0. │ │ │ true │ │ │ 6> 1 > a. │ │ │ false │ │ │ -7> #{c => 3} > #{a => 1, b => 2}. │ │ │ +7> #{c => 3} > #{a => 1, b => 2}. │ │ │ false │ │ │ -8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ +8> #{a => 1, b => 2} == #{a => 1.0, b => 2.0}. │ │ │ true │ │ │ -9> <<2:2>> < <<128>>. │ │ │ +9> <<2:2>> < <<128>>. │ │ │ true │ │ │ -10> <<3:2>> < <<128>>. │ │ │ +10> <<3:2>> < <<128>>. │ │ │ false

    Note

    Prior to OTP 27, the term equivalence operators considered 0.0 │ │ │ and -0.0 to be the same term.

    This was changed in OTP 27 but legacy code may have expected them to be │ │ │ considered the same. To help users catch errors that may arise from an │ │ │ upgrade, the compiler raises a warning when 0.0 is pattern-matched or used │ │ │ in a term equivalence test.

    If you need to match 0.0 specifically, the warning can be silenced by │ │ │ writing +0.0 instead, which produces the same term but makes the compiler │ │ │ interpret the match as being done on purpose.

    │ │ │ @@ -631,15 +631,15 @@ │ │ │ 0 │ │ │ 8> 2#10 bor 2#01. │ │ │ 3 │ │ │ 9> a + 10. │ │ │ ** exception error: an error occurred when evaluating an arithmetic expression │ │ │ in operator +/2 │ │ │ called as a + 10 │ │ │ -10> 1 bsl (1 bsl 64). │ │ │ +10> 1 bsl (1 bsl 64). │ │ │ ** exception error: a system limit has been reached │ │ │ in operator bsl/2 │ │ │ called as 1 bsl 18446744073709551616

    │ │ │ │ │ │ │ │ │ │ │ │ Boolean Expressions │ │ │ @@ -658,136 +658,136 @@ │ │ │ │ │ │ │ │ │ │ │ │ Short-Circuit Expressions │ │ │

    │ │ │
    Expr1 orelse Expr2
    │ │ │  Expr1 andalso Expr2

    Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if:

    • Expr1 evaluates to false in an orelse expression.

    or

    • Expr1 evaluates to true in an andalso expression.

    Returns either the value of Expr1 (that is, true or false) or the value of │ │ │ -Expr2 (if Expr2 is evaluated).

    Example 1:

    case A >= -1.0 andalso math:sqrt(A+1) > B of

    This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ -never evaluated.

    Example 2:

    OnlyOne = is_atom(L) orelse
    │ │ │ -         (is_list(L) andalso length(L) == 1),

    Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ -andalso and orelse are tail-recursive.

    Example 3 (tail-recursive function):

    all(Pred, [Hd|Tail]) ->
    │ │ │ -    Pred(Hd) andalso all(Pred, Tail);
    │ │ │ -all(_, []) ->
    │ │ │ +Expr2 (if Expr2 is evaluated).

    Example 1:

    case A >= -1.0 andalso math:sqrt(A+1) > B of

    This works even if A is less than -1.0, since in that case, math:sqrt/1 is │ │ │ +never evaluated.

    Example 2:

    OnlyOne = is_atom(L) orelse
    │ │ │ +         (is_list(L) andalso length(L) == 1),

    Expr2 is not required to evaluate to a Boolean value. Because of that, │ │ │ +andalso and orelse are tail-recursive.

    Example 3 (tail-recursive function):

    all(Pred, [Hd|Tail]) ->
    │ │ │ +    Pred(Hd) andalso all(Pred, Tail);
    │ │ │ +all(_, []) ->
    │ │ │      true.

    Change

    Before Erlang/OTP R13A, Expr2 was required to evaluate to a Boolean value, │ │ │ and as consequence, andalso and orelse were not tail-recursive.

    │ │ │ │ │ │ │ │ │ │ │ │ List Operations │ │ │

    │ │ │
    Expr1 ++ Expr2
    │ │ │  Expr1 -- Expr2

    The list concatenation operator ++ appends its second argument to its first │ │ │ and returns the resulting list.

    The list subtraction operator -- produces a list that is a copy of the first │ │ │ argument. The procedure is as follows: for each element in the second argument, │ │ │ -the first occurrence of this element (if any) is removed.

    Example:

    1> [1,2,3] ++ [4,5].
    │ │ │ -[1,2,3,4,5]
    │ │ │ -2> [1,2,3,2,1,2] -- [2,1,2].
    │ │ │ -[3,1,2]

    │ │ │ +the first occurrence of this element (if any) is removed.

    Example:

    1> [1,2,3] ++ [4,5].
    │ │ │ +[1,2,3,4,5]
    │ │ │ +2> [1,2,3,2,1,2] -- [2,1,2].
    │ │ │ +[3,1,2]

    │ │ │ │ │ │ │ │ │ │ │ │ Map Expressions │ │ │

    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ Creating Maps │ │ │

    │ │ │

    Constructing a new map is done by letting an expression K be associated with │ │ │ -another expression V:

    #{K => V}

    New maps can include multiple associations at construction by listing every │ │ │ -association:

    #{K1 => V1, ..., Kn => Vn}

    An empty map is constructed by not associating any terms with each other:

    #{}

    All keys and values in the map are terms. Any expression is first evaluated and │ │ │ +another expression V:

    #{K => V}

    New maps can include multiple associations at construction by listing every │ │ │ +association:

    #{K1 => V1, ..., Kn => Vn}

    An empty map is constructed by not associating any terms with each other:

    #{}

    All keys and values in the map are terms. Any expression is first evaluated and │ │ │ then the resulting terms are used as key and value respectively.

    Keys and values are separated by the => arrow and associations are separated │ │ │ -by a comma (,).

    Examples:

    M0 = #{},                 % empty map
    │ │ │ -M1 = #{a => <<"hello">>}, % single association with literals
    │ │ │ -M2 = #{1 => 2, b => b},   % multiple associations with literals
    │ │ │ -M3 = #{k => {A,B}},       % single association with variables
    │ │ │ -M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

    Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ -map terms.

    If two matching keys are declared, the latter key takes precedence.

    Example:

    1> #{1 => a, 1 => b}.
    │ │ │ -#{1 => b }
    │ │ │ -2> #{1.0 => a, 1 => b}.
    │ │ │ -#{1 => b, 1.0 => a}

    The order in which the expressions constructing the keys (and their associated │ │ │ +by a comma (,).

    Examples:

    M0 = #{},                 % empty map
    │ │ │ +M1 = #{a => <<"hello">>}, % single association with literals
    │ │ │ +M2 = #{1 => 2, b => b},   % multiple associations with literals
    │ │ │ +M3 = #{k => {A,B}},       % single association with variables
    │ │ │ +M4 = #{{"w", 1} => f()}.  % compound key associated with an evaluated expression

    Here, A and B are any expressions and M0 through M4 are the resulting │ │ │ +map terms.

    If two matching keys are declared, the latter key takes precedence.

    Example:

    1> #{1 => a, 1 => b}.
    │ │ │ +#{1 => b }
    │ │ │ +2> #{1.0 => a, 1 => b}.
    │ │ │ +#{1 => b, 1.0 => a}

    The order in which the expressions constructing the keys (and their associated │ │ │ values) are evaluated is not defined. The syntactic order of the key-value pairs │ │ │ in the construction is of no relevance, except in the recently mentioned case of │ │ │ two matching keys.

    │ │ │ │ │ │ │ │ │ │ │ │ Updating Maps │ │ │

    │ │ │

    Updating a map has a similar syntax as constructing it.

    An expression defining the map to be updated is put in front of the expression │ │ │ -defining the keys to be updated and their respective values:

    M#{K => V}

    Here M is a term of type map and K and V are any expression.

    If key K does not match any existing key in the map, a new association is │ │ │ +defining the keys to be updated and their respective values:

    M#{K => V}

    Here M is a term of type map and K and V are any expression.

    If key K does not match any existing key in the map, a new association is │ │ │ created from key K to value V.

    If key K matches an existing key in map M, its associated value is replaced │ │ │ by the new value V. In both cases, the evaluated map expression returns a new │ │ │ -map.

    If M is not of type map, an exception of type badmap is raised.

    To only update an existing value, the following syntax is used:

    M#{K := V}

    Here M is a term of type map, V is an expression and K is an expression │ │ │ +map.

    If M is not of type map, an exception of type badmap is raised.

    To only update an existing value, the following syntax is used:

    M#{K := V}

    Here M is a term of type map, V is an expression and K is an expression │ │ │ that evaluates to an existing key in M.

    If key K does not match any existing keys in map M, an exception of type │ │ │ badkey is raised at runtime. If a matching key K is present in map M, │ │ │ its associated value is replaced by the new value V, and the evaluated map │ │ │ -expression returns a new map.

    If M is not of type map, an exception of type badmap is raised.

    Examples:

    M0 = #{},
    │ │ │ -M1 = M0#{a => 0},
    │ │ │ -M2 = M1#{a => 1, b => 2},
    │ │ │ -M3 = M2#{"function" => fun() -> f() end},
    │ │ │ -M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

    Here M0 is any map. It follows that M1 through M4 are maps as well.

    More examples:

    1> M = #{1 => a}.
    │ │ │ -#{1 => a }
    │ │ │ -2> M#{1.0 => b}.
    │ │ │ -#{1 => a, 1.0 => b}.
    │ │ │ -3> M#{1 := b}.
    │ │ │ -#{1 => b}
    │ │ │ -4> M#{1.0 := b}.
    │ │ │ +expression returns a new map.

    If M is not of type map, an exception of type badmap is raised.

    Examples:

    M0 = #{},
    │ │ │ +M1 = M0#{a => 0},
    │ │ │ +M2 = M1#{a => 1, b => 2},
    │ │ │ +M3 = M2#{"function" => fun() -> f() end},
    │ │ │ +M4 = M3#{a := 2, b := 3}.  % 'a' and 'b' was added in `M1` and `M2`.

    Here M0 is any map. It follows that M1 through M4 are maps as well.

    More examples:

    1> M = #{1 => a}.
    │ │ │ +#{1 => a }
    │ │ │ +2> M#{1.0 => b}.
    │ │ │ +#{1 => a, 1.0 => b}.
    │ │ │ +3> M#{1 := b}.
    │ │ │ +#{1 => b}
    │ │ │ +4> M#{1.0 := b}.
    │ │ │  ** exception error: bad argument

    As in construction, the order in which the key and value expressions are │ │ │ evaluated is not defined. The syntactic order of the key-value pairs in the │ │ │ update is of no relevance, except in the case where two keys match. In that │ │ │ case, the latter value is used.

    │ │ │ │ │ │ │ │ │ │ │ │ Maps in Patterns │ │ │

    │ │ │ -

    Matching of key-value associations from maps is done as follows:

    #{K := V} = M

    Here M is any map. The key K must be a │ │ │ +

    Matching of key-value associations from maps is done as follows:

    #{K := V} = M

    Here M is any map. The key K must be a │ │ │ guard expression, with all variables already │ │ │ bound. V can be any pattern with either bound or unbound variables.

    If the variable V is unbound, it becomes bound to the value associated with │ │ │ the key K, which must exist in the map M. If the variable V is bound, it │ │ │ must match the value associated with K in M.

    Change

    Before Erlang/OTP 23, the expression defining the key K was restricted to be │ │ │ -either a single variable or a literal.

    Example:

    1> M = #{"tuple" => {1,2}}.
    │ │ │ -#{"tuple" => {1,2}}
    │ │ │ -2> #{"tuple" := {1,B}} = M.
    │ │ │ -#{"tuple" => {1,2}}
    │ │ │ +either a single variable or a literal.

    Example:

    1> M = #{"tuple" => {1,2}}.
    │ │ │ +#{"tuple" => {1,2}}
    │ │ │ +2> #{"tuple" := {1,B}} = M.
    │ │ │ +#{"tuple" => {1,2}}
    │ │ │  3> B.
    │ │ │ -2.

    This binds variable B to integer 2.

    Similarly, multiple values from the map can be matched:

    #{K1 := V1, ..., Kn := Vn} = M

    Here keys K1 through Kn are any expressions with literals or bound │ │ │ +2.

    This binds variable B to integer 2.

    Similarly, multiple values from the map can be matched:

    #{K1 := V1, ..., Kn := Vn} = M

    Here keys K1 through Kn are any expressions with literals or bound │ │ │ variables. If all key expressions evaluate successfully and all keys │ │ │ exist in map M, all variables in V1 .. Vn is matched to the │ │ │ associated values of their respective keys.

    If the matching conditions are not met the match fails.

    Note that when matching a map, only the := operator (not the =>) is allowed │ │ │ as a delimiter for the associations.

    The order in which keys are declared in matching has no relevance.

    Duplicate keys are allowed in matching and match each pattern associated to the │ │ │ -keys:

    #{K := V1, K := V2} = M

    The empty map literal (#{}) matches any map when used as a pattern:

    #{} = Expr

    This expression matches if the expression Expr is of type map, otherwise it │ │ │ -fails with an exception badmatch.

    Here the key to be retrieved is constructed from an expression:

    #{{tag,length(List)} := V} = Map

    List must be an already bound variable.

    Matching Syntax

    Matching of literals as keys are allowed in function heads:

    %% only start if not_started
    │ │ │ -handle_call(start, From, #{state := not_started} = S) ->
    │ │ │ +keys:

    #{K := V1, K := V2} = M

    The empty map literal (#{}) matches any map when used as a pattern:

    #{} = Expr

    This expression matches if the expression Expr is of type map, otherwise it │ │ │ +fails with an exception badmatch.

    Here the key to be retrieved is constructed from an expression:

    #{{tag,length(List)} := V} = Map

    List must be an already bound variable.

    Matching Syntax

    Matching of literals as keys are allowed in function heads:

    %% only start if not_started
    │ │ │ +handle_call(start, From, #{state := not_started} = S) ->
    │ │ │  ...
    │ │ │ -    {reply, ok, S#{state := start}};
    │ │ │ +    {reply, ok, S#{state := start}};
    │ │ │  
    │ │ │  %% only change if started
    │ │ │ -handle_call(change, From, #{state := start} = S) ->
    │ │ │ +handle_call(change, From, #{state := start} = S) ->
    │ │ │  ...
    │ │ │ -    {reply, ok, S#{state := changed}};

    │ │ │ + {reply, ok, S#{state := changed}};

    │ │ │ │ │ │ │ │ │ │ │ │ Maps in Guards │ │ │

    │ │ │

    Maps are allowed in guards as long as all subexpressions are valid guard │ │ │ expressions.

    The following guard BIFs handle maps:

    │ │ │ │ │ │ │ │ │ │ │ │ Bit Syntax Expressions │ │ │

    │ │ │

    The bit syntax operates on bit strings. A bit string is a sequence of bits │ │ │ -ordered from the most significant bit to the least significant bit.

    <<>>  % The empty bit string, zero length
    │ │ │ -<<E1>>
    │ │ │ -<<E1,...,En>>

    Each element Ei specifies a segment of the bit string. The segments are │ │ │ +ordered from the most significant bit to the least significant bit.

    <<>>  % The empty bit string, zero length
    │ │ │ +<<E1>>
    │ │ │ +<<E1,...,En>>

    Each element Ei specifies a segment of the bit string. The segments are │ │ │ ordered left to right from the most significant bit to the least significant bit │ │ │ of the bit string.

    Each segment specification Ei is a value, whose default type is integer, │ │ │ followed by an optional size expression and an optional type specifier list.

    Ei = Value |
    │ │ │       Value:Size |
    │ │ │       Value/TypeSpecifierList |
    │ │ │       Value:Size/TypeSpecifierList

    When used in a bit string construction, Value is an expression that is to │ │ │ evaluate to an integer, float, or bit string. If the expression is not a single │ │ │ @@ -798,34 +798,34 @@ │ │ │ guard expression that evaluates to an │ │ │ integer. All variables in the guard expression must be already bound.

    Change

    Before Erlang/OTP 23, Size was restricted to be an integer or a variable │ │ │ bound to an integer.

    The value of Size specifies the size of the segment in units (see below). The │ │ │ default value depends on the type (see below):

    • For integer it is 8.
    • For float it is 64.
    • For binary and bitstring it is the whole binary or bit string.

    In matching, the default value for a binary or bit string segment is only valid │ │ │ for the last element. All other bit string or binary elements in the matching │ │ │ must have a size specification.

    Binaries

    A bit string with a length that is a multiple of 8 bits is known as a binary, │ │ │ which is the most common and useful type of bit string.

    A binary has a canonical representation in memory. Here follows a sequence of │ │ │ -bytes where each byte's value is its sequence number:

    <<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

    Bit strings are a later generalization of binaries, so many texts and much │ │ │ -information about binaries apply just as well for bit strings.

    Example:

    1> <<A/binary, B/binary>> = <<"abcde">>.
    │ │ │ +bytes where each byte's value is its sequence number:

    <<1, 2, 3, 4, 5, 6, 7, 8, 9, 10>>

    Bit strings are a later generalization of binaries, so many texts and much │ │ │ +information about binaries apply just as well for bit strings.

    Example:

    1> <<A/binary, B/binary>> = <<"abcde">>.
    │ │ │  * 1:3: a binary field without size is only allowed at the end of a binary pattern
    │ │ │ -2> <<A:3/binary, B/binary>> = <<"abcde">>.
    │ │ │ -<<"abcde">>
    │ │ │ +2> <<A:3/binary, B/binary>> = <<"abcde">>.
    │ │ │ +<<"abcde">>
    │ │ │  3> A.
    │ │ │ -<<"abc">>
    │ │ │ +<<"abc">>
    │ │ │  4> B.
    │ │ │ -<<"de">>

    For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ +<<"de">>

    For the utf8, utf16, and utf32 types, Size must not be given. The size │ │ │ of the segment is implicitly determined by the type and value itself.

    TypeSpecifierList is a list of type specifiers, in any order, separated by │ │ │ hyphens (-). Default values are used for any omitted type specifiers.

    • Type= integer | float | binary | bytes | bitstring | bits | │ │ │ utf8 | utf16 | utf32 - The default is integer. bytes is a │ │ │ shorthand for binary and bits is a shorthand for bitstring. See below │ │ │ for more information about the utf types.

    • Signedness= signed | unsigned - Only matters for matching and when │ │ │ the type is integer. The default is unsigned.

    • Endianness= big | little | native - Specifies byte level (octet │ │ │ level) endianness (byte order). Native-endian means that the endianness is │ │ │ resolved at load time to be either big-endian or little-endian, depending on │ │ │ what is native for the CPU that the Erlang machine is run on. Endianness only │ │ │ matters when the Type is either integer, utf16, utf32, or float. The │ │ │ -default is big.

      <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
    • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ +default is big.

      <<16#1234:16/little>> = <<16#3412:16>> = <<16#34:8, 16#12:8>>
    • Unit= unit:IntegerLiteral - The allowed range is 1 through 256. │ │ │ Defaults to 1 for integer, float, and bitstring, and to 8 for binary. │ │ │ For types bitstring, bits, and bytes, it is not allowed to specify a │ │ │ unit value different from the default value. No unit specifier must be given │ │ │ for the types utf8, utf16, and utf32.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -850,41 +850,41 @@ │ │ │ │ │ │ Binary segments │ │ │

    │ │ │

    In this section, the phrase "binary segment" refers to any one of the segment │ │ │ types binary, bitstring, bytes, and bits.

    See also the paragraphs about Binaries.

    When constructing binaries and no size is specified for a binary segment, the │ │ │ entire binary value is interpolated into the binary being constructed. However, │ │ │ the size in bits of the binary being interpolated must be evenly divisible by │ │ │ -the unit value for the segment; otherwise an exception is raised.

    For example, the following examples all succeed:

    1> <<(<<"abc">>)/bitstring>>.
    │ │ │ -<<"abc">>
    │ │ │ -2> <<(<<"abc">>)/binary-unit:1>>.
    │ │ │ -<<"abc">>
    │ │ │ -3> <<(<<"abc">>)/binary>>.
    │ │ │ -<<"abc">>

    The first two examples have a unit value of 1 for the segment, while the third │ │ │ +the unit value for the segment; otherwise an exception is raised.

    For example, the following examples all succeed:

    1> <<(<<"abc">>)/bitstring>>.
    │ │ │ +<<"abc">>
    │ │ │ +2> <<(<<"abc">>)/binary-unit:1>>.
    │ │ │ +<<"abc">>
    │ │ │ +3> <<(<<"abc">>)/binary>>.
    │ │ │ +<<"abc">>

    The first two examples have a unit value of 1 for the segment, while the third │ │ │ segment has a unit value of 8.

    Attempting to interpolate a bit string of size 1 into a binary segment with unit │ │ │ -8 (the default unit for binary) fails as shown in this example:

    1> <<(<<1:1>>)/binary>>.
    │ │ │ -** exception error: bad argument

    For the construction to succeed, the unit value of the segment must be 1:

    2> <<(<<1:1>>)/bitstring>>.
    │ │ │ -<<1:1>>
    │ │ │ -3> <<(<<1:1>>)/binary-unit:1>>.
    │ │ │ -<<1:1>>

    Similarly, when matching a binary segment with no size specified, the match │ │ │ +8 (the default unit for binary) fails as shown in this example:

    1> <<(<<1:1>>)/binary>>.
    │ │ │ +** exception error: bad argument

    For the construction to succeed, the unit value of the segment must be 1:

    2> <<(<<1:1>>)/bitstring>>.
    │ │ │ +<<1:1>>
    │ │ │ +3> <<(<<1:1>>)/binary-unit:1>>.
    │ │ │ +<<1:1>>

    Similarly, when matching a binary segment with no size specified, the match │ │ │ succeeds if and only if the size in bits of the rest of the binary is evenly │ │ │ -divisible by the unit value:

    1> <<_/binary-unit:16>> = <<"">>.
    │ │ │ -<<>>
    │ │ │ -2> <<_/binary-unit:16>> = <<"a">>.
    │ │ │ +divisible by the unit value:

    1> <<_/binary-unit:16>> = <<"">>.
    │ │ │ +<<>>
    │ │ │ +2> <<_/binary-unit:16>> = <<"a">>.
    │ │ │  ** exception error: no match of right hand side value <<"a">>
    │ │ │ -3> <<_/binary-unit:16>> = <<"ab">>.
    │ │ │ -<<"ab">>
    │ │ │ -4> <<_/binary-unit:16>> = <<"abc">>.
    │ │ │ +3> <<_/binary-unit:16>> = <<"ab">>.
    │ │ │ +<<"ab">>
    │ │ │ +4> <<_/binary-unit:16>> = <<"abc">>.
    │ │ │  ** exception error: no match of right hand side value <<"abc">>
    │ │ │ -5> <<_/binary-unit:16>> = <<"abcd">>.
    │ │ │ -<<"abcd">>

    When a size is explicitly specified for a binary segment, the segment size in │ │ │ +5> <<_/binary-unit:16>> = <<"abcd">>. │ │ │ +<<"abcd">>

    When a size is explicitly specified for a binary segment, the segment size in │ │ │ bits is the value of Size multiplied by the default or explicit unit value.

    When constructing binaries, the size of the binary being interpolated into the │ │ │ -constructed binary must be at least as large as the size of the binary segment.

    Examples:

    1> <<(<<"abc">>):2/binary>>.
    │ │ │ -<<"ab">>
    │ │ │ -2> <<(<<"a">>):2/binary>>.
    │ │ │ +constructed binary must be at least as large as the size of the binary segment.

    Examples:

    1> <<(<<"abc">>):2/binary>>.
    │ │ │ +<<"ab">>
    │ │ │ +2> <<(<<"a">>):2/binary>>.
    │ │ │  ** exception error: construction of binary failed
    │ │ │          *** segment 1 of type 'binary': the value <<"a">> is shorter than the size of the segment

    │ │ │ │ │ │ │ │ │ │ │ │ Unicode segments │ │ │

    │ │ │ @@ -900,78 +900,78 @@ │ │ │ range 0 through 16#D7FF or 16#E000 through 16#10FFFF. The match fails if the │ │ │ returned value falls outside those ranges.

    A segment of type utf8 matches 1-4 bytes in the bit string, if the bit string │ │ │ at the match position contains a valid UTF-8 sequence. (See RFC-3629 or the │ │ │ Unicode standard.)

    A segment of type utf16 can match 2 or 4 bytes in the bit string. The match │ │ │ fails if the bit string at the match position does not contain a legal UTF-16 │ │ │ encoding of a Unicode code point. (See RFC-2781 or the Unicode standard.)

    A segment of type utf32 can match 4 bytes in the bit string in the same way as │ │ │ an integer segment matches 32 bits. The match fails if the resulting integer │ │ │ -is outside the legal ranges previously mentioned.

    Examples:

    1> Bin1 = <<1,17,42>>.
    │ │ │ -<<1,17,42>>
    │ │ │ -2> Bin2 = <<"abc">>.
    │ │ │ -<<97,98,99>>
    │ │ │ +is outside the legal ranges previously mentioned.

    Examples:

    1> Bin1 = <<1,17,42>>.
    │ │ │ +<<1,17,42>>
    │ │ │ +2> Bin2 = <<"abc">>.
    │ │ │ +<<97,98,99>>
    │ │ │  
    │ │ │ -3> Bin3 = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ -4> <<A,B,C:16>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +3> Bin3 = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │ +4> <<A,B,C:16>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  5> C.
    │ │ │  42
    │ │ │ -6> <<D:16,E,F>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +6> <<D:16,E,F>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  7> D.
    │ │ │  273
    │ │ │  8> F.
    │ │ │  42
    │ │ │ -9> <<G,H/binary>> = <<1,17,42:16>>.
    │ │ │ -<<1,17,0,42>>
    │ │ │ +9> <<G,H/binary>> = <<1,17,42:16>>.
    │ │ │ +<<1,17,0,42>>
    │ │ │  10> H.
    │ │ │ -<<17,0,42>>
    │ │ │ -11> <<G,J/bitstring>> = <<1,17,42:12>>.
    │ │ │ -<<1,17,2,10:4>>
    │ │ │ +<<17,0,42>>
    │ │ │ +11> <<G,J/bitstring>> = <<1,17,42:12>>.
    │ │ │ +<<1,17,2,10:4>>
    │ │ │  12> J.
    │ │ │ -<<17,2,10:4>>
    │ │ │ +<<17,2,10:4>>
    │ │ │  
    │ │ │ -13> <<1024/utf8>>.
    │ │ │ -<<208,128>>
    │ │ │ +13> <<1024/utf8>>.
    │ │ │ +<<208,128>>
    │ │ │  
    │ │ │ -14> <<1:1,0:7>>.
    │ │ │ -<<128>>
    │ │ │ -15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>.
    │ │ │ -<<35,1:4>>

    Notice that bit string patterns cannot be nested.

    Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ +14> <<1:1,0:7>>. │ │ │ +<<128>> │ │ │ +15> <<16#123:12/little>> = <<16#231:12>> = <<2:4, 3:4, 1:4>>. │ │ │ +<<35,1:4>>

    Notice that bit string patterns cannot be nested.

    Notice also that "B=<<1>>" is interpreted as "B =< <1>>" which is a syntax │ │ │ error. The correct way is to write a space after =: "B = <<1>>.

    More examples are provided in Programming Examples.

    │ │ │ │ │ │ │ │ │ │ │ │ Fun Expressions │ │ │

    │ │ │
    fun
    │ │ │ -    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │ +    [Name](Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │                Body1;
    │ │ │      ...;
    │ │ │ -    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │ +    [Name](PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │                BodyK
    │ │ │  end

    A fun expression begins with the keyword fun and ends with the keyword end. │ │ │ Between them is to be a function declaration, similar to a │ │ │ regular function declaration, │ │ │ except that the function name is optional and is to be a variable, if any.

    Variables in a fun head shadow the function name and both shadow variables in │ │ │ the function clause surrounding the fun expression. Variables bound in a fun │ │ │ -body are local to the fun body.

    The return value of the expression is the resulting fun.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │ +body are local to the fun body.

    The return value of the expression is the resulting fun.

    Examples:

    1> Fun1 = fun (X) -> X+1 end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -2> Fun1(2).
    │ │ │ +2> Fun1(2).
    │ │ │  3
    │ │ │ -3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
    │ │ │ +3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -4> Fun2(7).
    │ │ │ +4> Fun2(7).
    │ │ │  gt
    │ │ │ -5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
    │ │ │ +5> Fun3 = fun Fact(1) -> 1; Fact(X) when X > 1 -> X * Fact(X - 1) end.
    │ │ │  #Fun<erl_eval.6.39074546>
    │ │ │ -6> Fun3(4).
    │ │ │ +6> Fun3(4).
    │ │ │  24

    The following fun expressions are also allowed:

    fun Name/Arity
    │ │ │  fun Module:Name/Arity

    In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must │ │ │ -specify an existing local function. The expression is syntactic sugar for:

    fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

    In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ +specify an existing local function. The expression is syntactic sugar for:

    fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end

    In Module:Name/Arity, Module, and Name are atoms and Arity is an │ │ │ integer. Module, Name, and Arity can also be variables. A fun defined in │ │ │ this way refers to the function Name with arity Arity in the latest │ │ │ version of module Module. A fun defined in this way is not dependent on the │ │ │ code for the module in which it is defined.

    Change

    Before Erlang/OTP R15, Module, Name, and Arity were not allowed to be │ │ │ variables.

    More examples are provided in Programming Examples.

    │ │ │ │ │ │ │ │ │ @@ -981,35 +981,35 @@ │ │ │
    catch Expr

    Returns the value of Expr unless an exception is raised during the evaluation. In │ │ │ that case, the exception is caught. The return value depends on the class of the │ │ │ exception:

    Reason depends on the type of error that occurred, and Stack is the stack of │ │ │ recent function calls, see Exit Reasons.

    Examples:

    1> catch 1+2.
    │ │ │  3
    │ │ │  2> catch 1+a.
    │ │ │ -{'EXIT',{badarith,[...]}}

    The BIF throw(Any) can be used for non-local return from a │ │ │ -function. It must be evaluated within a catch, which returns the value Any.

    Example:

    3> catch throw(hello).
    │ │ │ +{'EXIT',{badarith,[...]}}

    The BIF throw(Any) can be used for non-local return from a │ │ │ +function. It must be evaluated within a catch, which returns the value Any.

    Example:

    3> catch throw(hello).
    │ │ │  hello

    If throw/1 is not evaluated within a catch, a nocatch run-time │ │ │ error occurs.

    Change

    Before Erlang/OTP 24, the catch operator had the lowest precedence, making │ │ │ -it necessary to add parentheses when combining it with the match operator:

    1> A = (catch 42).
    │ │ │ +it necessary to add parentheses when combining it with the match operator:

    1> A = (catch 42).
    │ │ │  42
    │ │ │  2> A.
    │ │ │  42

    Starting from Erlang/OTP 24, the parentheses can be omitted:

    1> A = catch 42.
    │ │ │  42
    │ │ │  2> A.
    │ │ │  42

    │ │ │ │ │ │ │ │ │ │ │ │ Try │ │ │

    │ │ │
    try Exprs
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    This is an enhancement of catch. It gives the │ │ │ possibility to:

    • Distinguish between different exception classes.
    • Choose to handle only the desired ones.
    • Passing the others on to an enclosing try or catch, or to default error │ │ │ handling.

    Notice that although the keyword catch is used in the try expression, there │ │ │ is not a catch expression within the try expression.

    It returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) │ │ │ unless an exception occurs during the evaluation. In that case the exception is │ │ │ caught and the patterns ExceptionPattern with the right exception class │ │ │ @@ -1019,47 +1019,47 @@ │ │ │ stack trace is bound to the variable when the corresponding ExceptionPattern │ │ │ matches.

    If an exception occurs during evaluation of Exprs but there is no matching │ │ │ ExceptionPattern of the right Class with a true guard sequence, the │ │ │ exception is passed on as if Exprs had not been enclosed in a try │ │ │ expression.

    If an exception occurs during evaluation of ExceptionBody, it is not caught.

    It is allowed to omit Class and Stacktrace. An omitted Class is shorthand │ │ │ for throw:

    try Exprs
    │ │ │  catch
    │ │ │ -    ExceptionPattern1 [when ExceptionGuardSeq1] ->
    │ │ │ +    ExceptionPattern1 [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │ -    ExceptionPatternN [when ExceptionGuardSeqN] ->
    │ │ │ +    ExceptionPatternN [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    The try expression can have an of section:

    try Exprs of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │      ...;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  end

    If the evaluation of Exprs succeeds without an exception, the patterns │ │ │ Pattern are sequentially matched against the result in the same way as for a │ │ │ case expression, except that if the matching fails, a │ │ │ try_clause run-time error occurs instead of a case_clause.

    Only exceptions occurring during the evaluation of Exprs can be caught by the │ │ │ catch section. Exceptions occurring in a Body or due to a failed match are │ │ │ not caught.

    The try expression can also be augmented with an after section, intended to │ │ │ be used for cleanup with side effects:

    try Exprs of
    │ │ │ -    Pattern1 [when GuardSeq1] ->
    │ │ │ +    Pattern1 [when GuardSeq1] ->
    │ │ │          Body1;
    │ │ │      ...;
    │ │ │ -    PatternN [when GuardSeqN] ->
    │ │ │ +    PatternN [when GuardSeqN] ->
    │ │ │          BodyN
    │ │ │  catch
    │ │ │ -    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │ +    Class1:ExceptionPattern1[:Stacktrace] [when ExceptionGuardSeq1] ->
    │ │ │          ExceptionBody1;
    │ │ │      ...;
    │ │ │ -    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │ +    ClassN:ExceptionPatternN[:Stacktrace] [when ExceptionGuardSeqN] ->
    │ │ │          ExceptionBodyN
    │ │ │  after
    │ │ │      AfterBody
    │ │ │  end

    AfterBody is evaluated after either Body or ExceptionBody, no matter which │ │ │ one. The evaluated value of AfterBody is lost; the return value of the try │ │ │ expression is the same with an after section as without.

    Even if an exception occurs during evaluation of Body or ExceptionBody, │ │ │ AfterBody is evaluated. In this case the exception is passed on after │ │ │ @@ -1082,40 +1082,40 @@ │ │ │ ExpressionBody │ │ │ after │ │ │ AfterBody │ │ │ end │ │ │ │ │ │ try Exprs after AfterBody end

    Next is an example of using after. This closes the file, even in the event of │ │ │ exceptions in file:read/2 or in binary_to_term/1. The │ │ │ -exceptions are the same as without the try...after...end expression:

    termize_file(Name) ->
    │ │ │ -    {ok,F} = file:open(Name, [read,binary]),
    │ │ │ +exceptions are the same as without the try...after...end expression:

    termize_file(Name) ->
    │ │ │ +    {ok,F} = file:open(Name, [read,binary]),
    │ │ │      try
    │ │ │ -        {ok,Bin} = file:read(F, 1024*1024),
    │ │ │ -        binary_to_term(Bin)
    │ │ │ +        {ok,Bin} = file:read(F, 1024*1024),
    │ │ │ +        binary_to_term(Bin)
    │ │ │      after
    │ │ │ -        file:close(F)
    │ │ │ +        file:close(F)
    │ │ │      end.

    Next is an example of using try to emulate catch Expr:

    try Expr
    │ │ │  catch
    │ │ │      throw:Term -> Term;
    │ │ │ -    exit:Reason -> {'EXIT',Reason};
    │ │ │ -    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
    │ │ │ +    exit:Reason -> {'EXIT',Reason};
    │ │ │ +    error:Reason:Stk -> {'EXIT',{Reason,Stk}}
    │ │ │  end

    Variables bound in the various parts of these expressions have different scopes. │ │ │ Variables bound just after the try keyword are:

    • bound in the of section
    • unsafe in both the catch and after sections, as well as after the whole │ │ │ construct

    Variables bound in of section are:

    • unbound in the catch section
    • unsafe in both the after section, as well as after the whole construct

    Variables bound in the catch section are unsafe in the after section, as │ │ │ well as after the whole construct.

    Variables bound in the after section are unsafe after the whole construct.

    │ │ │ │ │ │ │ │ │ │ │ │ Parenthesized Expressions │ │ │

    │ │ │ -
    (Expr)

    Parenthesized expressions are useful to override │ │ │ +

    (Expr)

    Parenthesized expressions are useful to override │ │ │ operator precedences, for example, in arithmetic │ │ │ expressions:

    1> 1 + 2 * 3.
    │ │ │  7
    │ │ │ -2> (1 + 2) * 3.
    │ │ │ +2> (1 + 2) * 3.
    │ │ │  9

    │ │ │ │ │ │ │ │ │ │ │ │ Block Expressions │ │ │

    │ │ │
    begin
    │ │ │ @@ -1127,71 +1127,71 @@
    │ │ │    
    │ │ │      
    │ │ │    
    │ │ │    Comprehensions
    │ │ │  

    │ │ │

    Comprehensions provide a succinct notation for iterating over one or more terms │ │ │ and constructing a new term. Comprehensions come in three different flavors, │ │ │ -depending on the type of term they build.

    List comprehensions construct lists. They have the following syntax:

    [Expr || Qualifier1, . . ., QualifierN]

    Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ +depending on the type of term they build.

    List comprehensions construct lists. They have the following syntax:

    [Expr || Qualifier1, . . ., QualifierN]

    Here, Expr is an arbitrary expression, and each Qualifier is either a │ │ │ generator or a filter.

    Bit string comprehensions construct bit strings or binaries. They have the │ │ │ -following syntax:

    << BitStringExpr || Qualifier1, . . ., QualifierN >>

    BitStringExpr is an expression that evaluates to a bit string. If │ │ │ +following syntax:

    << BitStringExpr || Qualifier1, . . ., QualifierN >>

    BitStringExpr is an expression that evaluates to a bit string. If │ │ │ BitStringExpr is a function call, it must be enclosed in parentheses. Each │ │ │ -Qualifier is either a generator or a filter.

    Map comprehensions construct maps. They have the following syntax:

    #{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

    Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ +Qualifier is either a generator or a filter.

    Map comprehensions construct maps. They have the following syntax:

    #{KeyExpr => ValueExpr || Qualifier1, . . ., QualifierN}

    Here, KeyExpr and ValueExpr are arbitrary expressions, and each Qualifier │ │ │ is either a generator or a filter.

    Change

    Map comprehensions and map generators were introduced in Erlang/OTP 26.

    There are three kinds of generators.

    A list generator has the following syntax:

    Pattern <- ListExpr

    where ListExpr is an expression that evaluates to a list of terms.

    A bit string generator has the following syntax:

    BitstringPattern <= BitStringExpr

    where BitStringExpr is an expression that evaluates to a bit string.

    A map generator has the following syntax:

    KeyPattern := ValuePattern <- MapExpression

    where MapExpr is an expression that evaluates to a map, or a map iterator │ │ │ obtained by calling maps:iterator/1 or maps:iterator/2.

    A filter is an expression that evaluates to true or false.

    The variables in the generator patterns shadow previously bound variables, │ │ │ including variables bound in a previous generator pattern.

    Variables bound in a generator expression are not visible outside the │ │ │ -expression:

    1> [{E,L} || E <- L=[1,2,3]].
    │ │ │ +expression:

    1> [{E,L} || E <- L=[1,2,3]].
    │ │ │  * 1:5: variable 'L' is unbound

    A list comprehension returns a list, where the list elements are the result │ │ │ of evaluating Expr for each combination of generator elements for which all │ │ │ filters are true.

    A bit string comprehension returns a bit string, which is created by │ │ │ concatenating the results of evaluating BitStringExpr for each combination of │ │ │ bit string generator elements for which all filters are true.

    A map comprehension returns a map, where the map elements are the result of │ │ │ evaluating KeyExpr and ValueExpr for each combination of generator elements │ │ │ for which all filters are true. If the key expressions are not unique, the last │ │ │ -occurrence is stored in the map.

    Examples:

    Multiplying each element in a list by two:

    1> [X*2 || X <- [1,2,3]].
    │ │ │ -[2,4,6]

    Multiplying each byte in a binary by two, returning a list:

    1> [X*2 || <<X>> <= <<1,2,3>>].
    │ │ │ -[2,4,6]

    Multiplying each byte in a binary by two:

    1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
    │ │ │ -<<2,4,6>>

    Multiplying each element in a list by two, returning a binary:

    1> << <<(X*2)>> || X <- [1,2,3] >>.
    │ │ │ -<<2,4,6>>

    Creating a mapping from an integer to its square:

    1> #{X => X*X || X <- [1,2,3]}.
    │ │ │ -#{1 => 1,2 => 4,3 => 9}

    Multiplying the value of each element in a map by two:

    1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
    │ │ │ -#{a => 2,b => 4,c => 6}

    Filtering a list, keeping odd numbers:

    1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
    │ │ │ -[1,3,5]

    Filtering a list, keeping only elements that match:

    1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
    │ │ │ -[{a,b},{1,2}]

    Combining elements from two list generators:

    1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
    │ │ │ -[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

    More examples are provided in │ │ │ +occurrence is stored in the map.

    Examples:

    Multiplying each element in a list by two:

    1> [X*2 || X <- [1,2,3]].
    │ │ │ +[2,4,6]

    Multiplying each byte in a binary by two, returning a list:

    1> [X*2 || <<X>> <= <<1,2,3>>].
    │ │ │ +[2,4,6]

    Multiplying each byte in a binary by two:

    1> << <<(X*2)>> || <<X>> <= <<1,2,3>> >>.
    │ │ │ +<<2,4,6>>

    Multiplying each element in a list by two, returning a binary:

    1> << <<(X*2)>> || X <- [1,2,3] >>.
    │ │ │ +<<2,4,6>>

    Creating a mapping from an integer to its square:

    1> #{X => X*X || X <- [1,2,3]}.
    │ │ │ +#{1 => 1,2 => 4,3 => 9}

    Multiplying the value of each element in a map by two:

    1> #{K => 2*V || K := V <- #{a => 1,b => 2,c => 3}}.
    │ │ │ +#{a => 2,b => 4,c => 6}

    Filtering a list, keeping odd numbers:

    1> [X || X <- [1,2,3,4,5], X rem 2 =:= 1].
    │ │ │ +[1,3,5]

    Filtering a list, keeping only elements that match:

    1> [X || {_,_}=X <- [{a,b}, [a], {x,y,z}, {1,2}]].
    │ │ │ +[{a,b},{1,2}]

    Combining elements from two list generators:

    1> [{P,Q} || P <- [a,b,c], Q <- [1,2]].
    │ │ │ +[{a,1},{a,2},{b,1},{b,2},{c,1},{c,2}]

    More examples are provided in │ │ │ Programming Examples.

    When there are no generators, a comprehension returns either a term constructed │ │ │ from a single element (the result of evaluating Expr) if all filters are true, │ │ │ or a term constructed from no elements (that is, [] for list comprehension, │ │ │ -<<>> for a bit string comprehension, and #{} for a map comprehension).

    Example:

    1> [2 || is_integer(2)].
    │ │ │ -[2]
    │ │ │ -2> [x || is_integer(x)].
    │ │ │ -[]

    What happens when the filter expression does not evaluate to a boolean value │ │ │ +<<>> for a bit string comprehension, and #{} for a map comprehension).

    Example:

    1> [2 || is_integer(2)].
    │ │ │ +[2]
    │ │ │ +2> [x || is_integer(x)].
    │ │ │ +[]

    What happens when the filter expression does not evaluate to a boolean value │ │ │ depends on the expression:

    • If the expression is a guard expression, │ │ │ failure to evaluate or evaluating to a non-boolean value is equivalent to │ │ │ evaluating to false.
    • If the expression is not a guard expression and evaluates to a non-Boolean │ │ │ value Val, an exception {bad_filter, Val} is triggered at runtime. If the │ │ │ evaluation of the expression raises an exception, it is not caught by the │ │ │ -comprehension.

    Examples (using a guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ -[1,2,a,b,c,3,4]
    │ │ │ -2> [E || E <- List, E rem 2].
    │ │ │ -[]
    │ │ │ -3> [E || E <- List, E rem 2 =:= 0].
    │ │ │ -[2,4]

    Examples (using a non-guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ -[1,2,a,b,c,3,4]
    │ │ │ -2> FaultyIsEven = fun(E) -> E rem 2 end.
    │ │ │ +comprehension.

    Examples (using a guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ +[1,2,a,b,c,3,4]
    │ │ │ +2> [E || E <- List, E rem 2].
    │ │ │ +[]
    │ │ │ +3> [E || E <- List, E rem 2 =:= 0].
    │ │ │ +[2,4]

    Examples (using a non-guard expression as filter):

    1> List = [1,2,a,b,c,3,4].
    │ │ │ +[1,2,a,b,c,3,4]
    │ │ │ +2> FaultyIsEven = fun(E) -> E rem 2 end.
    │ │ │  #Fun<erl_eval.42.17316486>
    │ │ │ -3> [E || E <- List, FaultyIsEven(E)].
    │ │ │ +3> [E || E <- List, FaultyIsEven(E)].
    │ │ │  ** exception error: bad filter 1
    │ │ │ -4> IsEven = fun(E) -> E rem 2 =:= 0 end.
    │ │ │ +4> IsEven = fun(E) -> E rem 2 =:= 0 end.
    │ │ │  #Fun<erl_eval.42.17316486>
    │ │ │ -5> [E || E <- List, IsEven(E)].
    │ │ │ +5> [E || E <- List, IsEven(E)].
    │ │ │  ** exception error: an error occurred when evaluating an arithmetic expression
    │ │ │       in operator  rem/2
    │ │ │          called as a rem 2
    │ │ │ -6> [E || E <- List, is_integer(E), IsEven(E)].
    │ │ │ -[2,4]

    │ │ │ +6> [E || E <- List, is_integer(E), IsEven(E)]. │ │ │ +[2,4]

    │ │ │ │ │ │ │ │ │ │ │ │ Guard Sequences │ │ │

    │ │ │

    A guard sequence is a sequence of guards, separated by semicolon (;). The │ │ │ guard sequence is true if at least one of the guards is true. (The remaining │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/funs.html │ │ │ @@ -117,402 +117,402 @@ │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │

    │ │ │ -

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ -double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ -[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ -add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ -by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ -map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ -follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ -add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ +

    The following function, double, doubles every element in a list:

    double([H|T]) -> [2*H|double(T)];
    │ │ │ +double([])    -> [].

    Hence, the argument entered as input is doubled as follows:

    > double([1,2,3,4]).
    │ │ │ +[2,4,6,8]

    The following function, add_one, adds one to every element in a list:

    add_one([H|T]) -> [H+1|add_one(T)];
    │ │ │ +add_one([])    -> [].

    The functions double and add_one have a similar structure. This can be used │ │ │ +by writing a function map that expresses this similarity:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ +map(F, [])    -> [].

    The functions double and add_one can now be expressed in terms of map as │ │ │ +follows:

    double(L)  -> map(fun(X) -> 2*X end, L).
    │ │ │ +add_one(L) -> map(fun(X) -> 1 + X end, L).

    map(F, List) is a function that takes a function F and a list L as │ │ │ arguments and returns a new list, obtained by applying F to each of the │ │ │ elements in L.

    The process of abstracting out the common features of a number of different │ │ │ programs is called procedural abstraction. Procedural abstraction can be used │ │ │ to write several different functions that have a similar structure, but differ │ │ │ in some minor detail. This is done as follows:

    1. Step 1. Write one function that represents the common features of these │ │ │ functions.
    2. Step 2. Parameterize the difference in terms of functions that are passed │ │ │ as arguments to the common function.

    │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │

    │ │ │

    This section illustrates procedural abstraction. Initially, the following two │ │ │ -examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ -    io:format(Stream, "~p~n", [H]),
    │ │ │ -    print_list(Stream, T);
    │ │ │ -print_list(Stream, []) ->
    │ │ │ -    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │ +examples are written as conventional functions.

    This function prints all elements of a list onto a stream:

    print_list(Stream, [H|T]) ->
    │ │ │ +    io:format(Stream, "~p~n", [H]),
    │ │ │ +    print_list(Stream, T);
    │ │ │ +print_list(Stream, []) ->
    │ │ │ +    true.

    This function broadcasts a message to a list of processes:

    broadcast(Msg, [Pid|Pids]) ->
    │ │ │      Pid ! Msg,
    │ │ │ -    broadcast(Msg, Pids);
    │ │ │ -broadcast(_, []) ->
    │ │ │ +    broadcast(Msg, Pids);
    │ │ │ +broadcast(_, []) ->
    │ │ │      true.

    These two functions have a similar structure. They both iterate over a list and │ │ │ do something to each element in the list. The "something" is passed on as an │ │ │ -extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ -    F(H),
    │ │ │ -    foreach(F, T);
    │ │ │ -foreach(F, []) ->
    │ │ │ -    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ +extra argument to the function that does this.

    The function foreach expresses this similarity:

    foreach(F, [H|T]) ->
    │ │ │ +    F(H),
    │ │ │ +    foreach(F, T);
    │ │ │ +foreach(F, []) ->
    │ │ │ +    ok.

    Using the function foreach, the function print_list becomes:

    foreach(fun(H) -> io:format(S, "~p~n",[H]) end, L)

    Using the function foreach, the function broadcast becomes:

    foreach(fun(Pid) -> Pid ! M end, L)

    foreach is evaluated for its side-effect and not its value. foreach(Fun ,L) │ │ │ calls Fun(X) for each element X in L and the processing occurs in the │ │ │ order that the elements were defined in L. map does not define the order in │ │ │ which its elements are processed.

    │ │ │ │ │ │ │ │ │ │ │ │ Syntax of Funs │ │ │

    │ │ │

    Funs are written with the following syntax (see │ │ │ -Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │ +Fun Expressions for full description):

    F = fun (Arg1, Arg2, ... ArgN) ->
    │ │ │          ...
    │ │ │      end

    This creates an anonymous function of N arguments and binds it to the variable │ │ │ F.

    Another function, FunctionName, written in the same module, can be passed as │ │ │ an argument, using the following syntax:

    F = fun FunctionName/Arity

    With this form of function reference, the function that is referred to does not │ │ │ need to be exported from the module.

    It is also possible to refer to a function defined in a different module, with │ │ │ -the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ --export([t1/0, t2/0]).
    │ │ │ --import(lists, [map/2]).
    │ │ │ +the following syntax:

    F = fun Module:FunctionName/Arity

    In this case, the function must be exported from the module in question.

    The following program illustrates the different ways of creating funs:

    -module(fun_test).
    │ │ │ +-export([t1/0, t2/0]).
    │ │ │ +-import(lists, [map/2]).
    │ │ │  
    │ │ │ -t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │ +t1() -> map(fun(X) -> 2 * X end, [1,2,3,4,5]).
    │ │ │  
    │ │ │ -t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │ +t2() -> map(fun double/1, [1,2,3,4,5]).
    │ │ │  
    │ │ │ -double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ -is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ -   apply(F, Args);
    │ │ │ -f(N, _) when is_integer(N) ->
    │ │ │ +double(X) -> X * 2.

    The fun F can be evaluated with the following syntax:

    F(Arg1, Arg2, ..., Argn)

    To check whether a term is a fun, use the test │ │ │ +is_function/1 in a guard.

    Example:

    f(F, Args) when is_function(F) ->
    │ │ │ +   apply(F, Args);
    │ │ │ +f(N, _) when is_integer(N) ->
    │ │ │     N.

    Funs are a distinct type. The BIFs erlang:fun_info/1,2 can be used to retrieve │ │ │ information about a fun, and the BIF erlang:fun_to_list/1 returns a textual │ │ │ representation of a fun. The check_process_code/2 │ │ │ BIF returns true if the process contains funs that depend on the old version │ │ │ of a module.

    │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings Within a Fun │ │ │

    │ │ │

    The scope rules for variables that occur in funs are as follows:

    • All variables that occur in the head of a fun are assumed to be "fresh" │ │ │ variables.
    • Variables that are defined before the fun, and that occur in function calls or │ │ │ -guard tests within the fun, have the values they had outside the fun.
    • Variables cannot be exported from a fun.

    The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ -    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ -    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ +guard tests within the fun, have the values they had outside the fun.

  • Variables cannot be exported from a fun.
  • The following examples illustrate these rules:

    print_list(File, List) ->
    │ │ │ +    {ok, Stream} = file:open(File, write),
    │ │ │ +    foreach(fun(X) -> io:format(Stream,"~p~n",[X]) end, List),
    │ │ │ +    file:close(Stream).

    Here, the variable X, defined in the head of the fun, is a new variable. The │ │ │ variable Stream, which is used within the fun, gets its value from the │ │ │ file:open line.

    As any variable that occurs in the head of a fun is considered a new variable, │ │ │ -it is equally valid to write as follows:

    print_list(File, List) ->
    │ │ │ -    {ok, Stream} = file:open(File, write),
    │ │ │ -    foreach(fun(File) ->
    │ │ │ -                io:format(Stream,"~p~n",[File])
    │ │ │ -            end, List),
    │ │ │ -    file:close(Stream).

    Here, File is used as the new variable instead of X. This is not so wise │ │ │ +it is equally valid to write as follows:

    print_list(File, List) ->
    │ │ │ +    {ok, Stream} = file:open(File, write),
    │ │ │ +    foreach(fun(File) ->
    │ │ │ +                io:format(Stream,"~p~n",[File])
    │ │ │ +            end, List),
    │ │ │ +    file:close(Stream).

    Here, File is used as the new variable instead of X. This is not so wise │ │ │ because code in the fun body cannot refer to the variable File, which is │ │ │ defined outside of the fun. Compiling this example gives the following │ │ │ diagnostic:

    ./FileName.erl:Line: Warning: variable 'File'
    │ │ │        shadowed in 'fun'

    This indicates that the variable File, which is defined inside the fun, │ │ │ collides with the variable File, which is defined outside the fun.

    The rules for importing variables into a fun has the consequence that certain │ │ │ pattern matching operations must be moved into guard expressions and cannot be │ │ │ written in the head of the fun. For example, you might write the following code │ │ │ if you intend the first clause of F to be evaluated when the value of its │ │ │ -argument is Y:

    f(...) ->
    │ │ │ +argument is Y:

    f(...) ->
    │ │ │      Y = ...
    │ │ │ -    map(fun(X) when X == Y ->
    │ │ │ +    map(fun(X) when X == Y ->
    │ │ │               ;
    │ │ │ -           (_) ->
    │ │ │ +           (_) ->
    │ │ │               ...
    │ │ │ -        end, ...)
    │ │ │ -    ...

    instead of writing the following code:

    f(...) ->
    │ │ │ +        end, ...)
    │ │ │ +    ...

    instead of writing the following code:

    f(...) ->
    │ │ │      Y = ...
    │ │ │ -    map(fun(Y) ->
    │ │ │ +    map(fun(Y) ->
    │ │ │               ;
    │ │ │ -           (_) ->
    │ │ │ +           (_) ->
    │ │ │               ...
    │ │ │ -        end, ...)
    │ │ │ +        end, ...)
    │ │ │      ...

    │ │ │ │ │ │ │ │ │ │ │ │ Funs and Module Lists │ │ │

    │ │ │

    The following examples show a dialogue with the Erlang shell. All the higher │ │ │ order functions discussed are exported from the module lists.

    │ │ │ │ │ │ │ │ │ │ │ │ map │ │ │

    │ │ │ -

    lists:map/2 takes a function of one argument and a list of terms:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ -map(F, [])    -> [].

    It returns the list obtained by applying the function to every argument in the │ │ │ +

    lists:map/2 takes a function of one argument and a list of terms:

    map(F, [H|T]) -> [F(H)|map(F, T)];
    │ │ │ +map(F, [])    -> [].

    It returns the list obtained by applying the function to every argument in the │ │ │ list.

    When a new fun is defined in the shell, the value of the fun is printed as │ │ │ -Fun#<erl_eval>:

    > Double = fun(X) -> 2 * X end.
    │ │ │ +Fun#<erl_eval>:

    > Double = fun(X) -> 2 * X end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> lists:map(Double, [1,2,3,4,5]).
    │ │ │ -[2,4,6,8,10]

    │ │ │ +> lists:map(Double, [1,2,3,4,5]). │ │ │ +[2,4,6,8,10]

    │ │ │ │ │ │ │ │ │ │ │ │ any │ │ │

    │ │ │ -

    lists:any/2 takes a predicate P of one argument and a list of terms:

    any(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ +

    lists:any/2 takes a predicate P of one argument and a list of terms:

    any(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │          true  ->  true;
    │ │ │ -        false ->  any(Pred, T)
    │ │ │ +        false ->  any(Pred, T)
    │ │ │      end;
    │ │ │ -any(Pred, []) ->
    │ │ │ +any(Pred, []) ->
    │ │ │      false.

    A predicate is a function that returns true or false. any is true if │ │ │ there is a term X in the list such that P(X) is true.

    A predicate Big(X) is defined, which is true if its argument is greater that │ │ │ -10:

    > Big =  fun(X) -> if X > 10 -> true; true -> false end end.
    │ │ │ +10:

    > Big =  fun(X) -> if X > 10 -> true; true -> false end end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> lists:any(Big, [1,2,3,4]).
    │ │ │ +> lists:any(Big, [1,2,3,4]).
    │ │ │  false
    │ │ │ -> lists:any(Big, [1,2,3,12,5]).
    │ │ │ +> lists:any(Big, [1,2,3,12,5]).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ all │ │ │

    │ │ │ -

    lists:all/2 has the same arguments as any:

    all(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  ->  all(Pred, T);
    │ │ │ +

    lists:all/2 has the same arguments as any:

    all(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  ->  all(Pred, T);
    │ │ │          false ->  false
    │ │ │      end;
    │ │ │ -all(Pred, []) ->
    │ │ │ -    true.

    It is true if the predicate applied to all elements in the list is true.

    > lists:all(Big, [1,2,3,4,12,6]).
    │ │ │ +all(Pred, []) ->
    │ │ │ +    true.

    It is true if the predicate applied to all elements in the list is true.

    > lists:all(Big, [1,2,3,4,12,6]).
    │ │ │  false
    │ │ │ -> lists:all(Big, [12,13,14,15]).
    │ │ │ +> lists:all(Big, [12,13,14,15]).
    │ │ │  true

    │ │ │ │ │ │ │ │ │ │ │ │ foreach │ │ │

    │ │ │ -

    lists:foreach/2 takes a function of one argument and a list of terms:

    foreach(F, [H|T]) ->
    │ │ │ -    F(H),
    │ │ │ -    foreach(F, T);
    │ │ │ -foreach(F, []) ->
    │ │ │ +

    lists:foreach/2 takes a function of one argument and a list of terms:

    foreach(F, [H|T]) ->
    │ │ │ +    F(H),
    │ │ │ +    foreach(F, T);
    │ │ │ +foreach(F, []) ->
    │ │ │      ok.

    The function is applied to each argument in the list. foreach returns ok. It │ │ │ -is only used for its side-effect:

    > lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
    │ │ │ +is only used for its side-effect:

    > lists:foreach(fun(X) -> io:format("~w~n",[X]) end, [1,2,3,4]).
    │ │ │  1
    │ │ │  2
    │ │ │  3
    │ │ │  4
    │ │ │  ok

    │ │ │ │ │ │ │ │ │ │ │ │ foldl │ │ │

    │ │ │ -

    lists:foldl/3 takes a function of two arguments, an accumulator and a list:

    foldl(F, Accu, [Hd|Tail]) ->
    │ │ │ -    foldl(F, F(Hd, Accu), Tail);
    │ │ │ -foldl(F, Accu, []) -> Accu.

    The function is called with two arguments. The first argument is the successive │ │ │ +

    lists:foldl/3 takes a function of two arguments, an accumulator and a list:

    foldl(F, Accu, [Hd|Tail]) ->
    │ │ │ +    foldl(F, F(Hd, Accu), Tail);
    │ │ │ +foldl(F, Accu, []) -> Accu.

    The function is called with two arguments. The first argument is the successive │ │ │ elements in the list. The second argument is the accumulator. The function must │ │ │ return a new accumulator, which is used the next time the function is called.

    If you have a list of lists L = ["I","like","Erlang"], then you can sum the │ │ │ -lengths of all the strings in L as follows:

    > L = ["I","like","Erlang"].
    │ │ │ -["I","like","Erlang"]
    │ │ │ -10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
    │ │ │ -11

    lists:foldl/3 works like a while loop in an imperative language:

    L =  ["I","like","Erlang"],
    │ │ │ +lengths of all the strings in L as follows:

    > L = ["I","like","Erlang"].
    │ │ │ +["I","like","Erlang"]
    │ │ │ +10> lists:foldl(fun(X, Sum) -> length(X) + Sum end, 0, L).
    │ │ │ +11

    lists:foldl/3 works like a while loop in an imperative language:

    L =  ["I","like","Erlang"],
    │ │ │  Sum = 0,
    │ │ │ -while( L != []){
    │ │ │ -    Sum += length(head(L)),
    │ │ │ -    L = tail(L)
    │ │ │ +while( L != []){
    │ │ │ +    Sum += length(head(L)),
    │ │ │ +    L = tail(L)
    │ │ │  end

    │ │ │ │ │ │ │ │ │ │ │ │ mapfoldl │ │ │

    │ │ │ -

    lists:mapfoldl/3 simultaneously maps and folds over a list:

    mapfoldl(F, Accu0, [Hd|Tail]) ->
    │ │ │ -    {R,Accu1} = F(Hd, Accu0),
    │ │ │ -    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    │ │ │ -    {[R|Rs], Accu2};
    │ │ │ -mapfoldl(F, Accu, []) -> {[], Accu}.

    The following example shows how to change all letters in L to upper case and │ │ │ -then count them.

    First the change to upper case:

    > Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
    │ │ │ -(X) -> X
    │ │ │ +

    lists:mapfoldl/3 simultaneously maps and folds over a list:

    mapfoldl(F, Accu0, [Hd|Tail]) ->
    │ │ │ +    {R,Accu1} = F(Hd, Accu0),
    │ │ │ +    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    │ │ │ +    {[R|Rs], Accu2};
    │ │ │ +mapfoldl(F, Accu, []) -> {[], Accu}.

    The following example shows how to change all letters in L to upper case and │ │ │ +then count them.

    First the change to upper case:

    > Upcase =  fun(X) when $a =< X,  X =< $z -> X + $A - $a;
    │ │ │ +(X) -> X
    │ │ │  end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │  > Upcase_word =
    │ │ │ -fun(X) ->
    │ │ │ -lists:map(Upcase, X)
    │ │ │ +fun(X) ->
    │ │ │ +lists:map(Upcase, X)
    │ │ │  end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Upcase_word("Erlang").
    │ │ │ +> Upcase_word("Erlang").
    │ │ │  "ERLANG"
    │ │ │ -> lists:map(Upcase_word, L).
    │ │ │ -["I","LIKE","ERLANG"]

    Now, the fold and the map can be done at the same time:

    > lists:mapfoldl(fun(Word, Sum) ->
    │ │ │ -{Upcase_word(Word), Sum + length(Word)}
    │ │ │ -end, 0, L).
    │ │ │ -{["I","LIKE","ERLANG"],11}

    │ │ │ +> lists:map(Upcase_word, L). │ │ │ +["I","LIKE","ERLANG"]

    Now, the fold and the map can be done at the same time:

    > lists:mapfoldl(fun(Word, Sum) ->
    │ │ │ +{Upcase_word(Word), Sum + length(Word)}
    │ │ │ +end, 0, L).
    │ │ │ +{["I","LIKE","ERLANG"],11}

    │ │ │ │ │ │ │ │ │ │ │ │ filter │ │ │

    │ │ │

    lists:filter/2 takes a predicate of one argument and a list and returns all elements │ │ │ -in the list that satisfy the predicate:

    filter(F, [H|T]) ->
    │ │ │ -    case F(H) of
    │ │ │ -        true  -> [H|filter(F, T)];
    │ │ │ -        false -> filter(F, T)
    │ │ │ +in the list that satisfy the predicate:

    filter(F, [H|T]) ->
    │ │ │ +    case F(H) of
    │ │ │ +        true  -> [H|filter(F, T)];
    │ │ │ +        false -> filter(F, T)
    │ │ │      end;
    │ │ │ -filter(F, []) -> [].
    > lists:filter(Big, [500,12,2,45,6,7]).
    │ │ │ -[500,12,45]

    Combining maps and filters enables writing of very succinct code. For example, │ │ │ +filter(F, []) -> [].

    > lists:filter(Big, [500,12,2,45,6,7]).
    │ │ │ +[500,12,45]

    Combining maps and filters enables writing of very succinct code. For example, │ │ │ to define a set difference function diff(L1, L2) to be the difference between │ │ │ -the lists L1 and L2, the code can be written as follows:

    diff(L1, L2) ->
    │ │ │ -    filter(fun(X) -> not member(X, L2) end, L1).

    This gives the list of all elements in L1 that are not contained in L2.

    The AND intersection of the list L1 and L2 is also easily defined:

    intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

    │ │ │ +the lists L1 and L2, the code can be written as follows:

    diff(L1, L2) ->
    │ │ │ +    filter(fun(X) -> not member(X, L2) end, L1).

    This gives the list of all elements in L1 that are not contained in L2.

    The AND intersection of the list L1 and L2 is also easily defined:

    intersection(L1,L2) -> filter(fun(X) -> member(X,L1) end, L2).

    │ │ │ │ │ │ │ │ │ │ │ │ takewhile │ │ │

    │ │ │

    lists:takewhile/2 takes elements X from a list L as long as the predicate │ │ │ -P(X) is true:

    takewhile(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> [H|takewhile(Pred, T)];
    │ │ │ -        false -> []
    │ │ │ +P(X) is true:

    takewhile(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> [H|takewhile(Pred, T)];
    │ │ │ +        false -> []
    │ │ │      end;
    │ │ │ -takewhile(Pred, []) ->
    │ │ │ -    [].
    > lists:takewhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ -[200,500,45]

    │ │ │ +takewhile(Pred, []) -> │ │ │ + [].

    > lists:takewhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ +[200,500,45]

    │ │ │ │ │ │ │ │ │ │ │ │ dropwhile │ │ │

    │ │ │ -

    lists:dropwhile/2 is the complement of takewhile:

    dropwhile(Pred, [H|T]) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> dropwhile(Pred, T);
    │ │ │ -        false -> [H|T]
    │ │ │ +

    lists:dropwhile/2 is the complement of takewhile:

    dropwhile(Pred, [H|T]) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> dropwhile(Pred, T);
    │ │ │ +        false -> [H|T]
    │ │ │      end;
    │ │ │ -dropwhile(Pred, []) ->
    │ │ │ -    [].
    > lists:dropwhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ -[5,3,45,6]

    │ │ │ +dropwhile(Pred, []) -> │ │ │ + [].

    > lists:dropwhile(Big, [200,500,45,5,3,45,6]).
    │ │ │ +[5,3,45,6]

    │ │ │ │ │ │ │ │ │ │ │ │ splitwith │ │ │

    │ │ │

    lists:splitwith/2 splits the list L into the two sublists {L1, L2}, where │ │ │ -L = takewhile(P, L) and L2 = dropwhile(P, L):

    splitwith(Pred, L) ->
    │ │ │ -    splitwith(Pred, L, []).
    │ │ │ +L = takewhile(P, L) and L2 = dropwhile(P, L):

    splitwith(Pred, L) ->
    │ │ │ +    splitwith(Pred, L, []).
    │ │ │  
    │ │ │ -splitwith(Pred, [H|T], L) ->
    │ │ │ -    case Pred(H) of
    │ │ │ -        true  -> splitwith(Pred, T, [H|L]);
    │ │ │ -        false -> {reverse(L), [H|T]}
    │ │ │ +splitwith(Pred, [H|T], L) ->
    │ │ │ +    case Pred(H) of
    │ │ │ +        true  -> splitwith(Pred, T, [H|L]);
    │ │ │ +        false -> {reverse(L), [H|T]}
    │ │ │      end;
    │ │ │ -splitwith(Pred, [], L) ->
    │ │ │ -    {reverse(L), []}.
    > lists:splitwith(Big, [200,500,45,5,3,45,6]).
    │ │ │ -{[200,500,45],[5,3,45,6]}

    │ │ │ +splitwith(Pred, [], L) -> │ │ │ + {reverse(L), []}.

    > lists:splitwith(Big, [200,500,45,5,3,45,6]).
    │ │ │ +{[200,500,45],[5,3,45,6]}

    │ │ │ │ │ │ │ │ │ │ │ │ Funs Returning Funs │ │ │

    │ │ │

    So far, only functions that take funs as arguments have been described. More │ │ │ powerful functions, that themselves return funs, can also be written. The │ │ │ following examples illustrate these type of functions.

    │ │ │ │ │ │ │ │ │ │ │ │ Simple Higher Order Functions │ │ │

    │ │ │

    Adder(X) is a function that given X, returns a new function G such that │ │ │ -G(K) returns K + X:

    > Adder = fun(X) -> fun(Y) -> X + Y end end.
    │ │ │ +G(K) returns K + X:

    > Adder = fun(X) -> fun(Y) -> X + Y end end.
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Add6 = Adder(6).
    │ │ │ +> Add6 = Adder(6).
    │ │ │  #Fun<erl_eval.6.72228031>
    │ │ │ -> Add6(10).
    │ │ │ +> Add6(10).
    │ │ │  16

    │ │ │ │ │ │ │ │ │ │ │ │ Infinite Lists │ │ │

    │ │ │ -

    The idea is to write something like:

    -module(lazy).
    │ │ │ --export([ints_from/1]).
    │ │ │ -ints_from(N) ->
    │ │ │ -    fun() ->
    │ │ │ -            [N|ints_from(N+1)]
    │ │ │ -    end.

    Then proceed as follows:

    > XX = lazy:ints_from(1).
    │ │ │ +

    The idea is to write something like:

    -module(lazy).
    │ │ │ +-export([ints_from/1]).
    │ │ │ +ints_from(N) ->
    │ │ │ +    fun() ->
    │ │ │ +            [N|ints_from(N+1)]
    │ │ │ +    end.

    Then proceed as follows:

    > XX = lazy:ints_from(1).
    │ │ │  #Fun<lazy.0.29874839>
    │ │ │ -> XX().
    │ │ │ -[1|#Fun<lazy.0.29874839>]
    │ │ │ -> hd(XX()).
    │ │ │ +> XX().
    │ │ │ +[1|#Fun<lazy.0.29874839>]
    │ │ │ +> hd(XX()).
    │ │ │  1
    │ │ │ -> Y = tl(XX()).
    │ │ │ +> Y = tl(XX()).
    │ │ │  #Fun<lazy.0.29874839>
    │ │ │ -> hd(Y()).
    │ │ │ +> hd(Y()).
    │ │ │  2

    And so on. This is an example of "lazy embedding".

    │ │ │ │ │ │ │ │ │ │ │ │ Parsing │ │ │

    │ │ │ -

    The following examples show parsers of the following type:

    Parser(Toks) -> {ok, Tree, Toks1} | fail

    Toks is the list of tokens to be parsed. A successful parse returns │ │ │ +

    The following examples show parsers of the following type:

    Parser(Toks) -> {ok, Tree, Toks1} | fail

    Toks is the list of tokens to be parsed. A successful parse returns │ │ │ {ok, Tree, Toks1}.

    • Tree is a parse tree.
    • Toks1 is a tail of Tree that contains symbols encountered after the │ │ │ structure that was correctly parsed.

    An unsuccessful parse returns fail.

    The following example illustrates a simple, functional parser that parses the │ │ │ grammar:

    (a | b) & (c | d)

    The following code defines a function pconst(X) in the module funparse, │ │ │ -which returns a fun that parses a list of tokens:

    pconst(X) ->
    │ │ │ -    fun (T) ->
    │ │ │ +which returns a fun that parses a list of tokens:

    pconst(X) ->
    │ │ │ +    fun (T) ->
    │ │ │         case T of
    │ │ │ -           [X|T1] -> {ok, {const, X}, T1};
    │ │ │ +           [X|T1] -> {ok, {const, X}, T1};
    │ │ │             _      -> fail
    │ │ │         end
    │ │ │ -    end.

    This function can be used as follows:

    > P1 = funparse:pconst(a).
    │ │ │ +    end.

    This function can be used as follows:

    > P1 = funparse:pconst(a).
    │ │ │  #Fun<funparse.0.22674075>
    │ │ │ -> P1([a,b,c]).
    │ │ │ -{ok,{const,a},[b,c]}
    │ │ │ -> P1([x,y,z]).
    │ │ │ +> P1([a,b,c]).
    │ │ │ +{ok,{const,a},[b,c]}
    │ │ │ +> P1([x,y,z]).
    │ │ │  fail

    Next, the two higher order functions pand and por are defined. They combine │ │ │ -primitive parsers to produce more complex parsers.

    First pand:

    pand(P1, P2) ->
    │ │ │ -    fun (T) ->
    │ │ │ -        case P1(T) of
    │ │ │ -            {ok, R1, T1} ->
    │ │ │ -                case P2(T1) of
    │ │ │ -                    {ok, R2, T2} ->
    │ │ │ -                        {ok, {'and', R1, R2}};
    │ │ │ +primitive parsers to produce more complex parsers.

    First pand:

    pand(P1, P2) ->
    │ │ │ +    fun (T) ->
    │ │ │ +        case P1(T) of
    │ │ │ +            {ok, R1, T1} ->
    │ │ │ +                case P2(T1) of
    │ │ │ +                    {ok, R2, T2} ->
    │ │ │ +                        {ok, {'and', R1, R2}};
    │ │ │                      fail ->
    │ │ │                          fail
    │ │ │                  end;
    │ │ │              fail ->
    │ │ │                  fail
    │ │ │          end
    │ │ │      end.

    Given a parser P1 for grammar G1, and a parser P2 for grammar G2, │ │ │ pand(P1, P2) returns a parser for the grammar, which consists of sequences of │ │ │ tokens that satisfy G1, followed by sequences of tokens that satisfy G2.

    por(P1, P2) returns a parser for the language described by the grammar G1 or │ │ │ -G2:

    por(P1, P2) ->
    │ │ │ -    fun (T) ->
    │ │ │ -        case P1(T) of
    │ │ │ -            {ok, R, T1} ->
    │ │ │ -                {ok, {'or',1,R}, T1};
    │ │ │ +G2:

    por(P1, P2) ->
    │ │ │ +    fun (T) ->
    │ │ │ +        case P1(T) of
    │ │ │ +            {ok, R, T1} ->
    │ │ │ +                {ok, {'or',1,R}, T1};
    │ │ │              fail ->
    │ │ │ -                case P2(T) of
    │ │ │ -                    {ok, R1, T1} ->
    │ │ │ -                        {ok, {'or',2,R1}, T1};
    │ │ │ +                case P2(T) of
    │ │ │ +                    {ok, R1, T1} ->
    │ │ │ +                        {ok, {'or',2,R1}, T1};
    │ │ │                      fail ->
    │ │ │                          fail
    │ │ │                  end
    │ │ │          end
    │ │ │      end.

    The original problem was to parse the grammar (a | b) & (c | d). The following │ │ │ -code addresses this problem:

    grammar() ->
    │ │ │ -    pand(
    │ │ │ -         por(pconst(a), pconst(b)),
    │ │ │ -         por(pconst(c), pconst(d))).

    The following code adds a parser interface to the grammar:

    parse(List) ->
    │ │ │ -    (grammar())(List).

    The parser can be tested as follows:

    > funparse:parse([a,c]).
    │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
    │ │ │ -> funparse:parse([a,d]).
    │ │ │ -{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
    │ │ │ -> funparse:parse([b,c]).
    │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
    │ │ │ -> funparse:parse([b,d]).
    │ │ │ -{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
    │ │ │ -> funparse:parse([a,b]).
    │ │ │ +code addresses this problem:

    grammar() ->
    │ │ │ +    pand(
    │ │ │ +         por(pconst(a), pconst(b)),
    │ │ │ +         por(pconst(c), pconst(d))).

    The following code adds a parser interface to the grammar:

    parse(List) ->
    │ │ │ +    (grammar())(List).

    The parser can be tested as follows:

    > funparse:parse([a,c]).
    │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
    │ │ │ +> funparse:parse([a,d]).
    │ │ │ +{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
    │ │ │ +> funparse:parse([b,c]).
    │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
    │ │ │ +> funparse:parse([b,d]).
    │ │ │ +{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
    │ │ │ +> funparse:parse([a,b]).
    │ │ │  fail
    │ │ │ │ │ │ │ │ │

    │ │ │

    An example of a simple server written in plain Erlang is provided in │ │ │ Overview. The server can be reimplemented using │ │ │ -gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +gen_server, resulting in this callback module:

    -module(ch3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ +start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ +alloc() ->
    │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ +free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, channels()}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, channels()}.
    │ │ │  
    │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2}.
    │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2}.
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + Chs2 = free(Ch, Chs), │ │ │ + {noreply, Chs2}.

    The code is explained in the next sections.

    │ │ │ │ │ │ │ │ │ │ │ │ Starting a Gen_Server │ │ │

    │ │ │

    In the example in the previous section, gen_server is started by calling │ │ │ -ch3:start_link():

    start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ +ch3:start_link():

    start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []) => {ok, Pid}

    start_link/0 calls function gen_server:start_link/4. This function │ │ │ spawns and links to a new process, a gen_server.

    • The first argument, {local, ch3}, specifies the name. │ │ │ The gen_server is then locally registered as ch3.

      If the name is omitted, the gen_server is not registered. Instead its pid │ │ │ must be used. The name can also be given as {global, Name}, in which case │ │ │ the gen_server is registered using global:register_name/2.

    • The second argument, ch3, is the name of the callback module, which is │ │ │ the module where the callback functions are located.

      The interface functions (start_link/0, alloc/0, and free/1) are located │ │ │ in the same module as the callback functions (init/1, handle_call/3, and │ │ │ handle_cast/2). It is usually good programming practice to have the code │ │ │ corresponding to one process contained in a single module.

    • The third argument, [], is a term that is passed as is to the callback │ │ │ function init. Here, init does not need any indata and ignores the │ │ │ argument.

    • The fourth argument, [], is a list of options. See gen_server │ │ │ for the available options.

    If name registration succeeds, the new gen_server process calls the callback │ │ │ function ch3:init([]). init is expected to return {ok, State}, where │ │ │ State is the internal state of the gen_server. In this case, the state is │ │ │ -the available channels.

    init(_Args) ->
    │ │ │ -    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ +the available channels.

    init(_Args) ->
    │ │ │ +    {ok, channels()}.

    gen_server:start_link/4 is synchronous. It does not return until the │ │ │ gen_server has been initialized and is ready to receive requests.

    gen_server:start_link/4 must be used if the gen_server is part of │ │ │ a supervision tree, meaning that it was started by a supervisor. There │ │ │ is another function, gen_server:start/4, to start a standalone │ │ │ gen_server that is not part of a supervision tree.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -221,32 +221,32 @@ │ │ │

    │ │ │

    The synchronous request alloc() is implemented using gen_server:call/2:

    alloc() ->
    │ │ │      gen_server:call(ch3, alloc).

    ch3 is the name of the gen_server and must agree with the name │ │ │ used to start it. alloc is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ When the request is received, the gen_server calls │ │ │ handle_call(Request, From, State), which is expected to return │ │ │ a tuple {reply,Reply,State1}. Reply is the reply that is to be sent back │ │ │ -to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ +to the client, and State1 is a new value for the state of the gen_server.

    handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2}.

    In this case, the reply is the allocated channel Ch and the new state is the │ │ │ set of remaining available channels Chs2.

    Thus, the call ch3:alloc() returns the allocated channel Ch and the │ │ │ gen_server then waits for new requests, now with an updated list of │ │ │ available channels.

    │ │ │ │ │ │ │ │ │ │ │ │ Asynchronous Requests - Cast │ │ │

    │ │ │ -

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ +

    The asynchronous request free(Ch) is implemented using gen_server:cast/2:

    free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).

    ch3 is the name of the gen_server. {free, Ch} is the actual request.

    The request is made into a message and sent to the gen_server. │ │ │ cast, and thus free, then returns ok.

    When the request is received, the gen_server calls │ │ │ handle_cast(Request, State), which is expected to return a tuple │ │ │ -{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ +{noreply,State1}. State1 is a new value for the state of the gen_server.

    handle_cast({free, Ch}, Chs) ->
    │ │ │ +    Chs2 = free(Ch, Chs),
    │ │ │ +    {noreply, Chs2}.

    In this case, the new state is the updated list of available channels Chs2. │ │ │ The gen_server is now ready for new requests.

    │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

    │ │ │

    │ │ │ @@ -257,69 +257,69 @@ │ │ │

    │ │ │

    If the gen_server is part of a supervision tree, no stop function is needed. │ │ │ The gen_server is automatically terminated by its supervisor. Exactly how │ │ │ this is done is defined by a shutdown strategy │ │ │ set in the supervisor.

    If it is necessary to clean up before termination, the shutdown strategy │ │ │ must be a time-out value and the gen_server must be set to trap exit signals │ │ │ in function init. When ordered to shutdown, the gen_server then calls │ │ │ -the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │ +the callback function terminate(shutdown, State):

    init(Args) ->
    │ │ │      ...,
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │      ...,
    │ │ │ -    {ok, State}.
    │ │ │ +    {ok, State}.
    │ │ │  
    │ │ │  ...
    │ │ │  
    │ │ │ -terminate(shutdown, State) ->
    │ │ │ +terminate(shutdown, State) ->
    │ │ │      %% Code for cleaning up here
    │ │ │      ...
    │ │ │      ok.

    │ │ │ │ │ │ │ │ │ │ │ │ Standalone Gen_Servers │ │ │

    │ │ │

    If the gen_server is not part of a supervision tree, a stop function │ │ │ can be useful, for example:

    ...
    │ │ │ -export([stop/0]).
    │ │ │ +export([stop/0]).
    │ │ │  ...
    │ │ │  
    │ │ │ -stop() ->
    │ │ │ -    gen_server:cast(ch3, stop).
    │ │ │ +stop() ->
    │ │ │ +    gen_server:cast(ch3, stop).
    │ │ │  ...
    │ │ │  
    │ │ │ -handle_cast(stop, State) ->
    │ │ │ -    {stop, normal, State};
    │ │ │ -handle_cast({free, Ch}, State) ->
    │ │ │ +handle_cast(stop, State) ->
    │ │ │ +    {stop, normal, State};
    │ │ │ +handle_cast({free, Ch}, State) ->
    │ │ │      ...
    │ │ │  
    │ │ │  ...
    │ │ │  
    │ │ │ -terminate(normal, State) ->
    │ │ │ +terminate(normal, State) ->
    │ │ │      ok.

    The callback function handling the stop request returns a tuple │ │ │ {stop,normal,State1}, where normal specifies that it is │ │ │ a normal termination and State1 is a new value for the state │ │ │ of the gen_server. This causes the gen_server to call │ │ │ terminate(normal, State1) and then it terminates gracefully.

    │ │ │ │ │ │ │ │ │ │ │ │ Handling Other Messages │ │ │

    │ │ │

    If the gen_server is to be able to receive other messages than requests, │ │ │ the callback function handle_info(Info, State) must be implemented │ │ │ to handle them. Examples of other messages are exit messages, │ │ │ if the gen_server is linked to other processes than the supervisor │ │ │ -and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │ +and it is trapping exit signals.

    handle_info({'EXIT', Pid, Reason}, State) ->
    │ │ │      %% Code to handle exits here.
    │ │ │      ...
    │ │ │ -    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │ +    {noreply, State1}.

    The final function to implement is code_change/3:

    code_change(OldVsn, State, Extra) ->
    │ │ │      %% Code to convert state (and more) during code change.
    │ │ │      ...
    │ │ │ -    {ok, NewState}.
    │ │ │ +
    {ok, NewState}.
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Specifying Included Applications │ │ │

    │ │ │

    Which applications to include is defined by the included_applications key in │ │ │ -the .app file:

    {application, prim_app,
    │ │ │ - [{description, "Tree application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ -  {registered, [prim_app_server]},
    │ │ │ -  {included_applications, [incl_app]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {prim_app_cb,[]}},
    │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ - ]}.

    │ │ │ +the .app file:

    {application, prim_app,
    │ │ │ + [{description, "Tree application"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ +  {registered, [prim_app_server]},
    │ │ │ +  {included_applications, [incl_app]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {prim_app_cb,[]}},
    │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ + ]}.

    │ │ │ │ │ │ │ │ │ │ │ │ Synchronizing Processes during Startup │ │ │

    │ │ │

    The supervisor tree of an included application is started as part of the │ │ │ supervisor tree of the including application. If there is a need for │ │ │ synchronization between processes in the including and included applications, │ │ │ this can be achieved by using start phases.

    Start phases are defined by the start_phases key in the .app file as a list │ │ │ of tuples {Phase,PhaseArgs}, where Phase is an atom and PhaseArgs is a │ │ │ term.

    The value of the mod key of the including application must be set to │ │ │ {application_starter,[Module,StartArgs]}, where Module as usual is the │ │ │ application callback module. StartArgs is a term provided as argument to the │ │ │ -callback function Module:start/2:

    {application, prim_app,
    │ │ │ - [{description, "Tree application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ -  {registered, [prim_app_server]},
    │ │ │ -  {included_applications, [incl_app]},
    │ │ │ -  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ -  {env, [{file, "/usr/local/log"}]}
    │ │ │ - ]}.
    │ │ │ +callback function Module:start/2:

    {application, prim_app,
    │ │ │ + [{description, "Tree application"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [prim_app_cb, prim_app_sup, prim_app_server]},
    │ │ │ +  {registered, [prim_app_server]},
    │ │ │ +  {included_applications, [incl_app]},
    │ │ │ +  {start_phases, [{init,[]}, {go,[]}]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {application_starter,[prim_app_cb,[]]}},
    │ │ │ +  {env, [{file, "/usr/local/log"}]}
    │ │ │ + ]}.
    │ │ │  
    │ │ │ -{application, incl_app,
    │ │ │ - [{description, "Included application"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [incl_app_cb, incl_app_sup, incl_app_server]},
    │ │ │ -  {registered, []},
    │ │ │ -  {start_phases, [{go,[]}]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {incl_app_cb,[]}}
    │ │ │ - ]}.

    When starting a primary application with included applications, the primary │ │ │ +{application, incl_app, │ │ │ + [{description, "Included application"}, │ │ │ + {vsn, "1"}, │ │ │ + {modules, [incl_app_cb, incl_app_sup, incl_app_server]}, │ │ │ + {registered, []}, │ │ │ + {start_phases, [{go,[]}]}, │ │ │ + {applications, [kernel, stdlib, sasl]}, │ │ │ + {mod, {incl_app_cb,[]}} │ │ │ + ]}.

    When starting a primary application with included applications, the primary │ │ │ application is started the normal way, that is:

    • The application controller creates an application master for the application
    • The application master calls Module:start(normal, StartArgs) to start the │ │ │ top supervisor.

    Then, for the primary application and each included application in top-down, │ │ │ left-to-right order, the application master calls │ │ │ Module:start_phase(Phase, Type, PhaseArgs) for each phase defined for the │ │ │ primary application, in that order. If a phase is not defined for an included │ │ │ application, the function is not called for this phase and application.

    The following requirements apply to the .app file for an included application:

    • The {mod, {Module,StartArgs}} option must be included. This option is used │ │ │ to find the callback module Module of the application. StartArgs is │ │ │ ignored, as Module:start/2 is called only for the primary application.
    • If the included application itself contains included applications, instead the │ │ │ {mod, {application_starter, [Module,StartArgs]}} option must be included.
    • The {start_phases, [{Phase,PhaseArgs}]} option must be included, and the set │ │ │ of specified phases must be a subset of the set of phases specified for the │ │ │ primary application.

    When starting prim_app as defined above, the application controller calls the │ │ │ following callback functions before application:start(prim_app) returns a │ │ │ -value:

    application:start(prim_app)
    │ │ │ - => prim_app_cb:start(normal, [])
    │ │ │ - => prim_app_cb:start_phase(init, normal, [])
    │ │ │ - => prim_app_cb:start_phase(go, normal, [])
    │ │ │ - => incl_app_cb:start_phase(go, normal, [])
    │ │ │ +value:

    application:start(prim_app)
    │ │ │ + => prim_app_cb:start(normal, [])
    │ │ │ + => prim_app_cb:start_phase(init, normal, [])
    │ │ │ + => prim_app_cb:start_phase(go, normal, [])
    │ │ │ + => incl_app_cb:start_phase(go, normal, [])
    │ │ │  ok
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Frequently Asked Questions │ │ │

    │ │ │
    • Q: So, now I can build Erlang using GCC on Windows?

      A: No, unfortunately not. You'll need Microsoft's Visual C++ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/list_comprehensions.html │ │ │ @@ -117,33 +117,33 @@ │ │ │ │ │ │

      │ │ │ │ │ │ │ │ │ │ │ │ Simple Examples │ │ │

      │ │ │ -

      This section starts with a simple example, showing a generator and a filter:

      > [X || X <- [1,2,a,3,4,b,5,6], X > 3].
      │ │ │ -[a,4,b,5,6]

      This is read as follows: The list of X such that X is taken from the list │ │ │ +

      This section starts with a simple example, showing a generator and a filter:

      > [X || X <- [1,2,a,3,4,b,5,6], X > 3].
      │ │ │ +[a,4,b,5,6]

      This is read as follows: The list of X such that X is taken from the list │ │ │ [1,2,a,...] and X is greater than 3.

      The notation X <- [1,2,a,...] is a generator and the expression X > 3 is a │ │ │ filter.

      An additional filter, is_integer(X), can be added to │ │ │ -restrict the result to integers:

      > [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
      │ │ │ -[4,5,6]

      Generators can be combined. For example, the Cartesian product of two lists can │ │ │ -be written as follows:

      > [{X, Y} || X <- [1,2,3], Y <- [a,b]].
      │ │ │ -[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

      │ │ │ +restrict the result to integers:

      > [X || X <- [1,2,a,3,4,b,5,6], is_integer(X), X > 3].
      │ │ │ +[4,5,6]

      Generators can be combined. For example, the Cartesian product of two lists can │ │ │ +be written as follows:

      > [{X, Y} || X <- [1,2,3], Y <- [a,b]].
      │ │ │ +[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]

      │ │ │ │ │ │ │ │ │ │ │ │ Quick Sort │ │ │

      │ │ │ -

      The well-known quick sort routine can be written as follows:

      sort([]) -> [];
      │ │ │ -sort([_] = L) -> L;
      │ │ │ -sort([Pivot|T]) ->
      │ │ │ -    sort([ X || X <- T, X < Pivot]) ++
      │ │ │ -    [Pivot] ++
      │ │ │ -    sort([ X || X <- T, X >= Pivot]).

      The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ +

      The well-known quick sort routine can be written as follows:

      sort([]) -> [];
      │ │ │ +sort([_] = L) -> L;
      │ │ │ +sort([Pivot|T]) ->
      │ │ │ +    sort([ X || X <- T, X < Pivot]) ++
      │ │ │ +    [Pivot] ++
      │ │ │ +    sort([ X || X <- T, X >= Pivot]).

      The expression [X || X <- T, X < Pivot] is the list of all elements in T │ │ │ that are less than Pivot.

      [X || X <- T, X >= Pivot] is the list of all elements in T that are greater │ │ │ than or equal to Pivot.

      With the algorithm above, a list is sorted as follows:

      • A list with zero or one element is trivially sorted.
      • For lists with more than one element:
        1. The first element in the list is isolated as the pivot element.
        2. The remaining list is partitioned into two sublists, such that:
        • The first sublist contains all elements that are smaller than the pivot │ │ │ element.
        • The second sublist contains all elements that are greater than or equal to │ │ │ the pivot element.
        1. The sublists are recursively sorted by the same algorithm and the results │ │ │ are combined, resulting in a list consisting of:
        • All elements from the first sublist, that is all elements smaller than the │ │ │ pivot element, in sorted order.
        • The pivot element.
        • All elements from the second sublist, that is all elements greater than or │ │ │ equal to the pivot element, in sorted order.

      Note

      While the sorting algorithm as shown above serves as a nice example to │ │ │ @@ -151,93 +151,93 @@ │ │ │ lists module contains sorting functions that are implemented in a more │ │ │ efficient way.

      │ │ │ │ │ │ │ │ │ │ │ │ Permutations │ │ │

      │ │ │ -

      The following example generates all permutations of the elements in a list:

      perms([]) -> [[]];
      │ │ │ -perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

      This takes H from L in all possible ways. The result is the set of all lists │ │ │ +

      The following example generates all permutations of the elements in a list:

      perms([]) -> [[]];
      │ │ │ +perms(L)  -> [[H|T] || H <- L, T <- perms(L--[H])].

      This takes H from L in all possible ways. The result is the set of all lists │ │ │ [H|T], where T is the set of all possible permutations of L, with H │ │ │ -removed:

      > perms([b,u,g]).
      │ │ │ -[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

      │ │ │ +removed:

      > perms([b,u,g]).
      │ │ │ +[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]

      │ │ │ │ │ │ │ │ │ │ │ │ Pythagorean Triplets │ │ │

      │ │ │

      Pythagorean triplets are sets of integers {A,B,C} such that │ │ │ A**2 + B**2 = C**2.

      The function pyth(N) generates a list of all integers {A,B,C} such that │ │ │ A**2 + B**2 = C**2 and where the sum of the sides is equal to, or less than, │ │ │ -N:

      pyth(N) ->
      │ │ │ -    [ {A,B,C} ||
      │ │ │ -        A <- lists:seq(1,N),
      │ │ │ -        B <- lists:seq(1,N),
      │ │ │ -        C <- lists:seq(1,N),
      │ │ │ +N:

      pyth(N) ->
      │ │ │ +    [ {A,B,C} ||
      │ │ │ +        A <- lists:seq(1,N),
      │ │ │ +        B <- lists:seq(1,N),
      │ │ │ +        C <- lists:seq(1,N),
      │ │ │          A+B+C =< N,
      │ │ │          A*A+B*B == C*C
      │ │ │ -    ].
      > pyth(3).
      │ │ │ -[].
      │ │ │ -> pyth(11).
      │ │ │ -[].
      │ │ │ -> pyth(12).
      │ │ │ -[{3,4,5},{4,3,5}]
      │ │ │ -> pyth(50).
      │ │ │ -[{3,4,5},
      │ │ │ - {4,3,5},
      │ │ │ - {5,12,13},
      │ │ │ - {6,8,10},
      │ │ │ - {8,6,10},
      │ │ │ - {8,15,17},
      │ │ │ - {9,12,15},
      │ │ │ - {12,5,13},
      │ │ │ - {12,9,15},
      │ │ │ - {12,16,20},
      │ │ │ - {15,8,17},
      │ │ │ - {16,12,20}]

      The following code reduces the search space and is more efficient:

      pyth1(N) ->
      │ │ │ -   [{A,B,C} ||
      │ │ │ -       A <- lists:seq(1,N-2),
      │ │ │ -       B <- lists:seq(A+1,N-1),
      │ │ │ -       C <- lists:seq(B+1,N),
      │ │ │ +    ].
      > pyth(3).
      │ │ │ +[].
      │ │ │ +> pyth(11).
      │ │ │ +[].
      │ │ │ +> pyth(12).
      │ │ │ +[{3,4,5},{4,3,5}]
      │ │ │ +> pyth(50).
      │ │ │ +[{3,4,5},
      │ │ │ + {4,3,5},
      │ │ │ + {5,12,13},
      │ │ │ + {6,8,10},
      │ │ │ + {8,6,10},
      │ │ │ + {8,15,17},
      │ │ │ + {9,12,15},
      │ │ │ + {12,5,13},
      │ │ │ + {12,9,15},
      │ │ │ + {12,16,20},
      │ │ │ + {15,8,17},
      │ │ │ + {16,12,20}]

      The following code reduces the search space and is more efficient:

      pyth1(N) ->
      │ │ │ +   [{A,B,C} ||
      │ │ │ +       A <- lists:seq(1,N-2),
      │ │ │ +       B <- lists:seq(A+1,N-1),
      │ │ │ +       C <- lists:seq(B+1,N),
      │ │ │         A+B+C =< N,
      │ │ │ -       A*A+B*B == C*C ].

      │ │ │ + A*A+B*B == C*C ].

      │ │ │ │ │ │ │ │ │ │ │ │ Simplifications With List Comprehensions │ │ │

      │ │ │

      As an example, list comprehensions can be used to simplify some of the functions │ │ │ -in lists.erl:

      append(L)   ->  [X || L1 <- L, X <- L1].
      │ │ │ -map(Fun, L) -> [Fun(X) || X <- L].
      │ │ │ -filter(Pred, L) -> [X || X <- L, Pred(X)].

      │ │ │ +in lists.erl:

      append(L)   ->  [X || L1 <- L, X <- L1].
      │ │ │ +map(Fun, L) -> [Fun(X) || X <- L].
      │ │ │ +filter(Pred, L) -> [X || X <- L, Pred(X)].

      │ │ │ │ │ │ │ │ │ │ │ │ Variable Bindings in List Comprehensions │ │ │

      │ │ │

      The scope rules for variables that occur in list comprehensions are as follows:

      • All variables that occur in a generator pattern are assumed to be "fresh" │ │ │ variables.
      • Any variables that are defined before the list comprehension, and that are │ │ │ used in filters, have the values they had before the list comprehension.
      • Variables cannot be exported from a list comprehension.

      As an example of these rules, suppose you want to write the function select, │ │ │ which selects certain elements from a list of tuples. Suppose you write │ │ │ select(X, L) -> [Y || {X, Y} <- L]. with the intention of extracting all │ │ │ tuples from L, where the first item is X.

      Compiling this gives the following diagnostic:

      ./FileName.erl:Line: Warning: variable 'X' shadowed in generate

      This diagnostic warns that the variable X in the pattern is not the same as │ │ │ -the variable X that occurs in the function head.

      Evaluating select gives the following result:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ -[1,2,3,7]

      This is not the wanted result. To achieve the desired effect, select must be │ │ │ -written as follows:

      select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

      The generator now contains unbound variables and the test has been moved into │ │ │ -the filter.

      This now works as expected:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ -[2,7]

      Also note that a variable in a generator pattern will shadow a variable with the │ │ │ -same name bound in a previous generator pattern. For example:

      > [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
      │ │ │ -[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

      A consequence of the rules for importing variables into a list comprehensions is │ │ │ +the variable X that occurs in the function head.

      Evaluating select gives the following result:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ +[1,2,3,7]

      This is not the wanted result. To achieve the desired effect, select must be │ │ │ +written as follows:

      select(X, L) ->  [Y || {X1, Y} <- L, X == X1].

      The generator now contains unbound variables and the test has been moved into │ │ │ +the filter.

      This now works as expected:

      > select(b,[{a,1},{b,2},{c,3},{b,7}]).
      │ │ │ +[2,7]

      Also note that a variable in a generator pattern will shadow a variable with the │ │ │ +same name bound in a previous generator pattern. For example:

      > [{X,Y} || X <- [1,2,3], X=Y <- [a,b,c]].
      │ │ │ +[{a,a},{b,b},{c,c},{a,a},{b,b},{c,c},{a,a},{b,b},{c,c}]

      A consequence of the rules for importing variables into a list comprehensions is │ │ │ that certain pattern matching operations must be moved into the filters and │ │ │ -cannot be written directly in the generators.

      To illustrate this, do not write as follows:

      f(...) ->
      │ │ │ +cannot be written directly in the generators.

      To illustrate this, do not write as follows:

      f(...) ->
      │ │ │      Y = ...
      │ │ │ -    [ Expression || PatternInvolving Y  <- Expr, ...]
      │ │ │ -    ...

      Instead, write as follows:

      f(...) ->
      │ │ │ +    [ Expression || PatternInvolving Y  <- Expr, ...]
      │ │ │ +    ...

      Instead, write as follows:

      f(...) ->
      │ │ │      Y = ...
      │ │ │ -    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
      │ │ │ +    [ Expression || PatternInvolving Y1  <- Expr, Y == Y1, ...]
      │ │ │      ...
      │ │ │ │ │ │ │ │ │
      │ │ │
      │ │ │ │ │ │ │ │ │ Creating a List │ │ │ │ │ │

      Lists can only be built starting from the end and attaching list elements at the │ │ │ beginning. If you use the ++ operator as follows, a new list is created that │ │ │ is a copy of the elements in List1, followed by List2:

      List1 ++ List2

      Looking at how lists:append/2 or ++ would be implemented in plain Erlang, │ │ │ -clearly the first list is copied:

      append([H|T], Tail) ->
      │ │ │ -    [H|append(T, Tail)];
      │ │ │ -append([], Tail) ->
      │ │ │ +clearly the first list is copied:

      append([H|T], Tail) ->
      │ │ │ +    [H|append(T, Tail)];
      │ │ │ +append([], Tail) ->
      │ │ │      Tail.

      When recursing and building a list, it is important to ensure that you attach │ │ │ the new elements to the beginning of the list. In this way, you will build one │ │ │ -list, not hundreds or thousands of copies of the growing result list.

      Let us first see how it is not to be done:

      DO NOT

      bad_fib(N) ->
      │ │ │ -    bad_fib(N, 0, 1, []).
      │ │ │ +list, not hundreds or thousands of copies of the growing result list.

      Let us first see how it is not to be done:

      DO NOT

      bad_fib(N) ->
      │ │ │ +    bad_fib(N, 0, 1, []).
      │ │ │  
      │ │ │ -bad_fib(0, _Current, _Next, Fibs) ->
      │ │ │ +bad_fib(0, _Current, _Next, Fibs) ->
      │ │ │      Fibs;
      │ │ │ -bad_fib(N, Current, Next, Fibs) ->
      │ │ │ -    bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

      Here more than one list is built. In each iteration step a new list is created │ │ │ +bad_fib(N, Current, Next, Fibs) -> │ │ │ + bad_fib(N - 1, Next, Current + Next, Fibs ++ [Current]).

      Here more than one list is built. In each iteration step a new list is created │ │ │ that is one element longer than the new previous list.

      To avoid copying the result in each iteration, build the list in reverse order │ │ │ -and reverse the list when you are done:

      DO

      tail_recursive_fib(N) ->
      │ │ │ -    tail_recursive_fib(N, 0, 1, []).
      │ │ │ +and reverse the list when you are done:

      DO

      tail_recursive_fib(N) ->
      │ │ │ +    tail_recursive_fib(N, 0, 1, []).
      │ │ │  
      │ │ │ -tail_recursive_fib(0, _Current, _Next, Fibs) ->
      │ │ │ -    lists:reverse(Fibs);
      │ │ │ -tail_recursive_fib(N, Current, Next, Fibs) ->
      │ │ │ -    tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

      │ │ │ +tail_recursive_fib(0, _Current, _Next, Fibs) -> │ │ │ + lists:reverse(Fibs); │ │ │ +tail_recursive_fib(N, Current, Next, Fibs) -> │ │ │ + tail_recursive_fib(N - 1, Next, Current + Next, [Current|Fibs]).

      │ │ │ │ │ │ │ │ │ │ │ │ List Comprehensions │ │ │

      │ │ │ -

      A list comprehension:

      [Expr(E) || E <- List]

      is basically translated to a local function:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ -    [Expr(E)|'lc^0'(Tail, Expr)];
      │ │ │ -'lc^0'([], _Expr) -> [].

      If the result of the list comprehension will obviously not be used, a list │ │ │ -will not be constructed. For example, in this code:

      [io:put_chars(E) || E <- List],
      │ │ │ +

      A list comprehension:

      [Expr(E) || E <- List]

      is basically translated to a local function:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ +    [Expr(E)|'lc^0'(Tail, Expr)];
      │ │ │ +'lc^0'([], _Expr) -> [].

      If the result of the list comprehension will obviously not be used, a list │ │ │ +will not be constructed. For example, in this code:

      [io:put_chars(E) || E <- List],
      │ │ │  ok.

      or in this code:

      case Var of
      │ │ │      ... ->
      │ │ │ -        [io:put_chars(E) || E <- List];
      │ │ │ +        [io:put_chars(E) || E <- List];
      │ │ │      ... ->
      │ │ │  end,
      │ │ │ -some_function(...),

      the value is not assigned to a variable, not passed to another function, and not │ │ │ +some_function(...),

      the value is not assigned to a variable, not passed to another function, and not │ │ │ returned. This means that there is no need to construct a list and the compiler │ │ │ -will simplify the code for the list comprehension to:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ -    Expr(E),
      │ │ │ -    'lc^0'(Tail, Expr);
      │ │ │ -'lc^0'([], _Expr) -> [].

      The compiler also understands that assigning to _ means that the value will │ │ │ -not be used. Therefore, the code in the following example will also be optimized:

      _ = [io:put_chars(E) || E <- List],
      │ │ │ +will simplify the code for the list comprehension to:

      'lc^0'([E|Tail], Expr) ->
      │ │ │ +    Expr(E),
      │ │ │ +    'lc^0'(Tail, Expr);
      │ │ │ +'lc^0'([], _Expr) -> [].

      The compiler also understands that assigning to _ means that the value will │ │ │ +not be used. Therefore, the code in the following example will also be optimized:

      _ = [io:put_chars(E) || E <- List],
      │ │ │  ok.

      │ │ │ │ │ │ │ │ │ │ │ │ Deep and Flat Lists │ │ │

      │ │ │

      lists:flatten/1 builds an entirely new list. It is therefore expensive, and │ │ │ even more expensive than the ++ operator (which copies its left argument, │ │ │ but not its right argument).

      In the following situations it is unnecessary to call lists:flatten/1:

      • When sending data to a port. Ports understand deep lists so there is no reason │ │ │ to flatten the list before sending it to the port.
      • When calling BIFs that accept deep lists, such as │ │ │ list_to_binary/1 or │ │ │ iolist_to_binary/1.
      • When you know that your list is only one level deep. Use lists:append/1 │ │ │ -instead.

      Examples:

      DO

      port_command(Port, DeepList)

      DO NOT

      port_command(Port, lists:flatten(DeepList))

      A common way to send a zero-terminated string to a port is the following:

      DO NOT

      TerminatedStr = String ++ [0],
      │ │ │ -port_command(Port, TerminatedStr)

      Instead:

      DO

      TerminatedStr = [String, 0],
      │ │ │ -port_command(Port, TerminatedStr)

      DO

      1> lists:append([[1], [2], [3]]).
      │ │ │ -[1,2,3]

      DO NOT

      1> lists:flatten([[1], [2], [3]]).
      │ │ │ -[1,2,3]

      │ │ │ +instead.

    Examples:

    DO

    port_command(Port, DeepList)

    DO NOT

    port_command(Port, lists:flatten(DeepList))

    A common way to send a zero-terminated string to a port is the following:

    DO NOT

    TerminatedStr = String ++ [0],
    │ │ │ +port_command(Port, TerminatedStr)

    Instead:

    DO

    TerminatedStr = [String, 0],
    │ │ │ +port_command(Port, TerminatedStr)

    DO

    1> lists:append([[1], [2], [3]]).
    │ │ │ +[1,2,3]

    DO NOT

    1> lists:flatten([[1], [2], [3]]).
    │ │ │ +[1,2,3]

    │ │ │ │ │ │ │ │ │ │ │ │ Recursive List Functions │ │ │

    │ │ │

    There are two basic ways to write a function that traverses a list and │ │ │ produces a new list.

    The first way is writing a body-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ -add_42_body([H|T]) ->
    │ │ │ -    [H + 42 | add_42_body(T)];
    │ │ │ -add_42_body([]) ->
    │ │ │ -    [].

    The second way is writing a tail-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ -add_42_tail(List) ->
    │ │ │ -    add_42_tail(List, []).
    │ │ │ -
    │ │ │ -add_42_tail([H|T], Acc) ->
    │ │ │ -    add_42_tail(T, [H + 42 | Acc]);
    │ │ │ -add_42_tail([], Acc) ->
    │ │ │ -    lists:reverse(Acc).

    In early version of Erlang the tail-recursive function would typically │ │ │ +add_42_body([H|T]) -> │ │ │ + [H + 42 | add_42_body(T)]; │ │ │ +add_42_body([]) -> │ │ │ + [].

    The second way is writing a tail-recursive function:

    %% Add 42 to each integer in the list.
    │ │ │ +add_42_tail(List) ->
    │ │ │ +    add_42_tail(List, []).
    │ │ │ +
    │ │ │ +add_42_tail([H|T], Acc) ->
    │ │ │ +    add_42_tail(T, [H + 42 | Acc]);
    │ │ │ +add_42_tail([], Acc) ->
    │ │ │ +    lists:reverse(Acc).

    In early version of Erlang the tail-recursive function would typically │ │ │ be more efficient. In modern versions of Erlang, there is usually not │ │ │ much difference in performance between a body-recursive list function and │ │ │ tail-recursive function that reverses the list at the end. Therefore, │ │ │ concentrate on writing beautiful code and forget about the performance │ │ │ of your list functions. In the time-critical parts of your code, │ │ │ measure before rewriting your code.

    For a thorough discussion about tail and body recursion, see │ │ │ Erlang's Tail Recursion is Not a Silver Bullet.

    Note

    This section is about list functions that construct lists. A tail-recursive │ │ │ function that does not construct a list runs in constant space, while the │ │ │ corresponding body-recursive function uses stack space proportional to the │ │ │ length of the list.

    For example, a function that sums a list of integers, is not to be written as │ │ │ -follows:

    DO NOT

    recursive_sum([H|T]) -> H+recursive_sum(T);
    │ │ │ -recursive_sum([])    -> 0.

    Instead:

    DO

    sum(L) -> sum(L, 0).
    │ │ │ +follows:

    DO NOT

    recursive_sum([H|T]) -> H+recursive_sum(T);
    │ │ │ +recursive_sum([])    -> 0.

    Instead:

    DO

    sum(L) -> sum(L, 0).
    │ │ │  
    │ │ │ -sum([H|T], Sum) -> sum(T, Sum + H);
    │ │ │ -sum([], Sum)    -> Sum.
    │ │ │ +
    sum([H|T], Sum) -> sum(T, Sum + H); │ │ │ +sum([], Sum) -> Sum.
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ File Inclusion │ │ │

    │ │ │ -

    A file can be included as follows:

    -include(File).
    │ │ │ --include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ +

    A file can be included as follows:

    -include(File).
    │ │ │ +-include_lib(File).

    File, a string, is to point out a file. The contents of this file are included │ │ │ as is, at the position of the directive.

    Include files are typically used for record and macro definitions that are │ │ │ shared by several modules. It is recommended to use the file name extension │ │ │ .hrl for include files.

    File can start with a path component $VAR, for some string VAR. If that is │ │ │ the case, the value of the environment variable VAR as returned by │ │ │ os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR) returns false, │ │ │ $VAR is left as is.

    If the filename File is absolute (possibly after variable substitution), the │ │ │ include file with that name is included. Otherwise, the specified file is │ │ │ searched for in the following directories, and in this order:

    1. The current working directory
    2. The directory where the module is being compiled
    3. The directories given by the include option

    For details, see erlc in ERTS and │ │ │ -compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ --include("incdir/my_records.hrl").
    │ │ │ --include("/home/user/proj/my_records.hrl").
    │ │ │ --include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ +compile in Compiler.

    Examples:

    -include("my_records.hrl").
    │ │ │ +-include("incdir/my_records.hrl").
    │ │ │ +-include("/home/user/proj/my_records.hrl").
    │ │ │ +-include("$PROJ_ROOT/my_records.hrl").

    include_lib is similar to include, but is not to point out an absolute file. │ │ │ Instead, the first path component (possibly after variable substitution) is │ │ │ -assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ +assumed to be the name of an application.

    Example:

    -include_lib("kernel/include/file.hrl").

    The code server uses code:lib_dir(kernel) to find the directory of the current │ │ │ (latest) version of Kernel, and then the subdirectory include is searched for │ │ │ the file file.hrl.

    │ │ │ │ │ │ │ │ │ │ │ │ Defining and Using Macros │ │ │

    │ │ │ -

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ --define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ +

    A macro is defined as follows:

    -define(Const, Replacement).
    │ │ │ +-define(Func(Var1,...,VarN), Replacement).

    A macro definition can be placed anywhere among the attributes and function │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ macro.

    If a macro is used in several modules, it is recommended that the macro │ │ │ definition is placed in an include file.

    A macro is used as follows:

    ?Const
    │ │ │  ?Func(Arg1,...,ArgN)

    Macros are expanded during compilation. A simple macro ?Const is replaced with │ │ │ -Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │ +Replacement.

    Example:

    -define(TIMEOUT, 200).
    │ │ │  ...
    │ │ │ -call(Request) ->
    │ │ │ -    server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ -    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ +call(Request) -> │ │ │ + server:call(refserver, Request, ?TIMEOUT).

    This is expanded to:

    call(Request) ->
    │ │ │ +    server:call(refserver, Request, 200).

    A macro ?Func(Arg1,...,ArgN) is replaced with Replacement, where all │ │ │ occurrences of a variable Var from the macro definition are replaced with the │ │ │ -corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │ +corresponding argument Arg.

    Example:

    -define(MACRO1(X, Y), {a, X, b, Y}).
    │ │ │  ...
    │ │ │ -bar(X) ->
    │ │ │ -    ?MACRO1(a, b),
    │ │ │ -    ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ -    {a,a,b,b},
    │ │ │ -    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ +bar(X) -> │ │ │ + ?MACRO1(a, b), │ │ │ + ?MACRO1(X, 123)

    This is expanded to:

    bar(X) ->
    │ │ │ +    {a,a,b,b},
    │ │ │ +    {a,X,b,123}.

    It is good programming practice, but not mandatory, to ensure that a macro │ │ │ definition is a valid Erlang syntactic form.

    To view the result of macro expansion, a module can be compiled with the 'P' │ │ │ option. compile:file(File, ['P']). This produces a listing of the parsed code │ │ │ after preprocessing and parse transforms, in the file File.P.

    │ │ │ │ │ │ │ │ │ │ │ │ Predefined Macros │ │ │ @@ -185,29 +185,29 @@ │ │ │ │ │ │ │ │ │ Macros Overloading │ │ │

    │ │ │

    It is possible to overload macros, except for predefined macros. An overloaded │ │ │ macro has more than one definition, each with a different number of arguments.

    Change

    Support for overloading of macros was added in Erlang 5.7.5/OTP R13B04.

    A macro ?Func(Arg1,...,ArgN) with a (possibly empty) list of arguments results │ │ │ in an error message if there is at least one definition of Func with │ │ │ -arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ --define(F1(A), A).
    │ │ │ --define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │ +arguments, but none with N arguments.

    Assuming these definitions:

    -define(F0(), c).
    │ │ │ +-define(F1(A), A).
    │ │ │ +-define(C, m:f).

    the following does not work:

    f0() ->
    │ │ │      ?F0. % No, an empty list of arguments expected.
    │ │ │  
    │ │ │ -f1(A) ->
    │ │ │ -    ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ -    ?C().

    is expanded to

    f() ->
    │ │ │ -    m:f().

    │ │ │ +f1(A) -> │ │ │ + ?F1(A, A). % No, exactly one argument expected.

    On the other hand,

    f() ->
    │ │ │ +    ?C().

    is expanded to

    f() ->
    │ │ │ +    m:f().

    │ │ │ │ │ │ │ │ │ │ │ │ Removing a macro definition │ │ │

    │ │ │ -

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ +

    A definition of macro can be removed as follows:

    -undef(Macro).

    │ │ │ │ │ │ │ │ │ │ │ │ Conditional Compilation │ │ │

    │ │ │

    The following macro directives support conditional compilation:

    • -ifdef(Macro). - Evaluate the following lines only if Macro is │ │ │ defined.

    • -ifndef(Macro). - Evaluate the following lines only if Macro is not │ │ │ @@ -219,43 +219,43 @@ │ │ │ true, and the Condition evaluates to true, the lines following the elif │ │ │ are evaluated instead.

    • -endif. - Specifies the end of a series of control flow directives.

    Note

    Macro directives cannot be used inside functions.

    Syntactically, the Condition in if and elif must be a │ │ │ guard expression. Other constructs (such as │ │ │ a case expression) result in a compilation error.

    As opposed to the standard guard expressions, an expression in an if and │ │ │ elif also supports calling the psuedo-function defined(Name), which tests │ │ │ whether the Name argument is the name of a previously defined macro. │ │ │ defined(Name) evaluates to true if the macro is defined and false │ │ │ -otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │ +otherwise. An attempt to call other functions results in a compilation error.

    Example:

    -module(m).
    │ │ │  ...
    │ │ │  
    │ │ │ --ifdef(debug).
    │ │ │ --define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │ +-ifdef(debug).
    │ │ │ +-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
    │ │ │  -else.
    │ │ │ --define(LOG(X), true).
    │ │ │ +-define(LOG(X), true).
    │ │ │  -endif.
    │ │ │  
    │ │ │  ...

    When trace output is desired, debug is to be defined when the module m is │ │ │ compiled:

    % erlc -Ddebug m.erl
    │ │ │  
    │ │ │  or
    │ │ │  
    │ │ │ -1> c(m, {d, debug}).
    │ │ │ -{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ -with some simple trace output.

    Example:

    -module(m)
    │ │ │ +1> c(m, {d, debug}).
    │ │ │ +{ok,m}

    ?LOG(Arg) is then expanded to a call to io:format/2 and provide the user │ │ │ +with some simple trace output.

    Example:

    -module(m)
    │ │ │  ...
    │ │ │ --if(?OTP_RELEASE >= 25).
    │ │ │ +-if(?OTP_RELEASE >= 25).
    │ │ │  %% Code that will work in OTP 25 or higher
    │ │ │ --elif(?OTP_RELEASE >= 26).
    │ │ │ +-elif(?OTP_RELEASE >= 26).
    │ │ │  %% Code that will work in OTP 26 or higher
    │ │ │  -else.
    │ │ │  %% Code that will work in OTP 24 or lower.
    │ │ │  -endif.
    │ │ │  ...

    This code uses the OTP_RELEASE macro to conditionally select code depending on │ │ │ -release.

    Example:

    -module(m)
    │ │ │ +release.

    Example:

    -module(m)
    │ │ │  ...
    │ │ │ --if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │ +-if(?OTP_RELEASE >= 26 andalso defined(debug)).
    │ │ │  %% Debugging code that requires OTP 26 or later.
    │ │ │  -else.
    │ │ │  %% Non-debug code that works in any release.
    │ │ │  -endif.
    │ │ │  ...

    This code uses the OTP_RELEASE macro and defined(debug) to compile debug │ │ │ code only for OTP 26 or later.

    │ │ │ │ │ │ @@ -270,44 +270,44 @@ │ │ │ used. In practice this means it should appear before any -export(..) or record │ │ │ definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ -error() and -warning() directives │ │ │

    │ │ │ -

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ --export([version/0]).
    │ │ │ +

    The directive -error(Term) causes a compilation error.

    Example:

    -module(t).
    │ │ │ +-export([version/0]).
    │ │ │  
    │ │ │ --ifdef(VERSION).
    │ │ │ -version() -> ?VERSION.
    │ │ │ +-ifdef(VERSION).
    │ │ │ +version() -> ?VERSION.
    │ │ │  -else.
    │ │ │ --error("Macro VERSION must be defined.").
    │ │ │ -version() -> "".
    │ │ │ +-error("Macro VERSION must be defined.").
    │ │ │ +version() -> "".
    │ │ │  -endif.

    The error message will look like this:

    % erlc t.erl
    │ │ │ -t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ --export([version/0]).
    │ │ │ +t.erl:7: -error("Macro VERSION must be defined.").

    The directive -warning(Term) causes a compilation warning.

    Example:

    -module(t).
    │ │ │ +-export([version/0]).
    │ │ │  
    │ │ │ --ifndef(VERSION).
    │ │ │ --warning("Macro VERSION not defined -- using default version.").
    │ │ │ --define(VERSION, "0").
    │ │ │ +-ifndef(VERSION).
    │ │ │ +-warning("Macro VERSION not defined -- using default version.").
    │ │ │ +-define(VERSION, "0").
    │ │ │  -endif.
    │ │ │ -version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │ +version() -> ?VERSION.

    The warning message will look like this:

    % erlc t.erl
    │ │ │  t.erl:5: Warning: -warning("Macro VERSION not defined -- using default version.").

    Change

    The -error() and -warning() directives were added in Erlang/OTP 19.

    │ │ │ │ │ │ │ │ │ │ │ │ Stringifying Macro Arguments │ │ │

    │ │ │

    The construction ??Arg, where Arg is a macro argument, is expanded to a │ │ │ string containing the tokens of the argument. This is similar to the #arg │ │ │ -stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │ +stringifying construction in C.

    Example:

    -define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).
    │ │ │  
    │ │ │ -?TESTCALL(myfunction(1,2)),
    │ │ │ -?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ -io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │ +
    ?TESTCALL(myfunction(1,2)), │ │ │ +?TESTCALL(you:function(2,1)).

    results in

    io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",myfunction(1,2)]),
    │ │ │ +io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

    That is, a trace output, with both the function called and the resulting value.

    │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │
  • maps:get/3 function. If there are default │ │ │ values, sharing of keys between different instances of the map will be less │ │ │ effective, and it is not possible to match multiple elements having default │ │ │ values in one go.

  • To avoid having to deal with a map that may lack some keys, maps:merge/2 can │ │ │ -efficiently add multiple default values. For example:

    DefaultMap = #{shoe_size => 42, editor => emacs},
    │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)
  • │ │ │ +efficiently add multiple default values. For example:

    DefaultMap = #{shoe_size => 42, editor => emacs},
    │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Dictionaries │ │ │

    │ │ │

    Using a map as a dictionary implies the following usage pattern:

    • Keys are usually variables not known at compile-time.
    • There can be any number of elements in the map.
    • Usually, no more than one element is looked up or updated at once.

    Given that usage pattern, the difference in performance between using the map │ │ │ syntax and the maps module is usually small. Therefore, which one to use is │ │ │ @@ -167,18 +167,18 @@ │ │ │ choice.

    │ │ │ │ │ │ │ │ │ │ │ │ Using Maps as Sets │ │ │

    │ │ │

    Starting in OTP 24, the sets module has an option to represent sets as maps. │ │ │ -Examples:

    1> sets:new([{version,2}]).
    │ │ │ -#{}
    │ │ │ -2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ -#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ +Examples:

    1> sets:new([{version,2}]).
    │ │ │ +#{}
    │ │ │ +2> sets:from_list([x,y,z], [{version,2}]).
    │ │ │ +#{x => [],y => [],z => []}

    sets backed by maps is generally the most efficient set representation, with a │ │ │ few possible exceptions:

    • ordsets:intersection/2 can be more efficient than sets:intersection/2. If │ │ │ the intersection operation is frequently used and operations that operate on a │ │ │ single element in a set (such as is_element/2) are avoided, ordsets can │ │ │ be a better choice than sets.
    • If the intersection operation is frequently used and operations that operate │ │ │ on a single element in a set (such as is_element/2) must also be efficient, │ │ │ gb_sets can potentially be a better choice than sets.
    • If the elements of the set are integers in a fairly compact range, the set can │ │ │ be represented as an integer where each bit represents an element in the set. │ │ │ @@ -203,18 +203,18 @@ │ │ │ for the runtime system).

    • N - The number of elements in the map.

    • Keys - A tuple with keys of the map: {Key1,...,KeyN}. The keys are │ │ │ sorted.

    • Value1 - The value corresponding to the first key in the key tuple.

    • ValueN - The value corresponding to the last key in the key tuple.

    As an example, let us look at how the map #{a => foo, z => bar} is │ │ │ represented:

    01234
    FLATMAP2{a,z}foobar

    Table: #{a => foo, z => bar}

    Let us update the map: M#{q => baz}. The map now looks like this:

    012345
    FLATMAP3{a,q,z}foobazbar

    Table: #{a => foo, q => baz, z => bar}

    Finally, change the value of one element: M#{z := bird}. The map now looks │ │ │ like this:

    012345
    FLATMAP3{a,q,z}foobazbird

    Table: #{a => foo, q => baz, z => bird}

    When the value for an existing key is updated, the key tuple is not updated, │ │ │ allowing the key tuple to be shared with other instances of the map that have │ │ │ the same keys. In fact, the key tuple can be shared between all maps with the │ │ │ same keys with some care. To arrange that, define a function that returns a map. │ │ │ -For example:

    new() ->
    │ │ │ -    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ +For example:

    new() ->
    │ │ │ +    #{a => default, b => default, c => default}.

    Defined like this, the key tuple {a,b,c} will be a global literal. To ensure │ │ │ that the key tuple is shared when creating an instance of the map, always call │ │ │ -new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ +new() and modify the returned map:

        (SOME_MODULE:new())#{a := 42}.

    Using the map syntax with small maps is particularly efficient. As long as the │ │ │ keys are known at compile-time, the map is updated in one go, making the time to │ │ │ update a map essentially constant regardless of the number of keys updated. The │ │ │ same goes for matching. (When the keys are variables, one or more of the keys │ │ │ could be identical, so the operations need to be performed sequentially from │ │ │ left to right.)

    The memory size for a small map is the size of all keys and values plus 5 words. │ │ │ See Memory for more information about memory sizes.

    │ │ │ │ │ │ @@ -241,21 +241,21 @@ │ │ │ │ │ │ │ │ │ │ │ │ Using the Map Syntax │ │ │

    │ │ │

    Using the map syntax is usually slightly more efficient than using the │ │ │ corresponding function in the maps module.

    The gain in efficiency for the map syntax is more noticeable for the following │ │ │ -operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ -Map3 = maps:update(y, Y, Map2),
    │ │ │ -Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ -right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ -left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ -Map3 = Map2#{Key2 := Y},
    │ │ │ -Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ +operations that can only be achieved using the map syntax:

    • Matching multiple literal keys
    • Updating multiple literal keys
    • Adding multiple literal keys to a map

    For example:

    DO

    Map = Map1#{x := X, y := Y, z := Z}

    DO NOT

    Map2 = maps:update(x, X, Map1),
    │ │ │ +Map3 = maps:update(y, Y, Map2),
    │ │ │ +Map = maps:update(z, Z, Map3)

    If the map is a small map, the first example runs roughly three times as fast.

    Note that for variable keys, the elements are updated sequentially from left to │ │ │ +right. For example, given the following update with variable keys:

    Map = Map1#{Key1 := X, Key2 := Y, Key3 := Z}

    the compiler rewrites it like this to ensure that the updates are applied from │ │ │ +left to right:

    Map2 = Map1#{Key1 := X},
    │ │ │ +Map3 = Map2#{Key2 := Y},
    │ │ │ +Map = Map3#{Key3 := Z}

    If a key is known to exist in a map, using the := operator is slightly more │ │ │ efficient than using the => operator for a small map.

    │ │ │ │ │ │ │ │ │ │ │ │ Using the Functions in the maps Module │ │ │

    │ │ │

    Here follows some notes about most of the functions in the maps module. For │ │ │ @@ -306,23 +306,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ maps:get/3 │ │ │ │ │ │

    As an optimization, the compiler will rewrite a call to maps:get/3 to Erlang │ │ │ code similar to the following:

    Result = case Map of
    │ │ │ -             #{Key := Value} -> Value;
    │ │ │ -             #{} -> Default
    │ │ │ +             #{Key := Value} -> Value;
    │ │ │ +             #{} -> Default
    │ │ │           end

    This is reasonably efficient, but if a small map is used as an alternative to │ │ │ using a record it is often better not to rely on default values as it prevents │ │ │ sharing of keys, which may in the end use more memory than what you save from │ │ │ not storing default values in the map.

    If default values are nevertheless required, instead of calling maps:get/3 │ │ │ multiple times, consider putting the default values in a map and merging that │ │ │ -map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ -MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ +map with the other map:

    DefaultMap = #{Key1 => Value2, Key2 => Value2, ..., KeyN => ValueN},
    │ │ │ +MapWithDefaultsApplied = maps:merge(DefaultMap, OtherMap)

    This helps share keys between the default map and the one you applied defaults │ │ │ to, as long as the default map contains all the keys that will ever be used │ │ │ and not just the ones with default values. Whether this is faster than calling │ │ │ maps:get/3 multiple times depends on the size of the map and the number of │ │ │ default values.

    Change

    Before OTP 26.0 maps:get/3 was implemented by calling the function instead │ │ │ of rewriting it as an Erlang expression. It is now slightly faster but can no │ │ │ longer be traced.

    │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/modules.html │ │ │ @@ -118,20 +118,20 @@ │ │ │

    │ │ │ │ │ │ │ │ │ │ │ │ Module Syntax │ │ │

    │ │ │

    Erlang code is divided into modules. A module consists of a sequence of │ │ │ -attributes and function declarations, each terminated by a period (.).

    Example:

    -module(m).          % module attribute
    │ │ │ --export([fact/1]).   % module attribute
    │ │ │ +attributes and function declarations, each terminated by a period (.).

    Example:

    -module(m).          % module attribute
    │ │ │ +-export([fact/1]).   % module attribute
    │ │ │  
    │ │ │ -fact(N) when N>0 ->  % beginning of function declaration
    │ │ │ -    N * fact(N-1);   %  |
    │ │ │ -fact(0) ->           %  |
    │ │ │ +fact(N) when N>0 ->  % beginning of function declaration
    │ │ │ +    N * fact(N-1);   %  |
    │ │ │ +fact(0) ->           %  |
    │ │ │      1.               % end of function declaration

    For a description of function declarations, see │ │ │ Function Declaration Syntax.

    │ │ │ │ │ │ │ │ │ │ │ │ Module Attributes │ │ │

    │ │ │ @@ -176,71 +176,71 @@ │ │ │ meaning.

    │ │ │ │ │ │ │ │ │ │ │ │ Behaviour Module Attribute │ │ │

    │ │ │

    It is possible to specify that the module is the callback module for a │ │ │ -behaviour:

    -behaviour(Behaviour).

    The atom Behaviour gives the name of the behaviour, which can be a │ │ │ +behaviour:

    -behaviour(Behaviour).

    The atom Behaviour gives the name of the behaviour, which can be a │ │ │ user-defined behaviour or one of the following OTP standard behaviours:

    • gen_server
    • gen_statem
    • gen_event
    • supervisor

    The spelling behavior is also accepted.

    The callback functions of the module can be specified either directly by the │ │ │ -exported function behaviour_info/1:

    behaviour_info(callbacks) -> Callbacks.

    or by a -callback attribute for each callback function:

    -callback Name(Arguments) -> Result.

    Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ +exported function behaviour_info/1:

    behaviour_info(callbacks) -> Callbacks.

    or by a -callback attribute for each callback function:

    -callback Name(Arguments) -> Result.

    Here, Arguments is a list of zero or more arguments. The -callback attribute │ │ │ is to be preferred since the extra type information can be used by tools to │ │ │ produce documentation or find discrepancies.

    Read more about behaviours and callback modules in │ │ │ OTP Design Principles.

    │ │ │ │ │ │ │ │ │ │ │ │ Record Definitions │ │ │

    │ │ │ -

    The same syntax as for module attributes is used for record definitions:

    -record(Record, Fields).

    Record definitions are allowed anywhere in a module, also among the function │ │ │ +

    The same syntax as for module attributes is used for record definitions:

    -record(Record, Fields).

    Record definitions are allowed anywhere in a module, also among the function │ │ │ declarations. Read more in Records.

    │ │ │ │ │ │ │ │ │ │ │ │ Preprocessor │ │ │

    │ │ │

    The same syntax as for module attributes is used by the preprocessor, which │ │ │ -supports file inclusion, macros, and conditional compilation:

    -include("SomeFile.hrl").
    │ │ │ --define(Macro, Replacement).

    Read more in Preprocessor.

    │ │ │ +supports file inclusion, macros, and conditional compilation:

    -include("SomeFile.hrl").
    │ │ │ +-define(Macro, Replacement).

    Read more in Preprocessor.

    │ │ │ │ │ │ │ │ │ │ │ │ Setting File and Line │ │ │

    │ │ │

    The same syntax as for module attributes is used for changing the pre-defined │ │ │ -macros ?FILE and ?LINE:

    -file(File, Line).

    This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ +macros ?FILE and ?LINE:

    -file(File, Line).

    This attribute is used by tools, such as Yecc, to inform the compiler that the │ │ │ source program is generated by another tool. It also indicates the │ │ │ correspondence of source files to lines of the original user-written file, from │ │ │ which the source program is produced.

    │ │ │ │ │ │ │ │ │ │ │ │ Types and function specifications │ │ │

    │ │ │

    A similar syntax as for module attributes is used for specifying types and │ │ │ -function specifications:

    -type my_type() :: atom() | integer().
    │ │ │ --spec my_function(integer()) -> integer().

    Read more in Types and Function specifications.

    The description is based on │ │ │ +function specifications:

    -type my_type() :: atom() | integer().
    │ │ │ +-spec my_function(integer()) -> integer().

    Read more in Types and Function specifications.

    The description is based on │ │ │ EEP8 - Types and function specifications, │ │ │ which is not to be further updated.

    │ │ │ │ │ │ │ │ │ │ │ │ Documentation attributes │ │ │

    │ │ │

    The module attribute -doc(Documentation) is used to provide user documentation │ │ │ -for a function/type/callback:

    -doc("Example documentation").
    │ │ │ -example() -> ok.

    The attribute should be placed just before the entity it documents.The │ │ │ +for a function/type/callback:

    -doc("Example documentation").
    │ │ │ +example() -> ok.

    The attribute should be placed just before the entity it documents.The │ │ │ parenthesis are optional around Documentation. The allowed values for │ │ │ Documentation are:

    • literal string or │ │ │ utf-8 encoded binary string - The string │ │ │ documenting the entity. Any literal string is allowed, so both │ │ │ triple quoted strings and │ │ │ sigils that translate to literal strings can be used. │ │ │ -The following examples are equivalent:

      -doc("Example \"docs\"").
      │ │ │ --doc(<<"Example \"docs\""/utf8>>).
      │ │ │ +The following examples are equivalent:

      -doc("Example \"docs\"").
      │ │ │ +-doc(<<"Example \"docs\""/utf8>>).
      │ │ │  -doc ~S/Example "docs"/.
      │ │ │  -doc """
      │ │ │     Example "docs"
      │ │ │     """
      │ │ │  -doc ~B|Example "docs"|.

      For clarity it is recommended to use either normal "strings" or triple │ │ │ quoted strings for documentation attributes.

    • {file, file:name/0 } - Read the contents of filename and use │ │ │ that as the documentation string.

    • false - Set the current entity as hidden, that is, it should not be │ │ │ @@ -253,15 +253,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ The feature directive │ │ │

    │ │ │

    While not a module attribute, but rather a directive (since it might affect │ │ │ syntax), there is the -feature(..) directive used for enabling and disabling │ │ │ -features.

    The syntax is similar to that of an attribute, but has two arguments:

    -feature(FeatureName, enable | disable).

    Note that the feature directive can only appear │ │ │ +features.

    The syntax is similar to that of an attribute, but has two arguments:

    -feature(FeatureName, enable | disable).

    Note that the feature directive can only appear │ │ │ in a prefix of the module.

    │ │ │ │ │ │ │ │ │ │ │ │ Comments │ │ │

    │ │ │

    Comments can be placed anywhere in a module except within strings and │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/nif.html │ │ │ @@ -133,26 +133,26 @@ │ │ │ Erlang Program │ │ │ │ │ │

    Even if all functions of a module are NIFs, an Erlang module is still needed for │ │ │ two reasons:

    • The NIF library must be explicitly loaded by Erlang code in the same module.
    • All NIFs of a module must have an Erlang implementation as well.

    Normally these are minimal stub implementations that throw an exception. But │ │ │ they can also be used as fallback implementations for functions that do not have │ │ │ native implementations on some architectures.

    NIF libraries are loaded by calling erlang:load_nif/2, with the name of the │ │ │ shared library as argument. The second argument can be any term that will be │ │ │ -passed on to the library and used for initialization:

    -module(complex6).
    │ │ │ --export([foo/1, bar/1]).
    │ │ │ --nifs([foo/1, bar/1]).
    │ │ │ --on_load(init/0).
    │ │ │ -
    │ │ │ -init() ->
    │ │ │ -    ok = erlang:load_nif("./complex6_nif", 0).
    │ │ │ -
    │ │ │ -foo(_X) ->
    │ │ │ -    erlang:nif_error(nif_library_not_loaded).
    │ │ │ -bar(_Y) ->
    │ │ │ -    erlang:nif_error(nif_library_not_loaded).

    Here, the directive on_load is used to get function init to be automatically │ │ │ +passed on to the library and used for initialization:

    -module(complex6).
    │ │ │ +-export([foo/1, bar/1]).
    │ │ │ +-nifs([foo/1, bar/1]).
    │ │ │ +-on_load(init/0).
    │ │ │ +
    │ │ │ +init() ->
    │ │ │ +    ok = erlang:load_nif("./complex6_nif", 0).
    │ │ │ +
    │ │ │ +foo(_X) ->
    │ │ │ +    erlang:nif_error(nif_library_not_loaded).
    │ │ │ +bar(_Y) ->
    │ │ │ +    erlang:nif_error(nif_library_not_loaded).

    Here, the directive on_load is used to get function init to be automatically │ │ │ called when the module is loaded. If init returns anything other than ok, │ │ │ such when the loading of the NIF library fails in this example, the module is │ │ │ unloaded and calls to functions within it, fail.

    Loading the NIF library overrides the stub implementations and cause calls to │ │ │ foo and bar to be dispatched to the NIF implementations instead.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -209,23 +209,23 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running the Example │ │ │

    │ │ │

    Step 1. Compile the C code:

    unix> gcc -o complex6_nif.so -fpic -shared complex.c complex6_nif.c
    │ │ │  windows> cl -LD -MD -Fe complex6_nif.dll complex.c complex6_nif.c

    Step 2: Start Erlang and compile the Erlang code:

    > erl
    │ │ │ -Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
    │ │ │ +Erlang R13B04 (erts-5.7.5) [64-bit] [smp:4:4] [rq:4] [async-threads:0] [kernel-poll:false]
    │ │ │  
    │ │ │ -Eshell V5.7.5  (abort with ^G)
    │ │ │ -1> c(complex6).
    │ │ │ -{ok,complex6}

    Step 3: Run the example:

    3> complex6:foo(3).
    │ │ │ +Eshell V5.7.5  (abort with ^G)
    │ │ │ +1> c(complex6).
    │ │ │ +{ok,complex6}

    Step 3: Run the example:

    3> complex6:foo(3).
    │ │ │  4
    │ │ │ -4> complex6:bar(5).
    │ │ │ +4> complex6:bar(5).
    │ │ │  10
    │ │ │ -5> complex6:foo("not an integer").
    │ │ │ +5> complex6:foo("not an integer").
    │ │ │  ** exception error: bad argument
    │ │ │       in function  complex6:foo/1
    │ │ │          called as comlpex6:foo("not an integer")
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/opaques.html │ │ │ @@ -122,24 +122,24 @@ │ │ │ Opaque Type Aliases │ │ │ │ │ │

    The main use case for opacity in Erlang is to hide the implementation of a data │ │ │ type, enabling evolving the API while minimizing the risk of breaking consumers. │ │ │ The runtime does not check opacity. Dialyzer provides some opacity-checking, but │ │ │ the rest is up to convention.

    This document explains what Erlang opacity is (and the trade-offs involved) via │ │ │ the example of the sets:set() data type. This type was │ │ │ -defined in the sets module like this:

    -opaque set(Element) :: #set{segs :: segs(Element)}.

    OTP 24 changed the definition to the following in │ │ │ -this commit.

    -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

    And this change was safer and more backwards-compatible than if the type had │ │ │ +defined in the sets module like this:

    -opaque set(Element) :: #set{segs :: segs(Element)}.

    OTP 24 changed the definition to the following in │ │ │ +this commit.

    -opaque set(Element) :: #set{segs :: segs(Element)} | #{Element => ?VALUE}.

    And this change was safer and more backwards-compatible than if the type had │ │ │ been defined with -type instead of -opaque. Here is why: when a module │ │ │ defines an -opaque, the contract is that only the defining module should rely │ │ │ on the definition of the type: no other modules should rely on the definition.

    This means that code that pattern-matched on set as a record/tuple technically │ │ │ broke the contract, and opted in to being potentially broken when the definition │ │ │ of set() changed. Before OTP 24, this code printed ok. In OTP 24 it may │ │ │ -error:

    case sets:new() of
    │ │ │ -    Set when is_tuple(Set) ->
    │ │ │ -        io:format("ok")
    │ │ │ +error:

    case sets:new() of
    │ │ │ +    Set when is_tuple(Set) ->
    │ │ │ +        io:format("ok")
    │ │ │  end.

    When working with an opaque defined in another module, here are some │ │ │ recommendations:

    • Don't examine the underlying type using pattern-matching, guards, or functions │ │ │ that reveal the type, such as tuple_size/1 .
    • Instead, use functions provided by the module for working with the type. For │ │ │ example, sets module provides sets:new/0, sets:add_element/2, │ │ │ sets:is_element/2, and so on.
    • sets:set(a) is a subtype of sets:set(a | b) and not the │ │ │ other way around. Generally, you can rely on the property that the_opaque(T) │ │ │ is a subtype of the_opaque(U) when T is a subtype of U.

    When defining your own opaques, here are some recommendations:

    • Since consumers are expected to not rely on the definition of the opaque type, │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/otp-patch-apply.html │ │ │ @@ -201,15 +201,15 @@ │ │ │ │ │ │ Sanity check │ │ │ │ │ │

      The application dependencies can be checked using the Erlang shell. │ │ │ Application dependencies are verified among installed applications by │ │ │ otp_patch_apply, but these are not necessarily those actually loaded. │ │ │ By calling system_information:sanity_check() one can validate │ │ │ -dependencies among applications actually loaded.

      1> system_information:sanity_check().
      │ │ │ +dependencies among applications actually loaded.

      1> system_information:sanity_check().
      │ │ │  ok

      Please take a look at the reference of sanity_check() for more │ │ │ information.

      │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/patterns.html │ │ │ @@ -128,18 +128,18 @@ │ │ │ succeeds, any unbound variables in the pattern become bound. If the matching │ │ │ fails, an exception is raised.

    Examples:

    1> X.
    │ │ │  ** 1:1: variable 'X' is unbound **
    │ │ │  2> X = 2.
    │ │ │  2
    │ │ │  3> X + 1.
    │ │ │  3
    │ │ │ -4> {X, Y} = {1, 2}.
    │ │ │ +4> {X, Y} = {1, 2}.
    │ │ │  ** exception error: no match of right hand side value {1,2}
    │ │ │ -5> {X, Y} = {2, 3}.
    │ │ │ -{2,3}
    │ │ │ +5> {X, Y} = {2, 3}.
    │ │ │ +{2,3}
    │ │ │  6> Y.
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/prog_ex_records.html │ │ │ @@ -122,105 +122,105 @@ │ │ │ Records and Tuples │ │ │ │ │ │

    The main advantage of using records rather than tuples is that fields in a │ │ │ record are accessed by name, whereas fields in a tuple are accessed by position. │ │ │ To illustrate these differences, suppose that you want to represent a person │ │ │ with the tuple {Name, Address, Phone}.

    To write functions that manipulate this data, remember the following:

    • The Name field is the first element of the tuple.
    • The Address field is the second element.
    • The Phone field is the third element.

    For example, to extract data from a variable P that contains such a tuple, you │ │ │ can write the following code and then use pattern matching to extract the │ │ │ -relevant fields:

    Name = element(1, P),
    │ │ │ -Address = element(2, P),
    │ │ │ +relevant fields:

    Name = element(1, P),
    │ │ │ +Address = element(2, P),
    │ │ │  ...

    Such code is difficult to read and understand, and errors occur if the numbering │ │ │ of the elements in the tuple is wrong. If the data representation of the fields │ │ │ is changed, by re-ordering, adding, or removing fields, all references to the │ │ │ person tuple must be checked and possibly modified.

    Records allow references to the fields by name, instead of by position. In the │ │ │ -following example, a record instead of a tuple is used to store the data:

    -record(person, {name, phone, address}).

    This enables references to the fields of the record by name. For example, if P │ │ │ +following example, a record instead of a tuple is used to store the data:

    -record(person, {name, phone, address}).

    This enables references to the fields of the record by name. For example, if P │ │ │ is a variable whose value is a person record, the following code access the │ │ │ name and address fields of the records:

    Name = P#person.name,
    │ │ │  Address = P#person.address,
    │ │ │ -...

    Internally, records are represented using tagged tuples:

    {person, Name, Phone, Address}

    │ │ │ +...

    Internally, records are represented using tagged tuples:

    {person, Name, Phone, Address}

    │ │ │ │ │ │ │ │ │ │ │ │ Defining a Record │ │ │

    │ │ │

    This following definition of a person is used in several examples in this │ │ │ section. Three fields are included, name, phone, and address. The default │ │ │ values for name and phone is "" and [], respectively. The default value for │ │ │ address is the atom undefined, since no default value is supplied for this │ │ │ -field:

    -record(person, {name = "", phone = [], address}).

    The record must be defined in the shell to enable use of the record syntax in │ │ │ -the examples:

    > rd(person, {name = "", phone = [], address}).
    │ │ │ +field:

    -record(person, {name = "", phone = [], address}).

    The record must be defined in the shell to enable use of the record syntax in │ │ │ +the examples:

    > rd(person, {name = "", phone = [], address}).
    │ │ │  person

    This is because record definitions are only available at compile time, not at │ │ │ runtime. For details on records in the shell, see the shell manual page in │ │ │ STDLIB.

    │ │ │ │ │ │ │ │ │ │ │ │ Creating a Record │ │ │

    │ │ │ -

    A new person record is created as follows:

    > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
    │ │ │ -#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

    As the address field was omitted, its default value is used.

    From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ -special field _. _ means "all fields not explicitly specified".

    Example:

    > #person{name = "Jakob", _ = '_'}.
    │ │ │ -#person{name = "Jakob",phone = '_',address = '_'}

    It is primarily intended to be used in ets:match/2 and │ │ │ +

    A new person record is created as follows:

    > #person{phone=[0,8,2,3,4,3,1,2], name="Robert"}.
    │ │ │ +#person{name = "Robert",phone = [0,8,2,3,4,3,1,2],address = undefined}

    As the address field was omitted, its default value is used.

    From Erlang 5.1/OTP R8B, a value to all fields in a record can be set with the │ │ │ +special field _. _ means "all fields not explicitly specified".

    Example:

    > #person{name = "Jakob", _ = '_'}.
    │ │ │ +#person{name = "Jakob",phone = '_',address = '_'}

    It is primarily intended to be used in ets:match/2 and │ │ │ mnesia:match_object/3, to set record fields to the atom '_'. (This is a │ │ │ wildcard in ets:match/2.)

    │ │ │ │ │ │ │ │ │ │ │ │ Accessing a Record Field │ │ │

    │ │ │ -

    The following example shows how to access a record field:

    > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
    │ │ │ -#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
    │ │ │ +

    The following example shows how to access a record field:

    > P = #person{name = "Joe", phone = [0,8,2,3,4,3,1,2]}.
    │ │ │ +#person{name = "Joe",phone = [0,8,2,3,4,3,1,2],address = undefined}
    │ │ │  > P#person.name.
    │ │ │  "Joe"

    │ │ │ │ │ │ │ │ │ │ │ │ Updating a Record │ │ │

    │ │ │ -

    The following example shows how to update a record:

    > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
    │ │ │ -#person{name = "Joe",phone = [1,2,3],address = "A street"}
    │ │ │ -> P2 = P1#person{name="Robert"}.
    │ │ │ -#person{name = "Robert",phone = [1,2,3],address = "A street"}

    │ │ │ +

    The following example shows how to update a record:

    > P1 = #person{name="Joe", phone=[1,2,3], address="A street"}.
    │ │ │ +#person{name = "Joe",phone = [1,2,3],address = "A street"}
    │ │ │ +> P2 = P1#person{name="Robert"}.
    │ │ │ +#person{name = "Robert",phone = [1,2,3],address = "A street"}

    │ │ │ │ │ │ │ │ │ │ │ │ Type Testing │ │ │

    │ │ │

    The following example shows that the guard succeeds if P is record of type │ │ │ -person:

    foo(P) when is_record(P, person) -> a_person;
    │ │ │ -foo(_) -> not_a_person.

    │ │ │ +person:

    foo(P) when is_record(P, person) -> a_person;
    │ │ │ +foo(_) -> not_a_person.

    │ │ │ │ │ │ │ │ │ │ │ │ Pattern Matching │ │ │

    │ │ │

    Matching can be used in combination with records, as shown in the following │ │ │ -example:

    > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
    │ │ │ -#person{name = "Joe",phone = [0,0,7],address = "A street"}
    │ │ │ -> #person{name = Name} = P3, Name.
    │ │ │ +example:

    > P3 = #person{name="Joe", phone=[0,0,7], address="A street"}.
    │ │ │ +#person{name = "Joe",phone = [0,0,7],address = "A street"}
    │ │ │ +> #person{name = Name} = P3, Name.
    │ │ │  "Joe"

    The following function takes a list of person records and searches for the │ │ │ -phone number of a person with a particular name:

    find_phone([#person{name=Name, phone=Phone} | _], Name) ->
    │ │ │ -    {found,  Phone};
    │ │ │ -find_phone([_| T], Name) ->
    │ │ │ -    find_phone(T, Name);
    │ │ │ -find_phone([], Name) ->
    │ │ │ +phone number of a person with a particular name:

    find_phone([#person{name=Name, phone=Phone} | _], Name) ->
    │ │ │ +    {found,  Phone};
    │ │ │ +find_phone([_| T], Name) ->
    │ │ │ +    find_phone(T, Name);
    │ │ │ +find_phone([], Name) ->
    │ │ │      not_found.

    The fields referred to in the pattern can be given in any order.

    │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │

    │ │ │

    The value of a field in a record can be an instance of a record. Retrieval of │ │ │ nested data can be done stepwise, or in a single step, as shown in the following │ │ │ -example:

    -record(name, {first = "Robert", last = "Ericsson"}).
    │ │ │ --record(person, {name = #name{}, phone}).
    │ │ │ +example:

    -record(name, {first = "Robert", last = "Ericsson"}).
    │ │ │ +-record(person, {name = #name{}, phone}).
    │ │ │  
    │ │ │ -demo() ->
    │ │ │ -  P = #person{name= #name{first="Robert",last="Virding"}, phone=123},
    │ │ │ -  First = (P#person.name)#name.first.

    Here, demo() evaluates to "Robert".

    │ │ │ +demo() -> │ │ │ + P = #person{name= #name{first="Robert",last="Virding"}, phone=123}, │ │ │ + First = (P#person.name)#name.first.

    Here, demo() evaluates to "Robert".

    │ │ │ │ │ │ │ │ │ │ │ │ A Longer Example │ │ │

    │ │ │

    Comments are embedded in the following example:

    %% File: person.hrl
    │ │ │  
    │ │ │ @@ -230,48 +230,48 @@
    │ │ │  %%    name:  A string (default is undefined).
    │ │ │  %%    age:   An integer (default is undefined).
    │ │ │  %%    phone: A list of integers (default is []).
    │ │ │  %%    dict:  A dictionary containing various information
    │ │ │  %%           about the person.
    │ │ │  %%           A {Key, Value} list (default is the empty list).
    │ │ │  %%------------------------------------------------------------
    │ │ │ --record(person, {name, age, phone = [], dict = []}).
    -module(person).
    │ │ │ --include("person.hrl").
    │ │ │ --compile(export_all). % For test purposes only.
    │ │ │ +-record(person, {name, age, phone = [], dict = []}).
    -module(person).
    │ │ │ +-include("person.hrl").
    │ │ │ +-compile(export_all). % For test purposes only.
    │ │ │  
    │ │ │  %% This creates an instance of a person.
    │ │ │  %%   Note: The phone number is not supplied so the
    │ │ │  %%         default value [] will be used.
    │ │ │  
    │ │ │ -make_hacker_without_phone(Name, Age) ->
    │ │ │ -   #person{name = Name, age = Age,
    │ │ │ -           dict = [{computer_knowledge, excellent},
    │ │ │ -                   {drinks, coke}]}.
    │ │ │ +make_hacker_without_phone(Name, Age) ->
    │ │ │ +   #person{name = Name, age = Age,
    │ │ │ +           dict = [{computer_knowledge, excellent},
    │ │ │ +                   {drinks, coke}]}.
    │ │ │  
    │ │ │  %% This demonstrates matching in arguments
    │ │ │  
    │ │ │ -print(#person{name = Name, age = Age,
    │ │ │ -              phone = Phone, dict = Dict}) ->
    │ │ │ -  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
    │ │ │ -            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
    │ │ │ +print(#person{name = Name, age = Age,
    │ │ │ +              phone = Phone, dict = Dict}) ->
    │ │ │ +  io:format("Name: ~s, Age: ~w, Phone: ~w ~n"
    │ │ │ +            "Dictionary: ~w.~n", [Name, Age, Phone, Dict]).
    │ │ │  
    │ │ │  %% Demonstrates type testing, selector, updating.
    │ │ │  
    │ │ │ -birthday(P) when is_record(P, person) ->
    │ │ │ -   P#person{age = P#person.age + 1}.
    │ │ │ +birthday(P) when is_record(P, person) ->
    │ │ │ +   P#person{age = P#person.age + 1}.
    │ │ │  
    │ │ │ -register_two_hackers() ->
    │ │ │ -   Hacker1 = make_hacker_without_phone("Joe", 29),
    │ │ │ -   OldHacker = birthday(Hacker1),
    │ │ │ +register_two_hackers() ->
    │ │ │ +   Hacker1 = make_hacker_without_phone("Joe", 29),
    │ │ │ +   OldHacker = birthday(Hacker1),
    │ │ │     % The central_register_server should have
    │ │ │     % an interface function for this.
    │ │ │ -   central_register_server ! {register_person, Hacker1},
    │ │ │ -   central_register_server ! {register_person,
    │ │ │ -             OldHacker#person{name = "Robert",
    │ │ │ -                              phone = [0,8,3,2,4,5,3,1]}}.
    │ │ │ +
    central_register_server ! {register_person, Hacker1}, │ │ │ + central_register_server ! {register_person, │ │ │ + OldHacker#person{name = "Robert", │ │ │ + phone = [0,8,3,2,4,5,3,1]}}.
    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Header Files │ │ │

    │ │ │

    As shown above, some files have extension .hrl. These are header files that │ │ │ -are included in the .erl files by:

    -include("File_Name").

    for example:

    -include("mess_interface.hrl").

    In the case above the file is fetched from the same directory as all the other │ │ │ +are included in the .erl files by:

    -include("File_Name").

    for example:

    -include("mess_interface.hrl").

    In the case above the file is fetched from the same directory as all the other │ │ │ files in the messenger example. (manual).

    .hrl files can contain any valid Erlang code but are most often used for record │ │ │ and macro definitions.

    │ │ │ │ │ │ │ │ │ │ │ │ Records │ │ │

    │ │ │ -

    A record is defined as:

    -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

    For example:

    -record(message_to,{to_name, message}).

    This is equivalent to:

    {message_to, To_Name, Message}

    Creating a record is best illustrated by an example:

    #message_to{message="hello", to_name=fred)

    This creates:

    {message_to, fred, "hello"}

    Notice that you do not have to worry about the order you assign values to the │ │ │ +

    A record is defined as:

    -record(name_of_record,{field_name1, field_name2, field_name3, ......}).

    For example:

    -record(message_to,{to_name, message}).

    This is equivalent to:

    {message_to, To_Name, Message}

    Creating a record is best illustrated by an example:

    #message_to{message="hello", to_name=fred)

    This creates:

    {message_to, fred, "hello"}

    Notice that you do not have to worry about the order you assign values to the │ │ │ various parts of the records when you create it. The advantage of using records │ │ │ is that by placing their definitions in header files you can conveniently define │ │ │ interfaces that are easy to change. For example, if you want to add a new field │ │ │ to the record, you only have to change the code where the new field is used and │ │ │ not at every place the record is referred to. If you leave out a field when │ │ │ creating a record, it gets the value of the atom undefined. (manual)

    Pattern matching with records is very similar to creating records. For example, │ │ │ -inside a case or receive:

    #message_to{to_name=ToName, message=Message} ->

    This is the same as:

    {message_to, ToName, Message}

    │ │ │ +inside a case or receive:

    #message_to{to_name=ToName, message=Message} ->

    This is the same as:

    {message_to, ToName, Message}

    │ │ │ │ │ │ │ │ │ │ │ │ Macros │ │ │

    │ │ │

    Another thing that has been added to the messenger is a macro. The file │ │ │ mess_config.hrl contains the definition:

    %%% Configure the location of the server node,
    │ │ │ --define(server_node, messenger@super).

    This file is included in mess_server.erl:

    -include("mess_config.hrl").

    Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ -messenger@super.

    A macro is also used when spawning the server process:

    spawn(?MODULE, server, [])

    This is a standard macro (that is, defined by the system, not by the user). │ │ │ +-define(server_node, messenger@super).

    This file is included in mess_server.erl:

    -include("mess_config.hrl").

    Every occurrence of ?server_node in mess_server.erl is now replaced by │ │ │ +messenger@super.

    A macro is also used when spawning the server process:

    spawn(?MODULE, server, [])

    This is a standard macro (that is, defined by the system, not by the user). │ │ │ ?MODULE is always replaced by the name of the current module (that is, the │ │ │ -module definition near the start of the file). There are more advanced ways │ │ │ of using macros with, for example, parameters.

    The three Erlang (.erl) files in the messenger example are individually │ │ │ compiled into object code file (.beam). The Erlang system loads and links │ │ │ these files into the system when they are referred to during execution of the │ │ │ code. In this case, they are simply put in our current working directory (that │ │ │ is, the place you have done "cd" to). There are ways of putting the .beam │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/ref_man_functions.html │ │ │ @@ -120,51 +120,51 @@ │ │ │ │ │ │ │ │ │ Function Declaration Syntax │ │ │ │ │ │

    A function declaration is a sequence of function clauses separated by │ │ │ semicolons, and terminated by a period (.).

    A function clause consists of a clause head and a clause body, separated by │ │ │ ->.

    A clause head consists of the function name, an argument list, and an optional │ │ │ -guard sequence beginning with the keyword when:

    Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │ +guard sequence beginning with the keyword when:

    Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
    │ │ │      Body1;
    │ │ │  ...;
    │ │ │ -Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │ +Name(PatternK1,...,PatternKN) [when GuardSeqK] ->
    │ │ │      BodyK.

    The function name is an atom. Each argument is a pattern.

    The number of arguments N is the arity of the function. A function is │ │ │ uniquely defined by the module name, function name, and arity. That is, two │ │ │ functions with the same name and in the same module, but with different arities │ │ │ are two different functions.

    A function named f in module mod and with arity N is often denoted as │ │ │ mod:f/N.

    A clause body consists of a sequence of expressions separated by comma (,):

    Expr1,
    │ │ │  ...,
    │ │ │  ExprN

    Valid Erlang expressions and guard sequences are described in │ │ │ -Expressions.

    Example:

    fact(N) when N > 0 ->  % first clause head
    │ │ │ -    N * fact(N-1);     % first clause body
    │ │ │ +Expressions.

    Example:

    fact(N) when N > 0 ->  % first clause head
    │ │ │ +    N * fact(N-1);     % first clause body
    │ │ │  
    │ │ │ -fact(0) ->             % second clause head
    │ │ │ +fact(0) ->             % second clause head
    │ │ │      1.                 % second clause body

    │ │ │ │ │ │ │ │ │ │ │ │ Function Evaluation │ │ │

    │ │ │

    When a function M:F/N is called, first the code for the function is located. │ │ │ If the function cannot be found, an undef runtime error occurs. Notice that │ │ │ the function must be exported to be visible outside the module it is defined in.

    If the function is found, the function clauses are scanned sequentially until a │ │ │ clause is found that fulfills both of the following two conditions:

    1. The patterns in the clause head can be successfully matched against the given │ │ │ arguments.
    2. The guard sequence, if any, is true.

    If such a clause cannot be found, a function_clause runtime error occurs.

    If such a clause is found, the corresponding clause body is evaluated. That is, │ │ │ the expressions in the body are evaluated sequentially and the value of the last │ │ │ -expression is returned.

    Consider the function fact:

    -module(mod).
    │ │ │ --export([fact/1]).
    │ │ │ +expression is returned.

    Consider the function fact:

    -module(mod).
    │ │ │ +-export([fact/1]).
    │ │ │  
    │ │ │ -fact(N) when N > 0 ->
    │ │ │ -    N * fact(N - 1);
    │ │ │ -fact(0) ->
    │ │ │ +fact(N) when N > 0 ->
    │ │ │ +    N * fact(N - 1);
    │ │ │ +fact(0) ->
    │ │ │      1.

    Assume that you want to calculate the factorial for 1:

    1> mod:fact(1).

    Evaluation starts at the first clause. The pattern N is matched against │ │ │ argument 1. The matching succeeds and the guard (N > 0) is true, thus N is │ │ │ -bound to 1, and the corresponding body is evaluated:

    N * fact(N-1) => (N is bound to 1)
    │ │ │ -1 * fact(0)

    Now, fact(0) is called, and the function clauses are scanned │ │ │ +bound to 1, and the corresponding body is evaluated:

    N * fact(N-1) => (N is bound to 1)
    │ │ │ +1 * fact(0)

    Now, fact(0) is called, and the function clauses are scanned │ │ │ sequentially again. First, the pattern N is matched against 0. The │ │ │ matching succeeds, but the guard (N > 0) is false. Second, the │ │ │ pattern 0 is matched against the argument 0. The matching succeeds │ │ │ and the body is evaluated:

    1 * fact(0) =>
    │ │ │  1 * 1 =>
    │ │ │  1

    Evaluation has succeed and mod:fact(1) returns 1.

    If mod:fact/1 is called with a negative number as argument, no clause head │ │ │ matches. A function_clause runtime error occurs.

    │ │ │ @@ -173,17 +173,17 @@ │ │ │ │ │ │ Tail recursion │ │ │

    │ │ │

    If the last expression of a function body is a function call, a │ │ │ tail-recursive call is done. This is to ensure that no system │ │ │ resources, for example, call stack, are consumed. This means that an │ │ │ infinite loop using tail-recursive calls will not exhaust the call │ │ │ -stack and can (in principle) run forever.

    Example:

    loop(N) ->
    │ │ │ -    io:format("~w~n", [N]),
    │ │ │ -    loop(N+1).

    The earlier factorial example is a counter-example. It is not │ │ │ +stack and can (in principle) run forever.

    Example:

    loop(N) ->
    │ │ │ +    io:format("~w~n", [N]),
    │ │ │ +    loop(N+1).

    The earlier factorial example is a counter-example. It is not │ │ │ tail-recursive, since a multiplication is done on the result of the recursive │ │ │ call to fact(N-1).

    │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │

    │ │ │ @@ -191,17 +191,17 @@ │ │ │ system. BIFs do things that are difficult or impossible to implement │ │ │ in Erlang. Most of the BIFs belong to module erlang, but there │ │ │ are also BIFs belonging to a few other modules, for example lists │ │ │ and ets.

    The most commonly used BIFs belonging to erlang are auto-imported. They do │ │ │ not need to be prefixed with the module name. Which BIFs that are auto-imported │ │ │ is specified in the erlang module in ERTS. For example, standard-type │ │ │ conversion BIFs like atom_to_list and BIFs allowed in guards can be called │ │ │ -without specifying the module name.

    Examples:

    1> tuple_size({a,b,c}).
    │ │ │ +without specifying the module name.

    Examples:

    1> tuple_size({a,b,c}).
    │ │ │  3
    │ │ │ -2> atom_to_list('Erlang').
    │ │ │ +2> atom_to_list('Erlang').
    │ │ │  "Erlang"
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    │ │ │ │ │ │ │ │ │ Process Creation │ │ │

    │ │ │ -

    A process is created by calling spawn():

    spawn(Module, Name, Args) -> pid()
    │ │ │ -  Module = Name = atom()
    │ │ │ -  Args = [Arg1,...,ArgN]
    │ │ │ -    ArgI = term()

    spawn() creates a new process and returns the pid.

    The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ +

    A process is created by calling spawn():

    spawn(Module, Name, Args) -> pid()
    │ │ │ +  Module = Name = atom()
    │ │ │ +  Args = [Arg1,...,ArgN]
    │ │ │ +    ArgI = term()

    spawn() creates a new process and returns the pid.

    The new process starts executing in Module:Name(Arg1,...,ArgN) where the │ │ │ arguments are the elements of the (possible empty) Args argument list.

    There exist a number of different spawn BIFs:

    │ │ │ │ │ │ │ │ │ │ │ │ Registered Processes │ │ │

    │ │ │

    Besides addressing a process by using its pid, there are also BIFs for │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/ref_man_records.html │ │ │ @@ -123,17 +123,17 @@ │ │ │ │ │ │ │ │ │ Defining Records │ │ │ │ │ │

    A record definition consists of the name of the record, followed by the field │ │ │ names of the record. Record and field names must be atoms. Each field can be │ │ │ given an optional default value. If no default value is supplied, undefined is │ │ │ -used.

    -record(Name, {Field1 [= Expr1],
    │ │ │ +used.

    -record(Name, {Field1 [= Expr1],
    │ │ │                 ...
    │ │ │ -               FieldN [= ExprN]}).

    The default value for a field is an arbitrary expression, except that it must │ │ │ + FieldN [= ExprN]}).

    The default value for a field is an arbitrary expression, except that it must │ │ │ not use any variables.

    A record definition can be placed anywhere among the attributes and function │ │ │ declarations of a module, but the definition must come before any usage of the │ │ │ record.

    If a record is used in several modules, it is recommended that the record │ │ │ definition is placed in an include file.

    Change

    Starting from Erlang/OTP 26, records can be defined in the Erlang shell │ │ │ using the syntax described in this section. In earlier releases, it was │ │ │ necessary to use the shell built-in function rd/2.

    │ │ │ │ │ │ @@ -143,32 +143,32 @@ │ │ │

    │ │ │

    The following expression creates a new Name record where the value of each │ │ │ field FieldI is the value of evaluating the corresponding expression ExprI:

    #Name{Field1=Expr1, ..., FieldK=ExprK}

    The fields can be in any order, not necessarily the same order as in the record │ │ │ definition, and fields can be omitted. Omitted fields get their respective │ │ │ default value instead.

    If several fields are to be assigned the same value, the following construction │ │ │ can be used:

    #Name{Field1=Expr1, ..., FieldK=ExprK, _=ExprL}

    Omitted fields then get the value of evaluating ExprL instead of their default │ │ │ values. This feature is primarily intended to be used to create patterns for ETS │ │ │ -and Mnesia match functions.

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +and Mnesia match functions.

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -lookup(Name, Tab) ->
    │ │ │ -    ets:match_object(Tab, #person{name=Name, _='_'}).

    │ │ │ +lookup(Name, Tab) -> │ │ │ + ets:match_object(Tab, #person{name=Name, _='_'}).

    │ │ │ │ │ │ │ │ │ │ │ │ Accessing Record Fields │ │ │

    │ │ │
    Expr#Name.Field

    Returns the value of the specified field. Expr is to evaluate to a Name │ │ │ -record.

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +record.

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -get_person_name(Person) ->
    │ │ │ +get_person_name(Person) ->
    │ │ │      Person#person.name.

    The following expression returns the position of the specified field in the │ │ │ -tuple representation of the record:

    #Name.Field

    Example:

    -record(person, {name, phone, address}).
    │ │ │ +tuple representation of the record:

    #Name.Field

    Example:

    -record(person, {name, phone, address}).
    │ │ │  
    │ │ │ -lookup(Name, List) ->
    │ │ │ -    lists:keyfind(Name, #person.name, List).

    │ │ │ +lookup(Name, List) -> │ │ │ + lists:keyfind(Name, #person.name, List).

    │ │ │ │ │ │ │ │ │ │ │ │ Updating Records │ │ │

    │ │ │
    Expr#Name{Field1=Expr1, ..., FieldK=ExprK}

    Expr is to evaluate to a Name record. A copy of this record is returned, │ │ │ with the value of each specified field FieldI changed to the value of │ │ │ @@ -178,51 +178,51 @@ │ │ │ │ │ │ │ │ │ Records in Guards │ │ │ │ │ │

    Since record expressions are expanded to tuple expressions, creating │ │ │ records and accessing record fields are allowed in guards. However, │ │ │ all subexpressions (for initializing fields), must be valid guard │ │ │ -expressions as well.

    Examples:

    handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
    │ │ │ +expressions as well.

    Examples:

    handle(Msg, State) when Msg =:= #msg{to=void, no=3} ->
    │ │ │      ...
    │ │ │  
    │ │ │ -handle(Msg, State) when State#state.running =:= true ->
    │ │ │ -    ...

    There is also a type test BIF is_record(Term, RecordTag).

    Example:

    is_person(P) when is_record(P, person) ->
    │ │ │ +handle(Msg, State) when State#state.running =:= true ->
    │ │ │ +    ...

    There is also a type test BIF is_record(Term, RecordTag).

    Example:

    is_person(P) when is_record(P, person) ->
    │ │ │      true;
    │ │ │ -is_person(_P) ->
    │ │ │ +is_person(_P) ->
    │ │ │      false.

    │ │ │ │ │ │ │ │ │ │ │ │ Records in Patterns │ │ │

    │ │ │

    A pattern that matches a certain record is created in the same way as a record │ │ │ is created:

    #Name{Field1=Expr1, ..., FieldK=ExprK}

    In this case, one or more of Expr1 ... ExprK can be unbound variables.

    │ │ │ │ │ │ │ │ │ │ │ │ Nested Records │ │ │

    │ │ │ -

    Assume the following record definitions:

    -record(nrec0, {name = "nested0"}).
    │ │ │ --record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
    │ │ │ --record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
    │ │ │ +

    Assume the following record definitions:

    -record(nrec0, {name = "nested0"}).
    │ │ │ +-record(nrec1, {name = "nested1", nrec0=#nrec0{}}).
    │ │ │ +-record(nrec2, {name = "nested2", nrec1=#nrec1{}}).
    │ │ │  
    │ │ │ -N2 = #nrec2{},

    Accessing or updating nested records can be written without parentheses:

    "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
    │ │ │ +N2 = #nrec2{},

    Accessing or updating nested records can be written without parentheses:

    "nested0" = N2#nrec2.nrec1#nrec1.nrec0#nrec0.name,
    │ │ │      N0n = N2#nrec2.nrec1#nrec1.nrec0#nrec0{name = "nested0a"},

    which is equivalent to:

    "nested0" = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0.name,
    │ │ │  N0n = ((N2#nrec2.nrec1)#nrec1.nrec0)#nrec0{name = "nested0a"},

    Change

    Before Erlang/OTP R14, parentheses were necessary when accessing or updating │ │ │ nested records.

    │ │ │ │ │ │ │ │ │ │ │ │ Internal Representation of Records │ │ │

    │ │ │

    Record expressions are translated to tuple expressions during compilation. A │ │ │ -record defined as:

    -record(Name, {Field1, ..., FieldN}).

    is internally represented by the tuple:

    {Name, Value1, ..., ValueN}

    Here each ValueI is the default value for FieldI.

    To each module using records, a pseudo function is added during compilation to │ │ │ -obtain information about records:

    record_info(fields, Record) -> [Field]
    │ │ │ -record_info(size, Record) -> Size

    Size is the size of the tuple representation, that is, one more than the │ │ │ +record defined as:

    -record(Name, {Field1, ..., FieldN}).

    is internally represented by the tuple:

    {Name, Value1, ..., ValueN}

    Here each ValueI is the default value for FieldI.

    To each module using records, a pseudo function is added during compilation to │ │ │ +obtain information about records:

    record_info(fields, Record) -> [Field]
    │ │ │ +record_info(size, Record) -> Size

    Size is the size of the tuple representation, that is, one more than the │ │ │ number of fields.

    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    gen_server, simple code replacement is not sufficient. │ │ │ Instead, it is necessary to:

    • Suspend the processes using the module (to avoid that they try to handle any │ │ │ requests before the code replacement is completed).
    • Ask them to transform the internal state format and switch to the new version │ │ │ of the module.
    • Remove the old version.
    • Resume the processes.

    This is called synchronized code replacement and for this the following │ │ │ -instructions are used:

    {update, Module, {advanced, Extra}}
    │ │ │ -{update, Module, supervisor}

    update with argument {advanced,Extra} is used when changing the internal │ │ │ +instructions are used:

    {update, Module, {advanced, Extra}}
    │ │ │ +{update, Module, supervisor}

    update with argument {advanced,Extra} is used when changing the internal │ │ │ state of a behaviour as described above. It causes behaviour processes to call │ │ │ the callback function code_change/3, passing the term Extra and some other │ │ │ information as arguments. See the manual pages for the respective behaviours and │ │ │ Appup Cookbook.

    update with argument supervisor is used when changing the start │ │ │ specification of a supervisor. See Appup Cookbook.

    When a module is to be updated, the release handler finds which processes that │ │ │ are using the module by traversing the supervision tree of each running │ │ │ -application and checking all the child specifications:

    {Id, StartFunc, Restart, Shutdown, Type, Modules}

    A process uses a module if the name is listed in Modules in the child │ │ │ +application and checking all the child specifications:

    {Id, StartFunc, Restart, Shutdown, Type, Modules}

    A process uses a module if the name is listed in Modules in the child │ │ │ specification for the process.

    If Modules=dynamic, which is the case for event managers, the event manager │ │ │ process informs the release handler about the list of currently installed event │ │ │ handlers (gen_event), and it is checked if the module name is in this list │ │ │ instead.

    The release handler suspends, asks for code change, and resumes processes by │ │ │ calling the functions sys:suspend/1,2, sys:change_code/4,5, and │ │ │ sys:resume/1,2, respectively.

    │ │ │ │ │ │ │ │ │ │ │ │ add_module and delete_module │ │ │

    │ │ │ -

    If a new module is introduced, the following instruction is used:

    {add_module, Module}

    This instruction loads module Module. When running Erlang in │ │ │ +

    If a new module is introduced, the following instruction is used:

    {add_module, Module}

    This instruction loads module Module. When running Erlang in │ │ │ embedded mode it is necessary to use this this instruction. It is not │ │ │ strictly required when running Erlang in interactive mode, since the │ │ │ -code server automatically searches for and loads unloaded modules.

    The opposite of add_module is delete_module, which unloads a module:

    {delete_module, Module}

    Any process, in any application, with Module as residence module, is │ │ │ +code server automatically searches for and loads unloaded modules.

    The opposite of add_module is delete_module, which unloads a module:

    {delete_module, Module}

    Any process, in any application, with Module as residence module, is │ │ │ killed when the instruction is evaluated. Therefore, the user must │ │ │ ensure that all such processes are terminated before deleting module │ │ │ Module to avoid a situation with failing supervisor restarts.

    │ │ │ │ │ │ │ │ │ │ │ │ Application Instructions │ │ │ @@ -341,60 +341,60 @@ │ │ │ .app file.
  • Each UpFromVsn is a previous version of the application to upgrade from.
  • Each DownToVsn is a previous version of the application to downgrade to.
  • Each Instructions is a list of release handling instructions.
  • UpFromVsn and DownToVsn can also be specified as regular expressions. For │ │ │ more information about the syntax and contents of the .appup file, see │ │ │ appup in SASL.

    Appup Cookbook includes examples of .appup files for │ │ │ typical upgrade/downgrade cases.

    Example: Consider the release ch_rel-1 from │ │ │ Releases. Assume you want to add a function │ │ │ available/0 to server ch3, which returns the number of available channels │ │ │ (when trying out the example, make the change in a copy of the original │ │ │ -directory, to ensure that the first version is still available):

    -module(ch3).
    │ │ │ --behaviour(gen_server).
    │ │ │ +directory, to ensure that the first version is still available):

    -module(ch3).
    │ │ │ +-behaviour(gen_server).
    │ │ │  
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([available/0]).
    │ │ │ --export([init/1, handle_call/3, handle_cast/2]).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([available/0]).
    │ │ │ +-export([init/1, handle_call/3, handle_cast/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │ +start_link() ->
    │ │ │ +    gen_server:start_link({local, ch3}, ch3, [], []).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    gen_server:call(ch3, alloc).
    │ │ │ +alloc() ->
    │ │ │ +    gen_server:call(ch3, alloc).
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    gen_server:cast(ch3, {free, Ch}).
    │ │ │ +free(Ch) ->
    │ │ │ +    gen_server:cast(ch3, {free, Ch}).
    │ │ │  
    │ │ │ -available() ->
    │ │ │ -    gen_server:call(ch3, available).
    │ │ │ +available() ->
    │ │ │ +    gen_server:call(ch3, available).
    │ │ │  
    │ │ │ -init(_Args) ->
    │ │ │ -    {ok, channels()}.
    │ │ │ +init(_Args) ->
    │ │ │ +    {ok, channels()}.
    │ │ │  
    │ │ │ -handle_call(alloc, _From, Chs) ->
    │ │ │ -    {Ch, Chs2} = alloc(Chs),
    │ │ │ -    {reply, Ch, Chs2};
    │ │ │ -handle_call(available, _From, Chs) ->
    │ │ │ -    N = available(Chs),
    │ │ │ -    {reply, N, Chs}.
    │ │ │ +handle_call(alloc, _From, Chs) ->
    │ │ │ +    {Ch, Chs2} = alloc(Chs),
    │ │ │ +    {reply, Ch, Chs2};
    │ │ │ +handle_call(available, _From, Chs) ->
    │ │ │ +    N = available(Chs),
    │ │ │ +    {reply, N, Chs}.
    │ │ │  
    │ │ │ -handle_cast({free, Ch}, Chs) ->
    │ │ │ -    Chs2 = free(Ch, Chs),
    │ │ │ -    {noreply, Chs2}.

    A new version of the ch_app.app file must now be created, where the version is │ │ │ -updated:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "2"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.

    To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ +handle_cast({free, Ch}, Chs) -> │ │ │ + Chs2 = free(Ch, Chs), │ │ │ + {noreply, Chs2}.

    A new version of the ch_app.app file must now be created, where the version is │ │ │ +updated:

    {application, ch_app,
    │ │ │ + [{description, "Channel allocator"},
    │ │ │ +  {vsn, "2"},
    │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ +  {registered, [ch3]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {ch_app,[]}}
    │ │ │ + ]}.

    To upgrade ch_app from "1" to "2" (and to downgrade from "2" to "1"), │ │ │ you only need to load the new (old) version of the ch3 callback module. Create │ │ │ -the application upgrade file ch_app.appup in the ebin directory:

    {"2",
    │ │ │ - [{"1", [{load_module, ch3}]}],
    │ │ │ - [{"1", [{load_module, ch3}]}]
    │ │ │ -}.

    │ │ │ +the application upgrade file ch_app.appup in the ebin directory:

    {"2",
    │ │ │ + [{"1", [{load_module, ch3}]}],
    │ │ │ + [{"1", [{load_module, ch3}]}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Release Upgrade File │ │ │

    │ │ │

    To define how to upgrade/downgrade between the new version and previous versions │ │ │ of a release, a release upgrade file, or in short .relup file, is to be │ │ │ @@ -405,22 +405,22 @@ │ │ │ are to be added and deleted, and which applications that must be upgraded and/or │ │ │ downgraded. The instructions for this are fetched from the .appup files and │ │ │ transformed into a single list of low-level instructions in the right order.

    If the relup file is relatively simple, it can be created manually. It is only │ │ │ to contain low-level instructions.

    For details about the syntax and contents of the release upgrade file, see │ │ │ relup in SASL.

    Example, continued from the previous section: You have a new version "2" of │ │ │ ch_app and an .appup file. A new version of the .rel file is also needed. │ │ │ This time the file is called ch_rel-2.rel and the release version string is │ │ │ -changed from "A" to "B":

    {release,
    │ │ │ - {"ch_rel", "B"},
    │ │ │ - {erts, "14.2.5"},
    │ │ │ - [{kernel, "9.2.4"},
    │ │ │ -  {stdlib, "5.2.3"},
    │ │ │ -  {sasl, "4.2.1"},
    │ │ │ -  {ch_app, "2"}]
    │ │ │ -}.

    Now the relup file can be generated:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
    │ │ │ +changed from "A" to "B":

    {release,
    │ │ │ + {"ch_rel", "B"},
    │ │ │ + {erts, "14.2.5"},
    │ │ │ + [{kernel, "9.2.4"},
    │ │ │ +  {stdlib, "5.2.3"},
    │ │ │ +  {sasl, "4.2.1"},
    │ │ │ +  {ch_app, "2"}]
    │ │ │ +}.

    Now the relup file can be generated:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"]).
    │ │ │  ok

    This generates a relup file with instructions for how to upgrade from version │ │ │ "A" ("ch_rel-1") to version "B" ("ch_rel-2") and how to downgrade from version │ │ │ "B" to version "A".

    Both the old and new versions of the .app and .rel files must be in the code │ │ │ path, as well as the .appup and (new) .beam files. The code path can be │ │ │ extended by using the option path:

    1> systools:make_relup("ch_rel-2", ["ch_rel-1"], ["ch_rel-1"],
    │ │ │  [{path,["../ch_rel-1",
    │ │ │  "../ch_rel-1/lib/ch_app-1/ebin"]}]).
    │ │ │ @@ -433,25 +433,25 @@
    │ │ │  

    When you have made a new version of a release, a release package can be created │ │ │ with this new version and transferred to the target environment.

    To install the new version of the release in runtime, the release │ │ │ handler is used. This is a process belonging to the SASL application, │ │ │ which handles unpacking, installation, and removal of release │ │ │ packages. The release_handler module communicates with this process.

    Assuming there is an operational target system with installation root directory │ │ │ $ROOT, the release package with the new version of the release is to be copied │ │ │ to $ROOT/releases.

    First, unpack the release package. The files are then extracted from the │ │ │ -package:

    release_handler:unpack_release(ReleaseName) => {ok, Vsn}
    • ReleaseName is the name of the release package except the .tar.gz │ │ │ +package:

      release_handler:unpack_release(ReleaseName) => {ok, Vsn}
      • ReleaseName is the name of the release package except the .tar.gz │ │ │ extension.
      • Vsn is the version of the unpacked release, as defined in its .rel file.

      A directory $ROOT/lib/releases/Vsn is created, where the .rel file, the boot │ │ │ script start.boot, the system configuration file sys.config, and relup are │ │ │ placed. For applications with new version numbers, the application directories │ │ │ are placed under $ROOT/lib. Unchanged applications are not affected.

      An unpacked release can be installed. The release handler then evaluates the │ │ │ -instructions in relup, step by step:

      release_handler:install_release(Vsn) => {ok, FromVsn, []}

      If an error occurs during the installation, the system is rebooted using the old │ │ │ +instructions in relup, step by step:

      release_handler:install_release(Vsn) => {ok, FromVsn, []}

      If an error occurs during the installation, the system is rebooted using the old │ │ │ version of the release. If installation succeeds, the system is afterwards using │ │ │ the new version of the release, but if anything happens and the system is │ │ │ rebooted, it starts using the previous version again.

      To be made the default version, the newly installed release must be made │ │ │ permanent, which means the previous version becomes old:

      release_handler:make_permanent(Vsn) => ok

      The system keeps information about which versions are old and permanent in the │ │ │ -files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

      To downgrade from Vsn to FromVsn, install_release must be called again:

      release_handler:install_release(FromVsn) => {ok, Vsn, []}

      An installed, but not permanent, release can be removed. Information about the │ │ │ +files $ROOT/releases/RELEASES and $ROOT/releases/start_erl.data.

      To downgrade from Vsn to FromVsn, install_release must be called again:

      release_handler:install_release(FromVsn) => {ok, Vsn, []}

      An installed, but not permanent, release can be removed. Information about the │ │ │ release is then deleted from $ROOT/releases/RELEASES and the release-specific │ │ │ code, that is, the new application directories and the $ROOT/releases/Vsn │ │ │ directory, are removed.

      release_handler:remove_release(Vsn) => ok

      │ │ │ │ │ │ │ │ │ │ │ │ Example (continued from the previous sections) │ │ │ @@ -462,17 +462,17 @@ │ │ │ is needed, the file is to contain the empty list:

      [].

      Step 2) Start the system as a simple target system. In reality, it is to be │ │ │ started as an embedded system. However, using erl with the correct boot script │ │ │ and config file is enough for illustration purposes:

      % cd $ROOT
      │ │ │  % bin/erl -boot $ROOT/releases/A/start -config $ROOT/releases/A/sys
      │ │ │  ...

      $ROOT is the installation directory of the target system.

      Step 3) In another Erlang shell, generate start scripts and create a release │ │ │ package for the new version "B". Remember to include (a possible updated) │ │ │ sys.config and the relup file. For more information, see │ │ │ -Release Upgrade File.

      1> systools:make_script("ch_rel-2").
      │ │ │ +Release Upgrade File.

      1> systools:make_script("ch_rel-2").
      │ │ │  ok
      │ │ │ -2> systools:make_tar("ch_rel-2").
      │ │ │ +2> systools:make_tar("ch_rel-2").
      │ │ │  ok

      The new release package now also contains version "2" of ch_app and the │ │ │ relup file:

      % tar tf ch_rel-2.tar
      │ │ │  lib/kernel-9.2.4/ebin/kernel.app
      │ │ │  lib/kernel-9.2.4/ebin/application.beam
      │ │ │  ...
      │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
      │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
      │ │ │ @@ -485,31 +485,31 @@
      │ │ │  lib/ch_app-2/ebin/ch_sup.beam
      │ │ │  lib/ch_app-2/ebin/ch3.beam
      │ │ │  releases/B/start.boot
      │ │ │  releases/B/relup
      │ │ │  releases/B/sys.config
      │ │ │  releases/B/ch_rel-2.rel
      │ │ │  releases/ch_rel-2.rel

      Step 4) Copy the release package ch_rel-2.tar.gz to the $ROOT/releases │ │ │ -directory.

      Step 5) In the running target system, unpack the release package:

      1> release_handler:unpack_release("ch_rel-2").
      │ │ │ -{ok,"B"}

      The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ +directory.

      Step 5) In the running target system, unpack the release package:

      1> release_handler:unpack_release("ch_rel-2").
      │ │ │ +{ok,"B"}

      The new application version ch_app-2 is installed under $ROOT/lib next to │ │ │ ch_app-1. The kernel, stdlib, and sasl directories are not affected, as │ │ │ they have not changed.

      Under $ROOT/releases, a new directory B is created, containing │ │ │ -ch_rel-2.rel, start.boot, sys.config, and relup.

      Step 6) Check if the function ch3:available/0 is available:

      2> ch3:available().
      │ │ │ +ch_rel-2.rel, start.boot, sys.config, and relup.

      Step 6) Check if the function ch3:available/0 is available:

      2> ch3:available().
      │ │ │  ** exception error: undefined function ch3:available/0

      Step 7) Install the new release. The instructions in $ROOT/releases/B/relup │ │ │ are executed one by one, resulting in the new version of ch3 being loaded. The │ │ │ -function ch3:available/0 is now available:

      3> release_handler:install_release("B").
      │ │ │ -{ok,"A",[]}
      │ │ │ -4> ch3:available().
      │ │ │ +function ch3:available/0 is now available:

      3> release_handler:install_release("B").
      │ │ │ +{ok,"A",[]}
      │ │ │ +4> ch3:available().
      │ │ │  3
      │ │ │ -5> code:which(ch3).
      │ │ │ +5> code:which(ch3).
      │ │ │  ".../lib/ch_app-2/ebin/ch3.beam"
      │ │ │ -6> code:which(ch_sup).
      │ │ │ +6> code:which(ch_sup).
      │ │ │  ".../lib/ch_app-1/ebin/ch_sup.beam"

      Processes in ch_app for which code have not been updated, for example, the │ │ │ supervisor, are still evaluating code from ch_app-1.

      Step 8) If the target system is now rebooted, it uses version "A" again. The │ │ │ -"B" version must be made permanent, to be used when the system is rebooted.

      7> release_handler:make_permanent("B").
      │ │ │ +"B" version must be made permanent, to be used when the system is rebooted.

      7> release_handler:make_permanent("B").
      │ │ │  ok

      │ │ │ │ │ │ │ │ │ │ │ │ Updating Application Specifications │ │ │

      │ │ │

      When a new version of a release is installed, the application specifications are │ │ │ @@ -518,15 +518,15 @@ │ │ │ boot script is generated from the same .rel file as is used to build the │ │ │ release package itself.

      Specifically, the application configuration parameters are automatically updated │ │ │ according to (in increasing priority order):

      • The data in the boot script, fetched from the new application resource file │ │ │ App.app
      • The new sys.config
      • Command-line arguments -App Par Val

      This means that parameter values set in the other system configuration files and │ │ │ values set using application:set_env/3 are disregarded.

      When an installed release is made permanent, the system process init is set to │ │ │ point out the new sys.config.

      After the installation, the application controller compares the old and new │ │ │ configuration parameters for all running applications and call the callback │ │ │ -function:

      Module:config_change(Changed, New, Removed)
      • Module is the application callback module as defined by the mod key in the │ │ │ +function:

        Module:config_change(Changed, New, Removed)
        • Module is the application callback module as defined by the mod key in the │ │ │ .app file.
        • Changed and New are lists of {Par,Val} for all changed and added │ │ │ configuration parameters, respectively.
        • Removed is a list of all parameters Par that have been removed.

        The function is optional and can be omitted when implementing an application │ │ │ callback module.

        │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/release_structure.html │ │ │ @@ -136,37 +136,37 @@ │ │ │ │ │ │ │ │ │ │ │ │ Release Resource File │ │ │ │ │ │

    To define a release, create a release resource file, or in short a .rel │ │ │ file. In the file, specify the name and version of the release, which ERTS │ │ │ -version it is based on, and which applications it consists of:

    {release, {Name,Vsn}, {erts, EVsn},
    │ │ │ - [{Application1, AppVsn1},
    │ │ │ +version it is based on, and which applications it consists of:

    {release, {Name,Vsn}, {erts, EVsn},
    │ │ │ + [{Application1, AppVsn1},
    │ │ │     ...
    │ │ │ -  {ApplicationN, AppVsnN}]}.

    Name, Vsn, EVsn, and AppVsn are strings.

    The file must be named Rel.rel, where Rel is a unique name.

    Each Application (atom) and AppVsn is the name and version of an application │ │ │ + {ApplicationN, AppVsnN}]}.

    Name, Vsn, EVsn, and AppVsn are strings.

    The file must be named Rel.rel, where Rel is a unique name.

    Each Application (atom) and AppVsn is the name and version of an application │ │ │ included in the release. The minimal release based on Erlang/OTP consists of the │ │ │ Kernel and STDLIB applications, so these applications must be included in the │ │ │ list.

    If the release is to be upgraded, it must also include the SASL application.

    Here is an example showing the .app file for a release of ch_app from │ │ │ -the Applications section:

    {application, ch_app,
    │ │ │ - [{description, "Channel allocator"},
    │ │ │ -  {vsn, "1"},
    │ │ │ -  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ -  {registered, [ch3]},
    │ │ │ -  {applications, [kernel, stdlib, sasl]},
    │ │ │ -  {mod, {ch_app,[]}}
    │ │ │ - ]}.

    The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ -applications are required by ch_app. The file is called ch_rel-1.rel:

    {release,
    │ │ │ - {"ch_rel", "A"},
    │ │ │ - {erts, "14.2.5"},
    │ │ │ - [{kernel, "9.2.4"},
    │ │ │ -  {stdlib, "5.2.3"},
    │ │ │ -  {sasl, "4.2.1"},
    │ │ │ -  {ch_app, "1"}]
    │ │ │ -}.

    │ │ │ +the Applications section:

    {application, ch_app,
    │ │ │ + [{description, "Channel allocator"},
    │ │ │ +  {vsn, "1"},
    │ │ │ +  {modules, [ch_app, ch_sup, ch3]},
    │ │ │ +  {registered, [ch3]},
    │ │ │ +  {applications, [kernel, stdlib, sasl]},
    │ │ │ +  {mod, {ch_app,[]}}
    │ │ │ + ]}.

    The .rel file must also contain kernel, stdlib, and sasl, as these │ │ │ +applications are required by ch_app. The file is called ch_rel-1.rel:

    {release,
    │ │ │ + {"ch_rel", "A"},
    │ │ │ + {erts, "14.2.5"},
    │ │ │ + [{kernel, "9.2.4"},
    │ │ │ +  {stdlib, "5.2.3"},
    │ │ │ +  {sasl, "4.2.1"},
    │ │ │ +  {ch_app, "1"}]
    │ │ │ +}.

    │ │ │ │ │ │ │ │ │ │ │ │ Generating Boot Scripts │ │ │

    │ │ │

    systools in the SASL application includes tools to build and check │ │ │ releases. The functions read the .rel and .app files and perform │ │ │ @@ -190,17 +190,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ Creating a Release Package │ │ │ │ │ │

    The systools:make_tar/1,2 function takes a │ │ │ .rel file as input and creates a zipped tar file with the code for │ │ │ -the specified applications, a release package:

    1> systools:make_script("ch_rel-1").
    │ │ │ +the specified applications, a release package:

    1> systools:make_script("ch_rel-1").
    │ │ │  ok
    │ │ │ -2> systools:make_tar("ch_rel-1").
    │ │ │ +2> systools:make_tar("ch_rel-1").
    │ │ │  ok

    The release package by default contains:

    • The .app files
    • The .rel file
    • The object code for all applications, structured according to the │ │ │ application directory structure
    • The binary boot script renamed to start.boot
    % tar tf ch_rel-1.tar
    │ │ │  lib/kernel-9.2.4/ebin/kernel.app
    │ │ │  lib/kernel-9.2.4/ebin/application.beam
    │ │ │  ...
    │ │ │  lib/stdlib-5.2.3/ebin/stdlib.app
    │ │ │  lib/stdlib-5.2.3/ebin/argparse.beam
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/robustness.html
    │ │ │ @@ -128,68 +128,68 @@
    │ │ │  
    │ │ │  

    Before improving the messenger program, let us look at some general principles, │ │ │ using the ping pong program as an example. Recall that when "ping" finishes, it │ │ │ tells "pong" that it has done so by sending the atom finished as a message to │ │ │ "pong" so that "pong" can also finish. Another way to let "pong" finish is to │ │ │ make "pong" exit if it does not receive a message from ping within a certain │ │ │ time. This can be done by adding a time-out to pong as shown in the │ │ │ -following example:

    -module(tut19).
    │ │ │ +following example:

    -module(tut19).
    │ │ │  
    │ │ │ --export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │ +-export([start_ping/1, start_pong/0,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(0, Pong_Node) ->
    │ │ │ -    io:format("ping finished~n", []);
    │ │ │ +ping(0, Pong_Node) ->
    │ │ │ +    io:format("ping finished~n", []);
    │ │ │  
    │ │ │ -ping(N, Pong_Node) ->
    │ │ │ -    {pong, Pong_Node} ! {ping, self()},
    │ │ │ +ping(N, Pong_Node) ->
    │ │ │ +    {pong, Pong_Node} ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping(N - 1, Pong_Node).
    │ │ │ +    ping(N - 1, Pong_Node).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ +pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      after 5000 ->
    │ │ │ -            io:format("Pong timed out~n", [])
    │ │ │ +            io:format("Pong timed out~n", [])
    │ │ │      end.
    │ │ │  
    │ │ │ -start_pong() ->
    │ │ │ -    register(pong, spawn(tut19, pong, [])).
    │ │ │ +start_pong() ->
    │ │ │ +    register(pong, spawn(tut19, pong, [])).
    │ │ │  
    │ │ │ -start_ping(Pong_Node) ->
    │ │ │ -    spawn(tut19, ping, [3, Pong_Node]).

    After this is compiled and the file tut19.beam is copied to the necessary │ │ │ +start_ping(Pong_Node) -> │ │ │ + spawn(tut19, ping, [3, Pong_Node]).

    After this is compiled and the file tut19.beam is copied to the necessary │ │ │ directories, the following is seen on (pong@kosken):

    (pong@kosken)1> tut19:start_pong().
    │ │ │  true
    │ │ │  Pong received ping
    │ │ │  Pong received ping
    │ │ │  Pong received ping
    │ │ │  Pong timed out

    And the following is seen on (ping@gollum):

    (ping@gollum)1> tut19:start_ping(pong@kosken).
    │ │ │  <0.36.0>
    │ │ │  Ping received pong
    │ │ │  Ping received pong
    │ │ │  Ping received pong
    │ │ │ -ping finished

    The time-out is set in:

    pong() ->
    │ │ │ +ping finished

    The time-out is set in:

    pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      after 5000 ->
    │ │ │ -            io:format("Pong timed out~n", [])
    │ │ │ +            io:format("Pong timed out~n", [])
    │ │ │      end.

    The time-out (after 5000) is started when receive is entered. The time-out │ │ │ is canceled if {ping,Ping_PID} is received. If {ping,Ping_PID} is not │ │ │ received, the actions following the time-out are done after 5000 milliseconds. │ │ │ after must be last in the receive, that is, preceded by all other message │ │ │ reception specifications in the receive. It is also possible to call a │ │ │ -function that returned an integer for the time-out:

    after pong_timeout() ->

    In general, there are better ways than using time-outs to supervise parts of a │ │ │ +function that returned an integer for the time-out:

    after pong_timeout() ->

    In general, there are better ways than using time-outs to supervise parts of a │ │ │ distributed Erlang system. Time-outs are usually appropriate to supervise │ │ │ external events, for example, if you have expected a message from some external │ │ │ system within a specified time. For example, a time-out can be used to log a │ │ │ user out of the messenger system if they have not accessed it for, say, ten │ │ │ minutes.

    │ │ │ │ │ │ │ │ │ @@ -209,96 +209,96 @@ │ │ │ something called a signal to all the processes it has links to.

    The signal carries information about the pid it was sent from and the exit │ │ │ reason.

    The default behaviour of a process that receives a normal exit is to ignore the │ │ │ signal.

    The default behaviour in the two other cases (that is, abnormal exit) above is │ │ │ to:

    • Bypass all messages to the receiving process.
    • Kill the receiving process.
    • Propagate the same error signal to the links of the killed process.

    In this way you can connect all processes in a transaction together using links. │ │ │ If one of the processes exits abnormally, all the processes in the transaction │ │ │ are killed. As it is often wanted to create a process and link to it at the same │ │ │ time, there is a special BIF, spawn_link that does the │ │ │ -same as spawn, but also creates a link to the spawned process.

    Now an example of the ping pong example using links to terminate "pong":

    -module(tut20).
    │ │ │ +same as spawn, but also creates a link to the spawned process.

    Now an example of the ping pong example using links to terminate "pong":

    -module(tut20).
    │ │ │  
    │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(N, Pong_Pid) ->
    │ │ │ -    link(Pong_Pid),
    │ │ │ -    ping1(N, Pong_Pid).
    │ │ │ +ping(N, Pong_Pid) ->
    │ │ │ +    link(Pong_Pid),
    │ │ │ +    ping1(N, Pong_Pid).
    │ │ │  
    │ │ │ -ping1(0, _) ->
    │ │ │ -    exit(ping);
    │ │ │ +ping1(0, _) ->
    │ │ │ +    exit(ping);
    │ │ │  
    │ │ │ -ping1(N, Pong_Pid) ->
    │ │ │ -    Pong_Pid ! {ping, self()},
    │ │ │ +ping1(N, Pong_Pid) ->
    │ │ │ +    Pong_Pid ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping1(N - 1, Pong_Pid).
    │ │ │ +    ping1(N - 1, Pong_Pid).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ +pong() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong()
    │ │ │ +            pong()
    │ │ │      end.
    │ │ │  
    │ │ │ -start(Ping_Node) ->
    │ │ │ -    PongPID = spawn(tut20, pong, []),
    │ │ │ -    spawn(Ping_Node, tut20, ping, [3, PongPID]).
    (s1@bill)3> tut20:start(s2@kosken).
    │ │ │ +start(Ping_Node) ->
    │ │ │ +    PongPID = spawn(tut20, pong, []),
    │ │ │ +    spawn(Ping_Node, tut20, ping, [3, PongPID]).
    (s1@bill)3> tut20:start(s2@kosken).
    │ │ │  Pong received ping
    │ │ │  <3820.41.0>
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong

    This is a slight modification of the ping pong program where both processes are │ │ │ spawned from the same start/1 function, and the "ping" process can be spawned │ │ │ on a separate node. Notice the use of the link BIF. "Ping" calls │ │ │ exit(ping) when it finishes and this causes an exit signal to be │ │ │ sent to "pong", which also terminates.

    It is possible to modify the default behaviour of a process so that it does not │ │ │ get killed when it receives abnormal exit signals. Instead, all signals are │ │ │ turned into normal messages on the format {'EXIT',FromPID,Reason} and added to │ │ │ -the end of the receiving process' message queue. This behaviour is set by:

    process_flag(trap_exit, true)

    There are several other process flags, see erlang(3). │ │ │ +the end of the receiving process' message queue. This behaviour is set by:

    process_flag(trap_exit, true)

    There are several other process flags, see erlang(3). │ │ │ Changing the default behaviour of a process in this way is usually not done in │ │ │ standard user programs, but is left to the supervisory programs in OTP. However, │ │ │ -the ping pong program is modified to illustrate exit trapping.

    -module(tut21).
    │ │ │ +the ping pong program is modified to illustrate exit trapping.

    -module(tut21).
    │ │ │  
    │ │ │ --export([start/1,  ping/2, pong/0]).
    │ │ │ +-export([start/1,  ping/2, pong/0]).
    │ │ │  
    │ │ │ -ping(N, Pong_Pid) ->
    │ │ │ -    link(Pong_Pid),
    │ │ │ -    ping1(N, Pong_Pid).
    │ │ │ +ping(N, Pong_Pid) ->
    │ │ │ +    link(Pong_Pid),
    │ │ │ +    ping1(N, Pong_Pid).
    │ │ │  
    │ │ │ -ping1(0, _) ->
    │ │ │ -    exit(ping);
    │ │ │ +ping1(0, _) ->
    │ │ │ +    exit(ping);
    │ │ │  
    │ │ │ -ping1(N, Pong_Pid) ->
    │ │ │ -    Pong_Pid ! {ping, self()},
    │ │ │ +ping1(N, Pong_Pid) ->
    │ │ │ +    Pong_Pid ! {ping, self()},
    │ │ │      receive
    │ │ │          pong ->
    │ │ │ -            io:format("Ping received pong~n", [])
    │ │ │ +            io:format("Ping received pong~n", [])
    │ │ │      end,
    │ │ │ -    ping1(N - 1, Pong_Pid).
    │ │ │ +    ping1(N - 1, Pong_Pid).
    │ │ │  
    │ │ │ -pong() ->
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    pong1().
    │ │ │ +pong() ->
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    pong1().
    │ │ │  
    │ │ │ -pong1() ->
    │ │ │ +pong1() ->
    │ │ │      receive
    │ │ │ -        {ping, Ping_PID} ->
    │ │ │ -            io:format("Pong received ping~n", []),
    │ │ │ +        {ping, Ping_PID} ->
    │ │ │ +            io:format("Pong received ping~n", []),
    │ │ │              Ping_PID ! pong,
    │ │ │ -            pong1();
    │ │ │ -        {'EXIT', From, Reason} ->
    │ │ │ -            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
    │ │ │ +            pong1();
    │ │ │ +        {'EXIT', From, Reason} ->
    │ │ │ +            io:format("pong exiting, got ~p~n", [{'EXIT', From, Reason}])
    │ │ │      end.
    │ │ │  
    │ │ │ -start(Ping_Node) ->
    │ │ │ -    PongPID = spawn(tut21, pong, []),
    │ │ │ -    spawn(Ping_Node, tut21, ping, [3, PongPID]).
    (s1@bill)1> tut21:start(s2@gollum).
    │ │ │ +start(Ping_Node) ->
    │ │ │ +    PongPID = spawn(tut21, pong, []),
    │ │ │ +    spawn(Ping_Node, tut21, ping, [3, PongPID]).
    (s1@bill)1> tut21:start(s2@gollum).
    │ │ │  <3820.39.0>
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │  Pong received ping
    │ │ │  Ping received pong
    │ │ │ @@ -351,135 +351,135 @@
    │ │ │  %%% Started: messenger:client(Server_Node, Name)
    │ │ │  %%% To client: logoff
    │ │ │  %%% To client: {message_to, ToName, Message}
    │ │ │  %%%
    │ │ │  %%% Configuration: change the server_node() function to return the
    │ │ │  %%% name of the node where the messenger server runs
    │ │ │  
    │ │ │ --module(messenger).
    │ │ │ --export([start_server/0, server/0,
    │ │ │ -         logon/1, logoff/0, message/2, client/2]).
    │ │ │ +-module(messenger).
    │ │ │ +-export([start_server/0, server/0,
    │ │ │ +         logon/1, logoff/0, message/2, client/2]).
    │ │ │  
    │ │ │  %%% Change the function below to return the name of the node where the
    │ │ │  %%% messenger server runs
    │ │ │ -server_node() ->
    │ │ │ +server_node() ->
    │ │ │      messenger@super.
    │ │ │  
    │ │ │  %%% This is the server process for the "messenger"
    │ │ │  %%% the user list has the format [{ClientPid1, Name1},{ClientPid22, Name2},...]
    │ │ │ -server() ->
    │ │ │ -    process_flag(trap_exit, true),
    │ │ │ -    server([]).
    │ │ │ +server() ->
    │ │ │ +    process_flag(trap_exit, true),
    │ │ │ +    server([]).
    │ │ │  
    │ │ │ -server(User_List) ->
    │ │ │ +server(User_List) ->
    │ │ │      receive
    │ │ │ -        {From, logon, Name} ->
    │ │ │ -            New_User_List = server_logon(From, Name, User_List),
    │ │ │ -            server(New_User_List);
    │ │ │ -        {'EXIT', From, _} ->
    │ │ │ -            New_User_List = server_logoff(From, User_List),
    │ │ │ -            server(New_User_List);
    │ │ │ -        {From, message_to, To, Message} ->
    │ │ │ -            server_transfer(From, To, Message, User_List),
    │ │ │ -            io:format("list is now: ~p~n", [User_List]),
    │ │ │ -            server(User_List)
    │ │ │ +        {From, logon, Name} ->
    │ │ │ +            New_User_List = server_logon(From, Name, User_List),
    │ │ │ +            server(New_User_List);
    │ │ │ +        {'EXIT', From, _} ->
    │ │ │ +            New_User_List = server_logoff(From, User_List),
    │ │ │ +            server(New_User_List);
    │ │ │ +        {From, message_to, To, Message} ->
    │ │ │ +            server_transfer(From, To, Message, User_List),
    │ │ │ +            io:format("list is now: ~p~n", [User_List]),
    │ │ │ +            server(User_List)
    │ │ │      end.
    │ │ │  
    │ │ │  %%% Start the server
    │ │ │ -start_server() ->
    │ │ │ -    register(messenger, spawn(messenger, server, [])).
    │ │ │ +start_server() ->
    │ │ │ +    register(messenger, spawn(messenger, server, [])).
    │ │ │  
    │ │ │  %%% Server adds a new user to the user list
    │ │ │ -server_logon(From, Name, User_List) ->
    │ │ │ +server_logon(From, Name, User_List) ->
    │ │ │      %% check if logged on anywhere else
    │ │ │ -    case lists:keymember(Name, 2, User_List) of
    │ │ │ +    case lists:keymember(Name, 2, User_List) of
    │ │ │          true ->
    │ │ │ -            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │ +            From ! {messenger, stop, user_exists_at_other_node},  %reject logon
    │ │ │              User_List;
    │ │ │          false ->
    │ │ │ -            From ! {messenger, logged_on},
    │ │ │ -            link(From),
    │ │ │ -            [{From, Name} | User_List]        %add user to the list
    │ │ │ +            From ! {messenger, logged_on},
    │ │ │ +            link(From),
    │ │ │ +            [{From, Name} | User_List]        %add user to the list
    │ │ │      end.
    │ │ │  
    │ │ │  %%% Server deletes a user from the user list
    │ │ │ -server_logoff(From, User_List) ->
    │ │ │ -    lists:keydelete(From, 1, User_List).
    │ │ │ +server_logoff(From, User_List) ->
    │ │ │ +    lists:keydelete(From, 1, User_List).
    │ │ │  
    │ │ │  
    │ │ │  %%% Server transfers a message between user
    │ │ │ -server_transfer(From, To, Message, User_List) ->
    │ │ │ +server_transfer(From, To, Message, User_List) ->
    │ │ │      %% check that the user is logged on and who he is
    │ │ │ -    case lists:keysearch(From, 1, User_List) of
    │ │ │ +    case lists:keysearch(From, 1, User_List) of
    │ │ │          false ->
    │ │ │ -            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ -        {value, {_, Name}} ->
    │ │ │ -            server_transfer(From, Name, To, Message, User_List)
    │ │ │ +            From ! {messenger, stop, you_are_not_logged_on};
    │ │ │ +        {value, {_, Name}} ->
    │ │ │ +            server_transfer(From, Name, To, Message, User_List)
    │ │ │      end.
    │ │ │  
    │ │ │  %%% If the user exists, send the message
    │ │ │ -server_transfer(From, Name, To, Message, User_List) ->
    │ │ │ +server_transfer(From, Name, To, Message, User_List) ->
    │ │ │      %% Find the receiver and send the message
    │ │ │ -    case lists:keysearch(To, 2, User_List) of
    │ │ │ +    case lists:keysearch(To, 2, User_List) of
    │ │ │          false ->
    │ │ │ -            From ! {messenger, receiver_not_found};
    │ │ │ -        {value, {ToPid, To}} ->
    │ │ │ -            ToPid ! {message_from, Name, Message},
    │ │ │ -            From ! {messenger, sent}
    │ │ │ +            From ! {messenger, receiver_not_found};
    │ │ │ +        {value, {ToPid, To}} ->
    │ │ │ +            ToPid ! {message_from, Name, Message},
    │ │ │ +            From ! {messenger, sent}
    │ │ │      end.
    │ │ │  
    │ │ │  %%% User Commands
    │ │ │ -logon(Name) ->
    │ │ │ -    case whereis(mess_client) of
    │ │ │ +logon(Name) ->
    │ │ │ +    case whereis(mess_client) of
    │ │ │          undefined ->
    │ │ │ -            register(mess_client,
    │ │ │ -                     spawn(messenger, client, [server_node(), Name]));
    │ │ │ +            register(mess_client,
    │ │ │ +                     spawn(messenger, client, [server_node(), Name]));
    │ │ │          _ -> already_logged_on
    │ │ │      end.
    │ │ │  
    │ │ │ -logoff() ->
    │ │ │ +logoff() ->
    │ │ │      mess_client ! logoff.
    │ │ │  
    │ │ │ -message(ToName, Message) ->
    │ │ │ -    case whereis(mess_client) of % Test if the client is running
    │ │ │ +message(ToName, Message) ->
    │ │ │ +    case whereis(mess_client) of % Test if the client is running
    │ │ │          undefined ->
    │ │ │              not_logged_on;
    │ │ │ -        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │ +        _ -> mess_client ! {message_to, ToName, Message},
    │ │ │               ok
    │ │ │  end.
    │ │ │  
    │ │ │  %%% The client process which runs on each user node
    │ │ │ -client(Server_Node, Name) ->
    │ │ │ -    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ -    await_result(),
    │ │ │ -    client(Server_Node).
    │ │ │ +client(Server_Node, Name) ->
    │ │ │ +    {messenger, Server_Node} ! {self(), logon, Name},
    │ │ │ +    await_result(),
    │ │ │ +    client(Server_Node).
    │ │ │  
    │ │ │ -client(Server_Node) ->
    │ │ │ +client(Server_Node) ->
    │ │ │      receive
    │ │ │          logoff ->
    │ │ │ -            exit(normal);
    │ │ │ -        {message_to, ToName, Message} ->
    │ │ │ -            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ -            await_result();
    │ │ │ -        {message_from, FromName, Message} ->
    │ │ │ -            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │ +            exit(normal);
    │ │ │ +        {message_to, ToName, Message} ->
    │ │ │ +            {messenger, Server_Node} ! {self(), message_to, ToName, Message},
    │ │ │ +            await_result();
    │ │ │ +        {message_from, FromName, Message} ->
    │ │ │ +            io:format("Message from ~p: ~p~n", [FromName, Message])
    │ │ │      end,
    │ │ │ -    client(Server_Node).
    │ │ │ +    client(Server_Node).
    │ │ │  
    │ │ │  %%% wait for a response from the server
    │ │ │ -await_result() ->
    │ │ │ +await_result() ->
    │ │ │      receive
    │ │ │ -        {messenger, stop, Why} -> % Stop the client
    │ │ │ -            io:format("~p~n", [Why]),
    │ │ │ -            exit(normal);
    │ │ │ -        {messenger, What} ->  % Normal response
    │ │ │ -            io:format("~p~n", [What])
    │ │ │ +        {messenger, stop, Why} -> % Stop the client
    │ │ │ +            io:format("~p~n", [Why]),
    │ │ │ +            exit(normal);
    │ │ │ +        {messenger, What} ->  % Normal response
    │ │ │ +            io:format("~p~n", [What])
    │ │ │      after 5000 ->
    │ │ │ -            io:format("No response from server~n", []),
    │ │ │ -            exit(timeout)
    │ │ │ +            io:format("No response from server~n", []),
    │ │ │ +            exit(timeout)
    │ │ │      end.

    The following changes are added:

    The messenger server traps exits. If it receives an exit signal, │ │ │ {'EXIT',From,Reason}, this means that a client process has terminated or is │ │ │ unreachable for one of the following reasons:

    • The user has logged off (the "logoff" message is removed).
    • The network connection to the client is broken.
    • The node on which the client process resides has gone down.
    • The client processes has done some illegal operation.

    If an exit signal is received as above, the tuple {From,Name} is deleted from │ │ │ the servers User_List using the server_logoff function. If the node on which │ │ │ the server runs goes down, an exit signal (automatically generated by the │ │ │ system) is sent to all of the client processes: │ │ │ {'EXIT',MessengerPID,noconnection} causing all the client processes to │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/search.html │ │ │ @@ -108,15 +108,15 @@ │ │ │

    │ │ │ - │ │ │ + │ │ │
    │ │ │

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/seq_prog.html │ │ │ @@ -136,293 +136,293 @@ │ │ │ 7 │ │ │ 2>

    As shown, the Erlang shell numbers the lines that can be entered, (as 1> 2>) and │ │ │ that it correctly says that 2 + 5 is 7. If you make writing mistakes in the │ │ │ shell, you can delete with the backspace key, as in most shells. There are many │ │ │ more editing commands in the shell (see │ │ │ tty - A command line interface in ERTS User's Guide).

    (Notice that many line numbers given by the shell in the following examples are │ │ │ out of sequence. This is because this tutorial was written and code-tested in │ │ │ -separate sessions).

    Here is a bit more complex calculation:

    2> (42 + 77) * 66 / 3.
    │ │ │ +separate sessions).

    Here is a bit more complex calculation:

    2> (42 + 77) * 66 / 3.
    │ │ │  2618.0

    Notice the use of brackets, the multiplication operator *, and the division │ │ │ operator /, as in normal arithmetic (see │ │ │ Expressions).

    Press Control-C to shut down the Erlang system and the Erlang shell.

    The following output is shown:

    BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
    │ │ │         (v)ersion (k)ill (D)b-tables (d)istribution
    │ │ │  a
    │ │ │ -$

    Type a to leave the Erlang system.

    Another way to shut down the Erlang system is by entering halt/0:

    3> halt().
    │ │ │ +$

    Type a to leave the Erlang system.

    Another way to shut down the Erlang system is by entering halt/0:

    3> halt().
    │ │ │  $

    │ │ │ │ │ │ │ │ │ │ │ │ Modules and Functions │ │ │

    │ │ │

    A programming language is not much use if you only can run code from the shell. │ │ │ So here is a small Erlang program. Enter it into a file named tut.erl using a │ │ │ suitable text editor. The file name tut.erl is important, and also that it is │ │ │ in the same directory as the one where you started erl). If you are lucky your │ │ │ editor has an Erlang mode that makes it easier for you to enter and format your │ │ │ code nicely (see The Erlang mode for Emacs │ │ │ in Tools User's Guide), but you can manage perfectly well without. Here is the │ │ │ -code to enter:

    -module(tut).
    │ │ │ --export([double/1]).
    │ │ │ +code to enter:

    -module(tut).
    │ │ │ +-export([double/1]).
    │ │ │  
    │ │ │ -double(X) ->
    │ │ │ +double(X) ->
    │ │ │      2 * X.

    It is not hard to guess that this program doubles the value of numbers. The │ │ │ first two lines of the code are described later. Let us compile the program. │ │ │ -This can be done in an Erlang shell as follows, where c means compile:

    3> c(tut).
    │ │ │ -{ok,tut}

    The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ +This can be done in an Erlang shell as follows, where c means compile:

    3> c(tut).
    │ │ │ +{ok,tut}

    The {ok,tut} means that the compilation is OK. If it says error it means │ │ │ that there is some mistake in the text that you entered. Additional error │ │ │ messages gives an idea to what is wrong so you can modify the text and then try │ │ │ -to compile the program again.

    Now run the program:

    4> tut:double(10).
    │ │ │ +to compile the program again.

    Now run the program:

    4> tut:double(10).
    │ │ │  20

    As expected, double of 10 is 20.

    Now let us get back to the first two lines of the code. Erlang programs are │ │ │ written in files. Each file contains an Erlang module. The first line of code │ │ │ -in the module is the module name (see Modules):

    -module(tut).

    Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ +in the module is the module name (see Modules):

    -module(tut).

    Thus, the module is called tut. Notice the full stop . at the end of the │ │ │ line. The files which are used to store the module must have the same name as │ │ │ the module but with the extension .erl. In this case the file name is │ │ │ tut.erl. When using a function in another module, the syntax │ │ │ module_name:function_name(arguments) is used. So the following means call │ │ │ -function double in module tut with argument 10.

    4> tut:double(10).

    The second line says that the module tut contains a function called double, │ │ │ -which takes one argument (X in our example):

    -export([double/1]).

    The second line also says that this function can be called from outside the │ │ │ +function double in module tut with argument 10.

    4> tut:double(10).

    The second line says that the module tut contains a function called double, │ │ │ +which takes one argument (X in our example):

    -export([double/1]).

    The second line also says that this function can be called from outside the │ │ │ module tut. More about this later. Again, notice the . at the end of the │ │ │ line.

    Now for a more complicated example, the factorial of a number. For example, the │ │ │ -factorial of 4 is 4 3 2 * 1, which equals 24.

    Enter the following code in a file named tut1.erl:

    -module(tut1).
    │ │ │ --export([fac/1]).
    │ │ │ +factorial of 4 is 4  3  2 * 1, which equals 24.

    Enter the following code in a file named tut1.erl:

    -module(tut1).
    │ │ │ +-export([fac/1]).
    │ │ │  
    │ │ │ -fac(1) ->
    │ │ │ +fac(1) ->
    │ │ │      1;
    │ │ │ -fac(N) ->
    │ │ │ -    N * fac(N - 1).

    So this is a module, called tut1 that contains a function called fac>, which │ │ │ -takes one argument, N.

    The first part says that the factorial of 1 is 1.:

    fac(1) ->
    │ │ │ +fac(N) ->
    │ │ │ +    N * fac(N - 1).

    So this is a module, called tut1 that contains a function called fac>, which │ │ │ +takes one argument, N.

    The first part says that the factorial of 1 is 1.:

    fac(1) ->
    │ │ │      1;

    Notice that this part ends with a semicolon ; that indicates that there is │ │ │ more of the function fac> to come.

    The second part says that the factorial of N is N multiplied by the factorial of │ │ │ -N - 1:

    fac(N) ->
    │ │ │ -    N * fac(N - 1).

    Notice that this part ends with a . saying that there are no more parts of │ │ │ -this function.

    Compile the file:

    5> c(tut1).
    │ │ │ -{ok,tut1}

    And now calculate the factorial of 4.

    6> tut1:fac(4).
    │ │ │ +N - 1:

    fac(N) ->
    │ │ │ +    N * fac(N - 1).

    Notice that this part ends with a . saying that there are no more parts of │ │ │ +this function.

    Compile the file:

    5> c(tut1).
    │ │ │ +{ok,tut1}

    And now calculate the factorial of 4.

    6> tut1:fac(4).
    │ │ │  24

    Here the function fac> in module tut1 is called with argument 4.

    A function can have many arguments. Let us expand the module tut1 with the │ │ │ -function to multiply two numbers:

    -module(tut1).
    │ │ │ --export([fac/1, mult/2]).
    │ │ │ +function to multiply two numbers:

    -module(tut1).
    │ │ │ +-export([fac/1, mult/2]).
    │ │ │  
    │ │ │ -fac(1) ->
    │ │ │ +fac(1) ->
    │ │ │      1;
    │ │ │ -fac(N) ->
    │ │ │ -    N * fac(N - 1).
    │ │ │ +fac(N) ->
    │ │ │ +    N * fac(N - 1).
    │ │ │  
    │ │ │ -mult(X, Y) ->
    │ │ │ +mult(X, Y) ->
    │ │ │      X * Y.

    Notice that it is also required to expand the -export line with the │ │ │ -information that there is another function mult with two arguments.

    Compile:

    7> c(tut1).
    │ │ │ -{ok,tut1}

    Try out the new function mult:

    8> tut1:mult(3,4).
    │ │ │ +information that there is another function mult with two arguments.

    Compile:

    7> c(tut1).
    │ │ │ +{ok,tut1}

    Try out the new function mult:

    8> tut1:mult(3,4).
    │ │ │  12

    In this example the numbers are integers and the arguments in the functions in │ │ │ the code N, X, and Y are called variables. Variables must start with a │ │ │ capital letter (see Variables). Examples of │ │ │ variables are Number, ShoeSize, and Age.

    │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │

    │ │ │

    Atom is another data type in Erlang. Atoms start with a small letter (see │ │ │ Atom), for example, charles, centimeter, and │ │ │ inch. Atoms are simply names, nothing else. They are not like variables, which │ │ │ can have a value.

    Enter the next program in a file named tut2.erl). It can be useful for │ │ │ -converting from inches to centimeters and conversely:

    -module(tut2).
    │ │ │ --export([convert/2]).
    │ │ │ +converting from inches to centimeters and conversely:

    -module(tut2).
    │ │ │ +-export([convert/2]).
    │ │ │  
    │ │ │ -convert(M, inch) ->
    │ │ │ +convert(M, inch) ->
    │ │ │      M / 2.54;
    │ │ │  
    │ │ │ -convert(N, centimeter) ->
    │ │ │ -    N * 2.54.

    Compile:

    9> c(tut2).
    │ │ │ -{ok,tut2}

    Test:

    10> tut2:convert(3, inch).
    │ │ │ +convert(N, centimeter) ->
    │ │ │ +    N * 2.54.

    Compile:

    9> c(tut2).
    │ │ │ +{ok,tut2}

    Test:

    10> tut2:convert(3, inch).
    │ │ │  1.1811023622047243
    │ │ │ -11> tut2:convert(7, centimeter).
    │ │ │ +11> tut2:convert(7, centimeter).
    │ │ │  17.78

    Notice the introduction of decimals (floating point numbers) without any │ │ │ explanation. Hopefully you can cope with that.

    Let us see what happens if something other than centimeter or inch is │ │ │ -entered in the convert function:

    12> tut2:convert(3, miles).
    │ │ │ +entered in the convert function:

    12> tut2:convert(3, miles).
    │ │ │  ** exception error: no function clause matching tut2:convert(3,miles) (tut2.erl, line 4)

    The two parts of the convert function are called its clauses. As shown, │ │ │ miles is not part of either of the clauses. The Erlang system cannot match │ │ │ either of the clauses so an error message function_clause is returned. The │ │ │ shell formats the error message nicely, but the error tuple is saved in the │ │ │ -shell's history list and can be output by the shell command v/1:

    13> v(12).
    │ │ │ -{'EXIT',{function_clause,[{tut2,convert,
    │ │ │ -                                [3,miles],
    │ │ │ -                                [{file,"tut2.erl"},{line,4}]},
    │ │ │ -                          {erl_eval,do_apply,6,
    │ │ │ -                                    [{file,"erl_eval.erl"},{line,677}]},
    │ │ │ -                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
    │ │ │ -                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
    │ │ │ -                          {shell,eval_loop,3,
    │ │ │ -                                 [{file,"shell.erl"},{line,627}]}]}}

    │ │ │ +shell's history list and can be output by the shell command v/1:

    13> v(12).
    │ │ │ +{'EXIT',{function_clause,[{tut2,convert,
    │ │ │ +                                [3,miles],
    │ │ │ +                                [{file,"tut2.erl"},{line,4}]},
    │ │ │ +                          {erl_eval,do_apply,6,
    │ │ │ +                                    [{file,"erl_eval.erl"},{line,677}]},
    │ │ │ +                          {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
    │ │ │ +                          {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
    │ │ │ +                          {shell,eval_loop,3,
    │ │ │ +                                 [{file,"shell.erl"},{line,627}]}]}}

    │ │ │ │ │ │ │ │ │ │ │ │ Tuples │ │ │

    │ │ │ -

    Now the tut2 program is hardly good programming style. Consider:

    tut2:convert(3, inch).

    Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ +

    Now the tut2 program is hardly good programming style. Consider:

    tut2:convert(3, inch).

    Does this mean that 3 is in inches? Or does it mean that 3 is in centimeters and │ │ │ is to be converted to inches? Erlang has a way to group things together to make │ │ │ things more understandable. These are called tuples and are surrounded by │ │ │ curly brackets, { and }.

    So, {inch,3} denotes 3 inches and {centimeter,5} denotes 5 centimeters. Now │ │ │ let us write a new program that converts centimeters to inches and conversely. │ │ │ -Enter the following code in a file called tut3.erl):

    -module(tut3).
    │ │ │ --export([convert_length/1]).
    │ │ │ +Enter the following code in a file called tut3.erl):

    -module(tut3).
    │ │ │ +-export([convert_length/1]).
    │ │ │  
    │ │ │ -convert_length({centimeter, X}) ->
    │ │ │ -    {inch, X / 2.54};
    │ │ │ -convert_length({inch, Y}) ->
    │ │ │ -    {centimeter, Y * 2.54}.

    Compile and test:

    14> c(tut3).
    │ │ │ -{ok,tut3}
    │ │ │ -15> tut3:convert_length({inch, 5}).
    │ │ │ -{centimeter,12.7}
    │ │ │ -16> tut3:convert_length(tut3:convert_length({inch, 5})).
    │ │ │ -{inch,5.0}

    Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ +convert_length({centimeter, X}) -> │ │ │ + {inch, X / 2.54}; │ │ │ +convert_length({inch, Y}) -> │ │ │ + {centimeter, Y * 2.54}.

    Compile and test:

    14> c(tut3).
    │ │ │ +{ok,tut3}
    │ │ │ +15> tut3:convert_length({inch, 5}).
    │ │ │ +{centimeter,12.7}
    │ │ │ +16> tut3:convert_length(tut3:convert_length({inch, 5})).
    │ │ │ +{inch,5.0}

    Notice on line 16 that 5 inches is converted to centimeters and back again and │ │ │ reassuringly get back to the original value. That is, the argument to a function │ │ │ can be the result of another function. Consider how line 16 (above) works. The │ │ │ argument given to the function {inch,5} is first matched against the first │ │ │ head clause of convert_length, that is, convert_length({centimeter,X}). It │ │ │ can be seen that {centimeter,X} does not match {inch,5} (the head is the bit │ │ │ before the ->). This having failed, let us try the head of the next clause │ │ │ that is, convert_length({inch,Y}). This matches, and Y gets the value 5.

    Tuples can have more than two parts, in fact as many parts as you want, and │ │ │ contain any valid Erlang term. For example, to represent the temperature of │ │ │ -various cities of the world:

    {moscow, {c, -10}}
    │ │ │ -{cape_town, {f, 70}}
    │ │ │ -{paris, {f, 28}}

    Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ +various cities of the world:

    {moscow, {c, -10}}
    │ │ │ +{cape_town, {f, 70}}
    │ │ │ +{paris, {f, 28}}

    Tuples have a fixed number of items in them. Each item in a tuple is called an │ │ │ element. In the tuple {moscow,{c,-10}}, element 1 is moscow and element 2 │ │ │ is {c,-10}. Here c represents Celsius and f Fahrenheit.

    │ │ │ │ │ │ │ │ │ │ │ │ Lists │ │ │

    │ │ │

    Whereas tuples group things together, it is also needed to represent lists of │ │ │ things. Lists in Erlang are surrounded by square brackets, [ and ]. For │ │ │ -example, a list of the temperatures of various cities in the world can be:

    [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
    │ │ │ - {paris, {f, 28}}, {london, {f, 36}}]

    Notice that this list was so long that it did not fit on one line. This does not │ │ │ +example, a list of the temperatures of various cities in the world can be:

    [{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
    │ │ │ + {paris, {f, 28}}, {london, {f, 36}}]

    Notice that this list was so long that it did not fit on one line. This does not │ │ │ matter, Erlang allows line breaks at all "sensible places" but not, for example, │ │ │ in the middle of atoms, integers, and others.

    A useful way of looking at parts of lists, is by using |. This is best │ │ │ -explained by an example using the shell:

    17> [First |TheRest] = [1,2,3,4,5].
    │ │ │ -[1,2,3,4,5]
    │ │ │ +explained by an example using the shell:

    17> [First |TheRest] = [1,2,3,4,5].
    │ │ │ +[1,2,3,4,5]
    │ │ │  18> First.
    │ │ │  1
    │ │ │  19> TheRest.
    │ │ │ -[2,3,4,5]

    To separate the first elements of the list from the rest of the list, | is │ │ │ -used. First has got value 1 and TheRest has got the value [2,3,4,5].

    Another example:

    20> [E1, E2 | R] = [1,2,3,4,5,6,7].
    │ │ │ -[1,2,3,4,5,6,7]
    │ │ │ +[2,3,4,5]

    To separate the first elements of the list from the rest of the list, | is │ │ │ +used. First has got value 1 and TheRest has got the value [2,3,4,5].

    Another example:

    20> [E1, E2 | R] = [1,2,3,4,5,6,7].
    │ │ │ +[1,2,3,4,5,6,7]
    │ │ │  21> E1.
    │ │ │  1
    │ │ │  22> E2.
    │ │ │  2
    │ │ │  23> R.
    │ │ │ -[3,4,5,6,7]

    Here you see the use of | to get the first two elements from the list. If you │ │ │ +[3,4,5,6,7]

    Here you see the use of | to get the first two elements from the list. If you │ │ │ try to get more elements from the list than there are elements in the list, an │ │ │ error is returned. Notice also the special case of the list with no elements, │ │ │ -[]:

    24> [A, B | C] = [1, 2].
    │ │ │ -[1,2]
    │ │ │ +[]:

    24> [A, B | C] = [1, 2].
    │ │ │ +[1,2]
    │ │ │  25> A.
    │ │ │  1
    │ │ │  26> B.
    │ │ │  2
    │ │ │  27> C.
    │ │ │ -[]

    In the previous examples, new variable names are used, instead of reusing the │ │ │ +[]

    In the previous examples, new variable names are used, instead of reusing the │ │ │ old ones: First, TheRest, E1, E2, R, A, B, and C. The reason for │ │ │ this is that a variable can only be given a value once in its context (scope). │ │ │ More about this later.

    The following example shows how to find the length of a list. Enter the │ │ │ -following code in a file named tut4.erl:

    -module(tut4).
    │ │ │ +following code in a file named tut4.erl:

    -module(tut4).
    │ │ │  
    │ │ │ --export([list_length/1]).
    │ │ │ +-export([list_length/1]).
    │ │ │  
    │ │ │ -list_length([]) ->
    │ │ │ +list_length([]) ->
    │ │ │      0;
    │ │ │ -list_length([First | Rest]) ->
    │ │ │ -    1 + list_length(Rest).

    Compile and test:

    28> c(tut4).
    │ │ │ -{ok,tut4}
    │ │ │ -29> tut4:list_length([1,2,3,4,5,6,7]).
    │ │ │ -7

    Explanation:

    list_length([]) ->
    │ │ │ -    0;

    The length of an empty list is obviously 0.

    list_length([First | Rest]) ->
    │ │ │ -    1 + list_length(Rest).

    The length of a list with the first element First and the remaining elements │ │ │ +list_length([First | Rest]) -> │ │ │ + 1 + list_length(Rest).

    Compile and test:

    28> c(tut4).
    │ │ │ +{ok,tut4}
    │ │ │ +29> tut4:list_length([1,2,3,4,5,6,7]).
    │ │ │ +7

    Explanation:

    list_length([]) ->
    │ │ │ +    0;

    The length of an empty list is obviously 0.

    list_length([First | Rest]) ->
    │ │ │ +    1 + list_length(Rest).

    The length of a list with the first element First and the remaining elements │ │ │ Rest is 1 + the length of Rest.

    (Advanced readers only: This is not tail recursive, there is a better way to │ │ │ write this function.)

    In general, tuples are used where "records" or "structs" are used in other │ │ │ languages. Also, lists are used when representing things with varying sizes, │ │ │ that is, where linked lists are used in other languages.

    Erlang does not have a string data type. Instead, strings can be represented by │ │ │ lists of Unicode characters. This implies for example that the list [97,98,99] │ │ │ is equivalent to "abc". The Erlang shell is "clever" and guesses what list you │ │ │ -mean and outputs it in what it thinks is the most appropriate form, for example:

    30> [97,98,99].
    │ │ │ +mean and outputs it in what it thinks is the most appropriate form, for example:

    30> [97,98,99].
    │ │ │  "abc"

    │ │ │ │ │ │ │ │ │ │ │ │ Maps │ │ │

    │ │ │

    Maps are a set of key to value associations. These associations are encapsulated │ │ │ -with #{ and }. To create an association from "key" to value 42:

    > #{ "key" => 42 }.
    │ │ │ -#{"key" => 42}

    Let us jump straight into the deep end with an example using some interesting │ │ │ +with #{ and }. To create an association from "key" to value 42:

    > #{ "key" => 42 }.
    │ │ │ +#{"key" => 42}

    Let us jump straight into the deep end with an example using some interesting │ │ │ features.

    The following example shows how to calculate alpha blending using maps to │ │ │ -reference color and alpha channels. Enter the code in a file named color.erl):

    -module(color).
    │ │ │ +reference color and alpha channels. Enter the code in a file named color.erl):

    -module(color).
    │ │ │  
    │ │ │ --export([new/4, blend/2]).
    │ │ │ +-export([new/4, blend/2]).
    │ │ │  
    │ │ │ --define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
    │ │ │ +-define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).
    │ │ │  
    │ │ │ -new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.
    │ │ │ -
    │ │ │ -blend(Src,Dst) ->
    │ │ │ -    blend(Src,Dst,alpha(Src,Dst)).
    │ │ │ -
    │ │ │ -blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ -    Dst#{
    │ │ │ -        red   := red(Src,Dst) / Alpha,
    │ │ │ -        green := green(Src,Dst) / Alpha,
    │ │ │ -        blue  := blue(Src,Dst) / Alpha,
    │ │ │ +new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.
    │ │ │ +
    │ │ │ +blend(Src,Dst) ->
    │ │ │ +    blend(Src,Dst,alpha(Src,Dst)).
    │ │ │ +
    │ │ │ +blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ +    Dst#{
    │ │ │ +        red   := red(Src,Dst) / Alpha,
    │ │ │ +        green := green(Src,Dst) / Alpha,
    │ │ │ +        blue  := blue(Src,Dst) / Alpha,
    │ │ │          alpha := Alpha
    │ │ │ -    };
    │ │ │ -blend(_,Dst,_) ->
    │ │ │ -    Dst#{
    │ │ │ +    };
    │ │ │ +blend(_,Dst,_) ->
    │ │ │ +    Dst#{
    │ │ │          red   := 0.0,
    │ │ │          green := 0.0,
    │ │ │          blue  := 0.0,
    │ │ │          alpha := 0.0
    │ │ │ -    }.
    │ │ │ +    }.
    │ │ │  
    │ │ │ -alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ -    SA + DA*(1.0 - SA).
    │ │ │ +alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ +    SA + DA*(1.0 - SA).
    │ │ │  
    │ │ │ -red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
    │ │ │ -green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).
    │ │ │ -blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

    Compile and test:

    > c(color).
    │ │ │ -{ok,color}
    │ │ │ -> C1 = color:new(0.3,0.4,0.5,1.0).
    │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ -> C2 = color:new(1.0,0.8,0.1,0.3).
    │ │ │ -#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
    │ │ │ -> color:blend(C1,C2).
    │ │ │ -#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ -> color:blend(C2,C1).
    │ │ │ -#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

    This example warrants some explanation:

    -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

    First a macro is_channel is defined to help with the guard tests. This is only │ │ │ +red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ +green(#{green := SV, alpha := SA}, #{green := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA). │ │ │ +blue(#{blue := SV, alpha := SA}, #{blue := DV, alpha := DA}) -> │ │ │ + SV*SA + DV*DA*(1.0 - SA).

    Compile and test:

    > c(color).
    │ │ │ +{ok,color}
    │ │ │ +> C1 = color:new(0.3,0.4,0.5,1.0).
    │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ +> C2 = color:new(1.0,0.8,0.1,0.3).
    │ │ │ +#{alpha => 0.3,blue => 0.1,green => 0.8,red => 1.0}
    │ │ │ +> color:blend(C1,C2).
    │ │ │ +#{alpha => 1.0,blue => 0.5,green => 0.4,red => 0.3}
    │ │ │ +> color:blend(C2,C1).
    │ │ │ +#{alpha => 1.0,blue => 0.38,green => 0.52,red => 0.51}

    This example warrants some explanation:

    -define(is_channel(V), (is_float(V) andalso V >= 0.0 andalso V =< 1.0)).

    First a macro is_channel is defined to help with the guard tests. This is only │ │ │ here for convenience and to reduce syntax cluttering. For more information about │ │ │ -macros, see The Preprocessor.

    new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ -                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ -    #{red => R, green => G, blue => B, alpha => A}.

    The function new/4 creates a new map term and lets the keys red, green, │ │ │ +macros, see The Preprocessor.

    new(R,G,B,A) when ?is_channel(R), ?is_channel(G),
    │ │ │ +                  ?is_channel(B), ?is_channel(A) ->
    │ │ │ +    #{red => R, green => G, blue => B, alpha => A}.

    The function new/4 creates a new map term and lets the keys red, green, │ │ │ blue, and alpha be associated with an initial value. In this case, only │ │ │ float values between and including 0.0 and 1.0 are allowed, as ensured by the │ │ │ ?is_channel/1 macro for each argument. Only the => operator is allowed when │ │ │ creating a new map.

    By calling blend/2 on any color term created by new/4, the resulting color │ │ │ -can be calculated as determined by the two map terms.

    The first thing blend/2 does is to calculate the resulting alpha channel:

    alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ -    SA + DA*(1.0 - SA).

    The value associated with key alpha is fetched for both arguments using the │ │ │ +can be calculated as determined by the two map terms.

    The first thing blend/2 does is to calculate the resulting alpha channel:

    alpha(#{alpha := SA}, #{alpha := DA}) ->
    │ │ │ +    SA + DA*(1.0 - SA).

    The value associated with key alpha is fetched for both arguments using the │ │ │ := operator. The other keys in the map are ignored, only the key alpha is │ │ │ -required and checked for.

    This is also the case for functions red/2, blue/2, and green/2.

    red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ -    SV*SA + DV*DA*(1.0 - SA).

    The difference here is that a check is made for two keys in each map argument. │ │ │ -The other keys are ignored.

    Finally, let us return the resulting color in blend/3:

    blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ -    Dst#{
    │ │ │ -        red   := red(Src,Dst) / Alpha,
    │ │ │ -        green := green(Src,Dst) / Alpha,
    │ │ │ -        blue  := blue(Src,Dst) / Alpha,
    │ │ │ +required and checked for.

    This is also the case for functions red/2, blue/2, and green/2.

    red(#{red := SV, alpha := SA}, #{red := DV, alpha := DA}) ->
    │ │ │ +    SV*SA + DV*DA*(1.0 - SA).

    The difference here is that a check is made for two keys in each map argument. │ │ │ +The other keys are ignored.

    Finally, let us return the resulting color in blend/3:

    blend(Src,Dst,Alpha) when Alpha > 0.0 ->
    │ │ │ +    Dst#{
    │ │ │ +        red   := red(Src,Dst) / Alpha,
    │ │ │ +        green := green(Src,Dst) / Alpha,
    │ │ │ +        blue  := blue(Src,Dst) / Alpha,
    │ │ │          alpha := Alpha
    │ │ │ -    };

    The Dst map is updated with new channel values. The syntax for updating an │ │ │ + };

    The Dst map is updated with new channel values. The syntax for updating an │ │ │ existing key with a new value is with the := operator.

    │ │ │ │ │ │ │ │ │ │ │ │ Standard Modules and Manual Pages │ │ │

    │ │ │

    Erlang has many standard modules to help you do things. For example, the module │ │ │ @@ -442,24 +442,24 @@ │ │ │ │ │ │ │ │ │ │ │ │ Writing Output to a Terminal │ │ │

    │ │ │

    It is nice to be able to do formatted output in examples, so the next example │ │ │ shows a simple way to use the io:format/2 function. Like all other exported │ │ │ -functions, you can test the io:format/2 function in the shell:

    31> io:format("hello world~n", []).
    │ │ │ +functions, you can test the io:format/2 function in the shell:

    31> io:format("hello world~n", []).
    │ │ │  hello world
    │ │ │  ok
    │ │ │ -32> io:format("this outputs one Erlang term: ~w~n", [hello]).
    │ │ │ +32> io:format("this outputs one Erlang term: ~w~n", [hello]).
    │ │ │  this outputs one Erlang term: hello
    │ │ │  ok
    │ │ │ -33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
    │ │ │ +33> io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
    │ │ │  this outputs two Erlang terms: helloworld
    │ │ │  ok
    │ │ │ -34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
    │ │ │ +34> io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
    │ │ │  this outputs two Erlang terms: hello world
    │ │ │  ok

    The function io:format/2 (that is, format with two arguments) takes two lists. │ │ │ The first one is nearly always a list written between " ". This list is printed │ │ │ out as it is, except that each ~w is replaced by a term taken in order from the │ │ │ second list. Each ~n is replaced by a new line. The io:format/2 function │ │ │ itself returns the atom ok if everything goes as planned. Like other functions │ │ │ in Erlang, it crashes if an error occurs. This is not a fault in Erlang, it is a │ │ │ @@ -473,34 +473,34 @@ │ │ │ A Larger Example │ │ │ │ │ │

    Now for a larger example to consolidate what you have learnt so far. Assume that │ │ │ you have a list of temperature readings from a number of cities in the world. │ │ │ Some of them are in Celsius and some in Fahrenheit (as in the previous list). │ │ │ First let us convert them all to Celsius, then let us print the data neatly.

    %% This module is in file tut5.erl
    │ │ │  
    │ │ │ --module(tut5).
    │ │ │ --export([format_temps/1]).
    │ │ │ +-module(tut5).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │  %% Only this function is exported
    │ │ │ -format_temps([])->                        % No output for an empty list
    │ │ │ +format_temps([])->                        % No output for an empty list
    │ │ │      ok;
    │ │ │ -format_temps([City | Rest]) ->
    │ │ │ -    print_temp(convert_to_celsius(City)),
    │ │ │ -    format_temps(Rest).
    │ │ │ -
    │ │ │ -convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
    │ │ │ -    {Name, {c, Temp}};
    │ │ │ -convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
    │ │ │ -    {Name, {c, (Temp - 32) * 5 / 9}}.
    │ │ │ -
    │ │ │ -print_temp({Name, {c, Temp}}) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]).
    35> c(tut5).
    │ │ │ -{ok,tut5}
    │ │ │ -36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +format_temps([City | Rest]) ->
    │ │ │ +    print_temp(convert_to_celsius(City)),
    │ │ │ +    format_temps(Rest).
    │ │ │ +
    │ │ │ +convert_to_celsius({Name, {c, Temp}}) ->  % No conversion needed
    │ │ │ +    {Name, {c, Temp}};
    │ │ │ +convert_to_celsius({Name, {f, Temp}}) ->  % Do the conversion
    │ │ │ +    {Name, {c, (Temp - 32) * 5 / 9}}.
    │ │ │ +
    │ │ │ +print_temp({Name, {c, Temp}}) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]).
    35> c(tut5).
    │ │ │ +{ok,tut5}
    │ │ │ +36> tut5:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  ok

    Before looking at how this program works, notice that a few comments are added │ │ │ to the code. A comment starts with a %-character and goes on to the end of the │ │ │ @@ -528,28 +528,28 @@ │ │ │ │ │ │ │ │ │ │ │ │ Matching, Guards, and Scope of Variables │ │ │ │ │ │

    It can be useful to find the maximum and minimum temperature in lists like this. │ │ │ Before extending the program to do this, let us look at functions for finding │ │ │ -the maximum value of the elements in a list:

    -module(tut6).
    │ │ │ --export([list_max/1]).
    │ │ │ +the maximum value of the elements in a list:

    -module(tut6).
    │ │ │ +-export([list_max/1]).
    │ │ │  
    │ │ │ -list_max([Head|Rest]) ->
    │ │ │ -   list_max(Rest, Head).
    │ │ │ +list_max([Head|Rest]) ->
    │ │ │ +   list_max(Rest, Head).
    │ │ │  
    │ │ │ -list_max([], Res) ->
    │ │ │ +list_max([], Res) ->
    │ │ │      Res;
    │ │ │ -list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ -    list_max(Rest, Head);
    │ │ │ -list_max([Head|Rest], Result_so_far)  ->
    │ │ │ -    list_max(Rest, Result_so_far).
    37> c(tut6).
    │ │ │ -{ok,tut6}
    │ │ │ -38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
    │ │ │ +list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ +    list_max(Rest, Head);
    │ │ │ +list_max([Head|Rest], Result_so_far)  ->
    │ │ │ +    list_max(Rest, Result_so_far).
    37> c(tut6).
    │ │ │ +{ok,tut6}
    │ │ │ +38> tut6:list_max([1,2,3,4,5,7,4,3,2,1]).
    │ │ │  7

    First notice that two functions have the same name, list_max. However, each of │ │ │ these takes a different number of arguments (parameters). In Erlang these are │ │ │ regarded as completely different functions. Where you need to distinguish │ │ │ between these functions, you write Name/Arity, where Name is the function name │ │ │ and Arity is the number of arguments, in this case list_max/1 and │ │ │ list_max/2.

    In this example you walk through a list "carrying" a value, in this case │ │ │ Result_so_far. list_max/1 simply assumes that the max value of the list is │ │ │ @@ -578,180 +578,180 @@ │ │ │ 5 │ │ │ 40> M = 6. │ │ │ ** exception error: no match of right hand side value 6 │ │ │ 41> M = M + 1. │ │ │ ** exception error: no match of right hand side value 6 │ │ │ 42> N = M + 1. │ │ │ 6

    The use of the match operator is particularly useful for pulling apart Erlang │ │ │ -terms and creating new ones.

    43> {X, Y} = {paris, {f, 28}}.
    │ │ │ -{paris,{f,28}}
    │ │ │ +terms and creating new ones.

    43> {X, Y} = {paris, {f, 28}}.
    │ │ │ +{paris,{f,28}}
    │ │ │  44> X.
    │ │ │  paris
    │ │ │  45> Y.
    │ │ │ -{f,28}

    Here X gets the value paris and Y the value {f,28}.

    If you try to do the same again with another city, an error is returned:

    46> {X, Y} = {london, {f, 36}}.
    │ │ │ +{f,28}

    Here X gets the value paris and Y the value {f,28}.

    If you try to do the same again with another city, an error is returned:

    46> {X, Y} = {london, {f, 36}}.
    │ │ │  ** exception error: no match of right hand side value {london,{f,36}}

    Variables can also be used to improve the readability of programs. For example, │ │ │ -in function list_max/2 above, you can write:

    list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │ +in function list_max/2 above, you can write:

    list_max([Head|Rest], Result_so_far) when Head > Result_so_far ->
    │ │ │      New_result_far = Head,
    │ │ │ -    list_max(Rest, New_result_far);

    This is possibly a little clearer.

    │ │ │ + list_max(Rest, New_result_far);

    This is possibly a little clearer.

    │ │ │ │ │ │ │ │ │ │ │ │ More About Lists │ │ │

    │ │ │ -

    Remember that the | operator can be used to get the head of a list:

    47> [M1|T1] = [paris, london, rome].
    │ │ │ -[paris,london,rome]
    │ │ │ +

    Remember that the | operator can be used to get the head of a list:

    47> [M1|T1] = [paris, london, rome].
    │ │ │ +[paris,london,rome]
    │ │ │  48> M1.
    │ │ │  paris
    │ │ │  49> T1.
    │ │ │ -[london,rome]

    The | operator can also be used to add a head to a list:

    50> L1 = [madrid | T1].
    │ │ │ -[madrid,london,rome]
    │ │ │ +[london,rome]

    The | operator can also be used to add a head to a list:

    50> L1 = [madrid | T1].
    │ │ │ +[madrid,london,rome]
    │ │ │  51> L1.
    │ │ │ -[madrid,london,rome]

    Now an example of this when working with lists - reversing the order of a list:

    -module(tut8).
    │ │ │ +[madrid,london,rome]

    Now an example of this when working with lists - reversing the order of a list:

    -module(tut8).
    │ │ │  
    │ │ │ --export([reverse/1]).
    │ │ │ +-export([reverse/1]).
    │ │ │  
    │ │ │ -reverse(List) ->
    │ │ │ -    reverse(List, []).
    │ │ │ +reverse(List) ->
    │ │ │ +    reverse(List, []).
    │ │ │  
    │ │ │ -reverse([Head | Rest], Reversed_List) ->
    │ │ │ -    reverse(Rest, [Head | Reversed_List]);
    │ │ │ -reverse([], Reversed_List) ->
    │ │ │ -    Reversed_List.
    52> c(tut8).
    │ │ │ -{ok,tut8}
    │ │ │ -53> tut8:reverse([1,2,3]).
    │ │ │ -[3,2,1]

    Consider how Reversed_List is built. It starts as [], then successively the │ │ │ +reverse([Head | Rest], Reversed_List) -> │ │ │ + reverse(Rest, [Head | Reversed_List]); │ │ │ +reverse([], Reversed_List) -> │ │ │ + Reversed_List.

    52> c(tut8).
    │ │ │ +{ok,tut8}
    │ │ │ +53> tut8:reverse([1,2,3]).
    │ │ │ +[3,2,1]

    Consider how Reversed_List is built. It starts as [], then successively the │ │ │ heads are taken off of the list to be reversed and added to the the │ │ │ -Reversed_List, as shown in the following:

    reverse([1|2,3], []) =>
    │ │ │ -    reverse([2,3], [1|[]])
    │ │ │ +Reversed_List, as shown in the following:

    reverse([1|2,3], []) =>
    │ │ │ +    reverse([2,3], [1|[]])
    │ │ │  
    │ │ │ -reverse([2|3], [1]) =>
    │ │ │ -    reverse([3], [2|[1])
    │ │ │ +reverse([2|3], [1]) =>
    │ │ │ +    reverse([3], [2|[1])
    │ │ │  
    │ │ │ -reverse([3|[]], [2,1]) =>
    │ │ │ -    reverse([], [3|[2,1]])
    │ │ │ +reverse([3|[]], [2,1]) =>
    │ │ │ +    reverse([], [3|[2,1]])
    │ │ │  
    │ │ │ -reverse([], [3,2,1]) =>
    │ │ │ -    [3,2,1]

    The module lists contains many functions for manipulating lists, for example, │ │ │ +reverse([], [3,2,1]) => │ │ │ + [3,2,1]

    The module lists contains many functions for manipulating lists, for example, │ │ │ for reversing them. So before writing a list-manipulating function it is a good │ │ │ idea to check if one not already is written for you (see the lists manual │ │ │ page in STDLIB).

    Now let us get back to the cities and temperatures, but take a more structured │ │ │ -approach this time. First let us convert the whole list to Celsius as follows:

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ +approach this time. First let us convert the whole list to Celsius as follows:

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    convert_list_to_c(List_of_cities).
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    convert_list_to_c(List_of_cities).
    │ │ │  
    │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].

    Test the function:

    54> c(tut7).
    │ │ │ -{ok, tut7}.
    │ │ │ -55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {cape_town,{c,21.11111111111111}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2.2222222222222223}},
    │ │ │ - {london,{c,2.2222222222222223}}]

    Explanation:

    format_temps(List_of_cities) ->
    │ │ │ -    convert_list_to_c(List_of_cities).

    Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) -> │ │ │ + Converted_City = {Name, {c, (F -32)* 5 / 9}}, │ │ │ + [Converted_City | convert_list_to_c(Rest)]; │ │ │ + │ │ │ +convert_list_to_c([City | Rest]) -> │ │ │ + [City | convert_list_to_c(Rest)]; │ │ │ + │ │ │ +convert_list_to_c([]) -> │ │ │ + [].

    Test the function:

    54> c(tut7).
    │ │ │ +{ok, tut7}.
    │ │ │ +55> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {cape_town,{c,21.11111111111111}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2.2222222222222223}},
    │ │ │ + {london,{c,2.2222222222222223}}]

    Explanation:

    format_temps(List_of_cities) ->
    │ │ │ +    convert_list_to_c(List_of_cities).

    Here format_temps/1 calls convert_list_to_c/1. convert_list_to_c/1 takes │ │ │ off the head of the List_of_cities, converts it to Celsius if needed. The | │ │ │ -operator is used to add the (maybe) converted to the converted rest of the list:

    [Converted_City | convert_list_to_c(Rest)];

    or:

    [City | convert_list_to_c(Rest)];

    This is done until the end of the list is reached, that is, the list is empty:

    convert_list_to_c([]) ->
    │ │ │ -    [].

    Now when the list is converted, a function to print it is added:

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ -
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ -    print_temp(Converted_List).
    │ │ │ -
    │ │ │ -convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].
    │ │ │ -
    │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ -    print_temp(Rest);
    │ │ │ -print_temp([]) ->
    │ │ │ -    ok.
    56> c(tut7).
    │ │ │ -{ok,tut7}
    │ │ │ -57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +operator is used to add the (maybe) converted to the converted rest of the list:

    [Converted_City | convert_list_to_c(Rest)];

    or:

    [City | convert_list_to_c(Rest)];

    This is done until the end of the list is reached, that is, the list is empty:

    convert_list_to_c([]) ->
    │ │ │ +    [].

    Now when the list is converted, a function to print it is added:

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │ +
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ +    print_temp(Converted_List).
    │ │ │ +
    │ │ │ +convert_list_to_c([{Name, {f, F}} | Rest]) ->
    │ │ │ +    Converted_City = {Name, {c, (F -32)* 5 / 9}},
    │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([City | Rest]) ->
    │ │ │ +    [City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([]) ->
    │ │ │ +    [].
    │ │ │ +
    │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ +    print_temp(Rest);
    │ │ │ +print_temp([]) ->
    │ │ │ +    ok.
    56> c(tut7).
    │ │ │ +{ok,tut7}
    │ │ │ +57> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  ok

    Now a function has to be added to find the cities with the maximum and minimum │ │ │ temperatures. The following program is not the most efficient way of doing this │ │ │ as you walk through the list of cities four times. But it is better to first │ │ │ strive for clarity and correctness and to make programs efficient only if │ │ │ -needed.

    -module(tut7).
    │ │ │ --export([format_temps/1]).
    │ │ │ +needed.

    -module(tut7).
    │ │ │ +-export([format_temps/1]).
    │ │ │  
    │ │ │ -format_temps(List_of_cities) ->
    │ │ │ -    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ -    print_temp(Converted_List),
    │ │ │ -    {Max_city, Min_city} = find_max_and_min(Converted_List),
    │ │ │ -    print_max_and_min(Max_city, Min_city).
    │ │ │ -
    │ │ │ -convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
    │ │ │ -    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
    │ │ │ -    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([City | Rest]) ->
    │ │ │ -    [City | convert_list_to_c(Rest)];
    │ │ │ -
    │ │ │ -convert_list_to_c([]) ->
    │ │ │ -    [].
    │ │ │ -
    │ │ │ -print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ -    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ -    print_temp(Rest);
    │ │ │ -print_temp([]) ->
    │ │ │ +format_temps(List_of_cities) ->
    │ │ │ +    Converted_List = convert_list_to_c(List_of_cities),
    │ │ │ +    print_temp(Converted_List),
    │ │ │ +    {Max_city, Min_city} = find_max_and_min(Converted_List),
    │ │ │ +    print_max_and_min(Max_city, Min_city).
    │ │ │ +
    │ │ │ +convert_list_to_c([{Name, {f, Temp}} | Rest]) ->
    │ │ │ +    Converted_City = {Name, {c, (Temp -32)* 5 / 9}},
    │ │ │ +    [Converted_City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([City | Rest]) ->
    │ │ │ +    [City | convert_list_to_c(Rest)];
    │ │ │ +
    │ │ │ +convert_list_to_c([]) ->
    │ │ │ +    [].
    │ │ │ +
    │ │ │ +print_temp([{Name, {c, Temp}} | Rest]) ->
    │ │ │ +    io:format("~-15w ~w c~n", [Name, Temp]),
    │ │ │ +    print_temp(Rest);
    │ │ │ +print_temp([]) ->
    │ │ │      ok.
    │ │ │  
    │ │ │ -find_max_and_min([City | Rest]) ->
    │ │ │ -    find_max_and_min(Rest, City, City).
    │ │ │ +find_max_and_min([City | Rest]) ->
    │ │ │ +    find_max_and_min(Rest, City, City).
    │ │ │  
    │ │ │ -find_max_and_min([{Name, {c, Temp}} | Rest],
    │ │ │ -         {Max_Name, {c, Max_Temp}},
    │ │ │ -         {Min_Name, {c, Min_Temp}}) ->
    │ │ │ +find_max_and_min([{Name, {c, Temp}} | Rest],
    │ │ │ +         {Max_Name, {c, Max_Temp}},
    │ │ │ +         {Min_Name, {c, Min_Temp}}) ->
    │ │ │      if
    │ │ │          Temp > Max_Temp ->
    │ │ │ -            Max_City = {Name, {c, Temp}};           % Change
    │ │ │ +            Max_City = {Name, {c, Temp}};           % Change
    │ │ │          true ->
    │ │ │ -            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
    │ │ │ +            Max_City = {Max_Name, {c, Max_Temp}} % Unchanged
    │ │ │      end,
    │ │ │      if
    │ │ │           Temp < Min_Temp ->
    │ │ │ -            Min_City = {Name, {c, Temp}};           % Change
    │ │ │ +            Min_City = {Name, {c, Temp}};           % Change
    │ │ │          true ->
    │ │ │ -            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
    │ │ │ +            Min_City = {Min_Name, {c, Min_Temp}} % Unchanged
    │ │ │      end,
    │ │ │ -    find_max_and_min(Rest, Max_City, Min_City);
    │ │ │ +    find_max_and_min(Rest, Max_City, Min_City);
    │ │ │  
    │ │ │ -find_max_and_min([], Max_City, Min_City) ->
    │ │ │ -    {Max_City, Min_City}.
    │ │ │ +find_max_and_min([], Max_City, Min_City) ->
    │ │ │ +    {Max_City, Min_City}.
    │ │ │  
    │ │ │ -print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
    │ │ │ -    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
    │ │ │ -    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
    58> c(tut7).
    │ │ │ -{ok, tut7}
    │ │ │ -59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +print_max_and_min({Max_name, {c, Max_temp}}, {Min_name, {c, Min_temp}}) ->
    │ │ │ +    io:format("Max temperature was ~w c in ~w~n", [Max_temp, Max_name]),
    │ │ │ +    io:format("Min temperature was ~w c in ~w~n", [Min_temp, Min_name]).
    58> c(tut7).
    │ │ │ +{ok, tut7}
    │ │ │ +59> tut7:format_temps([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          -10 c
    │ │ │  cape_town       21.11111111111111 c
    │ │ │  stockholm       -4 c
    │ │ │  paris           -2.2222222222222223 c
    │ │ │  london          2.2222222222222223 c
    │ │ │  Max temperature was 21.11111111111111 c in cape_town
    │ │ │  Min temperature was -10 c in moscow
    │ │ │ @@ -773,88 +773,88 @@
    │ │ │          Action 4
    │ │ │  end

    Notice that there is no ; before end. Conditions do the same as guards, that │ │ │ is, tests that succeed or fail. Erlang starts at the top and tests until it │ │ │ finds a condition that succeeds. Then it evaluates (performs) the action │ │ │ following the condition and ignores all other conditions and actions before the │ │ │ end. If no condition matches, a run-time failure occurs. A condition that │ │ │ always succeeds is the atom true. This is often used last in an if, meaning, │ │ │ -do the action following the true if all other conditions have failed.

    The following is a short program to show the workings of if.

    -module(tut9).
    │ │ │ --export([test_if/2]).
    │ │ │ +do the action following the true if all other conditions have failed.

    The following is a short program to show the workings of if.

    -module(tut9).
    │ │ │ +-export([test_if/2]).
    │ │ │  
    │ │ │ -test_if(A, B) ->
    │ │ │ +test_if(A, B) ->
    │ │ │      if
    │ │ │          A == 5 ->
    │ │ │ -            io:format("A == 5~n", []),
    │ │ │ +            io:format("A == 5~n", []),
    │ │ │              a_equals_5;
    │ │ │          B == 6 ->
    │ │ │ -            io:format("B == 6~n", []),
    │ │ │ +            io:format("B == 6~n", []),
    │ │ │              b_equals_6;
    │ │ │          A == 2, B == 3 ->                      %That is A equals 2 and B equals 3
    │ │ │ -            io:format("A == 2, B == 3~n", []),
    │ │ │ +            io:format("A == 2, B == 3~n", []),
    │ │ │              a_equals_2_b_equals_3;
    │ │ │          A == 1 ; B == 7 ->                     %That is A equals 1 or B equals 7
    │ │ │ -            io:format("A == 1 ; B == 7~n", []),
    │ │ │ +            io:format("A == 1 ; B == 7~n", []),
    │ │ │              a_equals_1_or_b_equals_7
    │ │ │ -    end.

    Testing this program gives:

    60> c(tut9).
    │ │ │ -{ok,tut9}
    │ │ │ -61> tut9:test_if(5,33).
    │ │ │ +    end.

    Testing this program gives:

    60> c(tut9).
    │ │ │ +{ok,tut9}
    │ │ │ +61> tut9:test_if(5,33).
    │ │ │  A == 5
    │ │ │  a_equals_5
    │ │ │ -62> tut9:test_if(33,6).
    │ │ │ +62> tut9:test_if(33,6).
    │ │ │  B == 6
    │ │ │  b_equals_6
    │ │ │ -63> tut9:test_if(2, 3).
    │ │ │ +63> tut9:test_if(2, 3).
    │ │ │  A == 2, B == 3
    │ │ │  a_equals_2_b_equals_3
    │ │ │ -64> tut9:test_if(1, 33).
    │ │ │ +64> tut9:test_if(1, 33).
    │ │ │  A == 1 ; B == 7
    │ │ │  a_equals_1_or_b_equals_7
    │ │ │ -65> tut9:test_if(33, 7).
    │ │ │ +65> tut9:test_if(33, 7).
    │ │ │  A == 1 ; B == 7
    │ │ │  a_equals_1_or_b_equals_7
    │ │ │ -66> tut9:test_if(33, 33).
    │ │ │ +66> tut9:test_if(33, 33).
    │ │ │  ** exception error: no true branch found when evaluating an if expression
    │ │ │       in function  tut9:test_if/2 (tut9.erl, line 5)

    Notice that tut9:test_if(33,33) does not cause any condition to succeed. This │ │ │ leads to the run time error if_clause, here nicely formatted by the shell. See │ │ │ Guard Sequences for details of the many guard tests │ │ │ available.

    case is another construct in Erlang. Recall that the convert_length function │ │ │ -was written as:

    convert_length({centimeter, X}) ->
    │ │ │ -    {inch, X / 2.54};
    │ │ │ -convert_length({inch, Y}) ->
    │ │ │ -    {centimeter, Y * 2.54}.

    The same program can also be written as:

    -module(tut10).
    │ │ │ --export([convert_length/1]).
    │ │ │ +was written as:

    convert_length({centimeter, X}) ->
    │ │ │ +    {inch, X / 2.54};
    │ │ │ +convert_length({inch, Y}) ->
    │ │ │ +    {centimeter, Y * 2.54}.

    The same program can also be written as:

    -module(tut10).
    │ │ │ +-export([convert_length/1]).
    │ │ │  
    │ │ │ -convert_length(Length) ->
    │ │ │ +convert_length(Length) ->
    │ │ │      case Length of
    │ │ │ -        {centimeter, X} ->
    │ │ │ -            {inch, X / 2.54};
    │ │ │ -        {inch, Y} ->
    │ │ │ -            {centimeter, Y * 2.54}
    │ │ │ -    end.
    67> c(tut10).
    │ │ │ -{ok,tut10}
    │ │ │ -68> tut10:convert_length({inch, 6}).
    │ │ │ -{centimeter,15.24}
    │ │ │ -69> tut10:convert_length({centimeter, 2.5}).
    │ │ │ -{inch,0.984251968503937}

    Both case and if have return values, that is, in the above example case │ │ │ + {centimeter, X} -> │ │ │ + {inch, X / 2.54}; │ │ │ + {inch, Y} -> │ │ │ + {centimeter, Y * 2.54} │ │ │ + end.

    67> c(tut10).
    │ │ │ +{ok,tut10}
    │ │ │ +68> tut10:convert_length({inch, 6}).
    │ │ │ +{centimeter,15.24}
    │ │ │ +69> tut10:convert_length({centimeter, 2.5}).
    │ │ │ +{inch,0.984251968503937}

    Both case and if have return values, that is, in the above example case │ │ │ returned either {inch,X/2.54} or {centimeter,Y*2.54}. The behaviour of │ │ │ case can also be modified by using guards. The following example clarifies │ │ │ this. It tells us the length of a month, given the year. The year must be known, │ │ │ -since February has 29 days in a leap year.

    -module(tut11).
    │ │ │ --export([month_length/2]).
    │ │ │ +since February has 29 days in a leap year.

    -module(tut11).
    │ │ │ +-export([month_length/2]).
    │ │ │  
    │ │ │ -month_length(Year, Month) ->
    │ │ │ +month_length(Year, Month) ->
    │ │ │      %% All years divisible by 400 are leap
    │ │ │      %% Years divisible by 100 are not leap (except the 400 rule above)
    │ │ │      %% Years divisible by 4 are leap (except the 100 rule above)
    │ │ │      Leap = if
    │ │ │ -        trunc(Year / 400) * 400 == Year ->
    │ │ │ +        trunc(Year / 400) * 400 == Year ->
    │ │ │              leap;
    │ │ │ -        trunc(Year / 100) * 100 == Year ->
    │ │ │ +        trunc(Year / 100) * 100 == Year ->
    │ │ │              not_leap;
    │ │ │ -        trunc(Year / 4) * 4 == Year ->
    │ │ │ +        trunc(Year / 4) * 4 == Year ->
    │ │ │              leap;
    │ │ │          true ->
    │ │ │              not_leap
    │ │ │      end,
    │ │ │      case Month of
    │ │ │          sep -> 30;
    │ │ │          apr -> 30;
    │ │ │ @@ -865,152 +865,152 @@
    │ │ │          jan -> 31;
    │ │ │          mar -> 31;
    │ │ │          may -> 31;
    │ │ │          jul -> 31;
    │ │ │          aug -> 31;
    │ │ │          oct -> 31;
    │ │ │          dec -> 31
    │ │ │ -    end.
    70> c(tut11).
    │ │ │ -{ok,tut11}
    │ │ │ -71> tut11:month_length(2004, feb).
    │ │ │ +    end.
    70> c(tut11).
    │ │ │ +{ok,tut11}
    │ │ │ +71> tut11:month_length(2004, feb).
    │ │ │  29
    │ │ │ -72> tut11:month_length(2003, feb).
    │ │ │ +72> tut11:month_length(2003, feb).
    │ │ │  28
    │ │ │ -73> tut11:month_length(1947, aug).
    │ │ │ +73> tut11:month_length(1947, aug).
    │ │ │  31

    │ │ │ │ │ │ │ │ │ │ │ │ Built-In Functions (BIFs) │ │ │

    │ │ │

    BIFs are functions that for some reason are built-in to the Erlang virtual │ │ │ machine. BIFs often implement functionality that is impossible or is too │ │ │ inefficient to implement in Erlang. Some BIFs can be called using the function │ │ │ name only but they are by default belonging to the erlang module. For example, │ │ │ the call to the BIF trunc below is equivalent to a call to erlang:trunc.

    As shown, first it is checked if a year is leap. If a year is divisible by 400, │ │ │ it is a leap year. To determine this, first divide the year by 400 and use the │ │ │ BIF trunc (more about this later) to cut off any decimals. Then multiply by │ │ │ 400 again and see if the same value is returned again. For example, year 2004:

    2004 / 400 = 5.01
    │ │ │ -trunc(5.01) = 5
    │ │ │ +trunc(5.01) = 5
    │ │ │  5 * 400 = 2000

    2000 is not the same as 2004, so 2004 is not divisible by 400. Year 2000:

    2000 / 400 = 5.0
    │ │ │ -trunc(5.0) = 5
    │ │ │ +trunc(5.0) = 5
    │ │ │  5 * 400 = 2000

    That is, a leap year. The next two trunc-tests evaluate if the year is │ │ │ divisible by 100 or 4 in the same way. The first if returns leap or │ │ │ not_leap, which lands up in the variable Leap. This variable is used in the │ │ │ guard for feb in the following case that tells us how long the month is.

    This example showed the use of trunc. It is easier to use the Erlang operator │ │ │ rem that gives the remainder after division, for example:

    74> 2004 rem 400.
    │ │ │ -4

    So instead of writing:

    trunc(Year / 400) * 400 == Year ->
    │ │ │ +4

    So instead of writing:

    trunc(Year / 400) * 400 == Year ->
    │ │ │      leap;

    it can be written:

    Year rem 400 == 0 ->
    │ │ │      leap;

    There are many other BIFs such as trunc. Only a few BIFs can be used in │ │ │ guards, and you cannot use functions you have defined yourself in guards. (see │ │ │ Guard Sequences) (For advanced readers: This is to │ │ │ ensure that guards do not have side effects.) Let us play with a few of these │ │ │ -functions in the shell:

    75> trunc(5.6).
    │ │ │ +functions in the shell:

    75> trunc(5.6).
    │ │ │  5
    │ │ │ -76> round(5.6).
    │ │ │ +76> round(5.6).
    │ │ │  6
    │ │ │ -77> length([a,b,c,d]).
    │ │ │ +77> length([a,b,c,d]).
    │ │ │  4
    │ │ │ -78> float(5).
    │ │ │ +78> float(5).
    │ │ │  5.0
    │ │ │ -79> is_atom(hello).
    │ │ │ +79> is_atom(hello).
    │ │ │  true
    │ │ │ -80> is_atom("hello").
    │ │ │ +80> is_atom("hello").
    │ │ │  false
    │ │ │ -81> is_tuple({paris, {c, 30}}).
    │ │ │ +81> is_tuple({paris, {c, 30}}).
    │ │ │  true
    │ │ │ -82> is_tuple([paris, {c, 30}]).
    │ │ │ +82> is_tuple([paris, {c, 30}]).
    │ │ │  false

    All of these can be used in guards. Now for some BIFs that cannot be used in │ │ │ -guards:

    83> atom_to_list(hello).
    │ │ │ +guards:

    83> atom_to_list(hello).
    │ │ │  "hello"
    │ │ │ -84> list_to_atom("goodbye").
    │ │ │ +84> list_to_atom("goodbye").
    │ │ │  goodbye
    │ │ │ -85> integer_to_list(22).
    │ │ │ +85> integer_to_list(22).
    │ │ │  "22"

    These three BIFs do conversions that would be difficult (or impossible) to do in │ │ │ Erlang.

    │ │ │ │ │ │ │ │ │ │ │ │ Higher-Order Functions (Funs) │ │ │

    │ │ │

    Erlang, like most modern functional programming languages, has higher-order │ │ │ -functions. Here is an example using the shell:

    86> Xf = fun(X) -> X * 2 end.
    │ │ │ +functions. Here is an example using the shell:

    86> Xf = fun(X) -> X * 2 end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -87> Xf(5).
    │ │ │ +87> Xf(5).
    │ │ │  10

    Here is defined a function that doubles the value of a number and assigned this │ │ │ function to a variable. Thus Xf(5) returns value 10. Two useful functions when │ │ │ -working with lists are foreach and map, which are defined as follows:

    foreach(Fun, [First|Rest]) ->
    │ │ │ -    Fun(First),
    │ │ │ -    foreach(Fun, Rest);
    │ │ │ -foreach(Fun, []) ->
    │ │ │ +working with lists are foreach and map, which are defined as follows:

    foreach(Fun, [First|Rest]) ->
    │ │ │ +    Fun(First),
    │ │ │ +    foreach(Fun, Rest);
    │ │ │ +foreach(Fun, []) ->
    │ │ │      ok.
    │ │ │  
    │ │ │ -map(Fun, [First|Rest]) ->
    │ │ │ -    [Fun(First)|map(Fun,Rest)];
    │ │ │ -map(Fun, []) ->
    │ │ │ -    [].

    These two functions are provided in the standard module lists. foreach takes │ │ │ +map(Fun, [First|Rest]) -> │ │ │ + [Fun(First)|map(Fun,Rest)]; │ │ │ +map(Fun, []) -> │ │ │ + [].

    These two functions are provided in the standard module lists. foreach takes │ │ │ a list and applies a fun to every element in the list. map creates a new list │ │ │ by applying a fun to every element in a list. Going back to the shell, map is │ │ │ -used and a fun to add 3 to every element of a list:

    88> Add_3 = fun(X) -> X + 3 end.
    │ │ │ +used and a fun to add 3 to every element of a list:

    88> Add_3 = fun(X) -> X + 3 end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -89> lists:map(Add_3, [1,2,3]).
    │ │ │ -[4,5,6]

    Let us (again) print the temperatures in a list of cities:

    90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
    │ │ │ -[City, X, Temp]) end.
    │ │ │ +89> lists:map(Add_3, [1,2,3]).
    │ │ │ +[4,5,6]

    Let us (again) print the temperatures in a list of cities:

    90> Print_City = fun({City, {X, Temp}}) -> io:format("~-15w ~w ~w~n",
    │ │ │ +[City, X, Temp]) end.
    │ │ │  #Fun<erl_eval.5.123085357>
    │ │ │ -91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +91> lists:foreach(Print_City, [{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │  moscow          c -10
    │ │ │  cape_town       f 70
    │ │ │  stockholm       c -4
    │ │ │  paris           f 28
    │ │ │  london          f 36
    │ │ │  ok

    Let us now define a fun that can be used to go through a list of cities and │ │ │ -temperatures and transform them all to Celsius.

    -module(tut13).
    │ │ │ +temperatures and transform them all to Celsius.

    -module(tut13).
    │ │ │  
    │ │ │ --export([convert_list_to_c/1]).
    │ │ │ +-export([convert_list_to_c/1]).
    │ │ │  
    │ │ │ -convert_to_c({Name, {f, Temp}}) ->
    │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
    │ │ │ -convert_to_c({Name, {c, Temp}}) ->
    │ │ │ -    {Name, {c, Temp}}.
    │ │ │ -
    │ │ │ -convert_list_to_c(List) ->
    │ │ │ -    lists:map(fun convert_to_c/1, List).
    92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {cape_town,{c,21}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2}},
    │ │ │ - {london,{c,2}}]

    The convert_to_c function is the same as before, but here it is used as a fun:

    lists:map(fun convert_to_c/1, List)

    When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ + {Name, {c, Temp}}. │ │ │ + │ │ │ +convert_list_to_c(List) -> │ │ │ + lists:map(fun convert_to_c/1, List).

    92> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {cape_town,{c,21}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2}},
    │ │ │ + {london,{c,2}}]

    The convert_to_c function is the same as before, but here it is used as a fun:

    lists:map(fun convert_to_c/1, List)

    When a function defined elsewhere is used as a fun, it can be referred to as │ │ │ Function/Arity (remember that Arity = number of arguments). So in the │ │ │ map-call lists:map(fun convert_to_c/1, List) is written. As shown, │ │ │ convert_list_to_c becomes much shorter and easier to understand.

    The standard module lists also contains a function sort(Fun, List) where │ │ │ Fun is a fun with two arguments. This fun returns true if the first argument │ │ │ is less than the second argument, or else false. Sorting is added to the │ │ │ -convert_list_to_c:

    -module(tut13).
    │ │ │ +convert_list_to_c:

    -module(tut13).
    │ │ │  
    │ │ │ --export([convert_list_to_c/1]).
    │ │ │ +-export([convert_list_to_c/1]).
    │ │ │  
    │ │ │ -convert_to_c({Name, {f, Temp}}) ->
    │ │ │ -    {Name, {c, trunc((Temp - 32) * 5 / 9)}};
    │ │ │ -convert_to_c({Name, {c, Temp}}) ->
    │ │ │ -    {Name, {c, Temp}}.
    │ │ │ -
    │ │ │ -convert_list_to_c(List) ->
    │ │ │ -    New_list = lists:map(fun convert_to_c/1, List),
    │ │ │ -    lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) ->
    │ │ │ -                       Temp1 < Temp2 end, New_list).
    93> c(tut13).
    │ │ │ -{ok,tut13}
    │ │ │ -94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ -{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ -[{moscow,{c,-10}},
    │ │ │ - {stockholm,{c,-4}},
    │ │ │ - {paris,{c,-2}},
    │ │ │ - {london,{c,2}},
    │ │ │ - {cape_town,{c,21}}]

    In sort the fun is used:

    fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

    Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ +convert_to_c({Name, {f, Temp}}) -> │ │ │ + {Name, {c, trunc((Temp - 32) * 5 / 9)}}; │ │ │ +convert_to_c({Name, {c, Temp}}) -> │ │ │ + {Name, {c, Temp}}. │ │ │ + │ │ │ +convert_list_to_c(List) -> │ │ │ + New_list = lists:map(fun convert_to_c/1, List), │ │ │ + lists:sort(fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> │ │ │ + Temp1 < Temp2 end, New_list).

    93> c(tut13).
    │ │ │ +{ok,tut13}
    │ │ │ +94> tut13:convert_list_to_c([{moscow, {c, -10}}, {cape_town, {f, 70}},
    │ │ │ +{stockholm, {c, -4}}, {paris, {f, 28}}, {london, {f, 36}}]).
    │ │ │ +[{moscow,{c,-10}},
    │ │ │ + {stockholm,{c,-4}},
    │ │ │ + {paris,{c,-2}},
    │ │ │ + {london,{c,2}},
    │ │ │ + {cape_town,{c,21}}]

    In sort the fun is used:

    fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

    Here the concept of an anonymous variable _ is introduced. This is simply │ │ │ shorthand for a variable that gets a value, but the value is ignored. This can │ │ │ be used anywhere suitable, not just in funs. Temp1 < Temp2 returns true if │ │ │ Temp1 is less than Temp2.

    │ │ │
    │ │ │ │ │ │
    │ │ │
    │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/spec_proc.html │ │ │ @@ -123,72 +123,72 @@ │ │ │ │ │ │ │ │ │ │ │ │ Simple Debugging │ │ │ │ │ │

    The sys module has functions for simple debugging of processes implemented │ │ │ using behaviours. The code_lock example from │ │ │ -gen_statem Behaviour is used to illustrate this:

    Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +gen_statem Behaviour is used to illustrate this:

    Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> code_lock:start_link([1,2,3,4]).
    │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> code_lock:start_link([1,2,3,4]).
    │ │ │  Lock
    │ │ │ -{ok,<0.90.0>}
    │ │ │ -2> sys:statistics(code_lock, true).
    │ │ │ +{ok,<0.90.0>}
    │ │ │ +2> sys:statistics(code_lock, true).
    │ │ │  ok
    │ │ │ -3> sys:trace(code_lock, true).
    │ │ │ +3> sys:trace(code_lock, true).
    │ │ │  ok
    │ │ │ -4> code_lock:button(1).
    │ │ │ -*DBG* code_lock receive cast {button,1} in state locked
    │ │ │ +4> code_lock:button(1).
    │ │ │ +*DBG* code_lock receive cast {button,1} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,1} in state locked
    │ │ │ -5> code_lock:button(2).
    │ │ │ -*DBG* code_lock receive cast {button,2} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,1} in state locked
    │ │ │ +5> code_lock:button(2).
    │ │ │ +*DBG* code_lock receive cast {button,2} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,2} in state locked
    │ │ │ -6> code_lock:button(3).
    │ │ │ -*DBG* code_lock receive cast {button,3} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,2} in state locked
    │ │ │ +6> code_lock:button(3).
    │ │ │ +*DBG* code_lock receive cast {button,3} in state locked
    │ │ │  ok
    │ │ │ -*DBG* code_lock consume cast {button,3} in state locked
    │ │ │ -7> code_lock:button(4).
    │ │ │ -*DBG* code_lock receive cast {button,4} in state locked
    │ │ │ +*DBG* code_lock consume cast {button,3} in state locked
    │ │ │ +7> code_lock:button(4).
    │ │ │ +*DBG* code_lock receive cast {button,4} in state locked
    │ │ │  ok
    │ │ │  Unlock
    │ │ │ -*DBG* code_lock consume cast {button,4} in state locked => open
    │ │ │ -*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
    │ │ │ +*DBG* code_lock consume cast {button,4} in state locked => open
    │ │ │ +*DBG* code_lock start_timer {state_timeout,10000,lock,[]} in state open
    │ │ │  *DBG* code_lock receive state_timeout lock in state open
    │ │ │  Lock
    │ │ │  *DBG* code_lock consume state_timeout lock in state open => locked
    │ │ │ -8> sys:statistics(code_lock, get).
    │ │ │ -{ok,[{start_time,{{2024,5,3},{8,11,1}}},
    │ │ │ -     {current_time,{{2024,5,3},{8,11,48}}},
    │ │ │ -     {reductions,4098},
    │ │ │ -     {messages_in,5},
    │ │ │ -     {messages_out,0}]}
    │ │ │ -9> sys:statistics(code_lock, false).
    │ │ │ +8> sys:statistics(code_lock, get).
    │ │ │ +{ok,[{start_time,{{2024,5,3},{8,11,1}}},
    │ │ │ +     {current_time,{{2024,5,3},{8,11,48}}},
    │ │ │ +     {reductions,4098},
    │ │ │ +     {messages_in,5},
    │ │ │ +     {messages_out,0}]}
    │ │ │ +9> sys:statistics(code_lock, false).
    │ │ │  ok
    │ │ │ -10> sys:trace(code_lock, false).
    │ │ │ +10> sys:trace(code_lock, false).
    │ │ │  ok
    │ │ │ -11> sys:get_status(code_lock).
    │ │ │ -{status,<0.90.0>,
    │ │ │ -        {module,gen_statem},
    │ │ │ -        [[{'$initial_call',{code_lock,init,1}},
    │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
    │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
    │ │ │ -         running,<0.88.0>,[],
    │ │ │ -         [{header,"Status for state machine code_lock"},
    │ │ │ -          {data,[{"Status",running},
    │ │ │ -                 {"Parent",<0.88.0>},
    │ │ │ -                 {"Modules",[code_lock]},
    │ │ │ -                 {"Time-outs",{0,[]}},
    │ │ │ -                 {"Logged Events",[]},
    │ │ │ -                 {"Postponed",[]}]},
    │ │ │ -          {data,[{"State",
    │ │ │ -                  {locked,#{code => [1,2,3,4],
    │ │ │ -                            length => 4,buttons => []}}}]}]]}

    │ │ │ +11> sys:get_status(code_lock). │ │ │ +{status,<0.90.0>, │ │ │ + {module,gen_statem}, │ │ │ + [[{'$initial_call',{code_lock,init,1}}, │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ + running,<0.88.0>,[], │ │ │ + [{header,"Status for state machine code_lock"}, │ │ │ + {data,[{"Status",running}, │ │ │ + {"Parent",<0.88.0>}, │ │ │ + {"Modules",[code_lock]}, │ │ │ + {"Time-outs",{0,[]}}, │ │ │ + {"Logged Events",[]}, │ │ │ + {"Postponed",[]}]}, │ │ │ + {data,[{"State", │ │ │ + {locked,#{code => [1,2,3,4], │ │ │ + length => 4,buttons => []}}}]}]]}

    │ │ │ │ │ │ │ │ │ │ │ │ Special Processes │ │ │

    │ │ │

    This section describes how to write a process that complies to the OTP design │ │ │ principles, without using a standard behaviour. Such a process is to:

    System messages are messages with a special meaning, used in the supervision │ │ │ @@ -198,238 +198,238 @@ │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │ │ │ │

    Here follows the simple server from │ │ │ Overview, │ │ │ -implemented using sys and proc_lib to fit into a supervision tree:

    -module(ch4).
    │ │ │ --export([start_link/0]).
    │ │ │ --export([alloc/0, free/1]).
    │ │ │ --export([init/1]).
    │ │ │ --export([system_continue/3, system_terminate/4,
    │ │ │ +implemented using sys and proc_lib to fit into a supervision tree:

    -module(ch4).
    │ │ │ +-export([start_link/0]).
    │ │ │ +-export([alloc/0, free/1]).
    │ │ │ +-export([init/1]).
    │ │ │ +-export([system_continue/3, system_terminate/4,
    │ │ │           write_debug/3,
    │ │ │ -         system_get_state/1, system_replace_state/2]).
    │ │ │ +         system_get_state/1, system_replace_state/2]).
    │ │ │  
    │ │ │ -start_link() ->
    │ │ │ -    proc_lib:start_link(ch4, init, [self()]).
    │ │ │ +start_link() ->
    │ │ │ +    proc_lib:start_link(ch4, init, [self()]).
    │ │ │  
    │ │ │ -alloc() ->
    │ │ │ -    ch4 ! {self(), alloc},
    │ │ │ +alloc() ->
    │ │ │ +    ch4 ! {self(), alloc},
    │ │ │      receive
    │ │ │ -        {ch4, Res} ->
    │ │ │ +        {ch4, Res} ->
    │ │ │              Res
    │ │ │      end.
    │ │ │  
    │ │ │ -free(Ch) ->
    │ │ │ -    ch4 ! {free, Ch},
    │ │ │ +free(Ch) ->
    │ │ │ +    ch4 ! {free, Ch},
    │ │ │      ok.
    │ │ │  
    │ │ │ -init(Parent) ->
    │ │ │ -    register(ch4, self()),
    │ │ │ -    Chs = channels(),
    │ │ │ -    Deb = sys:debug_options([]),
    │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ -    loop(Chs, Parent, Deb).
    │ │ │ +init(Parent) ->
    │ │ │ +    register(ch4, self()),
    │ │ │ +    Chs = channels(),
    │ │ │ +    Deb = sys:debug_options([]),
    │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ +    loop(Chs, Parent, Deb).
    │ │ │  
    │ │ │ -loop(Chs, Parent, Deb) ->
    │ │ │ +loop(Chs, Parent, Deb) ->
    │ │ │      receive
    │ │ │ -        {From, alloc} ->
    │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {in, alloc, From}),
    │ │ │ -            {Ch, Chs2} = alloc(Chs),
    │ │ │ -            From ! {ch4, Ch},
    │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
    │ │ │ -            loop(Chs2, Parent, Deb3);
    │ │ │ -        {free, Ch} ->
    │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ -                                    ch4, {in, {free, Ch}}),
    │ │ │ -            Chs2 = free(Ch, Chs),
    │ │ │ -            loop(Chs2, Parent, Deb2);
    │ │ │ -
    │ │ │ -        {system, From, Request} ->
    │ │ │ -            sys:handle_system_msg(Request, From, Parent,
    │ │ │ -                                  ch4, Deb, Chs)
    │ │ │ +        {From, alloc} ->
    │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {in, alloc, From}),
    │ │ │ +            {Ch, Chs2} = alloc(Chs),
    │ │ │ +            From ! {ch4, Ch},
    │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
    │ │ │ +            loop(Chs2, Parent, Deb3);
    │ │ │ +        {free, Ch} ->
    │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
    │ │ │ +                                    ch4, {in, {free, Ch}}),
    │ │ │ +            Chs2 = free(Ch, Chs),
    │ │ │ +            loop(Chs2, Parent, Deb2);
    │ │ │ +
    │ │ │ +        {system, From, Request} ->
    │ │ │ +            sys:handle_system_msg(Request, From, Parent,
    │ │ │ +                                  ch4, Deb, Chs)
    │ │ │      end.
    │ │ │  
    │ │ │ -system_continue(Parent, Deb, Chs) ->
    │ │ │ -    loop(Chs, Parent, Deb).
    │ │ │ +system_continue(Parent, Deb, Chs) ->
    │ │ │ +    loop(Chs, Parent, Deb).
    │ │ │  
    │ │ │ -system_terminate(Reason, _Parent, _Deb, _Chs) ->
    │ │ │ -    exit(Reason).
    │ │ │ +system_terminate(Reason, _Parent, _Deb, _Chs) ->
    │ │ │ +    exit(Reason).
    │ │ │  
    │ │ │ -system_get_state(Chs) ->
    │ │ │ -    {ok, Chs}.
    │ │ │ +system_get_state(Chs) ->
    │ │ │ +    {ok, Chs}.
    │ │ │  
    │ │ │ -system_replace_state(StateFun, Chs) ->
    │ │ │ -    NChs = StateFun(Chs),
    │ │ │ -    {ok, NChs, NChs}.
    │ │ │ +system_replace_state(StateFun, Chs) ->
    │ │ │ +    NChs = StateFun(Chs),
    │ │ │ +    {ok, NChs, NChs}.
    │ │ │  
    │ │ │ -write_debug(Dev, Event, Name) ->
    │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

    As it is not relevant to the example, the channel handling functions have been │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

    As it is not relevant to the example, the channel handling functions have been │ │ │ omitted. To compile this example, the │ │ │ implementation of channel handling │ │ │ needs to be added to the module.

    Here is an example showing how the debugging functions in the sys │ │ │ module can be used for ch4:

    % erl
    │ │ │ -Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │ +Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit]
    │ │ │  
    │ │ │ -Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ -1> ch4:start_link().
    │ │ │ -{ok,<0.90.0>}
    │ │ │ -2> sys:statistics(ch4, true).
    │ │ │ +Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
    │ │ │ +1> ch4:start_link().
    │ │ │ +{ok,<0.90.0>}
    │ │ │ +2> sys:statistics(ch4, true).
    │ │ │  ok
    │ │ │ -3> sys:trace(ch4, true).
    │ │ │ +3> sys:trace(ch4, true).
    │ │ │  ok
    │ │ │ -4> ch4:alloc().
    │ │ │ -ch4 event = {in,alloc,<0.88.0>}
    │ │ │ -ch4 event = {out,{ch4,1},<0.88.0>}
    │ │ │ +4> ch4:alloc().
    │ │ │ +ch4 event = {in,alloc,<0.88.0>}
    │ │ │ +ch4 event = {out,{ch4,1},<0.88.0>}
    │ │ │  1
    │ │ │ -5> ch4:free(ch1).
    │ │ │ -ch4 event = {in,{free,ch1}}
    │ │ │ +5> ch4:free(ch1).
    │ │ │ +ch4 event = {in,{free,ch1}}
    │ │ │  ok
    │ │ │ -6> sys:statistics(ch4, get).
    │ │ │ -{ok,[{start_time,{{2024,5,3},{8,26,13}}},
    │ │ │ -     {current_time,{{2024,5,3},{8,26,49}}},
    │ │ │ -     {reductions,202},
    │ │ │ -     {messages_in,2},
    │ │ │ -     {messages_out,1}]}
    │ │ │ -7> sys:statistics(ch4, false).
    │ │ │ +6> sys:statistics(ch4, get).
    │ │ │ +{ok,[{start_time,{{2024,5,3},{8,26,13}}},
    │ │ │ +     {current_time,{{2024,5,3},{8,26,49}}},
    │ │ │ +     {reductions,202},
    │ │ │ +     {messages_in,2},
    │ │ │ +     {messages_out,1}]}
    │ │ │ +7> sys:statistics(ch4, false).
    │ │ │  ok
    │ │ │ -8> sys:trace(ch4, false).
    │ │ │ +8> sys:trace(ch4, false).
    │ │ │  ok
    │ │ │ -9> sys:get_status(ch4).
    │ │ │ -{status,<0.90.0>,
    │ │ │ -        {module,ch4},
    │ │ │ -        [[{'$initial_call',{ch4,init,1}},
    │ │ │ -          {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>,
    │ │ │ -                         <0.64.0>,kernel_sup,<0.47.0>]}],
    │ │ │ -         running,<0.88.0>,[],
    │ │ │ -         {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

    │ │ │ +9> sys:get_status(ch4). │ │ │ +{status,<0.90.0>, │ │ │ + {module,ch4}, │ │ │ + [[{'$initial_call',{ch4,init,1}}, │ │ │ + {'$ancestors',[<0.88.0>,<0.87.0>,<0.70.0>,<0.65.0>,<0.69.0>, │ │ │ + <0.64.0>,kernel_sup,<0.47.0>]}], │ │ │ + running,<0.88.0>,[], │ │ │ + {[1],[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19|...]}]}

    │ │ │ │ │ │ │ │ │ │ │ │ Starting the Process │ │ │

    │ │ │

    A function in the proc_lib module is to be used to start the process. Several │ │ │ functions are available, for example, │ │ │ proc_lib:spawn_link/3,4 │ │ │ for asynchronous start and │ │ │ proc_lib:start_link/3,4,5 for synchronous start.

    Information necessary for a process within a supervision tree, such as │ │ │ details on ancestors and the initial call, is stored when a process │ │ │ is started through one of these functions.

    If the process terminates with a reason other than normal or shutdown, a │ │ │ crash report is generated. For more information about the crash report, see │ │ │ Logging in Kernel User's Guide.

    In the example, synchronous start is used. The process starts by calling │ │ │ -ch4:start_link():

    start_link() ->
    │ │ │ -    proc_lib:start_link(ch4, init, [self()]).

    ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ +ch4:start_link():

    start_link() ->
    │ │ │ +    proc_lib:start_link(ch4, init, [self()]).

    ch4:start_link/0 calls proc_lib:start_link/3, which takes a module │ │ │ name, a function name, and an argument list as arguments. It then │ │ │ spawns a new process and establishes a link. The new process starts │ │ │ by executing the given function, here ch4:init(Pid), where Pid is │ │ │ the pid of the parent process (obtained by the call to │ │ │ self() in the call to proc_lib:start_link/3).

    All initialization, including name registration, is done in init/1. The new │ │ │ -process has to acknowledge that it has been started to the parent:

    init(Parent) ->
    │ │ │ +process has to acknowledge that it has been started to the parent:

    init(Parent) ->
    │ │ │      ...
    │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
    │ │ │ -    loop(...).

    proc_lib:start_link/3 is synchronous and does not return until │ │ │ + proc_lib:init_ack(Parent, {ok, self()}), │ │ │ + loop(...).

    proc_lib:start_link/3 is synchronous and does not return until │ │ │ proc_lib:init_ack/1,2 or │ │ │ proc_lib:init_fail/2,3 has been called, │ │ │ or the process has exited.

    │ │ │ │ │ │ │ │ │ │ │ │ Debugging │ │ │

    │ │ │

    To support the debug facilities in sys, a debug structure is needed. The │ │ │ -Deb term is initialized using sys:debug_options/1:

    init(Parent) ->
    │ │ │ +Deb term is initialized using sys:debug_options/1:

    init(Parent) ->
    │ │ │      ...
    │ │ │ -    Deb = sys:debug_options([]),
    │ │ │ +    Deb = sys:debug_options([]),
    │ │ │      ...
    │ │ │ -    loop(Chs, Parent, Deb).

    sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ + loop(Chs, Parent, Deb).

    sys:debug_options/1 takes a list of options. Given an empty list as in this │ │ │ example means that debugging is initially disabled. For information about the │ │ │ possible options, see sys in STDLIB.

    For each system event to be logged or traced, the following function │ │ │ -is to be called:

    sys:handle_debug(Deb, Func, Info, Event) => Deb1

    The arguments have the follow meaning:

    • Deb is the debug structure as returned from sys:debug_options/1.
    • Func is a fun specifying a (user-defined) function used to format trace │ │ │ +is to be called:

      sys:handle_debug(Deb, Func, Info, Event) => Deb1

      The arguments have the follow meaning:

      • Deb is the debug structure as returned from sys:debug_options/1.
      • Func is a fun specifying a (user-defined) function used to format trace │ │ │ output. For each system event, the format function is called as │ │ │ Func(Dev, Event, Info), where:
        • Dev is the I/O device to which the output is to be printed. See io │ │ │ in STDLIB.
        • Event and Info are passed as-is from the call to sys:handle_debug/4.
      • Info is used to pass more information to Func. It can be any term, and it │ │ │ is passed as-is.
      • Event is the system event. It is up to the user to define what a system │ │ │ event is and how it is to be represented. Typically, at least incoming and │ │ │ outgoing messages are considered system events and represented by the tuples │ │ │ {in,Msg[,From]} and {out,Msg,To[,State]}, respectively.

      sys:handle_debug/4 returns an updated debug structure Deb1.

      In the example, sys:handle_debug/4 is called for each incoming and │ │ │ outgoing message. The format function Func is the function │ │ │ -ch4:write_debug/3, which prints the message using io:format/3.

      loop(Chs, Parent, Deb) ->
      │ │ │ +ch4:write_debug/3, which prints the message using io:format/3.

      loop(Chs, Parent, Deb) ->
      │ │ │      receive
      │ │ │ -        {From, alloc} ->
      │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {in, alloc, From}),
      │ │ │ -            {Ch, Chs2} = alloc(Chs),
      │ │ │ -            From ! {ch4, Ch},
      │ │ │ -            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ -            loop(Chs2, Parent, Deb3);
      │ │ │ -        {free, Ch} ->
      │ │ │ -            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ -                                    ch4, {in, {free, Ch}}),
      │ │ │ -            Chs2 = free(Ch, Chs),
      │ │ │ -            loop(Chs2, Parent, Deb2);
      │ │ │ +        {From, alloc} ->
      │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {in, alloc, From}),
      │ │ │ +            {Ch, Chs2} = alloc(Chs),
      │ │ │ +            From ! {ch4, Ch},
      │ │ │ +            Deb3 = sys:handle_debug(Deb2, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {out, {ch4, Ch}, From}),
      │ │ │ +            loop(Chs2, Parent, Deb3);
      │ │ │ +        {free, Ch} ->
      │ │ │ +            Deb2 = sys:handle_debug(Deb, fun ch4:write_debug/3,
      │ │ │ +                                    ch4, {in, {free, Ch}}),
      │ │ │ +            Chs2 = free(Ch, Chs),
      │ │ │ +            loop(Chs2, Parent, Deb2);
      │ │ │          ...
      │ │ │      end.
      │ │ │  
      │ │ │ -write_debug(Dev, Event, Name) ->
      │ │ │ -    io:format(Dev, "~p event = ~p~n", [Name, Event]).

      │ │ │ +write_debug(Dev, Event, Name) -> │ │ │ + io:format(Dev, "~p event = ~p~n", [Name, Event]).

      │ │ │ │ │ │ │ │ │ │ │ │ Handling System Messages │ │ │

      │ │ │

      System messages are received as:

      {system, From, Request}

      The content and meaning of these messages are not to be interpreted by the │ │ │ -process. Instead the following function is to be called:

      sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

      The arguments have the following meaning:

      • Request and From from the received system message are to be │ │ │ +process. Instead the following function is to be called:

        sys:handle_system_msg(Request, From, Parent, Module, Deb, State)

        The arguments have the following meaning:

        • Request and From from the received system message are to be │ │ │ passed as-is to the call to sys:handle_system_msg/6.
        • Parent is the pid of the parent process.
        • Module is the name of the module implementing the speciall process.
        • Deb is the debug structure.
        • State is a term describing the internal state and is passed on to │ │ │ Module:system_continue/3, Module:system_terminate/4/ │ │ │ Module:system_get_state/1, and Module:system_replace_state/2.

        sys:handle_system_msg/6 does not return. It handles the system │ │ │ message and eventually calls either of the following functions:

        • Module:system_continue(Parent, Deb, State) - if process execution is to │ │ │ continue.

        • Module:system_terminate(Reason, Parent, Deb, State) - if the │ │ │ process is to terminate.

        While handling the system message, sys:handle_system_msg/6 can call │ │ │ one of the following functions:

        • Module:system_get_state(State) - if the process is to return its state.

        • Module:system_replace_state(StateFun, State) - if the process is │ │ │ to replace its state using the fun StateFun fun. See sys:replace_state/3 │ │ │ for more information.

        • system_code_change(Misc, Module, OldVsn, Extra) - if the process is to │ │ │ perform a code change.

        A process in a supervision tree is expected to terminate with the same reason as │ │ │ -its parent.

        In the example, system messages are handed by the following code:

        loop(Chs, Parent, Deb) ->
        │ │ │ +its parent.

        In the example, system messages are handed by the following code:

        loop(Chs, Parent, Deb) ->
        │ │ │      receive
        │ │ │          ...
        │ │ │  
        │ │ │ -        {system, From, Request} ->
        │ │ │ -            sys:handle_system_msg(Request, From, Parent,
        │ │ │ -                                  ch4, Deb, Chs)
        │ │ │ +        {system, From, Request} ->
        │ │ │ +            sys:handle_system_msg(Request, From, Parent,
        │ │ │ +                                  ch4, Deb, Chs)
        │ │ │      end.
        │ │ │  
        │ │ │ -system_continue(Parent, Deb, Chs) ->
        │ │ │ -    loop(Chs, Parent, Deb).
        │ │ │ +system_continue(Parent, Deb, Chs) ->
        │ │ │ +    loop(Chs, Parent, Deb).
        │ │ │  
        │ │ │ -system_terminate(Reason, Parent, Deb, Chs) ->
        │ │ │ -    exit(Reason).
        │ │ │ +system_terminate(Reason, Parent, Deb, Chs) ->
        │ │ │ +    exit(Reason).
        │ │ │  
        │ │ │ -system_get_state(Chs) ->
        │ │ │ -    {ok, Chs, Chs}.
        │ │ │ +system_get_state(Chs) ->
        │ │ │ +    {ok, Chs, Chs}.
        │ │ │  
        │ │ │ -system_replace_state(StateFun, Chs) ->
        │ │ │ -    NChs = StateFun(Chs),
        │ │ │ -    {ok, NChs, NChs}.

        If a special process is configured to trap exits, it must take notice │ │ │ +system_replace_state(StateFun, Chs) -> │ │ │ + NChs = StateFun(Chs), │ │ │ + {ok, NChs, NChs}.

        If a special process is configured to trap exits, it must take notice │ │ │ of 'EXIT' messages from its parent process and terminate using the │ │ │ -same exit reason once the parent process has terminated.

        Here is an example:

        init(Parent) ->
        │ │ │ +same exit reason once the parent process has terminated.

        Here is an example:

        init(Parent) ->
        │ │ │      ...,
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │      ...,
        │ │ │ -    loop(Parent).
        │ │ │ +    loop(Parent).
        │ │ │  
        │ │ │ -loop(Parent) ->
        │ │ │ +loop(Parent) ->
        │ │ │      receive
        │ │ │          ...
        │ │ │ -        {'EXIT', Parent, Reason} ->
        │ │ │ +        {'EXIT', Parent, Reason} ->
        │ │ │              %% Clean up here, if needed.
        │ │ │ -            exit(Reason);
        │ │ │ +            exit(Reason);
        │ │ │          ...
        │ │ │      end.

        │ │ │ │ │ │ │ │ │ │ │ │ User-Defined Behaviours │ │ │

        │ │ │ @@ -448,71 +448,71 @@ │ │ │ function. Note that the -optional_callbacks attribute is to be used together │ │ │ with the -callback attribute; it cannot be combined with the │ │ │ behaviour_info() function described below.

        Tools that need to know about optional callback functions can call │ │ │ Behaviour:behaviour_info(optional_callbacks) to get a list of all optional │ │ │ callback functions.

        Note

        We recommend using the -callback attribute rather than the │ │ │ behaviour_info() function. The reason is that the extra type information can │ │ │ be used by tools to produce documentation or find discrepancies.

        As an alternative to the -callback and -optional_callbacks attributes you │ │ │ -may directly implement and export behaviour_info():

        behaviour_info(callbacks) ->
        │ │ │ -    [{Name1, Arity1},...,{NameN, ArityN}].

        where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ +may directly implement and export behaviour_info():

        behaviour_info(callbacks) ->
        │ │ │ +    [{Name1, Arity1},...,{NameN, ArityN}].

        where each {Name, Arity} specifies the name and arity of a callback function. │ │ │ This function is otherwise automatically generated by the compiler using the │ │ │ -callback attributes.

        When the compiler encounters the module attribute -behaviour(Behaviour). in a │ │ │ module Mod, it calls Behaviour:behaviour_info(callbacks) and compares the │ │ │ result with the set of functions actually exported from Mod, and issues a │ │ │ warning if any callback function is missing.

        Example:

        %% User-defined behaviour module
        │ │ │ --module(simple_server).
        │ │ │ --export([start_link/2, init/3, ...]).
        │ │ │ +-module(simple_server).
        │ │ │ +-export([start_link/2, init/3, ...]).
        │ │ │  
        │ │ │ --callback init(State :: term()) -> 'ok'.
        │ │ │ --callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
        │ │ │ --callback terminate() -> 'ok'.
        │ │ │ --callback format_state(State :: term()) -> term().
        │ │ │ +-callback init(State :: term()) -> 'ok'.
        │ │ │ +-callback handle_req(Req :: term(), State :: term()) -> {'ok', Reply :: term()}.
        │ │ │ +-callback terminate() -> 'ok'.
        │ │ │ +-callback format_state(State :: term()) -> term().
        │ │ │  
        │ │ │ --optional_callbacks([format_state/1]).
        │ │ │ +-optional_callbacks([format_state/1]).
        │ │ │  
        │ │ │  %% Alternatively you may define:
        │ │ │  %%
        │ │ │  %% -export([behaviour_info/1]).
        │ │ │  %% behaviour_info(callbacks) ->
        │ │ │  %%     [{init,1},
        │ │ │  %%      {handle_req,2},
        │ │ │  %%      {terminate,0}].
        │ │ │  
        │ │ │ -start_link(Name, Module) ->
        │ │ │ -    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
        │ │ │ +start_link(Name, Module) ->
        │ │ │ +    proc_lib:start_link(?MODULE, init, [self(), Name, Module]).
        │ │ │  
        │ │ │ -init(Parent, Name, Module) ->
        │ │ │ -    register(Name, self()),
        │ │ │ +init(Parent, Name, Module) ->
        │ │ │ +    register(Name, self()),
        │ │ │      ...,
        │ │ │ -    Dbg = sys:debug_options([]),
        │ │ │ -    proc_lib:init_ack(Parent, {ok, self()}),
        │ │ │ -    loop(Parent, Module, Deb, ...).
        │ │ │ +    Dbg = sys:debug_options([]),
        │ │ │ +    proc_lib:init_ack(Parent, {ok, self()}),
        │ │ │ +    loop(Parent, Module, Deb, ...).
        │ │ │  
        │ │ │ -...

        In a callback module:

        -module(db).
        │ │ │ --behaviour(simple_server).
        │ │ │ +...

        In a callback module:

        -module(db).
        │ │ │ +-behaviour(simple_server).
        │ │ │  
        │ │ │ --export([init/1, handle_req/2, terminate/0]).
        │ │ │ +-export([init/1, handle_req/2, terminate/0]).
        │ │ │  
        │ │ │  ...

        The contracts specified with -callback attributes in behaviour modules can be │ │ │ further refined by adding -spec attributes in callback modules. This can be │ │ │ useful as -callback contracts are usually generic. The same callback module │ │ │ -with contracts for the callbacks:

        -module(db).
        │ │ │ --behaviour(simple_server).
        │ │ │ +with contracts for the callbacks:

        -module(db).
        │ │ │ +-behaviour(simple_server).
        │ │ │  
        │ │ │ --export([init/1, handle_req/2, terminate/0]).
        │ │ │ +-export([init/1, handle_req/2, terminate/0]).
        │ │ │  
        │ │ │ --record(state, {field1 :: [atom()], field2 :: integer()}).
        │ │ │ +-record(state, {field1 :: [atom()], field2 :: integer()}).
        │ │ │  
        │ │ │ --type state()   :: #state{}.
        │ │ │ --type request() :: {'store', term(), term()};
        │ │ │ -                   {'lookup', term()}.
        │ │ │ +-type state()   :: #state{}.
        │ │ │ +-type request() :: {'store', term(), term()};
        │ │ │ +                   {'lookup', term()}.
        │ │ │  
        │ │ │  ...
        │ │ │  
        │ │ │ --spec handle_req(request(), state()) -> {'ok', term()}.
        │ │ │ +-spec handle_req(request(), state()) -> {'ok', term()}.
        │ │ │  
        │ │ │  ...

        Each -spec contract is to be a subtype of the respective -callback contract.

        │ │ │ │ │ │ │ │ │
        │ │ │
        │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/statem.html │ │ │ @@ -124,15 +124,15 @@ │ │ │ │ │ │

        Established Automata Theory does not deal much with how a state transition │ │ │ is triggered, but assumes that the output is a function of the input │ │ │ (and the state) and that they are some kind of values.

        For an Event-Driven State Machine, the input is an event that triggers │ │ │ a state transition and the output is actions executed during │ │ │ the state transition. Analogously to the mathematical model │ │ │ of a Finite State Machine, it can be described as a set of relations │ │ │ -of the following form:

        State(S) x Event(E) -> Actions(A), State(S')

        These relations are interpreted as follows: if we are in state S, │ │ │ +of the following form:

        State(S) x Event(E) -> Actions(A), State(S')

        These relations are interpreted as follows: if we are in state S, │ │ │ and event E occurs, we are to perform actions A, and make a transition │ │ │ to state S'. Notice that S' can be equal to S, │ │ │ and that A can be empty.

        In gen_statem we define a state change as a state transition in which the │ │ │ new state S' is different from the current state S, where "different" means │ │ │ Erlang's strict inequality: =/= also known as "does not match". gen_statem │ │ │ does more things during state changes than during other state transitions.

        As A and S' depend only on S and E, the kind of state machine described │ │ │ here is a Mealy machine (see, for example, the Wikipedia article │ │ │ @@ -405,20 +405,20 @@ │ │ │ │ │ │ State Enter Calls │ │ │ │ │ │

        The gen_statem behaviour can, if this is enabled, regardless of callback │ │ │ mode, automatically call the state callback │ │ │ with special arguments whenever the state changes, so you can write │ │ │ state enter actions near the rest of the state transition rules. │ │ │ -It typically looks like this:

        StateName(enter, OldState, Data) ->
        │ │ │ +It typically looks like this:

        StateName(enter, OldState, Data) ->
        │ │ │      ... code for state enter actions here ...
        │ │ │ -    {keep_state, NewData};
        │ │ │ -StateName(EventType, EventContent, Data) ->
        │ │ │ +    {keep_state, NewData};
        │ │ │ +StateName(EventType, EventContent, Data) ->
        │ │ │      ... code for actions here ...
        │ │ │ -    {next_state, NewStateName, NewData}.

        Since the state enter call is not an event there are restrictions on the │ │ │ + {next_state, NewStateName, NewData}.

        Since the state enter call is not an event there are restrictions on the │ │ │ allowed return value and state transition actions. │ │ │ You must not change the state, postpone this non-event, │ │ │ insert any events, or change the │ │ │ callback module.

        The first state that is entered after gen_statem:init/1 will get │ │ │ a state enter call with OldState equal to the current state.

        You may repeat the state enter call using the {repeat_state,...} return │ │ │ value from the state callback. In this case │ │ │ OldState will also be equal to the current state.

        Depending on how your state machine is specified, this can be a very useful │ │ │ @@ -499,72 +499,72 @@ │ │ │ │ │ │ locked --> check_code : {button, Button}\n* Collect Buttons │ │ │ check_code --> locked : Incorrect code │ │ │ check_code --> open : Correct code\n* do_unlock()\n* Clear Buttons\n* Set state_timeout 10 s │ │ │ │ │ │ open --> open : {button, Digit} │ │ │ open --> locked : state_timeout\n* do_lock()

        This code lock state machine can be implemented using gen_statem with │ │ │ -the following callback module:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock).
        │ │ │ +the following callback module:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock).
        │ │ │  
        │ │ │ --export([start_link/1]).
        │ │ │ --export([button/1]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([locked/3,open/3]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ -
        │ │ │ -button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ -
        │ │ │ -init(Code) ->
        │ │ │ -    do_lock(),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ -
        │ │ │ -callback_mode() ->
        │ │ │ -    state_functions.
        locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +-export([start_link/1]).
        │ │ │ +-export([button/1]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([locked/3,open/3]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ +
        │ │ │ +button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ +
        │ │ │ +init(Code) ->
        │ │ │ +    do_lock(),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.
        │ │ │ +
        │ │ │ +callback_mode() ->
        │ │ │ +    state_functions.
        locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ -    end.
        open(state_timeout, lock,  Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {next_state, open, Data}.
        do_lock() ->
        │ │ │ -    io:format("Lock~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Unlock~n", []).
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ +    end.
        open(state_timeout, lock,  Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {next_state, open, Data}.
        do_lock() ->
        │ │ │ +    io:format("Lock~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Unlock~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        The code is explained in the next sections.

        │ │ │ │ │ │ │ │ │ │ │ │ Starting gen_statem │ │ │

        │ │ │

        In the example in the previous section, gen_statem is started by calling │ │ │ -code_lock:start_link(Code):

        start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

        start_link/1 calls function gen_statem:start_link/4, │ │ │ +code_lock:start_link(Code):

        start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).

        start_link/1 calls function gen_statem:start_link/4, │ │ │ which spawns and links to a new process, a gen_statem.

        • The first argument, {local,?NAME}, specifies the name. In this case, the │ │ │ gen_statem is locally registered as code_lock through the macro ?NAME.

          If the name is omitted, the gen_statem is not registered. Instead its pid │ │ │ must be used. The name can also be specified as {global, Name}, then the │ │ │ gen_statem is registered using global:register_name/2 in Kernel.

        • The second argument, ?MODULE, is the name of the callback module, │ │ │ that is, the module where the callback functions are located, │ │ │ which is this module.

          The interface functions (start_link/1 and button/1) are located in the │ │ │ same module as the callback functions (init/1, locked/3, and open/3). │ │ │ @@ -574,184 +574,184 @@ │ │ │ see gen_statem:start_link/3.

        If name registration succeeds, the new gen_statem process calls callback │ │ │ function code_lock:init(Code). This function is expected to return │ │ │ {ok, State, Data}, where State is the initial state of the gen_statem, │ │ │ in this case locked; assuming that the door is locked to begin with. │ │ │ Data is the internal server data of the gen_statem. Here the server data │ │ │ is a map() with key code that stores the correct │ │ │ button sequence, key length store its length, and key buttons │ │ │ -that stores the collected buttons up to the same length.

        init(Code) ->
        │ │ │ -    do_lock(),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.

        Function gen_statem:start_link/3,4 │ │ │ +that stores the collected buttons up to the same length.

        init(Code) ->
        │ │ │ +    do_lock(),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.

        Function gen_statem:start_link/3,4 │ │ │ is synchronous. It does not return until the gen_statem is initialized │ │ │ and is ready to receive events.

        Function gen_statem:start_link/3,4 │ │ │ must be used if the gen_statem is part of a supervision tree, that is, │ │ │ started by a supervisor. Function, │ │ │ gen_statem:start/3,4 can be used to start │ │ │ a standalone gen_statem, meaning it is not part of a supervision tree.

        Function Module:callback_mode/0 selects │ │ │ the CallbackMode for the callback module, │ │ │ in this case state_functions. │ │ │ -That is, each state has its own handler function:

        callback_mode() ->
        │ │ │ +That is, each state has its own handler function:

        callback_mode() ->
        │ │ │      state_functions.

        │ │ │ │ │ │ │ │ │ │ │ │ Handling Events │ │ │

        │ │ │

        The function notifying the code lock about a button event is implemented using │ │ │ -gen_statem:cast/2:

        button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).

        The first argument is the name of the gen_statem and must agree with │ │ │ +gen_statem:cast/2:

        button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).

        The first argument is the name of the gen_statem and must agree with │ │ │ the name used to start it. So, we use the same macro ?NAME as when starting. │ │ │ {button, Button} is the event content.

        The event is sent to the gen_statem. When the event is received, the │ │ │ gen_statem calls StateName(cast, Event, Data), which is expected │ │ │ to return a tuple {next_state, NewStateName, NewData}, or │ │ │ {next_state, NewStateName, NewData, Actions}. StateName is the name │ │ │ of the current state and NewStateName is the name of the next state. │ │ │ NewData is a new value for the server data of the gen_statem, │ │ │ -and Actions is a list of actions to be performed by the gen_statem engine.

        locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +and Actions is a list of actions to be performed by the gen_statem engine.

        locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons}}
        │ │ │      end.

        In state locked, when a button is pressed, it is collected with the │ │ │ previously pressed buttons up to the length of the correct code, then │ │ │ compared with the correct code. Depending on the result, the door is │ │ │ either unlocked and the gen_statem goes to state open, or the door │ │ │ remains in state locked.

        When changing to state open, the collected buttons are reset, the lock │ │ │ -unlocked, and a state time-out for 10 seconds is started.

        open(cast, {button,_}, Data) ->
        │ │ │ -    {next_state, open, Data}.

        In state open, a button event is ignored by staying in the same state. │ │ │ +unlocked, and a state time-out for 10 seconds is started.

        open(cast, {button,_}, Data) ->
        │ │ │ +    {next_state, open, Data}.

        In state open, a button event is ignored by staying in the same state. │ │ │ This can also be done by returning {keep_state, Data}, or in this case │ │ │ since Data is unchanged, by returning keep_state_and_data.

        │ │ │ │ │ │ │ │ │ │ │ │ State Time-Outs │ │ │

        │ │ │

        When a correct code has been given, the door is unlocked and the following │ │ │ -tuple is returned from locked/2:

        {next_state, open, Data#{buttons := []},
        │ │ │ - [{state_timeout,10_000,lock}]}; % Time in milliseconds

        10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ +tuple is returned from locked/2:

        {next_state, open, Data#{buttons := []},
        │ │ │ + [{state_timeout,10_000,lock}]}; % Time in milliseconds

        10,000 is a time-out value in milliseconds. After this time (10 seconds), │ │ │ a time-out occurs. Then, StateName(state_timeout, lock, Data) is called. │ │ │ The time-out occurs when the door has been in state open for 10 seconds. │ │ │ -After that the door is locked again:

        open(state_timeout, lock,  Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};

        The timer for a state time-out is automatically canceled when │ │ │ +After that the door is locked again:

        open(state_timeout, lock,  Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};

        The timer for a state time-out is automatically canceled when │ │ │ the state machine does a state change.

        You can restart, cancel, or update a state time-out. See section │ │ │ Time-Outs for details.

        │ │ │ │ │ │ │ │ │ │ │ │ All State Events │ │ │

        │ │ │

        Sometimes events can arrive in any state of the gen_statem. It is convenient │ │ │ to handle these in a common state handler function that all state functions │ │ │ call for events not specific to the state.

        Consider a code_length/0 function that returns the length │ │ │ of the correct code. We dispatch all events that are not state-specific │ │ │ to the common function handle_common/3:

        ...
        │ │ │ --export([button/1,code_length/0]).
        │ │ │ +-export([button/1,code_length/0]).
        │ │ │  ...
        │ │ │  
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        │ │ │  
        │ │ │  ...
        │ │ │ -locked(...) -> ... ;
        │ │ │ -locked(EventType, EventContent, Data) ->
        │ │ │ -    handle_common(EventType, EventContent, Data).
        │ │ │ +locked(...) -> ... ;
        │ │ │ +locked(EventType, EventContent, Data) ->
        │ │ │ +    handle_common(EventType, EventContent, Data).
        │ │ │  
        │ │ │  ...
        │ │ │ -open(...) -> ... ;
        │ │ │ -open(EventType, EventContent, Data) ->
        │ │ │ -    handle_common(EventType, EventContent, Data).
        │ │ │ -
        │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.

        Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

        ...
        │ │ │ --export([button/1,code_length/0]).
        │ │ │ +open(...) -> ... ;
        │ │ │ +open(EventType, EventContent, Data) ->
        │ │ │ +    handle_common(EventType, EventContent, Data).
        │ │ │ +
        │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.

        Another way to do it is through a convenience macro ?HANDLE_COMMON/0:

        ...
        │ │ │ +-export([button/1,code_length/0]).
        │ │ │  ...
        │ │ │  
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        │ │ │  
        │ │ │ --define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │ +-define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │  %%
        │ │ │ -handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        │ │ │ +handle_common({call,From}, code_length, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        │ │ │  
        │ │ │  ...
        │ │ │ -locked(...) -> ... ;
        │ │ │ +locked(...) -> ... ;
        │ │ │  ?HANDLE_COMMON.
        │ │ │  
        │ │ │  ...
        │ │ │ -open(...) -> ... ;
        │ │ │ +open(...) -> ... ;
        │ │ │  ?HANDLE_COMMON.

        This example uses gen_statem:call/2, which waits for a reply from the server. │ │ │ The reply is sent with a {reply, From, Reply} tuple in an action list in the │ │ │ {keep_state, ...} tuple that retains the current state. This return form is │ │ │ convenient when you want to stay in the current state but do not know or care │ │ │ about what it is.

        If the common state callback needs to know the current state a function │ │ │ -handle_common/4 can be used instead:

        -define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

        │ │ │ +handle_common/4 can be used instead:

        -define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, ?FUNCTION_NAME, D)).

        │ │ │ │ │ │ │ │ │ │ │ │ One State Callback │ │ │

        │ │ │

        If callback mode handle_event_function is used, │ │ │ all events are handled in │ │ │ Module:handle_event/4 and we can │ │ │ (but do not have to) use an event-centered approach where we first branch │ │ │ depending on event and then depending on state:

        ...
        │ │ │ --export([handle_event/4]).
        │ │ │ +-export([handle_event/4]).
        │ │ │  
        │ │ │  ...
        │ │ │ -callback_mode() ->
        │ │ │ +callback_mode() ->
        │ │ │      handle_event_function.
        │ │ │  
        │ │ │ -handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
        │ │ │ +handle_event(cast, {button,Button}, State, #{code := Code} = Data) ->
        │ │ │      case State of
        │ │ │  	locked ->
        │ │ │ -            #{length := Length, buttons := Buttons} = Data,
        │ │ │ +            #{length := Length, buttons := Buttons} = Data,
        │ │ │              NewButtons =
        │ │ │                  if
        │ │ │ -                    length(Buttons) < Length ->
        │ │ │ +                    length(Buttons) < Length ->
        │ │ │                          Buttons;
        │ │ │                      true ->
        │ │ │ -                        tl(Buttons)
        │ │ │ -                end ++ [Button],
        │ │ │ +                        tl(Buttons)
        │ │ │ +                end ++ [Button],
        │ │ │              if
        │ │ │                  NewButtons =:= Code -> % Correct
        │ │ │ -                    do_unlock(),
        │ │ │ -                    {next_state, open, Data#{buttons := []},
        │ │ │ -                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +                    do_unlock(),
        │ │ │ +                    {next_state, open, Data#{buttons := []},
        │ │ │ +                     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │                  true -> % Incomplete | Incorrect
        │ │ │ -                    {keep_state, Data#{buttons := NewButtons}}
        │ │ │ +                    {keep_state, Data#{buttons := NewButtons}}
        │ │ │              end;
        │ │ │  	open ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_event(state_timeout, lock, open, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -handle_event(
        │ │ │ -  {call,From}, code_length, _State, #{code := Code} = Data) ->
        │ │ │ -    {keep_state, Data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        │ │ │ +handle_event(state_timeout, lock, open, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +handle_event(
        │ │ │ +  {call,From}, code_length, _State, #{code := Code} = Data) ->
        │ │ │ +    {keep_state, Data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        │ │ │  
        │ │ │  ...

        │ │ │ │ │ │ │ │ │ │ │ │ Stopping │ │ │

        │ │ │ @@ -763,59 +763,59 @@ │ │ │ │ │ │

        If the gen_statem is part of a supervision tree, no stop function is needed. │ │ │ The gen_statem is automatically terminated by its supervisor. Exactly how │ │ │ this is done is defined by a shutdown strategy │ │ │ set in the supervisor.

        If it is necessary to clean up before termination, the shutdown strategy │ │ │ must be a time-out value and the gen_statem must in function init/1 │ │ │ set itself to trap exit signals by calling │ │ │ -process_flag(trap_exit, true):

        init(Args) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    do_lock(),
        │ │ │ +process_flag(trap_exit, true):

        init(Args) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    do_lock(),
        │ │ │      ...

        When ordered to shut down, the gen_statem then calls callback function │ │ │ terminate(shutdown, State, Data).

        In this example, function terminate/3 locks the door if it is open, │ │ │ so we do not accidentally leave the door open │ │ │ -when the supervision tree terminates:

        terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +when the supervision tree terminates:

        terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Standalone gen_statem │ │ │

        │ │ │

        If the gen_statem is not part of a supervision tree, it can be stopped │ │ │ using gen_statem:stop/1, preferably through │ │ │ an API function:

        ...
        │ │ │ --export([start_link/1,stop/0]).
        │ │ │ +-export([start_link/1,stop/0]).
        │ │ │  
        │ │ │  ...
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).

        This makes the gen_statem call callback function terminate/3 just like │ │ │ +stop() -> │ │ │ + gen_statem:stop(?NAME).

        This makes the gen_statem call callback function terminate/3 just like │ │ │ for a supervised server and waits for the process to terminate.

        │ │ │ │ │ │ │ │ │ │ │ │ Event Time-Outs │ │ │

        │ │ │

        A time-out feature inherited from gen_statem's predecessor gen_fsm, │ │ │ is an event time-out, that is, if an event arrives the timer is canceled. │ │ │ You get either an event or a time-out, but not both.

        It is ordered by the │ │ │ transition action {timeout, Time, EventContent}, │ │ │ or just an integer Time, even without the enclosing actions list (the latter │ │ │ is a form inherited from gen_fsm).

        This type of time-out is useful, for example, to act on inactivity. │ │ │ Let's restart the code sequence if no button is pressed for say 30 seconds:

        ...
        │ │ │  
        │ │ │ -locked(timeout, _, Data) ->
        │ │ │ -    {next_state, locked, Data#{buttons := []}};
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(timeout, _, Data) ->
        │ │ │ +    {next_state, locked, Data#{buttons := []}};
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {next_state, locked, Data#{buttons := NewButtons},
        │ │ │ -             30_000} % Time in milliseconds
        │ │ │ +            {next_state, locked, Data#{buttons := NewButtons},
        │ │ │ +             30_000} % Time in milliseconds
        │ │ │  ...

        Whenever we receive a button event we start an event time-out of 30 seconds, │ │ │ and if we get an event type of timeout we reset the remaining │ │ │ code sequence.

        An event time-out is canceled by any other event so you either get │ │ │ some other event or the time-out event. Therefore, canceling, │ │ │ restarting, or updating an event time-out is neither possible nor │ │ │ necessary. Whatever event you act on has already canceled │ │ │ the event time-out, so there is never a running event time-out │ │ │ @@ -834,30 +834,30 @@ │ │ │ another, maybe cancel the time-out without changing states, or perhaps run │ │ │ multiple time-outs in parallel. All this can be accomplished with │ │ │ generic time-outs. They may look a little │ │ │ bit like event time-outs but contain │ │ │ a name to allow for any number of them simultaneously and they are │ │ │ not automatically canceled.

        Here is how to accomplish the state time-out in the previous example │ │ │ by instead using a generic time-out named for example open:

        ...
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ -            {next_state, open, Data#{buttons := []},
        │ │ │ -             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
        │ │ │ +	    do_unlock(),
        │ │ │ +            {next_state, open, Data#{buttons := []},
        │ │ │ +             [{{timeout,open},10_000,lock}]}; % Time in milliseconds
        │ │ │  ...
        │ │ │  
        │ │ │ -open({timeout,open}, lock, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state,locked,Data};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data};
        │ │ │ +open({timeout,open}, lock, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state,locked,Data};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data};
        │ │ │  ...

        Specific generic time-outs can just as state time-outs │ │ │ be restarted or canceled by setting it to a new time or infinity.

        In this particular case we do not need to cancel the time-out since │ │ │ the time-out event is the only possible reason to do a state change │ │ │ from open to locked.

        Instead of bothering with when to cancel a time-out, a late time-out event │ │ │ can be handled by ignoring it if it arrives in a state │ │ │ where it is known to be late.

        You can restart, cancel, or update a generic time-out. │ │ │ See section Time-Outs for details.

        │ │ │ @@ -869,32 +869,32 @@ │ │ │

        The most versatile way to handle time-outs is to use Erlang Timers; see │ │ │ erlang:start_timer/3,4. Most time-out tasks │ │ │ can be performed with the time-out features in gen_statem, │ │ │ but an example of one that cannot is if you should need the return value │ │ │ from erlang:cancel_timer(Tref), that is, │ │ │ the remaining time of the timer.

        Here is how to accomplish the state time-out in the previous example │ │ │ by instead using an Erlang Timer:

        ...
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -	    do_unlock(),
        │ │ │ +	    do_unlock(),
        │ │ │  	    Tref =
        │ │ │ -                 erlang:start_timer(
        │ │ │ -                     10_000, self(), lock), % Time in milliseconds
        │ │ │ -            {next_state, open, Data#{buttons := [], timer => Tref}};
        │ │ │ +                 erlang:start_timer(
        │ │ │ +                     10_000, self(), lock), % Time in milliseconds
        │ │ │ +            {next_state, open, Data#{buttons := [], timer => Tref}};
        │ │ │  ...
        │ │ │  
        │ │ │ -open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {next_state,locked,maps:remove(timer, Data)};
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data};
        │ │ │ +open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {next_state,locked,maps:remove(timer, Data)};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data};
        │ │ │  ...

        Removing the timer key from the map when we do a state change to locked │ │ │ is not strictly necessary since we can only get into state open │ │ │ with an updated timer map value. But it can be nice to not have │ │ │ outdated values in the state Data.

        If you need to cancel a timer because of some other event, you can use │ │ │ erlang:cancel_timer(Tref). Note that no time-out │ │ │ message will arrive after this (because the timer has been │ │ │ explicitly canceled), unless you have already postponed one earlier │ │ │ @@ -910,16 +910,16 @@ │ │ │ Postponing Events │ │ │

        │ │ │

        If you want to ignore a particular event in the current state and handle it │ │ │ in a future state, you can postpone the event. A postponed event │ │ │ is retried after a state change, that is, OldState =/= NewState.

        Postponing is ordered by the │ │ │ transition action postpone.

        In this example, instead of ignoring button events while in the open state, │ │ │ we can postpone them handle them later in the locked state:

        ...
        │ │ │ -open(cast, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data,[postpone]};
        │ │ │ +open(cast, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data,[postpone]};
        │ │ │  ...

        Since a postponed event is only retried after a state change, you have to │ │ │ think about where to keep a state data item. You can keep it in the server │ │ │ Data or in the State itself, for example by having two more or less │ │ │ identical states to keep a boolean value, or by using a complex state (see │ │ │ section Complex State) with │ │ │ callback mode │ │ │ handle_event_function. If a change │ │ │ @@ -940,55 +940,55 @@ │ │ │ │ │ │ │ │ │ │ │ │ Selective Receive │ │ │ │ │ │

        Erlang's selective receive statement is often used to describe simple state │ │ │ machine examples in straightforward Erlang code. The following is a possible │ │ │ -implementation of the first example:

        -module(code_lock).
        │ │ │ --define(NAME, code_lock_1).
        │ │ │ --export([start_link/1,button/1]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    spawn(
        │ │ │ -      fun () ->
        │ │ │ -	      true = register(?NAME, self()),
        │ │ │ -	      do_lock(),
        │ │ │ -	      locked(Code, length(Code), [])
        │ │ │ -      end).
        │ │ │ +implementation of the first example:

        -module(code_lock).
        │ │ │ +-define(NAME, code_lock_1).
        │ │ │ +-export([start_link/1,button/1]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    spawn(
        │ │ │ +      fun () ->
        │ │ │ +	      true = register(?NAME, self()),
        │ │ │ +	      do_lock(),
        │ │ │ +	      locked(Code, length(Code), [])
        │ │ │ +      end).
        │ │ │  
        │ │ │ -button(Button) ->
        │ │ │ -    ?NAME ! {button,Button}.
        locked(Code, Length, Buttons) ->
        │ │ │ +button(Button) ->
        │ │ │ +    ?NAME ! {button,Button}.
        locked(Code, Length, Buttons) ->
        │ │ │      receive
        │ │ │ -        {button,Button} ->
        │ │ │ +        {button,Button} ->
        │ │ │              NewButtons =
        │ │ │                  if
        │ │ │ -                    length(Buttons) < Length ->
        │ │ │ +                    length(Buttons) < Length ->
        │ │ │                          Buttons;
        │ │ │                      true ->
        │ │ │ -                        tl(Buttons)
        │ │ │ -                end ++ [Button],
        │ │ │ +                        tl(Buttons)
        │ │ │ +                end ++ [Button],
        │ │ │              if
        │ │ │                  NewButtons =:= Code -> % Correct
        │ │ │ -                    do_unlock(),
        │ │ │ -		    open(Code, Length);
        │ │ │ +                    do_unlock(),
        │ │ │ +		    open(Code, Length);
        │ │ │                  true -> % Incomplete | Incorrect
        │ │ │ -                    locked(Code, Length, NewButtons)
        │ │ │ +                    locked(Code, Length, NewButtons)
        │ │ │              end
        │ │ │ -    end.
        open(Code, Length) ->
        │ │ │ +    end.
        open(Code, Length) ->
        │ │ │      receive
        │ │ │      after 10_000 -> % Time in milliseconds
        │ │ │ -	    do_lock(),
        │ │ │ -	    locked(Code, Length, [])
        │ │ │ +	    do_lock(),
        │ │ │ +	    locked(Code, Length, [])
        │ │ │      end.
        │ │ │  
        │ │ │ -do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).

        The selective receive in this case causes open to implicitly postpone any │ │ │ +do_lock() -> │ │ │ + io:format("Locked~n", []). │ │ │ +do_unlock() -> │ │ │ + io:format("Open~n", []).

        The selective receive in this case causes open to implicitly postpone any │ │ │ events to the locked state.

        A catch-all receive should never be used from a gen_statem behaviour │ │ │ (or from any gen_* behaviour), as the receive statement is within │ │ │ the gen_* engine itself. sys-compatible behaviours must respond to │ │ │ system messages and therefore do that in their engine receive loop, │ │ │ passing non-system messages to the callback module. Using a catch-all │ │ │ receive can result in system messages being discarded, which in turn │ │ │ can lead to unexpected behaviour. If a selective receive must be used, │ │ │ @@ -1011,40 +1011,40 @@ │ │ │ section), especially if only one or a few states have state enter actions, │ │ │ this is a perfect use case for the built in │ │ │ state enter calls.

        You return a list containing state_enter from your │ │ │ callback_mode/0 function and the │ │ │ gen_statem engine will call your state callback once with an event │ │ │ (enter, OldState, ...) whenever it does a state change. Then you │ │ │ just need to handle these event-like calls in all states.

        ...
        │ │ │ -init(Code) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length = length(Code)},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ -
        │ │ │ -callback_mode() ->
        │ │ │ -    [state_functions,state_enter].
        │ │ │ -
        │ │ │ -locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state,Data#{buttons => []}};
        │ │ │ -locked(
        │ │ │ -  cast, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +init(Code) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length = length(Code)},
        │ │ │ +    {ok, locked, Data}.
        │ │ │ +
        │ │ │ +callback_mode() ->
        │ │ │ +    [state_functions,state_enter].
        │ │ │ +
        │ │ │ +locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state,Data#{buttons => []}};
        │ │ │ +locked(
        │ │ │ +  cast, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │  ...
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  ...
        │ │ │  
        │ │ │ -open(enter, _OldState, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -open(state_timeout, lock, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ +open(enter, _OldState, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +open(state_timeout, lock, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │  ...

        You can repeat the state enter code by returning one of │ │ │ {repeat_state, ...},{repeat_state_and_data, _}, │ │ │ or repeat_state_and_data that otherwise behaves exactly like their │ │ │ keep_state siblings. See the type │ │ │ state_callback_result() │ │ │ in the Reference Manual.

        │ │ │ │ │ │ @@ -1066,44 +1066,44 @@ │ │ │ to dispatch pre-processed events as internal events to the main state │ │ │ machine.

        Using internal events also can make it easier to synchronize the state │ │ │ machines.

        A variant of this is to use a complex state with │ │ │ one state callback, modeling the state │ │ │ with, for example, a tuple {MainFSMState, SubFSMState}.

        To illustrate this we make up an example where the buttons instead generate │ │ │ down and up (press and release) events, and the lock responds │ │ │ to an up event only after the corresponding down event.

        ...
        │ │ │ --export([down/1, up/1]).
        │ │ │ +-export([down/1, up/1]).
        │ │ │  ...
        │ │ │ -down(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ +down(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
        │ │ │  
        │ │ │ -up(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ +up(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
        │ │ │  
        │ │ │  ...
        │ │ │  
        │ │ │ -locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state,Data#{buttons => []}};
        │ │ │ -locked(
        │ │ │ -  internal, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ -...
        handle_common(cast, {down,Button}, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_common(cast, {up,Button}, Data) ->
        │ │ │ +locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state,Data#{buttons => []}};
        │ │ │ +locked(
        │ │ │ +  internal, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +...
        handle_common(cast, {down,Button}, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_common(cast, {up,Button}, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state,maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}}]};
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state,maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}}]};
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │  ...
        │ │ │  
        │ │ │ -open(internal, {button,_}, Data) ->
        │ │ │ -    {keep_state,Data,[postpone]};
        │ │ │ +open(internal, {button,_}, Data) ->
        │ │ │ +    {keep_state,Data,[postpone]};
        │ │ │  ...

        If you start this program with code_lock:start([17]) you can unlock with │ │ │ code_lock:down(17), code_lock:up(17).

        │ │ │ │ │ │ │ │ │ │ │ │ Example Revisited │ │ │

        │ │ │ @@ -1131,152 +1131,152 @@ │ │ │ Also, the state diagram does not show that the code_length/0 call │ │ │ must be handled in every state.

        │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: state_functions │ │ │

        │ │ │ -

        Using state functions:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock_2).
        │ │ │ +

        Using state functions:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock_2).
        │ │ │  
        │ │ │ --export([start_link/1,stop/0]).
        │ │ │ --export([down/1,up/1,code_length/0]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([locked/3,open/3]).
        │ │ │ -
        │ │ │ -start_link(Code) ->
        │ │ │ -    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).
        │ │ │ -
        │ │ │ -down(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ -up(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ -code_length() ->
        │ │ │ -    gen_statem:call(?NAME, code_length).
        init(Code) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, locked, Data}.
        │ │ │ +-export([start_link/1,stop/0]).
        │ │ │ +-export([down/1,up/1,code_length/0]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([locked/3,open/3]).
        │ │ │ +
        │ │ │ +start_link(Code) ->
        │ │ │ +    gen_statem:start_link({local,?NAME}, ?MODULE, Code, []).
        │ │ │ +stop() ->
        │ │ │ +    gen_statem:stop(?NAME).
        │ │ │ +
        │ │ │ +down(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {down,Button}).
        │ │ │ +up(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {up,Button}).
        │ │ │ +code_length() ->
        │ │ │ +    gen_statem:call(?NAME, code_length).
        init(Code) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, locked, Data}.
        │ │ │  
        │ │ │ -callback_mode() ->
        │ │ │ -    [state_functions,state_enter].
        │ │ │ +callback_mode() ->
        │ │ │ +    [state_functions,state_enter].
        │ │ │  
        │ │ │ --define(HANDLE_COMMON,
        │ │ │ -    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │ +-define(HANDLE_COMMON,
        │ │ │ +    ?FUNCTION_NAME(T, C, D) -> handle_common(T, C, D)).
        │ │ │  %%
        │ │ │ -handle_common(cast, {down,Button}, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_common(cast, {up,Button}, Data) ->
        │ │ │ +handle_common(cast, {down,Button}, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_common(cast, {up,Button}, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state, maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}}]};
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state, maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}}]};
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_common({call,From}, code_length, #{code := Code}) ->
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{reply,From,length(Code)}]}.
        locked(enter, _OldState, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -locked(state_timeout, button, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -locked(
        │ │ │ -  internal, {button,Button},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_common({call,From}, code_length, #{code := Code}) ->
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{reply,From,length(Code)}]}.
        locked(enter, _OldState, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +locked(state_timeout, button, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +locked(
        │ │ │ +  internal, {button,Button},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        │ │ │ -?HANDLE_COMMON.
        open(enter, _OldState, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -open(state_timeout, lock, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -open(internal, {button,_}, _) ->
        │ │ │ -    {keep_state_and_data, [postpone]};
        │ │ │ +?HANDLE_COMMON.
        open(enter, _OldState, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +open(state_timeout, lock, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +open(internal, {button,_}, _) ->
        │ │ │ +    {keep_state_and_data, [postpone]};
        │ │ │  ?HANDLE_COMMON.
        │ │ │  
        │ │ │ -do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).
        │ │ │ +do_lock() ->
        │ │ │ +    io:format("Locked~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Open~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Callback Mode: handle_event_function │ │ │

        │ │ │

        This section describes what to change in the example to use one │ │ │ handle_event/4 function. The previously used approach to first branch │ │ │ depending on event does not work that well here because of │ │ │ -the state enter calls, so this example first branches depending on state:

        -export([handle_event/4]).
        callback_mode() ->
        │ │ │ -    [handle_event_function,state_enter].
        %%
        │ │ │ +the state enter calls, so this example first branches depending on state:

        -export([handle_event/4]).
        callback_mode() ->
        │ │ │ +    [handle_event_function,state_enter].
        %%
        │ │ │  %% State: locked
        │ │ │ -handle_event(enter, _OldState, locked, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(state_timeout, button, locked, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(
        │ │ │ -  internal, {button,Button}, locked,
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_event(enter, _OldState, locked, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(state_timeout, button, locked, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(
        │ │ │ +  internal, {button,Button}, locked,
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, open, Data};
        │ │ │ +            {next_state, open, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, open, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -handle_event(state_timeout, lock, open, Data) ->
        │ │ │ -    {next_state, locked, Data};
        │ │ │ -handle_event(internal, {button,_}, open, _) ->
        │ │ │ -    {keep_state_and_data,[postpone]};
        %% Common events
        │ │ │ -handle_event(cast, {down,Button}, _State, Data) ->
        │ │ │ -    {keep_state, Data#{button => Button}};
        │ │ │ -handle_event(cast, {up,Button}, _State, Data) ->
        │ │ │ +handle_event(enter, _OldState, open, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +handle_event(state_timeout, lock, open, Data) ->
        │ │ │ +    {next_state, locked, Data};
        │ │ │ +handle_event(internal, {button,_}, open, _) ->
        │ │ │ +    {keep_state_and_data,[postpone]};
        %% Common events
        │ │ │ +handle_event(cast, {down,Button}, _State, Data) ->
        │ │ │ +    {keep_state, Data#{button => Button}};
        │ │ │ +handle_event(cast, {up,Button}, _State, Data) ->
        │ │ │      case Data of
        │ │ │ -        #{button := Button} ->
        │ │ │ -            {keep_state, maps:remove(button, Data),
        │ │ │ -             [{next_event,internal,{button,Button}},
        │ │ │ -              {state_timeout,30_000,button}]}; % Time in milliseconds
        │ │ │ -        #{} ->
        │ │ │ +        #{button := Button} ->
        │ │ │ +            {keep_state, maps:remove(button, Data),
        │ │ │ +             [{next_event,internal,{button,Button}},
        │ │ │ +              {state_timeout,30_000,button}]}; % Time in milliseconds
        │ │ │ +        #{} ->
        │ │ │              keep_state_and_data
        │ │ │      end;
        │ │ │ -handle_event({call,From}, code_length, _State, #{length := Length}) ->
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{reply,From,Length}]}.

        Notice that postponing buttons from the open state to the locked state │ │ │ +handle_event({call,From}, code_length, _State, #{length := Length}) -> │ │ │ + {keep_state_and_data, │ │ │ + [{reply,From,Length}]}.

        Notice that postponing buttons from the open state to the locked state │ │ │ seems like a strange thing to do for a code lock, but it at least │ │ │ illustrates event postponing.

        │ │ │ │ │ │ │ │ │ │ │ │ Filter the State │ │ │

        │ │ │ @@ -1286,30 +1286,30 @@ │ │ │ and which digits that remain to unlock.

        This state data can be regarded as sensitive, and maybe not what you want │ │ │ in the error log because of some unpredictable event.

        Another reason to filter the state can be that the state is too large to print, │ │ │ as it fills the error log with uninteresting details.

        To avoid this, you can format the internal state that gets in the error log │ │ │ and gets returned from sys:get_status/1,2 │ │ │ by implementing function │ │ │ Module:format_status/2, │ │ │ for example like this:

        ...
        │ │ │ --export([init/1,terminate/3,format_status/2]).
        │ │ │ +-export([init/1,terminate/3,format_status/2]).
        │ │ │  ...
        │ │ │  
        │ │ │ -format_status(Opt, [_PDict,State,Data]) ->
        │ │ │ +format_status(Opt, [_PDict,State,Data]) ->
        │ │ │      StateData =
        │ │ │ -	{State,
        │ │ │ -	 maps:filter(
        │ │ │ -	   fun (code, _) -> false;
        │ │ │ -	       (_, _) -> true
        │ │ │ +	{State,
        │ │ │ +	 maps:filter(
        │ │ │ +	   fun (code, _) -> false;
        │ │ │ +	       (_, _) -> true
        │ │ │  	   end,
        │ │ │ -	   Data)},
        │ │ │ +	   Data)},
        │ │ │      case Opt of
        │ │ │  	terminate ->
        │ │ │  	    StateData;
        │ │ │  	normal ->
        │ │ │ -	    [{data,[{"State",StateData}]}]
        │ │ │ +	    [{data,[{"State",StateData}]}]
        │ │ │      end.

        It is not mandatory to implement a │ │ │ Module:format_status/2 function. │ │ │ If you do not, a default implementation is used that does the same │ │ │ as this example function without filtering the Data term, that is, │ │ │ StateData = {State, Data}, in this example containing sensitive information.

        │ │ │ │ │ │ │ │ │ @@ -1322,104 +1322,104 @@ │ │ │ like a tuple.

        One reason to use this is when you have a state item that when changed │ │ │ should cancel the state time-out, or one that affects │ │ │ the event handling in combination with postponing events. We will go for │ │ │ the latter and complicate the previous example by introducing │ │ │ a configurable lock button (this is the state item in question), │ │ │ which in the open state immediately locks the door, and an API function │ │ │ set_lock_button/1 to set the lock button.

        Suppose now that we call set_lock_button while the door is open, │ │ │ -and we have already postponed a button event that was the new lock button:

        1> code_lock:start_link([a,b,c], x).
        │ │ │ -{ok,<0.666.0>}
        │ │ │ -2> code_lock:button(a).
        │ │ │ +and we have already postponed a button event that was the new lock button:

        1> code_lock:start_link([a,b,c], x).
        │ │ │ +{ok,<0.666.0>}
        │ │ │ +2> code_lock:button(a).
        │ │ │  ok
        │ │ │ -3> code_lock:button(b).
        │ │ │ +3> code_lock:button(b).
        │ │ │  ok
        │ │ │ -4> code_lock:button(c).
        │ │ │ +4> code_lock:button(c).
        │ │ │  ok
        │ │ │  Open
        │ │ │ -5> code_lock:button(y).
        │ │ │ +5> code_lock:button(y).
        │ │ │  ok
        │ │ │ -6> code_lock:set_lock_button(y).
        │ │ │ +6> code_lock:set_lock_button(y).
        │ │ │  x
        │ │ │  % What should happen here?  Immediate lock or nothing?

        We could say that the button was pressed too early so it should not be │ │ │ recognized as the lock button. Or we can make the lock button part of │ │ │ the state so when we then change the lock button in the locked state, │ │ │ the change becomes a state change and all postponed events are retried, │ │ │ therefore the lock is immediately locked!

        We define the state as {StateName, LockButton}, where StateName │ │ │ -is as before and LockButton is the current lock button:

        -module(code_lock).
        │ │ │ --behaviour(gen_statem).
        │ │ │ --define(NAME, code_lock_3).
        │ │ │ +is as before and LockButton is the current lock button:

        -module(code_lock).
        │ │ │ +-behaviour(gen_statem).
        │ │ │ +-define(NAME, code_lock_3).
        │ │ │  
        │ │ │ --export([start_link/2,stop/0]).
        │ │ │ --export([button/1,set_lock_button/1]).
        │ │ │ --export([init/1,callback_mode/0,terminate/3]).
        │ │ │ --export([handle_event/4]).
        │ │ │ -
        │ │ │ -start_link(Code, LockButton) ->
        │ │ │ -    gen_statem:start_link(
        │ │ │ -        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
        │ │ │ -stop() ->
        │ │ │ -    gen_statem:stop(?NAME).
        │ │ │ -
        │ │ │ -button(Button) ->
        │ │ │ -    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ -set_lock_button(LockButton) ->
        │ │ │ -    gen_statem:call(?NAME, {set_lock_button,LockButton}).
        init({Code,LockButton}) ->
        │ │ │ -    process_flag(trap_exit, true),
        │ │ │ -    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ -    {ok, {locked,LockButton}, Data}.
        │ │ │ +-export([start_link/2,stop/0]).
        │ │ │ +-export([button/1,set_lock_button/1]).
        │ │ │ +-export([init/1,callback_mode/0,terminate/3]).
        │ │ │ +-export([handle_event/4]).
        │ │ │ +
        │ │ │ +start_link(Code, LockButton) ->
        │ │ │ +    gen_statem:start_link(
        │ │ │ +        {local,?NAME}, ?MODULE, {Code,LockButton}, []).
        │ │ │ +stop() ->
        │ │ │ +    gen_statem:stop(?NAME).
        │ │ │ +
        │ │ │ +button(Button) ->
        │ │ │ +    gen_statem:cast(?NAME, {button,Button}).
        │ │ │ +set_lock_button(LockButton) ->
        │ │ │ +    gen_statem:call(?NAME, {set_lock_button,LockButton}).
        init({Code,LockButton}) ->
        │ │ │ +    process_flag(trap_exit, true),
        │ │ │ +    Data = #{code => Code, length => length(Code), buttons => []},
        │ │ │ +    {ok, {locked,LockButton}, Data}.
        │ │ │  
        │ │ │ -callback_mode() ->
        │ │ │ -    [handle_event_function,state_enter].
        │ │ │ +callback_mode() ->
        │ │ │ +    [handle_event_function,state_enter].
        │ │ │  
        │ │ │  %% State: locked
        │ │ │ -handle_event(enter, _OldState, {locked,_}, Data) ->
        │ │ │ -    do_lock(),
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(state_timeout, button, {locked,_}, Data) ->
        │ │ │ -    {keep_state, Data#{buttons := []}};
        │ │ │ -handle_event(
        │ │ │ -  cast, {button,Button}, {locked,LockButton},
        │ │ │ -  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │ +handle_event(enter, _OldState, {locked,_}, Data) ->
        │ │ │ +    do_lock(),
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(state_timeout, button, {locked,_}, Data) ->
        │ │ │ +    {keep_state, Data#{buttons := []}};
        │ │ │ +handle_event(
        │ │ │ +  cast, {button,Button}, {locked,LockButton},
        │ │ │ +  #{code := Code, length := Length, buttons := Buttons} = Data) ->
        │ │ │      NewButtons =
        │ │ │          if
        │ │ │ -            length(Buttons) < Length ->
        │ │ │ +            length(Buttons) < Length ->
        │ │ │                  Buttons;
        │ │ │              true ->
        │ │ │ -                tl(Buttons)
        │ │ │ -        end ++ [Button],
        │ │ │ +                tl(Buttons)
        │ │ │ +        end ++ [Button],
        │ │ │      if
        │ │ │          NewButtons =:= Code -> % Correct
        │ │ │ -            {next_state, {open,LockButton}, Data};
        │ │ │ +            {next_state, {open,LockButton}, Data};
        │ │ │  	true -> % Incomplete | Incorrect
        │ │ │ -            {keep_state, Data#{buttons := NewButtons},
        │ │ │ -             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │ +            {keep_state, Data#{buttons := NewButtons},
        │ │ │ +             [{state_timeout,30_000,button}]} % Time in milliseconds
        │ │ │      end;
        %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ -handle_event(state_timeout, lock, {open,LockButton}, Data) ->
        │ │ │ -    {next_state, {locked,LockButton}, Data};
        │ │ │ -handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
        │ │ │ -    {next_state, {locked,LockButton}, Data};
        │ │ │ -handle_event(cast, {button,_}, {open,_}, _Data) ->
        │ │ │ -    {keep_state_and_data,[postpone]};
        %%
        │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}]}; % Time in milliseconds
        │ │ │ +handle_event(state_timeout, lock, {open,LockButton}, Data) ->
        │ │ │ +    {next_state, {locked,LockButton}, Data};
        │ │ │ +handle_event(cast, {button,LockButton}, {open,LockButton}, Data) ->
        │ │ │ +    {next_state, {locked,LockButton}, Data};
        │ │ │ +handle_event(cast, {button,_}, {open,_}, _Data) ->
        │ │ │ +    {keep_state_and_data,[postpone]};
        %%
        │ │ │  %% Common events
        │ │ │ -handle_event(
        │ │ │ -  {call,From}, {set_lock_button,NewLockButton},
        │ │ │ -  {StateName,OldLockButton}, Data) ->
        │ │ │ -    {next_state, {StateName,NewLockButton}, Data,
        │ │ │ -     [{reply,From,OldLockButton}]}.
        do_lock() ->
        │ │ │ -    io:format("Locked~n", []).
        │ │ │ -do_unlock() ->
        │ │ │ -    io:format("Open~n", []).
        │ │ │ +handle_event(
        │ │ │ +  {call,From}, {set_lock_button,NewLockButton},
        │ │ │ +  {StateName,OldLockButton}, Data) ->
        │ │ │ +    {next_state, {StateName,NewLockButton}, Data,
        │ │ │ +     [{reply,From,OldLockButton}]}.
        do_lock() ->
        │ │ │ +    io:format("Locked~n", []).
        │ │ │ +do_unlock() ->
        │ │ │ +    io:format("Open~n", []).
        │ │ │  
        │ │ │ -terminate(_Reason, State, _Data) ->
        │ │ │ -    State =/= locked andalso do_lock(),
        │ │ │ +terminate(_Reason, State, _Data) ->
        │ │ │ +    State =/= locked andalso do_lock(),
        │ │ │      ok.

        │ │ │ │ │ │ │ │ │ │ │ │ Hibernation │ │ │

        │ │ │

        If you have many servers in one node and they have some state(s) in their │ │ │ @@ -1428,19 +1428,19 @@ │ │ │ footprint of a server can be minimized by hibernating it through │ │ │ proc_lib:hibernate/3.

        Note

        It is rather costly to hibernate a process; see erlang:hibernate/3. It is │ │ │ not something you want to do after every event.

        We can in this example hibernate in the {open, _} state, │ │ │ because what normally occurs in that state is that the state time-out │ │ │ after a while triggers a transition to {locked, _}:

        ...
        │ │ │  %%
        │ │ │  %% State: open
        │ │ │ -handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ -    do_unlock(),
        │ │ │ -    {keep_state_and_data,
        │ │ │ -     [{state_timeout,10_000,lock}, % Time in milliseconds
        │ │ │ -      hibernate]};
        │ │ │ +handle_event(enter, _OldState, {open,_}, _Data) ->
        │ │ │ +    do_unlock(),
        │ │ │ +    {keep_state_and_data,
        │ │ │ +     [{state_timeout,10_000,lock}, % Time in milliseconds
        │ │ │ +      hibernate]};
        │ │ │  ...

        The atom hibernate in the action list on the │ │ │ last line when entering the {open, _} state is the only change. If any event │ │ │ arrives in the {open, _}, state, we do not bother to rehibernate, │ │ │ so the server stays awake after any event.

        To change that we would need to insert action hibernate in more places. │ │ │ For example, the state-independent set_lock_button operation │ │ │ would have to use hibernate but only in the {open, _} state, │ │ │ which would clutter the code.

        Another not uncommon scenario is to use the │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/sup_princ.html │ │ │ @@ -128,48 +128,48 @@ │ │ │ the order specified by this list, and are terminated in the reverse order.

        │ │ │ │ │ │ │ │ │ │ │ │ Example │ │ │

        │ │ │

        The callback module for a supervisor starting the server from │ │ │ -gen_server Behaviour can look as follows:

        -module(ch_sup).
        │ │ │ --behaviour(supervisor).
        │ │ │ +gen_server Behaviour can look as follows:

        -module(ch_sup).
        │ │ │ +-behaviour(supervisor).
        │ │ │  
        │ │ │ --export([start_link/0]).
        │ │ │ --export([init/1]).
        │ │ │ +-export([start_link/0]).
        │ │ │ +-export([init/1]).
        │ │ │  
        │ │ │ -start_link() ->
        │ │ │ -    supervisor:start_link(ch_sup, []).
        │ │ │ +start_link() ->
        │ │ │ +    supervisor:start_link(ch_sup, []).
        │ │ │  
        │ │ │ -init(_Args) ->
        │ │ │ -    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
        │ │ │ -    ChildSpecs = [#{id => ch3,
        │ │ │ -                    start => {ch3, start_link, []},
        │ │ │ +init(_Args) ->
        │ │ │ +    SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},
        │ │ │ +    ChildSpecs = [#{id => ch3,
        │ │ │ +                    start => {ch3, start_link, []},
        │ │ │                      restart => permanent,
        │ │ │                      shutdown => brutal_kill,
        │ │ │                      type => worker,
        │ │ │ -                    modules => [ch3]}],
        │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

        The SupFlags variable in the return value from init/1 represents the │ │ │ + modules => [ch3]}], │ │ │ + {ok, {SupFlags, ChildSpecs}}.

        The SupFlags variable in the return value from init/1 represents the │ │ │ supervisor flags.

        The ChildSpecs variable in the return value from init/1 is a list of │ │ │ child specifications.

        │ │ │ │ │ │ │ │ │ │ │ │ Supervisor Flags │ │ │

        │ │ │ -

        This is the type definition for the supervisor flags:

        sup_flags() = #{strategy => strategy(),           % optional
        │ │ │ -                intensity => non_neg_integer(),   % optional
        │ │ │ -                period => pos_integer(),          % optional
        │ │ │ -                auto_shutdown => auto_shutdown()} % optional
        │ │ │ -    strategy() = one_for_all
        │ │ │ +

        This is the type definition for the supervisor flags:

        sup_flags() = #{strategy => strategy(),           % optional
        │ │ │ +                intensity => non_neg_integer(),   % optional
        │ │ │ +                period => pos_integer(),          % optional
        │ │ │ +                auto_shutdown => auto_shutdown()} % optional
        │ │ │ +    strategy() = one_for_all
        │ │ │                 | one_for_one
        │ │ │                 | rest_for_one
        │ │ │                 | simple_one_for_one
        │ │ │ -    auto_shutdown() = never
        │ │ │ +    auto_shutdown() = never
        │ │ │                      | any_significant
        │ │ │                      | all_significant

        │ │ │ │ │ │ │ │ │ │ │ │ @@ -408,28 +408,28 @@ │ │ │ exhaust the Maximum Restart Intensity of the │ │ │ parent supervisor.

        │ │ │ │ │ │ │ │ │ │ │ │ Child Specification │ │ │

        │ │ │ -

        The type definition for a child specification is as follows:

        child_spec() = #{id => child_id(),             % mandatory
        │ │ │ -                 start => mfargs(),            % mandatory
        │ │ │ -                 restart => restart(),         % optional
        │ │ │ -                 significant => significant(), % optional
        │ │ │ -                 shutdown => shutdown(),       % optional
        │ │ │ -                 type => worker(),             % optional
        │ │ │ -                 modules => modules()}         % optional
        │ │ │ -    child_id() = term()
        │ │ │ -    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
        │ │ │ -    modules() = [module()] | dynamic
        │ │ │ -    restart() = permanent | transient | temporary
        │ │ │ -    significant() = boolean()
        │ │ │ -    shutdown() = brutal_kill | timeout()
        │ │ │ -    worker() = worker | supervisor
        • id is used to identify the child specification internally by the supervisor.

          The id key is mandatory.

          Note that this identifier occasionally has been called "name". As far as │ │ │ +

          The type definition for a child specification is as follows:

          child_spec() = #{id => child_id(),             % mandatory
          │ │ │ +                 start => mfargs(),            % mandatory
          │ │ │ +                 restart => restart(),         % optional
          │ │ │ +                 significant => significant(), % optional
          │ │ │ +                 shutdown => shutdown(),       % optional
          │ │ │ +                 type => worker(),             % optional
          │ │ │ +                 modules => modules()}         % optional
          │ │ │ +    child_id() = term()
          │ │ │ +    mfargs() = {M :: module(), F :: atom(), A :: [term()]}
          │ │ │ +    modules() = [module()] | dynamic
          │ │ │ +    restart() = permanent | transient | temporary
          │ │ │ +    significant() = boolean()
          │ │ │ +    shutdown() = brutal_kill | timeout()
          │ │ │ +    worker() = worker | supervisor
          • id is used to identify the child specification internally by the supervisor.

            The id key is mandatory.

            Note that this identifier occasionally has been called "name". As far as │ │ │ possible, the terms "identifier" or "id" are now used but in order to keep │ │ │ backwards compatibility, some occurrences of "name" can still be found, for │ │ │ example in error messages.

          • start defines the function call used to start the child process. It is a │ │ │ module-function-arguments tuple used as apply(M, F, A).

            It is to be (or result in) a call to any of the following:

            The start key is mandatory.

          • restart defines when a terminated child process is to be │ │ │ restarted.

            • A permanent child process is always restarted.
            • A temporary child process is never restarted (not even when the supervisor │ │ │ restart strategy is rest_for_one or one_for_all and a sibling death │ │ │ @@ -457,53 +457,53 @@ │ │ │ supervisor, the default value infinity will be used.

            • type specifies whether the child process is a supervisor or a worker.

              The type key is optional. If it is not given, the default value worker │ │ │ will be used.

            • modules has to be a list consisting of a single element. The value │ │ │ of that element depends on the behaviour of the process:

              • If the child process is a gen_event, the element has to be the atom │ │ │ dynamic.
              • Otherwise, the element should be Module, where Module is the │ │ │ name of the callback module.

              This information is used by the release handler during upgrades and │ │ │ downgrades; see Release Handling.

              The modules key is optional. If it is not given, it defaults to [M], where │ │ │ M comes from the child's start {M,F,A}.

            Example: The child specification to start the server ch3 in the previous │ │ │ -example look as follows:

            #{id => ch3,
            │ │ │ -  start => {ch3, start_link, []},
            │ │ │ +example look as follows:

            #{id => ch3,
            │ │ │ +  start => {ch3, start_link, []},
            │ │ │    restart => permanent,
            │ │ │    shutdown => brutal_kill,
            │ │ │    type => worker,
            │ │ │ -  modules => [ch3]}

            or simplified, relying on the default values:

            #{id => ch3,
            │ │ │ +  modules => [ch3]}

            or simplified, relying on the default values:

            #{id => ch3,
            │ │ │    start => {ch3, start_link, []},
            │ │ │    shutdown => brutal_kill}

            Example: A child specification to start the event manager from the chapter about │ │ │ -gen_event:

            #{id => error_man,
            │ │ │ -  start => {gen_event, start_link, [{local, error_man}]},
            │ │ │ -  modules => dynamic}

            Both server and event manager are registered processes which can be expected to │ │ │ +gen_event:

            #{id => error_man,
            │ │ │ +  start => {gen_event, start_link, [{local, error_man}]},
            │ │ │ +  modules => dynamic}

            Both server and event manager are registered processes which can be expected to │ │ │ be always accessible. Thus they are specified to be permanent.

            ch3 does not need to do any cleaning up before termination. Thus, no shutdown │ │ │ time is needed, but brutal_kill is sufficient. error_man can need some time │ │ │ for the event handlers to clean up, thus the shutdown time is set to 5000 ms │ │ │ -(which is the default value).

            Example: A child specification to start another supervisor:

            #{id => sup,
            │ │ │ -  start => {sup, start_link, []},
            │ │ │ +(which is the default value).

            Example: A child specification to start another supervisor:

            #{id => sup,
            │ │ │ +  start => {sup, start_link, []},
            │ │ │    restart => transient,
            │ │ │ -  type => supervisor} % will cause default shutdown=>infinity

            │ │ │ + type => supervisor} % will cause default shutdown=>infinity

            │ │ │ │ │ │ │ │ │ │ │ │ Starting a Supervisor │ │ │

            │ │ │

            In the previous example, the supervisor is started by calling │ │ │ -ch_sup:start_link():

            start_link() ->
            │ │ │ -    supervisor:start_link(ch_sup, []).

            ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ +ch_sup:start_link():

            start_link() ->
            │ │ │ +    supervisor:start_link(ch_sup, []).

            ch_sup:start_link calls function supervisor:start_link/2, which spawns and │ │ │ links to a new process, a supervisor.

            • The first argument, ch_sup, is the name of the callback module, that is, the │ │ │ module where the init callback function is located.
            • The second argument, [], is a term that is passed as is to the callback │ │ │ function init. Here, init does not need any data and ignores the argument.

            In this case, the supervisor is not registered. Instead its pid must be used. A │ │ │ name can be specified by calling │ │ │ supervisor:start_link({local, Name}, Module, Args) │ │ │ or │ │ │ supervisor:start_link({global, Name}, Module, Args).

            The new supervisor process calls the callback function ch_sup:init([]). init │ │ │ -has to return {ok, {SupFlags, ChildSpecs}}:

            init(_Args) ->
            │ │ │ -    SupFlags = #{},
            │ │ │ -    ChildSpecs = [#{id => ch3,
            │ │ │ -                    start => {ch3, start_link, []},
            │ │ │ -                    shutdown => brutal_kill}],
            │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

            Subsequently, the supervisor starts its child processes according to the child │ │ │ +has to return {ok, {SupFlags, ChildSpecs}}:

            init(_Args) ->
            │ │ │ +    SupFlags = #{},
            │ │ │ +    ChildSpecs = [#{id => ch3,
            │ │ │ +                    start => {ch3, start_link, []},
            │ │ │ +                    shutdown => brutal_kill}],
            │ │ │ +    {ok, {SupFlags, ChildSpecs}}.

            Subsequently, the supervisor starts its child processes according to the child │ │ │ specifications in the start specification. In this case there is a single child │ │ │ process, called ch3.

            supervisor:start_link/3 is synchronous. It does not return until all child │ │ │ processes have been started.

            │ │ │ │ │ │ │ │ │ │ │ │ Adding a Child Process │ │ │ @@ -532,31 +532,31 @@ │ │ │ │ │ │ │ │ │ Simplified one_for_one Supervisors │ │ │

            │ │ │

            A supervisor with restart strategy simple_one_for_one is a simplified │ │ │ one_for_one supervisor, where all child processes are dynamically added │ │ │ instances of the same process.

            The following is an example of a callback module for a simple_one_for_one │ │ │ -supervisor:

            -module(simple_sup).
            │ │ │ --behaviour(supervisor).
            │ │ │ +supervisor:

            -module(simple_sup).
            │ │ │ +-behaviour(supervisor).
            │ │ │  
            │ │ │ --export([start_link/0]).
            │ │ │ --export([init/1]).
            │ │ │ +-export([start_link/0]).
            │ │ │ +-export([init/1]).
            │ │ │  
            │ │ │ -start_link() ->
            │ │ │ -    supervisor:start_link(simple_sup, []).
            │ │ │ +start_link() ->
            │ │ │ +    supervisor:start_link(simple_sup, []).
            │ │ │  
            │ │ │ -init(_Args) ->
            │ │ │ -    SupFlags = #{strategy => simple_one_for_one,
            │ │ │ +init(_Args) ->
            │ │ │ +    SupFlags = #{strategy => simple_one_for_one,
            │ │ │                   intensity => 0,
            │ │ │ -                 period => 1},
            │ │ │ -    ChildSpecs = [#{id => call,
            │ │ │ -                    start => {call, start_link, []},
            │ │ │ -                    shutdown => brutal_kill}],
            │ │ │ -    {ok, {SupFlags, ChildSpecs}}.

            When started, the supervisor does not start any child │ │ │ + period => 1}, │ │ │ + ChildSpecs = [#{id => call, │ │ │ + start => {call, start_link, []}, │ │ │ + shutdown => brutal_kill}], │ │ │ + {ok, {SupFlags, ChildSpecs}}.

            When started, the supervisor does not start any child │ │ │ processes. Instead, all child processes need to be added dynamically by │ │ │ calling supervisor:start_child(Sup, List).

            Sup is the pid, or name, of the supervisor. List is an arbitrary list of │ │ │ terms, which are added to the list of arguments specified in the child │ │ │ specification. If the start function is specified as {M, F, A}, the child │ │ │ process is started by calling apply(M, F, A++List).

            For example, adding a child to simple_sup above:

            supervisor:start_child(Pid, [id1])

            The result is that the child process is started by calling │ │ │ apply(call, start_link, []++[id1]), or actually:

            call:start_link(id1)

            A child under a simple_one_for_one supervisor can be terminated with the │ │ │ following:

            supervisor:terminate_child(Sup, Pid)

            Sup is the pid, or name, of the supervisor and Pid is the pid of the child.

            Because a simple_one_for_one supervisor can have many children, it shuts them │ │ ├── ./usr/share/doc/erlang-doc/html/doc/system/tablesdatabases.html │ │ │ @@ -146,73 +146,73 @@ │ │ │ │ │ │ │ │ │ Deleting an Element │ │ │

        │ │ │

        The delete operation is considered successful if the element was not present │ │ │ in the table. Hence all attempts to check that the element is present in the │ │ │ Ets/Mnesia table before deletion are unnecessary. Here follows an example for │ │ │ -Ets tables:

        DO

        ets:delete(Tab, Key),

        DO NOT

        case ets:lookup(Tab, Key) of
        │ │ │ -    [] ->
        │ │ │ +Ets tables:

        DO

        ets:delete(Tab, Key),

        DO NOT

        case ets:lookup(Tab, Key) of
        │ │ │ +    [] ->
        │ │ │          ok;
        │ │ │ -    [_|_] ->
        │ │ │ -        ets:delete(Tab, Key)
        │ │ │ +    [_|_] ->
        │ │ │ +        ets:delete(Tab, Key)
        │ │ │  end,

        │ │ │ │ │ │ │ │ │ │ │ │ Fetching Data │ │ │

        │ │ │

        Do not fetch data that you already have.

        Consider that you have a module that handles the abstract data type Person. │ │ │ You export the interface function print_person/1, which uses the internal │ │ │ functions print_name/1, print_age/1, and print_occupation/1.

        Note

        If the function print_name/1, and so on, had been interface functions, the │ │ │ situation would have been different, as you do not want the user of the │ │ │ interface to know about the internal data representation.

        DO

        %%% Interface function
        │ │ │ -print_person(PersonId) ->
        │ │ │ +print_person(PersonId) ->
        │ │ │      %% Look up the person in the named table person,
        │ │ │ -    case ets:lookup(person, PersonId) of
        │ │ │ -        [Person] ->
        │ │ │ -            print_name(Person),
        │ │ │ -            print_age(Person),
        │ │ │ -            print_occupation(Person);
        │ │ │ -        [] ->
        │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │ +    case ets:lookup(person, PersonId) of
        │ │ │ +        [Person] ->
        │ │ │ +            print_name(Person),
        │ │ │ +            print_age(Person),
        │ │ │ +            print_occupation(Person);
        │ │ │ +        [] ->
        │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │      end.
        │ │ │  
        │ │ │  %%% Internal functions
        │ │ │ -print_name(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
        │ │ │ +print_name(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.name]).
        │ │ │  
        │ │ │ -print_age(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
        │ │ │ +print_age(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.age]).
        │ │ │  
        │ │ │ -print_occupation(Person) ->
        │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

        DO NOT

        %%% Interface function
        │ │ │ -print_person(PersonId) ->
        │ │ │ +print_occupation(Person) ->
        │ │ │ +    io:format("No person ~p~n", [Person#person.occupation]).

        DO NOT

        %%% Interface function
        │ │ │ +print_person(PersonId) ->
        │ │ │      %% Look up the person in the named table person,
        │ │ │ -    case ets:lookup(person, PersonId) of
        │ │ │ -        [Person] ->
        │ │ │ -            print_name(PersonID),
        │ │ │ -            print_age(PersonID),
        │ │ │ -            print_occupation(PersonID);
        │ │ │ -        [] ->
        │ │ │ -            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │ +    case ets:lookup(person, PersonId) of
        │ │ │ +        [Person] ->
        │ │ │ +            print_name(PersonID),
        │ │ │ +            print_age(PersonID),
        │ │ │ +            print_occupation(PersonID);
        │ │ │ +        [] ->
        │ │ │ +            io:format("No person with ID = ~p~n", [PersonID])
        │ │ │      end.
        │ │ │  
        │ │ │  %%% Internal functions
        │ │ │ -print_name(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.name]).
        │ │ │ -
        │ │ │ -print_age(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.age]).
        │ │ │ -
        │ │ │ -print_occupation(PersonID) ->
        │ │ │ -    [Person] = ets:lookup(person, PersonId),
        │ │ │ -    io:format("No person ~p~n", [Person#person.occupation]).

        │ │ │ +print_name(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.name]). │ │ │ + │ │ │ +print_age(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.age]). │ │ │ + │ │ │ +print_occupation(PersonID) -> │ │ │ + [Person] = ets:lookup(person, PersonId), │ │ │ + io:format("No person ~p~n", [Person#person.occupation]).

        │ │ │ │ │ │ │ │ │ │ │ │ Non-Persistent Database Storage │ │ │

        │ │ │

        For non-persistent database storage, prefer Ets tables over Mnesia │ │ │ local_content tables. Even the Mnesia dirty_write operations carry a fixed │ │ │ @@ -226,38 +226,38 @@ │ │ │ │ │ │

        Assuming an Ets table that uses idno as key and contains the following:

        [#person{idno = 1, name = "Adam",  age = 31, occupation = "mailman"},
        │ │ │   #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"},
        │ │ │   #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"},
        │ │ │   #person{idno = 4, name = "Carl",  age = 25, occupation = "mailman"}]

        If you must return all data stored in the Ets table, you can use │ │ │ ets:tab2list/1. However, usually you are only interested in a subset of the │ │ │ information in which case ets:tab2list/1 is expensive. If you only want to │ │ │ -extract one field from each record, for example, the age of every person, then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +extract one field from each record, for example, the age of every person, then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name='_',
        │ │ │                            age='$1',
        │ │ │ -                          occupation = '_'},
        │ │ │ -                [],
        │ │ │ -                ['$1']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:map(fun(X) -> X#person.age end, TabList),

        If you are only interested in the age of all persons named "Bryan", then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +                          occupation = '_'},
        │ │ │ +                [],
        │ │ │ +                ['$1']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:map(fun(X) -> X#person.age end, TabList),

        If you are only interested in the age of all persons named "Bryan", then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name="Bryan",
        │ │ │                            age='$1',
        │ │ │ -                          occupation = '_'},
        │ │ │ -                [],
        │ │ │ -                ['$1']}])

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:foldl(fun(X, Acc) -> case X#person.name of
        │ │ │ +                          occupation = '_'},
        │ │ │ +                [],
        │ │ │ +                ['$1']}])

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:foldl(fun(X, Acc) -> case X#person.name of
        │ │ │                                  "Bryan" ->
        │ │ │ -                                    [X#person.age|Acc];
        │ │ │ +                                    [X#person.age|Acc];
        │ │ │                                   _ ->
        │ │ │                                       Acc
        │ │ │                             end
        │ │ │ -             end, [], TabList)

        If you need all information stored in the Ets table about persons named "Bryan", │ │ │ -then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │ +             end, [], TabList)

        If you need all information stored in the Ets table about persons named "Bryan", │ │ │ +then:

        DO

        ets:select(Tab, [{#person{idno='_',
        │ │ │                            name="Bryan",
        │ │ │                            age='_',
        │ │ │ -                          occupation = '_'}, [], ['$_']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ -lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

        │ │ │ + occupation = '_'}, [], ['$_']}]),

        DO NOT

        TabList = ets:tab2list(Tab),
        │ │ │ +lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList),

        │ │ │ │ │ │ │ │ │ │ │ │ ordered_set Tables │ │ │

        │ │ │

        If the data in the table is to be accessed so that the order of the keys in the │ │ │ table is significant, the table type ordered_set can be used instead of the │ │ │ @@ -293,20 +293,20 @@ │ │ │ Clearly, the second table would have to be kept consistent with the master │ │ │ table. Mnesia can do this for you, but a home-brew index table can be very │ │ │ efficient compared to the overhead involved in using Mnesia.

        An index table for the table in the previous examples would have to be a bag (as │ │ │ keys would appear more than once) and can have the following contents:

        [#index_entry{name="Adam", idno=1},
        │ │ │   #index_entry{name="Bryan", idno=2},
        │ │ │   #index_entry{name="Bryan", idno=3},
        │ │ │   #index_entry{name="Carl", idno=4}]

        Given this index table, a lookup of the age fields for all persons named │ │ │ -"Bryan" can be done as follows:

        MatchingIDs = ets:lookup(IndexTable,"Bryan"),
        │ │ │ -lists:map(fun(#index_entry{idno = ID}) ->
        │ │ │ -                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
        │ │ │ +"Bryan" can be done as follows:

        MatchingIDs = ets:lookup(IndexTable,"Bryan"),
        │ │ │ +lists:map(fun(#index_entry{idno = ID}) ->
        │ │ │ +                 [#person{age = Age}] = ets:lookup(PersonTable, ID),
        │ │ │                   Age
        │ │ │            end,
        │ │ │ -          MatchingIDs),

        Notice that this code does not use ets:match/2, but instead uses the │ │ │ + MatchingIDs),

        Notice that this code does not use ets:match/2, but instead uses the │ │ │ ets:lookup/2 call. The lists:map/2 call is only used to traverse the idnos │ │ │ matching the name "Bryan" in the table; thus the number of lookups in the master │ │ │ table is minimized.

        Keeping an index table introduces some overhead when inserting records in the │ │ │ table. The number of operations gained from the table must therefore be compared │ │ │ against the number of operations inserting objects in the table. However, notice │ │ │ that the gain is significant when the key can be used to lookup elements.

        │ │ │ │ │ │ @@ -321,51 +321,51 @@ │ │ │ Secondary Index │ │ │

        │ │ │

        If you frequently do lookups on a field that is not the key of the table, you │ │ │ lose performance using mnesia:select() or │ │ │ mnesia:match_object() as these function traverse │ │ │ the whole table. Instead, you can create a secondary index and use │ │ │ mnesia:index_read/3 to get faster access at the expense of using more │ │ │ -memory.

        Example:

        -record(person, {idno, name, age, occupation}).
        │ │ │ +memory.

        Example:

        -record(person, {idno, name, age, occupation}).
        │ │ │          ...
        │ │ │ -{atomic, ok} =
        │ │ │ -mnesia:create_table(person, [{index,[#person.age]},
        │ │ │ -                              {attributes,
        │ │ │ -                                    record_info(fields, person)}]),
        │ │ │ -{atomic, ok} = mnesia:add_table_index(person, age),
        │ │ │ +{atomic, ok} =
        │ │ │ +mnesia:create_table(person, [{index,[#person.age]},
        │ │ │ +                              {attributes,
        │ │ │ +                                    record_info(fields, person)}]),
        │ │ │ +{atomic, ok} = mnesia:add_table_index(person, age),
        │ │ │  ...
        │ │ │  
        │ │ │  PersonsAge42 =
        │ │ │ -     mnesia:dirty_index_read(person, 42, #person.age),

        │ │ │ + mnesia:dirty_index_read(person, 42, #person.age),

        │ │ │ │ │ │ │ │ │ │ │ │ Transactions │ │ │

        │ │ │

        Using transactions is a way to guarantee that the distributed Mnesia database │ │ │ remains consistent, even when many different processes update it in parallel. │ │ │ However, if you have real-time requirements it is recommended to use dirtry │ │ │ operations instead of transactions. When using dirty operations, you lose the │ │ │ consistency guarantee; this is usually solved by only letting one process update │ │ │ the table. Other processes must send update requests to that process.

        Example:

        ...
        │ │ │  %% Using transaction
        │ │ │  
        │ │ │ -Fun = fun() ->
        │ │ │ -          [mnesia:read({Table, Key}),
        │ │ │ -           mnesia:read({Table2, Key2})]
        │ │ │ +Fun = fun() ->
        │ │ │ +          [mnesia:read({Table, Key}),
        │ │ │ +           mnesia:read({Table2, Key2})]
        │ │ │        end,
        │ │ │  
        │ │ │ -{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
        │ │ │ +{atomic, [Result1, Result2]}  = mnesia:transaction(Fun),
        │ │ │  ...
        │ │ │  
        │ │ │  %% Same thing using dirty operations
        │ │ │  ...
        │ │ │  
        │ │ │ -Result1 = mnesia:dirty_read({Table, Key}),
        │ │ │ -Result2 = mnesia:dirty_read({Table2, Key2}),
        │ │ │ +
        Result1 = mnesia:dirty_read({Table, Key}), │ │ │ +Result2 = mnesia:dirty_read({Table2, Key2}),
        │ │ │ │ │ │ │ │ │
        │ │ │
        │ │ │ │ │ │

        map/0 type.

        For convenience, the following types are also built-in. They can be thought as │ │ │ predefined aliases for the type unions also shown in the table.

        Built-in typeDefined as
        term/0any/0
        binary/0<<_:_*8>>
        nonempty_binary/0<<_:8, _:_*8>>
        bitstring/0<<_:_*1>>
        nonempty_bitstring/0<<_:1, _:_*1>>
        boolean/0'false' | 'true'
        byte/00..255
        char/00..16#10ffff
        nil/0[]
        number/0integer/0 | float/0
        list/0[any()]
        maybe_improper_list/0maybe_improper_list(any(), any())
        nonempty_list/0nonempty_list(any())
        string/0[char()]
        nonempty_string/0[char(),...]
        iodata/0iolist() | binary()
        iolist/0maybe_improper_list(byte() | binary() | iolist(), binary() | [])
        map/0#{any() => any()}
        function/0fun()
        module/0atom/0
        mfa/0{module(),atom(),arity()}
        arity/00..255
        identifier/0pid() | port() | reference()
        node/0atom/0
        timeout/0'infinity' | non_neg_integer()
        no_return/0none/0

        Table: Built-in types, predefined aliases

        In addition, the following three built-in types exist and can be thought as │ │ │ defined below, though strictly their "type definition" is not valid syntax │ │ │ according to the type language defined above.

        Built-in typeCan be thought defined by the syntax
        non_neg_integer/00..
        pos_integer/01..
        neg_integer/0..-1

        Table: Additional built-in types

        Note

        The following built-in list types also exist, but they are expected to be │ │ │ -rarely used. Hence, they have long names:

        nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
        │ │ │ -nonempty_improper_list(Type1, Type2)
        │ │ │ -nonempty_maybe_improper_list(Type1, Type2)

        where the last two types define the set of Erlang terms one would expect.

        Also for convenience, record notation is allowed to be used. Records are │ │ │ -shorthands for the corresponding tuples:

        Record :: #Erlang_Atom{}
        │ │ │ -        | #Erlang_Atom{Fields}

        Records are extended to possibly contain type information. This is described in │ │ │ +rarely used. Hence, they have long names:

        nonempty_maybe_improper_list() :: nonempty_maybe_improper_list(any(), any())
        │ │ │ +nonempty_improper_list(Type1, Type2)
        │ │ │ +nonempty_maybe_improper_list(Type1, Type2)

        where the last two types define the set of Erlang terms one would expect.

        Also for convenience, record notation is allowed to be used. Records are │ │ │ +shorthands for the corresponding tuples:

        Record :: #Erlang_Atom{}
        │ │ │ +        | #Erlang_Atom{Fields}

        Records are extended to possibly contain type information. This is described in │ │ │ Type Information in Record Declarations.

        │ │ │ │ │ │ │ │ │ │ │ │ Redefining built-in types │ │ │

        │ │ │

        Change

        Starting from Erlang/OTP 26, it is permitted to define a type having the same │ │ │ name as a built-in type.

        It is recommended to avoid deliberately reusing built-in names because it can be │ │ │ confusing. However, when an Erlang/OTP release introduces a new type, code that │ │ │ happened to define its own type having the same name will continue to work.

        As an example, imagine that the Erlang/OTP 42 release introduces a new type │ │ │ -gadget() defined like this:

        -type gadget() :: {'gadget', reference()}.

        Further imagine that some code has its own (different) definition of gadget(), │ │ │ -for example:

        -type gadget() :: #{}.

        Since redefinitions are allowed, the code will still compile (but with a │ │ │ +gadget() defined like this:

        -type gadget() :: {'gadget', reference()}.

        Further imagine that some code has its own (different) definition of gadget(), │ │ │ +for example:

        -type gadget() :: #{}.

        Since redefinitions are allowed, the code will still compile (but with a │ │ │ warning), and Dialyzer will not emit any additional warnings.

        │ │ │ │ │ │ │ │ │ │ │ │ Type Declarations of User-Defined Types │ │ │

        │ │ │

        As seen, the basic syntax of a type is an atom followed by closed parentheses. │ │ │ New types are declared using -type and -opaque attributes as in the │ │ │ -following:

        -type my_struct_type() :: Type.
        │ │ │ --opaque my_opaq_type() :: Type.

        The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ +following:

        -type my_struct_type() :: Type.
        │ │ │ +-opaque my_opaq_type() :: Type.

        The type name is the atom my_struct_type, followed by parentheses. Type is a │ │ │ type as defined in the previous section. A current restriction is that Type │ │ │ can contain only predefined types, or user-defined types which are either of the │ │ │ following:

        • Module-local type, that is, with a definition that is present in the code of │ │ │ the module
        • Remote type, that is, type defined in, and exported by, other modules; more │ │ │ about this soon.

        For module-local types, the restriction that their definition exists in the │ │ │ module is enforced by the compiler and results in a compilation error. (A │ │ │ similar restriction currently exists for records.)

        Type declarations can also be parameterized by including type variables between │ │ │ the parentheses. The syntax of type variables is the same as Erlang variables, │ │ │ that is, starts with an upper-case letter. These variables is to │ │ │ -appear on the RHS of the definition. A concrete example follows:

        -type orddict(Key, Val) :: [{Key, Val}].

        A module can export some types to declare that other modules are allowed to │ │ │ -refer to them as remote types. This declaration has the following form:

        -export_type([T1/A1, ..., Tk/Ak]).

        Here the Tis are atoms (the name of the type) and the Ais are their arguments.

        Example:

        -export_type([my_struct_type/0, orddict/2]).

        Assuming that these types are exported from module 'mod', you can refer to │ │ │ -them from other modules using remote type expressions like the following:

        mod:my_struct_type()
        │ │ │ -mod:orddict(atom(), term())

        It is not allowed to refer to types that are not declared as exported.

        Types declared as opaque represent sets of terms whose structure is not │ │ │ +appear on the RHS of the definition. A concrete example follows:

        -type orddict(Key, Val) :: [{Key, Val}].

        A module can export some types to declare that other modules are allowed to │ │ │ +refer to them as remote types. This declaration has the following form:

        -export_type([T1/A1, ..., Tk/Ak]).

        Here the Tis are atoms (the name of the type) and the Ais are their arguments.

        Example:

        -export_type([my_struct_type/0, orddict/2]).

        Assuming that these types are exported from module 'mod', you can refer to │ │ │ +them from other modules using remote type expressions like the following:

        mod:my_struct_type()
        │ │ │ +mod:orddict(atom(), term())

        It is not allowed to refer to types that are not declared as exported.

        Types declared as opaque represent sets of terms whose structure is not │ │ │ supposed to be visible from outside of their defining module. That is, only the │ │ │ module defining them is allowed to depend on their term structure. Consequently, │ │ │ such types do not make much sense as module local - module local types are not │ │ │ accessible by other modules anyway - and is always to be exported.

        Read more on Opaques

        │ │ │ │ │ │ │ │ │ │ │ │ Type Information in Record Declarations │ │ │

        │ │ │

        The types of record fields can be specified in the declaration of the record. │ │ │ -The syntax for this is as follows:

        -record(rec, {field1 :: Type1, field2, field3 :: Type3}).

        For fields without type annotations, their type defaults to any(). That is, the │ │ │ -previous example is a shorthand for the following:

        -record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

        In the presence of initial values for fields, the type must be declared after │ │ │ -the initialization, as follows:

        -record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

        The initial values for fields are to be compatible with (that is, a member of) │ │ │ +The syntax for this is as follows:

        -record(rec, {field1 :: Type1, field2, field3 :: Type3}).

        For fields without type annotations, their type defaults to any(). That is, the │ │ │ +previous example is a shorthand for the following:

        -record(rec, {field1 :: Type1, field2 :: any(), field3 :: Type3}).

        In the presence of initial values for fields, the type must be declared after │ │ │ +the initialization, as follows:

        -record(rec, {field1 = [] :: Type1, field2, field3 = 42 :: Type3}).

        The initial values for fields are to be compatible with (that is, a member of) │ │ │ the corresponding types. This is checked by the compiler and results in a │ │ │ compilation error if a violation is detected.

        Change

        Before Erlang/OTP 19, for fields without initial values, the singleton type │ │ │ 'undefined' was added to all declared types. In other words, the following │ │ │ -two record declarations had identical effects:

        -record(rec, {f1 = 42 :: integer(),
        │ │ │ -             f2      :: float(),
        │ │ │ -             f3      :: 'a' | 'b'}).
        │ │ │ +two record declarations had identical effects:

        -record(rec, {f1 = 42 :: integer(),
        │ │ │ +             f2      :: float(),
        │ │ │ +             f3      :: 'a' | 'b'}).
        │ │ │  
        │ │ │ --record(rec, {f1 = 42 :: integer(),
        │ │ │ -              f2      :: 'undefined' | float(),
        │ │ │ -              f3      :: 'undefined' | 'a' | 'b'}).

        This is no longer the case. If you require 'undefined' in your record field │ │ │ +-record(rec, {f1 = 42 :: integer(), │ │ │ + f2 :: 'undefined' | float(), │ │ │ + f3 :: 'undefined' | 'a' | 'b'}).

        This is no longer the case. If you require 'undefined' in your record field │ │ │ type, you must explicitly add it to the typespec, as in the 2nd example.

        Any record, containing type information or not, once defined, can be used as a │ │ │ type using the following syntax:

        #rec{}

        In addition, the record fields can be further specified when using a record type │ │ │ by adding type information about the field as follows:

        #rec{some_field :: Type}

        Any unspecified fields are assumed to have the type in the original record │ │ │ declaration.

        Note

        When records are used to create patterns for ETS and Mnesia match functions, │ │ │ -Dialyzer may need some help not to emit bad warnings. For example:

        -type height() :: pos_integer().
        │ │ │ --record(person, {name :: string(), height :: height()}).
        │ │ │ +Dialyzer may need some help not to emit bad warnings. For example:

        -type height() :: pos_integer().
        │ │ │ +-record(person, {name :: string(), height :: height()}).
        │ │ │  
        │ │ │ -lookup(Name, Tab) ->
        │ │ │ -    ets:match_object(Tab, #person{name = Name, _ = '_'}).

        Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ +lookup(Name, Tab) -> │ │ │ + ets:match_object(Tab, #person{name = Name, _ = '_'}).

        Dialyzer will emit a warning since '_' is not in the type of record field │ │ │ height.

        The recommended way of dealing with this is to declare the smallest record │ │ │ field types to accommodate all your needs, and then create refinements as │ │ │ -needed. The modified example:

        -record(person, {name :: string(), height :: height() | '_'}).
        │ │ │ +needed. The modified example:

        -record(person, {name :: string(), height :: height() | '_'}).
        │ │ │  
        │ │ │ --type person() :: #person{height :: height()}.

        In specifications and type declarations the type person() is to be preferred │ │ │ +-type person() :: #person{height :: height()}.

        In specifications and type declarations the type person() is to be preferred │ │ │ before #person{}.

        │ │ │ │ │ │ │ │ │ │ │ │ Specifications for Functions │ │ │

        │ │ │

        A specification (or contract) for a function is given using the -spec │ │ │ attribute. The general format is as follows:

        -spec Function(ArgType1, ..., ArgTypeN) -> ReturnType.

        An implementation of the function with the same name Function must exist in │ │ │ the current module, and the arity of the function must match the number of │ │ │ arguments, otherwise the compilation fails.

        The following longer format with module name is also valid as long as Module │ │ │ is the name of the current module. This can be useful for documentation │ │ │ purposes.

        -spec Module:Function(ArgType1, ..., ArgTypeN) -> ReturnType.

        Also, for documentation purposes, argument names can be given:

        -spec Function(ArgName1 :: Type1, ..., ArgNameN :: TypeN) -> RT.

        A function specification can be overloaded. That is, it can have several types, │ │ │ -separated by a semicolon (;). For example:

        -spec foo(T1, T2) -> T3;
        │ │ │ -         (T4, T5) -> T6.

        A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ +separated by a semicolon (;). For example:

        -spec foo(T1, T2) -> T3;
        │ │ │ +         (T4, T5) -> T6.

        A current restriction, which currently results in a warning by Dialyzer, is that │ │ │ the domains of the argument types cannot overlap. For example, the following │ │ │ -specification results in a warning:

        -spec foo(pos_integer()) -> pos_integer();
        │ │ │ -         (integer()) -> integer().

        Type variables can be used in specifications to specify relations for the input │ │ │ +specification results in a warning:

        -spec foo(pos_integer()) -> pos_integer();
        │ │ │ +         (integer()) -> integer().

        Type variables can be used in specifications to specify relations for the input │ │ │ and output arguments of a function. For example, the following specification │ │ │ defines the type of a polymorphic identity function:

        -spec id(X) -> X.

        Notice that the above specification does not restrict the input and output type │ │ │ in any way. These types can be constrained by guard-like subtype constraints and │ │ │ -provide bounded quantification:

        -spec id(X) -> X when X :: tuple().

        Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ +provide bounded quantification:

        -spec id(X) -> X when X :: tuple().

        Currently, the :: constraint (read as "is a subtype of") is the only guard │ │ │ constraint that can be used in the when part of a -spec attribute.

        Note

        The above function specification uses multiple occurrences of the same type │ │ │ variable. That provides more type information than the following function │ │ │ -specification, where the type variables are missing:

        -spec id(tuple()) -> tuple().

        The latter specification says that the function takes some tuple and returns │ │ │ +specification, where the type variables are missing:

        -spec id(tuple()) -> tuple().

        The latter specification says that the function takes some tuple and returns │ │ │ some tuple. The specification with the X type variable specifies that the │ │ │ function takes a tuple and returns the same tuple.

        However, it is up to the tools that process the specifications to choose │ │ │ whether to take this extra information into account or not.

        The scope of a :: constraint is the (...) -> RetType specification after │ │ │ which it appears. To avoid confusion, it is suggested that different variables │ │ │ are used in different constituents of an overloaded contract, as shown in the │ │ │ -following example:

        -spec foo({X, integer()}) -> X when X :: atom();
        │ │ │ -         ([Y]) -> Y when Y :: number().

        Some functions in Erlang are not meant to return; either because they define │ │ │ +following example:

        -spec foo({X, integer()}) -> X when X :: atom();
        │ │ │ +         ([Y]) -> Y when Y :: number().

        Some functions in Erlang are not meant to return; either because they define │ │ │ servers or because they are used to throw exceptions, as in the following │ │ │ -function:

        my_error(Err) -> throw({error, Err}).

        For such functions, it is recommended to use the special no_return/0 type │ │ │ +function:

        my_error(Err) -> throw({error, Err}).

        For such functions, it is recommended to use the special no_return/0 type │ │ │ for their "return", through a contract of the following form:

        -spec my_error(term()) -> no_return().

        Note

        Erlang uses the shorthand version _ as an anonymous type variable equivalent │ │ │ to term/0 or any/0. For example, the following function

        -spec Function(string(), _) -> string().

        is equivalent to:

        -spec Function(string(), any()) -> string().
        │ │ │
        │ │ │ │ │ │
        │ │ │
        │ │ ├── ./usr/share/doc/erlang-doc/html/doc/upcoming_incompatibilities.html │ │ │ @@ -149,45 +149,45 @@ │ │ │ occurrences of maybe without quotes.

        │ │ │ │ │ │ │ │ │ │ │ │ 0.0 and -0.0 will no longer be exactly equal │ │ │

        │ │ │

        Currently, the floating point numbers 0.0 and -0.0 have distinct internal │ │ │ -representations. That can be seen if they are converted to binaries:

        1> <<0.0/float>>.
        │ │ │ -<<0,0,0,0,0,0,0,0>>
        │ │ │ -2> <<-0.0/float>>.
        │ │ │ -<<128,0,0,0,0,0,0,0>>

        However, when they are matched against each other or compared using the =:= │ │ │ +representations. That can be seen if they are converted to binaries:

        1> <<0.0/float>>.
        │ │ │ +<<0,0,0,0,0,0,0,0>>
        │ │ │ +2> <<-0.0/float>>.
        │ │ │ +<<128,0,0,0,0,0,0,0>>

        However, when they are matched against each other or compared using the =:= │ │ │ operator, they are considered to be equal. Thus, 0.0 =:= -0.0 currently │ │ │ returns true.

        In Erlang/OTP 27, 0.0 =:= -0.0 will return false, and matching 0.0 against │ │ │ -0.0 will fail. When used as map keys, 0.0 and -0.0 will be considered to │ │ │ be distinct.

        The == operator will continue to return true for 0.0 == -0.0.

        To help to find code that might need to be revised, in OTP 27 there will be a │ │ │ new compiler warning when matching against 0.0 or comparing to that value │ │ │ using the =:= operator. The warning can be suppressed by matching against │ │ │ +0.0 instead of 0.0.

        We plan to introduce the same warning in OTP 26.1, but by default it will be │ │ │ disabled.

        │ │ │ │ │ │ │ │ │ │ │ │ Singleton type variables will become a compile-time error │ │ │

        │ │ │ -

        Before Erlang/OTP 26, the compiler would silenty accept the following spec:

        -spec f(Opts) -> term() when
        │ │ │ -    Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │ -f(_) -> error.

        In OTP 26, the compiler emits a warning pointing out that the type variable │ │ │ -Unknown is unbound:

        t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
        │ │ │ +

        Before Erlang/OTP 26, the compiler would silenty accept the following spec:

        -spec f(Opts) -> term() when
        │ │ │ +    Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │ +f(_) -> error.

        In OTP 26, the compiler emits a warning pointing out that the type variable │ │ │ +Unknown is unbound:

        t.erl:6:18: Warning: type variable 'Unknown' is only used once (is unbound)
        │ │ │  %    6|     Opts :: {ok, Unknown} | {error, Unknown}.
        │ │ │  %     |                  ^

        In OTP 27, that warning will become an error.

        │ │ │ │ │ │ │ │ │ │ │ │ Escripts will be compiled by default │ │ │

        │ │ │

        Escripts will be compiled by default instead of interpreted. That means that the │ │ │ compiler application must be available.

        The old behavior of interpreting escripts can be restored by adding the │ │ │ -following line to the script file:

        -mode(interpret).

        In OTP 28, support for interpreting an escript will be removed.

        │ │ │ +following line to the script file:

        -mode(interpret).

        In OTP 28, support for interpreting an escript will be removed.

        │ │ │ │ │ │ │ │ │ │ │ │ -code_path_choice will default to strict │ │ │

        │ │ │

        This command line option controls if paths given in the command line, boot │ │ │ scripts, and the code server should be interpreted as is strict or relaxed.

        OTP 26 and earlier defaults to relaxed, which means -pa myapp/ebin would │ │ │ @@ -231,18 +231,18 @@ │ │ │ " │ │ │ String Content │ │ │ " │ │ │ %% │ │ │ %% In OTP 27 it is instead interpreted as a │ │ │ %% Triple-Quoted String equivalent to │ │ │ "String Content"

        """"
        │ │ │ -++ foo() ++
        │ │ │ +++ foo() ++
        │ │ │  """"
        │ │ │  %% Became
        │ │ │ -"" ++ foo() ++ ""
        │ │ │ +"" ++ foo() ++ ""
        │ │ │  %%
        │ │ │  %% In OTP 27 it is instead interpreted as a
        │ │ │  %% Triple-Quoted String (triple-or-more) equivalent to
        │ │ │  "++ foo() ++"

        From Erlang/OTP 26.1 up to 27.0 the compiler issues a warning for a sequence of │ │ │ 3 or more double-quote characters since that is almost certainly a mistake or │ │ │ something like a result of bad automatic code generation. If a users gets that │ │ │ warning, the code should be corrected for example by inserting appropriate │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/alt_dist.html │ │ │ @@ -237,50 +237,50 @@ │ │ │ uds_dist example using a port driver written in C, erl_uds_dist is written │ │ │ entirely in Erlang.

        │ │ │ │ │ │ │ │ │ │ │ │ Exported Callback Functions │ │ │

        │ │ │ -

        The following functions are mandatory:

        • listen(Name) ->
          │ │ │ -  {ok, {Listen, Address, Creation}} | {error, Error}
          │ │ │ -listen(Name,Host) ->
          │ │ │ -  {ok, {Listen, Address, Creation}} | {error, Error}

          listen/2 is called once in order to listen for incoming connection requests. │ │ │ +

          The following functions are mandatory:

          • listen(Name) ->
            │ │ │ +  {ok, {Listen, Address, Creation}} | {error, Error}
            │ │ │ +listen(Name,Host) ->
            │ │ │ +  {ok, {Listen, Address, Creation}} | {error, Error}

            listen/2 is called once in order to listen for incoming connection requests. │ │ │ The call is made when the distribution is brought up. The argument Name is │ │ │ the part of the node name before the @ sign in the full node name. It can be │ │ │ either an atom or a string. The argument Host is the part of the node name │ │ │ after the @ sign in the full node name. It is always a string.

            The return value consists of a Listen handle (which is later passed to the │ │ │ accept/1 callback), Address which is a │ │ │ #net_address{} record with information about the address for the node (the │ │ │ #net_address{} record is defined in kernel/include/net_address.hrl), and │ │ │ Creation which (currently) is an integer 1, 2, or 3.

            If epmd is to be used for node discovery, you typically want │ │ │ to use the erl_epmd module (part of the kernel application) in order to │ │ │ -register the listen port with epmd and retrieve Creation to use.

          • address() ->
            │ │ │ +register the listen port with epmd and retrieve Creation to use.

          • address() ->
            │ │ │    Address

            address/0 is called in order to get the Address part of the │ │ │ listen/2 function without creating a listen socket. │ │ │ -All fields except address have to be set in the returned record

            Example:

            address() ->
            │ │ │ -    {ok, Host} = inet:gethostname(),
            │ │ │ -    #net_address{ host = Host, protocol = tcp, family = inet6 }.
          • accept(Listen) ->
            │ │ │ +All fields except address have to be set in the returned record

            Example:

            address() ->
            │ │ │ +    {ok, Host} = inet:gethostname(),
            │ │ │ +    #net_address{ host = Host, protocol = tcp, family = inet6 }.
          • accept(Listen) ->
            │ │ │    AcceptorPid

            accept/1 should spawn a process that accepts connections. This process │ │ │ should preferably execute on max priority. The process identifier of this │ │ │ process should be returned.

            The Listen argument will be the same as the Listen handle part of the │ │ │ return value of the listen/1 callback above. │ │ │ accept/1 is called only once when the distribution protocol is started.

            The caller of this function is a representative for net_kernel (this may or │ │ │ may not be the process registered as net_kernel) and is in this document │ │ │ identified as Kernel. When a connection has been accepted by the acceptor │ │ │ process, it needs to inform Kernel about the accepted connection. This is │ │ │ -done by passing a message on the form:

            Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

            DistController is either the process or port identifier of the distribution │ │ │ +done by passing a message on the form:

            Kernel ! {accept, AcceptorPid, DistController, Family, Proto}

            DistController is either the process or port identifier of the distribution │ │ │ controller for the connection. The distribution controller should be created │ │ │ by the acceptor processes when a new connection is accepted. Its job is to │ │ │ dispatch traffic on the connection.

            Kernel responds with one of the following messages:

            • {Kernel, controller, SupervisorPid} - The request was accepted and │ │ │ SupervisorPid is the process identifier of the connection supervisor │ │ │ process (which is created in the │ │ │ accept_connection/5 callback).

            • {Kernel, unsupported_protocol} - The request was rejected. This is a │ │ │ fatal error. The acceptor process should terminate.

            When an accept sequence has been completed the acceptor process is expected to │ │ │ -continue accepting further requests.

          • accept_connection(AcceptorPid, DistCtrl, MyNode, Allowed, SetupTime) ->
            │ │ │ +continue accepting further requests.

          • accept_connection(AcceptorPid, DistCtrl, MyNode, Allowed, SetupTime) ->
            │ │ │    ConnectionSupervisorPid

            accept_connection/5 should spawn a process that will perform the Erlang │ │ │ distribution handshake for the connection. If the handshake successfully │ │ │ completes it should continue to function as a connection supervisor. This │ │ │ process should preferably execute on max priority and should be linked to │ │ │ the caller. The dist_util:net_ticker_spawn_options() function can be called │ │ │ to get spawn options suitable for this process which can be passed directly to │ │ │ erlang:spawn_opt/4. dist_util:net_ticker_spawn_options() will by default │ │ │ @@ -294,15 +294,15 @@ │ │ │ dist_util:handshake_other_started(HsData).

          • Allowed - To be passed along to │ │ │ dist_util:handshake_other_started(HsData).

          • SetupTime - Time used for creating a setup timer by a call to │ │ │ dist_util:start_timer(SetupTime). The timer should be passed along to │ │ │ dist_util:handshake_other_started(HsData).

          The created process should provide callbacks and other information needed for │ │ │ the handshake in a #hs_data{} record and call │ │ │ dist_util:handshake_other_started(HsData) with this record.

          dist_util:handshake_other_started(HsData) will perform the handshake and if │ │ │ the handshake successfully completes this process will then continue in a │ │ │ -connection supervisor loop as long as the connection is up.

        • setup(Node, Type, MyNode, LongOrShortNames, SetupTime) ->
          │ │ │ +connection supervisor loop as long as the connection is up.

        • setup(Node, Type, MyNode, LongOrShortNames, SetupTime) ->
          │ │ │    ConnectionSupervisorPid

          setup/5 should spawn a process that connects to Node. When connection has │ │ │ been established it should perform the Erlang distribution handshake for the │ │ │ connection. If the handshake successfully completes it should continue to │ │ │ function as a connection supervisor. This process should preferably execute on │ │ │ max priority and should be linked to the caller. The │ │ │ dist_util:net_ticker_spawn_options() function can be called to get spawn │ │ │ options suitable for this process which can be passed directly to │ │ │ @@ -320,23 +320,23 @@ │ │ │ may not be the process registered as net_kernel) and is in this document │ │ │ identified as Kernel.

          This function should, besides spawning the connection supervisor, also create │ │ │ a distribution controller. The distribution controller is either a process or │ │ │ a port which is responsible for dispatching traffic.

          The created process should provide callbacks and other information needed for │ │ │ the handshake in a #hs_data{} record and call │ │ │ dist_util:handshake_we_started(HsData) with this record.

          dist_util:handshake_we_started(HsData) will perform the handshake and the │ │ │ handshake successfully completes this process will then continue in a │ │ │ -connection supervisor loop as long as the connection is up.

        • close(Listen) ->
          │ │ │ -  void()

          Called in order to close the Listen handle that originally was passed from │ │ │ -the listen/1 callback.

        • select(NodeName) ->
          │ │ │ -  boolean()

          Return true if the host name part of the NodeName is valid for use with │ │ │ -this protocol; otherwise, false.

        There are also two optional functions that may be exported:

        • setopts(Listen, Opts) ->
          │ │ │ -  ok | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ +connection supervisor loop as long as the connection is up.

        • close(Listen) ->
          │ │ │ +  void()

          Called in order to close the Listen handle that originally was passed from │ │ │ +the listen/1 callback.

        • select(NodeName) ->
          │ │ │ +  boolean()

          Return true if the host name part of the NodeName is valid for use with │ │ │ +this protocol; otherwise, false.

        There are also two optional functions that may be exported:

        • setopts(Listen, Opts) ->
          │ │ │ +  ok | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ listen/1 callback. The argument Opts is a list of │ │ │ -options to set on future connections.

        • getopts(Listen, Opts) ->
          │ │ │ -  {ok, OptionValues} | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ +options to set on future connections.

        • getopts(Listen, Opts) ->
          │ │ │ +  {ok, OptionValues} | {error, Error}

          The argument Listen is the handle originally passed from the │ │ │ listen/1 callback. The argument Opts is a list of │ │ │ options to read for future connections.

        │ │ │ │ │ │ │ │ │ │ │ │ The #hs_data{} Record │ │ │

        │ │ │ @@ -350,44 +350,44 @@ │ │ │ accept_connection/5.

      • other_node - Name of the other node. This field │ │ │ is only mandatory when this node initiates the connection. That is, when │ │ │ connection is set up via setup/5.

      • this_node - The node name of this node.

      • socket - The identifier of the distribution │ │ │ controller.

      • timer - The timer created using │ │ │ dist_util:start_timer/1.

      • allowed - Information passed as Allowed to │ │ │ accept_connection/5. This field is only mandatory when the remote node │ │ │ initiated the connection. That is, when the connection is set up via │ │ │ -accept_connection/5.

      • f_send - A fun with the following signature:

        fun (DistCtrlr, Data) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Data │ │ │ -is io data to pass to the other side.

        Only used during handshake phase.

      • f_recv - A fun with the following signature:

        fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

        where DistCtrlr is the identifier of the distribution controller. If │ │ │ +accept_connection/5.

      • f_send - A fun with the following signature:

        fun (DistCtrlr, Data) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Data │ │ │ +is io data to pass to the other side.

        Only used during handshake phase.

      • f_recv - A fun with the following signature:

        fun (DistCtrlr, Length) -> {ok, Packet} | {error, Reason}

        where DistCtrlr is the identifier of the distribution controller. If │ │ │ Length is 0, all available bytes should be returned. If Length > 0, │ │ │ exactly Length bytes should be returned, or an error; possibly discarding │ │ │ less than Length bytes of data when the connection is closed from the other │ │ │ side. It is used for passive receive of data from the other end.

        Only used during handshake phase.

      • f_setopts_pre_nodeup - A fun with the │ │ │ -following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ +following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ just before the distribution channel is taken up for normal traffic.

        Only used during handshake phase.

      • f_setopts_post_nodeup - A fun with │ │ │ -the following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ -just after distribution channel has been taken up for normal traffic.

        Only used during handshake phase.

      • f_getll - A fun with the following signature:

        fun (DistCtrlr) -> ID

        where DistCtrlr is the identifier of the distribution controller and ID is │ │ │ +the following signature:

        fun (DistCtrlr) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller. Called │ │ │ +just after distribution channel has been taken up for normal traffic.

        Only used during handshake phase.

      • f_getll - A fun with the following signature:

        fun (DistCtrlr) -> ID

        where DistCtrlr is the identifier of the distribution controller and ID is │ │ │ the identifier of the low level entity that handles the connection (often │ │ │ -DistCtrlr itself).

        Only used during handshake phase.

      • f_address - A fun with the following signature:

        fun (DistCtrlr, Node) -> NetAddress

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ +DistCtrlr itself).

        Only used during handshake phase.

      • f_address - A fun with the following signature:

        fun (DistCtrlr, Node) -> NetAddress

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ the node name of the node on the other end, and NetAddress is a │ │ │ #net_address{} record with information about the address for the Node on │ │ │ the other end of the connection. The #net_address{} record is defined in │ │ │ -kernel/include/net_address.hrl.

        Only used during handshake phase.

      • mf_tick - A fun with the following signature:

        fun (DistCtrlr) -> void()

        where DistCtrlr is the identifier of the distribution controller. This │ │ │ +kernel/include/net_address.hrl.

        Only used during handshake phase.

      • mf_tick - A fun with the following signature:

        fun (DistCtrlr) -> void()

        where DistCtrlr is the identifier of the distribution controller. This │ │ │ function should send information over the connection that is not interpreted │ │ │ by the other end while increasing the statistics of received packets on the │ │ │ other end. This is usually implemented by sending an empty packet.

        Note

        It is of vital importance that this operation does not block the caller for │ │ │ -a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • mf_getstat - A fun with the following signature:

        fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

        where DistCtrlr is the identifier of the distribution controller, Received │ │ │ +a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • mf_getstat - A fun with the following signature:

        fun (DistCtrlr) -> {ok, Received, Sent, PendSend}

        where DistCtrlr is the identifier of the distribution controller, Received │ │ │ is received packets, Sent is sent packets, and PendSend is amount of data │ │ │ in queue to be sent (typically in bytes, but dist_util only checks whether │ │ │ the value is non-zero to know there is data in queue) or a boolean/0 │ │ │ indicating whether there are packets in queue to be sent.

        Note

        It is of vital importance that this operation does not block the caller for │ │ │ a long time. This since it is called from the connection supervisor.

        Used when connection is up.

      • request_type - The request Type as passed to │ │ │ setup/5. This is only mandatory when the connection has │ │ │ -been initiated by this node. That is, the connection is set up via setup/5.

      • mf_setopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ -is a list of options to set on the connection.

        This function is optional. Used when connection is up.

      • mf_getopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ +been initiated by this node. That is, the connection is set up via setup/5.

      • mf_setopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> ok | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ +is a list of options to set on the connection.

        This function is optional. Used when connection is up.

      • mf_getopts - A fun with the following signature:

        fun (DistCtrl, Opts) -> {ok, OptionValues} | {error, Error}

        where DistCtrlr is the identifier of the distribution controller and Opts │ │ │ is a list of options to read for the connection.

        This function is optional. Used when connection is up.

      • f_handshake_complete - A fun with the │ │ │ -following signature:

        fun (DistCtrlr, Node, DHandle) -> void()

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ +following signature:

        fun (DistCtrlr, Node, DHandle) -> void()

        where DistCtrlr is the identifier of the distribution controller, Node is │ │ │ the node name of the node connected at the other end, and DHandle is a │ │ │ distribution handle needed by a distribution controller process when calling │ │ │ the following BIFs:

        This function is called when the handshake has completed and the distribution │ │ │ channel is up. The distribution controller can begin dispatching traffic over │ │ │ the channel. This function is optional.

        Only used during handshake phase.

      • add_flags - │ │ │ Distribution flags to add to the connection. │ │ │ Currently all (non obsolete) flags will automatically be enabled.

        This flag field is optional.

      • reject_flags - │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/automaticyieldingofccode.html │ │ │ @@ -209,17 +209,17 @@ │ │ │ they have to follow certain restrictions. The convention for making │ │ │ this clear is to have a comment above the function that explains that │ │ │ the function is transformed by YCF (see maps_values_1_helper in │ │ │ erl_map.c for an example). If only the transformed version of the │ │ │ function is used, the convention is to "comment out" the source for the │ │ │ function by surrounding it with the following #ifdef (this way, one │ │ │ will not get warnings about unused functions):

        #ifdef INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS
        │ │ │ -void my_fun() {
        │ │ │ +void my_fun() {
        │ │ │      ...
        │ │ │ -}
        │ │ │ +}
        │ │ │  #endif /* INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS */

        While editing the function one can define │ │ │ INCLUDE_YCF_TRANSFORMED_ONLY_FUNCTIONS so that one can see errors │ │ │ and warnings in the non-transformed source.

        │ │ │ │ │ │ │ │ │ │ │ │ Where to Place YCF Transformed Functions │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/beam_makeops.html │ │ │ @@ -151,17 +151,17 @@ │ │ │ The loader translates generic instructions to specific instructions. │ │ │ In general, for each generic instruction, there exists a family of │ │ │ specific instructions. The OTP 20 release has 389 specific │ │ │ instructions.

      • The implementation of specific instructions for the traditional │ │ │ BEAM interpreter. For the BeamAsm JIT introduced │ │ │ in OTP 24, the implementation of instructions are defined in emitter │ │ │ functions written in C++.

      Generic instructions have typed operands. Here are a few examples of │ │ │ -operands for move/2:

      {move,{atom,id},{x,5}}.
      │ │ │ -{move,{x,3},{x,0}}.
      │ │ │ -{move,{x,2},{y,1}}.

      When those instructions are loaded, the loader rewrites them │ │ │ +operands for move/2:

      {move,{atom,id},{x,5}}.
      │ │ │ +{move,{x,3},{x,0}}.
      │ │ │ +{move,{x,2},{y,1}}.

      When those instructions are loaded, the loader rewrites them │ │ │ to specific instructions:

      move_cx id 5
      │ │ │  move_xx 3 0
      │ │ │  move_xy 2 1

      Corresponding to each generic instruction, there is a family of │ │ │ specific instructions. The types that an instance of a specific │ │ │ instruction can handle are encoded in the instruction names. For │ │ │ example, move_xy takes an X register number as the first operand and │ │ │ a Y register number as the second operand. move_cx takes a tagged │ │ │ @@ -185,17 +185,17 @@ │ │ │ move c x

    Each specific instructions is defined by following the name of the │ │ │ instruction with the types for each operand. An operand type is a │ │ │ single letter. For example, x means an X register, y │ │ │ means a Y register, and c is a "constant" (a tagged term such as │ │ │ an integer, an atom, or a literal).

    Now let's look at the implementation of the move instruction. There │ │ │ are multiple files containing implementations of instructions in the │ │ │ erts/emulator/beam/emu directory. The move instruction is defined │ │ │ -in instrs.tab. It looks like this:

    move(Src, Dst) {
    │ │ │ +in instrs.tab.  It looks like this:

    move(Src, Dst) {
    │ │ │      $Dst = $Src;
    │ │ │ -}

    The implementation for an instruction largely follows the C syntax, │ │ │ +}

    The implementation for an instruction largely follows the C syntax, │ │ │ except that the variables in the function head don't have any types. │ │ │ The $ before an identifier denotes a macro expansion. Thus, │ │ │ $Src will expand to the code to pick up the source operand for │ │ │ the instruction and $Dst to the code for the destination register.

    We will look at the code for each specific instruction in turn. To │ │ │ make the code easier to understand, let's first look at the memory │ │ │ layout for the instruction {move,{atom,id},{x,5}}:

         +--------------------+--------------------+
    │ │ │  I -> |                 40 |       &&lb_move_cx |
    │ │ │ @@ -204,61 +204,61 @@
    │ │ │       +--------------------+--------------------+

    This example and all other examples in the document assumes a 64-bit │ │ │ architecture, and furthermore that pointers to C code fit in 32 bits.

    I in the BEAM virtual machine is the instruction pointer. When BEAM │ │ │ executes an instruction, I points to the first word of the │ │ │ instruction.

    &&lb_move_cx is the address to C code that implements move_cx. It │ │ │ is stored in the lower 32 bits of the word. In the upper 32 bits is │ │ │ the byte offset to the X register; the register number 5 has been │ │ │ multiplied by the word size size 8.

    In the next word the tagged atom id is stored.

    With that background, we can look at the generated code for move_cx │ │ │ -in beam_hot.h:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +in beam_hot.h:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    We will go through each line in turn.

    • OpCase(move_cx): defines a label for the instruction. The │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    We will go through each line in turn.

    • OpCase(move_cx): defines a label for the instruction. The │ │ │ OpCase() macro is defined in beam_emu.c. It will expand this line │ │ │ to lb_move_cx:.

    • BeamInstr next_pf = BeamCodeAddr(I[2]); fetches the pointer to │ │ │ code for the next instruction to be executed. The BeamCodeAddr() │ │ │ macro extracts the pointer from the lower 32 bits of the instruction │ │ │ word.

    • xb(BeamExtraData(I[0])) = I[1]; is the expansion of $Dst = $Src. │ │ │ BeamExtraData() is a macro that will extract the upper 32 bits from │ │ │ the instruction word. In this example, it will return 40 which is the │ │ │ byte offset for X register 5. The xb() macro will cast a byte │ │ │ pointer to an Eterm pointer and dereference it. The I[1] on │ │ │ the right-hand side of the = fetches an Erlang term (the atom id in │ │ │ this case).

    • I += 2 advances the instruction pointer to the next │ │ │ instruction.

    • In a debug-compiled emulator, ASSERT(VALID_INSTR(next_pf)); makes │ │ │ sure that next_pf is a valid instruction (that is, that it points │ │ │ -within the process_main() function in beam_emu.c).

    • GotoPF(next_pf); transfers control to the next instruction.

    Now let's look at the implementation of move_xx:

    OpCase(move_xx):
    │ │ │ -{
    │ │ │ -  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │ +within the process_main() function in beam_emu.c).

  • GotoPF(next_pf); transfers control to the next instruction.

  • Now let's look at the implementation of move_xx:

    OpCase(move_xx):
    │ │ │ +{
    │ │ │ +  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    We will go through the lines that are new or have changed compared to │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    We will go through the lines that are new or have changed compared to │ │ │ move_cx.

    • Eterm tmp_packed1 = BeamExtraData(I[0]); picks up both X register │ │ │ numbers packed into the upper 32 bits of the instruction word.

    • BeamInstr next_pf = BeamCodeAddr(I[1]); pre-fetches the address of │ │ │ the next instruction. Note that because both X registers operands fits │ │ │ into the instruction word, the next instruction is in the very next │ │ │ word.

    • xb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK); │ │ │ copies the source to the destination. (For a 64-bit architecture, │ │ │ BEAM_TIGHT_SHIFT is 16 and BEAM_TIGHT_MASK is 0xFFFF.)

    • I += 1; advances the instruction pointer to the next instruction.

    move_xy is almost identical to move_xx. The only difference is │ │ │ the use of the yb() macro instead of xb() to reference the │ │ │ -destination register:

    OpCase(move_xy):
    │ │ │ -{
    │ │ │ -  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  yb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │ +destination register:

    OpCase(move_xy):
    │ │ │ +{
    │ │ │ +  Eterm tmp_packed1 = BeamExtraData(I[0]);
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  yb((tmp_packed1>>BEAM_TIGHT_SHIFT)) = xb(tmp_packed1&BEAM_TIGHT_MASK);
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    │ │ │ │ │ │ │ │ │ │ │ │ Transformation rules │ │ │

    │ │ │

    Next let's look at how we can do some optimizations using transformation │ │ │ rules. For simple instructions such as move/2, the instruction dispatch │ │ │ @@ -271,21 +271,21 @@ │ │ │ with an uppercase letter just as in Erlang. A pattern variable may be │ │ │ followed = and one or more type letters to constrain the match to │ │ │ one of those types. The variables that are bound on the left-hand side can │ │ │ be used on the right-hand side.

    We will also need to define a specific instruction and an implementation:

    # In ops.tab
    │ │ │  move2 x y x y
    │ │ │  
    │ │ │  // In instrs.tab
    │ │ │ -move2(S1, D1, S2, D2) {
    │ │ │ +move2(S1, D1, S2, D2) {
    │ │ │      Eterm V1, V2;
    │ │ │      V1 = $S1;
    │ │ │      V2 = $S2;
    │ │ │      $D1 = V1;
    │ │ │      $D2 = V2;
    │ │ │ -}

    When the loader has found a match and replaced the matched instructions, │ │ │ +}

    When the loader has found a match and replaced the matched instructions, │ │ │ it will match the new instructions against the transformation rules. │ │ │ Because of that, we can define the rule for a move3/6 instruction │ │ │ as follows:

    move2 X1=x Y1=y X2=x Y2=y | move X3=x Y3=y =>
    │ │ │        move3 X1 Y1 X2 Y2 X3 Y3

    (For readability, a long transformation line can be broken after | │ │ │ and => operators.)

    It would also be possible to define it like this:

    move X1=x Y1=y | move X2=x Y2=y | move X3=x Y3=y =>
    │ │ │       move3 X1 Y1 X2 Y2 X3 Y3

    but in that case it must be defined before the rule for move2/4 │ │ │ because the first matching rule will be applied.

    One must be careful not to create infinite loops. For example, if we │ │ │ @@ -433,29 +433,29 @@ │ │ │ i_bs_get_integer_32 x f? x │ │ │ %endif

    The specific instruction i_bs_get_integer_32 will only be defined │ │ │ on a 64-bit machine.

    The condition can be inverted by using %unless instead of %if:

    %unless NO_FPE_SIGNALS
    │ │ │  fcheckerror p => i_fcheckerror
    │ │ │  i_fcheckerror
    │ │ │  fclearerror
    │ │ │  %endif

    It is also possible to add an %else clause:

    %if ARCH_64
    │ │ │ -BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ -    Uint64 res = ($A) * ($B);
    │ │ │ -    if (res / $B != $A) {
    │ │ │ +BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ +    Uint64 res = ($A) * ($B);
    │ │ │ +    if (res / $B != $A) {
    │ │ │          $Fail;
    │ │ │ -    }
    │ │ │ +    }
    │ │ │      $Dst = res;
    │ │ │ -}
    │ │ │ +}
    │ │ │  %else
    │ │ │ -BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ -    Uint64 res = (Uint64)($A) * (Uint64)($B);
    │ │ │ -    if ((res >> (8*sizeof(Uint))) != 0) {
    │ │ │ +BS_SAFE_MUL(A, B, Fail, Dst) {
    │ │ │ +    Uint64 res = (Uint64)($A) * (Uint64)($B);
    │ │ │ +    if ((res >> (8*sizeof(Uint))) != 0) {
    │ │ │          $Fail;
    │ │ │ -    }
    │ │ │ +    }
    │ │ │      $Dst = res;
    │ │ │ -}
    │ │ │ +}
    │ │ │  %endif

    Symbols that are defined in directives

    The following symbols are always defined.

    • ARCH_64 - is 1 for a 64-bit machine, and 0 otherwise.
    • ARCH_32 - is 1 for 32-bit machine, and 0 otherwise.

    The Makefile for building the emulator currently defines the │ │ │ following symbols by using the -D option on the command line for │ │ │ beam_makeops.

    • USE_VM_PROBES - 1 if the runtime system is compiled to use VM │ │ │ probes (support for dtrace or systemtap), 0 otherwise.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -676,15 +676,15 @@ │ │ │ match both source and destination registers. As an operand in a specific │ │ │ instruction, it must only be used for a destination register.)

  • o - Overflow. An untagged integer that does not fit in a machine word.

  • Predicates

    If the constraints described so far is not enough, additional │ │ │ constraints can be implemented in C and be called as a guard function │ │ │ on the left-hand side of the transformation. If the guard function returns │ │ │ a non-zero value, the matching of the rule will continue, otherwise │ │ │ the match will fail. Such guard functions are hereafter called │ │ │ predicates.

    The most commonly used guard constraints is equal(). It can be used │ │ │ -to remove a redundant move instructio like this:

    move R1 R2 | equal(R1, R2) => _

    or remove a redundant is_eq_exact instruction like this:

    is_eq_exact Lbl Src1 Src2 | equal(Src1, Src2) => _

    At the time of writing, all predicates are defined in files named │ │ │ +to remove a redundant move instructio like this:

    move R1 R2 | equal(R1, R2) => _

    or remove a redundant is_eq_exact instruction like this:

    is_eq_exact Lbl Src1 Src2 | equal(Src1, Src2) => _

    At the time of writing, all predicates are defined in files named │ │ │ predicates.tab in several directories. In predicates.tab directly │ │ │ in $ERL_TOP/erts/emulator/beam, predicates that are used by both the │ │ │ traditinal emulator and the JIT implementations are contained. │ │ │ Predicates only used by the emulator can be found in │ │ │ emu/predicates.tab.

    │ │ │ │ │ │ │ │ │ @@ -692,41 +692,41 @@ │ │ │ A very brief note on implementation of predicates │ │ │

    │ │ │

    It is outside the scope for this document to describe in detail how │ │ │ predicates are implemented because it requires knowledge of the │ │ │ internal loader data structures, but here is quick look at the │ │ │ implementation of a simple predicate called literal_is_map().

    Here is first an example how it is used:

    ismap Fail Lit=q | literal_is_map(Lit) =>

    If the Lit operand is a literal, then the literal_is_map() │ │ │ predicate is called to determine whether it is a map literal. │ │ │ -If it is, the instruction is not needed and can be removed.

    literal_is_map() is implemented like this (in emu/predicates.tab):

    pred.literal_is_map(Lit) {
    │ │ │ +If it is, the instruction is not needed and can be removed.

    literal_is_map() is implemented like this (in emu/predicates.tab):

    pred.literal_is_map(Lit) {
    │ │ │      Eterm term;
    │ │ │  
    │ │ │ -    ASSERT(Lit.type == TAG_q);
    │ │ │ -    term = beamfile_get_literal(&S->beam, Lit.val);
    │ │ │ -    return is_map(term);
    │ │ │ -}

    The pred. prefix tells beam_makeops that this function is a │ │ │ + ASSERT(Lit.type == TAG_q); │ │ │ + term = beamfile_get_literal(&S->beam, Lit.val); │ │ │ + return is_map(term); │ │ │ +}

    The pred. prefix tells beam_makeops that this function is a │ │ │ predicate. Without the prefix, it would have been interpreted as the │ │ │ implementation of an instruction (described in Defining the │ │ │ implementation).

    Predicate functions have a magic variabled called S, which is a │ │ │ pointer to a state struct. In the example, │ │ │ beamfile_get_literal(&S->beam, Lit.val); is used to retrieve the actual term │ │ │ for the literal.

    At the time of writing, the expanded C code generated by │ │ │ -beam_makeops looks like this:

    static int literal_is_map(LoaderState* S, BeamOpArg Lit) {
    │ │ │ +beam_makeops looks like this:

    static int literal_is_map(LoaderState* S, BeamOpArg Lit) {
    │ │ │    Eterm term;
    │ │ │  
    │ │ │ -  ASSERT(Lit.type == TAG_q);
    │ │ │ -  term = S->literals[Lit.val].term;
    │ │ │ -  return is_map(term);;
    │ │ │ -}

    Handling instructions with variable number of operands

    Some instructions, such as select_val/3, essentially has a variable │ │ │ + ASSERT(Lit.type == TAG_q); │ │ │ + term = S->literals[Lit.val].term; │ │ │ + return is_map(term);; │ │ │ +}

    Handling instructions with variable number of operands

    Some instructions, such as select_val/3, essentially has a variable │ │ │ number of operands. Such instructions have a {list,[...]} operand │ │ │ -as their last operand in the BEAM assembly code. For example:

    {select_val,{x,0},
    │ │ │ -            {f,1},
    │ │ │ -            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ +as their last operand in the BEAM assembly code. For example:

    {select_val,{x,0},
    │ │ │ +            {f,1},
    │ │ │ +            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ value is the number of elements in the list, followed by each element in │ │ │ the list. The instruction above would be translated to the following │ │ │ -generic instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    To match a variable number of arguments we need to use the special │ │ │ +generic instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    To match a variable number of arguments we need to use the special │ │ │ operand type * like this:

    select_val Src=aiq Fail=f Size=u List=* =>
    │ │ │      i_const_select_val Src Fail Size List

    This transformation renames a select_val/3 instruction │ │ │ with a constant source operand to i_const_select_val/3.

    Constructing new instructions on the right-hand side

    The most common operand on the right-hand side is a variable that was │ │ │ bound while matching the pattern on the left-hand side. For example:

    trim N Remaining => i_trim N

    An operand can also be a type letter to construct an operand of that │ │ │ type. Each type has a default value. For example, the type x has │ │ │ the default value 1023, which is the highest X register. That makes │ │ │ x on the right-hand side a convenient shortcut for a temporary X │ │ │ @@ -746,53 +746,53 @@ │ │ │ transformation rule.

    • u - Construct an untagged integer. The default value is 0.

    • x - X register. The default value is 1023. That makes x convenient to │ │ │ use as a temporary X register.

    • y - Y register. The default value is 0.

    • l - Floating point register number. The default value is 0.

    • i - Tagged literal integer. The default value is 0.

    • a - Tagged atom. The default value is the empty atom (am_Empty).

    • p - Zero failure label.

    • n - NIL ([], the empty list).

    Function call on the right-hand side

    Transformations that are not possible to describe with the rule │ │ │ language as described here can be implemented as a generator function │ │ │ in C and called from the right-hand side of a transformation. The left-hand │ │ │ side of the transformation will perform the match and bind operands to │ │ │ variables. The variables can then be passed to a generator function │ │ │ on the right-hand side. For example:

    bif2 Fail=j u$bif:erlang:element/2 Index=s Tuple=xy Dst=d =>
    │ │ │ -    element(Jump, Index, Tuple, Dst)

    This transformation rule matches a call to the BIF element/2. │ │ │ + element(Jump, Index, Tuple, Dst)

    This transformation rule matches a call to the BIF element/2. │ │ │ The operands will be captured and the generator function element() will │ │ │ be called.

    The element() generator will produce one of two instructions │ │ │ depending on Index. If Index is an integer in the range from 1 up │ │ │ to the maximum tuple size, the instruction i_fast_element/2 will be │ │ │ produced, otherwise the instruction i_element/4 will be produced. │ │ │ The corresponding specific instructions are:

    i_fast_element xy j? I d
    │ │ │  i_element xy j? s d

    The i_fast_element/2 instruction is faster because the tuple is │ │ │ already an untagged integer. It also knows that the index is at least │ │ │ 1, so it does not have to test for that. The i_element/4 │ │ │ instruction will have to fetch the index from a register, test that it │ │ │ is an integer, and untag the integer.

    At the time of writing, all generators functions were defined in files │ │ │ named generators.tab in several directories (in the same directories │ │ │ as the predicates.tab files).

    It is outside the scope of this document to describe in detail how │ │ │ generator functions are written, but here is the implementation of │ │ │ -element():

    gen.element(Fail, Index, Tuple, Dst) {
    │ │ │ +element():

    gen.element(Fail, Index, Tuple, Dst) {
    │ │ │      BeamOp* op;
    │ │ │  
    │ │ │ -    $NewBeamOp(S, op);
    │ │ │ +    $NewBeamOp(S, op);
    │ │ │  
    │ │ │ -    if (Index.type == TAG_i && Index.val > 0 &&
    │ │ │ +    if (Index.type == TAG_i && Index.val > 0 &&
    │ │ │          Index.val <= ERTS_MAX_TUPLE_SIZE &&
    │ │ │ -        (Tuple.type == TAG_x || Tuple.type == TAG_y)) {
    │ │ │ -        $BeamOpNameArity(op, i_fast_element, 4);
    │ │ │ -        op->a[0] = Tuple;
    │ │ │ -        op->a[1] = Fail;
    │ │ │ -        op->a[2].type = TAG_u;
    │ │ │ -        op->a[2].val = Index.val;
    │ │ │ -        op->a[3] = Dst;
    │ │ │ -    } else {
    │ │ │ -        $BeamOpNameArity(op, i_element, 4);
    │ │ │ -        op->a[0] = Tuple;
    │ │ │ -        op->a[1] = Fail;
    │ │ │ -        op->a[2] = Index;
    │ │ │ -        op->a[3] = Dst;
    │ │ │ -    }
    │ │ │ +        (Tuple.type == TAG_x || Tuple.type == TAG_y)) {
    │ │ │ +        $BeamOpNameArity(op, i_fast_element, 4);
    │ │ │ +        op->a[0] = Tuple;
    │ │ │ +        op->a[1] = Fail;
    │ │ │ +        op->a[2].type = TAG_u;
    │ │ │ +        op->a[2].val = Index.val;
    │ │ │ +        op->a[3] = Dst;
    │ │ │ +    } else {
    │ │ │ +        $BeamOpNameArity(op, i_element, 4);
    │ │ │ +        op->a[0] = Tuple;
    │ │ │ +        op->a[1] = Fail;
    │ │ │ +        op->a[2] = Index;
    │ │ │ +        op->a[3] = Dst;
    │ │ │ +    }
    │ │ │  
    │ │ │      return op;
    │ │ │ -}

    The gen. prefix tells beam_makeops that this function is a │ │ │ +}

    The gen. prefix tells beam_makeops that this function is a │ │ │ generator. Without the prefix, it would have been interpreted as the │ │ │ implementation of an instruction (described in Defining the │ │ │ implementation).

    Generator functions have a magic variabled called S, which is a │ │ │ pointer to a state struct. In the example, S is used in the invocation │ │ │ of the NewBeamOp macro.

    │ │ │ │ │ │ │ │ │ @@ -814,473 +814,473 @@ │ │ │ msg_instrs.tab │ │ │ select_instrs.tab │ │ │ trace_instrs.tab

    There is also a file that only contains macro definitions:

    macros.tab

    The syntax of each file is similar to C code. In fact, most of │ │ │ the contents is C code, interspersed with macro invocations.

    To allow Emacs to auto-indent the code, each file starts with the │ │ │ following line:

    // -*- c -*-

    To avoid messing up the indentation, all comments are written │ │ │ as C++ style comments (//) instead of #. Note that a comment │ │ │ must start at the beginning of a line.

    The meat of an instruction definition file are macro definitions. │ │ │ -We have seen this macro definition before:

    move(Src, Dst) {
    │ │ │ +We have seen this macro definition before:

    move(Src, Dst) {
    │ │ │      $Dst = $Src;
    │ │ │ -}

    A macro definitions must start at the beginning of the line (no spaces │ │ │ +}

    A macro definitions must start at the beginning of the line (no spaces │ │ │ allowed), the opening curly bracket must be on the same line, and the │ │ │ finishing curly bracket must be at the beginning of a line. It is │ │ │ recommended that the macro body is properly indented.

    As a convention, the macro arguments in the head all start with an │ │ │ uppercase letter. In the body, the macro arguments can be expanded │ │ │ by preceding them with $.

    A macro definition whose name and arity matches a family of │ │ │ specific instructions is assumed to be the implementation of that │ │ │ instruction.

    A macro can also be invoked from within another macro. For example, │ │ │ move_deallocate_return/2 avoids repeating code by invoking │ │ │ -$deallocate_return() as a macro:

    move_deallocate_return(Src, Deallocate) {
    │ │ │ -    x(0) = $Src;
    │ │ │ -    $deallocate_return($Deallocate);
    │ │ │ -}

    Here is the definition of deallocate_return/1:

    deallocate_return(Deallocate) {
    │ │ │ +$deallocate_return() as a macro:

    move_deallocate_return(Src, Deallocate) {
    │ │ │ +    x(0) = $Src;
    │ │ │ +    $deallocate_return($Deallocate);
    │ │ │ +}

    Here is the definition of deallocate_return/1:

    deallocate_return(Deallocate) {
    │ │ │      //| -no_next
    │ │ │      int words_to_pop = $Deallocate;
    │ │ │ -    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ -    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ -    CHECK_TERM(x(0));
    │ │ │ +    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ +    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ +    CHECK_TERM(x(0));
    │ │ │      DispatchReturn;
    │ │ │ -}

    The expanded code for move_deallocate_return will look this:

    OpCase(move_deallocate_return_cQ):
    │ │ │ -{
    │ │ │ -  x(0) = I[1];
    │ │ │ -  do {
    │ │ │ -    int words_to_pop = Qb(BeamExtraData(I[0]));
    │ │ │ -    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ -    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ -    CHECK_TERM(x(0));
    │ │ │ +}

    The expanded code for move_deallocate_return will look this:

    OpCase(move_deallocate_return_cQ):
    │ │ │ +{
    │ │ │ +  x(0) = I[1];
    │ │ │ +  do {
    │ │ │ +    int words_to_pop = Qb(BeamExtraData(I[0]));
    │ │ │ +    SET_I((BeamInstr *) cp_val(*E));
    │ │ │ +    E = ADD_BYTE_OFFSET(E, words_to_pop);
    │ │ │ +    CHECK_TERM(x(0));
    │ │ │      DispatchReturn;
    │ │ │ -  } while (0);
    │ │ │ -}

    When expanding macros, beam_makeops wraps the expansion in a │ │ │ + } while (0); │ │ │ +}

    When expanding macros, beam_makeops wraps the expansion in a │ │ │ do/while wrapper unless beam_makeops can clearly see that no │ │ │ wrapper is needed. In this case, the wrapper is needed.

    Note that arguments for macros cannot be complex expressions, because │ │ │ the arguments are split on ,. For example, the following would │ │ │ not work because beam_makeops would split the expression into │ │ │ -two arguments:

    $deallocate_return(get_deallocation(y, $Deallocate));

    Code generation directives

    Within macro definitions, // comments are in general not treated │ │ │ +two arguments:

    $deallocate_return(get_deallocation(y, $Deallocate));

    Code generation directives

    Within macro definitions, // comments are in general not treated │ │ │ specially. They will be copied to the file with the generated code │ │ │ along with the rest of code in the body.

    However, there is an exception. Within a macro definition, a line that │ │ │ starts with whitespace followed by //| is treated specially. The │ │ │ rest of the line is assumed to contain directives to control code │ │ │ generation.

    Currently, two code generation directives are recognized:

    The -no_prefetch directive

    To see what -no_prefetch does, let's first look at the default code │ │ │ -generation. Here is the code generated for move_cx:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +generation.  Here is the code generated for move_cx:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[2]);
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    Note that the very first thing done is to fetch the address to the │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    Note that the very first thing done is to fetch the address to the │ │ │ next instruction. The reason is that it usually improves performance.

    Just as a demonstration, we can add a -no_prefetch directive to │ │ │ -the move/2 instruction:

    move(Src, Dst) {
    │ │ │ +the move/2 instruction:

    move(Src, Dst) {
    │ │ │      //| -no_prefetch
    │ │ │      $Dst = $Src;
    │ │ │ -}

    We can see that the prefetch is no longer done:

    OpCase(move_cx):
    │ │ │ -{
    │ │ │ -  xb(BeamExtraData(I[0])) = I[1];
    │ │ │ +}

    We can see that the prefetch is no longer done:

    OpCase(move_cx):
    │ │ │ +{
    │ │ │ +  xb(BeamExtraData(I[0])) = I[1];
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(*I));
    │ │ │ -  Goto(*I);
    │ │ │ -}

    When would we want to turn off the prefetch in practice?

    In instructions that will not always execute the next instruction. │ │ │ -For example:

    is_atom(Fail, Src) {
    │ │ │ -    if (is_not_atom($Src)) {
    │ │ │ -        $FAIL($Fail);
    │ │ │ -    }
    │ │ │ -}
    │ │ │ +  ASSERT(VALID_INSTR(*I));
    │ │ │ +  Goto(*I);
    │ │ │ +}

    When would we want to turn off the prefetch in practice?

    In instructions that will not always execute the next instruction. │ │ │ +For example:

    is_atom(Fail, Src) {
    │ │ │ +    if (is_not_atom($Src)) {
    │ │ │ +        $FAIL($Fail);
    │ │ │ +    }
    │ │ │ +}
    │ │ │  
    │ │ │  // From macros.tab
    │ │ │ -FAIL(Fail) {
    │ │ │ +FAIL(Fail) {
    │ │ │      //| -no_prefetch
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I);
    │ │ │ -}

    is_atom/2 may either execute the next instruction (if the second │ │ │ -operand is an atom) or branch to the failure label.

    The generated code looks like this:

    OpCase(is_atom_fx):
    │ │ │ -{
    │ │ │ -  if (is_not_atom(xb(I[1]))) {
    │ │ │ -    ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -    I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -    Goto(*I);;
    │ │ │ -  }
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I);
    │ │ │ +}

    is_atom/2 may either execute the next instruction (if the second │ │ │ +operand is an atom) or branch to the failure label.

    The generated code looks like this:

    OpCase(is_atom_fx):
    │ │ │ +{
    │ │ │ +  if (is_not_atom(xb(I[1]))) {
    │ │ │ +    ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +    I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +    Goto(*I);;
    │ │ │ +  }
    │ │ │    I += 2;
    │ │ │ -  ASSERT(VALID_INSTR(*I));
    │ │ │ -  Goto(*I);
    │ │ │ -}
    The -no_next directive

    Next we will look at when the -no_next directive can be used. Here │ │ │ -is the jump/1 instruction:

    jump(Fail) {
    │ │ │ -    $JUMP($Fail);
    │ │ │ -}
    │ │ │ +  ASSERT(VALID_INSTR(*I));
    │ │ │ +  Goto(*I);
    │ │ │ +}
    The -no_next directive

    Next we will look at when the -no_next directive can be used. Here │ │ │ +is the jump/1 instruction:

    jump(Fail) {
    │ │ │ +    $JUMP($Fail);
    │ │ │ +}
    │ │ │  
    │ │ │  // From macros.tab
    │ │ │ -JUMP(Fail) {
    │ │ │ +JUMP(Fail) {
    │ │ │      //| -no_next
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I);
    │ │ │ -}

    The generated code looks like this:

    OpCase(jump_f):
    │ │ │ -{
    │ │ │ -  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -  Goto(*I);;
    │ │ │ -}

    If we remove the -no_next directive, the code would look like this:

    OpCase(jump_f):
    │ │ │ -{
    │ │ │ -  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ -  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ -  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ -  Goto(*I);;
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I);
    │ │ │ +}

    The generated code looks like this:

    OpCase(jump_f):
    │ │ │ +{
    │ │ │ +  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +  Goto(*I);;
    │ │ │ +}

    If we remove the -no_next directive, the code would look like this:

    OpCase(jump_f):
    │ │ │ +{
    │ │ │ +  BeamInstr next_pf = BeamCodeAddr(I[1]);
    │ │ │ +  ASSERT(VALID_INSTR(*(I + (fb(BeamExtraData(I[0]))) + 0)));
    │ │ │ +  I += fb(BeamExtraData(I[0])) + 0;;
    │ │ │ +  Goto(*I);;
    │ │ │    I += 1;
    │ │ │ -  ASSERT(VALID_INSTR(next_pf));
    │ │ │ -  GotoPF(next_pf);
    │ │ │ -}

    In the end, the C compiler will probably optimize this code to the │ │ │ + ASSERT(VALID_INSTR(next_pf)); │ │ │ + GotoPF(next_pf); │ │ │ +}

    In the end, the C compiler will probably optimize this code to the │ │ │ same native code as the first version, but the first version is certainly │ │ │ much easier to read for human readers.

    Macros in the macros.tab file

    The file macros.tab contains many useful macros. When implementing │ │ │ new instructions it is good practice to look through macros.tab to │ │ │ see if any of existing macros can be used rather than re-inventing │ │ │ the wheel.

    We will describe a few of the most useful macros here.

    The GC_REGEXP definition

    The following line defines a regular expression that will recognize │ │ │ a call to a function that does a garbage collection:

     GC_REGEXP=erts_garbage_collect|erts_gc|GcBifFunction;

    The purpose is that beam_makeops can verify that an instruction │ │ │ that does a garbage collection and has an d operand uses the │ │ │ $REFRESH_GEN_DEST() macro.

    If you need to define a new function that does garbage collection, │ │ │ you should give it the prefix erts_gc_. If that is not possible │ │ │ you should update the regular expression so that it will match your │ │ │ -new function.

    FAIL(Fail)

    Branch to $Fail. Will suppress prefetch (-no_prefetch). Typical use:

    is_nonempty_list(Fail, Src) {
    │ │ │ -    if (is_not_list($Src)) {
    │ │ │ -        $FAIL($Fail);
    │ │ │ -    }
    │ │ │ -}
    JUMP(Fail)

    Branch to $Fail. Suppresses generation of dispatch of the next │ │ │ -instruction (-no_next). Typical use:

    jump(Fail) {
    │ │ │ -    $JUMP($Fail);
    │ │ │ -}
    GC_TEST(NeedStack, NeedHeap, Live)

    $GC_TEST(NeedStack, NeedHeap, Live) tests that given amount of │ │ │ +new function.

    FAIL(Fail)

    Branch to $Fail. Will suppress prefetch (-no_prefetch). Typical use:

    is_nonempty_list(Fail, Src) {
    │ │ │ +    if (is_not_list($Src)) {
    │ │ │ +        $FAIL($Fail);
    │ │ │ +    }
    │ │ │ +}
    JUMP(Fail)

    Branch to $Fail. Suppresses generation of dispatch of the next │ │ │ +instruction (-no_next). Typical use:

    jump(Fail) {
    │ │ │ +    $JUMP($Fail);
    │ │ │ +}
    GC_TEST(NeedStack, NeedHeap, Live)

    $GC_TEST(NeedStack, NeedHeap, Live) tests that given amount of │ │ │ stack space and heap space is available. If not it will do a │ │ │ -garbage collection. Typical use:

    test_heap(Nh, Live) {
    │ │ │ -    $GC_TEST(0, $Nh, $Live);
    │ │ │ -}
    AH(NeedStack, NeedHeap, Live)

    AH(NeedStack, NeedHeap, Live) allocates a stack frame and │ │ │ +garbage collection. Typical use:

    test_heap(Nh, Live) {
    │ │ │ +    $GC_TEST(0, $Nh, $Live);
    │ │ │ +}
    AH(NeedStack, NeedHeap, Live)

    AH(NeedStack, NeedHeap, Live) allocates a stack frame and │ │ │ optionally additional heap space.

    Pre-defined macros and variables

    beam_makeops defines several built-in macros and pre-bound variables.

    The NEXT_INSTRUCTION pre-bound variable

    The NEXT_INSTRUCTION is a pre-bound variable that is available in │ │ │ -all instructions. It expands to the address of the next instruction.

    Here is an example:

    i_call(CallDest) {
    │ │ │ +all instructions.  It expands to the address of the next instruction.

    Here is an example:

    i_call(CallDest) {
    │ │ │      //| -no_next
    │ │ │ -    $SAVE_CONTINUATION_POINTER($NEXT_INSTRUCTION);
    │ │ │ -    $DISPATCH_REL($CallDest);
    │ │ │ -}

    When calling a function, the return address is first stored in E[0] │ │ │ + $SAVE_CONTINUATION_POINTER($NEXT_INSTRUCTION); │ │ │ + $DISPATCH_REL($CallDest); │ │ │ +}

    When calling a function, the return address is first stored in E[0] │ │ │ (using the $SAVE_CONTINUATION_POINTER() macro), and then control is │ │ │ -transferred to the callee. Here is the generated code:

    OpCase(i_call_f):
    │ │ │ -{
    │ │ │ -    ASSERT(VALID_INSTR(*(I+2)));
    │ │ │ -    *E = (BeamInstr) (I+2);;
    │ │ │ +transferred to the callee.  Here is the generated code:

    OpCase(i_call_f):
    │ │ │ +{
    │ │ │ +    ASSERT(VALID_INSTR(*(I+2)));
    │ │ │ +    *E = (BeamInstr) (I+2);;
    │ │ │  
    │ │ │      /* ... dispatch code intentionally left out ... */
    │ │ │ -}

    We can see that that $NEXT_INSTRUCTION has been expanded to I+2. │ │ │ +}

    We can see that that $NEXT_INSTRUCTION has been expanded to I+2. │ │ │ That makes sense since the size of the i_call_f/1 instruction is │ │ │ two words.

    The IP_ADJUSTMENT pre-bound variable

    $IP_ADJUSTMENT is usually 0. In a few combined instructions │ │ │ (described below) it can be non-zero. It is used like this │ │ │ -in macros.tab:

    SET_I_REL(Offset) {
    │ │ │ -    ASSERT(VALID_INSTR(*(I + ($Offset) + $IP_ADJUSTMENT)));
    │ │ │ +in macros.tab:

    SET_I_REL(Offset) {
    │ │ │ +    ASSERT(VALID_INSTR(*(I + ($Offset) + $IP_ADJUSTMENT)));
    │ │ │      I += $Offset + $IP_ADJUSTMENT;
    │ │ │ -}

    Avoid using IP_ADJUSTMENT directly. Use SET_I_REL() or │ │ │ +}

    Avoid using IP_ADJUSTMENT directly. Use SET_I_REL() or │ │ │ one of the macros that invoke such as FAIL() or JUMP() │ │ │ defined in macros.tab.

    Pre-defined macro functions

    The IF() macro

    $IF(Expr, IfTrue, IfFalse) evaluates Expr, which must be a valid │ │ │ Perl expression (which for simple numeric expressions have the same │ │ │ syntax as C). If Expr evaluates to 0, the entire IF() expression will be │ │ │ replaced with IfFalse, otherwise it will be replaced with IfTrue.

    See the description of OPERAND_POSITION() for an example.

    The OPERAND_POSITION() macro

    $OPERAND_POSITION(Expr) returns the position for Expr, if │ │ │ Expr is an operand that is not packed. The first operand is │ │ │ -at position 1.

    Returns 0 otherwise.

    This macro could be used like this in order to share code:

    FAIL(Fail) {
    │ │ │ +at position 1.

    Returns 0 otherwise.

    This macro could be used like this in order to share code:

    FAIL(Fail) {
    │ │ │      //| -no_prefetch
    │ │ │ -    $IF($OPERAND_POSITION($Fail) == 1 && $IP_ADJUSTMENT == 0,
    │ │ │ +    $IF($OPERAND_POSITION($Fail) == 1 && $IP_ADJUSTMENT == 0,
    │ │ │          goto common_jump,
    │ │ │ -        $DO_JUMP($Fail));
    │ │ │ -}
    │ │ │ +        $DO_JUMP($Fail));
    │ │ │ +}
    │ │ │  
    │ │ │ -DO_JUMP(Fail) {
    │ │ │ -    $SET_I_REL($Fail);
    │ │ │ -    Goto(*I));
    │ │ │ -}
    │ │ │ +DO_JUMP(Fail) {
    │ │ │ +    $SET_I_REL($Fail);
    │ │ │ +    Goto(*I));
    │ │ │ +}
    │ │ │  
    │ │ │  // In beam_emu.c:
    │ │ │  common_jump:
    │ │ │ -   I += I[1];
    │ │ │ -   Goto(*I));

    The $REFRESH_GEN_DEST() macro

    When a specific instruction has a d operand, early during execution │ │ │ + I += I[1]; │ │ │ + Goto(*I));

    The $REFRESH_GEN_DEST() macro

    When a specific instruction has a d operand, early during execution │ │ │ of the instruction, a pointer will be initialized to point to the X or │ │ │ Y register in question.

    If there is a garbage collection before the result is stored, │ │ │ the stack will move and if the d operand referred to a Y │ │ │ register, the pointer will no longer be valid. (Y registers are │ │ │ stored on the stack.)

    In those circumstances, $REFRESH_GEN_DEST() must be invoked │ │ │ to set up the pointer again. beam_makeops will notice │ │ │ if there is a call to a function that does a garbage collection and │ │ │ $REFRESH_GEN_DEST() is not called.

    Here is a complete example. The new_map instruction is defined │ │ │ -like this:

    new_map d t I

    It is implemented like this:

    new_map(Dst, Live, N) {
    │ │ │ +like this:

    new_map d t I

    It is implemented like this:

    new_map(Dst, Live, N) {
    │ │ │      Eterm res;
    │ │ │  
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    res = erts_gc_new_map(c_p, reg, $Live, $N, $NEXT_INSTRUCTION);
    │ │ │ +    res = erts_gc_new_map(c_p, reg, $Live, $N, $NEXT_INSTRUCTION);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    $REFRESH_GEN_DEST();
    │ │ │ +    $REFRESH_GEN_DEST();
    │ │ │      $Dst = res;
    │ │ │ -    $NEXT($NEXT_INSTRUCTION+$N);
    │ │ │ -}

    If we have forgotten the $REFRESH_GEN_DEST() there would be a message │ │ │ -similar to this:

    pointer to destination register is invalid after GC -- use $REFRESH_GEN_DEST()
    │ │ │ -... from the body of new_map at beam/map_instrs.tab(30)

    Variable number of operands

    Here follows an example of how to handle an instruction with a variable number │ │ │ + $NEXT($NEXT_INSTRUCTION+$N); │ │ │ +}

    If we have forgotten the $REFRESH_GEN_DEST() there would be a message │ │ │ +similar to this:

    pointer to destination register is invalid after GC -- use $REFRESH_GEN_DEST()
    │ │ │ +... from the body of new_map at beam/map_instrs.tab(30)

    Variable number of operands

    Here follows an example of how to handle an instruction with a variable number │ │ │ of operands for the interpreter. Here is the instruction definition in emu/ops.tab:

    put_tuple2 xy I *

    For the interpreter, the * is optional, because it does not effect code generation │ │ │ in any way. However, it is recommended to include it to make it clear for human readers │ │ │ that there is a variable number of operands.

    Use the $NEXT_INSTRUCTION macro to obtain a pointer to the first of the variable │ │ │ -operands.

    Here is the implementation:

    put_tuple2(Dst, Arity) {
    │ │ │ +operands.

    Here is the implementation:

    put_tuple2(Dst, Arity) {
    │ │ │  Eterm* hp = HTOP;
    │ │ │  Eterm arity = $Arity;
    │ │ │ -Eterm* dst_ptr = &($Dst);
    │ │ │ +Eterm* dst_ptr = &($Dst);
    │ │ │  
    │ │ │  //| -no_next
    │ │ │ -ASSERT(arity != 0);
    │ │ │ -*hp++ = make_arityval(arity);
    │ │ │ +ASSERT(arity != 0);
    │ │ │ +*hp++ = make_arityval(arity);
    │ │ │  
    │ │ │  /*
    │ │ │   * The $NEXT_INSTRUCTION macro points just beyond the fixed
    │ │ │   * operands. In this case it points to the descriptor of
    │ │ │   * the first element to be put into the tuple.
    │ │ │   */
    │ │ │  I = $NEXT_INSTRUCTION;
    │ │ │ -do {
    │ │ │ +do {
    │ │ │      Eterm term = *I++;
    │ │ │ -    switch (loader_tag(term)) {
    │ │ │ +    switch (loader_tag(term)) {
    │ │ │      case LOADER_X_REG:
    │ │ │ -    *hp++ = x(loader_x_reg_index(term));
    │ │ │ +    *hp++ = x(loader_x_reg_index(term));
    │ │ │      break;
    │ │ │      case LOADER_Y_REG:
    │ │ │ -    *hp++ = y(loader_y_reg_index(term));
    │ │ │ +    *hp++ = y(loader_y_reg_index(term));
    │ │ │      break;
    │ │ │      default:
    │ │ │      *hp++ = term;
    │ │ │      break;
    │ │ │ -    }
    │ │ │ -} while (--arity != 0);
    │ │ │ -*dst_ptr = make_tuple(HTOP);
    │ │ │ +    }
    │ │ │ +} while (--arity != 0);
    │ │ │ +*dst_ptr = make_tuple(HTOP);
    │ │ │  HTOP = hp;
    │ │ │ -ASSERT(VALID_INSTR(* (Eterm *)I));
    │ │ │ -Goto(*I);
    │ │ │ -}

    Combined instructions

    Problem: For frequently executed instructions we want to use │ │ │ +ASSERT(VALID_INSTR(* (Eterm *)I)); │ │ │ +Goto(*I); │ │ │ +}

    Combined instructions

    Problem: For frequently executed instructions we want to use │ │ │ "fast" operands types such as x and y, as opposed to s or S. │ │ │ To avoid an explosion in code size, we want to share most of the │ │ │ implementation between the instructions. Here are the specific │ │ │ instructions for i_increment/5:

    i_increment r W t d
    │ │ │  i_increment x W t d
    │ │ │ -i_increment y W t d

    The i_increment instruction is implemented like this:

    i_increment(Source, IncrementVal, Live, Dst) {
    │ │ │ +i_increment y W t d

    The i_increment instruction is implemented like this:

    i_increment(Source, IncrementVal, Live, Dst) {
    │ │ │      Eterm increment_reg_source = $Source;
    │ │ │      Eterm increment_val = $IncrementVal;
    │ │ │      Uint live;
    │ │ │      Eterm result;
    │ │ │  
    │ │ │ -    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ -        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ -        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ -            $Dst = make_small(i);
    │ │ │ -            $NEXT0();
    │ │ │ -        }
    │ │ │ -    }
    │ │ │ +    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ +        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ +        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ +            $Dst = make_small(i);
    │ │ │ +            $NEXT0();
    │ │ │ +        }
    │ │ │ +    }
    │ │ │      live = $Live;
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    reg[live] = increment_reg_val;
    │ │ │ -    reg[live+1] = make_small(increment_val);
    │ │ │ -    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │ +    reg[live] = increment_reg_val;
    │ │ │ +    reg[live+1] = make_small(increment_val);
    │ │ │ +    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    ERTS_HOLE_CHECK(c_p);
    │ │ │ -    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ -        $REFRESH_GEN_DEST();
    │ │ │ +    ERTS_HOLE_CHECK(c_p);
    │ │ │ +    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ +        $REFRESH_GEN_DEST();
    │ │ │          $Dst = result;
    │ │ │ -        $NEXT0();
    │ │ │ -    }
    │ │ │ -    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │ +        $NEXT0();
    │ │ │ +    }
    │ │ │ +    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │      goto find_func_info;
    │ │ │ -}

    There will be three almost identical copies of the code. Given the │ │ │ +}

    There will be three almost identical copies of the code. Given the │ │ │ size of the code, that could be too high cost to pay.

    To avoid the three copies of the code, we could use only one specific │ │ │ instruction:

    i_increment S W t d

    (The same implementation as above will work.)

    That reduces the code size, but is slower because S means that │ │ │ there will be extra code to test whether the operand refers to an X │ │ │ register or a Y register.

    Solution: We can use "combined instructions". Combined │ │ │ instructions are combined from instruction fragments. The │ │ │ bulk of the code can be shared.

    Here we will show how i_increment can be implemented as a combined │ │ │ instruction. We will show each individual fragment first, and then │ │ │ show how to connect them together. First we will need a variable that │ │ │ -we can store the value fetched from the register in:

    increment.head() {
    │ │ │ +we can store the value fetched from the register in:

    increment.head() {
    │ │ │      Eterm increment_reg_val;
    │ │ │ -}

    The name increment is the name of the group that the fragment │ │ │ +}

    The name increment is the name of the group that the fragment │ │ │ belongs to. Note that it does not need to have the same │ │ │ name as the instruction. The group name is followed by . and │ │ │ the name of the fragment. The name head is pre-defined. │ │ │ The code in it will be placed at the beginning of a block, so │ │ │ that all fragments in the group can access it.

    Next we define the fragment that will pick up the value from the │ │ │ -register from the first operand:

    increment.fetch(Src) {
    │ │ │ +register from the first operand:

    increment.fetch(Src) {
    │ │ │      increment_reg_val = $Src;
    │ │ │ -}

    We call this fragment fetch. This fragment will be duplicated three │ │ │ -times, one for each value of the first operand (r, x, and y).

    Next we define the main part of the code that do the actual incrementing.

    increment.execute(IncrementVal, Live, Dst) {
    │ │ │ +}

    We call this fragment fetch. This fragment will be duplicated three │ │ │ +times, one for each value of the first operand (r, x, and y).

    Next we define the main part of the code that do the actual incrementing.

    increment.execute(IncrementVal, Live, Dst) {
    │ │ │      Eterm increment_val = $IncrementVal;
    │ │ │      Uint live;
    │ │ │      Eterm result;
    │ │ │  
    │ │ │ -    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ -        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ -        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ -            $Dst = make_small(i);
    │ │ │ -            $NEXT0();
    │ │ │ -        }
    │ │ │ -    }
    │ │ │ +    if (ERTS_LIKELY(is_small(increment_reg_val))) {
    │ │ │ +        Sint i = signed_val(increment_reg_val) + increment_val;
    │ │ │ +        if (ERTS_LIKELY(IS_SSMALL(i))) {
    │ │ │ +            $Dst = make_small(i);
    │ │ │ +            $NEXT0();
    │ │ │ +        }
    │ │ │ +    }
    │ │ │      live = $Live;
    │ │ │      HEAVY_SWAPOUT;
    │ │ │ -    reg[live] = increment_reg_val;
    │ │ │ -    reg[live+1] = make_small(increment_val);
    │ │ │ -    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │ +    reg[live] = increment_reg_val;
    │ │ │ +    reg[live+1] = make_small(increment_val);
    │ │ │ +    result = erts_gc_mixed_plus(c_p, reg, live);
    │ │ │      HEAVY_SWAPIN;
    │ │ │ -    ERTS_HOLE_CHECK(c_p);
    │ │ │ -    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ -        $REFRESH_GEN_DEST();
    │ │ │ +    ERTS_HOLE_CHECK(c_p);
    │ │ │ +    if (ERTS_LIKELY(is_value(result))) {
    │ │ │ +        $REFRESH_GEN_DEST();
    │ │ │          $Dst = result;
    │ │ │ -        $NEXT0();
    │ │ │ -    }
    │ │ │ -    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │ +        $NEXT0();
    │ │ │ +    }
    │ │ │ +    ASSERT(c_p->freason != BADMATCH || is_value(c_p->fvalue));
    │ │ │      goto find_func_info;
    │ │ │ -}

    We call this fragment execute. It will handle the three remaining │ │ │ +}

    We call this fragment execute. It will handle the three remaining │ │ │ operands (W t d). There will only be one copy of this fragment.

    Now that we have defined the fragments, we need to inform │ │ │ beam_makeops how they should be connected:

    i_increment := increment.fetch.execute;

    To the left of the := is the name of the specific instruction that │ │ │ should be implemented by the fragments, in this case i_increment. │ │ │ To the right of := is the name of the group with the fragments, │ │ │ followed by a .. Then the name of the fragments in the group are │ │ │ listed in the order they should be executed. Note that the head │ │ │ fragment is not listed.

    The line ends in ; (to avoid messing up the indentation in Emacs).

    (Note that in practice the := line is usually placed before the │ │ │ -fragments.)

    The generated code looks like this:

    {
    │ │ │ +fragments.)

    The generated code looks like this:

    {
    │ │ │    Eterm increment_reg_val;
    │ │ │ -  OpCase(i_increment_rWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = r(0);
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_rWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = r(0);
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │ -  OpCase(i_increment_xWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = xb(BeamExtraData(I[0]));
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_xWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = xb(BeamExtraData(I[0]));
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │ -  OpCase(i_increment_yWtd):
    │ │ │ -  {
    │ │ │ -    increment_reg_val = yb(BeamExtraData(I[0]));
    │ │ │ -  }
    │ │ │ +  OpCase(i_increment_yWtd):
    │ │ │ +  {
    │ │ │ +    increment_reg_val = yb(BeamExtraData(I[0]));
    │ │ │ +  }
    │ │ │    goto increment__execute;
    │ │ │  
    │ │ │    increment__execute:
    │ │ │ -  {
    │ │ │ -    // Here follows the code from increment.execute()
    │ │ │ +  {
    │ │ │ +    // Here follows the code from increment.execute()
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}
    Some notes about combined instructions

    The operands that are different must be at │ │ │ +}

    Some notes about combined instructions

    The operands that are different must be at │ │ │ the beginning of the instruction. All operands in the last │ │ │ fragment must have the same operands in all variants of │ │ │ the specific instruction.

    As an example, the following specific instructions cannot be │ │ │ implemented as a combined instruction:

    i_times j? t x x d
    │ │ │  i_times j? t x y d
    │ │ │  i_times j? t s s d

    We would have to change the order of the operands so that the │ │ │ two operands that are different are placed first:

    i_times x x j? t d
    │ │ │  i_times x y j? t d
    │ │ │  i_times s s j? t d

    We can then define:

    i_times := times.fetch.execute;
    │ │ │  
    │ │ │ -times.head {
    │ │ │ +times.head {
    │ │ │      Eterm op1, op2;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -times.fetch(Src1, Src2) {
    │ │ │ +times.fetch(Src1, Src2) {
    │ │ │      op1 = $Src1;
    │ │ │      op2 = $Src2;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -times.execute(Fail, Live, Dst) {
    │ │ │ +times.execute(Fail, Live, Dst) {
    │ │ │      // Multiply op1 and op2.
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}

    Several instructions can share a group. As an example, the following │ │ │ +}

    Several instructions can share a group. As an example, the following │ │ │ instructions have different names, but in the end they all create a │ │ │ binary. The last two operands are common for all of them:

    i_bs_init_fail       xy j? t? x
    │ │ │  i_bs_init_fail_heap s I j? t? x
    │ │ │  i_bs_init                W t? x
    │ │ │  i_bs_init_heap         W I t? x

    The instructions are defined like this (formatted with extra │ │ │ spaces for clarity):

    i_bs_init_fail_heap := bs_init . fail_heap . verify . execute;
    │ │ │  i_bs_init_fail      := bs_init . fail      . verify . execute;
    │ │ │  i_bs_init           := bs_init .           .  plain . execute;
    │ │ │  i_bs_init_heap      := bs_init .               heap . execute;

    Note that the first two instruction have three fragments, while the │ │ │ -other two only have two fragments. Here are the fragments:

    bs_init_bits.head() {
    │ │ │ +other two only have two fragments.  Here are the fragments:

    bs_init_bits.head() {
    │ │ │      Eterm num_bits_term;
    │ │ │      Uint num_bits;
    │ │ │      Uint alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.plain(NumBits) {
    │ │ │ +bs_init_bits.plain(NumBits) {
    │ │ │      num_bits = $NumBits;
    │ │ │      alloc = 0;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.heap(NumBits, Alloc) {
    │ │ │ +bs_init_bits.heap(NumBits, Alloc) {
    │ │ │      num_bits = $NumBits;
    │ │ │      alloc = $Alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.fail(NumBitsTerm) {
    │ │ │ +bs_init_bits.fail(NumBitsTerm) {
    │ │ │      num_bits_term = $NumBitsTerm;
    │ │ │      alloc = 0;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.fail_heap(NumBitsTerm, Alloc) {
    │ │ │ +bs_init_bits.fail_heap(NumBitsTerm, Alloc) {
    │ │ │      num_bits_term = $NumBitsTerm;
    │ │ │      alloc = $Alloc;
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.verify(Fail) {
    │ │ │ +bs_init_bits.verify(Fail) {
    │ │ │      // Verify the num_bits_term, fail using $FAIL
    │ │ │      // if there is a problem.
    │ │ │  .
    │ │ │  .
    │ │ │  .
    │ │ │ -}
    │ │ │ +}
    │ │ │  
    │ │ │ -bs_init_bits.execute(Live, Dst) {
    │ │ │ +bs_init_bits.execute(Live, Dst) {
    │ │ │     // Long complicated code to a create a binary.
    │ │ │     .
    │ │ │     .
    │ │ │     .
    │ │ │ -}

    The full definitions of those instructions can be found in bs_instrs.tab. │ │ │ +}

    The full definitions of those instructions can be found in bs_instrs.tab. │ │ │ The generated code can be found in beam_warm.h.

    │ │ │ │ │ │ │ │ │ │ │ │ Code generation for BeamAsm │ │ │

    │ │ │

    For the BeamAsm runtime system, the implementation of each instruction is defined │ │ │ by emitter functions written in C++ that emit the assembly code for each instruction. │ │ │ There is one emitter function for each family of specific instructions.

    Take for example the move instruction. In beam/asm/ops.tab there is a │ │ │ -single specific instruction for move defined like this:

    move s d

    The implementation is found in beam/asm/instr_common.cpp:

    void BeamModuleAssembler::emit_move(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ -    mov_arg(Dst, Src);
    │ │ │ -}

    The mov_arg() helper function will handle all combinations of source and destination │ │ │ -operands. For example, the instruction {move,{x,1},{y,1}} will be translated like this:

    mov rdi, qword [rbx+8]
    │ │ │ -mov qword [rsp+8], rdi

    while {move,{integer,42},{x,0}} will be translated like this:

    mov qword [rbx], 687

    It is possible to define more than one specific instruction, but there will still be │ │ │ +single specific instruction for move defined like this:

    move s d

    The implementation is found in beam/asm/instr_common.cpp:

    void BeamModuleAssembler::emit_move(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ +    mov_arg(Dst, Src);
    │ │ │ +}

    The mov_arg() helper function will handle all combinations of source and destination │ │ │ +operands. For example, the instruction {move,{x,1},{y,1}} will be translated like this:

    mov rdi, qword [rbx+8]
    │ │ │ +mov qword [rsp+8], rdi

    while {move,{integer,42},{x,0}} will be translated like this:

    mov qword [rbx], 687

    It is possible to define more than one specific instruction, but there will still be │ │ │ only one emitter function. For example:

    fload S l
    │ │ │  fload q l

    By defining fload like this, the source operand must be a X register, Y register, or │ │ │ a literal. If not, the loading will be aborted. If the instruction instead had been │ │ │ defined like this:

    fload s l

    attempting to load an invalid instruction such as {fload,{atom,clearly_bad},{fr,0}} │ │ │ would cause a crash (either at load time or when the instruction was executed).

    Regardless on how many specific instructions there are in the family, │ │ │ -only a single emit_fload() function is allowed:

    void BeamModuleAssembler::emit_fload(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │ +only a single emit_fload() function is allowed:

    void BeamModuleAssembler::emit_fload(const ArgVal &Src, const ArgVal &Dst) {
    │ │ │      .
    │ │ │      .
    │ │ │      .
    │ │ │ -}

    Handling a variable number of operands

    Here follows an example of how an instruction with a variable number │ │ │ +}

    Handling a variable number of operands

    Here follows an example of how an instruction with a variable number │ │ │ of operands could be handled. One such instructions is │ │ │ -select_val/3. Here is an example how it can look like in BEAM code:

    {select_val,{x,0},
    │ │ │ -            {f,1},
    │ │ │ -            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ +select_val/3. Here is an example how it can look like in BEAM code:

    {select_val,{x,0},
    │ │ │ +            {f,1},
    │ │ │ +            {list,[{atom,b},{f,4},{atom,a},{f,5}]}}.

    The loader will convert a {list,[...]} operand to an u operand whose │ │ │ value is the number of elements in the list, followed by each element in │ │ │ the list. The instruction above would be translated to the following │ │ │ -instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    A definition of a specific instruction for that instruction would look │ │ │ +instruction:

    {select_val,{x,0},{f,1},{u,4},{atom,b},{f,4},{atom,a},{f,5}}

    A definition of a specific instruction for that instruction would look │ │ │ like this:

    select_val s f I *

    The * as the last operand will make sure that the variable operands │ │ │ are passed in as a Span of ArgVal (will be std::span in C++20 onwards). │ │ │ -Here is the emitter function:

    void BeamModuleAssembler::emit_select_val(const ArgVal &Src,
    │ │ │ +Here is the emitter function:

    void BeamModuleAssembler::emit_select_val(const ArgVal &Src,
    │ │ │                                            const ArgVal &Fail,
    │ │ │                                            const ArgVal &Size,
    │ │ │ -                                          const Span<ArgVal> &args) {
    │ │ │ -    ASSERT(Size.getValue() == args.size());
    │ │ │ +                                          const Span<ArgVal> &args) {
    │ │ │ +    ASSERT(Size.getValue() == args.size());
    │ │ │         .
    │ │ │         .
    │ │ │         .
    │ │ │ -}
    │ │ │ +
    }
    │ │ │ │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │

    beam_makeops. The transformations │ │ │ used in BeamAsm are much simpler than the interpreter's, as most of the │ │ │ transformations for the interpreter are done only to eliminate the instruction │ │ │ dispatch overhead.

    Then each instruction is encoded using the C++ functions in the │ │ │ -jit/$ARCH/instr_*.cpp files. For example:

    void BeamModuleAssembler::emit_is_nonempty_list(const ArgVal &Fail, const ArgVal &Src) {
    │ │ │ -  a.test(getArgRef(Src), imm(_TAG_PRIMARY_MASK - TAG_PRIMARY_LIST));
    │ │ │ -  a.jne(labels[Fail.getLabel()]);
    │ │ │ -}

    asmjit provides a fairly straightforward │ │ │ +jit/$ARCH/instr_*.cpp files. For example:

    void BeamModuleAssembler::emit_is_nonempty_list(const ArgVal &Fail, const ArgVal &Src) {
    │ │ │ +  a.test(getArgRef(Src), imm(_TAG_PRIMARY_MASK - TAG_PRIMARY_LIST));
    │ │ │ +  a.jne(labels[Fail.getLabel()]);
    │ │ │ +}

    asmjit provides a fairly straightforward │ │ │ mapping from a C++ function call to the x86 assembly instruction. The above │ │ │ instruction tests if the value in the Src register is a non-empty list and if │ │ │ it is not then it jumps to the fail label.

    For comparison, the interpreter has 8 combinations and specializations of │ │ │ this implementation to minimize the instruction dispatch overhead for │ │ │ common patterns.

    The original register allocation done by the Erlang compiler is used to manage the │ │ │ liveness of values and the physical registers are statically allocated to keep │ │ │ the necessary process state. At the moment this is the static register │ │ │ -allocation on x86-64:

    rbx: ErtsSchedulerRegisters struct (contains x/float registers and some metadata)
    │ │ │ +allocation on x86-64:

    rbx: ErtsSchedulerRegisters struct (contains x/float registers and some metadata)
    │ │ │  rbp: Current frame pointer when `perf` support is enabled, otherwise this
    │ │ │       is an optional save slot for the Erlang stack pointer when executing C
    │ │ │       code.
    │ │ │  r12: Active code index
    │ │ │  r13: Current running process
    │ │ │  r14: Remaining reductions
    │ │ │  r15: Erlang heap pointer

    Note that all of these are callee save registers under the System V and Windows │ │ │ @@ -183,21 +183,21 @@ │ │ │ shared and only the arguments to the instructions vary. Using as little memory as │ │ │ possible has many advantages; less memory is used, loading time decreases, │ │ │ higher cache hit-rate.

    In BeamAsm we need to achieve something similar since the load-time of a module │ │ │ scales almost linearly with the amount of memory it uses. Early BeamAsm prototypes │ │ │ used about double the amount of memory for code as the interpreter, while current │ │ │ versions use about 10% more. How was this achieved?

    In BeamAsm we heavily use shared code fragments to try to emit as much code as │ │ │ possible as global shared fragments instead of duplicating the code unnecessarily. │ │ │ -For instance, the return instruction looks something like this:

    Label yield = a.newLabel();
    │ │ │ +For instance, the return instruction looks something like this:

    Label yield = a.newLabel();
    │ │ │  
    │ │ │  /* Decrement reduction counter */
    │ │ │ -a.dec(FCALLS);
    │ │ │ +a.dec(FCALLS);
    │ │ │  /* If FCALLS < 0, jump to the yield-on-return fragment */
    │ │ │ -a.jl(resolve_fragment(ga->get_dispatch_return()));
    │ │ │ -a.ret();

    The code above is not exactly what is emitted, but close enough. The thing to note │ │ │ +a.jl(resolve_fragment(ga->get_dispatch_return())); │ │ │ +a.ret();

    The code above is not exactly what is emitted, but close enough. The thing to note │ │ │ is that the code for doing the context switch is never emitted. Instead, we jump │ │ │ to a global fragment that all return instructions share. This greatly reduces │ │ │ the amount of code that has to be emitted for each module.

    │ │ │ │ │ │ │ │ │ │ │ │ Running Erlang code │ │ │ @@ -239,43 +239,43 @@ │ │ │ │ │ │ │ │ │ │ │ │ Running C code │ │ │

    │ │ │

    As Erlang stacks can be very small, we have to switch over to a different stack │ │ │ when we need to execute C code (which may expect a much larger stack). This is │ │ │ -done through emit_enter_runtime and emit_leave_runtime, for example:

    mov_arg(ARG4, NumFree);
    │ │ │ +done through emit_enter_runtime and emit_leave_runtime, for example:

    mov_arg(ARG4, NumFree);
    │ │ │  
    │ │ │  /* Move to the C stack and swap out our current reductions, stack-, and
    │ │ │   * heap pointer to the process structure. */
    │ │ │ -emit_enter_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │ +emit_enter_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │  
    │ │ │ -a.mov(ARG1, c_p);
    │ │ │ -load_x_reg_array(ARG2);
    │ │ │ -make_move_patch(ARG3, lambdas[Fun.getValue()].patches);
    │ │ │ +a.mov(ARG1, c_p);
    │ │ │ +load_x_reg_array(ARG2);
    │ │ │ +make_move_patch(ARG3, lambdas[Fun.getValue()].patches);
    │ │ │  
    │ │ │  /* Call `new_fun`, asserting that we're on the C stack. */
    │ │ │ -runtime_call<4>(new_fun);
    │ │ │ +runtime_call<4>(new_fun);
    │ │ │  
    │ │ │  /* Move back to the C stack, and read the updated values from the process
    │ │ │   * structure */
    │ │ │ -emit_leave_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │ +emit_leave_runtime<Update::eReductions | Update::eStack | Update::eHeap>();
    │ │ │  
    │ │ │ -a.mov(getXRef(0), RET);

    All combinations of the Update constants are legal, but the ones given to │ │ │ +a.mov(getXRef(0), RET);

    All combinations of the Update constants are legal, but the ones given to │ │ │ emit_leave_runtime must be the same as those given to emit_enter_runtime.

    │ │ │ │ │ │ │ │ │ │ │ │ Tracing and NIF Loading │ │ │

    │ │ │

    To make tracing and NIF loading work there needs to be a way to intercept │ │ │ any function call. In the interpreter, this is done by rewriting the loaded │ │ │ BEAM code, but this is more complicated in BeamAsm as we want to have a fast │ │ │ and compact way to do this. This is solved by emitting the code below at the │ │ │ -start of each function (x86 variant below):

      0x0: short jmp 6 (address 0x8)
    │ │ │ +start of each function (x86 variant below):

      0x0: short jmp 6 (address 0x8)
    │ │ │    0x2: nop
    │ │ │    0x3: relative near call to shared breakpoint fragment
    │ │ │    0x8: actual code for function

    When code starts to execute it will simply see the short jmp 6 instruction │ │ │ which skips the prologue and starts to execute the code directly.

    When we want to enable a certain breakpoint we set the jmp target to be 1, │ │ │ which means it will land on the call to the shared breakpoint fragment. This │ │ │ fragment checks the current breakpoint_flag stored in the ErtsCodeInfo of │ │ │ this function, and then calls erts_call_nif_early and │ │ │ @@ -289,31 +289,31 @@ │ │ │ Updating code │ │ │ │ │ │

    Because many environments enforce W^X it's not always possible to write │ │ │ directly to the code pages. Because of this we map code twice: once with an │ │ │ executable page and once with a writable page. Since they're backed by the │ │ │ same memory, writes to the writable page appear magically in the executable │ │ │ one.

    The erts_writable_code_ptr function can be used to get writable pointers │ │ │ -given a module instance, provided that it has been unsealed first:

    for (i = 0; i < n; i++) {
    │ │ │ +given a module instance, provided that it has been unsealed first:

    for (i = 0; i < n; i++) {
    │ │ │      const ErtsCodeInfo* ci_exec;
    │ │ │      ErtsCodeInfo* ci_rw;
    │ │ │      void *w_ptr;
    │ │ │  
    │ │ │ -    erts_unseal_module(&modp->curr);
    │ │ │ +    erts_unseal_module(&modp->curr);
    │ │ │  
    │ │ │ -    ci_exec = code_hdr->functions[i];
    │ │ │ -    w_ptr = erts_writable_code_ptr(&modp->curr, ci_exec);
    │ │ │ -    ci_rw = (ErtsCodeInfo*)w_ptr;
    │ │ │ +    ci_exec = code_hdr->functions[i];
    │ │ │ +    w_ptr = erts_writable_code_ptr(&modp->curr, ci_exec);
    │ │ │ +    ci_rw = (ErtsCodeInfo*)w_ptr;
    │ │ │  
    │ │ │ -    uninstall_breakpoint(ci_rw, ci_exec);
    │ │ │ -    consolidate_bp_data(modp, ci_rw, 1);
    │ │ │ -    ASSERT(ci_rw->gen_bp == NULL);
    │ │ │ +    uninstall_breakpoint(ci_rw, ci_exec);
    │ │ │ +    consolidate_bp_data(modp, ci_rw, 1);
    │ │ │ +    ASSERT(ci_rw->gen_bp == NULL);
    │ │ │  
    │ │ │ -    erts_seal_module(&modp->curr);
    │ │ │ -}

    Without the module instance there's no reliable way to figure out the writable │ │ │ + erts_seal_module(&modp->curr); │ │ │ +}

    Without the module instance there's no reliable way to figure out the writable │ │ │ address of a code page, and we rely on address space layout randomization │ │ │ (ASLR) to make it difficult to guess. On some platforms, security is further │ │ │ enhanced by protecting the writable area from writes until the module has been │ │ │ unsealed by erts_unseal_module.

    │ │ │ │ │ │ │ │ │ │ │ │ @@ -393,15 +393,15 @@ │ │ │ perf script > out.perf │ │ │ ## run stackcollapse │ │ │ stackcollapse-perf.pl out.perf > out.folded │ │ │ ## Create the svg │ │ │ flamegraph.pl out.folded > out.svg

    We get a graph that would look something like this:

    Linux Perf FlameGraph: dialyzer PLT build

    You can view a larger version here. It contains │ │ │ the same information, but it is easier to share with others as it does │ │ │ not need the symbols in the executable.

    Using the same data we can also produce a graph where the scheduler profile data │ │ │ -has been merged by using sed:

    ## Strip [0-9]+_ and/or _[0-9]+ from all scheduler names
    │ │ │ +has been merged by using sed:

    ## Strip [0-9]+_ and/or _[0-9]+ from all scheduler names
    │ │ │  ## scheduler names changed in OTP26, hence two expressions
    │ │ │  sed -e 's/^[0-9]\+_//' -e 's/^erts_\([^_]\+\)_[0-9]\+/erts_\1/' out.folded > out.folded_sched
    │ │ │  ## Create the svg
    │ │ │  flamegraph.pl out.folded_sched > out_sched.svg

    Linux Perf FlameGraph: dialyzer PLT build

    You can view a larger version here. │ │ │ There are many different transformations that you can do to make the graph show │ │ │ you what you want.

    │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/codeloading.html │ │ │ @@ -163,16 +163,16 @@ │ │ │ only be done by one loader process at a time. A second loader process │ │ │ trying to enter finishing phase will be suspended until the first │ │ │ loader is done. This will only block the process, the scheduler is │ │ │ free to schedule other work while the second loader is waiting. (See │ │ │ erts_try_seize_code_load_permission and │ │ │ erts_release_code_load_permission).

    The ability to prepare several modules in parallel is not currently │ │ │ used as almost all code loading is serialized by the code_server │ │ │ -process. The BIF interface is however prepared for this.

      erlang:prepare_loading(Module, Code) -> LoaderState
    │ │ │ -  erlang:finish_loading([LoaderState])

    The idea is that prepare_loading could be called in parallel for │ │ │ +process. The BIF interface is however prepared for this.

      erlang:prepare_loading(Module, Code) -> LoaderState
    │ │ │ +  erlang:finish_loading([LoaderState])

    The idea is that prepare_loading could be called in parallel for │ │ │ different modules and returns a "magic binary" containing the internal │ │ │ state of each prepared module. Function finish_loading could take a │ │ │ list of such states and do the finishing of all of them in one go.

    Currently we use the legacy BIF erlang:load_module which is now │ │ │ implemented in Erlang by calling the above two functions in │ │ │ sequence. Function finish_loading is limited to only accepts a list │ │ │ with one module state as we do not yet use the multi module loading │ │ │ feature.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/crash_dump.html │ │ │ @@ -401,21 +401,21 @@ │ │ │ put/2 and get/1 thing) is non-empty.

    The raw memory information can be decoded by the Crashdump Viewer tool. You can │ │ │ then see the stack dump, the message queue (if any), and the dictionary (if │ │ │ any).

    The stack dump is a dump of the Erlang process stack. Most of the live data │ │ │ (that is, variables currently in use) are placed on the stack; thus this can be │ │ │ interesting. One has to "guess" what is what, but as the information is │ │ │ symbolic, thorough reading of this information can be useful. As an example, we │ │ │ can find the state variable of the Erlang primitive loader online (5) and │ │ │ -(6) in the following example:

    (1)  3cac44   Return addr 0x13BF58 (<terminate process normally>)
    │ │ │ -(2)  y(0)     ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin",
    │ │ │ -(3)            "/view/siri_r10_dev/clearcase/otp/erts/lib/stdlib/ebin"]
    │ │ │ -(4)  y(1)     <0.1.0>
    │ │ │ -(5)  y(2)     {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.9000327>,
    │ │ │ -(6)            #Fun<erl_prim_loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl_prim_loader.9.10708760>}
    │ │ │ -(7)  y(3)     infinity

    When interpreting the data for a process, it is helpful to know that anonymous │ │ │ +(6) in the following example:

    (1)  3cac44   Return addr 0x13BF58 (<terminate process normally>)
    │ │ │ +(2)  y(0)     ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin",
    │ │ │ +(3)            "/view/siri_r10_dev/clearcase/otp/erts/lib/stdlib/ebin"]
    │ │ │ +(4)  y(1)     <0.1.0>
    │ │ │ +(5)  y(2)     {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.9000327>,
    │ │ │ +(6)            #Fun<erl_prim_loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl_prim_loader.9.10708760>}
    │ │ │ +(7)  y(3)     infinity

    When interpreting the data for a process, it is helpful to know that anonymous │ │ │ function objects (funs) are given the following:

    • A name constructed from the name of the function in which they are created
    • A number (starting with 0) indicating the number of that fun within that │ │ │ function

    │ │ │ │ │ │ │ │ │ │ │ │ Atoms │ │ │

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/driver.html │ │ │ @@ -364,41 +364,41 @@ │ │ │

    Before a driver can be called from Erlang, it must be loaded and opened. Loading │ │ │ is done using the erl_ddll module (the erl_ddll driver that loads dynamic │ │ │ driver is actually a driver itself). If loading is successful, the port can be │ │ │ opened with open_port/2. The port name must match the name of │ │ │ the shared library and the name in the driver entry structure.

    When the port has been opened, the driver can be called. In the pg_sync │ │ │ example, we do not have any data from the port, only the return value from the │ │ │ port_control/3.

    The following code is the Erlang part of the synchronous postgres driver, │ │ │ -pg_sync.erl:

    -module(pg_sync).
    │ │ │ +pg_sync.erl:

    -module(pg_sync).
    │ │ │  
    │ │ │ --define(DRV_CONNECT, 1).
    │ │ │ --define(DRV_DISCONNECT, 2).
    │ │ │ --define(DRV_SELECT, 3).
    │ │ │ +-define(DRV_CONNECT, 1).
    │ │ │ +-define(DRV_DISCONNECT, 2).
    │ │ │ +-define(DRV_SELECT, 3).
    │ │ │  
    │ │ │ --export([connect/1, disconnect/1, select/2]).
    │ │ │ +-export([connect/1, disconnect/1, select/2]).
    │ │ │  
    │ │ │ -connect(ConnectStr) ->
    │ │ │ -    case erl_ddll:load_driver(".", "pg_sync") of
    │ │ │ +connect(ConnectStr) ->
    │ │ │ +    case erl_ddll:load_driver(".", "pg_sync") of
    │ │ │          ok -> ok;
    │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ -        E -> exit({error, E})
    │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ +        E -> exit({error, E})
    │ │ │      end,
    │ │ │ -    Port = open_port({spawn, ?MODULE}, []),
    │ │ │ -    case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
    │ │ │ -        ok -> {ok, Port};
    │ │ │ +    Port = open_port({spawn, ?MODULE}, []),
    │ │ │ +    case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
    │ │ │ +        ok -> {ok, Port};
    │ │ │          Error -> Error
    │ │ │      end.
    │ │ │  
    │ │ │ -disconnect(Port) ->
    │ │ │ -    R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
    │ │ │ -    port_close(Port),
    │ │ │ +disconnect(Port) ->
    │ │ │ +    R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
    │ │ │ +    port_close(Port),
    │ │ │      R.
    │ │ │  
    │ │ │ -select(Port, Query) ->
    │ │ │ -    binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

    The API is simple:

    • connect/1 loads the driver, opens it, and logs on to the database, returning │ │ │ +select(Port, Query) -> │ │ │ + binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

    The API is simple:

    • connect/1 loads the driver, opens it, and logs on to the database, returning │ │ │ the Erlang port if successful.
    • select/2 sends a query to the driver and returns the result.
    • disconnect/1 closes the database connection and the driver. (However, it │ │ │ does not unload it.)

    The connection string is to be a connection string for postgres.

    The driver is loaded with erl_ddll:load_driver/2. If this is successful, or if │ │ │ it is already loaded, it is opened. This will call the start function in the │ │ │ driver.

    We use the port_control/3 function for all calls into the │ │ │ driver. The result from the driver is returned immediately and converted to │ │ │ terms by calling binary_to_term/1. (We trust that the │ │ │ terms returned from the driver are well-formed, otherwise the binary_to_term/1 │ │ │ @@ -536,51 +536,51 @@ │ │ │ successful, or error if it is not. If the connection is not yet established, we │ │ │ simply return; ready_io is called again.

    If we have a result from a connect, indicated by having data in the x buffer, │ │ │ we no longer need to select on output (ready_output), so we remove this by │ │ │ calling driver_select.

    If we are not connecting, we wait for results from a PQsendQuery, so we get │ │ │ the result and return it. The encoding is done with the same functions as in the │ │ │ earlier example.

    Error handling is to be added here, for example, checking that the socket is │ │ │ still open, but this is only a simple example.

    The Erlang part of the asynchronous driver consists of the sample file │ │ │ -pg_async.erl.

    -module(pg_async).
    │ │ │ +pg_async.erl.

    -module(pg_async).
    │ │ │  
    │ │ │ --define(DRV_CONNECT, $C).
    │ │ │ --define(DRV_DISCONNECT, $D).
    │ │ │ --define(DRV_SELECT, $S).
    │ │ │ +-define(DRV_CONNECT, $C).
    │ │ │ +-define(DRV_DISCONNECT, $D).
    │ │ │ +-define(DRV_SELECT, $S).
    │ │ │  
    │ │ │ --export([connect/1, disconnect/1, select/2]).
    │ │ │ +-export([connect/1, disconnect/1, select/2]).
    │ │ │  
    │ │ │ -connect(ConnectStr) ->
    │ │ │ -    case erl_ddll:load_driver(".", "pg_async") of
    │ │ │ +connect(ConnectStr) ->
    │ │ │ +    case erl_ddll:load_driver(".", "pg_async") of
    │ │ │          ok -> ok;
    │ │ │ -        {error, already_loaded} -> ok;
    │ │ │ -        _ -> exit({error, could_not_load_driver})
    │ │ │ +        {error, already_loaded} -> ok;
    │ │ │ +        _ -> exit({error, could_not_load_driver})
    │ │ │      end,
    │ │ │ -    Port = open_port({spawn, ?MODULE}, [binary]),
    │ │ │ -    port_control(Port, ?DRV_CONNECT, ConnectStr),
    │ │ │ -    case return_port_data(Port) of
    │ │ │ +    Port = open_port({spawn, ?MODULE}, [binary]),
    │ │ │ +    port_control(Port, ?DRV_CONNECT, ConnectStr),
    │ │ │ +    case return_port_data(Port) of
    │ │ │          ok ->
    │ │ │ -            {ok, Port};
    │ │ │ +            {ok, Port};
    │ │ │          Error ->
    │ │ │              Error
    │ │ │      end.
    │ │ │  
    │ │ │ -disconnect(Port) ->
    │ │ │ -    port_control(Port, ?DRV_DISCONNECT, ""),
    │ │ │ -    R = return_port_data(Port),
    │ │ │ -    port_close(Port),
    │ │ │ +disconnect(Port) ->
    │ │ │ +    port_control(Port, ?DRV_DISCONNECT, ""),
    │ │ │ +    R = return_port_data(Port),
    │ │ │ +    port_close(Port),
    │ │ │      R.
    │ │ │  
    │ │ │ -select(Port, Query) ->
    │ │ │ -    port_control(Port, ?DRV_SELECT, Query),
    │ │ │ -    return_port_data(Port).
    │ │ │ +select(Port, Query) ->
    │ │ │ +    port_control(Port, ?DRV_SELECT, Query),
    │ │ │ +    return_port_data(Port).
    │ │ │  
    │ │ │ -return_port_data(Port) ->
    │ │ │ +return_port_data(Port) ->
    │ │ │      receive
    │ │ │ -        {Port, {data, Data}} ->
    │ │ │ -            binary_to_term(Data)
    │ │ │ +        {Port, {data, Data}} ->
    │ │ │ +            binary_to_term(Data)
    │ │ │      end.

    The Erlang code is slightly different, as we do not return the result │ │ │ synchronously from port_control/3, instead we get it from driver_output as │ │ │ data in the message queue. The function return_port_data above receives data │ │ │ from the port. As the data is in binary format, we use │ │ │ binary_to_term/1 to convert it to an Erlang term. Notice │ │ │ that the driver is opened in binary mode (open_port/2 is │ │ │ called with option [binary]). This means that data sent from the driver to the │ │ │ @@ -677,59 +677,59 @@ │ │ │ *rp++ = ERL_DRV_LIST; │ │ │ *rp++ = n+1; │ │ │ driver_output_term(port, result, result_n); │ │ │ delete[] result; │ │ │ delete d; │ │ │ }

    This driver is called like the others from Erlang. However, as we use │ │ │ driver_output_term, there is no need to call binary_to_term/1. The Erlang code │ │ │ -is in the sample file next_perm.erl.

    The input is changed into a list of integers and sent to the driver.

    -module(next_perm).
    │ │ │ +is in the sample file next_perm.erl.

    The input is changed into a list of integers and sent to the driver.

    -module(next_perm).
    │ │ │  
    │ │ │ --export([next_perm/1, prev_perm/1, load/0, all_perm/1]).
    │ │ │ +-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).
    │ │ │  
    │ │ │ -load() ->
    │ │ │ -    case whereis(next_perm) of
    │ │ │ +load() ->
    │ │ │ +    case whereis(next_perm) of
    │ │ │          undefined ->
    │ │ │ -            case erl_ddll:load_driver(".", "next_perm") of
    │ │ │ +            case erl_ddll:load_driver(".", "next_perm") of
    │ │ │                  ok -> ok;
    │ │ │ -                {error, already_loaded} -> ok;
    │ │ │ -                E -> exit(E)
    │ │ │ +                {error, already_loaded} -> ok;
    │ │ │ +                E -> exit(E)
    │ │ │              end,
    │ │ │ -            Port = open_port({spawn, "next_perm"}, []),
    │ │ │ -            register(next_perm, Port);
    │ │ │ +            Port = open_port({spawn, "next_perm"}, []),
    │ │ │ +            register(next_perm, Port);
    │ │ │          _ ->
    │ │ │              ok
    │ │ │      end.
    │ │ │  
    │ │ │ -list_to_integer_binaries(L) ->
    │ │ │ -    [<<I:32/integer-native>> || I <- L].
    │ │ │ +list_to_integer_binaries(L) ->
    │ │ │ +    [<<I:32/integer-native>> || I <- L].
    │ │ │  
    │ │ │ -next_perm(L) ->
    │ │ │ -    next_perm(L, 1).
    │ │ │ +next_perm(L) ->
    │ │ │ +    next_perm(L, 1).
    │ │ │  
    │ │ │ -prev_perm(L) ->
    │ │ │ -    next_perm(L, 2).
    │ │ │ +prev_perm(L) ->
    │ │ │ +    next_perm(L, 2).
    │ │ │  
    │ │ │ -next_perm(L, Nxt) ->
    │ │ │ -    load(),
    │ │ │ -    B = list_to_integer_binaries(L),
    │ │ │ -    port_control(next_perm, Nxt, B),
    │ │ │ +next_perm(L, Nxt) ->
    │ │ │ +    load(),
    │ │ │ +    B = list_to_integer_binaries(L),
    │ │ │ +    port_control(next_perm, Nxt, B),
    │ │ │      receive
    │ │ │          Result ->
    │ │ │              Result
    │ │ │      end.
    │ │ │  
    │ │ │ -all_perm(L) ->
    │ │ │ -    New = prev_perm(L),
    │ │ │ -    all_perm(New, L, [New]).
    │ │ │ +all_perm(L) ->
    │ │ │ +    New = prev_perm(L),
    │ │ │ +    all_perm(New, L, [New]).
    │ │ │  
    │ │ │ -all_perm(L, L, Acc) ->
    │ │ │ +all_perm(L, L, Acc) ->
    │ │ │      Acc;
    │ │ │ -all_perm(L, Orig, Acc) ->
    │ │ │ -    New = prev_perm(L),
    │ │ │ -    all_perm(New, Orig, [New | Acc]).
    │ │ │ +
    all_perm(L, Orig, Acc) -> │ │ │ + New = prev_perm(L), │ │ │ + all_perm(New, Orig, [New | Acc]).
    │ │ │

    │ │ │ │ │ │
    │ │ │
    │ │ │ │ │ │ init.

    The init process itself interprets some of these flags, the init flags. It │ │ │ also stores any remaining flags, the user flags. The latter can be retrieved │ │ │ by calling init:get_argument/1.

    A small number of "-" flags exist, which now actually are emulator flags, see │ │ │ the description below.

  • Plain arguments are not interpreted in any way. They are also stored by the │ │ │ init process and can be retrieved by calling init:get_plain_arguments/0. │ │ │ Plain arguments can occur before the first flag, or after a -- flag. Also, │ │ │ the -extra flag causes everything that follows to become plain arguments.

  • Examples:

    % erl +W w -sname arnie +R 9 -s my_init -extra +bertie
    │ │ │ -(arnie@host)1> init:get_argument(sname).
    │ │ │ -{ok,[["arnie"]]}
    │ │ │ -(arnie@host)2> init:get_plain_arguments().
    │ │ │ -["+bertie"]

    Here +W w and +R 9 are emulator flags. -s my_init is an init flag, │ │ │ +(arnie@host)1> init:get_argument(sname). │ │ │ +{ok,[["arnie"]]} │ │ │ +(arnie@host)2> init:get_plain_arguments(). │ │ │ +["+bertie"]

    Here +W w and +R 9 are emulator flags. -s my_init is an init flag, │ │ │ interpreted by init. -sname arnie is a user flag, stored by init. It is │ │ │ read by Kernel and causes the Erlang runtime system to become distributed. │ │ │ Finally, everything after -extra (that is, +bertie) is considered as plain │ │ │ arguments.

    % erl -myflag 1
    │ │ │ -1> init:get_argument(myflag).
    │ │ │ -{ok,[["1"]]}
    │ │ │ -2> init:get_plain_arguments().
    │ │ │ -[]

    Here the user flag -myflag 1 is passed to and stored by the init process. It │ │ │ +1> init:get_argument(myflag). │ │ │ +{ok,[["1"]]} │ │ │ +2> init:get_plain_arguments(). │ │ │ +[]

    Here the user flag -myflag 1 is passed to and stored by the init process. It │ │ │ is a user-defined flag, presumably used by some user-defined application.

    │ │ │ │ │ │ │ │ │ │ │ │ Flags │ │ │

    │ │ │

    In the following list, init flags are marked "(init flag)". Unless otherwise │ │ │ @@ -700,15 +700,15 @@ │ │ │ processes) into a smaller set of schedulers when schedulers frequently run │ │ │ out of work. When disabled, the frequency with which schedulers run out of │ │ │ work is not taken into account by the load balancing logic.

    +scl false is similar to +sub true, but +sub true │ │ │ also balances scheduler utilization between schedulers.

  • +sct CpuTopology - Sets a user-defined CPU topology. │ │ │ The user-defined CPU topology overrides │ │ │ any automatically detected CPU topology. The CPU topology is used when │ │ │ binding schedulers to logical processors. This option must be before │ │ │ -+sbt on the command-line.

    <Id> = integer(); when 0 =< <Id> =< 65535
    │ │ │ ++sbt on the command-line.

    <Id> = integer(); when 0 =< <Id> =< 65535
    │ │ │  <IdRange> = <Id>-<Id>
    │ │ │  <IdOrIdRange> = <Id> | <IdRange>
    │ │ │  <IdList> = <IdOrIdRange>,<IdOrIdRange> | <IdOrIdRange>
    │ │ │  <LogicalIds> = L<IdList>
    │ │ │  <ThreadIds> = T<IdList> | t<IdList>
    │ │ │  <CoreIds> = C<IdList> | c<IdList>
    │ │ │  <ProcessorIds> = P<IdList> | p<IdList>
    │ │ │ @@ -733,30 +733,30 @@
    │ │ │  node.
  • <LogicalIds><ThreadIds><CoreIds><NodeIds><ProcessorIds>, that is, thread │ │ │ is part of a core that is part of a NUMA node, which is part of a │ │ │ processor.
  • A CPU topology can consist of both processor external, and processor │ │ │ internal NUMA nodes as long as each logical processor belongs to only one │ │ │ NUMA node. If <ProcessorIds> is omitted, its default position is before │ │ │ <NodeIds>. That is, the default is processor external NUMA nodes.

    If a list of identifiers is used in an <IdDefs>:

    • <LogicalIds> must be a list of identifiers.
    • At least one other identifier type besides <LogicalIds> must also have a │ │ │ list of identifiers.
    • All lists of identifiers must produce the same number of identifiers.

    A simple example. A single quad core processor can be described as follows:

    % erl +sct L0-3c0-3
    │ │ │ -1> erlang:system_info(cpu_topology).
    │ │ │ -[{processor,[{core,{logical,0}},
    │ │ │ -             {core,{logical,1}},
    │ │ │ -             {core,{logical,2}},
    │ │ │ -             {core,{logical,3}}]}]

    A more complicated example with two quad core processors, each processor in │ │ │ +1> erlang:system_info(cpu_topology). │ │ │ +[{processor,[{core,{logical,0}}, │ │ │ + {core,{logical,1}}, │ │ │ + {core,{logical,2}}, │ │ │ + {core,{logical,3}}]}]

    A more complicated example with two quad core processors, each processor in │ │ │ its own NUMA node. The ordering of logical processors is a bit weird. This │ │ │ to give a better example of identifier lists:

    % erl +sct L0-1,3-2c0-3p0N0:L7,4,6-5c0-3p1N1
    │ │ │ -1> erlang:system_info(cpu_topology).
    │ │ │ -[{node,[{processor,[{core,{logical,0}},
    │ │ │ -                    {core,{logical,1}},
    │ │ │ -                    {core,{logical,3}},
    │ │ │ -                    {core,{logical,2}}]}]},
    │ │ │ - {node,[{processor,[{core,{logical,7}},
    │ │ │ -                    {core,{logical,4}},
    │ │ │ -                    {core,{logical,6}},
    │ │ │ -                    {core,{logical,5}}]}]}]

    As long as real identifiers are correct, it is OK to pass a CPU topology │ │ │ +1> erlang:system_info(cpu_topology). │ │ │ +[{node,[{processor,[{core,{logical,0}}, │ │ │ + {core,{logical,1}}, │ │ │ + {core,{logical,3}}, │ │ │ + {core,{logical,2}}]}]}, │ │ │ + {node,[{processor,[{core,{logical,7}}, │ │ │ + {core,{logical,4}}, │ │ │ + {core,{logical,6}}, │ │ │ + {core,{logical,5}}]}]}]

    As long as real identifiers are correct, it is OK to pass a CPU topology │ │ │ that is not a correct description of the CPU topology. When used with care │ │ │ this can be very useful. This to trick the emulator to bind its schedulers │ │ │ as you want. For example, if you want to run multiple Erlang runtime systems │ │ │ on the same machine, you want to reduce the number of schedulers used and │ │ │ manipulate the CPU topology so that they bind to different logical CPUs. An │ │ │ example, with two Erlang runtime systems on a quad core machine:

    % erl +sct L0-3c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname one
    │ │ │  % erl +sct L3-0c0-3 +sbt db +S3:2 -detached -noinput -noshell -sname two

    In this example, each runtime system have two schedulers each online, and │ │ │ @@ -923,18 +923,18 @@ │ │ │ │ │ │

    The standard Erlang/OTP system can be reconfigured to change the default │ │ │ behavior on startup.

    • The .erlang startup file - When Erlang/OTP is started, the system │ │ │ searches for a file named .erlang in the │ │ │ user's home directory and then │ │ │ filename:basedir(user_config, "erlang").

      If an .erlang file is found, it is assumed to contain valid Erlang │ │ │ expressions. These expressions are evaluated as if they were input to the │ │ │ -shell.

      A typical .erlang file contains a set of search paths, for example:

      io:format("executing user profile in $HOME/.erlang\n",[]).
      │ │ │ -code:add_path("/home/calvin/test/ebin").
      │ │ │ -code:add_path("/home/hobbes/bigappl-1.2/ebin").
      │ │ │ -io:format(".erlang rc finished\n",[]).
    • user_default and shell_default - Functions in the shell that are not │ │ │ +shell.

      A typical .erlang file contains a set of search paths, for example:

      io:format("executing user profile in $HOME/.erlang\n",[]).
      │ │ │ +code:add_path("/home/calvin/test/ebin").
      │ │ │ +code:add_path("/home/hobbes/bigappl-1.2/ebin").
      │ │ │ +io:format(".erlang rc finished\n",[]).
    • user_default and shell_default - Functions in the shell that are not │ │ │ prefixed by a module name are assumed to be functional objects (funs), │ │ │ built-in functions (BIFs), or belong to the module user_default or │ │ │ shell_default.

      To include private shell commands, define them in a module user_default and │ │ │ add the following argument as the first line in the .erlang file:

      code:load_abs("..../user_default").
    • erl - If the contents of .erlang are changed and a private version of │ │ │ user_default is defined, the Erlang/OTP environment can be customized. More │ │ │ powerful changes can be made by supplying command-line arguments in the │ │ │ startup script erl. For more information, see init.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/erl_dist_protocol.html │ │ │ @@ -252,32 +252,32 @@ │ │ │ --- │ │ │ sequenceDiagram │ │ │ participant client as Client (or Node) │ │ │ participant EPMD │ │ │ │ │ │ client ->> EPMD: NAMES_REQ │ │ │ EPMD -->> client: NAMES_RESP

    1
    110

    Table: NAMES_REQ (110)

    The response for a NAMES_REQ is as follows:

    4
    EPMDPortNoNodeInfo*

    Table: NAMES_RESP

    NodeInfo is a string written for each active node. When all NodeInfo has │ │ │ -been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("name ~ts at port ~p~n", [NodeName, Port]).

    │ │ │ +been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("name ~ts at port ~p~n", [NodeName, Port]).

    │ │ │ │ │ │ │ │ │ │ │ │ Dump All Data from EPMD │ │ │

    │ │ │

    This request is not really used, it is to be regarded as a debug feature.

    ---
    │ │ │  title: Dump All Data from EPMD
    │ │ │  ---
    │ │ │  sequenceDiagram
    │ │ │      participant client as Client (or Node)
    │ │ │      participant EPMD
    │ │ │      
    │ │ │      client ->> EPMD: DUMP_REQ
    │ │ │      EPMD -->> client: DUMP_RESP
    1
    100

    Table: DUMP_REQ

    The response for a DUMP_REQ is as follows:

    4
    EPMDPortNoNodeInfo*

    Table: DUMP_RESP

    NodeInfo is a string written for each node kept in the EPMD. When all │ │ │ -NodeInfo has been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("active name     ~ts at port ~p, fd = ~p~n",
    │ │ │ -          [NodeName, Port, Fd]).

    or

    io:format("old/unused name ~ts at port ~p, fd = ~p ~n",
    │ │ │ -          [NodeName, Port, Fd]).

    │ │ │ +NodeInfo has been written the connection is closed by the EPMD.

    NodeInfo is, as expressed in Erlang:

    io:format("active name     ~ts at port ~p, fd = ~p~n",
    │ │ │ +          [NodeName, Port, Fd]).

    or

    io:format("old/unused name ~ts at port ~p, fd = ~p ~n",
    │ │ │ +          [NodeName, Port, Fd]).

    │ │ │ │ │ │ │ │ │ │ │ │ Kill EPMD │ │ │

    │ │ │

    This request kills the running EPMD. It is almost never used.

    ---
    │ │ │  title: Kill EPMD
    │ │ │ @@ -407,54 +407,54 @@
    │ │ │  received from A is correct and generates a digest from the challenge
    │ │ │  received from A. The digest is then sent to A. The message is as follows:

    116
    'a'Digest

    Table: The challenge_ack message

    Digest is the digest calculated by B for A's challenge.

  • 7) check - A checks the digest from B and the connection is up.

  • │ │ │ │ │ │ │ │ │ │ │ │ Semigraphic View │ │ │

    │ │ │ -
    A (initiator)                                      B (acceptor)
    │ │ │ +
    A (initiator)                                      B (acceptor)
    │ │ │  
    │ │ │  TCP connect ------------------------------------>
    │ │ │                                                     TCP accept
    │ │ │  
    │ │ │  send_name -------------------------------------->
    │ │ │                                                     recv_name
    │ │ │  
    │ │ │    <---------------------------------------------- send_status
    │ │ │  recv_status
    │ │ │ -(if status was 'alive'
    │ │ │ +(if status was 'alive'
    │ │ │   send_status - - - - - - - - - - - - - - - - - ->
    │ │ │ -                                                   recv_status)
    │ │ │ +                                                   recv_status)
    │ │ │  
    │ │ │ -                          (ChB)                      ChB = gen_challenge()
    │ │ │ +                          (ChB)                      ChB = gen_challenge()
    │ │ │    <---------------------------------------------- send_challenge
    │ │ │  recv_challenge
    │ │ │  
    │ │ │ -(if old send_name
    │ │ │ +(if old send_name
    │ │ │   send_complement - - - - - - - - - - - - - - - ->
    │ │ │ -                                                   recv_complement)
    │ │ │ +                                                   recv_complement)
    │ │ │  
    │ │ │ -ChA = gen_challenge(),
    │ │ │ -OCA = out_cookie(B),
    │ │ │ -DiA = gen_digest(ChB, OCA)
    │ │ │ -                          (ChA, DiA)
    │ │ │ +ChA = gen_challenge(),
    │ │ │ +OCA = out_cookie(B),
    │ │ │ +DiA = gen_digest(ChB, OCA)
    │ │ │ +                          (ChA, DiA)
    │ │ │  send_challenge_reply --------------------------->
    │ │ │                                                     recv_challenge_reply
    │ │ │ -                                                   ICB = in_cookie(A),
    │ │ │ +                                                   ICB = in_cookie(A),
    │ │ │                                                     check:
    │ │ │ -                                                   DiA == gen_digest (ChB, ICB)?
    │ │ │ +                                                   DiA == gen_digest (ChB, ICB)?
    │ │ │                                                     - if OK:
    │ │ │ -                                                    OCB = out_cookie(A),
    │ │ │ -                                                    DiB = gen_digest (ChA, OCB)
    │ │ │ -                          (DiB)
    │ │ │ +                                                    OCB = out_cookie(A),
    │ │ │ +                                                    DiB = gen_digest (ChA, OCB)
    │ │ │ +                          (DiB)
    │ │ │    <----------------------------------------------- send_challenge_ack
    │ │ │  recv_challenge_ack                                  DONE
    │ │ │ -ICA = in_cookie(B),                                - else:
    │ │ │ +ICA = in_cookie(B),                                - else:
    │ │ │  check:                                              CLOSE
    │ │ │ -DiB == gen_digest(ChA, ICA)?
    │ │ │ +DiB == gen_digest(ChA, ICA)?
    │ │ │  - if OK:
    │ │ │   DONE
    │ │ │  - else:
    │ │ │   CLOSE

    │ │ │ │ │ │ │ │ │ │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/erl_ext_dist.html │ │ │ @@ -436,15 +436,15 @@ │ │ │ │ │ │ SMALL_BIG_EXT │ │ │

    │ │ │
    111n
    110nSignd(0) ... d(n-1)

    Bignums are stored in unary form with a Sign byte, that is, 0 if the bignum is │ │ │ positive and 1 if it is negative. The digits are stored with the least │ │ │ significant byte stored first. To calculate the integer, the following formula │ │ │ can be used:

    B = 256
    │ │ │ -(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

    │ │ │ +(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

    │ │ │ │ │ │ │ │ │ │ │ │ LARGE_BIG_EXT │ │ │

    │ │ │
    141n
    111nSignd(0) ... d(n-1)

    Same as SMALL_BIG_EXT except that the length │ │ │ field is an unsigned 4 byte integer.

    │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/erl_nif.html │ │ │ @@ -161,27 +161,27 @@ │ │ │ } │ │ │ │ │ │ static ErlNifFunc nif_funcs[] = │ │ │ { │ │ │ {"hello", 0, hello} │ │ │ }; │ │ │ │ │ │ -ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

    The Erlang module can look as follows:

    -module(niftest).
    │ │ │ +ERL_NIF_INIT(niftest,nif_funcs,NULL,NULL,NULL,NULL)

    The Erlang module can look as follows:

    -module(niftest).
    │ │ │  
    │ │ │ --export([init/0, hello/0]).
    │ │ │ +-export([init/0, hello/0]).
    │ │ │  
    │ │ │ --nifs([hello/0]).
    │ │ │ +-nifs([hello/0]).
    │ │ │  
    │ │ │ --on_load(init/0).
    │ │ │ +-on_load(init/0).
    │ │ │  
    │ │ │ -init() ->
    │ │ │ -      erlang:load_nif("./niftest", 0).
    │ │ │ +init() ->
    │ │ │ +      erlang:load_nif("./niftest", 0).
    │ │ │  
    │ │ │ -hello() ->
    │ │ │ -      erlang:nif_error("NIF library not loaded").

    Compile and test can look as follows (on Linux):

    $> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL_ROOT/usr/include/
    │ │ │ +hello() ->
    │ │ │ +      erlang:nif_error("NIF library not loaded").

    Compile and test can look as follows (on Linux):

    $> gcc -fPIC -shared -o niftest.so niftest.c -I $ERL_ROOT/usr/include/
    │ │ │  $> erl
    │ │ │  
    │ │ │  1> c(niftest).
    │ │ │  {ok,niftest}
    │ │ │  2> niftest:hello().
    │ │ │  "Hello world!"

    In the example above the on_load │ │ │ directive is used get function init called automatically when the module is │ │ ├── ./usr/share/doc/erlang-doc/html/erts-15.2.7.2/doc/html/erl_prim_loader.html │ │ │ @@ -398,15 +398,15 @@ │ │ │ when Filename :: string(), FileInfo :: file:file_info().

    │ │ │ │ │ │ │ │ │ │ │ │

    Retrieves information about a file.

    Returns {ok, FileInfo} if successful, otherwise error. FileInfo is a │ │ │ record file_info, defined in the Kernel include file │ │ │ file.hrl. Include the following directive in the module from which the │ │ │ -function is called:

    -include_lib("kernel/include/file.hrl").

    For more information about the record see file:read_file_info/2.

    Filename can also be a file in an archive, for example, │ │ │ +function is called:

    -include_lib("kernel/include/file.hrl").

    For more information about the record see file:read_file_info/2.

    Filename can also be a file in an archive, for example, │ │ │ $OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin/mnesia. For information │ │ │ about archive files, see code.

    │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Combines two previously computed adler32 checksums.

    This computation requires the size of the data object for the second checksum │ │ │ -to be known.

    The following code:

    Y = erlang:adler32(Data1),
    │ │ │ -Z = erlang:adler32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:adler32(Data1),
    │ │ │ -Y = erlang:adler32(Data2),
    │ │ │ -Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).
    │ │ │ +to be known.

    The following code:

    Y = erlang:adler32(Data1),
    │ │ │ +Z = erlang:adler32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:adler32(Data1),
    │ │ │ +Y = erlang:adler32(Data2),
    │ │ │ +Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -6934,16 +6934,16 @@ │ │ │ │ │ │ │ │ │

    Continues computing the crc32 checksum by combining the previous checksum, │ │ │ -OldCrc, with the checksum of Data.

    The following code:

    X = erlang:crc32(Data1),
    │ │ │ -Y = erlang:crc32(X,Data2).

    assigns the same value to Y as this:

    Y = erlang:crc32([Data1,Data2]).
    │ │ │ +OldCrc, with the checksum of Data.

    The following code:

    X = erlang:crc32(Data1),
    │ │ │ +Y = erlang:crc32(X,Data2).

    assigns the same value to Y as this:

    Y = erlang:crc32([Data1,Data2]).
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Combines two previously computed crc32 checksums.

    This computation requires the size of the data object for the second checksum │ │ │ -to be known.

    The following code:

    Y = erlang:crc32(Data1),
    │ │ │ -Z = erlang:crc32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:crc32(Data1),
    │ │ │ -Y = erlang:crc32(Data2),
    │ │ │ -Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).
    │ │ │ +to be known.

    The following code:

    Y = erlang:crc32(Data1),
    │ │ │ +Z = erlang:crc32(Y,Data2).

    assigns the same value to Z as this:

    X = erlang:crc32(Data1),
    │ │ │ +Y = erlang:crc32(Data2),
    │ │ │ +Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8129,19 +8129,19 @@ │ │ │ the Info map in the returned result will contain the key node_type │ │ │ associated with the value NodeTypeInfo. Currently the following node types │ │ │ exist:

    Example:

    (a@localhost)1> nodes([this, connected], #{connection_id=>true, node_type=>true}).
    │ │ │ -[{c@localhost,#{connection_id => 13892108,node_type => hidden}},
    │ │ │ - {b@localhost,#{connection_id => 3067553,node_type => visible}},
    │ │ │ - {a@localhost,#{connection_id => undefined,node_type => this}}]
    │ │ │ -(a@localhost)2>
    │ │ │ +process.

    Example:

    (a@localhost)1> nodes([this, connected], #{connection_id=>true, node_type=>true}).
    │ │ │ +[{c@localhost,#{connection_id => 13892108,node_type => hidden}},
    │ │ │ + {b@localhost,#{connection_id => 3067553,node_type => visible}},
    │ │ │ + {a@localhost,#{connection_id => undefined,node_type => this}}]
    │ │ │ +(a@localhost)2>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8237,17 +8237,17 @@ │ │ │ │ │ │
    -spec abs(Float) -> float() when Float :: float();
    │ │ │           (Int) -> non_neg_integer() when Int :: integer().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns an integer or float that is the arithmetical absolute value of Float │ │ │ -or Int.

    For example:

    > abs(-3.33).
    │ │ │ +or Int.

    For example:

    > abs(-3.33).
    │ │ │  3.33
    │ │ │ -> abs(-3).
    │ │ │ +> abs(-3).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a new tuple that has one element more than Tuple1, and contains the │ │ │ elements in Tuple1 followed by Term as the last element.

    Semantically equivalent to │ │ │ list_to_tuple(tuple_to_list(Tuple1) ++ [Term]), but much │ │ │ -faster.

    For example:

    > erlang:append_element({one, two}, three).
    │ │ │ -{one,two,three}
    │ │ │ +faster.

    For example:

    > erlang:append_element({one, two}, three).
    │ │ │ +{one,two,three}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Atom.

    If Encoding is latin1, one byte exists for each character in the text │ │ │ representation. If Encoding is utf8 or unicode, the characters are encoded │ │ │ using UTF-8 where characters may require multiple bytes.

    Change

    As from Erlang/OTP 20, atoms can contain any Unicode character and │ │ │ atom_to_binary(Atom, latin1) may fail if the text │ │ │ -representation for Atom contains a Unicode character > 255.

    Example:

    > atom_to_binary('Erlang', latin1).
    │ │ │ -<<"Erlang">>
    │ │ │ +representation for Atom contains a Unicode character > 255.

    Example:

    > atom_to_binary('Erlang', latin1).
    │ │ │ +<<"Erlang">>
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8363,17 +8363,17 @@ │ │ │
    │ │ │ │ │ │
    -spec atom_to_list(Atom) -> string() when Atom :: atom().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a list of unicode code points corresponding to the text representation │ │ │ -of Atom.

    For example:

    > atom_to_list('Erlang').
    │ │ │ -"Erlang"
    > atom_to_list('你好').
    │ │ │ -[20320,22909]

    See unicode for how to convert the resulting list to different formats.

    │ │ │ +of Atom.

    For example:

    > atom_to_list('Erlang').
    │ │ │ +"Erlang"
    > atom_to_list('你好').
    │ │ │ +[20320,22909]

    See unicode for how to convert the resulting list to different formats.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8400,19 +8400,19 @@ │ │ │
    -spec binary_part(Subject, PosLen) -> binary()
    │ │ │                       when
    │ │ │                           Subject :: binary(),
    │ │ │                           PosLen :: {Start :: non_neg_integer(), Length :: integer()}.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Extracts the part of the binary described by PosLen.

    Negative length can be used to extract bytes at the end of a binary.

    For example:

    1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
    │ │ │ -2> binary_part(Bin,{byte_size(Bin), -5}).
    │ │ │ -<<6,7,8,9,10>>

    Failure: badarg if PosLen in any way references outside the binary.

    Start is zero-based, that is:

    1> Bin = <<1,2,3>>
    │ │ │ -2> binary_part(Bin,{0,2}).
    │ │ │ -<<1,2>>

    For details about the PosLen semantics, see binary.

    │ │ │ +

    Extracts the part of the binary described by PosLen.

    Negative length can be used to extract bytes at the end of a binary.

    For example:

    1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
    │ │ │ +2> binary_part(Bin,{byte_size(Bin), -5}).
    │ │ │ +<<6,7,8,9,10>>

    Failure: badarg if PosLen in any way references outside the binary.

    Start is zero-based, that is:

    1> Bin = <<1,2,3>>
    │ │ │ +2> binary_part(Bin,{0,2}).
    │ │ │ +<<1,2>>

    For details about the PosLen semantics, see binary.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │

    Note

    The number of characters that are permitted in an atom name is limited. The │ │ │ default limits can be found in the │ │ │ Efficiency Guide (section System Limits).

    Note

    There is configurable limit on how many atoms that can exist and atoms are not │ │ │ garbage collected. Therefore, it is recommended to consider whether │ │ │ binary_to_existing_atom/2 is a better option │ │ │ than binary_to_atom/2. The default limits can be found │ │ │ -in Efficiency Guide (section System Limits).

    Examples:

    > binary_to_atom(<<"Erlang">>, latin1).
    │ │ │ -'Erlang'
    > binary_to_atom(<<1024/utf8>>, utf8).
    │ │ │ +in Efficiency Guide (section System Limits).

    Examples:

    > binary_to_atom(<<"Erlang">>, latin1).
    │ │ │ +'Erlang'
    > binary_to_atom(<<1024/utf8>>, utf8).
    │ │ │  'Ѐ'
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8613,15 +8613,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_float(Binary) -> float() when Binary :: binary().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the float whose text representation is Binary.

    For example:

    > binary_to_float(<<"2.2017764e+0">>).
    │ │ │ +

    Returns the float whose text representation is Binary.

    For example:

    > binary_to_float(<<"2.2017764e+0">>).
    │ │ │  2.2017764

    The float string format is the same as the format for │ │ │ Erlang float literals except for that underscores │ │ │ are not permitted.

    Failure: badarg if Binary contains a bad representation of a float.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8646,15 +8646,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_integer(Binary) -> integer() when Binary :: binary().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation is Binary.

    For example:

    > binary_to_integer(<<"123">>).
    │ │ │ +

    Returns an integer whose text representation is Binary.

    For example:

    > binary_to_integer(<<"123">>).
    │ │ │  123

    binary_to_integer/1 accepts the same string formats │ │ │ as list_to_integer/1.

    Failure: badarg if Binary contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -8678,15 +8678,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec binary_to_integer(Binary, Base) -> integer() when Binary :: binary(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation in base Base is Binary.

    For example:

    > binary_to_integer(<<"3FF">>, 16).
    │ │ │ +

    Returns an integer whose text representation in base Base is Binary.

    For example:

    > binary_to_integer(<<"3FF">>, 16).
    │ │ │  1023

    binary_to_integer/2 accepts the same string formats │ │ │ as list_to_integer/2.

    Failure: badarg if Binary contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -8771,17 +8771,17 @@ │ │ │ │ │ │
    -spec binary_to_term(Binary) -> term() when Binary :: ext_binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns an Erlang term that is the result of decoding binary object Binary, │ │ │ which must be encoded according to the │ │ │ -Erlang external term format.

    > Bin = term_to_binary(hello).
    │ │ │ -<<131,100,0,5,104,101,108,108,111>>
    │ │ │ -> hello = binary_to_term(Bin).
    │ │ │ +Erlang external term format.

    > Bin = term_to_binary(hello).
    │ │ │ +<<131,100,0,5,104,101,108,108,111>>
    │ │ │ +> hello = binary_to_term(Bin).
    │ │ │  hello

    Warning

    When decoding binaries from untrusted sources, the untrusted source may submit │ │ │ data in a way to create resources, such as atoms and remote references, that │ │ │ cannot be garbage collected and lead to Denial of Service attack. In such │ │ │ cases, consider using binary_to_term/2 with the safe │ │ │ option.

    See also term_to_binary/1 and binary_to_term/2.

    │ │ │
    │ │ │ │ │ │ @@ -8820,30 +8820,30 @@ │ │ │

    Equivalent to binary_to_term(Binary), but can be configured to │ │ │ fit special purposes.

    The allowed options are:

    • safe - Use this option when receiving binaries from an untrusted source.

      When enabled, it prevents decoding data that can be used to attack the Erlang │ │ │ runtime. In the event of receiving unsafe data, decoding fails with a badarg │ │ │ error.

      This prevents creation of new atoms directly, creation of new atoms indirectly │ │ │ (as they are embedded in certain structures, such as process identifiers, │ │ │ refs, and funs), and creation of new external function references. None of │ │ │ those resources are garbage collected, so unchecked creation of them can │ │ │ -exhaust available memory.

      > binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │ +exhaust available memory.

      > binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │  ** exception error: bad argument
      │ │ │  > hello.
      │ │ │  hello
      │ │ │ -> binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │ +> binary_to_term(<<131,100,0,5,"hello">>, [safe]).
      │ │ │  hello

      Warning

      The safe option ensures the data is safely processed by the Erlang runtime │ │ │ but it does not guarantee the data is safe to your application. You must │ │ │ always validate data from untrusted sources. If the binary is stored or │ │ │ transits through untrusted sources, you should also consider │ │ │ cryptographically signing it.

    • used - Changes the return value to {Term, Used} where Used is the │ │ │ -number of bytes actually read from Binary.

      > Input = <<131,100,0,5,"hello","world">>.
      │ │ │ -<<131,100,0,5,104,101,108,108,111,119,111,114,108,100>>
      │ │ │ -> {Term, Used} = binary_to_term(Input, [used]).
      │ │ │ -{hello, 9}
      │ │ │ -> split_binary(Input, Used).
      │ │ │ -{<<131,100,0,5,104,101,108,108,111>>, <<"world">>}

    Failure: badarg if safe is specified and unsafe data is decoded.

    See also term_to_binary/1, binary_to_term/1, and list_to_existing_atom/1.

    │ │ │ +number of bytes actually read from Binary.

    > Input = <<131,100,0,5,"hello","world">>.
    │ │ │ +<<131,100,0,5,104,101,108,108,111,119,111,114,108,100>>
    │ │ │ +> {Term, Used} = binary_to_term(Input, [used]).
    │ │ │ +{hello, 9}
    │ │ │ +> split_binary(Input, Used).
    │ │ │ +{<<131,100,0,5,104,101,108,108,111>>, <<"world">>}

    Failure: badarg if safe is specified and unsafe data is decoded.

    See also term_to_binary/1, binary_to_term/1, and list_to_existing_atom/1.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -8865,17 +8865,17 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns an integer that is the size in bits of Bitstring.

    For example:

    > bit_size(<<433:16,3:3>>).
    │ │ │ +

    Returns an integer that is the size in bits of Bitstring.

    For example:

    > bit_size(<<433:16,3:3>>).
    │ │ │  19
    │ │ │ -> bit_size(<<1,2,3>>).
    │ │ │ +> bit_size(<<1,2,3>>).
    │ │ │  24
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8897,17 +8897,17 @@ │ │ │ │ │ │ │ │ │

    Returns a list of integers corresponding to the bytes of Bitstring.

    If the number of bits in the binary is not divisible by 8, the last element of │ │ │ -the list is a bitstring containing the remaining 1-7 bits.

    For example:

    > bitstring_to_list(<<433:16>>).
    │ │ │ -[1,177]
    > bitstring_to_list(<<433:16,3:3>>).
    │ │ │ -[1,177,<<3:3>>]
    │ │ │ +the list is a bitstring containing the remaining 1-7 bits.

    For example:

    > bitstring_to_list(<<433:16>>).
    │ │ │ +[1,177]
    > bitstring_to_list(<<433:16,3:3>>).
    │ │ │ +[1,177,<<3:3>>]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns an integer that is the number of bytes needed to contain Bitstring. │ │ │ That is, if the number of bits in Bitstring is not divisible by 8, the │ │ │ -resulting number of bytes is rounded up.

    For example:

    > byte_size(<<433:16,3:3>>).
    │ │ │ +resulting number of bytes is rounded up.

    For example:

    > byte_size(<<433:16,3:3>>).
    │ │ │  3
    │ │ │ -> byte_size(<<1,2,3>>).
    │ │ │ +> byte_size(<<1,2,3>>).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -8966,15 +8966,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec ceil(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the smallest integer not less than Number.

    For example:

    > ceil(5.5).
    │ │ │ +

    Returns the smallest integer not less than Number.

    For example:

    > ceil(5.5).
    │ │ │  6
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9074,18 +9074,18 @@ │ │ │ RFC2732 .

    Options:

    • {packet_size, integer() >= 0} - Sets the maximum allowed size of the │ │ │ packet body. If the packet header indicates that the length of the packet is │ │ │ longer than the maximum allowed length, the packet is considered invalid. │ │ │ Defaults to 0, which means no size limit.

    • {line_length, integer() >= 0} - For packet type line, lines longer │ │ │ than the indicated length are truncated.

      Option line_length also applies to http* packet types as an alias for │ │ │ option packet_size if packet_size itself is not set. This use is only │ │ │ intended for backward compatibility.

    • {line_delimiter, 0 =< byte() =< 255} - For packet type line, sets the │ │ │ -delimiting byte. Default is the latin-1 character $\n.

    Examples:

    > erlang:decode_packet(1,<<3,"abcd">>,[]).
    │ │ │ -{ok,<<"abc">>,<<"d">>}
    │ │ │ -> erlang:decode_packet(1,<<5,"abcd">>,[]).
    │ │ │ -{more,6}
    │ │ │ +delimiting byte. Default is the latin-1 character $\n.

    Examples:

    > erlang:decode_packet(1,<<3,"abcd">>,[]).
    │ │ │ +{ok,<<"abc">>,<<"d">>}
    │ │ │ +> erlang:decode_packet(1,<<5,"abcd">>,[]).
    │ │ │ +{more,6}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9106,16 +9106,16 @@ │ │ │ │ │ │ │ │ │ -

    Returns a new tuple with element at Index removed from tuple Tuple1.

    For example:

    > erlang:delete_element(2, {one, two, three}).
    │ │ │ -{one,three}
    │ │ │ +

    Returns a new tuple with element at Index removed from tuple Tuple1.

    For example:

    > erlang:delete_element(2, {one, two, three}).
    │ │ │ +{one,three}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9165,15 +9165,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec element(N, Tuple) -> term() when N :: pos_integer(), Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the Nth element (numbering from 1) of Tuple.

    For example:

    > element(2, {a, b, c}).
    │ │ │ +

    Returns the Nth element (numbering from 1) of Tuple.

    For example:

    > element(2, {a, b, c}).
    │ │ │  b
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9195,18 +9195,18 @@ │ │ │ │ │ │ │ │ │

    Calculates, without doing the encoding, the maximum byte size for a term encoded │ │ │ -in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term)),
    │ │ │ -> Size2 = erlang:external_size(Term),
    │ │ │ +in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term)),
    │ │ │ +> Size2 = erlang:external_size(Term),
    │ │ │  > true = Size1 =< Size2.
    │ │ │ -true

    This is equivalent to a call to:

    erlang:external_size(Term, [])
    │ │ │ +
    true

    This is equivalent to a call to:

    erlang:external_size(Term, [])
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Calculates, without doing the encoding, the maximum byte size for a term encoded │ │ │ -in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term, Options)),
    │ │ │ -> Size2 = erlang:external_size(Term, Options),
    │ │ │ +in the Erlang external term format.

    The following condition applies always:

    > Size1 = byte_size(term_to_binary(Term, Options)),
    │ │ │ +> Size2 = erlang:external_size(Term, Options),
    │ │ │  > true = Size1 =< Size2.
    │ │ │  true

    Option {minor_version, Version} specifies how floats are encoded. For a │ │ │ detailed description, see term_to_binary/2.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9269,15 +9269,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec float(Number) -> float() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a float by converting Number to a float.

    For example:

    > float(55).
    │ │ │ +

    Returns a float by converting Number to a float.

    For example:

    > float(55).
    │ │ │  55.0

    Note

    If used on the top level in a guard, it tests whether the argument is a │ │ │ floating point number; for clarity, use is_float/1 instead.

    When float/1 is used in an expression in a guard, such as │ │ │ 'float(A) == 4.0', it converts a number as described earlier.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9340,26 +9340,26 @@ │ │ │ {decimals, Decimals :: 0..253} | │ │ │ {scientific, Decimals :: 0..249} | │ │ │ compact | short.
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Float using fixed │ │ │ -decimal point formatting.

    Options behaves in the same way as float_to_list/2.

    For example:

    > float_to_binary(7.12, [{decimals, 4}]).
    │ │ │ -<<"7.1200">>
    │ │ │ -> float_to_binary(7.12, [{decimals, 4}, compact]).
    │ │ │ -<<"7.12">>
    │ │ │ -> float_to_binary(7.12, [{scientific, 3}]).
    │ │ │ -<<"7.120e+00">>
    │ │ │ -> float_to_binary(7.12, [short]).
    │ │ │ -<<"7.12">>
    │ │ │ -> float_to_binary(0.1+0.2, [short]).
    │ │ │ -<<"0.30000000000000004">>
    │ │ │ -> float_to_binary(0.1+0.2)
    │ │ │ -<<"3.00000000000000044409e-01">>
    │ │ │ +decimal point formatting.

    Options behaves in the same way as float_to_list/2.

    For example:

    > float_to_binary(7.12, [{decimals, 4}]).
    │ │ │ +<<"7.1200">>
    │ │ │ +> float_to_binary(7.12, [{decimals, 4}, compact]).
    │ │ │ +<<"7.12">>
    │ │ │ +> float_to_binary(7.12, [{scientific, 3}]).
    │ │ │ +<<"7.120e+00">>
    │ │ │ +> float_to_binary(7.12, [short]).
    │ │ │ +<<"7.12">>
    │ │ │ +> float_to_binary(0.1+0.2, [short]).
    │ │ │ +<<"0.30000000000000004">>
    │ │ │ +> float_to_binary(0.1+0.2)
    │ │ │ +<<"3.00000000000000044409e-01">>
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9427,25 +9427,25 @@ │ │ │ are truncated. This option is only meaningful together with option decimals.
  • If option scientific is specified, the float is formatted using scientific │ │ │ notation with Decimals digits of precision.
  • If option short is specified, the float is formatted with the smallest │ │ │ number of digits that still guarantees that │ │ │ F =:= list_to_float(float_to_list(F, [short])). When the float is inside the │ │ │ range (-2⁵³, 2⁵³), the notation that yields the smallest number of characters │ │ │ is used (scientific notation or normal decimal notation). Floats outside the │ │ │ range (-2⁵³, 2⁵³) are always formatted using scientific notation to avoid │ │ │ -confusing results when doing arithmetic operations.
  • If Options is [], the function behaves as float_to_list/1.
  • Examples:

    > float_to_list(7.12, [{decimals, 4}]).
    │ │ │ +confusing results when doing arithmetic operations.
  • If Options is [], the function behaves as float_to_list/1.
  • Examples:

    > float_to_list(7.12, [{decimals, 4}]).
    │ │ │  "7.1200"
    │ │ │ -> float_to_list(7.12, [{decimals, 4}, compact]).
    │ │ │ +> float_to_list(7.12, [{decimals, 4}, compact]).
    │ │ │  "7.12"
    │ │ │ -> float_to_list(7.12, [{scientific, 3}]).
    │ │ │ +> float_to_list(7.12, [{scientific, 3}]).
    │ │ │  "7.120e+00"
    │ │ │ -> float_to_list(7.12, [short]).
    │ │ │ +> float_to_list(7.12, [short]).
    │ │ │  "7.12"
    │ │ │ -> float_to_list(0.1+0.2, [short]).
    │ │ │ +> float_to_list(0.1+0.2, [short]).
    │ │ │  "0.30000000000000004"
    │ │ │ -> float_to_list(0.1+0.2)
    │ │ │ +> float_to_list(0.1+0.2)
    │ │ │  "3.00000000000000044409e-01"

    In the last example, float_to_list(0.1+0.2) evaluates to │ │ │ "3.00000000000000044409e-01". The reason for this is explained in │ │ │ Representation of Floating Point Numbers.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9472,15 +9472,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec floor(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the largest integer not greater than Number.

    For example:

    > floor(-10.5).
    │ │ │ +

    Returns the largest integer not greater than Number.

    For example:

    > floor(-10.5).
    │ │ │  -11
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9600,25 +9600,25 @@ │ │ │ named module, index and uniq in the result of │ │ │ erlang:fun_info(Fun).

  • uncompiled code - All funs created from fun expressions in uncompiled code │ │ │ with the same arity are mapped to the same list by │ │ │ fun_to_list/1.

  • Note

    Generally, one can not use fun_to_list/1 to check if two │ │ │ funs are equal as fun_to_list/1 does not take the fun's │ │ │ environment into account. See erlang:fun_info/1 for how to │ │ │ get the environment of a fun.

    Change

    The output of fun_to_list/1 can differ between Erlang │ │ │ -implementations and may change in future versions.

    Examples:

    -module(test).
    │ │ │ --export([add/1, add2/0, fun_tuple/0]).
    │ │ │ -add(A) -> fun(B) -> A + B end.
    │ │ │ -add2() -> fun add/1.
    │ │ │ -fun_tuple() -> {fun() -> 1 end, fun() -> 1 end}.
    > {fun test:add/1, test:add2()}.
    │ │ │ -{fun test:add/1,#Fun<test.1.107738983>}

    Explanation: fun test:add/1 is upgradable but test:add2() is not upgradable.

    > {test:add(1), test:add(42)}.
    │ │ │ -{#Fun<test.0.107738983>,#Fun<test.0.107738983>}

    Explanation: test:add(1) and test:add(42) has the same string representation │ │ │ -as the environment is not taken into account.

    >test:fun_tuple().
    │ │ │ -{#Fun<test.2.107738983>,#Fun<test.3.107738983>}

    Explanation: The string representations differ because the funs come from │ │ │ -different fun expressions.

    > {fun() -> 1 end, fun() -> 1 end}. >
    │ │ │ -{#Fun<erl_eval.45.97283095>,#Fun<erl_eval.45.97283095>}

    Explanation: All funs created from fun expressions of this form in uncompiled │ │ │ +implementations and may change in future versions.

    Examples:

    -module(test).
    │ │ │ +-export([add/1, add2/0, fun_tuple/0]).
    │ │ │ +add(A) -> fun(B) -> A + B end.
    │ │ │ +add2() -> fun add/1.
    │ │ │ +fun_tuple() -> {fun() -> 1 end, fun() -> 1 end}.
    > {fun test:add/1, test:add2()}.
    │ │ │ +{fun test:add/1,#Fun<test.1.107738983>}

    Explanation: fun test:add/1 is upgradable but test:add2() is not upgradable.

    > {test:add(1), test:add(42)}.
    │ │ │ +{#Fun<test.0.107738983>,#Fun<test.0.107738983>}

    Explanation: test:add(1) and test:add(42) has the same string representation │ │ │ +as the environment is not taken into account.

    >test:fun_tuple().
    │ │ │ +{#Fun<test.2.107738983>,#Fun<test.3.107738983>}

    Explanation: The string representations differ because the funs come from │ │ │ +different fun expressions.

    > {fun() -> 1 end, fun() -> 1 end}. >
    │ │ │ +{#Fun<erl_eval.45.97283095>,#Fun<erl_eval.45.97283095>}

    Explanation: All funs created from fun expressions of this form in uncompiled │ │ │ code with the same arity are mapped to the same list by │ │ │ fun_to_list/1.

    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -9642,16 +9642,16 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec hd(List) -> Head when List :: nonempty_maybe_improper_list(), Head :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the head of List, that is, the first element.

    It works with improper lists.

    Examples:

    > hd([1,2,3,4,5]).
    │ │ │ -1
    > hd([first, second, third, so_on | improper_end]).
    │ │ │ +

    Returns the head of List, that is, the first element.

    It works with improper lists.

    Examples:

    > hd([1,2,3,4,5]).
    │ │ │ +1
    > hd([first, second, third, so_on | improper_end]).
    │ │ │  first

    Failure: badarg if List is an empty list [].

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a new tuple with element Term inserted at position Index in tuple │ │ │ Tuple1. All elements from position Index and upwards are pushed one step │ │ │ -higher in the new tuple Tuple2.

    For example:

    > erlang:insert_element(2, {one, two, three}, new).
    │ │ │ -{one,new,two,three}
    │ │ │ +higher in the new tuple Tuple2.

    For example:

    > erlang:insert_element(2, {one, two, three}, new).
    │ │ │ +{one,new,two,three}
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9707,16 +9707,16 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns a binary corresponding to the text representation of Integer.

    For example:

    > integer_to_binary(77).
    │ │ │ -<<"77">>
    │ │ │ +

    Returns a binary corresponding to the text representation of Integer.

    For example:

    > integer_to_binary(77).
    │ │ │ +<<"77">>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9739,16 +9739,16 @@ │ │ │
    │ │ │ │ │ │
    -spec integer_to_binary(Integer, Base) -> binary() when Integer :: integer(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a binary corresponding to the text representation of Integer in base │ │ │ -Base.

    For example:

    > integer_to_binary(1023, 16).
    │ │ │ -<<"3FF">>
    │ │ │ +Base.

    For example:

    > integer_to_binary(1023, 16).
    │ │ │ +<<"3FF">>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9768,15 +9768,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns a string corresponding to the text representation of Integer.

    For example:

    > integer_to_list(77).
    │ │ │ +

    Returns a string corresponding to the text representation of Integer.

    For example:

    > integer_to_list(77).
    │ │ │  "77"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9798,15 +9798,15 @@ │ │ │
    │ │ │ │ │ │
    -spec integer_to_list(Integer, Base) -> string() when Integer :: integer(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a string corresponding to the text representation of Integer in base │ │ │ -Base.

    For example:

    > integer_to_list(1023, 16).
    │ │ │ +Base.

    For example:

    > integer_to_list(1023, 16).
    │ │ │  "3FF"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9828,15 +9828,15 @@ │ │ │ │ │ │ │ │ │

    Returns an integer, that is the size in bytes, of the binary that would be the │ │ │ -result of iolist_to_binary(Item).

    For example:

    > iolist_size([1,2|<<3,4>>]).
    │ │ │ +result of iolist_to_binary(Item).

    For example:

    > iolist_size([1,2|<<3,4>>]).
    │ │ │  4
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -9858,22 +9858,22 @@ │ │ │
    │ │ │ │ │ │
    -spec iolist_to_binary(IoListOrBinary) -> binary() when IoListOrBinary :: iolist() | binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a binary that is made from the integers and binaries in │ │ │ -IoListOrBinary.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ -> iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │ +IoListOrBinary.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │ +> iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -9899,31 +9899,31 @@ │ │ │ │ │ │

    Returns an iovec that is made from the integers and binaries in │ │ │ IoListOrBinary. This function is useful when you want to flatten an iolist but │ │ │ you do not need a single binary. This can be useful for passing the data to nif │ │ │ functions such as enif_inspect_iovec or do │ │ │ more efficient message passing. The advantage of using this function over │ │ │ iolist_to_binary/1 is that it does not have to copy │ │ │ -off-heap binaries.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ +off-heap binaries.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │  %% If you pass small binaries and integers it works as iolist_to_binary
    │ │ │ -> erlang:iolist_to_iovec([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -[<<1,2,3,1,2,3,4,5,4,6>>]
    │ │ │ +> erlang:iolist_to_iovec([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +[<<1,2,3,1,2,3,4,5,4,6>>]
    │ │ │  %% If you pass larger binaries, they are split and returned in a form
    │ │ │  %% optimized for calling the C function writev.
    │ │ │ -> erlang:iolist_to_iovec([<<1>>,<<2:8096>>,<<3:8096>>]).
    │ │ │ -[<<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    │ │ │ -   0,...>>,
    │ │ │ - <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
    │ │ │ -   ...>>,
    │ │ │ - <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...>>]
    │ │ │ +>
    erlang:iolist_to_iovec([<<1>>,<<2:8096>>,<<3:8096>>]). │ │ │ +[<<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, │ │ │ + 0,...>>, │ │ │ + <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, │ │ │ + ...>>, │ │ │ + <<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...>>]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10253,19 +10253,19 @@ │ │ │
    │ │ │ │ │ │
    -spec is_map_key(Key, Map) -> boolean() when Key :: term(), Map :: map().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns true if map Map contains Key and returns false if it does not │ │ │ -contain the Key.

    The call fails with a {badmap,Map} exception if Map is not a map.

    Example:

    > Map = #{"42" => value}.
    │ │ │ -#{"42" => value}
    │ │ │ -> is_map_key("42",Map).
    │ │ │ +contain the Key.

    The call fails with a {badmap,Map} exception if Map is not a map.

    Example:

    > Map = #{"42" => value}.
    │ │ │ +#{"42" => value}
    │ │ │ +> is_map_key("42",Map).
    │ │ │  true
    │ │ │ -> is_map_key(value,Map).
    │ │ │ +> is_map_key(value,Map).
    │ │ │  false
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10508,15 +10508,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec length(List) -> non_neg_integer() when List :: [term()].
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the length of List.

    For example:

    > length([1,2,3,4,5,6,7,8,9]).
    │ │ │ +

    Returns the length of List.

    For example:

    > length([1,2,3,4,5,6,7,8,9]).
    │ │ │  9
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10546,15 +10546,15 @@ │ │ │ Unicode characters above 255.

    Note

    The number of characters that are permitted in an atom name is limited. The │ │ │ default limits can be found in the │ │ │ efficiency guide (section System Limits).

    Note

    There is a configurable limit │ │ │ on how many atoms that can exist and atoms are not │ │ │ garbage collected. Therefore, it is recommended to consider if │ │ │ list_to_existing_atom/1 is a better option than │ │ │ list_to_atom/1. The default limits can be found in the │ │ │ -Efficiency Guide (section System Limits).

    Example:

    > list_to_atom("Erlang").
    │ │ │ +Efficiency Guide (section System Limits).

    Example:

    > list_to_atom("Erlang").
    │ │ │  'Erlang'
    │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10575,22 +10575,22 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_binary(IoList) -> binary() when IoList :: iolist().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a binary that is made from the integers and binaries in IoList.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6>>.
    │ │ │ -<<6>>
    │ │ │ -> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │ +

    Returns a binary that is made from the integers and binaries in IoList.

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6>>.
    │ │ │ +<<6>>
    │ │ │ +> list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a bitstring that is made from the integers and bitstrings in │ │ │ BitstringList. (The last tail in BitstringList is allowed to be a │ │ │ -bitstring.)

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ -<<1,2,3>>
    │ │ │ -> Bin2 = <<4,5>>.
    │ │ │ -<<4,5>>
    │ │ │ -> Bin3 = <<6,7:4>>.
    │ │ │ -<<6,7:4>>
    │ │ │ -> list_to_bitstring([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ -<<1,2,3,1,2,3,4,5,4,6,7:4>>
    │ │ │ +bitstring.)

    For example:

    > Bin1 = <<1,2,3>>.
    │ │ │ +<<1,2,3>>
    │ │ │ +> Bin2 = <<4,5>>.
    │ │ │ +<<4,5>>
    │ │ │ +> Bin3 = <<6,7:4>>.
    │ │ │ +<<6,7:4>>
    │ │ │ +> list_to_bitstring([Bin1,1,[2,3,Bin2],4|Bin3]).
    │ │ │ +<<1,2,3,1,2,3,4,5,4,6,7:4>>
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10683,15 +10683,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_float(String) -> float() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the float whose text representation is String.

    For example:

    > list_to_float("2.2017764e+0").
    │ │ │ +

    Returns the float whose text representation is String.

    For example:

    > list_to_float("2.2017764e+0").
    │ │ │  2.2017764

    The float string format is the same as the format for │ │ │ Erlang float literals except for that underscores │ │ │ are not permitted.

    Failure: badarg if String contains a bad representation of a float.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10714,17 +10714,17 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_integer(String) -> integer() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation is String.

    For example:

    > list_to_integer("123").
    │ │ │ -123
    > list_to_integer("-123").
    │ │ │ --123
    > list_to_integer("+123234982304982309482093833234234").
    │ │ │ +

    Returns an integer whose text representation is String.

    For example:

    > list_to_integer("123").
    │ │ │ +123
    > list_to_integer("-123").
    │ │ │ +-123
    > list_to_integer("+123234982304982309482093833234234").
    │ │ │  123234982304982309482093833234234

    String must contain at least one digit character and can have an optional │ │ │ prefix consisting of a single "+" or "-" character (that is, String must │ │ │ match the regular expression "^[+-]?[0-9]+$").

    Failure: badarg if String contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10747,19 +10747,19 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_integer(String, Base) -> integer() when String :: string(), Base :: 2..36.
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer whose text representation in base Base is String.

    For example:

    > list_to_integer("3FF", 16).
    │ │ │ -1023
    > list_to_integer("+3FF", 16).
    │ │ │ -1023
    > list_to_integer("3ff", 16).
    │ │ │ -1023
    > list_to_integer("3fF", 16).
    │ │ │ -1023
    > list_to_integer("-3FF", 16).
    │ │ │ +

    Returns an integer whose text representation in base Base is String.

    For example:

    > list_to_integer("3FF", 16).
    │ │ │ +1023
    > list_to_integer("+3FF", 16).
    │ │ │ +1023
    > list_to_integer("3ff", 16).
    │ │ │ +1023
    > list_to_integer("3fF", 16).
    │ │ │ +1023
    > list_to_integer("-3FF", 16).
    │ │ │  -1023

    For example, when Base is 16, String must match the regular expression │ │ │ "^[+-]?([0-9]|[A-F]|[a-f])+$".

    Failure: badarg if String contains a bad representation of an integer.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -10781,15 +10781,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_pid(String) -> pid() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a process identifier whose text representation is a String.

    For example:

    > list_to_pid("<0.4.1>").
    │ │ │ +

    Returns a process identifier whose text representation is a String.

    For example:

    > list_to_pid("<0.4.1>").
    │ │ │  <0.4.1>

    Failure: badarg if String contains a bad representation of a process │ │ │ identifier.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10814,15 +10814,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_port(String) -> port() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a port identifier whose text representation is a String.

    For example:

    > list_to_port("#Port<0.4>").
    │ │ │ +

    Returns a port identifier whose text representation is a String.

    For example:

    > list_to_port("#Port<0.4>").
    │ │ │  #Port<0.4>

    Failure: badarg if String contains a bad representation of a port │ │ │ identifier.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -10847,15 +10847,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_ref(String) -> reference() when String :: string().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a reference whose text representation is a String.

    For example:

    > list_to_ref("#Ref<0.4192537678.4073193475.71181>").
    │ │ │ +

    Returns a reference whose text representation is a String.

    For example:

    > list_to_ref("#Ref<0.4192537678.4073193475.71181>").
    │ │ │  #Ref<0.4192537678.4073193475.71181>

    Failure: badarg if String contains a bad representation of a reference.

    Warning

    This BIF is intended for debugging and is not to be used in application │ │ │ programs.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -10877,16 +10877,16 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec list_to_tuple(List) -> tuple() when List :: [term()].
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a tuple corresponding to List, for example

    > list_to_tuple([share, ['Ericsson_B', 163]]).
    │ │ │ -{share, ['Ericsson_B', 163]}

    List can contain any Erlang terms.

    │ │ │ +

    Returns a tuple corresponding to List, for example

    > list_to_tuple([share, ['Ericsson_B', 163]]).
    │ │ │ +{share, ['Ericsson_B', 163]}

    List can contain any Erlang terms.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -10936,16 +10936,16 @@ │ │ │
    │ │ │ │ │ │
    -spec make_tuple(Arity, InitialValue) -> tuple() when Arity :: arity(), InitialValue :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Creates a new tuple of the specified Arity, where all elements are │ │ │ -InitialValue.

    For example:

    > erlang:make_tuple(4, []).
    │ │ │ -{[],[],[],[]}
    │ │ │ +InitialValue.

    For example:

    > erlang:make_tuple(4, []).
    │ │ │ +{[],[],[],[]}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Creates a tuple of size Arity, where each element has value DefaultValue, │ │ │ and then fills in values from InitList.

    Each list element in InitList must be a two-tuple, where the first element is │ │ │ a position in the newly created tuple and the second element is any term. If a │ │ │ position occurs more than once in the list, the term corresponding to the last │ │ │ -occurrence is used.

    For example:

    > erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
    │ │ │ -{[],aa,[],[],zz}
    │ │ │ +occurrence is used.

    For example:

    > erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
    │ │ │ +{[],aa,[],[],zz}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns value Value associated with Key if Map contains Key.

    The call fails with a {badmap,Map} exception if Map is not a map, or with a │ │ │ {badkey,Key} exception if no value is associated with Key.

    Example:

    > Key = 1337,
    │ │ │ -  Map = #{42 => value_two,1337 => "value one","a" => 1},
    │ │ │ -  map_get(Key,Map).
    │ │ │ +  Map = #{42 => value_two,1337 => "value one","a" => 1},
    │ │ │ +  map_get(Key,Map).
    │ │ │  "value one"
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11040,15 +11040,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns an integer, which is the number of key-value pairs in Map.

    For example:

    > map_size(#{a=>1, b=>2, c=>3}).
    │ │ │ +

    Returns an integer, which is the number of key-value pairs in Map.

    For example:

    > map_size(#{a=>1, b=>2, c=>3}).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the largest of Term1 and Term2. If the terms compare equal with the │ │ │ == operator, Term1 is returned.

    The Expressions section contains │ │ │ -descriptions of the == operator and how terms are ordered.

    Examples:

    > max(1, 2).
    │ │ │ -2
    > max(1.0, 1).
    │ │ │ -1.0
    > max(1, 1.0).
    │ │ │ -1
    > max("abc", "b").
    │ │ │ +descriptions of the == operator and how terms are ordered.

    Examples:

    > max(1, 2).
    │ │ │ +2
    > max(1.0, 1).
    │ │ │ +1.0
    > max(1, 1.0).
    │ │ │ +1
    > max("abc", "b").
    │ │ │  "b"

    Change

    Allowed in guards tests from Erlang/OTP 26.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the smallest of Term1 and Term2. If the terms compare equal with the │ │ │ == operator, Term1 is returned.

    The Expressions section contains │ │ │ -descriptions of the == operator and how terms are ordered.

    Examples:

    > min(1, 2).
    │ │ │ -1
    > min(1.0, 1).
    │ │ │ -1.0
    > min(1, 1.0).
    │ │ │ -1
    > min("abc", "b").
    │ │ │ +descriptions of the == operator and how terms are ordered.

    Examples:

    > min(1, 2).
    │ │ │ +1
    > min(1.0, 1).
    │ │ │ +1.0
    > min(1, 1.0).
    │ │ │ +1
    > min("abc", "b").
    │ │ │  "abc"

    Change

    Allowed in guards tests from Erlang/OTP 26.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11276,15 +11276,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec pid_to_list(Pid) -> string() when Pid :: pid().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns a string corresponding to the text representation of Pid.

    For example:

    > erlang:pid_to_list(self()).
    │ │ │ +

    Returns a string corresponding to the text representation of Pid.

    For example:

    > erlang:pid_to_list(self()).
    │ │ │  "<0.85.0>"

    Note

    The creation for the node is not included in the list │ │ │ representation of Pid. This means that processes in different incarnations │ │ │ of a node with a specific name can get the same list representation.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11367,18 +11367,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec round(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer by rounding Number.

    For example:

    round(42.1).
    │ │ │ -42
    round(5.5).
    │ │ │ -6
    round(-5.5).
    │ │ │ --6
    round(36028797018963969.0).
    │ │ │ +

    Returns an integer by rounding Number.

    For example:

    round(42.1).
    │ │ │ +42
    round(5.5).
    │ │ │ +6
    round(-5.5).
    │ │ │ +-6
    round(36028797018963969.0).
    │ │ │  36028797018963968

    In the last example, round(36028797018963969.0) evaluates to │ │ │ 36028797018963968. The reason for this is that the number │ │ │ 36028797018963969.0 cannot be represented exactly as a float value. Instead, │ │ │ the float literal is represented as 36028797018963968.0, which is the closest │ │ │ number that can be represented exactly as a float value. See │ │ │ Representation of Floating Point Numbers │ │ │ for additional information.

    │ │ │ @@ -11408,16 +11408,16 @@ │ │ │
    -spec setelement(Index, Tuple1, Value) -> Tuple2
    │ │ │                      when Index :: pos_integer(), Tuple1 :: tuple(), Tuple2 :: tuple(), Value :: term().
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a tuple that is a copy of argument Tuple1 with the element specified │ │ │ by integer argument Index (the first element is the element with index 1) │ │ │ -replaced by argument Value.

    For example:

    > setelement(2, {10, green, bottles}, red).
    │ │ │ -{10,red,bottles}
    │ │ │ +replaced by argument Value.

    For example:

    > setelement(2, {10, green, bottles}, red).
    │ │ │ +{10,red,bottles}
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -11440,17 +11440,17 @@ │ │ │
    │ │ │ │ │ │
    -spec size(Item) -> non_neg_integer() when Item :: tuple() | binary().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns the number of elements in a tuple or the number of bytes in a binary or │ │ │ -bitstring.

    For example:

    > size({morni, mulle, bwange}).
    │ │ │ +bitstring.

    For example:

    > size({morni, mulle, bwange}).
    │ │ │  3
    │ │ │ -> size(<<11, 22, 33>>).
    │ │ │ +> size(<<11, 22, 33>>).
    │ │ │  3

    For bitstrings, the number of whole bytes is returned. That is, if the number of │ │ │ bits in the bitstring is not divisible by 8, the resulting number of bytes is │ │ │ rounded down.

    See also tuple_size/1, byte_size/1, and bit_size/1.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11474,23 +11474,23 @@ │ │ │
    │ │ │ │ │ │
    -spec split_binary(Bin, Pos) -> {binary(), binary()} when Bin :: binary(), Pos :: non_neg_integer().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a tuple containing the binaries that are the result of splitting Bin │ │ │ -into two parts at position Pos.

    This is not a destructive operation. After the operation, there are three binaries altogether.

    For example:

    > B = list_to_binary("0123456789").
    │ │ │ -<<"0123456789">>
    │ │ │ -> byte_size(B).
    │ │ │ +into two parts at position Pos.

    This is not a destructive operation. After the operation, there are three binaries altogether.

    For example:

    > B = list_to_binary("0123456789").
    │ │ │ +<<"0123456789">>
    │ │ │ +> byte_size(B).
    │ │ │  10
    │ │ │ -> {B1, B2} = split_binary(B,3).
    │ │ │ -{<<"012">>,<<"3456789">>}
    │ │ │ -> byte_size(B1).
    │ │ │ +> {B1, B2} = split_binary(B,3).
    │ │ │ +{<<"012">>,<<"3456789">>}
    │ │ │ +> byte_size(B1).
    │ │ │  3
    │ │ │ -> byte_size(B2).
    │ │ │ +> byte_size(B2).
    │ │ │  7
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns a binary data object that is the result of encoding Term according to │ │ │ the Erlang external term format.

    This can be used for various purposes, for example, writing a term to a file in │ │ │ an efficient way, or sending an Erlang term to some type of communications │ │ │ -channel not supported by distributed Erlang.

    > Bin = term_to_binary(hello).
    │ │ │ -<<131,100,0,5,104,101,108,108,111>>
    │ │ │ -> hello = binary_to_term(Bin).
    │ │ │ +channel not supported by distributed Erlang.

    > Bin = term_to_binary(hello).
    │ │ │ +<<131,100,0,5,104,101,108,108,111>>
    │ │ │ +> hello = binary_to_term(Bin).
    │ │ │  hello

    See also binary_to_term/1.

    Note

    There is no guarantee that this function will return the same encoded │ │ │ representation for the same term.

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ @@ -11741,18 +11741,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec tl(List) -> Tail when List :: nonempty_maybe_improper_list(), Tail :: term().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns the tail of List, that is, the list minus the first element

    It works with improper lists.

    Examples:

    > tl([geesties, guilies, beasties]).
    │ │ │ -[guilies, beasties]
    > tl([geesties]).
    │ │ │ -[]
    > tl([geesties, guilies, beasties | improper_end]).
    │ │ │ -[guilies, beasties | improper_end]
    > tl([geesties | improper_end]).
    │ │ │ +

    Returns the tail of List, that is, the list minus the first element

    It works with improper lists.

    Examples:

    > tl([geesties, guilies, beasties]).
    │ │ │ +[guilies, beasties]
    > tl([geesties]).
    │ │ │ +[]
    > tl([geesties, guilies, beasties | improper_end]).
    │ │ │ +[guilies, beasties | improper_end]
    > tl([geesties | improper_end]).
    │ │ │  improper_end

    Failure: badarg if List is an empty list [].

    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11775,18 +11775,18 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec trunc(Number) -> integer() when Number :: number().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Truncates the decimals of Number.

    For example:

    > trunc(5.7).
    │ │ │ -5
    > trunc(-5.7).
    │ │ │ --5
    > trunc(5).
    │ │ │ -5
    > trunc(36028797018963969.0).
    │ │ │ +

    Truncates the decimals of Number.

    For example:

    > trunc(5.7).
    │ │ │ +5
    > trunc(-5.7).
    │ │ │ +-5
    > trunc(5).
    │ │ │ +5
    > trunc(36028797018963969.0).
    │ │ │  36028797018963968

    In the last example, trunc(36028797018963969.0) evaluates to │ │ │ 36028797018963968. The reason for this is that the number │ │ │ 36028797018963969.0 cannot be represented exactly as a float value. Instead, │ │ │ the float literal is represented as 36028797018963968.0, which is the closest │ │ │ number that can be represented exactly as a float value. See │ │ │ Representation of Floating Point Numbers │ │ │ for additional information.

    │ │ │ @@ -11815,15 +11815,15 @@ │ │ │ │ │ │
    │ │ │ │ │ │
    -spec tuple_size(Tuple) -> non_neg_integer() when Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │ -

    Returns an integer that is the number of elements in Tuple.

    For example:

    > tuple_size({morni, mulle, bwange}).
    │ │ │ +

    Returns an integer that is the number of elements in Tuple.

    For example:

    > tuple_size({morni, mulle, bwange}).
    │ │ │  3
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -11845,16 +11845,16 @@ │ │ │
    │ │ │ │ │ │
    -spec tuple_to_list(Tuple) -> [term()] when Tuple :: tuple().
    │ │ │ │ │ │
    │ │ │ │ │ │

    Returns a list corresponding to Tuple. Tuple can contain any Erlang terms. │ │ │ -Example:

    > tuple_to_list({share, {'Ericsson_B', 163}}).
    │ │ │ -[share,{'Ericsson_B',163}]
    │ │ │ +Example:

    > tuple_to_list({share, {'Ericsson_B', 163}}).
    │ │ │ +[share,{'Ericsson_B',163}]
    │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ │ │ │ @@ -12009,35 +12009,35 @@ │ │ │ │ │ │

    Create an alias which can be used when sending messages to the process that │ │ │ created the alias. When the alias has been deactivated, messages sent using the │ │ │ alias will be dropped. An alias can be deactivated using unalias/1.

    Currently available options for alias/1:

    • explicit_unalias - The alias can only be deactivated via a call to │ │ │ unalias/1. This is also the default behaviour if no options │ │ │ are passed or if alias/0 is called.

    • reply - The alias will be automatically deactivated when a reply message │ │ │ sent via the alias is received. The alias can also still be deactivated via a │ │ │ -call to unalias/1.

    Example:

    server() ->
    │ │ │ +call to unalias/1.

    Example:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, AliasReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │ +        {request, AliasReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPid, Request) ->
    │ │ │ -    AliasReqId = alias([reply]),
    │ │ │ -    ServerPid ! {request, AliasReqId, Request},
    │ │ │ +client(ServerPid, Request) ->
    │ │ │ +    AliasReqId = alias([reply]),
    │ │ │ +    ServerPid ! {request, AliasReqId, Request},
    │ │ │      %% Alias will be automatically deactivated if we receive a reply
    │ │ │      %% since we used the 'reply' option...
    │ │ │      receive
    │ │ │ -        {reply, AliasReqId, Result} -> Result
    │ │ │ +        {reply, AliasReqId, Result} -> Result
    │ │ │      after 5000 ->
    │ │ │ -            unalias(AliasReqId),
    │ │ │ +            unalias(AliasReqId),
    │ │ │              %% Flush message queue in case the reply arrived
    │ │ │              %% just before the alias was deactivated...
    │ │ │ -            receive {reply, AliasReqId, Result} -> Result
    │ │ │ -            after 0 -> exit(timeout)
    │ │ │ +            receive {reply, AliasReqId, Result} -> Result
    │ │ │ +            after 0 -> exit(timeout)
    │ │ │              end
    │ │ │      end.

    Note that both the server and the client in this example must be executing on at │ │ │ least OTP 24 systems in order for this to work.

    For more information on process aliases see the │ │ │ Process Aliases section of │ │ │ the Erlang Reference Manual.

    │ │ │
    │ │ │ │ │ │ @@ -12096,17 +12096,17 @@ │ │ │
    -spec apply(Module, Function, Args) -> term()
    │ │ │                 when Module :: module(), Function :: atom(), Args :: [term()].
    │ │ │ │ │ │ │ │ │ │ │ │

    Returns the result of applying Function in Module to Args. The applied │ │ │ function must be exported from Module. The arity of the function is the length │ │ │ -of Args.

    For example:

    > apply(lists, reverse, [[a, b, c]]).
    │ │ │ -[c,b,a]
    │ │ │ -> apply(erlang, atom_to_list, ['Erlang']).
    │ │ │ +of Args.

    For example:

    > apply(lists, reverse, [[a, b, c]]).
    │ │ │ +[c,b,a]
    │ │ │ +> apply(erlang, atom_to_list, ['Erlang']).
    │ │ │  "Erlang"

    If the number of arguments are known at compile time, the call is better written │ │ │ as Module:Function(Arg1, Arg2, ..., ArgN).

    Failure: error_handler:undefined_function/3 is called if the applied function │ │ │ is not exported. The error handler can be redefined (see process_flag/2). If │ │ │ error_handler is undefined, or if the user has redefined the default │ │ │ error_handler so the replacement module is undefined, an error with reason │ │ │ undef is generated.

    │ │ │ │ │ │ @@ -12213,17 +12213,17 @@ │ │ │ when MonitorRef :: reference(), OptionList :: [Option], Option :: flush | info.
    │ │ │ │ │ │ │ │ │ │ │ │

    The returned value is true unless info is part of OptionList.

    demonitor(MonitorRef, []) is equivalent to │ │ │ demonitor(MonitorRef).

    Options:

    • flush - Removes (one) {_, MonitorRef, _, _, _} message, if there is │ │ │ one, from the caller message queue after monitoring has been stopped.

      Calling demonitor(MonitorRef, [flush]) is equivalent to the │ │ │ -following, but more efficient:

      demonitor(MonitorRef),
      │ │ │ +following, but more efficient:

      demonitor(MonitorRef),
      │ │ │  receive
      │ │ │ -    {_, MonitorRef, _, _, _} ->
      │ │ │ +    {_, MonitorRef, _, _, _} ->
      │ │ │          true
      │ │ │  after 0 ->
      │ │ │          true
      │ │ │  end
    • info - The returned value is one of the following:

      • true - The monitor was found and removed. In this case, no 'DOWN' │ │ │ message corresponding to this monitor has been delivered and will not be │ │ │ delivered.

      • false - The monitor was not found and could not be removed. This │ │ │ probably because someone already has placed a 'DOWN' message corresponding │ │ │ @@ -12252,18 +12252,18 @@ │ │ │ │ │ │

        │ │ │ │ │ │
        -spec erase() -> [{Key, Val}] when Key :: term(), Val :: term().
        │ │ │ │ │ │
        │ │ │ │ │ │ -

        Returns the process dictionary and deletes it.

        For example:

        > put(key1, {1, 2, 3}),
        │ │ │ -put(key2, [a, b, c]),
        │ │ │ -erase().
        │ │ │ -[{key1,{1,2,3}},{key2,[a,b,c]}]
        │ │ │ +

        Returns the process dictionary and deletes it.

        For example:

        > put(key1, {1, 2, 3}),
        │ │ │ +put(key2, [a, b, c]),
        │ │ │ +erase().
        │ │ │ +[{key1,{1,2,3}},{key2,[a,b,c]}]
        │ │ │ │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Returns the value Val associated with Key and deletes it from the process │ │ │ dictionary. Returns undefined if no value is associated with Key.

        The average time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

        For example:

        > put(key1, {merry, lambs, are, playing}),
        │ │ │ -X = erase(key1),
        │ │ │ -{X, erase(key1)}.
        │ │ │ -{{merry,lambs,are,playing},undefined}
        │ │ │ +items in the process dictionary.

        For example:

        > put(key1, {merry, lambs, are, playing}),
        │ │ │ +X = erase(key1),
        │ │ │ +{X, erase(key1)}.
        │ │ │ +{{merry,lambs,are,playing},undefined}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Raises an exception of class error with the reason Reason.

        As evaluating this function causes an exception to be thrown, it has no return value.

        The intent of the exception class error is to signal that an unexpected error │ │ │ has happened (for example, a function is called with a parameter that has an │ │ │ incorrect type). See the guide about │ │ │ errors and error handling for additional information. │ │ │ -Example:

        > catch error(foobar).
        │ │ │ -{'EXIT',{foobar,[{shell,apply_fun,3,
        │ │ │ -                        [{file,"shell.erl"},{line,906}]},
        │ │ │ -                 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,677}]},
        │ │ │ -                 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,430}]},
        │ │ │ -                 {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
        │ │ │ -                 {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
        │ │ │ -                 {shell,eval_loop,3,[{file,"shell.erl"},{line,627}]}]}}
        │ │ │ +Example:

        > catch error(foobar).
        │ │ │ +{'EXIT',{foobar,[{shell,apply_fun,3,
        │ │ │ +                        [{file,"shell.erl"},{line,906}]},
        │ │ │ +                 {erl_eval,do_apply,6,[{file,"erl_eval.erl"},{line,677}]},
        │ │ │ +                 {erl_eval,expr,5,[{file,"erl_eval.erl"},{line,430}]},
        │ │ │ +                 {shell,exprs,7,[{file,"shell.erl"},{line,687}]},
        │ │ │ +                 {shell,eval_exprs,7,[{file,"shell.erl"},{line,642}]},
        │ │ │ +                 {shell,eval_loop,3,[{file,"shell.erl"},{line,627}]}]}}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12365,21 +12365,21 @@ │ │ │ none.

        If Args is a list, it is used to provide the arguments for the current │ │ │ function in the stack back-trace. If it is none, the arity of the calling │ │ │ function is used in the stacktrace. As evaluating this function causes an │ │ │ exception to be raised, it has no return value.

        The intent of the exception class error is to signal that an unexpected error │ │ │ has happened (for example, a function is called with a parameter that has an │ │ │ incorrect type). See the guide about │ │ │ errors and error handling for additional information. │ │ │ -Example:

        test.erl:

        -module(test).
        │ │ │ --export([example_fun/2]).
        │ │ │ +Example:

        test.erl:

        -module(test).
        │ │ │ +-export([example_fun/2]).
        │ │ │  
        │ │ │ -example_fun(A1, A2) ->
        │ │ │ -    erlang:error(my_error, [A1, A2]).

        Erlang shell:

        6> c(test).
        │ │ │ -{ok,test}
        │ │ │ -7> test:example_fun(arg1,"this is the second argument").
        │ │ │ +example_fun(A1, A2) ->
        │ │ │ +    erlang:error(my_error, [A1, A2]).

        Erlang shell:

        6> c(test).
        │ │ │ +{ok,test}
        │ │ │ +7> test:example_fun(arg1,"this is the second argument").
        │ │ │  ** exception error: my_error
        │ │ │       in function  test:example_fun/2
        │ │ │           called as test:example_fun(arg1,"this is the second argument")
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ @@ -12456,18 +12456,18 @@ │ │ │ │ │ │ │ │ │ │ │ │

        Raises an exception of class exit with exit reason Reason.

        As evaluating this function causes an exception to be raised, it has no return value.

        The intent of the exception class exit is that the current process should be │ │ │ stopped (for example when a message telling a process to stop is received).

        This function differ from error/1,2,3 by causing an exception of │ │ │ a different class and by having a reason that does not include the list of │ │ │ functions from the call stack.

        See the guide about errors and error handling for │ │ │ -additional information.

        Example:

        > exit(foobar).
        │ │ │ +additional information.

        Example:

        > exit(foobar).
        │ │ │  ** exception exit: foobar
        │ │ │ -> catch exit(foobar).
        │ │ │ -{'EXIT',foobar}

        Note

        If a process calls exit(kill) and does not catch the exception, │ │ │ +> catch exit(foobar). │ │ │ +{'EXIT',foobar}

        Note

        If a process calls exit(kill) and does not catch the exception, │ │ │ it will terminate with exit reason kill and also emit exit signals with exit │ │ │ reason kill (not killed) to all linked processes. Such exit signals with │ │ │ exit reason kill can be trapped by the linked processes. Note that this │ │ │ means that signals with exit reason kill behave differently depending on how │ │ │ they are sent because the signal will be untrappable if a process sends such a │ │ │ signal to another process with erlang:exit/2.

        │ │ │
        │ │ │ @@ -12660,19 +12660,19 @@ │ │ │
        │ │ │ │ │ │
        -spec get() -> [{Key, Val}] when Key :: term(), Val :: term().
        │ │ │ │ │ │
        │ │ │ │ │ │

        Returns the process dictionary as a list of {Key, Val} tuples. The items in │ │ │ -the returned list can be in any order.

        For example:

        > put(key1, merry),
        │ │ │ -put(key2, lambs),
        │ │ │ -put(key3, {are, playing}),
        │ │ │ -get().
        │ │ │ -[{key1,merry},{key2,lambs},{key3,{are,playing}}]
        │ │ │ +the returned list can be in any order.

        For example:

        > put(key1, merry),
        │ │ │ +put(key2, lambs),
        │ │ │ +put(key3, {are, playing}),
        │ │ │ +get().
        │ │ │ +[{key1,merry},{key2,lambs},{key3,{are,playing}}]
        │ │ │ │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ │ │ │

        Returns the value Val associated with Key in the process dictionary, or │ │ │ undefined if Key does not exist.

        The expected time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

        For example:

        > put(key1, merry),
        │ │ │ -put(key2, lambs),
        │ │ │ -put({any, [valid, term]}, {are, playing}),
        │ │ │ -get({any, [valid, term]}).
        │ │ │ -{are,playing}
        │ │ │ +items in the process dictionary.

        For example:

        > put(key1, merry),
        │ │ │ +put(key2, lambs),
        │ │ │ +put({any, [valid, term]}, {are, playing}),
        │ │ │ +get({any, [valid, term]}).
        │ │ │ +{are,playing}
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12730,19 +12730,19 @@ │ │ │ │ │ │ │ │ │

        Returns a list of all keys present in the process dictionary. The items in the │ │ │ -returned list can be in any order.

        For example:

        > put(dog, {animal,1}),
        │ │ │ -put(cow, {animal,2}),
        │ │ │ -put(lamb, {animal,3}),
        │ │ │ -get_keys().
        │ │ │ -[dog,cow,lamb]
        │ │ │ +returned list can be in any order.

        For example:

        > put(dog, {animal,1}),
        │ │ │ +put(cow, {animal,2}),
        │ │ │ +put(lamb, {animal,3}),
        │ │ │ +get_keys().
        │ │ │ +[dog,cow,lamb]
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12763,22 +12763,22 @@ │ │ │ │ │ │ │ │ │

        Returns a list of keys that are associated with the value Val in the process │ │ │ -dictionary. The items in the returned list can be in any order.

        For example:

        > put(mary, {1, 2}),
        │ │ │ -put(had, {1, 2}),
        │ │ │ -put(a, {1, 2}),
        │ │ │ -put(little, {1, 2}),
        │ │ │ -put(dog, {1, 3}),
        │ │ │ -put(lamb, {1, 2}),
        │ │ │ -get_keys({1, 2}).
        │ │ │ -[mary,had,a,little,lamb]
        │ │ │ +dictionary. The items in the returned list can be in any order.

        For example:

        > put(mary, {1, 2}),
        │ │ │ +put(had, {1, 2}),
        │ │ │ +put(a, {1, 2}),
        │ │ │ +put(little, {1, 2}),
        │ │ │ +put(dog, {1, 3}),
        │ │ │ +put(lamb, {1, 2}),
        │ │ │ +get_keys({1, 2}).
        │ │ │ +[mary,had,a,little,lamb]
        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ │ │ │ @@ -12925,17 +12925,17 @@ │ │ │

        Pid must refer to a process at the local node.

        Returns true if the process exists and is alive, that is, is not exiting and │ │ │ has not exited. Otherwise returns false.

        If process P1 calls is_process_alive(P2Pid) it is │ │ │ guaranteed that all signals, sent from P1 to P2 (P2 is the process with │ │ │ identifier P2Pid) before the call, will be delivered to P2 before the │ │ │ aliveness of P2 is checked. This guarantee means that one can use │ │ │ is_process_alive/1 to let a process P1 wait until a │ │ │ process P2, which has got an exit signal with reason kill from P1, is │ │ │ -killed.

        For example:

        exit(P2Pid, kill),
        │ │ │ +killed.

        For example:

        exit(P2Pid, kill),
        │ │ │  % P2 might not be killed
        │ │ │ -is_process_alive(P2Pid),
        │ │ │ +is_process_alive(P2Pid),
        │ │ │  % P2 is not alive (the call above always return false)

        See the documentation about signals │ │ │ and erlang:exit/2 for more information about signals and exit │ │ │ signals.

        │ │ │
        │ │ │ │ │ │
        │ │ │ │ │ │ @@ -13016,24 +13016,24 @@ │ │ │
        -spec monitor(process, monitor_process_identifier()) -> MonitorRef when MonitorRef :: reference();
        │ │ │               (port, monitor_port_identifier()) -> MonitorRef when MonitorRef :: reference();
        │ │ │               (time_offset, clock_service) -> MonitorRef when MonitorRef :: reference().
        │ │ │ │ │ │ │ │ │ │ │ │

        Sends a monitor request of type Type to the entity identified by Item.

        If the monitored entity does not exist or it changes monitored state, the caller │ │ │ -of monitor/2 is notified by a message on the following format:

        {Tag, MonitorRef, Type, Object, Info}

        Note

        The monitor request is an asynchronous signal. That is, it takes time before │ │ │ +of monitor/2 is notified by a message on the following format:

        {Tag, MonitorRef, Type, Object, Info}

        Note

        The monitor request is an asynchronous signal. That is, it takes time before │ │ │ the signal reaches its destination.

        Type can be one of the following atoms: process, port or time_offset.

        A process or port monitor is triggered only once, after that it is removed │ │ │ from both monitoring process and the monitored entity. Monitors are fired when │ │ │ the monitored process or port terminates, does not exist at the moment of │ │ │ creation, or if the connection to it is lost. If the connection to it is lost, │ │ │ we do not know if it still exists. The monitoring is also turned off when │ │ │ demonitor/1 is called.

        A process or port monitor by name resolves the RegisteredName to pid/0 │ │ │ or port/0 only once at the moment of monitor instantiation, later changes to │ │ │ the name registration will not affect the existing monitor.

        When a process or port monitor is triggered, a 'DOWN' message is sent that │ │ │ -has the following pattern:

        {'DOWN', MonitorRef, Type, Object, Info}

        In the monitor message MonitorRef and Type are the same as described │ │ │ +has the following pattern:

        {'DOWN', MonitorRef, Type, Object, Info}

        In the monitor message MonitorRef and Type are the same as described │ │ │ earlier, and:

        • Object - The monitored entity, which triggered the event. When │ │ │ monitoring a process or a local port, Object will be equal to the pid/0 │ │ │ or port/0 that was being monitored. When monitoring process or port by │ │ │ name, Object will have format {RegisteredName, Node} where │ │ │ RegisteredName is the name which has been used with │ │ │ monitor/2 call and Node is local or remote node name (for │ │ │ ports monitored by name, Node is always local node name).

        • Info - Either the exit reason of the process, noproc (process or port │ │ │ @@ -13069,15 +13069,15 @@ │ │ │ offset is changed when the runtime system detects that the │ │ │ OS system time has changed. The runtime │ │ │ system does, however, not detect this immediately when it occurs. A task │ │ │ checking the time offset is scheduled to execute at least once a minute, so │ │ │ under normal operation this is to be detected within a minute, but during │ │ │ heavy load it can take longer time.

          The monitor is not automatically removed after it has been triggered. That │ │ │ is, repeated changes of the time offset trigger the monitor repeatedly.

          When the monitor is triggered a 'CHANGE' message is sent to the monitoring │ │ │ -process. A 'CHANGE' message has the following pattern:

          {'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

          where MonitorRef, Type, and Item are the same as described above, and │ │ │ +process. A 'CHANGE' message has the following pattern:

          {'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

          where MonitorRef, Type, and Item are the same as described above, and │ │ │ NewTimeOffset is the new time offset.

          When the 'CHANGE' message has been received you are guaranteed not to │ │ │ retrieve the old time offset when calling │ │ │ erlang:time_offset/0. Notice that you can observe the │ │ │ change of the time offset when calling erlang:time_offset/0 before you get │ │ │ the 'CHANGE' message.

          Available since OTP 18.0.

        Making several calls to monitor/2 for the same Item and/or │ │ │ Type is not an error; it results in as many independent monitoring instances.

        The monitor functionality is expected to be extended. That is, other Types and │ │ │ Items are expected to be supported in a future release.

        Note

        If or when monitor/2 is extended, other possible values for │ │ │ @@ -13133,78 +13133,78 @@ │ │ │ via the alias is received. When a reply message is received via the alias │ │ │ the monitor will also be automatically removed. This is useful in │ │ │ client/server scenarios when a client monitors the server and will get the │ │ │ reply via the alias. Once the response is received both the alias and the │ │ │ monitor will be automatically removed regardless of whether the response is │ │ │ a reply or a 'DOWN' message. The alias can also still be deactivated via a │ │ │ call to unalias/1. Note that if the alias is removed using │ │ │ -the unalias/1 BIF, the monitor will still be left active.

      Example:

      server() ->
      │ │ │ +the unalias/1 BIF, the monitor will still be left active.

    Example:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, AliasReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │ +        {request, AliasReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            AliasReqId ! {reply, AliasReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPid, Request) ->
    │ │ │ -    AliasMonReqId = monitor(process, ServerPid, [{alias, reply_demonitor}]),
    │ │ │ -    ServerPid ! {request, AliasMonReqId, Request},
    │ │ │ +client(ServerPid, Request) ->
    │ │ │ +    AliasMonReqId = monitor(process, ServerPid, [{alias, reply_demonitor}]),
    │ │ │ +    ServerPid ! {request, AliasMonReqId, Request},
    │ │ │      %% Alias as well as monitor will be automatically deactivated if we
    │ │ │      %% receive a reply or a 'DOWN' message since we used 'reply_demonitor'
    │ │ │      %% as unalias option...
    │ │ │      receive
    │ │ │ -        {reply, AliasMonReqId, Result} ->
    │ │ │ +        {reply, AliasMonReqId, Result} ->
    │ │ │              Result;
    │ │ │ -        {'DOWN', AliasMonReqId, process, ServerPid, ExitReason} ->
    │ │ │ -            error(ExitReason)
    │ │ │ +        {'DOWN', AliasMonReqId, process, ServerPid, ExitReason} ->
    │ │ │ +            error(ExitReason)
    │ │ │      end.

    Note that both the server and the client in this example must be executing on │ │ │ at least OTP 24 systems in order for this to work.

    For more information on process aliases see the │ │ │ Process Aliases section │ │ │ of the Erlang Reference Manual.

  • {tag, UserDefinedTag} - Replace the default Tag with UserDefinedTag │ │ │ in the monitor message delivered when the │ │ │ monitor is triggered. For example, when monitoring a process, the 'DOWN' tag │ │ │ in the down message will be replaced by UserDefinedTag.

    An example of how the {tag, UserDefinedTag} option can be used in order to │ │ │ enable the new │ │ │ selective receive optimization, │ │ │ -introduced in OTP 24, when making multiple requests to different servers:

    server() ->
    │ │ │ +introduced in OTP 24, when making multiple requests to different servers:

    server() ->
    │ │ │      receive
    │ │ │ -        {request, From, ReqId, Request} ->
    │ │ │ -            Result = perform_request(Request),
    │ │ │ -            From ! {reply, self(), ReqId, Result}
    │ │ │ +        {request, From, ReqId, Request} ->
    │ │ │ +            Result = perform_request(Request),
    │ │ │ +            From ! {reply, self(), ReqId, Result}
    │ │ │      end,
    │ │ │ -    server().
    │ │ │ +    server().
    │ │ │  
    │ │ │ -client(ServerPids, Request) when is_list(ServerPids) ->
    │ │ │ -    ReqId = make_ref(),
    │ │ │ -    lists:foreach(fun (ServerPid) ->
    │ │ │ -                          _ = monitor(process, ServerPid,
    │ │ │ -                                      [{tag, {'DOWN', ReqId}}]),
    │ │ │ -                          ServerPid ! {request, self(), ReqId, Request}
    │ │ │ +client(ServerPids, Request) when is_list(ServerPids) ->
    │ │ │ +    ReqId = make_ref(),
    │ │ │ +    lists:foreach(fun (ServerPid) ->
    │ │ │ +                          _ = monitor(process, ServerPid,
    │ │ │ +                                      [{tag, {'DOWN', ReqId}}]),
    │ │ │ +                          ServerPid ! {request, self(), ReqId, Request}
    │ │ │                    end,
    │ │ │ -                  ServerPids),
    │ │ │ -    receive_replies(ReqId, length(ServerPids), []).
    │ │ │ +                  ServerPids),
    │ │ │ +    receive_replies(ReqId, length(ServerPids), []).
    │ │ │  
    │ │ │ -receive_replies(_ReqId, 0, Acc) ->
    │ │ │ +receive_replies(_ReqId, 0, Acc) ->
    │ │ │      Acc;
    │ │ │ -receive_replies(ReqId, N, Acc) ->
    │ │ │ +receive_replies(ReqId, N, Acc) ->
    │ │ │      %% The compiler will detect that we match on the 'ReqId'
    │ │ │      %% reference in all clauses, and will enable the selective
    │ │ │      %% receive optimization which makes the receive able to
    │ │ │      %% skip past all messages present in the message queue at
    │ │ │      %% the time when the 'ReqId' reference was created...
    │ │ │      Res = receive
    │ │ │ -              {reply, ServerPid, ReqId, Result} ->
    │ │ │ +              {reply, ServerPid, ReqId, Result} ->
    │ │ │                    %% Here we typically would have deactivated the
    │ │ │                    %% monitor by a call to demonitor(Mon, [flush]) but
    │ │ │                    %% we ignore this in this example for simplicity...
    │ │ │ -                  {ok, ServerPid, Result};
    │ │ │ -              {{'DOWN', ReqId}, _Mon, process, ServerPid, ExitReason} ->
    │ │ │ -                  {error, ServerPid, ExitReason}
    │ │ │ +                  {ok, ServerPid, Result};
    │ │ │ +              {{'DOWN', ReqId}, _Mon, process, ServerPid, ExitReason} ->
    │ │ │ +                  {error, ServerPid, ExitReason}
    │ │ │            end,
    │ │ │ -    receive_replies(ReqId, N-1, [Res | Acc]).

    In order for this example to work as intended, the client must be executing on │ │ │ + receive_replies(ReqId, N-1, [Res | Acc]).

    In order for this example to work as intended, the client must be executing on │ │ │ at least an OTP 24 system, but the servers may execute on older systems.

  • │ │ │ │ │ │ │ │ │
    │ │ │ │ │ │
    │ │ │ │ │ │ @@ -13910,15 +13910,15 @@ │ │ │ (sensitive, Boolean) -> OldBoolean when Boolean :: boolean(), OldBoolean :: boolean(); │ │ │ ({monitor_nodes, term()}, term()) -> term(); │ │ │ (monitor_nodes, term()) -> term().
    │ │ │ │ │ │ │ │ │ │ │ │

    Sets the process flag indicated to the specified value. Returns the previous value │ │ │ -of the flag.

    Flag is one of the following:

    • process_flag(async_dist, boolean())

      Enable or disable fully asynchronous distributed signaling for the calling │ │ │ +of the flag.

      Flag is one of the following:

      • process_flag(async_dist, boolean())

        Enable or disable fully asynchronous distributed signaling for the calling │ │ │ process. When disabled, which is the default, the process sending a distributed │ │ │ signal will block in the send operation if the buffer for the distribution │ │ │ channel reach the distribution buffer busy limit. The │ │ │ process will remain blocked until the buffer shrinks enough. This might in some │ │ │ cases take a substantial amount of time. When async_dist is enabled, send │ │ │ operations of distributed signals will always buffer the signal on the outgoing │ │ │ distribution channel and then immediately return. That is, these send operations │ │ │ @@ -13935,22 +13935,22 @@ │ │ │ caller.

        The async_dist flag can also be set on a new process when spawning it using │ │ │ the spawn_opt() BIF with the option │ │ │ {async_dist, Enable}. The default │ │ │ async_dist flag to use on newly spawned processes can be set by passing the │ │ │ command line argument +pad <boolean> when starting the │ │ │ runtime system. If the +pad <boolean> command line argument is not passed, the │ │ │ default value of the async_dist flag will be false.

        You can inspect the state of the async_dist process flag of a process by │ │ │ -calling process_info(Pid, async_dist).

      • process_flag(trap_exit, boolean())

        When trap_exit is set to true, exit signals arriving to a process are │ │ │ +calling process_info(Pid, async_dist).

      • process_flag(trap_exit, boolean())

        When trap_exit is set to true, exit signals arriving to a process are │ │ │ converted to {'EXIT', From, Reason} messages, which can be received as │ │ │ ordinary messages. If trap_exit is set to false, the process exits if it │ │ │ receives an exit signal other than normal and the exit signal is propagated to │ │ │ -its linked processes. Application processes are normally not to trap exits.

        See also exit/2.

      • process_flag(error_handler, module())

        Used by a process to redefine the error_handler for undefined function calls and │ │ │ +its linked processes. Application processes are normally not to trap exits.

        See also exit/2.

      • process_flag(error_handler, module())

        Used by a process to redefine the error_handler for undefined function calls and │ │ │ undefined registered processes. Use this flag with substantial caution, as code │ │ │ -auto-loading depends on the correct operation of the error handling module.

      • process_flag(fullsweep_after,  non_neg_integer())

        Changes the maximum number of generational collections before forcing a │ │ │ -fullsweep for the calling process.

      • process_flag(min_heap_size, non_neg_integer())

        Changes the minimum heap size for the calling process.

      • process_flag(min_bin_vheap_size, non_neg_integer())

        Changes the minimum binary virtual heap size for the calling process.

      • process_flag(max_heap_size, max_heap_size())

        This flag sets the maximum heap size for the calling process. If MaxHeapSize │ │ │ +auto-loading depends on the correct operation of the error handling module.

      • process_flag(fullsweep_after,  non_neg_integer())

        Changes the maximum number of generational collections before forcing a │ │ │ +fullsweep for the calling process.

      • process_flag(min_heap_size, non_neg_integer())

        Changes the minimum heap size for the calling process.

      • process_flag(min_bin_vheap_size, non_neg_integer())

        Changes the minimum binary virtual heap size for the calling process.

      • process_flag(max_heap_size, max_heap_size())

        This flag sets the maximum heap size for the calling process. If MaxHeapSize │ │ │ is an integer, the system default values for kill and error_logger are used.

        For details on how the heap grows, see │ │ │ Sizing the heap in the ERTS internal │ │ │ documentation.

        • size - The maximum size in words of the process. If set to zero, the │ │ │ heap size limit is disabled. badarg is be thrown if the value is smaller │ │ │ than min_heap_size. The size check │ │ │ is only done when a garbage collection is triggered.

          size is the entire heap of the process when garbage collection is triggered. │ │ │ This includes all generational heaps, the process stack, any │ │ │ @@ -13978,27 +13978,27 @@ │ │ │ of it is referred by the process.

          If include_shared_binaries is not defined in the map, the system default is │ │ │ used. The default system default is false. It can be changed by either the │ │ │ option +hmaxib in erl, or │ │ │ erlang:system_flag(max_heap_size, MaxHeapSize).

        The heap size of a process is quite hard to predict, especially the amount of │ │ │ memory that is used during the garbage collection. When contemplating using this │ │ │ option, it is recommended to first run it in production with kill set to │ │ │ false and inspect the log events to see what the normal peak sizes of the │ │ │ -processes in the system is and then tune the value accordingly.

      • process_flag(message_queue_data, message_queue_data())

        Determines how messages in the message queue are stored, as follows:

        • off_heap - All messages in the message queue will be stored outside │ │ │ +processes in the system is and then tune the value accordingly.

        • process_flag(message_queue_data, message_queue_data())

          Determines how messages in the message queue are stored, as follows:

          • off_heap - All messages in the message queue will be stored outside │ │ │ the process heap. This implies that no messages in the message queue will be │ │ │ part of a garbage collection of the process.

          • on_heap - All messages in the message queue will eventually be placed on │ │ │ the process heap. They can, however, be temporarily stored off the heap. This │ │ │ is how messages have always been stored up until ERTS 8.0.

          The default value of the message_queue_data process flag is determined by the │ │ │ command-line argument +hmqd in erl.

          If the process may potentially accumulate a large number of messages in its │ │ │ queue it is recommended to set the flag value to off_heap. This is due to the │ │ │ fact that the garbage collection of a process that has a large number of │ │ │ messages stored on the heap can become extremely expensive and the process can │ │ │ consume large amounts of memory. The performance of the actual message passing │ │ │ is, however, generally better when the flag value is on_heap.

          Changing the flag value causes any existing messages to be moved. The move │ │ │ operation is initiated, but not necessarily completed, by the time the function │ │ │ -returns.

        • process_flag(priority, priority_level())

          Sets the process priority. Level is an atom. Four priority levels exist: │ │ │ +returns.

        • process_flag(priority, priority_level())

          Sets the process priority. Level is an atom. Four priority levels exist: │ │ │ low, normal, high, and max. Default is normal.

          Note

          Priority level max is reserved for internal use in the Erlang runtime │ │ │ system, and is not to be used by others.

          Internally in each priority level, processes are scheduled in a round robin │ │ │ fashion.

          Execution of processes on priority normal and low are interleaved. Processes │ │ │ on priority low are selected for execution less frequently than processes on │ │ │ priority normal.

          When runnable processes on priority high exist, no processes on priority low │ │ │ or normal are selected for execution. Notice however that this does not mean │ │ │ that no processes on priority low or normal can run when processes are │ │ │ @@ -14019,24 +14019,24 @@ │ │ │ process during the call. Even if this is not the case with one version of the │ │ │ code that you have no control over, it can be the case in a future version of │ │ │ it. This can, for example, occur if a high priority process triggers code │ │ │ loading, as the code server runs on priority normal.

          Other priorities than normal are normally not needed. When other priorities │ │ │ are used, use them with care, especially priority high. A process on │ │ │ priority high is only to perform work for short periods. Busy looping for long │ │ │ periods in a high priority process causes most likely problems, as important │ │ │ -OTP servers run on priority normal.

        • process_flag(save_calls, 0..10000)

          N must be an integer in the interval 0..10000. If N > 0, call saving is made │ │ │ +OTP servers run on priority normal.

        • process_flag(save_calls, 0..10000)

          N must be an integer in the interval 0..10000. If N > 0, call saving is made │ │ │ active for the process. This means that information about the N most recent │ │ │ global function calls, BIF calls, sends, and receives made by the process are │ │ │ saved in a list, which can be retrieved with │ │ │ process_info(Pid, last_calls). A global function call is │ │ │ one in which the module of the function is explicitly mentioned. Only a fixed │ │ │ amount of information is saved, as follows:

          • A tuple {Module, Function, Arity} for function calls
          • The atoms send, 'receive', and timeout for sends and receives │ │ │ ('receive' when a message is received and timeout when a receive times │ │ │ out)

          If N = 0, call saving is disabled for the process, which is the default. │ │ │ -Whenever the size of the call saving list is set, its contents are reset.

        • process_flag(sensitive, boolean())

          Sets or clears flag sensitive for the current process. When a process has been │ │ │ +Whenever the size of the call saving list is set, its contents are reset.

        • process_flag(sensitive, boolean())

          Sets or clears flag sensitive for the current process. When a process has been │ │ │ marked as sensitive by calling │ │ │ process_flag(sensitive, true), features in the runtime │ │ │ system that can be used for examining the data or inner working of the process │ │ │ are silently disabled.

          Features that are disabled include (but are not limited to) the following:

          • Tracing. Trace flags can still be set for the process, but no trace messages │ │ │ of any kind are generated. (If flag sensitive is turned off, trace messages │ │ │ are again generated if any trace flags are set.)
          • Sequential tracing. The sequential trace token is propagated as usual, but no │ │ │ sequential trace messages are generated.

          process_info/1,2 cannot be used to read out the message queue or the process │ │ │ @@ -14280,16 +14280,16 @@ │ │ │ │ │ │ │ │ │ │ │ │

          Returns a list of process identifiers corresponding to all the processes │ │ │ currently existing on the local node.

          Notice that an exiting process exists, but is not alive. That is, │ │ │ is_process_alive/1 returns false for an exiting │ │ │ process, but its process identifier is part of the result returned from │ │ │ -processes/0.

          Example:

          > processes().
          │ │ │ -[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]
          │ │ │ +processes/0.

          Example:

          > processes().
          │ │ │ +[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]
          │ │ │ │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Adds a new Key to the process dictionary, associated with the value Val, and │ │ │ returns undefined. If Key exists, the old value is deleted and replaced by │ │ │ Val, and the function returns the old value.

          The average time complexity for the current implementation of this function is │ │ │ O(1) and the worst case time complexity is O(N), where N is the number of │ │ │ -items in the process dictionary.

          For example:

          > X = put(name, walrus), Y = put(name, carpenter),
          │ │ │ -Z = get(name),
          │ │ │ -{X, Y, Z}.
          │ │ │ -{undefined,walrus,carpenter}

          Note

          The values stored when put is evaluated within the scope of a catch are │ │ │ +items in the process dictionary.

          For example:

          > X = put(name, walrus), Y = put(name, carpenter),
          │ │ │ +Z = get(name),
          │ │ │ +{X, Y, Z}.
          │ │ │ +{undefined,walrus,carpenter}

          Note

          The values stored when put is evaluated within the scope of a catch are │ │ │ not retracted if a throw is evaluated, or if an error occurs.

          │ │ │
          │ │ │
          │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Registers the name RegName with a process identifier (pid) or a port │ │ │ identifier in the │ │ │ name registry. │ │ │ RegName, which must be an atom, can be used instead of the pid or port │ │ │ identifier in send operator (RegName ! Message) and most other BIFs that take │ │ │ -a pid or port identifies as an argument.

          For example:

          > register(db, Pid).
          │ │ │ +a pid or port identifies as an argument.

          For example:

          > register(db, Pid).
          │ │ │  true

          The registered name is considered a │ │ │ Directly Visible Erlang Resource │ │ │ and is automatically unregistered when the process terminates.

          Failures:

          • badarg - If PidOrPort is not an existing local process or port.

          • badarg - If RegName is already in use.

          • badarg - If the process or port is already registered (already has a │ │ │ name).

          • badarg - If RegName is the atom undefined.

          │ │ │
          │ │ │ │ │ │
          │ │ │ @@ -14427,16 +14427,16 @@ │ │ │ │ │ │
          │ │ │ │ │ │
          -spec registered() -> [RegName] when RegName :: atom().
          │ │ │ │ │ │
          │ │ │ │ │ │ -

          Returns a list of names that have been registered using register/2.

          For example:

          > registered().
          │ │ │ -[code_server, file_server, init, user, my_db]
          │ │ │ +

          Returns a list of names that have been registered using register/2.

          For example:

          > registered().
          │ │ │ +[code_server, file_server, init, user, my_db]
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ @@ -14491,15 +14491,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

          Returns the process identifier of the calling process.

          For example:

          > self().
          │ │ │ +

          Returns the process identifier of the calling process.

          For example:

          > self().
          │ │ │  <0.26.0>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -14741,15 +14741,15 @@ │ │ │

          Returns the process identifier of a new process started by the application of │ │ │ Module:Function to Args.

          error_handler:undefined_function(Module, Function, Args) is │ │ │ evaluated by the new process if Module:Function/Arity does not exist │ │ │ (where Arity is the length of Args). The error handler can be redefined │ │ │ (see process_flag/2). If │ │ │ error_handler is undefined, or the user has redefined the default │ │ │ error_handler and its replacement is undefined, a failure with reason undef │ │ │ -occurs.

          Example:

          > spawn(speed, regulator, [high_speed, thin_cut]).
          │ │ │ +occurs.

          Example:

          > spawn(speed, regulator, [high_speed, thin_cut]).
          │ │ │  <0.13.1>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ │ │ │ │ │ │

          Raises an exception of class throw. Intended to be used to do non-local │ │ │ returns from functions.

          If evaluated within a catch expression, the │ │ │ -catch expression returns value Any.

          For example:

          > catch throw({hello, there}).
          │ │ │ -        {hello,there}

          If evaluated within a try-block of a │ │ │ +catch expression returns value Any.

          For example:

          > catch throw({hello, there}).
          │ │ │ +        {hello,there}

          If evaluated within a try-block of a │ │ │ try expression, the value Any can be caught │ │ │ within the catch block.

          For example:

          try
          │ │ │ -    throw({my_exception, "Something happened"})
          │ │ │ +    throw({my_exception, "Something happened"})
          │ │ │  catch
          │ │ │ -    throw:{my_exception, Desc} ->
          │ │ │ -        io:format(standard_error, "Error: ~s~n", [Desc])
          │ │ │ +    throw:{my_exception, Desc} ->
          │ │ │ +        io:format(standard_error, "Error: ~s~n", [Desc])
          │ │ │  end

          Failure: nocatch if not caught by an exception handler.

          See the guide about errors and error handling for │ │ │ additional information.

          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ @@ -15774,17 +15774,17 @@ │ │ │ trapping exits, an │ │ │ {'EXIT', Id, ExitReason} message due to the link may have been placed in the │ │ │ message queue of the caller before the unlink(Id) call │ │ │ completed. Also note that the {'EXIT', Id, ExitReason} message may be the │ │ │ result of the link, but may also be the result of the unlikee sending the caller │ │ │ an exit signal by calling the exit/2 BIF. Therefore, it may or may not be │ │ │ appropriate to clean up the message queue after a call to │ │ │ -unlink(Id) as follows, when trapping exits:

          unlink(Id),
          │ │ │ +unlink(Id) as follows, when trapping exits:

          unlink(Id),
          │ │ │  receive
          │ │ │ -    {'EXIT', Id, _} ->
          │ │ │ +    {'EXIT', Id, _} ->
          │ │ │          true
          │ │ │  after 0 ->
          │ │ │          true
          │ │ │  end

          The link removal is performed asynchronously. If such a link does not exist, │ │ │ nothing is done. A detailed description of the │ │ │ link protocol can be found in the │ │ │ Distribution Protocol chapter of the ERTS User's Guide.

          Note

          For some important information about distributed signals, see the │ │ │ @@ -15815,15 +15815,15 @@ │ │ │ │ │ │

          -spec unregister(RegName) -> true when RegName :: atom().
          │ │ │ │ │ │
          │ │ │ │ │ │

          Removes the registered name RegName associated with a │ │ │ process identifier or a port identifier from the │ │ │ -name registry.

          For example:

          > unregister(db).
          │ │ │ +name registry.

          For example:

          > unregister(db).
          │ │ │  true

          Keep in mind that you can still receive signals associated with the registered │ │ │ name after it has been unregistered as the sender may have looked up the name │ │ │ before sending to it.

          Users are advised not to unregister system processes.

          Failure: badarg if RegName is not a registered name.

          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15849,15 +15849,15 @@ │ │ │
          -spec whereis(RegName) -> pid() | port() | undefined when RegName :: atom().
          │ │ │ │ │ │ │ │ │ │ │ │

          Returns the process identifier or port identifier with the │ │ │ registered name RegName from the │ │ │ name registry. Returns │ │ │ -undefined if the name is not registered.

          For example:

          > whereis(db).
          │ │ │ +undefined if the name is not registered.

          For example:

          > whereis(db).
          │ │ │  <0.43.0>
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15924,15 +15924,15 @@ │ │ │ │ │ │ │ │ │ │ │ │ -

          Equivalent to calling halt(0, []).

          For example:

          > halt().
          │ │ │ +

          Equivalent to calling halt(0, []).

          For example:

          > halt().
          │ │ │  os_prompt%
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15955,15 +15955,15 @@ │ │ │ │ │ │
          -spec halt(Status :: non_neg_integer()) -> no_return();
          │ │ │            (Abort :: abort) -> no_return();
          │ │ │            (CrashDumpSlogan :: string()) -> no_return().
          │ │ │ │ │ │
          │ │ │ │ │ │ -

          Equivalent to calling halt(HaltType, []).

          For example:

          > halt(17).
          │ │ │ +

          Equivalent to calling halt(HaltType, []).

          For example:

          > halt(17).
          │ │ │  os_prompt% echo $?
          │ │ │  17
          │ │ │  os_prompt%
          │ │ │
          │ │ │ │ │ │
          │ │ │ │ │ │ @@ -15990,15 +15990,15 @@ │ │ │ │ │ │
          -spec halt(Status :: non_neg_integer(), Options :: halt_options()) -> no_return();
          │ │ │            (Abort :: abort, Options :: halt_options()) -> no_return();
          │ │ │            (CrashDumpSlogan :: string(), Options :: halt_options()) -> no_return().
          │ │ │ │ │ │ │ │ │ │ │ │ -

          Halt the runtime system.

          • halt(Status :: non_neg_integer(), Options :: halt_options())

            Halt the runtime system with status code Status.

            Note

            On many platforms, the OS supports only status codes 0-255. A too large │ │ │ +

            Halt the runtime system.

            • halt(Status :: non_neg_integer(), Options :: halt_options())

              Halt the runtime system with status code Status.

              Note

              On many platforms, the OS supports only status codes 0-255. A too large │ │ │ status code is truncated by clearing the high bits.

              Currently the following options are valid:

              • {flush, EnableFlushing} - If EnableFlushing equals │ │ │ true, which also is the default behavior, the runtime system will perform │ │ │ the following operations before terminating:

                • Flush all outstanding output.
                • Send all Erlang ports exit signals and wait for them to exit.
                • Wait for all async threads to complete all outstanding async jobs.
                • Call all installed NIF on halt callbacks.
                • Wait for all ongoing │ │ │ NIF calls with the delay halt setting enabled │ │ │ to return.
                • Call all installed atexit/on_exit callbacks.

                If EnableFlushing equals false, the runtime system will terminate │ │ │ immediately without performing any of the above listed operations.

                Change

                Runtime systems prior to OTP 26.0 called all installed atexit/on_exit │ │ │ callbacks also when flush was disabled, but as of OTP 26.0 this is no │ │ │ @@ -16007,18 +16007,18 @@ │ │ │ termination of the runtime system. Timeout is in milliseconds. The default │ │ │ value is determined by the the erl +zhft <Timeout> │ │ │ command line flag.

                If flushing has been ongoing for Timeout milliseconds, flushing operations │ │ │ will be interrupted and the runtime system will immediately be terminated │ │ │ with the exit code 255. If flushing is not enabled, the timeout will have │ │ │ no effect on the system.

                See also the erl +zhft <Timeout> command line flag. │ │ │ Note that the shortest timeout set by the command line flag and the │ │ │ -flush_timeout option will be the actual timeout value in effect.

                Since: OTP 27.0

            • halt(Abort :: abort, Options :: halt_options())

              Halt the Erlang runtime system by aborting and produce a core dump if core │ │ │ +flush_timeout option will be the actual timeout value in effect.

              Since: OTP 27.0

          • halt(Abort :: abort, Options :: halt_options())

            Halt the Erlang runtime system by aborting and produce a core dump if core │ │ │ dumping has been enabled in the environment that the runtime system is │ │ │ executing in.

            Note

            The {flush, boolean()} option will be ignored, and │ │ │ -flushing will be disabled.

          • halt(CrashDumpSlogan :: string(), Options :: halt_options())

            Halt the Erlang runtime system and generate an │ │ │ +flushing will be disabled.

        • halt(CrashDumpSlogan :: string(), Options :: halt_options())

          Halt the Erlang runtime system and generate an │ │ │ Erlang crash dump. The string CrashDumpSlogan will be used │ │ │ as slogan in the Erlang crash dump created. The slogan will be trunkated if │ │ │ CrashDumpSlogan is longer than 1023 characters.

          Note

          The {flush, boolean()} option will be ignored, and │ │ │ flushing will be disabled.

          Change

          Behavior changes compared to earlier versions:

          • Before OTP 24.2, the slogan was truncated if CrashDumpSlogan was longer │ │ │ than 200 characters. Now it will be truncated if longer than 1023 │ │ │ characters.
          • Before OTP 20.1, only code points in the range 0-255 were accepted in the │ │ │ slogan. Now any Unicode string is valid.
        │ │ │ @@ -16195,19 +16195,19 @@ │ │ │ (wall_clock) -> {Total_Wallclock_Time, Wallclock_Time_Since_Last_Call} │ │ │ when │ │ │ Total_Wallclock_Time :: non_neg_integer(), │ │ │ Wallclock_Time_Since_Last_Call :: non_neg_integer().
    │ │ │ │ │ │ │ │ │ │ │ │ -

    Returns statistics about the current system.

    The possible flags are:

    • statistics(active_tasks) -> [non_neg_integer()]

      Returns the same as │ │ │ +

      Returns statistics about the current system.

      The possible flags are:

      • statistics(active_tasks) -> [non_neg_integer()]

        Returns the same as │ │ │ statistics(active_tasks_all) with │ │ │ the exception that no information about the dirty IO run queue and its │ │ │ associated schedulers is part of the result. That is, only tasks that are │ │ │ -expected to be CPU bound are part of the result.

        Available since OTP 18.3

      • statistics(active_tasks_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of active processes and │ │ │ +expected to be CPU bound are part of the result.

        Available since OTP 18.3

      • statistics(active_tasks_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of active processes and │ │ │ ports on each run queue and its associated schedulers. That is, the number of │ │ │ processes and ports that are ready to run, or are currently running. Values for │ │ │ normal run queues and their associated schedulers are located first in the │ │ │ resulting list. The first element corresponds to scheduler number 1 and so on. │ │ │ If support for dirty schedulers exist, an element with the value for the dirty │ │ │ CPU run queue and its associated dirty CPU schedulers follow and then as last │ │ │ element the value for the dirty IO run queue and its associated dirty IO │ │ │ @@ -16221,44 +16221,44 @@ │ │ │ migrate to other normal run queues. This has to be taken into account when │ │ │ evaluating the result.

        See also │ │ │ statistics(total_active_tasks), │ │ │ statistics(run_queue_lengths), │ │ │ statistics(run_queue_lengths_all), │ │ │ statistics(total_run_queue_lengths), │ │ │ and │ │ │ -statistics(total_run_queue_lengths_all).

        Available since OTP 20.0

      • statistics(context_switches) -> {non_neg_integer(), 0}

        Returns the total number of context switches since the system started.

      • statistics(exact_reductions) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns the number of exact reductions.

        Note

        statistics(exact_reductions) is a more expensive operation │ │ │ -than statistics(reductions).

      • statistics(garbage_collection) ->
        │ │ │ -  { NumerOfGCs :: non_neg_integer(), WordsReclaimed :: non_neg_integer(), 0}

        Returns information about garbage collection, for example:

        > statistics(garbage_collection).
        │ │ │ -{85,23961,0}

        This information can be invalid for some implementations.

      • statistics(io) -> {{input, non_neg_integer()}, {output, non_neg_integer()}}

        Returns Input, which is the total number of bytes received through ports, and │ │ │ -Output, which is the total number of bytes output to ports.

      • statistics(microstate_accounting) -> [MSAcc_Thread]

        Microstate accounting can be used to measure how much time the Erlang runtime │ │ │ +statistics(total_run_queue_lengths_all).

        Available since OTP 20.0

      • statistics(context_switches) -> {non_neg_integer(), 0}

        Returns the total number of context switches since the system started.

      • statistics(exact_reductions) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns the number of exact reductions.

        Note

        statistics(exact_reductions) is a more expensive operation │ │ │ +than statistics(reductions).

      • statistics(garbage_collection) ->
        │ │ │ +  { NumerOfGCs :: non_neg_integer(), WordsReclaimed :: non_neg_integer(), 0}

        Returns information about garbage collection, for example:

        > statistics(garbage_collection).
        │ │ │ +{85,23961,0}

        This information can be invalid for some implementations.

      • statistics(io) -> {{input, non_neg_integer()}, {output, non_neg_integer()}}

        Returns Input, which is the total number of bytes received through ports, and │ │ │ +Output, which is the total number of bytes output to ports.

      • statistics(microstate_accounting) -> [MSAcc_Thread]

        Microstate accounting can be used to measure how much time the Erlang runtime │ │ │ system spends doing various tasks. It is designed to be as lightweight as │ │ │ possible, but some overhead exists when this is enabled. Microstate accounting │ │ │ is meant to be a profiling tool to help finding performance bottlenecks. To │ │ │ start/stop/reset microstate accounting, use system flag │ │ │ microstate_accounting.

        statistics(microstate_accounting) returns a list of maps │ │ │ representing some of the OS threads within ERTS. Each map contains type and │ │ │ id fields that can be used to identify what thread it is, and also a counters │ │ │ field that contains data about how much time has been spent in the various │ │ │ -states.

        Example:

        > erlang:statistics(microstate_accounting).
        │ │ │ -[#{counters => #{aux => 1899182914,
        │ │ │ +states.

        Example:

        > erlang:statistics(microstate_accounting).
        │ │ │ +[#{counters => #{aux => 1899182914,
        │ │ │                   check_io => 2605863602,
        │ │ │                   emulator => 45731880463,
        │ │ │                   gc => 1512206910,
        │ │ │                   other => 5421338456,
        │ │ │                   port => 221631,
        │ │ │ -                 sleep => 5150294100},
        │ │ │ +                 sleep => 5150294100},
        │ │ │     id => 1,
        │ │ │ -   type => scheduler}|...]

        The time unit is the same as returned by os:perf_counter/0. So, to convert it │ │ │ -to milliseconds, you can do something like this:

        lists:map(
        │ │ │ -  fun(#{ counters := Cnt } = M) ->
        │ │ │ -         MsCnt = maps:map(fun(_K, PerfCount) ->
        │ │ │ -                                    erlang:convert_time_unit(PerfCount, perf_counter, 1000)
        │ │ │ -                           end, Cnt),
        │ │ │ -         M#{ counters := MsCnt }
        │ │ │ -  end, erlang:statistics(microstate_accounting)).

        Notice that these values are not guaranteed to be the exact time spent in each │ │ │ + type => scheduler}|...]

        The time unit is the same as returned by os:perf_counter/0. So, to convert it │ │ │ +to milliseconds, you can do something like this:

        lists:map(
        │ │ │ +  fun(#{ counters := Cnt } = M) ->
        │ │ │ +         MsCnt = maps:map(fun(_K, PerfCount) ->
        │ │ │ +                                    erlang:convert_time_unit(PerfCount, perf_counter, 1000)
        │ │ │ +                           end, Cnt),
        │ │ │ +         M#{ counters := MsCnt }
        │ │ │ +  end, erlang:statistics(microstate_accounting)).

        Notice that these values are not guaranteed to be the exact time spent in each │ │ │ state. This is because of various optimisation done to keep the overhead as │ │ │ small as possible.

        MSAcc_Thread_Types:

        • scheduler - The main execution threads that do most of the work. See │ │ │ erl +S for more details.

        • dirty_cpu_scheduler - The threads for long running cpu intensive work. │ │ │ See erl +SDcpu for more details.

        • dirty_io_scheduler - The threads for long running I/O work. See │ │ │ erl +SDio for more details.

        • async - Async threads are used by various linked-in drivers (mainly the │ │ │ file drivers) do offload non-CPU intensive work. See │ │ │ erl +A for more details.

        • aux - Takes care of any work that is not specifically assigned to a │ │ │ @@ -16282,28 +16282,28 @@ │ │ │ states this time is part of the gc state.

        • nif - Time spent in NIFs. Without extra states this time is part of the │ │ │ emulator state.

        • send - Time spent sending messages (processes only). Without extra │ │ │ states this time is part of the emulator state.

        • timers - Time spent managing timers. Without extra states this time is │ │ │ part of the other state.

        The utility module msacc can be used to more easily analyse these │ │ │ statistics.

        Returns undefined if system flag │ │ │ microstate_accounting is │ │ │ turned off.

        The list of thread information is unsorted and can appear in different order │ │ │ -between calls.

        Note

        The threads and states are subject to change without any prior notice.

        Available since OTP 19.0

      • statistics(reductions) -> {Reductions :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about reductions, for example:

        > statistics(reductions).
        │ │ │ -{2046,11}

        Change

        As from ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions │ │ │ +between calls.

        Note

        The threads and states are subject to change without any prior notice.

        Available since OTP 19.0

      • statistics(reductions) -> {Reductions :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about reductions, for example:

        > statistics(reductions).
        │ │ │ +{2046,11}

        Change

        As from ERTS 5.5 (Erlang/OTP R11B), this value does not include reductions │ │ │ performed in current time slices of currently scheduled processes. If an exact │ │ │ value is wanted, use │ │ │ -statistics(exact_reductions).

      • statistics(run_queue) -> non_neg_integer()

        Returns the total length of all normal and dirty CPU run queues. That is, queued │ │ │ +statistics(exact_reductions).

      • statistics(run_queue) -> non_neg_integer()

        Returns the total length of all normal and dirty CPU run queues. That is, queued │ │ │ work that is expected to be CPU bound. The information is gathered atomically. │ │ │ That is, the result is a consistent snapshot of the state, but this operation is │ │ │ much more expensive compared to │ │ │ statistics(total_run_queue_lengths), │ │ │ -especially when a large amount of schedulers is used.

      • statistics(run_queue_lengths) -> [non_neg_integer()]

        Returns the same as │ │ │ +especially when a large amount of schedulers is used.

      • statistics(run_queue_lengths) -> [non_neg_integer()]

        Returns the same as │ │ │ statistics(run_queue_lengths_all) │ │ │ with the exception that no information about the dirty IO run queue is part of │ │ │ the result. That is, only run queues with work that is expected to be CPU bound │ │ │ -is part of the result.

        Available since OTP 18.3

      • statistics(run_queue_lengths_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of processes and ports │ │ │ +is part of the result.

        Available since OTP 18.3

      • statistics(run_queue_lengths_all) -> [non_neg_integer()]

        Returns a list where each element represents the amount of processes and ports │ │ │ ready to run for each run queue. Values for normal run queues are located first │ │ │ in the resulting list. The first element corresponds to the normal run queue of │ │ │ scheduler number 1 and so on. If support for dirty schedulers exist, values for │ │ │ the dirty CPU run queue and the dirty IO run queue follow (in that order) at the │ │ │ end. The information is not gathered atomically. That is, the result is not │ │ │ necessarily a consistent snapshot of the state, but instead quite efficiently │ │ │ gathered.

        Note

        Each normal scheduler has one run queue that it manages. If dirty schedulers │ │ │ @@ -16315,21 +16315,21 @@ │ │ │ evaluating the result.

        See also │ │ │ statistics(run_queue_lengths), │ │ │ statistics(total_run_queue_lengths_all), │ │ │ statistics(total_run_queue_lengths), │ │ │ statistics(active_tasks), │ │ │ statistics(active_tasks_all), and │ │ │ statistics(total_active_tasks), │ │ │ -statistics(total_active_tasks_all).

        Available since OTP 20.0

      • statistics(runtime) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about runtime, in milliseconds.

        This is the sum of the runtime for all threads in the Erlang runtime system and │ │ │ +statistics(total_active_tasks_all).

        Available since OTP 20.0

      • statistics(runtime) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about runtime, in milliseconds.

        This is the sum of the runtime for all threads in the Erlang runtime system and │ │ │ can therefore be greater than the wall clock time.

        Warning

        This value might wrap due to limitations in the underlying functionality │ │ │ -provided by the operating system that is used.

        Example:

        > statistics(runtime).
        │ │ │ -{1690,1620}
      • statistics(scheduler_wall_time) ->
        │ │ │ -  [{Id :: pos_integer,
        │ │ │ -    ActiveTime :: non_neg_integer(),
        │ │ │ -    TotalTime :: non_neg_integer()}] |
        │ │ │ +provided by the operating system that is used.

        Example:

        > statistics(runtime).
        │ │ │ +{1690,1620}
      • statistics(scheduler_wall_time) ->
        │ │ │ +  [{Id :: pos_integer,
        │ │ │ +    ActiveTime :: non_neg_integer(),
        │ │ │ +    TotalTime :: non_neg_integer()}] |
        │ │ │    undefined

        Returns information describing how much time │ │ │ normal and │ │ │ dirty CPU schedulers in the │ │ │ system have been busy. This value is normally a better indicator of how much │ │ │ load an Erlang node is under instead of looking at the CPU utilization provided │ │ │ by tools such as top or sysstat. This is because scheduler_wall_time also │ │ │ includes time where the scheduler is waiting for some other reasource (such as │ │ │ @@ -16361,60 +16361,60 @@ │ │ │ Dirty CPU schedulers will have scheduler identifiers in the range │ │ │ erlang:system_info(schedulers) < SchedulerId =< erlang:system_info(schedulers) +erlang:system_info(dirty_cpu_schedulers).

        Note

        The different types of schedulers handle specific types of jobs. Every job is │ │ │ assigned to a specific scheduler type. Jobs can migrate between different │ │ │ schedulers of the same type, but never between schedulers of different types. │ │ │ This fact has to be taken under consideration when evaluating the result │ │ │ returned.

        You can use scheduler_wall_time to calculate scheduler utilization. First you │ │ │ take a sample of the values returned by │ │ │ -erlang:statistics(scheduler_wall_time).

        > erlang:system_flag(scheduler_wall_time, true).
        │ │ │ +erlang:statistics(scheduler_wall_time).

        > erlang:system_flag(scheduler_wall_time, true).
        │ │ │  false
        │ │ │ -> Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │ +> Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │  ok

        Some time later the user takes another snapshot and calculates scheduler │ │ │ -utilization per scheduler, for example:

        > Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │ +utilization per scheduler, for example:

        > Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.
        │ │ │  ok
        │ │ │ -> lists:map(fun({{I, A0, T0}, {I, A1, T1}}) ->
        │ │ │ -        {I, (A1 - A0)/(T1 - T0)} end, lists:zip(Ts0,Ts1)).
        │ │ │ -[{1,0.9743474730177548},
        │ │ │ - {2,0.9744843782751444},
        │ │ │ - {3,0.9995902361669045},
        │ │ │ - {4,0.9738012596572161},
        │ │ │ - {5,0.9717956667018103},
        │ │ │ - {6,0.9739235846420741},
        │ │ │ - {7,0.973237033077876},
        │ │ │ - {8,0.9741297293248656}]

        Using the same snapshots to calculate a total scheduler utilization:

        > {A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
        │ │ │ -        {Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0,Ts1)),
        │ │ │ +> lists:map(fun({{I, A0, T0}, {I, A1, T1}}) ->
        │ │ │ +        {I, (A1 - A0)/(T1 - T0)} end, lists:zip(Ts0,Ts1)).
        │ │ │ +[{1,0.9743474730177548},
        │ │ │ + {2,0.9744843782751444},
        │ │ │ + {3,0.9995902361669045},
        │ │ │ + {4,0.9738012596572161},
        │ │ │ + {5,0.9717956667018103},
        │ │ │ + {6,0.9739235846420741},
        │ │ │ + {7,0.973237033077876},
        │ │ │ + {8,0.9741297293248656}]

        Using the same snapshots to calculate a total scheduler utilization:

        > {A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
        │ │ │ +        {Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0,Ts1)),
        │ │ │    TotalSchedulerUtilization = A/T.
        │ │ │  0.9769136803764825

        Total scheduler utilization will equal 1.0 when all schedulers have been │ │ │ active all the time between the two measurements.

        Another (probably more) useful value is to calculate total scheduler utilization │ │ │ -weighted against maximum amount of available CPU time:

        > WeightedSchedulerUtilization = (TotalSchedulerUtilization
        │ │ │ -                                  * (erlang:system_info(schedulers)
        │ │ │ -                                     + erlang:system_info(dirty_cpu_schedulers)))
        │ │ │ -                                 / erlang:system_info(logical_processors_available).
        │ │ │ +weighted against maximum amount of available CPU time:

        > WeightedSchedulerUtilization = (TotalSchedulerUtilization
        │ │ │ +                                  * (erlang:system_info(schedulers)
        │ │ │ +                                     + erlang:system_info(dirty_cpu_schedulers)))
        │ │ │ +                                 / erlang:system_info(logical_processors_available).
        │ │ │  0.9769136803764825

        This weighted scheduler utilization will reach 1.0 when schedulers are active │ │ │ the same amount of time as maximum available CPU time. If more schedulers exist │ │ │ than available logical processors, this value may be greater than 1.0.

        As of ERTS version 9.0, the Erlang runtime system will as default have more │ │ │ schedulers than logical processors. This due to the dirty schedulers.

        Note

        scheduler_wall_time is by default disabled. To enable it, use │ │ │ -erlang:system_flag(scheduler_wall_time, true).

        Available since OTP R15B01

      • statistics(scheduler_wall_time_all) ->
        │ │ │ -  [{Id :: pos_integer,
        │ │ │ -    ActiveTime :: non_neg_integer(),
        │ │ │ -    TotalTime :: non_neg_integer()}] |
        │ │ │ +erlang:system_flag(scheduler_wall_time, true).

        Available since OTP R15B01

      • statistics(scheduler_wall_time_all) ->
        │ │ │ +  [{Id :: pos_integer,
        │ │ │ +    ActiveTime :: non_neg_integer(),
        │ │ │ +    TotalTime :: non_neg_integer()}] |
        │ │ │    undefined

        Equivalent to │ │ │ statistics(scheduler_wall_time), │ │ │ except that it also include information about all dirty I/O schedulers.

        Dirty IO schedulers will have scheduler identifiers in the range │ │ │ erlang:system_info(schedulers)+erlang:system_info(dirty_cpu_schedulers)< SchedulerId =< erlang:system_info(schedulers) + erlang:system_info(dirty_cpu_schedulers) +erlang:system_info(dirty_io_schedulers).

        Note

        Note that work executing on dirty I/O schedulers are expected to mainly wait │ │ │ for I/O. That is, when you get high scheduler utilization on dirty I/O │ │ │ -schedulers, CPU utilization is not expected to be high due to this work.

        Available since OTP 20.0

      • statistics(total_active_tasks) -> non_neg_integer()

        Equivalent to calling │ │ │ +schedulers, CPU utilization is not expected to be high due to this work.

        Available since OTP 20.0

      • statistics(total_active_tasks) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(active_tasks)), │ │ │ -but more efficient.

        Available since OTP 18.3

      • statistics(total_active_tasks_all) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 18.3

      • statistics(total_active_tasks_all) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(active_tasks_all)), │ │ │ -but more efficient.

        Available since OTP 20.0

      • statistics(total_run_queue_lengths) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 20.0

      • statistics(total_run_queue_lengths) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(run_queue_lengths)), │ │ │ -but more efficient.

        Available since OTP 18.3

      • statistics(total_run_queue_lengths_all) -> non_neg_integer()

        Equivalent to calling │ │ │ +but more efficient.

        Available since OTP 18.3

      • statistics(total_run_queue_lengths_all) -> non_neg_integer()

        Equivalent to calling │ │ │ lists:sum(statistics(run_queue_lengths_all)), │ │ │ -but more efficient.

        Available since OTP 20.0

      • statistics(wall_clock) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about wall clock. wall_clock can be used in the same │ │ │ +but more efficient.

        Available since OTP 20.0

      • statistics(wall_clock) -> {Total :: non_neg_integer(), SinceLastCall :: non_neg_integer()}

        Returns information about wall clock. wall_clock can be used in the same │ │ │ manner as runtime, except that real time is measured as opposed to runtime or │ │ │ CPU time.

      │ │ │ │ │ │ │ │ │
      │ │ │ │ │ │
      │ │ │ @@ -16478,65 +16478,65 @@ │ │ │ when │ │ │ Tracer :: pid() | port() | {module(), term()} | false, │ │ │ PrevTracer :: pid() | port() | {module(), term()} | false; │ │ │ (reset_seq_trace, true) -> true.
    │ │ │ │ │ │ │ │ │ │ │ │ -

    Sets a system flag to the given value.

    The possible flags to set are:

    • system_flag(backtrace_depths, non_neg_integer()) -> non_neg_integer()

      Sets the maximum depth of call stack back-traces in the exit reason element of │ │ │ +

      Sets a system flag to the given value.

      The possible flags to set are:

      • system_flag(backtrace_depths, non_neg_integer()) -> non_neg_integer()

        Sets the maximum depth of call stack back-traces in the exit reason element of │ │ │ 'EXIT' tuples. The flag also limits the stacktrace depth returned by │ │ │ -process_info/2 item current_stacktrace.

        Returns the old value of the flag.

      • system_flag(cpu_topology, cpu_topology()) -> cpu_topology()

        Warning

        This argument is deprecated. Instead of using this argument, use │ │ │ +process_info/2 item current_stacktrace.

        Returns the old value of the flag.

      • system_flag(cpu_topology, cpu_topology()) -> cpu_topology()

        Warning

        This argument is deprecated. Instead of using this argument, use │ │ │ command-line argument +sct in erl.

        When this argument is removed, a final CPU topology to use is determined at │ │ │ emulator boot time.

        Sets the user-defined CpuTopology. The user-defined CPU topology overrides any │ │ │ automatically detected CPU topology. By passing undefined as CpuTopology, │ │ │ the system reverts to the CPU topology automatically detected. The returned │ │ │ value equals the value returned from erlang:system_info(cpu_topology) before │ │ │ the change was made.

        Returns the old value of the flag.

        The CPU topology is used when binding schedulers to logical processors. If │ │ │ schedulers are already bound when the CPU topology is changed, the schedulers │ │ │ are sent a request to rebind according to the new CPU topology.

        The user-defined CPU topology can also be set by passing command-line argument │ │ │ +sct to erl.

        For information on type CpuTopology and more, see │ │ │ erlang:system_info(cpu_topology) as │ │ │ well as command-line flags +sct and │ │ │ -+sbt in erl.

      • system_flag(dirty_cpu_schedulers_online, pos_integer()) -> pos_integer()

        Sets the number of dirty CPU schedulers online. Range is │ │ │ ++sbt in erl.

      • system_flag(dirty_cpu_schedulers_online, pos_integer()) -> pos_integer()

        Sets the number of dirty CPU schedulers online. Range is │ │ │ 1 <= DirtyCPUSchedulersOnline <= N, where N is the smallest of the return │ │ │ values of erlang:system_info(dirty_cpu_schedulers) and │ │ │ erlang:system_info(schedulers_online).

        Returns the old value of the flag.

        The number of dirty CPU schedulers online can change if the number of schedulers │ │ │ online changes. For example, if 12 schedulers and 6 dirty CPU schedulers are │ │ │ online, and system_flag/2 is used to set the number of │ │ │ schedulers online to 6, then the number of dirty CPU schedulers online is │ │ │ automatically decreased by half as well, down to 3. Similarly, the number of │ │ │ dirty CPU schedulers online increases proportionally to increases in the number │ │ │ of schedulers online.

        For more information, see │ │ │ erlang:system_info(dirty_cpu_schedulers) │ │ │ and │ │ │ -erlang:system_info(dirty_cpu_schedulers_online).

        Available since OTP 17.0

      • system_flag(erts_alloc, {Alloc :: atom(), F :: atom(), V :: integer()}) ->
        │ │ │ +erlang:system_info(dirty_cpu_schedulers_online).

        Available since OTP 17.0

      • system_flag(erts_alloc, {Alloc :: atom(), F :: atom(), V :: integer()}) ->
        │ │ │    ok | notsup

        Sets system flags for erts_alloc(3). Alloc is the allocator │ │ │ to affect, for example binary_alloc. F is the flag to change and V is the │ │ │ new value.

        Only a subset of all erts_alloc flags can be changed at run time. This subset │ │ │ -is currently only the flag sbct.

        Returns ok if the flag was set or notsup if not supported by erts_alloc.

        Available since OTP 20.2.3

      • system_flag(fullsweep_after, non_neg_integer()) -> non_neg_integer()

        Sets system flag fullsweep_after. Number is a non-negative integer │ │ │ +is currently only the flag sbct.

        Returns ok if the flag was set or notsup if not supported by erts_alloc.

        Available since OTP 20.2.3

      • system_flag(fullsweep_after, non_neg_integer()) -> non_neg_integer()

        Sets system flag fullsweep_after. Number is a non-negative integer │ │ │ indicating how many times generational garbage collections can be done without │ │ │ forcing a fullsweep collection. The value applies to new processes, while │ │ │ processes already running are not affected.

        Returns the old value of the flag.

        In low-memory systems (especially without virtual memory), setting the value to │ │ │ 0 can help to conserve memory.

        This value can also be set through (OS) environment variable │ │ │ -ERL_FULLSWEEP_AFTER.

      • system_flag(microstate_accounting, true | false | reset) -> boolean()

        Turns on/off microstate accounting measurements. When passing reset, all │ │ │ +ERL_FULLSWEEP_AFTER.

      • system_flag(microstate_accounting, true | false | reset) -> boolean()

        Turns on/off microstate accounting measurements. When passing reset, all │ │ │ counters are reset to 0.

        For more information see │ │ │ -statistics(microstate_accounting).

        Available since OTP 19.0

      • system_flag(min_heap_size, non_neg_integer()) -> non_neg_integer()

        Sets the default minimum heap size for processes. The size is specified in │ │ │ +statistics(microstate_accounting).

        Available since OTP 19.0

      • system_flag(min_heap_size, non_neg_integer()) -> non_neg_integer()

        Sets the default minimum heap size for processes. The size is specified in │ │ │ words. The new min_heap_size effects only processes spawned after the change │ │ │ of min_heap_size has been made. min_heap_size can be set for individual │ │ │ -processes by using spawn_opt/4 or process_flag/2.

        Returns the old value of the flag.

      • system_flag(min_bin_vheap_size, non_neg_integer()) -> non_neg_integer()

        Sets the default minimum binary virtual heap size for processes. The size is │ │ │ +processes by using spawn_opt/4 or process_flag/2.

        Returns the old value of the flag.

      • system_flag(min_bin_vheap_size, non_neg_integer()) -> non_neg_integer()

        Sets the default minimum binary virtual heap size for processes. The size is │ │ │ specified in words. The new min_bin_vhheap_size effects only processes spawned │ │ │ after the change of min_bin_vheap_size has been made. min_bin_vheap_size can │ │ │ be set for individual processes by using spawn_opt/2,3,4 or │ │ │ -process_flag/2.

        Returns the old value of the flag.

        Available since OTP R13B04

      • system_flag(max_heap_size, max_heap_size()) -> max_heap_size()

        Sets the default maximum heap size settings for processes. The size is specified │ │ │ +process_flag/2.

        Returns the old value of the flag.

        Available since OTP R13B04

      • system_flag(max_heap_size, max_heap_size()) -> max_heap_size()

        Sets the default maximum heap size settings for processes. The size is specified │ │ │ in words. The new max_heap_size effects only processes spawn TRUNCATED DUE TO SIZE LIMIT: 10485760 bytes